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Abstract. The main emphasis of the technique developed in this work
for evolving committees of support vector machines (SVM) is on a two
phase procedure to select salient features. In the first phase, clearly re-
dundant features are eliminated based on the paired ¢-test comparing the
SVM output sensitivity-based saliency of the candidate and the noise
feature. In the second phase, the genetic search integrating the steps
of training, aggregation of committee members, and hyper-parameter
as well as feature selection into the same learning process is employed.
A small number of genetic iterations needed to find a solution is the
characteristic feature of the genetic search procedure developed. The ex-
perimental tests performed on five real world problems have shown that
significant improvements in correct classification rate can be obtained
in a small number of iterations if compared to the case of using all the
features available.

1 Introduction

Aggregating outputs of multiple predictors into a committee output is one of the
most important techniques for improving prediction accuracy [1I213]. An efficient
committee should consist of predictors that are not only very accurate, but also
diverse in the sense that the predictor errors occur in different regions of the in-
put space [45]. Manipulating training data set, using different architectures, and
employing different subsets of variables are the most popular approaches used
to achieve the diversity. To promote diversity of neural networks aggregated
into a committee, Liu and Yao [6/7] proposed the so-called Negative correlation
learning approach, according to which, all individual networks in the committee
are trained simultaneously, using an error function augmented with a correlation
penalty term. In [8], aiming to find a trade-off between the accuracy and diversity
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of committee networks, the approach was extended by integrating into the same
learning process also the feature selection step. However, to assess and control
diversity of predictors and to find the trade-off between the accuracy and diver-
sity is not a trivial task [9UT0]. For instance, feature selection may influence the
quality of a committee in several ways, namely by reducing model complexity,
promoting diversity of committee members, and affecting the trade-off between
the accuracy and diversity of committee members. Therefore it seems promising
to integrate the steps of training, hyper-parameter and feature selection, and
aggregation of members into a committee into the same learning process and to
use the prediction accuracy to assess the quality of the committee.

This paper is concerned with such an approach to evolving committees of
support vector machines for classification. The main emphasis of the paper is on
feature selection for classification committees. A large variety of feature selection
techniques have been proposed for a single predictor [IT12], ranging from the
sequential forward selection or backward elimination [I3T4], sequential forward
floating selection [I5] to the genetic [I6] or tabu search [17]. However, works on
feature selection for classification or regression committees are very scarce [5].
It has been demonstrated that even simple random selection of feature subsets
may be an effective technique for increasing the accuracy of classification com-
mittees [I8/19].

One needs to assess the feature saliency when selecting features. The Predictor
output sensitivity [2002T22I23] is the most popular measure used to assess the
saliency. Eq. [l exemplifies such a measure [20/21]

P
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where y is the predictor output, @ is the number of outputs, P is the number
of training samples, and x;;, is the ith component of the pth input vector x,,.
However, a saliency measure alone does not indicate how many of the candidate
features should be used. Therefore, some of feature selection procedures are
based on making comparisons between the saliency of the candidate and the noise
feature [20121]. Nonetheless the usefulness of such comparisons, the measure does
not have direct relation to the prediction error.

The procedure developed in this work for evolving classification committees
consists of two phases. In the first phase, clearly redundant features are elimi-
nated based on the paired ¢-test comparing the saliency of the candidate feature
and the noise feature in a single classifier. Then, in the second phase, the ge-
netic search integrating the steps of training, aggregation of committee members
into a committee, search for the optimal hyper-parameter values, and selection
amongst the remaining features into the same learning process is employed. The
committee prediction accuracy is the measure used to assess the committee qual-
ity in the genetic search. A small number of genetic iterations needed to find a
solution is the characteristic feature of the genetic search procedure developed.
The rationale of using the first phase of the procedure is to reduce the com-
putation time needed for the genetic search. If the computation time is not a

(1)
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problem, the first phase of the procedure can be skipped. We use an SVM as a
committee member in our tests. However, other types of classifiers can also be
utilized.

2 Procedure

The procedure for evolving classification committees is summarized in the fol-
lowing steps.

1. Augment the input vectors with one additional noise feature.
2. Train the model.
3. Calculate the saliency score I,

T;

r=
" omax—; N1

i=1,...,N (2)
where 7; is given by (II) and N is the number of features.

4. Repeat Steps Bl to Bl K times using different random data partitioning into
training, validation and test sets.

5. Eliminate features the saliency of which, do not exceed the saliency of the
noise feature. Use the paired t-test to compare the saliency values.

6. Choose the number of committee members L. Construct a chromosome char-

acterizing feature inclusion/noninclusion, regularization and kernel parame-

ters of all the committee members. More details on the chromosome defini-

tion are given in Section

Perform the genetic search.

The committee is given by the parameters encoded in the “best” chromosome

found during the genetic search.

© N

2.1 The Paired t-Test

To assess the equality of the mean saliency of ith feature pr, and the noise

pr, the paired t-test is defined as suggested in [2I]: Null Hypothesis up, =0,

Alternative Hypothesis pup, > 0, where pup, = pur, — pr,. To test the null

hypothesis, a t* statistic

D,

o 3)
D;

is evaluated, where DZ = K_l ZI(:I Dij, Dij = Fij — Fnja Fij and Fnj are the
saliency scores computed using (|2|§ for the 7th and the noise feature, respectively,

in the jth loop, and
o > (D = Dy)? @
b: — K(K —1)

Under the null hypothesis, the t* statistic is ¢ distributed. If t* > t..;, the
hypothesis that the difference in the means is zero is rejected, where t..;; is
the critical value of the t distribution with v = K — 1 degrees of freedom for a
significance level of a: terit = t1—q 0.

=
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2.2 The SVM Output Sensitivity, an Example

The output of a support vector machine y(x) is given by:

Ns
= Z ajdjr(x;,%x) +b (5)
j=1

where N, is the number of support vectors, x(x;,x) is a kernel, d; is a target
value (dj = *1), and the threshold b and the parameter o} values are found as
a solution to the optimization problem defined by the type of SVM used. In this
work, we used the 1-norm soft margin SVM [24]. The parameters «; satisfy the
following constrains:

N, N,
Y ay;=0, > aj=1, 0<a;<C, j=1,..,N, (6)

with C being the regularization constant.

For a Gaussian kernel x(x;,xy) = exp{—||x; — xx||?/o}, where o is the stan-
dard deviation of the Gaussian, having the jth input vector x; presented to the
input, the derivative of the output with respect to the ith feature is given by:

8 n n
g;;] B Zakdk Tij — Tik eXp{ ; (Tnj — Tnk) } )

2.3 Genetic Search

Chromosome design, initial population generation, evaluation, selection,
crossover, mutation, and reproduction are the issues to consider when designing
a genetic search algorithm. We divide the chromosome into sections and each
section into parts. The number of sections is equal to the number of commit-
tee members L. There are three parts in each section. One part encodes the
regularization constant C, one the kernel width o, and the third one encodes
the inclusion/noninclusion of features. The binary encoding scheme has been
adopted in this work. Fig. [ illustrates the chromosome structure, where NC
and No stand for the number of bits used to encode the regularization constant
C' and the kernel width o, respectively and N is the number of features.

Section 1 Section L

Cl-1Cdeo - ow i1 fu [ CH1Cada ool -1

Fig. 1. The structure of the chromosome consisting of L sections

To generate the initial population, information obtained from the first fea-
ture selection phase, namely, the values of C' and o, and the maximum num-
ber of features, is exploited. The maximum number of features allowed for one
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committee member is equal to the number of features determined in the first
phase. In the initial population, the features are masked randomly and values of
the parameters C' and o are chosen randomly from the interval [Cy — AC, Cy +
AC] and [og — Ao, 09 + Ao], respectively, where Cy and A are the parameter
values obtained from the first phase.

The fitness function used to evaluate the chromosomes is given by the cor-
rect classification rate of the validation set data. In this study, the committee
output was obtained by averaging the outputs of committee members. To dis-
tinguish between more than two classes, the one vs one pairwise-classification
scheme has been used.

The selection process of a new population is governed by the fitness values.
A chromosome exhibiting a higher fitness value has a higher chance to be in-
cluded in the new population. The selection probability of the ith chromosome
p; is given by .

pi = ! 8

ZjM:1 ] a

where r; is the correct classification rate obtained from the model based on the
1th chromosome and M is the population size.

The crossover operation for two selected chromosomes is executed with
the probability of crossover p.. If a generated random number from the interval
[0,1] is larger than the crossover probability p., the crossover operation is ex-
ecuted. Crossover is performed separately in each section of a chromosome. In
the “feature mask” and two parameter parts of each section, the crossover point
is randomly selected and the corresponding parts of two chromosomes selected
for the crossover operation are exchanged at the selected point.

The mutation operation adopted is such that each gene is selected for muta-
tion with the probability p,,. The mutation operation is executed independently
in each part of each chromosome section. If the gene selected for mutation is in
the feature part of the chromosome, the value of the bit representing the feature
in the feature mask is reversed. To execute mutation in the parameter part of
the chromosome, to choices are possible: i. to reverse the value of the bit in
the parameter representation determined by the selected gene; ii. to mutate the
value of the offspring parameter determined by the selected gene by +A~, where
v stands for C or o, as the case may be. The mutation sign is determined by the
fitness values of the two chromosomes, namely the sign resulting into a higher
fitness value is chosen. The way of determining the mutation amplitude A~y is
somewhat similar to that used in [25] and is given by

Ay = wh(max(ly — vpul, |y — 1p2l)) (9)

where v is the actual parameter value of the offspring, pl and p2 stand for
parents, 5 € [0,1] is a random number, and w is the weight decaying with the
iteration number:

w="Fk1-t/T) (10)

where t is the iteration number, k is a constant, and 1" is the total number of
iterations.
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In the reproduction process, the newly generated offspring replaces the
chromosome with the smallest fitness value in the current population, if a gen-
erated random number from the interval [0,1] is larger than the reproduction
probability p, or if the fitness value of the offspring is larger than that of the
chromosome with the smallest fitness value.

3 Experimental Investigations

In all the tests, we run an experiment 30 times with different random partitioning
of the data set into <Learning>, D, <Validation>, D,, and <Test>, D; data
sets. The mean values and standard deviations of the correct classification rate
presented in this paper were calculated from these 30 trials. The parameter
values used in the genetic search have been found experimentally. The following
values worked well in all the tests: p. = 0.05, p,,, = 0.02, and p,, = 0.05.

3.1 Data Used

To test the approach we used five real-world problems. Data characterizing four
of the problems: US congressional voting records problem, The diabetes diagno-
sis problem, Wisconsin breast cancer problem, and Wisconsin diagnostic breast
cancer problem are available at: www.ics.uci.edu/"mlearn/. The fifth problem
concerns classification of laryngeal images [26].

Laryngeal images. The task is to automatically categorize colour laryngeal
images (images of vocal folds) into the healthy, nodular, and diffuse decision
classes [26]. Fig.Rlpresents characteristic examples from the three decision classes
considered.

Fig. 2. Images from the nodular (left), diffuse (middle), and healthy (right) classes

Due to a large variety of appearance of vocal folds, the categorization task is
sometimes difficult even for a trained physician. Fig. [3] provides an example of
such a task. The image placed on the right-hand side of the figure comes from
the nodular class, while the other two are taken from the healthy vocal folds. In
this case, the only discriminative feature is the slightly convex vocal fold edges
in the upper part of the image coming from the nodular class.
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Fig. 3. Three examples of laryngeal images

Aiming to obtain a comprehensive description of laryngeal images, multiple
feature sets exploiting information on image colour, texture, geometry, image
intensity gradient direction, and frequency content are extracted [27]. Image
colour distribution, distribution of the image intensity gradient direction, pa-
rameters characterizing the geometry of edges of vocal folds, distribution of the
spectrum of the Fourier transform of the colour image complex representation
(two types of the frequency content based features), and parameters calculated
from multiple co-occurrence matrices are the feature types used to describe la-
ryngeal images [27]. A separate SVM is used to categorize features of each type
into the decision classes. The final image categorization is then obtained based
on the decisions provided by a committee of support vector machines. In this
work, there were 49 images from the healthy class, 406 from the nodular class,
and 330 from the diffuse class. Out of the 785 images available, 650 images were
assigned to the set Dj.

3.2 Results

First, the average test data set correct classification rate obtained from a single
SVM without any involvement of the designing procedure proposed was esti-
mated. The optimal values of the regularization constant C' and the kernel width
o have been selected experimentally. Table [Il presents the average test data set
correct classification rate obtained for the first four data sets from a single SVM
when using all the original features in the classification process. The number of
classes and the number of features available are also given in the table. In the
parentheses, the standard deviation of the correct classification rate is provided.
The average test data set correct classification rate obtained when using a sepa-
rate SVM for each type of features extracted from the laryngeal images is shown
in Table

In the next experiment, we studied the effectiveness of the feature selection
procedure applied to single SVMs. Table [B] summarizes the results of the test
concerning the first four problems. Apart from the average test data set correct
classification rate obtained using the selected features, the table also provides
the number of selected features and the number of genetic iterations required
to achieve the solution. The number of features eliminated in the first selec-
tion phase has been equal to 1, 1, 6, and 12 for the Diabetes, WBCD, Voting,
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Table 1. The average test data set correct classification rate obtained for the different
data sets from a single SVM when using all the original features

Number of Number of Classification
Data set Classes features rate
Diabetes 2 8 76.87 (1.60)
WBCD 2 9 96.86 (0.79)
Voting 2 16 95.49 (1.03)
WDBC 2 30 97.23 (1.01)

Table 2. The average test data set correct classification rate obtained when using a
separate SVM for each type of features extracted from the laryngeal images

Number of Number of Classification
Feature type classes features rate
Gradient 3 1000 52.30 (5.80)
Co-occurrence 3 42 83.63 (3.17)
Frequency (F1) 3 180 83.38 (3.43)
Frequency (F2) 3 40 78.02 (3.04)
Geometrical 3 18 69.19 (3.48)
Colour 3 50 91.80 (2.69)

and WDBC' databases, respectively. Observe that the first two problems are
characterized by 8 and 9 features, respectively. Thus, there are very few clearly
redundant features. The larger number of features eliminated in the first phase
for the other two problems significantly speeds up the genetic search executed
in the second phase.

Table 3. The average test data set correct classification rate obtained for the different
data sets from a single SVM when using the selected features

Average number of Average number Classification
Data set selected features of iterations rate
Diabetes 4 8 77.64 (1.50)
WBCD 6 7 97.20 (0.75)
Voting 3 12 96.30 (0.96)
WDBC 17 20 98.06 (0.73)

As it can be seen from Table[I] and Table B for all the databases, the average
correct classification rate obtained from the single SVMs trained on the selected
feature sets is higher than that achieved using all the features available. The
number of genetic iterations needed to achieve the solutions is very small. The
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number of attempts made to make the crossover operation during one genetic
iteration is equal to the population size, which was set 50 in all the tests. Fig. [
provides two graphs plotting the correct classification rate as a function of the
number of genetic iterations for the WDBC and Voting databases. For each
genetic iteration, the performance of the best (maz), the average (mean) and
the worst (min) population member is shown in Fig.[dl The performance achieved
by the best member at the end of the search procedure is also shown.
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Fig. 4. The test data set correct classification rate obtained from a single SVM as a
function of the number of genetic iterations for the Wisconsin diagnostic breast cancer
(left) and the US congressional voting records (right) data sets

Table 4. The average test data set correct classification rate obtained for the different
types of features extracted from laryngeal images when using a separate SVM for each
type of selected features

Average number of Average number Classification
Feature type selected features of iterations rate
Gradient 362 17 83.65 (4.40)
Co-occurrence 28 13 85.48 (3.63)
Frequency (F1) 78 37 89.68 (2.36)
Frequency (F2) 29 13 79.56 (3.47)
Geometrical 10 13 72.12 (3.53)
Colour 42 13 92.74 (2.58)

The results obtained for the different feature sets characterizing the laryngeal
images are summarized in Table @l The number of features eliminated in the
first feature selection phase ranged from 5 to over 400. As it can be seen from
Table 2 and Table [l a considerable improvement in classification accuracy has
been obtained using the proposed SVM designing approach. The number of
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features chosen is considerably lower than that presented in Table Bl especially
for the Gradient and Frequency (F1) feature types. On average, a very small
number of genetic iterations was required to find the solutions. Fig. Bl provides
two graphs plotting the correct classification rate as a function of the number
of genetic iterations for the two types of frequency features. For each genetic
iteration, the performance of the best (max), the average (mean) and the worst
(min) population member is shown.
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Fig. 5. The test data set correct classification rate obtained from a single SVM as a
function of the number of genetic iterations for the two types of frequency features
extracted from the laryngeal images

In the last experiment, the effectiveness of the feature selection procedure
applied to SVM committees has been studied. Table Bl summarizes the results of
the experiment.

Table 5. The average test data set correct classification rate obtained for the different
data sets from a committee when using the selected features

Average number of Average number Classification
Data set selected features of iterations rate
Diabetes 5 8 77.66 (1.50)
WBCD 5 14 97.27 (0.59)
Voting 6 37 96.62 (0.79)
WDBC 9 20 98.31 (0.46)
Laryngeal 95 8 95.04 (1.88)

All the committees were made of six members. All six members of the com-
mittees built for solving the first four problems used the same initial feature set.
Each member of the committee built for solving the Laryngeal problem utilized
a different feature set—one of the six available types. The average test data set



Evolving Committees of Support Vector Machines 273

correct classification rate, the average number of features used by one committee
member, and the number of iterations needed to obtain the solution are given
in Table Bl As it can be seen from Table [l the technique developed is capable
of evolving accurate classification committees in a small number of genetic iter-
ations. The relatively large average number of features used by the “laryngeal”
committee is due to the large number of “gradient” features selected. Fig. [6] pro-
vides two graphs plotting the test data set correct classification rate obtained
from the committees as a function of the number of genetic iterations for the
Laryngeal (left) and the Wisconsin diagnostic breast cancer (right) problems.
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Fig. 6. The test data set correct classification rate obtained from the committee as a
function of the number of genetic iterations for the Laryngeal (left) and the Wisconsin
diagnostic breast cancer (right) data sets

4 Conclusions

A technique for evolving committees of support vector machines has been pre-
sented in this work. The main emphasis of the technique is on selection of salient
features. Elimination of clearly redundant features in the first phase of the pro-
cedure developed speeds up the genetic search executed in the second phase of
the designing process. The genetic search integrating the steps of training, aggre-
gation of committee members, and hyper-parameter as well as feature selection
into the same learning process allows creating effective models in a small num-
ber of genetic iterations. The experimental tests performed on five real world
problems have shown that considerable improvements in classification accuracy
can be obtained using the proposed SVM designing approach.
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