Evaluation of Intensity-Based
2D-3D Spine Image Registration
Using Clinical Gold-Standard Data

Daniel B. Russakoff’2, Torsten Rohlfing?, Anthony Ho?, Daniel H. Kim?,
Ramin Shahidi?, John R. Adler, Jr.23, and Calvin R. Maurer, Jr.2

! Department of Computer Science
2 Image Guidance Laboratories, Department of Neurosurgery
3 Department of Radiation Oncology
Stanford University, Stanford, CA, USA

dbrussak@stanford.edu,calvin.maurer@igl.stanford.edu

Abstract. In this paper, we evaluate the accuracy and robustness of
intensity-based 2D-3D registration for six image similarity measures us-
ing clinical gold-standard spine image data from four patients. The gold-
standard transformations are obtained using four bone-implanted fidu-
cial markers. The three best similarity measures are mutual information,
cross correlation, and gradient correlation. The mean target registration
errors for these three measures range from 1.3 to 1.5 mm. We believe this
is the first reported evaluation using clinical gold-standard data.

1 Introduction

In order to use preoperatively acquired three-dimensional (3D) images for intra-
operative therapy guidance, the images must be registered to a patient coordi-
nate system defined in the operating room. Image-to-physical registration is one
of the fundamental steps in all image-guided interventions. Surgical navigation
systems use the image-to-physical registration transformation to track in real
time the changing position of a surgical probe on a display of the preoperative
images or to direct a needle to a surgical target visible in the images. Stereotactic
radiotherapy and radiosurgery systems use the image-to-physical transformation
to direct radiation to a surgical target visible in the images.

A promising method for obtaining the image-to-physical transformation is the
registration of a 3D x-ray computed tomography (CT) image to one or more two-
dimensional (2D) x-ray projection images (e.g., fluoroscopy images, amorphous
silicon detector images). This approach has applications in image-guided spine
surgery [1l2] and radiosurgery [3/[4]. The 2D-3D registration problem involves
taking one or more x-ray projection (2D) images of the patient’s anatomy and
using these projections to determine the rigid transformation T (rotation and
translation) that aligns the coordinate system of the CT (3D) image with that of
the x-ray projection images and the operating room. Figure[Il shows a schematic
representation of the 2D-3D registration process. In general, most of the proposed
solutions to this problem fit into this framework.
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Fig. 1. Schematic overview of the 2D-3D registration process. For intensity-based 2D-
3D registration, the reference image is an intra-operative x-ray projection (2D) image.
It is used as is with little or no processing. The floating image is a CT (3D) image.
It is processed by generating DRRs (synthetic x-ray projection images) for various
orientations of the CT image relative to the reference frame of the x-ray imaging
system. The optimizer searches for the rigid transformation T that produces the DRR
that is most similar to the real x-ray projection image. The optimal transformation is
used to align the CT coordinate system with that of the operating room.

We are particularly interested in intensity-based 2D-3D image registration
2I5J6LT]. In this case, the reference image is one or more x-ray projection images
and the floating image is a CT image. The method involves computing synthetic
x-ray images, which are called digitally reconstructed radiographs (DRRs), by
casting rays using a known camera geometry through the CT image. The DRR
pixel values are simply the summations of the CT values encountered along each
projection ray. The pose (position and orientation) of the CT image (given by
the transformation T) is adjusted iteratively until the DRR produced is most
similar to the x-ray projection image. Figure Bl shows a corresponding pair of
real and synthetic x-ray projection images.

A variety of similarity measures have been used, including cross correla-
tion, pattern intensity, gradient correlation, gradient difference, entropy, and
mutual information [6]. Intensity-based 2D-3D image registration appears to
be more accurate than feature-based registration (not including metal fiducial
markers) [§]. But for spine images, intensity-based 2D-3D registration methods
are very susceptible to local minima in the cost function and thus need initial
transformations that are close to the correct transformation in order to converge
reliably [6]. Also, intensity-based registration methods are basically untested on
gold-standard clinical spine image data.

In this paper, we evaluate the accuracy and robustness of intensity-based
2D-3D registration for the six aforementioned image similarity measures using
clinical gold-standard spine image data from four patients. The gold-standard
transformations are obtained using four bone-implanted fiducial markers. We
believe this is the first reported evaluation using clinical gold-standard data.
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(b)

Fig. 2. (a) Example x-ray projection image. A box delineates a region of interest (ROI).
Three bone-implanted fiducial markers can be seen in the ROL (b) A DRR (synthetic
projection image) generated from a registered (the correct position and orientation have
already been calculated) CT image of the same patient using the camera geometry of
the x-ray imaging system used to create the image in (a).

2 Gold-Standard Clinical Spine Image Data

The CyberKnife Stereotactic Radiosurgery System (Accuray, Inc., Sunnyvale,
CA) is an image-guided frameless robotic stereotactic radiosurgery system that
was developed as a noninvasive means to precisely align treatment beams with
targets [9]. Two orthogonal amorphous silicon detector (ASD) x-ray cameras in
the treatment room establish a coordinate frame to locate the patient’s target
site with respect to the therapy beam directions for the robotic manipulator
(Fig. Bl). A pair of images from the camera system determines the patient’s
position during treatment. Because the treatment position can differ from the
position in the CT planning study, a 2D-3D image registration process is used to
find the rigid-body transformation that relates the CT position to the treatment
position. This transformation is communicated through a real-time control loop
to a robotic manipulator that points a compact 6 MV x-band linear accelerator
(LINAC). By taking images throughout the treatment process, shifts in patient
position can be detected and the beams can be redirected accordingly.

Patients are currently undergoing treatment of spinal cord lesions with the
CyberKnife through an extended FDA treatment protocol for use of the de-
vice. Before treatment, each patient is fitted with a simple immobilization de-
vice. The cervical spine patients are fitted with a molded Aquaplast face mask
(WFR/Aquaplast Corp., Wyckoff, NJ) that stabilizes the head and neck on a
radiographically transparent headrest. Thoracic and lumbar spine patients rest
in a conformal alpha cradle during CT imaging and treatment. These supports
maintain the general orientation of the anatomy and minimize patient motion.
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Fig. 3. (a) Schematic illustration of the CyberKnife system looking towards the head
of a patient lying on the treatment table. Two x-ray sources are mounted on the ceiling.
Two amorphous silicon detector (ASD) x-ray cameras are mounted on the floor. The
orthogonal x-ray projection imaging system is calibrated so that the intrinsic and
extrinsic cameras parameters of both imaging devices are known. The dashed lines
indicate the triangulation of the 3D position of a fiducial marker that appears in both
x-ray projection images. (b) A birds-eye view of the system showing a patient lying
on the treatment table with two x-ray projection images. In these images, the fiducial
markers appear as small, white dots in the cervical vertebrae near the base of the skull.

For each patient, a contrast CT scan of the region of interest is acquired
for treatment planning and also for reference in the image-guidance process.
For spinal radiosurgery of thoracic and lumbar vertebrae, and most cervical
vertebrae, fiducial markers are implanted percutaneously before CT scanning
in the posterior bony elements of the vertebral levels adjacent to the lesions
to provide radiographic landmarks. Because these implanted fiducials have a
fixed relationship with the bone in which they are implanted, any movement
in the vertebrae is detected and compensated by the CyberKnife. Implantation
of fiducial markers occurs in the operating room under conscious sedation. The
fiducial markers are 2 x 6 mm surgical stainless steel self-retaining tacks. Four
or more fiducials are placed in a noncoplanar pattern and spaced approximately
25mm apart. Three non-collinear fiducials are required to define a rigid-body
transformation. Four fiducials provide redundancy in the event that one of them
is obscured or otherwise difficult to image. Each fiducial is implanted through
stab wounds in the skin and guided with intraoperative fluoroscopy. They are
implanted in the lamina or facet of the spine around the lesion of interest. No
complications have been reported from this procedure, and all patients have been
discharged home the same day.
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We obtained archived CyberKnife spinal image data from four patients. Two
of these patients have cervical vertebrae lesions (C3 and C5) and two have tho-
racic vertebrae lesions (T1 and T8). For each patient, we obtained: 1) A pre-
treatment CT image with slice thickness 1.25 mm and a field of view sufficiently
large to image the entire cross section of the body. 2) Approximately 20-30 pairs
of orthogonal projection x-ray images obtained at intervals of approximately 60
seconds for the duration of treatment with the two Flashscan 20 flat-panel amor-
phous silicon x-ray cameras (dpiX, LLC, Palo Alto, CA). The x-ray images have
512 x 512 pixels with pixel size 0.4mm and 12-bit intensity values. Only one
randomly chosen pair of projection x-ray images is used for the work reported in
this paper. 3) The camera calibration model and parameters for the two x-ray
cameras. These parameters are obtained by scanning a calibration phantom as
part of regular quality assurance testing. 4) Positions (3D) of the four fiducial
markers in the CT image. 5) Positions (2D) of the four fiducial markers in the
projection x-ray images.

2.1 Assessment of Registration Accuracy and Robustness

A gold-standard reference transformation is determined as follows. Each pair of
corresponding 2D projection x-ray fiducial positions is backprojected to recon-
struct the 3D fiducial position. The rays do not generally intersect. We take as
the 3D coordinate the midpoint of the shortest line segment between the two
rays. Then we perform a point-based registration by finding the rigid transfor-
mation that aligns the 3D fiducial positions from the CT image with the 3D
backprojected fiducial positions from the x-ray images, such that the distance
between corresponding points is minimized in the root-mean-square sense. The
target registration error (TRE) of a registration transformation being evaluated
is computed as the difference between the positions of a target mapped by the
evaluated transformation and the gold-standard transformation [10]. The TRE
values are computed for each voxel inside a rectangular box bounding the ver-
tebra.

3 2D-3D Image Registration Algorithm

The algorithm searches for the six parameters of the rigid transformation that
produces the DRR (synthetic x-ray projection image) that is most similar to
the real x-ray projection image. The algorithm performs four main functions
corresponding to the four shaded boxes in Fig. [I} processing of the reference
image, processing of the floating image, computation of a similarity measure,
and optimization.

3.1 Reference Image

We crop the reference image to include a specific region of interest (ROI) (Fig.[2).
The ROI includes the anatomy that will be treated. Restricting the registration
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to a ROI has several advantages. First, this speeds up the registration process. In
particular, DRRs are computationally expensive to create, and their generation
is typically a bottleneck in the execution of the registration process. The DRRs
are generated only for the ROI. Also, the similarity measure is computed only
for the ROI. Second, the registration should be more accurate within the ROL.
The smaller the ROI, the less likely that structures within the ROI have moved
relative to each other between the time the preoperative CT is acquired and
the time the procedure is performed. The definition of the ROI is performed
manually and requires minimal effort. We generally specify an ROI that includes
a vertebra of interest plus the two adjacent vertebra.

3.2 Floating Image

A DRR (synthetic x-ray projection image) is generated for each transformation
considered during the iterative search process. We use a light field rendering
method to generate the DRRs. Using light fields allows most of the computation
to be performed in a preprocessing step. After this precomputation step, very
accurate DRRs can be generated quickly (about 50ms for a 256 x 256 DRR).
The details can be found in Ref. [I1].

3.3 Image Similarity Measures

We perform registrations using the six image similarity measures that are de-
scribed and used in Penney et al. [6]. Specifically, the six similarity measures
are: cross correlation, pattern intensity, gradient correlation, gradient difference,
difference image entropy, and mutual information.

3.4 Optimization Strategy

We currently use a fairly simple best neighbor search strategy similar to that
in Ref. [I2]. Basically the search process takes an initial transformation T( as
input. The twelve closest neighbors in parameter space are computed by varying
each transformation parameter by some given step size. There are twice as many
neighbors as parameters because the step size is both added and subtracted in
order to look in both directions. Each neighbor T; is itself a transformation
and is evaluated by generating DRRs using T; and the geometry of each x-ray
camera and computing the similarity between the DRRs and the reference x-ray
projection images.

The neighbor with the best value of the cost function is picked, its neighbors
examined, and so on until no further improvement in the value of the cost func-
tion can be made for the current step size. Then the process is repeated using the
current best transformation as the initial transformation and a smaller step size,
which is half of the previous step size. This continues until some predetermined
resolution is reached. The parameter step sizes are normalized using a scaling
factor such that for a given step size, the average motion of all projected voxels
in the projection plane is approximately equal for all parameters [13].
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Table 1. 2D-3D Spine Image Target Registration Error.

Similarity TRE (mm) Unsuccessful

Measure Pat. 1 Pat. 2 Pat. 3 Pat. 4 Mean Max Registrations
Mutual Information 1.5 1.7 0.9 1.2 1.3 1.7 6%
Cross Correlation 1.3 1.8 1.0 1.7 1.5 1.8 6%
Gradient Correlation 2.2 1.0 1.1 1.0 1.3 2.2 15%
Pattern Intensity 1.8 1.2 2.0 1.4 1.6 2.0 38%
Gradient Difference 2.0 0.9 1.2 1.1 1.3 2.0 23%
Diff. Image Entropy 2.1 1.9 20 17 1.9 21 57%

The search is performed in two passes, the first with smoothed versions of the
reference images, and the second with the actual reference images. The reference
images are smoothed in the first pass using a Gaussian filter with ¢ = 1.5 mm.
This procedure has the effect of smoothing the cost function in order to help
avoid local minima and to produce a good initial transformation for the second
step. This is a multi-scale search strategy rather than a multi-resolution search
strategy, which we have used in previous 3D-3D image registration work. Because
the 2D images have a relatively limited number of pixels, we opt to blur the
images and use all of the pixels rather than subsample the images in order to
better estimate the joint probability density function and joint entropy. The
initial step size for the first pass corresponds to an average motion of projected
voxels of 5 mm. This is successively decreased to a final step size of 0.5 mm. The
initial and final step sizes for the second pass are 2 mm and 0.1 mm, respectively.

During the iterative search process, we use a CT image origin that is centered
in the region of interest. The selection of this origin is performed manually and
requires minimal effort. For spine image registration, we generally specify an
origin that is a point in the center of the vertebral body of interest.

4 Results

Initial transformations were generated by perturbing the gold-standard reference
transformation by adding randomly generated rotations and translations. The
initial transformations were characterized by computing the TRE for the trans-
formation and grouped into six initial TRE intervals: 0-2, 2-4, 4-6, 6-8, 8-10,
and 10-12mm. For each patient and each similarity measure, 480 registrations
were performed, 80 in each of the six misregistration intervals. The TRE value
was computed for each registration transformation as the difference between the
positions of a target mapped by the evaluated transformation and the gold-
standard transformation. The TRE values were computed for each voxel inside
a rectangular box bounding the vertebra and then averaged. The registrations
were characterized as either “successful” if the TRE < 2.5 mm or “unsuccessful”
if the TRE > 2.5mm. The results are listed in Table [I. The TRE values that
are listed are the mean TRE for all successful registrations.

The pattern intensity similarity measure has two user-defined parameters, r
and 0. We evaluated pattern intensity using several values of these parameters.
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Fig. 4. Percentage of successful registrations for initial transformations with different
initial TRE values for six image similarity measures. Each data point represents a 2 mm
range of initial TRE values centered at the z-coordinate.

The results we list in Table [[] are the best results we obtained, and correspond
to r = 4mm (10 pixels) and o = 10.

Based on the results listed in Table [[ mutual information, cross correlation,
and gradient correlation outperformed the remaining three similarity measures.
The mean TRE ranges from 1.3-1.5mm for these three similarity measures,
and the frequency of unsuccessful registrations ranges from 6-15%. With only
four patients, it is not possible to really distinguish the performance of these
three measures from each other. Gradient difference has similar mean and max
TRE values, but 23% of the registrations failed. Two of the similarity measures,
pattern intensity and difference image entropy, performed substantially worse
than the three best measures. The frequency of unsuccessful registrations for
these two measures is 38% and 57%, respectively.

Figure Blshows how the percentage of successful registrations depends on the
accuracy of the initial transformation. The three best similarity measures based
on the results listed in Table [[lare also the three best based on the results shown
in this figure. All three measures have a high probability of successful registration
as long as the initial transformation has a TRE < 8 mm, with decreasing robust-
ness as the initial transformation gets further from the correct transformation.
Pattern intensity and gradient difference have a high probability of successful
registration only if the initial transformation has a TRE < 4mm. Difference
image entropy has a poor probability of successful registration regardless of the
accuracy of the initial transformation.
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5 Discussion

The results in this paper are substantially different than those reported by Pen-
ney et al. [6]. For example, we found that mutual information is one of the best
similarity measures, whereas they found that it is one of the worst. One possible
explanation is that we use higher resolution images in our calculations. As a
result, our ROIs have more pixels, which provides more accurate estimates of
probability density functions and entropies. We also found that pattern intensity
produced relatively poor results with our data, whereas Penney et al. found it
to be an accurate and robust measure. We note that the three worst similar-
ity measures in our study, pattern intensity, gradient difference, and difference
image entropy, are all computed using a difference image. One of the most im-
portant differences between the Penney et al. study and this work is that they
used a phantom and we used clinical data. It is possible that different similarity
measures produce different results with different kinds of data.

It is difficult to make strong conclusions with limited data. The results in
this paper are based on image data from only four patients, two with lesions
in cervical vertebrae and two with lesions in thoracic vertebrae. We have access
to clinical gold-standard image data from at least twenty additional patients
and plan to analyze this data in the future. These patients have spinal lesions
at vertebral locations distributed throughout the spinal column, including the
lumbar region.
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