
An Efficient Technique for Dynamic Slicing
of Concurrent Java Programs

D.P. Mohapatra, Rajib Mall, and Rajeev Kumar

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

Kharagpur, WB 721 302, India
{durga,rajib,rkumar}@cse.iitkgp.ernet.in

Abstract. Program slice has many applications such as program debugging, test-
ing, maintenance and complexity measurement. We propose a new dynamic pro-
gram slicing technique for concurrent Java programs that is more efficient than
the related algorithms. We introduce the notion of Concurrent Program Depen-
dence Graph (CPDG). Our algorithm uses CPDG as the intermediate representa-
tion and is based on marking and unmarking the edges in the CPDG as and when
the dependencies arise and cease during run-time. Our approach eliminates the
use of trace files and is more efficient than the existing algorithms.

1 Introduction

The concept of a program slice was introduced by Weiser [1]. A static backward pro-
gram slice consists of those parts of a program that affect the value of a variable selected
at some program point of interest. The variable along with the program point of interest
is referred to as a slicing criterion. More formally, a slicing criterion < s, V > specifies
a location (statement s) and a set of variables (V).

The program slices introduced by Wesier [1] are now called static slices. A static
slice is valid for all possible input values. Therefore conservative assumptions are made,
which often lead to relatively larger slices. To overcome this difficulty, Korel and Laski
introduced the concept of dynamic program slicing. A dynamic program slice contains
only those statements that actually affect the value of a variable at a program point for
a given execution. Therefore, dynamic slices are usually smaller than static slices and
have been found to be useful in debugging, testing and maintenance etc.

Object-oriented programming languages present new challenges which are not en-
countered in traditional program slicing. To slice an object-oriented program, features
such as classes, dynamic binding, inheritance, and polymorphism need to be considered
carefully. Larson and Harrold were the first to consider these aspects in their work [2].

Many of the real life object-oriented programs are concurrent which run on dif-
ferent machines connected to a network. It is usually accepted that understanding and
debugging of concurrent object-oriented programs are much harder compared to those
of sequential programs. The non-deterministic nature of concurrent programs, the lack
of global states, unsynchronized interactions among processes, multiple threads of con-
trol and a dynamically varying number of processes are some reasons for this difficulty.

S. Manandhar et al. (Eds.): AACC 2004, LNCS 3285, pp. 255–262, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

256 D.P. Mohapatra, R. Mall, and R. Kumar

An increasing number of resources are being spent in debugging, testing and maintain-
ing these products. Slicing techniques promise to come in handy at this point. However
research attempts in the program slicing area have focussed attention largely on sequen-
tial programs. But research reports dealing with slicing of concurrent object-oriented
programs are scarce in literature [3].

Efficiency is especially an important concern for slicing concurrent object-oriented
programs, since their size is often large. With this motivation, in this paper we propose a
new dynamic slicing algorithm for computing slices of concurrent Java programs. Only
the concurrency issues in Java are of concern, many sequential Object-Oriented features
are not discussed in this paper. We have named our algorithm edge-marking dynamic
slicing (EMDS) algorithm.

The rest of the paper is organized as follows. In section 2, we present some basic
concepts, definitions and the intermediate program representation: concurrent program
dependence graph (CPDG). In section 3, we discuss our edge-marking dynamic slic-
ing (EMDS) algorithm. In section 4, we briefly describe the implementation of our
algorithm. In section 5, we compare our algorithm with related algorithms. Section 6
concludes the paper.

2 Basic Concepts and Definitions

We introduce a few definitions that would be used in our algorithm. In the following
definitions we use the terms statement, node and vertex interchangeably.We also de-
scribe about the intermediate representation.

Definition 1. Precise Dynamic Slice. A dynamic slice is said to be precise if it includes
only those statements that actually affect the value of a variable at a program point for
the given execution.

Definition 2. Def(var). Let var be a variable in a class in the program P. A node x is
said to be a Def(var) node if x represents a definition statement that defines the variable
var.

In Fig. 2, nodes 2, 9 and 17 are the Def(a2) nodes.

Definition 3. Use(var) node. Let var be a variable in a class in the program P. A node
x is said to be a Use(var) node iff it uses the variable var.

In Fig. 2, the node 4 is a Use(a3) node and nodes 2, 6 and 12 are Use(a2) nodes.

Definition 4. RecentDef(var). For each variable var, RecentDef(var) represents the
node (the label number of the statement) corresponding to the most recent definition of
the variable var.

Definition 5. Concurrent Control Flow Graph (CCFG). A concurrent control flow
graph (CCFG) G of a program P is a directed graph (N, E, Start, Stop), where each
node n ∈ N represents a statement of the program P, while each edge e ∈ E represents
potential control transfer among the nodes. Nodes Start and Stop are unique nodes
representing entry and exit of the program P respectively. There is a directed edge from
node a to node b if control may flow from node a to node b.

An Efficient Technique for Dynamic Slicing of Concurrent Java Programs 257

Definition 6. Post dominance. Let x and y be two nodes in a CCFG. Node y post
dominates node x iff every directed path from x to stop passes through y.

Definition 7. Control Dependence. Let G be a CCFG and x be a test (predicate node).
A node y is said to be control dependent on a node x iff there exists a directed path Q
from x to y such that

– y post dominates every node z �= x in Q.
– y does not post dominate x.

Definition 8. Data Dependence. Let G be a CCFG. Let x be a Def(var) node and y be
a Use(var) node. The node y is said to be data dependent on node x iff there exists a
directed path Q from x to y such that there is no intervening Def(var) node in Q.

Definition 9. Synchronization Dependence. A statement y in one thread is synchro-
nization dependent on a statement x in another thread if the start or termination of the
execution of x directly determines the start or termination of the execution of y through
an inter thread synchronization.

Let y be a wait() node in thread t1 and x be the corresponding notify()node in thread
t2. Then the node y is said to be synchronization dependent on node x.
For example, in Fig. 2, node 5 in Thread1 is synchronization dependent on node 10 in
Thread2.

Definition 10. Communication Dependence. Informally, a statement y in one thread is
communication dependent on statement x in another thread if the value of a variable
defined at x is directly used at y through inter thread communication.

Let x be a Def(var) node in thread t1 and y be a Use(var) node in thread t2. Then
the node y is said to be communication dependent on node x. For example, in Fig. 2,
node 6 in Thread1 is communication dependent on nodes 9 and 13 in Thread2.

Definition 11. Concurrent Program Dependence Graph (CPDG). A concurrent pro-
gram dependence graph (CPDG) GC of a concurrent object-oriented program P is a
directed graph (NC , EC) where each node n ∈ NC represents a statement in P. For x, y
∈ NC , (y,x) ∈ EC iff one of the following holds:

– y is control dependent on x. Such an edge is called a control dependence edge.
– y is data dependent on x. Such an edge is called a data dependence edge.
– y is synchronization dependent on x. Such an edge is called a synchronization de-

pendence edge.
– y is communication dependent on x. Such an edge is called a communication de-

pendence edge.

2.1 Construction of the CPDG

A CPDG of a concurrent Java program captures the program dependencies that can
be determined statically as well as the dependencies that may exist at run-time. The de-
pendencies which dynamically arise at run-time are data dependencies, synchronization

258 D.P. Mohapatra, R. Mall, and R. Kumar

dependencies and communication dependencies. We will use different types of edges
defined in Definition 11 to represent the different types of dependencies. We use syn-
chronization dependence edge to capture dependence relationships between different
threads due to inter-thread synchronization. We use communication dependence edge to
capture dependence relationships between different threads due to inter-thread commu-
nication. A CPDG can contain the following types of nodes: (i) definition (assignment)
(ii) use (iii) predicate (iv) notify (v) wait. Also, to represent different dependencies that
can exist in a concurrent program, a CPDG may contain the following types of edges:
(i) control dependence edge (ii) data dependence edge (iii) synchronization dependence
edge and (iv) communication dependence edge. We have already defined these different
types of edges earlier. Fig. 2 shows the CPDG for the program segment in Fig. 1.

3 EMDS Algorithm

We now provide a brief overview of our dynamic slicing algorithm. Before execution of
a concurrent object-oriented program P, its CCFG and CPDG are constructed statically.
During execution of the program P, we mark an edge when its associated dependence
exists, and unmark when its associated dependence ceases to exist. We consider all the
control dependence edges, data dependence edges, synchronization edges and commu-
nication edges for marking and unmarking.

Let Dynamic Slice (u, var) with respect to the slicing criterion < u, var > de-
notes the dynamic slice with respect to the most recent execution of the node u. Let
(u, x1), . . . , (u, xk) be all the marked outgoing dependence edges of u in the updated
CPDG after an execution of the statement u. Then, it is clear that the dynamic slice with
respect to the present execution of the node u, for the variable var is given by :
Dynamic Slice(u, var) ={x1, x2, . . . , xk} ∪ Dynamic Slice(x1, var) ∪
Dynamic Slice(x2, var) ∪ . . . ∪ Dynamic Slice(xk, var).

Let var 1, var 2, . . . , var k be all the variables used or defined at statement u. Then,
we define the dynamic slice of the whole statement u as :

dyn slice(u) =Dynamic Slice(u, var 1) ∪ Dynamic Slice(u, var 2)
∪ . . . ∪ Dynamic Slice(u, var k).

Our slicing algorithm operates in three main stages:

– Constructing the concurrent program dependence graph statically
– Managing the CPDG at run-time
– Computing the dynamic slice

In the first stage the CCFG is constructed from a static analysis of the source code.
Also, in this stage using the CCFG the static CPDG is constructed. The stage 2 of
the algorithm executes at run-time and is responsible for maintaining the CPDG as the
execution proceeds. The maintenance of the CPDG at run-time involves marking and
unmarking the different edges. The stage 3 is responsible for computing the dynamic
slice. Once a slicing criterion is specified, the dynamic slicing algorithm computes the
dynamic slice with respect to any given slicing criterion by looking up the correspond-
ing Dynamic Slice computed during run time.

An Efficient Technique for Dynamic Slicing of Concurrent Java Programs 259

 CompObject a2, CompObject a3);
 {

 }

 }
 }

 CompObject a2, CompObject a3);
 {

 } }

 methods Swait() and Snotify(). Swait() invokes a wait() method and

7 public void run() {
8 O.Swait();
9 a2.mul(a1, a1); // a2 = a1 * a1
10 O.Snotify();

12 a3 . mul(a2, a1); // a3 = a2 * a1
 else
13 a2. mul(a1, a1); // a2 = a1 * a1

}

}

14 class example {
15 public static void main(mstring[] argm) {

1 public void run() {
2 a2.mul(a1, a2); // a2= a1 * a2
3 O.Snotify();
4 a1.mul(a1, a3); // a1= a1 * a3
5 O.Swait();
6 a3.mul(a2, a2); // a3= a2*a2

 class Thread2 extends Thread {
 private SyncObject O;

 private CompObject C;
 void Thread1(SyncObject O, CompObject a1,

 this.O=O;
 this.a1= a1;
 this.a2= a2;
 this.a3= a3;

// In this example, SyncObject is a class, in which there are two synchron

 Snotify() invokes a notify method . CompObject is a class which provide
 a method mul(CompObject, CompObject). If a1.mul(a2, a3) is invoked th
 a1 = a2 * a3. The detail codes are not listed here.

11 if (a1 = a2)

 }
 }

22 t2.start();

21 t1.start();

20 Thread2 t2 = new Thread (o1, a1, a2, a3);
19 Thread1 t1 = new Thread (o1, a1, a2, a3);

18 a3 = new CompObject(Integer.parseInt(argm[2]);
17 a2 = new CompObject(Integer.parseInt(argm[1]);
16 a1 = new CompObject(Integer.parseInt(argm[0]);
 o1.reset(); // reset () is a function for initializing Syn

 class Thread1 extends Thread {
 private SyncObject O;
 private CompObject C;
 void Thread1(SyncObject O, CompObject a1,

 this.O=O;
 this.a1= a1;
 this.a2= a2;
 this.a3= a3;

 SyncObject o1;

 CompObject a1, a2, a3;

Fig. 1. An Example Program

Working of the EMDS Algorithm: We illustrate the working of the algorithm with
the help of an example. Consider the Java program of Fig. 1. The updated CPDG of
the program is obtained after applying stage 2 of the EMDS algorithm and is shown
in Fig. 3. We are interested in computing the dynamic slice for the slicing criterion
< 6, a3 >. For the input data argm[0]=1, argm[1]=1 and argm[2]=2, we explain
how our algorithm computes the slice. We first unmark all the edges of the CPDG and

260 D.P. Mohapatra, R. Mall, and R. Kumar

15

16

17

18

19

20

21

22

2 3 4 5 6

7

8 9 11

12

13

control dependence edge

1

10

 14

data dependence edge

synchronization dep.edge

communication dep. edge

Fig. 2. The CPDG of Fig. 1

setDynamic Slice(u, var) =φ for every node u of the CPDG. The figure shows all
the control dependence edges as marked. The algorithm has marked the synchroniza-
tion dependence edges (5, 10) and (8, 3) as synchronization dependency exists between
statements 5 and 10, and statements 8 and 3. For the given input values, statement 6 is
communication dependent on statement 9. So, the algorithm marked the communication
dependence edge (6, 9). All the marked edges in Fig. 3 are shown in bold lines.

Now we shall find the backward dynamic slice computed with respect to the slicing
criterion < a3, 6 >. According to our edge marking algorithm, the dynamic slice at
statement 6, is given by the expression Dynamic Slice(6, a3) = {1, 5, 9} ∪ dyn slice(1)
∪ dyn slice(5) ∪ dyn slice(9). Evaluating the expression in a recursive manner, we get
the final dynamic slice at statement 6. The statements included in the dynamic slice
are shown as shaded vertices in Fig. 3. Although statement 12 can be reached from
statement 6, it can not be included in the slice. Our algorithm successfully eliminates
statement 12 from the resulting slice. Also, our algorithm does not include statement 2
in the resulting slice. But by using the approach of Zhao [3], the statements 2 and 12,
both would have been included in the slice which is clearly imprecise. So, our algorithm
computes precise dynamic slices.

3.1 Complexity Analysis

Space complexity. The space complexity of the EMDS algorithm is O(n2), where n is
the number of executable statements in the program.

Time complexity. The worst case time complexity of our algorithm is O(mn), where m
is an upper bound on the number of variables used at any statement.

An Efficient Technique for Dynamic Slicing of Concurrent Java Programs 261

15

16

17

18

19

20

21

22

2 3 4 5 6

7

8 9 11

12

13

Slice point

control dependence edge

communication dep. edge

marked control dep. edge

dep. edge

marked data dep. edge

marked synchronization
dep. edge
marked communication

1

10

14

Fig. 3. The updated CPDG of Fig. 1

Dependency
 Updation
 Module

Slice

Computation

Module

Slice

 Updation

Module

GUI Module

Fig. 4. Module Structure of the Slicer

4 Implementation

The lexical analyzer component has been implemented using lex. The semantic ana-
lyzer component has been implemented using yacc. The following are the major mod-
ules which implement our slicing tool. The module structure is shown in Fig. 4.

– Dependency Updation Module
– Slice Computation Module
– Slice Updation Module
– GUI Module

5 Comparison with Related Works

Zhao computed the static slice of a concurrent object-oriented program based on the
multi-threaded dependence graph (MDG) [3]. He did not take into account that depen-

262 D.P. Mohapatra, R. Mall, and R. Kumar

dences between concurrently executed statements are not transitive. So, the resulting
slice is not precise. Again, he has not addressed the dynamic aspects. Since our algo-
rithm marks an edge only when the dependence exists, so this transitivity problem does
not arise at all. So, the resulting slice is precise.

Krinke introduced an algorithm to get more precise slices of concurrent object-
oriented programs [4]. She had handled the transitivity problem carefully. But she has
not considered the concept of synchronization in her algorithm. But, synchronization
is widely used in concurrent programs and in some environment it is necessary. So,
krinke’s algorithm can not be used in practice. We have considered the synchronization
dependence in our algorithm. So, our algorithm can be practically used to compute
dynamic slices of most concurrent object-oriented programs like Java.

Chen and Xu developed a new algorithm to compute static slices of concurrent Java
programs [5]. To compute the slices, they have used concurrent control flow graph
(CCFG) and concurrent program dependence graph (CPDG) as the intermediate repre-
sentations. Since they have used static analysis to compute the slices, so the resulting
slices are not precise. But, we have performed dynamic analysis to compute the slices.
So, the slices computed by our algorithm are precise.

6 Discussion and Conclusions

We have proposed a new algorithm for computing dynamic slices of concurrent java
programs. We have named this algorithm edge-marking dynamic slicing (EMDS) al-
gorithm. It is based on marking and unmarking the edges of the CPDG as and when
the dependences arise and cease at run-time. The EMDS algorithm does not require
any new nodes to be created and added to the CPDG at run time nor does it require to
maintain any execution trace in a trace file. This saves the expensive node creation and
file I/O steps. Further, once a slicing command is given, our algorithm produces results
through a mere table-lookup and avoids on-demand slicing computation. Although we
have presented our slicing technique using Java examples, the technique can easily be
adapted to other object-oriented languages such as C++. We are now extending this ap-
proach to compute the dynamic slice of object-oriented programs running parallely in
several distributed computers.

References

1. Weiser, M.: Programmers use slices when debugging. Communications of the ACM 25 (1982)
446–452

2. Larson, L.D., Harrold, M.J.: Slicing object-oriented software. In: Proceedings of the 18th
International Conference on Software Engineering, German (1996)

3. Zhao, J.: Slicing concurrent java programs. In: Proceedings of the 7th IEEE International
Workshop on Program Comprehension. (1999)

4. Krinke, J.: Static slicing of threaded programs. ACM SIGPLAN Notices 33 (1998) 35–42
5. Chen, Z., Xu, B.: Slicing concurrent java programs. ACM SIGPLAN Notices 36 (2001)

41–47

	1 Introduction
	2 Basic Concepts and Definitions
	2.1 Construction of the CPDG

	3 EMDS Algorithm
	3.1 Complexity Analysis

	4 Implementation
	5 Comparison with Related Works
	6 Discussion and Conclusions
	References

