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Preface

The motivation for writing this book came from a number of sources.

Clearly, one was the undergraduate students to whom we teach

analytical chemistry, and who continually struggle with data analysis.

Like scientists across the globe we stress to our students the

importance of including uncertainties with any measurement result,

but for at least one of us (JJG) we stressed this point without clearly

articulating how. Conversations with many other teachers of science

suggested JJG was not the exception but more likely the rule. The

majority of lecturers understood the importance of data analysis but

not always how best to teach it. In our school, like many others it

seems, the local measurement guru has a good grasp of the subject,

but the rest who teach other aspects of chemistry, and really only use

data analysis as a tool in the laboratory class, understand it poorly in

comparison. This is something we felt needed to be rectified, a second

motivation.

In conversation between the pair of us we came to the conclusion

that the problem was partly one of language. In writing this book we

also came to the conclusion that another aspect of the problem was

the uncertainty that arises from any discipline which is still evolving.

Chemical data analysis, with aspects of metrology in chemistry and

chemometrics, is certainly an evolving discipline where new and better

ways of doing things are being developed. So this book tries to make

data analysis simple, a sort of idiot’s guide, by (1) demystifying the

language and (2) wherever possible giving unambiguous ways of doing

things (recipes). To do this we took one expert (DBH) and one idiot

(JJG) and whenever DBH stated what should be done JJG badgered

him with questions such as, ‘‘What do you mean by that?,’’ ‘‘How

exactly does one do that?,’’ ‘‘Can’t you be more definite?,’’ ‘‘What is

a rule of thumb we can give the reader?’’ The end result is the com-

promise between one who wants essentially recipes on how to perform

different aspects of data analysis and one who feels the need to give,



at the very least, some basic information on the background principles

behind the recipes to be performed. In the end we both agree that for

data analysis to be performed properly, like any science, it cannot

be treated as a black box but for the novice to understand how to

perform a specific test how to perform it must be unambiguous.

So who should use this book? Anybody who thinks they don’t really

understand data analysis and how to apply it in chemistry. If you

really do understand data analysis, then you may find the explana-

tions in the book too simple and the scope too limited. We see this

as very much an entry level book which is targeted at learning and

teaching undergraduate data analysis. We have tried to make it easy

for the reader to find the information they are seeking to perform the

data analysis they think they need. To do this we have put the glossary

at the beginning of the book with directions to where in the book

a certain concept is located. We also add in this initial Readers’ Guide

frequently asked questions (FAQs) with brief answers and directions

to where more detailed answers are located, and a list of useful

Microsoft Excel functions. Hopefully together these three sections

will help you find out how to do things like when your lecturer tells

you to ‘‘measure a calibration curve and then determine the

uncertainty in your measurement of your unknown.’’ If after looking

through this book, and then sitting down to work through the exam-

ples, you still are saying ‘‘How?’’ then we haven’t quite achieved our

objective.

viii Preface
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Readers’ Guide: Definitions, Questions, and
Useful Functions

Where to Find Things and What to Do

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This chapter is called Readers’ Guide because chapter 1 is clearly the

proper start of the book, with introductions and discussions of what

measurement really is and so on. This chapter was compiled last, and

attempts to be the first stop for a reader who does not want the

edifying discourse on measurement, but is desperate to find out how

to do a t-test. In the glossary, we define terms and concepts used in the

book with a section reference to where the particular term or concept

is explained in detail. If you half know what you are after, perhaps the

memory jog from seeing the definition may suffice, but sometime

return to the text and reacquaint yourself with the theory.

There follows ‘‘frequently asked questions’’ that represent just

that—questions we are often asked by our students (and colleagues).

The order roughly follows that of the book, but you may have to do

some scanning before the particular question that is yours springs out

of the page.

Finally we have lodged a number of Excel spreadsheet functions

that are most useful to a chemist faced with data to subdue. The list

has brought together those functions that are not obviously dealt with

elsewhere, and does not claim to be complete. But have a look there

if you cannot find a function elsewhere.

1



Glossary

The definitions given below are not always the official statistical or

metrological definition. They are given in the context of chemical

analysis, and are the authors’ best attempt at understandable

descriptions of the terms.

a The fraction of a distribution outside a chosen value. (Section

2.5.2)

Accuracy Formerly: the closeness of a measurement result to

the true value; now: the quality of the result in terms of trueness

and precision in relation to the requirements of its use. (Section 1.8;

figure 1.6)

Analytical sensitivity The linear coefficient representing the slope of

the relationship between the instrument response and the concentra-

tion of standards. In other words, the slope of the calibration plot.

(Section 5.3)

ANOVA (analysis of variance) A statistical method for comparing

means of data under the influence of one or more factors. The

variance of the data may be apportioned among the different factors.

(Chapter 4)

Arithmetic mean �xx The average of the data. The result of summing

the data and dividing by the number of data (n). (Section 2.4.1)

Bias A systematic error in a measurement system. (Section 1.7)

Calibration The process of establishing the relation between

the response of an instrument and the value of the measurand.

(Section 5.2)

Calibration curve A graph of the calibration. (Section 5.2)

Central limit theorem The distributions of the means of n data will

approach the normal distribution as n increases, whatever the initial

distributions of the data. (Section 2.4.6)

Certified reference material (CRM) A standard with a quantity value

established to a high metrological degree, accompanied by a certificate

detailing the establishment of the value and its traceability. Used for

calibration to ensure traceability, and for estimating systematic

effects. (Section 3.3)

Confidence interval A range of values about a sample mean which is

believed to contain the population mean with a stated probability,

such as 95% or 99%. The 95% confidence interval about the mean ð �xxÞ

of n samples with standard deviation s is: �xx� t0:0500,n�1ðs=
ffiffiffi
n

p
Þ: t0:0500, n�1
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is the 95%, two-tailed Student t-value for n� 1 degrees of freedom.

(Section 2.5.1)

Confidence limit The extreme values defining a confidence interval.

(Section 2.5.1)

Correction for the mean Subtraction of the grand mean from each

measurement result in ANOVA. This quantity is also known as the

mean corrected value. (Section 4.4)

Corrected sum of squares See total sum of squares. (Section 4.4)

Cross-classified system In a multiway ANOVA when the measure-

ments are made at every combination of each factor. (Section 4.8)

Degrees of freedom The number of data minus the number of param-

eters calculated from them. The degrees of freedom for a sample

standard deviation of n data is n� 1. For a calibration in which an

intercept and slope are calculated, df¼ n� 2. (Sections 2.4.5, 5.3.1)

Dependent variable The instrument response which depends on the

value of the independent variable (the concentration of the analyte).

(Section 5.2)

Detection limit See limit of detection. (Section 5.8)

Effect of a factor How much the measurand changes as a factor is

varied. (Section 4.3)

Error The result of a measurement minus the true value of the

measurand. (Section 1.7)

Factor In ANOVA a quantity that is being investigated. (Sections

4.2; 4.3)

Fisher F-test A statistical significance test which decides whether

there is a significant difference between two variances (and therefore

two sample standard deviations). This test is used in ANOVA. For

two standard deviations s1 and s2, F ¼ s21=s
2
2 where s14s2. (Sections

3.7, 4.4)

Fit for purpose The principle that recognizes that a measurement

result should have sufficient accuracy and precision for the user of the

result to make appropriate decisions. (Section 1.10)

Grand mean Themean of all the data (used in ANOVA). (Section 4.2)

Gross error A result that is so removed from the true value that it

cannot be accounted for in terms of measurement uncertainty and

known systematic errors. In other words, a blunder. (Section 1.7)

Grubbs’s test A statistical test to determine whether a datum is an

outlier. The G value for a suspected outlier can be calculated using

G ¼ ðjxsuspect � �xxj=sÞ. If G is greater than the critical G value for a

stated probability (G0.0500,n) the null hypothesis, that the datum is not
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an outlier and belongs to the same population as the other data, is

rejected at that probability. (Section 3.5)

Heteroscedastic data The variance of data in a calibration is not

independent of their magnitude. Usually this is seen as an increase in

variance with increasing concentration (e.g., when the relative

standard deviation is constant for a calibration). (Section 5.3.1)

Homoscedastic data The variance of data in a calibration is

independent of their magnitude (i.e., the standard deviation is

constant). (Section 5.3.1)

Hypothesis test Where a question about data is decided upon based

on the probability of the data given a stated hypothesis. (Section 3.1)

Independent measurements Measurements made on a number of

individually prepared samples. (Section 2.7)

Independent variable A quantity that is under the control of the

analyst. In calibration, it is the quantity varied to ascertain the

relationship between this quantity and the instrumental response.

Typically in a calibration model the independent variable is

concentration. (Section 5.2)

Indication of a measuring instrument The instrumental response or

output. (Section 5.3)

Indication of the blank The instrumental response to a test solution

containing everything except the analyte. If this is not possible to

measure, it may taken as the intercept of the calibration curve.

(Section 5.3)

Influence factor (quantity) Something that may affect a measurement

result. For example, temperature, pressure, solvent, analyst. In

calibration, influence quantities refer to quantities that are not the

independent variable but that may affect the measurement. (Sections

4.2, 4.3, 5.3)

Instance of factor Particular example of a factor in an ANOVA.

For example, in an experiment performed at 20, 30, and 40�C,

the three temperatures are instances of the factor ‘‘temperature.’’

(Section 4.2)

Interaction In a multiway ANOVA an effect of one factor on the

effect of another factor on the response. For example if a reaction rate

is increased more by an increase in temperature at short reaction times

than longer reaction times, then there is said to be a ‘‘temperature by

time’’ interaction. (Section 4.8)

Intercept The constant term in a calibration model. See indication of

blank. (Section 5.3)
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Interquartile range The middle 50% of a set of data arranged in

ascending order. The normalized interquartile range serves as a robust

estimator of the standard deviation. (Section 2.6.2)

Intralaboratory standard deviation The standard deviation of meas-

urement results obtained within the same laboratory but not under

repeatability conditions, for example by different analysts using

different equipment on different days. (Section 2.7)

Leverage The tendency of a single point to drag the calibration line

towards it and hence increase the value of the standard error of the

regression (sy/x). (Section 5.3.1)

Limit of detection Smallest concentration of analyte giving a

significant response of the instrument that can be distinguished

above the blank or background response. (Section 5.8)

Limit of determination The smallest value of a measurand that can

be measured with a stated precision. (Section 5.8)

Linear calibration model Equation for the instrumental response

which is directly proportional to the concentration (of the form

y¼ aþ bx). (Section 5.3)

Linear range The region in a calibration curve where the relationship

between instrumental response and concentration is sufficiently linear

for its use. (Section 5.3.2)

Mean (population mean) l The average value of the data set which

defines the probability density function. The population mean is the

true value in the absence of systematic error. (Section 1.8.2)

Mean (sample mean) �xx ¼
P1¼n

i¼1 xi=n
� �

The arithmetic mean of a data

set. The result of summing the data and dividing by the number of

data (n). (Section 2.4.1)

Mean square A sum of squares divided by the degrees of freedom.

(See residual sum of squares, sum of squares due to the factor

studied.)

Means t-test t-test to decide if two sets of data come from popu-

lations having the same mean. For each set calculate the sample mean

and standard deviation ( �xx1, s1, �xx2, s2). Test the standard deviations

under the hypothesis �1¼ �2 (see F-test). If the populations have equal

variance, t ¼ ð �xx1 � �xx2j j=sp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n1 þ 1=n2

p
Þ where s2p ¼ ð n1 � 1ð Þs21þ

n2 � 1ð Þs22Þ=ðn1 þ n2 � 2Þ and degrees of freedom n1þ n2� 2. If the

populations have unequal variance, t ¼ ð �xx1 � �xx2j j=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
1=n1 þ S2

2=n2Þ
q

with degrees of freedom
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ðs21=n1 þ s22=n2Þ
2

ðs41=n
2
1ðn1 � 1ÞÞ þ ðs42=n

2
2ðn2 � 1ÞÞ

: ðSection 3:8Þ

Measurand The quantity that is intended for measurement.

(Section 1.7)

Measurement Set of operations having the object of determining the

value of a quantity. (Section 1.2)

Measurement uncertainty A property of a measurement result

that describes the dispersion of values that can be attributed to the

measurand. It quantifies our confidence in a measurement result.

(Section 1.7.3)

Median The middle value of a set of data arranged in order of

magnitude. (Section 2.6.1)

Multivariate calibration Calibration in which multiple independent

variables are used to establish the calibration model. (Section 5.2)

Nested factor In multiway ANOVA a factor that is varied separately

for each level of another factor. (Section 4.8)

Normal (Gaussian) distribution The random distribution described

by the probability density function which gives the familiar ‘‘bell-

shaped curve.’’ It is described by the mean � and standard deviation �

fðxj�,�Þ ¼ ð1=�
ffiffiffiffiffiffi
2�

p
Þ exp �ððx� �Þ2=2�2Þ

� �
. (Section 1.8.2)

Null hypothesis (H0) The hypothesis that the population parameters

being compared (e.g., mean or variance) on the basis of the data are

the same, and the observed differences arise from random variation

only. This is the hypothesis used in many statistical significance

tests that ‘‘there is no difference between the factors that are being

compared.’’ (The null hypothesis is first introduced in section 3.2 but

is used throughout chapters 3 and 4). (Section 3.2)

One-way ANOVA an ANOVA in which a single factor is varied.

(Section 4.4)

Outlier A datum from a sample, assumed to be normally

distributed, which lies beyond the mean at a stated probability.

Therefore, an outlier is a datum that, according to a statistical

test, does not belong to the distribution of the rest of the data.

(Section 3.5)

Paired t-test A statistical significance test for comparing two sets of

data where there are no repeat measurements of a single test mater-

ial but there are single measurements of a number of different test

samples. To perform this test you use t ¼ ðj �xxdj
ffiffiffi
n

p
=sdÞ where �xxd, sd are

the mean and standard deviation of n differences. (Section 3.9)
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Population The infinite number of results that could be obtained in

an experiment that are described by the probability density function.

(Section 2.3)

Precision The standard deviation of measurement results obtained

under specified conditions (see repeatability, reproducibility). (Section

1.8; figure 1.6)

Probability density function (pdf ) The mathematical function

that describes a distribution in terms of the probability of finding a

result. For the normal distribution the pdf is the ‘‘bell-shaped curve.’’

(Section 1.8.2; equation 1.1)

Quantity Attribute or phenomenon, body or substance that may be

distinguished qualitatively and determined quantitatively. (Section 1.4)

Q-test (Dixon’s Q-test) An outlier test. Grubbs’s test is the preferred

test to use. (Section 3.5)

Random error Variation in the quantity measured with repeated

measurements centered around the true value. It is described by the

normal distribution. (Section 1.7)

Regression The process of determining the optimum parameters of

a model that fit some data. For example, given pairs of data (x, y) a

linear model finds the best fit values of the intercept (a) and slope

(b) in y¼ aþ bx. Least squares regression minimizes the sum of the

squares of the residuals. (Section 5.3.1)

Relative standard deviation (RSD) The sample standard deviation

expressed as a percentage of the mean, RSD ¼ 100� s
�xx . Also called

the coefficient of variation (CV). (Section 2.4.3)

Repeatability The precision of an analytical method, usually

expressed as the standard deviation of independent determinations

performed by a single analyst on the same day using the same

apparatus and method. (Section 2.7)

Reproducibility The precision of an analytical method, usually

expressed as the standard deviation of determinations performed in

different laboratories (and therefore by different analysts using

different equipment on different days). (Section 2.7)

Residual yi � ŷyið Þ: the difference between the measured response

yi and the response estimated from the regression equation for the

calibration curve ŷyið Þ. (Section 5.3.1)

Residual sum of squares, SSr Also called ‘‘within variables sum

of squares,’’ is the difference between the total sum of squares and the

sum of squares due to the factor studied. This number is used in

Readers’ Guide: Definitions, Questions, and Useful Functions 7



determining whether there is a significant difference between two

means using ANOVA. (Section 4.4)

Robust estimator Estimators of parameters of the distribution of

data that can tolerate extreme values (outliers). (Section 2.7)

Sample Statistically this is the set of n data being investigated.

(Section 2.3)

Significance test A statistical test to determine whether there is

a statistically significant difference between two sets of data at a

defined probability level. (Section 3.2)

Slope See analytical sensitivity. (Section 5.3)

Standard addition A method of analysis in which a measurement

is made on the sample followed by a second measurement after a

known amount of calibration material is added to the sample.

(Section 5.7)

Standard deviation (population standard deviation), r The square

root of the variance, the population standard deviation represents the

dispersion of the population. In the normal distribution, 68% of the

distribution lies at the mean �� 1 �. (Section 1.8.2)

Standard deviation (sample standard deviation), s An estimate of �

from n data calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi¼n

i¼1 xi � �xxð Þ
2

� �
=ðn� 1Þ

q
. (Section 2.4.2)

Standard deviation of the mean (rn) The standard deviation of

means of n data. It is related to the standard deviation of the

population (�) by �n ¼ �=
ffiffiffi
n

p
. The sample standard deviation of the

mean is estimated from s=
ffiffiffi
n

p
. (Section 2.4.6)

Standard error of the regression (sy/x) A quantity that is a measure of

the goodness of fit of a regression equation for a calibration curve:

sy=x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi¼n

i¼1 ð yi � ŷyiÞ
2

� �
=df

q
, where yi � ŷyið Þ is the residual of the point

i and df are the degrees of freedom. The better the fit the smaller sy/x.

(Section 5.3.1)

Student’s t-test, Student t-value See t-test.

Sum of squares due to the factor studied, SSc Also known as treat-

ment sum of squares, heterogeneity sum of squares, or between column

sum of squares. It is a quantity in ANOVA which is related to the

variance between factors. (Section 4.4)

Systematic error A deviation from the true value that is always

of the same magnitude and in the same direction from the mean. It

should be estimated from measurement of certified reference materials

and corrected for in a chemical analysis. Significant systematic error

can be tested using t ¼ xassigned � �xx
�� �� ffiffiffi

n
p

=s,
� �

where n independent

8 Readers’ Guide: Definitions, Questions, and Useful Functions



measurements of a reference material with assigned value xassigned
have been made giving mean �xx and standard deviation s. (Sections 1.7,

3.3, 3.6)

Tails In a normal distribution the bell curve is symmetrical about

the mean. The values either side of the mean, that is the parts of

the bell curve greater than and less than the mean are the ‘‘tails’’ of

the probability distribution function. (Section 2.5.4)

Test material The actual material being studied. For example, if

the concentration of a solution is being analyzed it is called a test

solution, if it is an extract that is being analyzed it is a test extract. The

use of the word sample is not encouraged because of confusion with

the statistical concept of a sample. (Section 2.3)

Total sum of squares, SST (also corrected sum of squares) In

ANOVA the number arising from the sum of the squares of the mean

corrected values. (Section 4.4)

t-test (Student’s t-test) A statistical significance test for hypotheses

concerning the mean of a small sample. A t-value is calculated (tcalc)

and the probability that this t-value would be exceeded in a great

number of replicate measurements is obtained, p(T4 tcalc). The tested

hypothesis is then accepted or rejected on the basis of the probability.

See also means t-test. (Section 3.8)

Type I error (false positive) Rejecting a hypothesis when it is true.

In terms of the null hypothesis this means the significance test

shows there is a difference in the two sets of data but in fact there is no

difference. (Section 3.3)

Type II error (false negative) Accepting a hypothesis when it is false.

This means the significance test shows there is no difference between

the data being compared but in fact there is. Another way of saying

this is the test suggests the null hypothesis is correct but actually it is

incorrect. (Section 3.3)

Univariate calibration When only one independent variable is being

used to establish the relation between the instrument response and

the value of the measurand. (Section 5.2)

Value Magnitude of a particular quantity generally expressed as a

number multiplied by a unit of measurement. (Section 1.4)

Variance (population), r2 the square of the population standard

deviation. (Section 1.8.2)

Variance (sample), s2 The square of the sample standard deviation.

(Section 2.4.2)
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x̂x The estimated concentration of an unknown determined using a

calibration. (Section 5.3)

z�/2 The number of standard deviations either side of the mean

containing a fraction 1 � of the distribution. (Section 2.5.2)

z-score The number of standard deviations a data point is from the

mean. It is often used in significance testing such as testing for a

suspected outlier. (Section 2.5.2)

Frequently Asked Questions (FAQs)

1. Why should I bother with data analysis anyway?

Unless you are just going to tabulate all the results you have

and not make any conclusions, then you need some way to

treat your results to deliver information to whoever is

interested in your doing the experiment in the first place.

(Chapter 1)

2. Why bother with uncertainties?

Because an analytical result without information regarding

the uncertainty of the value is useless. (Section 1.6)

3. What is the difference between the measurand and the

analyte?

The measurand is the quantity that is being measured. For

example, the concentration of dioxin in drinking water is the

measurand. The analyte is the dioxin (and the matrix is the

drinking water). (Section 1.4)

4. What is the difference between precision, standard devia-

tion, and uncertainty?

Precision is a measure of the variability of results obtained

under different circumstances (e.g., repeatability or repro-

ducibility). It is usually expressed as a standard deviation.

Uncertainty is a general concept that covers all aspects of

our lack of knowledge of the true value. It is assessed by an

‘‘uncertainty budget’’ and also is expressed in terms of a

standard deviation. (Sections 1.7, 1.8)

5. How do I make my measurements traceable to an

international standard such as the SI?

By calibrating using traceable standards such as certified

reference materials. (Section 1.5)
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6. Can I use data analysis to tell me why an error has occurred?

No! It can, however, allow you to identify systematic error

and determine the uncertainty as a consequence of random

error. (Sections 1.7, 3.6)

7. When writing an uncertainty, how many significant figures

should I use?

If the standard deviation or 95% confidence level is known

then write this value to 2 significant figures. The measure-

ment result can then be written to the same number of deci-

mal places. For example: (1.123 � 0.032) M. (Section 1.9.2)

8. Ismyuncertainty reasonable?What uncertainty is acceptable?

There is no simple answer to this! It all depends on what the

answer will be used for and how much time you have.

Essentially you must make a measurement with sufficient

accuracy to allow appropriate decisions to be made. This is

known as ‘‘fit for purpose.’’ (Section 1.10)

9. What is ‘‘fit for purpose?’’

Making a measurement with sufficient accuracy to allow

appropriate decisions to be made. (Section 1.10)

10. Why is it necessary to perform repeat measurements?

The more repeats that are done, the smaller the uncertainty

in the sample mean and hence the more confident one

becomes that the sample mean is a good estimator of the

population mean. (Section 2.4)

11. When calculating the standard deviation on my calculator

which button do I use—the � (also written as x�n on some

calculators) or the s(x�n�1)?

Always use s(x�n�1) which gives the sample standard

deviation. (Example 2.1a)

12. When do I quote a variance and when do I quote a standard

deviation?

As the variance is the square of the standard deviation, either

gives equivalent information. However, as the standard

deviation has the same units as the measurand, it may be

more obviously interpreted. (Section 2.4.2)

13. What is the abbreviation for standard deviation (s, sd, SD, �)?

A sample standard deviation is s. The population standard

deviation is �. (Section 2.4.2)

14. What are the units of standard deviation?

The same as the units of the mean. (Section 2.4.4)
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15. Why quote a relative standard deviation (RSD) rather than

a standard deviation?

It gives an immediate impression of the precision of the

measurement without knowledge of the value of the quan-

tity. (Section 2.4.3)

16. Data analysis seems to be based on a large number of data

points and a normal distribution. What if I only have a few

points?

You can still use the statistical approaches outlined in

this book by assuming the data are normally distributed.

However, the uncertainty in the estimates of mean and

standard deviation are increased and there does come a point

that there is little to be gained from calculation of these

parameters (say with n56). (Section 1.8.2)

17. What happens to the standard deviation and the standard

deviation of the mean as the number of data increases?

The sample standard deviation (s) approaches the popula-

tion standard deviation (�). The standard deviation of the

mean approaches zero. (Sections 2.4.2, 2.4.6)

18. Once I have determined the mean and standard deviation

can I quote the results as �xx� s?

No,� should be reserved for confidence limits with stated

coverage (e.g., 95%). If you want to quote the mean with a

standard deviation then write as �xx (s¼ standard deviation,

n¼ number of data). (Section 2.5)

19. After how many measurements can I assume s¼ �?

After 30 measurements the error in taking s for � is about

4%. (Section 2.5.3)

20. When should I use robust estimators?

If you are concerned that the data are not normally distri-

buted or have extreme outliers, robust estimators such as

the median and interquartile range may be more useful.

(Section 2.6)

21. What do you mean by one tailed and two tailed?

The normal distribution is symmetrical about the mean.

When we talk about a certain percentage of the distribution

we can choose the area from infinity which leaves the

remaining area at one end (one tailed), or the area either side

of the mean, leaving half the remaining area at either end of

the distribution (two tailed). (Section 2.5.4)
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22. How can I test whether my data are normally distributed?

If you have enough data you can plot a histogram and

decide if it appears suitably bell shaped. A Rankit plot is

also a useful visual test of normality and may be used with

fewer data. (Sections 1.7.2, 3.4)

23. If my data are not normally distributed how do I estimate a

mean and an uncertainty?

See FAQ 20.

24. When performing a significance t-test what probability level

do I set the null hypothesis to be rejected?

It all depends on for what purpose the data will be used.

Commonly 95% or 99% are used but you should consider

the risk of making a Type I or Type II error. (Section 3.2)

25. How do I determine whether a datum is an outlier?

Perform a Grubbs’s test. (Section 3.5)

26. How many data can I assign as outliers using the Grubbs’s

test given in chapter 3?

Only one. There is a Grubbs’s test for pairs of outliers

(Massart et al.—see Bibliography). Any more and you

should be asking yourself whether the data is normally

distributed. (Sections 3.4, 3.5)

27. When can I discard data?

Never. You may decide not to use a value in the calculation

of mean and standard deviation after performing a Grubbs’s

test for an outlier. (Section 3.5)

28. What is a one-tailed significance test, and what is a

two-tailed significance test?

A significance test rejects the null hypothesis when the

probability of the test statistic falls below a given value

(e.g., �50.05 for a 95% test). A one-tailed test has all this

probability at one end of the distribution only. A two-tailed

test has half the probability at one end of the distribution

and half at the other. (Section 3.6)

29. So when should I use a one- or two-tailed test?

When you are testing two means use a two-tailed test

when you have no reason to believe one is bigger or smal-

ler than the other. Use a one-tailed test if you want to

know if one mean is significantly greater than the other.

(Section 3.6)

30. What is �?
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� is a probability, between 0 and 1, of a particular test

statistic given the hypothesis being tested, at which the

hypothesis is rejected. For example, �¼ 0.05 means we reject

the hypothesis when the probability of finding the data

given the hypothesis falls below 5%—a so-called 95% test.

(Sections 2.5.2, 3.6)

31. What is the difference between �0, �00, and �/2 in a signifi-

cance test?

�/2 implies a one-tailed test, also written �0. �00 refers to a

two-tailed test with �/2 at either end of the distribution. For

example, t0.0500,df¼ t0.0250,df¼ t(0.05/2),df. (Section 3.6)

32. How can I decide whether one analytical method is better

than another?

‘‘Better’’ is a question that relates to what the measurement

result will be used for. However, an estimate of the preci-

sions of each method and whether there is systematic error

are important. (Sections 3.6, 3.7)

33. When do I do a means t-test and when do I do a paired

t-test?

When there are a number of repeated analyses of the same

material then do a means t-test. When there are many dif-

ferent test materials with a single measurement performed,

then do a paired t-test. (Sections 3.8, 3.9)

34. Can I test for bias without a sample of known value?

No, if you only have your method with which to do the

analysis. (Section 3.6)

35. What is the difference between recovery and bias?

They are both types of systematic error. Bias usually refers

to systematic error in an instrument and is an absolute

difference. Recovery is the fraction of an analyte that

is presented to the measuring instrument. It is often less

than 100% because of losses during preparation of the test

material before measurement. Both may be estimated and

corrected for. (Sections 1.7, 3.6)

36. How do I avoid making Type I errors (reject H0 when it is

true)?

Decrease �. That is, test at greater probability levels (95, 99,

99.9%. etc.). (Section 3.3)

37. How do I avoid making Type II errors (accept H0 when it is

false)?
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Increase �. That is, test at lesser probability levels (95, 90,

80%, etc.). (Section 3.3)

38. So how do I choose what probability to use?

Think about the relative risk of making Type I and Type II

errors. (Section 3.3)

39. How do I know whether two analytical methods give

equivalent results or not?

Test the means of results of analyses by each method of

aliquots of a test material by a t-test. (Section 3.8)

40. When should I use ANOVA and when a t-test?

Use ANOVA if you want to know if there is significant

difference among a number of instances of a factor. Always

use ANOVA for more than one factor. ANOVA data must

be normally distributed and homoscedastic. Use a t-test for

testing pairs of instances. The data must be normally distri-

buted but need not be homoscedastic. (Sections 3.8, 4.2)

41. When optimizing an analytical method how do I determine

which variables cause a significant change to the method

performance?

Do an ANOVA which allows you to look at the variance in

the data, use the p-value from the ANOVA results table

decide if there is a significant effect caused by a factor.

(Section 4.2)

42. Can I do ANOVA with different numbers of replicates of an

instance of a factor in Excel?

Yes, for single-factor ANOVA. No, for two-factor

ANOVA. (Sections 4.6, 4.9)

43. What is a factor and what is an instance of a factor?

A factor is whatever we are testing in ANOVA, for example

an analytical method, sampling position in a silo, the gender

of an analyst. Instances of the factor are the particular

examples of that factor chosen for study, for example a

spectrophotometric method and an electrochemical method,

measures at the top, middle, and bottom of a silo, and male

analysts and female analysts. (Section 4.3)

44. If I find a significant difference between factors how can

I determine which factor or factors is/are responsible?

Do a least significant difference calculation. (Section 4.5)

45. Why do I keep seeing an error message when I do a two-way

ANOVA with replication in Excel?
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You must choose all the data and the column and row

headers too. Also make sure you have equal numbers of

replicates for each instance of the factors. (Section 4.9)

46. Why should I bother plotting a calibration graph when

I could simply use the regression equation?

The plot serves as a good visual check for curvature that

may still give a high r2 or low sy/x. Always plot the residuals

too! (Sections 5.2, 5.3.2)

47. How many points should I have in my calibration?

A minimum of six. (Section 5.6)

48. In the calibration equations sometimes the symbols for

X and Y are upper case and sometimes they are lower case

(x and y). When do you use upper case and when do you use

lower case?

Upper case letters are used for a quantity, for example

Y may be the current at a glucose electrode. Small letters

denote a particular quantity, for example y¼ 10 nA.

Example: a correct statement of a t-test is that p(T� t)

¼ 0.05 which reads: the probability of finding a Student t

value (T ) equal to or greater than the t calculated from the

data is 0.05. (Section 5.3)

49. In a calibration equation y¼ a þ bx what are the units of

a (the intercept) and b (the slope)?

a has the same units as y/x while b has the units of x.

(Section 5.3.1)

50. When do you use a hat (^) on symbols and when a bar ( � )?

A hat (e.g., x̂x) indicates an estimated quantity. For example,

in analysis this can be a result derived from a calibration

procedure. A bar over a quantity denotes an average, for

example �xx (n¼ 4). (Sections 5.3, 2.4.1)

51. I have used LINEST in Excel, but only get one value.

You need to hold down Control-Shift while pressing Enter.

If you accidentally press Enter and the output array is no

longer selected, simply reselect the array and place the

cursor in the command line again and hit Ctrl-Shift-Enter.

Also make sure you have highlighted a block of cells 5 rows

� 2 columns, and that the last (fourth) parameter is set to 1.

(Section 5.4)

52. I have calibration data but how do I determine the

uncertainty in my estimate of the unknown?
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Use equation 5.15 and the relevant values from LINEST.

(Sections 5.3.1, 5.4.3)

53. What is the best Excel function to estimate my regression

equation and associated uncertainty?

We recommend LINEST. (Section 5.4.3)

54. When trying to determine the detection limit, what if

I cannot make a blank measurement?

Make a series of measurements near the expected detection

limit and use the calibration formula (equation 5.28).

(Section 5.8)

55. Should I use r or r2 to indicate the linearity of my

calibration?

(Alternative: Everybody I know uses R2 as an estimate of the

quality of a calibration equation. Is this okay?)

Neither. These tell you about the linear relation between

y and x, true, but in analytical chemistry you are rarely

testing the linear model. The standard error of the regression

(sy/x) is a useful number to quote, or calculate 95% confi-

dence intervals on parameters and estimated concentra-

tions of test solutions. Plot residuals against concentration

if you are concerned about curvature or heteroscedacity.

(Sections 5.3.2, 5.5)

56. When are the degrees of freedom n� 1 and when are they

n� 2 in an n-point calibration?

Degrees of freedom¼ n� the number of parameters calcu-

lated, so if you force the intercept to zero (Y¼ bx) then

df¼ n� 1, and if you calculate an intercept (Y¼ bxþ a) then

df¼ n� 2. (Section 5.3.1)

57. How can I determine whether a point is an outlier in a

calibration plot?

As a rule of thumb, if the residual of a point has a magnitude

3 times greater than sy/x the point is suspect. (Section 5.3.2)

Some Useful Excel Functions

Remember that Excel does not know about units and always works

at full precision. When you finally transcribe results into a report

think about the appropriate units and significant figures.
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How Do I. . . What to Do in Excel

Quote a mean and sample ¼AVERAGE(range)
standard deviation of data? ¼STDEV(range)

where the range is a list of cells that contain

the data, e.g., A1:A20, B1:H1

Quote the % relative standard

deviation of data?

¼ 100* STDEV(range)/AVERAGE(range)

Quote the 95% confidence

interval of the mean of n data?

¼STDEV(range)* TINV(0.05, n�1)/SQRT(n)

Determine the probability of a

t-value?

¼TDIST(t,df, tails)
tails¼ 1 (one-tailed) or 2 (two-tailed)

df¼ degrees of freedom

Quote the median of data? ¼MEDIAN(range)

Determine how many

experiments I should do to

ensure that my mean is within

a certain tolerance of the true

mean with 95% probability

given the population standard

deviation?

¼ROUNDUP(NORMSINV(0.025)* �/")^2,0)

� is the population standard deviation

" is the permissible tolerance

Calculate the interquartile

range (IQR)?

¼(QUARTILE(range, 3)�QUARTILE(range,1))

And normalized IQR? ¼(QUARTILE(range, 3)�QUARTILE(range,1))
*0.75

Calculate a two-tailed Student

t-value for a 95% confidence

limit?

¼TINV(0.05, df )
df¼ degrees of freedom

Calculate a one-tailed Student

t-value for a 95% confidence

limit?

¼TINV(0.025, df )
df¼ degrees of freedom

Calculate the probability of a

Student t-value?

¼TDIST(t, df, tails)
df¼ degrees of freedom

tails¼ 1 (one-tailed) or 2 (two-tailed)

Calculate the critical G value,

Gcritical, at 95% probability

for a Grubbs’s outlier test?

¼(n� 1)/SQRT(n)*SQRT((TINV(0.05/ n,

n� 2))^2/(n� 2þTINV(0.05/ n, n� 2)^2))

Calculate a one-tailed Fisher

F value at 95% probability?

¼FINV(0.05, df1, df2)
df1¼ degrees of freedom of the numerator

df2¼ degrees of freedom of the denominator
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Calculate the probability of

an F-value?

¼FDIST(F, df1, df2)
df1¼ degrees of freedom of the numerator

df2¼ degrees of freedom of the denominator

Fit a linear equation

(Y¼ aþ bx) to a set of x, y

data, and calculate the

standard error of the

regression (sy/x), and standard

errors of slope (sb) and

intercept (sa)?

b¼SLOPE(y-range, x-range)
sb¼ INDEX(LINEST(y-range, x-range,1,1),2,2)
a¼ INTERCEPT(y-range, x-range)
sa¼ INDEX(LINEST(y-range, x-range,1,1), 2,1)
sy/x¼ INDEX(LINEST( y-range,
x-range,1,1),3,2)

Calculate the standard error

of the estimate of x (sx̂x) from

a measurement of y (y0) and

a linear calibration?

¼ sy/x/b* SQRT(1/m þ 1/n þ (y0� ybar)^2/b^2
/SUMSQ(xbar-range))
sy/x is a cell containing the standard error of

the regression (see previous entry)

b is the slope of the calibration curve

m is the number of repeats of the test solution

(if m41, y0 is the mean of the m replicates)

n is the number of points in the calibration

curve ybar is the mean of the calibration y

values xbar-range is a range containing

the x calibration values minus the mean of the

x calibration values (mean centered x values)

Calculate 95% confidence

interval on slope, intercept,

and estimate of x?

¼TINV(0.05,n� 2)*sb
¼TINV(0.05,n� 2)*sa
¼TINV(0.05,n� 2)*sx̂x

Draw the best-fit line through

the experimental points

graphed in an X–Y (scatter)

chart? (Note: it looks better

if your chart starts with just

the data points with no

connecting lines.)

1. Right click on a point in the chart. Left click

on Add Trendline. . .

2. Click OK

Calculate the estimated

y values in a calibration?

¼ TREND($y-range, $x-range, x, inter )
where inter¼ 1 for an intercept and 0 to force

the line through zero. Note the $ before the

x and y ranges (i.e., write as $A$1:$A$10).

When you copy the formula down for all the

x values, you only want the particular x

to change, not the ranges for the calibration!
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Introduction

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.1 What This Chapter Should Teach You

� To understand that chemical measurements are made for a

purpose, usually to answer a nonchemical question.
� To define measurement and related terms.
� To understand types of error and how they are estimated.
� What makes a valid analytical measurement.

1.2 Measurement

Chemistry, like all sciences, relies on measurement, yet a poll of our

students and colleagues showed that few could even start to give

a reasonable explanation of ‘‘measurement.’’ Reading textbooks on

data analysis revealed that this most basic act of science is rarely

defined. Believe it or not there are people that specialize in the science

of measurement: a field of study called metrology. The definition

used in this book for measurement is a ‘‘set of operations having the

object of determining the value of a quantity.’’ We will come back

to this but first . . .

1.3 Why Measure?

The world spent an estimated US$3.1 billion on chemical measure-

ments for medical diagnosis in 1998, most of this measurement being

done in the United States and the European Union. These measure-

ments were carried out to discover something about the patients.
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The sequence of events that involve a chemical measurement are:

(1) state the real-world problem; (2) decide what chemical measure-

ment can help answer that problem; (3) find a method that will deliver

the appropriate measurement; (4) do the measurement and obtain a

result (value and uncertainty, including appropriate units); and (5)

give a solution to the problem based on the measurement result. It is

important to understand the relationship between the real-world

problem and the proposed measurement. The chemical measurement

may give only part of the answer, and should not be confused with the

answer itself. In forensic analytical chemistry, matching a suspect’s

DNA with DNA sampled at the crime scene does not necessarily

mean that the suspect is guilty. In health care, a cholesterol

measurement might tell the doctor about the likelihood of a patient

contracting heart diesease, but a full analysis of high- and low-density

lipids and other fats will be more useful.

1.4 Definitions

Our definition of measurement as a ‘‘set of operations having the

object of determining the value of a quantity’’ comes from the bible of

metrology (the International Vocabulary of Metrology or the VIM).

To really understand this definition we need to know what a quantity

is. A quantity is defined as ‘‘attribute of a phenomenon, body, or

substance that may be distinguished qualitatively and determined

quantitatively.’’ Think of things that you measure and see how they fit

into this definition. As chemists we often measure the concentration

of a particular compound. The substance of which we wish to know

the concentration must be stated (¼ distinguished qualitatively). This

is obvious for many measurements (e.g., the concentration of sodium

chloride in seawater) but may be less so when issues of isomerization

(d- or l-thalidomide, or both), or speciation (chromium(VI) or total

chromium), or more nebulous definitions (pH 8 extractable organics)

arise. Determining the value of a phenomenon may refer to activities

such as measuring the rate constant of a reaction, or the amount of

solar energy falling on the Earth. Finally (before we can get stuck into

measurement) we need to know what a ‘‘value’’ is. A value is the

‘‘magnitude of a particular quantity generally expressed as a unit of

measurement multiplied by a number.’’
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1.5 Calibration and Traceability

Measurement is, therefore, something we do that results in a number

and a unit. How we obtain that number is the point of the experiment,

but it usually involves comparing our unknown system with a known

system, either directly, as happens when we measure the length

of something using a ruler suitably marked in length units, or

indirectly, as in when we calibrate an instrument and then measure

the sample for analysis. Indirect comparisons are often made in

modern chemistry. Peaks in a gas chromatogram of a test material of

unknown concentration may be compared with those from a series

of materials of known concentrations via a linear calibration graph

to obtain the value of the unknown. In the case of blood glucose

concentration the instrument response is an electric current that is

proportional to the concentration of glucose. The proportionality

constant for monitors used by patients in their homes is established in

the factory so that their monitor reads the glucose concentration

directly. The unit of the measurement is taken care of by knowledge of

the units of the quantities of the known samples. The measurement of

the concentration in the gas chromatography example is the

determination of the peak height of the sample plus the calibration

followed by an appropriate calculation. It is important to realize, too,

that instruments that appear to give us the answer directly in the

necessary units, for example a pH meter, are only doing so courtesy of

electronics that can compare electrical signals (in the example,

potential measurements of a glass electrode) from the application of

the instrument to a known standard (a calibration buffer solution)

with those from the unknown sample. In chapter 5 we show how

calibrations can be established and used to deliver values of the

measurand.

1.6 So Why Do We Need to Do Data Analysis At All?

The need for data analysis in any measurement science is a

consequence of measurement uncertainty. Having made our measure-

ment, and before we try to interpret the result, an immediate question

is, or should be, ‘‘How reliable is the result?’’ The nonscientific public

is used to accepting measurements at face value. We rarely question
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the weight of baked beans written on the outside of a supermarket

can, or of potatoes indicated by the scales at the checkout. In courts,

drivers usually accept the evidence of the police radar that they were

speeding, or the breathalyzers that indicated they were over the limit

of blood alcohol. However, the prospect of a loss of license or even

time in jail has caused some defendants to try to challenge those

measurements. In trade, when small differences in a measurement

result, say the protein content of wheat, can lead to thousands of

dollars more or less to buyer or seller, measurements can frequently be

scrutinized and argued over. When it matters, we become keenly

aware of the importance of accurate measurements. Any chemical

measurement that is worth doing is of importance to someone and the

modern analytical chemist must give information of the reliability of

the result. In fact, any analysis without proper information of the

reliability is useless!

Modern analytical chemists may not understand how far-sighted

the Swedish chemist Berzelius was when he wrote, in the 19th century,

concerning the mission of the analyst ‘‘not to obtain results that

are absolutely exact—which I consider only to be obtained by

accident—but to approach as near accuracy as chemical analysis

can go.’’ No amount of modern nano-machines, spectrometers, or

expensive instruments will overcome this statement of a universal

truth. We can minimize the uncertainties associated with measure-

ment. We can estimate the uncertainties, but the ‘‘absolutely exact’’

results lie permanently beyond our grasp.

The purpose of this book is to furnish you with tools to help you

maximize the quality of your results; that is, when you, a chemical

analyst, give a result it is the best possible and is accompanied by a

true statement of its reliability.

1.7 Three Types of Error

Here we discuss the concepts of ‘‘error’’ and ‘‘uncertainty.’’ In the

world the word ‘‘error’’ implies a failure of some kind—synonyms

include ‘‘mistake,’’ ‘‘blunder,’’ ‘‘slip,’’ and ‘‘lapse.’’ In metrology,

error is defined as ‘‘the result of a measurement minus a true value

of the measurand’’ and is free of such negative connotations. Error

in an analysis is a particular value that may be known if the true

value is given.
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If we conduct an experiment we almost always obtain a result that

is in error. Why did we not get it right? We could have simply made a

mistake in weighing, calibration, or even the calculation. Repeating

the experiment might show up this error. The first type of error where

we make a mistake, gross error, is really a fault and neither this nor

any book on analytical chemistry can help. It may be possible to

identify such an error, perhaps by statistical analysis, and remove that

result from further consideration, but there is no other way we can

usefully employ the result. If justified statistically (we’ll come to this

in chapter 3) it should be taken out, after, of course, carefully noting

the fact in a laboratory notebook. Please note that careless and

unrecorded expunging of results could amount to scientific fraud.

Beware the outlier that turns out to be the only halfway decent result!

However, whatever the fate of this grossly erroneous result, because

of its unique nature, it cannot guide our future actions.

With regards to why we did not get our analysis completely right,

the second possibility is the method itself may be flawed. No amount

of repeats will improve the situation. This second type of error,

systematic error, is a permanent deviation from the true result. When

applied to an instrument, systematic error is known as bias.

A colorblind person might persistently overestimate the end point in

a titration, the extraction of an analyte from a sample may only be

90% efficient, or the derivatization step before analysis by gas chro-

matography may not be complete. In each of these cases, if the results

were not corrected for the problems, they would always be wrong,

and always wrong by the same amount for a particular experiment.

Systematic error can be estimated by measuring a reference material

a large number of times. The difference between the average of the

measurements and the value of the reference material is the systematic

error. It is always desirable to know the sources of systematic error

in an experiment and to correct for them in measurements.

In the description of how to estimate a systematic error, it was

suggested that the experiment be repeated a large number of times.

This is necessary because of the contribution of another source of

error, namely random error. Random error is the third type of error

that could be responsible for why the answer in our experiment is in

error. Despite your best efforts, having considered and removed or

corrected for sources of systematic error, having ironed out gross

errors, repeating experiments always seems to give slightly different

answers. Sometimes the result is a bit more than expected, sometimes
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a bit less. Rarely it appears to be a long way from the accepted value.

The good news is that taking the average of a large number of results

seems to give an acceptable answer. The values that are too high

cancel those that are too low. There are a myriad of factors that can

contribute to random error: the inability of the analyst to exactly

reproduce conditions, fluctuations in the environment (temperature,

pressure), rounding of arithmetic calculations, brief gusts of wind, or

a shake of the analyst’s hand. What do not contribute to random

error are changes in conditions such as the regular drift in baseline

of an instrument and the aging of a chromatography column.

Table 1.1 summarizes the three types of error.

1.7.1 An example—pipetting

Considering why we might not deliver exactly 10mL using a 10mL

pipette is instructive (figure 1.1).

We shall identify three contributing factors to the problem.

There are more, and as an exercise the reader might try to think of

everything that can go wrong with this apparently straightforward

operation in analytical chemistry.

1. The manufacturer will admit that the pipette you are using,

when filled properly to the mark at 20�C, is only guaranteed

to have a volume somewhere between 9.98 and 10.02mL.

Perhaps you are lucky and have a 10.00mL pipette, but

perhaps not. Note that any error of this type is a systematic

error.

2. When you use a pipette, do you really fill it exactly to the

same mark each time? A series of 10 experiments of filling a

pipette with distilled water and weighing what runs out, gives

a range of values from 9.95 to 10.04mL. The analyst’s

contribution to the error is definitely random.

3. You are aware that during your experiments the temperature

in your laboratory fluctuates between 19.2 and 23.1�C, and

Table 1.1 Types of error

Gross Blunders

Systematic Always the same value and sign

Random Normally distributed with mean of zero
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you know that the volume of 10mL of water will increase by

0.0021mL for every degree centigrade rise in temperature.

If the experiments take long enough to allow the temperature

to change in a random fashion about some average, then

these changes will be included in the distribution of results

from the fill-and-weigh experiments in 2. In addition, unless

the average temperature during the experiments was exactly

20�C there will also be a systematic error arising from the

difference.

1.7.2 An example—the Royal Australian Chemical Institute
titration competition

Although the above sounds plausible, do we have any evidence for

these definitions of ‘‘error’’? Take as an example the Royal Australian

Chemical Institute’s (RACI) schools titration competition of 1997. In

this competition, each of a team of three high school students is asked

Figure 1.1 Uncertainties and errors in delivering 10mL by a pipette.
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to measure the concentration of a solution of acetic acid, given a

solution of sodium hydroxide and a solution of hydrochloric acid of

known concentration.

The members of the team use the hydrochloric acid solution to

standardize the sodium hydroxide solution, which in turn is used to

titrate the acetic acid solution. In table 1.2 are the results of one

member of each of 25 teams that participated in the competition

in 1997 at the University of New South Wales, Sydney.

Although no one is spot on, there are some very near misses

and some pretty woeful answers (e.g., 0.9083M). We know that the

students were not given enough sodium hydroxide to titrate 25mL

of 0.9083M acetic acid, so we can confidently say that this is a gross

error in calculation or recording the result. Plotting the results in

increasing order of magnitude reveals some interesting groupings

(figure 1.2).

The high result is clearly off the planet, as can be seen from

figure 1.2, but we will show that six other results can also be classed as

outliers by methods we explain in chapter 3. The remaining data are

shown to group around the accepted answer, and within limits of an

expected random scatter, calculated from an analysis like the one

above for the pipette, but covering all sources of uncertainty. Out of

the 25 results, seven are rejected as gross errors and of the remainder

seven fall above and 11 fall below the correct answer. Plotting a

histogram, a bar chart of how many results fall within given ranges,

reveals the distinction between the random error and the outliers

(figure 1.3).

The two bars at each end represent the numbers of students whose

values were more than 2.5% away from the correct result. Perhaps

surprisingly, there are hardly any who are 2% away. It seems if you

are going to stuff up, you will do it big time, and the rest are going to

be distributed about more or less the right answer. The peak of the

histogram is just on the high side of 0% error, but looking at the

Table 1.2 The results of the 1997 RACI titration competition. The values are

independent students’ results for the concentration of a solution of acetic acid

(units: M). The correct answer was 0.1147 M

0.1150, 0.1152, 0.1143, 0.1144, 0.1153, 0.1138, 0.1139, 0.1150, 0.0920, 0.1556,

0.1141, 0.1219, 0.1222, 0.1143, 0.9083, 0.1134, 0.0936, 0.1155, 0.1145, 0.1177,

0.1146, 0.1158, 0.1142, 0.1148, 0.1144
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Figure 1.2 Results of the 1997 RACI titration competition. Inset: results for

teams 3–20. The line is the accepted result (0.1147M) and the dashed lines

are �1%.

Figure 1.3 Histogram of the 1997 RACI titration results. Each bar is the number

of students whose result fell between the number indicated and the number to

the right. Note that the 25 data points in table 1.2 represent a subset of all the

data from the RACI titration competition. The entire data set of 75 results

was used to generate this histogram.
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spread of results, there is no evidence to suggest a significant sys-

tematic error. We shall see later that the bell-shaped curve overlaid on

the histogram represents an idealized spread of the data.

In a hypothetical example, if the peak of the histogram were at, say,

þ2.5% (see figure 1.4), we would conclude that there was a positive

systematic error in the measurement. In this hypothetical case perhaps

the RACI had got it wrong and the actual concentrations of the acetic

acid solutions were more than they thought, or perhaps the concen-

tration of the standard hydrochloric acid was less than given.

Data analysis might reveal what has happened, but it will not tell

you why it happened.

Why have we gone to the trouble of classifying different types of

error? Because once we can identify the systemic errors we can correct

for them, and a statistical treatment of the random error will allow us

to estimate what the true result is and what uncertainty there may

be about that result. Figure 1.5 brings together this discussion and

shows the relationships between the true value of the measurand,

the errors in a single measurement result, and the distribution of

random errors.

1.7.3 Measurement uncertainty

The discussion of errors given above is known as the ‘‘classical

approach’’ to measurement. It has served measurement science well,

Figure 1.4 Histogram of the 1997 RACI titration results if there had been a

systematic error.
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but it is based on the assumption that a measurand can ultimately

be described by a single true value. There has been a shift in recent

years to an understanding that the concept of a ‘‘true’’ value may

not be correct, and therefore notions of accuracy and random and

systematic errors may also not be valid. The ‘‘uncertainty approach’’

understands there is only one uncertainty of measurement, ensuing

from various components. It characterizes the extent to which the

unknown value of the measurand is known after measurement,

taking account of the given information from the measurement.

Some of the statistical tools we explain in this book are necessary

for the estimation of this uncertainty, and the classical approach is

a useful starting point for a discussion of the nature of chemical

measurement.

1.8 Accuracy and Precision

Accuracy is a concept that encompasses getting the answer right

(sometimes known as trueness) with acceptable uncertainty (i.e., with

good precision). The relationship between accuracy and precision

is shown in figure 1.6 where high precision is represented by the

closeness of the cluster of hits on a target and high accuracy is

Figure 1.5 Errors in measurement results, showing the difference between

systematic, random, and gross errors.
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represented by the hits being centered around the bull’s-eye. In the

past accuracy just meant getting the answer right, but it is now

understood that trueness without precision is not a desirable state.

Accidentally achieving a reasonable answer but with a huge

uncertainty still leaves the user of the chemical information unsure

as to the validity of the result. The axes are not orthogonal as these

concepts are not entirely independent.

1.8.1 Were the RACI students accurate or precise?

Were the RACI titrators accurate or precise? Will they make good

analytical chemists? Apart from the poor souls who wasted their time

and managed to obtain outrageous answers, the majority did very

well indeed. They averaged out at the correct answer, and although

the spread of results was a bit greater than might be expected from

the best analytical practice, the school students performed well. If we

needed to know what the concentration of acetic acid was, then the

results given by the majority of students could be called accurate.

1.8.2 How to estimate precision

We have discussed uncertainty of a measurement result in terms of a

possible spread of values. In the RACI competition it appears that

Figure 1.6 Relationship between accuracy and precision.
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students whose experiments were subject to random error find results

that spread about 2% either side of the mean value. More achieve

values nearer the mean, and the results are distributed evenly about

the mean, with about half falling greater than the mean and half

falling less than the mean. Many analytical results when repeated

show exactly this pattern. It can be shown that data that follows this

random distribution about a mean can be described by a normal, or

Gaussian, probability density function (pdf )

f ðxj�; �Þ ¼
1

�
ffiffiffiffiffiffi
2�

p exp �
ðx� �Þ2

2�2

	 

ð1:1Þ

Note that the pdf is a function of x—the values that can be taken

by the data. A probability density function is defined in terms of its

area; the probability of finding a result between two values of x (say

x1 and x2) is the area under the pdf between x1 and x2. The shape of

this pdf is the familiar ‘‘bell-shaped curve’’ shown overlaying the

histogram of figure 1.3.

The pdf is characterized by two parameters: � the mean for the

infinite population of data that define the pdf, and �2 the variance

(we discuss the mean and variance in more detail in chapter 2). The

maximum of the function is when x¼�, and the larger the value of �,

the more spread out the function is. If the data were results of

repeated analyses of a sample, then � is a measure of the precision of

the analysis. Equation 1.1 is not the probability of finding a particular

result, but it is related to it. The integral of f with respect to x between

limits x¼ a and x¼ b is the probability of finding a result in that

range. The curve in figure 1.3 is generated from equation 1.1 with

�¼ 0.069% and �¼ 0.84% (remember we are determining the

distribution of the error of each titration result).

The square root of the variance is called the standard deviation.

Although knowledge of the exact form of equation 1.1 may not be of

great interest to a chemist, it is useful to know something of its

properties. It turns out that for all normal distributions the area under

the curve from �� � to �þ � is 68% of that from �1 to þ1. If the

range is widened to � 2�, then just over 95% of the entire area is

covered, and for � 3� 99.7%. Figure 1.7 shows limits that enclose

different percentages of the normal distribution. Remember that to

reach 100% you have to go a long way (� infinity!).
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The fortuitous coincidence of a nearly integral number of standard

deviations (�2�, more precisely �1.96�) covering a nice fraction of

the distribution (95%) has probably led to the popularity of 95%

confidence intervals, and tests at 95% probability. Remember that the

area under the curve is the integral, the fact that �2� encompasses

about 95% of the area also means the probability of finding a

value between the limits of �2�� 95%. Imagine the RACI competi-

tion was extended to every school student in the world who is doing

chemistry, and the mean and standard deviation were as reported

above. Then we could say that if we picked 100 school students at

random, checked to make sure none of them had made a gross error,

95 of them would be expected to have results within the range �� 2�

(between 0.069� 0.84� 2¼�1.61% of the given concentration

and 0.069þ 0.84� 2¼ 1.75% of the given concentration). This may

be very useful. If the mean and standard deviation are known, and

that the population is normally distributed, then we can say many

things about likely results without ever doing another experiment.

We might use our knowledge of this distribution to decide which

students have performed the analysis badly, and which have done well

and whose results are bona fide members of the distribution of correct

results. A student who is out by 5% has a probability of doing so

by purely random processes of one in one billion (1:109). It may be

that we are more willing to believe that he or she committed a gross

Figure 1.7 Probability distribution function (pdf) of the normal distribution with

�¼ 0 and �¼ 1. z is the number of standard deviations from the mean. The

ranges shown contain the percentages of the distribution given.
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error than just happened to be a very unlikely member of the normal

population.

We shall see in the next chapter that this analysis implies

knowledge of � and �, and these statistics are not always available,

and are certainly not the same as the mean and sample standard

deviation of a small data set.

1.9 Significant Figures

The way a result is written should tell something about the precision

of the result. The more figures quoted the greater the implied preci-

sion. The significant figures are those that impart useful information.

It would not be at all appropriate to quote the length of a swimming

pool to a fraction of a millimeter.

1.9.1 Counting significant figures

If it is not obvious then the number of significant figures is best

determined by writing the result in scientific notation (i.e., x.xxx� 10y)

and counting the digits.

Example 1.1

State how many significant figures there are in the following

measured amounts.

1. The concentration of copper in tap water was 0.00000572M

2. The concentration of glucose in blood was 5.0mM

3. The mass of ammonium nitrate was 5.20 tonnes

Solution

1. Expressing the concentration of copper in scientific notation,

0.00000572 becomes 5.72� 10�6 M. Hence there are three

significant figures, the digit before the decimal point and the

two digits after the decimal point.

2. The 5.0mM concentration of blood can be re-expressed as

5.0� 10�3 M and therefore the number of significant figures

is two.
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3. The 5.20 tonnes of ammonium nitrate is equivalent to

5200 kg. Expressed in scientific notation the mass is

5.20� 103 kg and there are three significant figures.

Comment

1. In the copper concentration of 0.00000572M the zeros before

the 5 do not count as significant figures because the zeros are

only being used to locate the decimal point. If this were not

the case, simply by changing our units we could alter the

number of significant figures.

2. In the blood glucose example the zero is counted as it is

listed in the original value, which suggests we know the

glucose concentration is 5.0 not 5.1 or 4.9. However, we do

not know whether 5.0 is really 5.01 or somewhere between

4.95 and 5.04.

3. Note with the mass of ammonium nitrate being 5200 kg we

have no idea whether either of the two zeros is significant or

not and therefore we would make the assumption that neither

is significant and we would conclude there are only two

significant figures. The expression of the mass as 5.20 tonnes,

however, tells us that the first zero is significant as it is

included in the scientific notation and that the second is not

significant. The use of units with prefixes such as m or � is a

way of applying scientific notation.

1.9.2 How many significant figures?

For a measurement made by a modern instrument the figures are

usually output digitally and should be used as given even if it is not

clear that all are really significant (see the gas chromatography

example 2.1a). It is only when finally writing the result that the

number should be rounded to an appropriate number of significant

figures. Let the spreadsheet do all the calculations and leave any

concerns about significant figures until the end when the final result is

required.

To decide what the correct number is, it is necessary to know about

the uncertainty of the measurement. This may be derived from the

analyst’s knowledge, experience, or common sense, or may be

determined from the standard deviation of repeated experiments.
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For example, the use of a 30 cm ruler, graduated in millimeters, to

measure a length of about 10 cm, will be reasonably given to the

nearest millimeter or half millimeter (e.g., 10.3 cm or 10.25 cm).

If the standard deviation of a result is known, or if a 95%

confidence interval has been calculated, this is a guide to the number

of significant figures.

� Write the standard deviation or uncertainty to two significant

figures.
� Then write the result to the same order of magnitude

(i.e., powers of 10, or decimal places).

Therefore, if the concentration of acetic acid in the titration

competition was determined as 0.1146M with a 95% confidence

interval of 0.0096M then we could state the value of the concentration

of acetic acid as 0.1146� 0.0096M (95% confidence interval).

However if the uncertainty were 0.011M then the concentration

would be expressed as 0.115� 0.011M (95% confidence interval).

In the examples given throughout this book we will highlight

the answers for which the number of significant figures have been

determined by this rule.

1.10 Fit for Purpose

Ultimately, the results determined by an analytical chemist have to be

good enough, accurate enough, to allow the proper use of them. The

concept of ‘‘fit for purpose’’ sums up what is required. Remember no

one wants analytical chemistry for its own sake. They want to know if

they can eat the food, drink the water, invest in the gold mine. The

quality of the analytical chemistry needs to be sufficient to answer the

question. A litmus paper test for pH could well have an uncertainty

of 2 pH units, but if the interest is only to find out if the solution

is acidic, then litmus paper is entirely fit for purpose, and the use of

a carefully calibrated pH meter would be overkill.

The United Kingdom Laboratory of the Government Chemist has

proposed six principles of valid analytical measurement (VAM):

� Work to an agreed customer requirement.
� Use validated methods and equipment.

Introduction 37



� Use qualified and competent staff.
� Participate in independent assessment of technical perfor-

mance (proficiency testing).
� Ensure comparability with measurements made in other

laboratories (traceability and measurement uncertainty).
� Use well-defined quality control and quality assurance

practices.

The methods of data analysis described in this book will be of use

in fulfilling each of these principles. Without a proper understanding

of the statistics of data an analyst cannot hope to deliver results that

are ‘‘fit for purpose.’’

38 Data Analysis for Chemistry



2

Describing Data: Means and
Confidence Intervals

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.1 What This Chapter Should Teach You

� To understand the concept of mean, variance, and standard

deviation pertaining both to a large sample (population) and a

small sample.
� To define the standard deviation of the mean of a number of

repeated measurements and understand its relation to the

sample standard deviation.
� To define confidence intervals about a mean and show how to

use them to indicate measurement precision.
� To introduce robust estimators of representing the average

and sample standard deviation.
� To appreciate the difference between measurement repeat-

ability and reproducibility.

2.2 The Analytical Result

Why do we bother with means and standard deviations? Because these

two statistics tell us a great deal about the data and the population

from which they come. A mean of a number of repeated measure-

ments of the concentration of a test solution is an estimate of the

concentration of the test solution and the sample standard deviation

gives a measure of the random scatter of the values obtained by

measurement. Together with the appropriate units they represent

the result. This information is not necessarily the answer to: ‘‘What

is the concentration of the test solution and how sure are you of that
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answer?’’ To answer this question an uncertainty budget must be

prepared, which includes errors, random and systematic, arising from

all aspects of the experiment (of which the standard deviation of

repeated measurements is just one).

Why is it good to repeat analytical measurements? There might be an

argument for the ‘‘quit while you are ahead’’ school but repeating

a measurement gives increased confidence in the result, especially if

the numbers appear to agree. But apart from the appearance of

consistency, do you get better answers by repeating measurements,

and are more repeats better than fewer repeats? The answer to both

questions is ‘‘yes,’’ as we shall see in this chapter. Note that the

statistical treatment of repeated results does not tell us about

systematic error unless we can compare our mean with a known or

assigned value of the quantity being measured.

2.3 Population and Sample

A statistician calls the infinite number of results that could be

obtained and that are described by the probability distribution

function (see chapter 1) the population. The distribution of the values

of those results is characterized by the population mean � and the

population standard deviation �. The goal of many of our data

analysis methods is to estimate � and � from only a few repeated

measurements called a sample. (In this respect the definition of

population differs from the biologist’s view of a finite population of

organisms.)

There is a small problem here experienced only by chemists. We

tend to call each thing that we analyze a ‘‘sample,’’ so have a firm idea

that we have n samples that give our n data. Statistics refers to the

n data as the sample to distinguish it from the infinite population.

The International Union of Pure and Applied Chemistry (IUPAC)

has recommended that the ‘‘actual material being studied’’ should be

a description of the material preceded by the word ‘‘test,’’ for example

‘‘test solution’’ or ‘‘test extract,’’ and the word ‘‘sample’’ be reserved

for its statistical sense. Although we shall try to adhere to this con-

vention in this book, many scientists will find it almost impossible to

not refer to a test solution as a sample.
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2.4 Mean, Variance, and Standard Deviation

The concepts of mean (average), variance, and standard deviation

have been introduced in chapter 1. Here they will be defined.

2.4.1 Mean

The sample mean (arithmetic mean, average) is the result of summing

all the results and dividing by the number of data (n):

�xx ¼

Pi¼n
i¼1 xi
n

ð2:1Þ

The usual symbol for the sample mean is the lower case symbol for the

quantity (here x) with a bar across the top.

For normally distributed data the sample mean �xx tends to the

population mean � as the number of data becomes great. This is

good, because the population mean is the true result in the absence of

systematic error. Although a single result taken from a normally

distributed population is more likely to be nearer the mean than

farther away, in the absence of any other information about the

population we have no idea how near that one result is. To illustrate

the effect of taking means of increasingly larger samples, consider

figure 2.1. We have generated 500 random numbers with mean �¼ 10

and standard deviation �¼ 1, and have averaged 2, 3, 4, . . . 500

of them. Figure 2.1 is a plot of the means of n values against n.

Figure 2.1 Means of n data randomly drawn from a normally distributed

population with �¼ 10 and �¼ 1 as a function of n.
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Indeed, although it wobbles about to begin with, the means of the

data do seem to fall nearer to the population mean (here 10) as n

increases.

This sounds about right, as we know that the data is symmetrically

distributed about the mean, so we would expect that the results that

were on the high side of the mean to cancel those on the low side, and

the more results we had, the better the canceling. This answers our

question as to why do repeats. The more repeats that are done, the

smaller the uncertainty about the sample mean, and hence the more

confident one becomes that the sample mean is a good estimate of the

population mean.

2.4.2 Standard deviation and variance

The spread of the population shown by the fatness of the bell-shaped

curve is measured by the standard deviation or its square, the

variance. They are defined for a sample of n data by:

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi¼n
i¼1 ðxi � xÞ2

n� 1

s

s2 ¼

Pi¼n
i¼1 ðxi � xÞ2

n� 1

ð2:2Þ

The standard deviation defined in equation 2.2 is known fully as the

sample standard deviation because it refers to a sample of n and is an

estimate of the population standard deviation �. Figure 2.2 shows

Figure 2.2 Sample standard deviations of n data randomly drawn from a

normally distributed population with �¼ 10 and �¼ 1 as a function of n.
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how the sample standard deviation also converges on the population

value (here �¼ 1) as n increases.

2.4.3 Relative standard deviation

The relative standard deviation (RSD), also known as the coeffi-

cient of variation (CV), is the standard deviation of a measurement

expressed as a fraction, or more usually as a percentage, of the mean:

RSD ¼
s

x
� 100% ð2:3Þ

The RSD of an analytical result is often quoted as it gives an

immediate impression of the precision of the measurement. Less than

1% is usually considered very good for routine measurements which

are more often in the 1–5% range. For the RACI titration com-

petition (see chapter 1) the mean and standard deviation were

0.1146M and 0.0006M, respectively, after removing outliers from

consideration. The RSD was therefore 0.0006/0.1146� 100%¼ 0.5%,

a very good result.

2.4.4 Units

Remember that the standard deviation has the same units as the

mean, and therefore the variance has the units of the (mean)2. The

relative standard deviation is a fraction with the same units for

numerator and denominator, and therefore is unitless.

Example 2.1a

Calculation of the mean (x), sample standard deviation (s), and

relative standard deviation (RSD).

In an analysis to determine the ethanol content of a wine by gas

chromatography, an internal standard of isopropanol is used to

account for the variability in the volume injected between tests.

In the measurement of a four-point calibration curve and the

repeated analysis of the wine sample, six injections in all are

performed. Each injection contained 1% v/v of the internal
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standard. The isopropanol peak area, in arbitrary units, for each

of the six injections were 2957398, 3733127, 2900811, 3010190,

2810196, 2084063.

Problem

Calculate the injection precision (i.e., the standard deviation of the

measurements).

Solution

To do this requires a determination of the mean, standard

deviation, and RSD.

Calculation by Hand

The mean is calculated using equation 2.1:

x ¼

Pi¼n
i¼1 xi
n

¼

2957398þ 3733127þ 2900811þ 3010190

þ 2810196þ 2084063

( )

6

0
BBBB@

1
CCCCA

x ¼ 2915964

The standard deviation is calculated using equation 2.2:

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi¼n
i¼1 ðxi � xÞ2

n� 1

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2957398� 2915964Þ2 þ ð3733127� 2915964Þ2

þ � � � þ ð2084063� 2915964Þ2

( )

5

vuuuut
s ¼ 525705
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The relative standard deviation is calculated using equation 2.3:

RSD ¼
s

x
� 100% ¼

525705

2915964
� 100 ¼ 18:03%

Calculation using Excel

1. Input the data into a column (here A2:A7)

2. To calculate the average, in a blank cell (A9) type in

¼AVERAGE(A2:A7)

3. To calculate the standard deviation, in a blank cell (A10) type

in ¼STDEV(A2:A7)

4. To calculate the relative standard deviation, for spreadsheet

2.1 in a blank cell (A11) type in ¼(A10/A9)*100

Answer

The mean of the isopropanol peak area is 2,920,000 with a

standard deviation of 530,000 (n¼ 6). The relative standard

deviation of six injections of isopropanol is 18%.

Comments

1. Note the way the answer is expressed which informs the

reader how many samples were analyzed.

2. Also note that the � was not used as we recommend this is

reserved for confidence intervals (see section 2.5).

A B
1 Peak Area
2 2957398
3 3733127
4 2900811
5 3010190
6 2810196
7 2084063
8
9 2919564
10 525705
11 18.028499

=AVERAGE(A2:A7)

=STDEV(A2:A7)

=(A10/A9)*100

Spreadsheet 2.1
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3. Rather than calculate from first principles it would be more

common to use a calculator or Excel. With a calculator there

are often keys for population standard deviations (written as

� or x�n) and sample standard deviations (written as s or

x�n�1). Naturally x�n�1 is the correct key to use for this

example and gives a value of 525705. If x�n was used you

would get a standard deviation of 479900. As appealing as

using a smaller value is, it is not correct to quote the standard

deviation calculated in this way.

4. Remember significant figures. Do not round until you need

to report the result. Then give the standard deviation or

confidence interval to two significant figures and the mean to

the same order of magnitude.

2.4.5 Degrees of freedom

It is seen from equation 2.2 that the more spread the data is about the

mean, the bigger the standard deviation. A consequence of the square

is that whether a datum is more or less than the mean its difference

from the mean will always contribute positively to the standard

deviation. The sum of the squares is divided by n� 1, which is the

number of degrees of freedom (df ) of the calculation. Each data point

gives one degree of freedom, and by calculating the mean to use in

equation 2.2, one degree of freedom has been used up. Degrees of

freedom appears in many equations and is defined as the number

of data minus the number of parameters calculated from them. For

calculation of many statistical parameters of sets of data df¼ n� 1.

The only times this will be different in this book are for calibrations

for which two parameters, slope and intercept, are calculated, giving

df¼ n� 2.

2.4.6 Standard deviation of the mean

Just as we can see in figure 2.1 that the mean draws ever nearer to �

with increasing numbers of data, it must also follow that our

confidence in that mean as an estimate of � also increases. As an

expression of this confidence it is possible to define a ‘‘standard

deviation of the mean.’’ To explain this, suppose we average four

points, then another four, then another four, etc. The means of four

points themselves form a group (in the jargon another ‘‘population’’)
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with its own mean and standard deviation, which can be related to the

mean and standard deviation of the original set of data from which

the samples were drawn (see figure 2.3).

By a theorem in statistics called the central limit theorem, the mean

of the means is, not surprisingly, the mean of the population, and the

standard deviation of the population of means of n data (�n) is related

to the population standard deviation (�) by

�n ¼
�ffiffiffi
n

p ð2:4Þ

In the example given n¼ 4, therefore �4¼ �/2. Just as s estimates

�, s=
p
n estimates �=

p
n. The so-called sample standard deviation of

the mean is therefore defined by

sn ¼
sffiffiffi
n

p ð2:5Þ

The standard deviation of the mean thus also becomes smaller as the

number of data increases, reflecting our increasing confidence in the

value of the mean (see figure 2.4).

This answers the second question posed above (are more repeats

better than fewer repeats?). By taking more and more data the mean

becomes a better estimate of the population mean because its standard

deviation is smaller as the number of data increases. In fact as n

Figure 2.3 Taking samples of four test solutions from the population

(hypothetical) of all possible test solutions.
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approaches infinity, the sample standard deviation of the mean goes

to zero. Figure 2.5 shows this happening. The square root of n in

equations 2.4 and 2.5 deals a small blow. If it is desired to halve the

sample standard deviation of the mean, four times the number of

experiments have to be done. Improvement by a factor of 10 implies

100 times more experiments. Therefore, how many repeats are

performed depends on what the result will be used for. Once again

the idea of fit for purpose comes into play; the precision is dictated by

how many experiments you are willing to do.

Figure 2.4 Normal probability distribution functions for means of 1, 2, 4, 8, and

16 data.

Figure 2.5 Sample standard deviations of the mean of n data randomly drawn

from a normally distributed population with �¼ 10 and �¼ 1.
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The central limit theorem also delivers another positive for the

analyst. Most of the simple data analysis assumes a normal dis-

tribution of data. Much of the time for real sets of data this is not

so, but by taking averages of results the distribution of the means

tends to a normal distribution, even if the original population is

not normally distributed. Hence taking averages of data also helps us

with data analysis by removing concerns we might have had about

whether our data conform to a normal distribution.

2.5 So How Do I Quote My Uncertainty?

2.5.1 Confidence intervals and confidence limits

The standard deviation of the mean tells all there is to know about the

dispersion of the data and it is sufficient to quote the mean and

sample standard deviation of the mean (and the number of data).

However, it may be more immediately informative to give a range of

values that would encompass some proportion of repeated data (say

95 or 99%). Remember that the normal distribution goes from plus

infinity to minus infinity but there is not much to be gained by saying

that you are 100% sure the right answer is somewhere! What we do,

therefore, is to accept some doubt, and give a finite range in which a

large proportion of repeated intervals are expected to contain the true

value. It is quite easy to give such a defined range (called a confidence

interval) because we know exactly what proportions of the normal

distribution fall at given multiples of the standard deviation about

the mean (see section 1.8.2).

2.5.2 When you have a lot of data: Confidence interval knowing the
population mean and standard deviation

For a normal distribution with population mean � and standard

deviation � the symmetric interval about the mean containing a

fraction 1�� of the results is given by

�� z�=2� ð2:6Þ

where z�/2 is obtained from tables of the normal distribution. In other

words z�/2 is the number of standard deviations either side of the

mean containing a fraction 1�� of the distribution. For example, for
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a 95% confidence interval �¼ 0.05. Another interpretation is to say

the probability of finding a value outside the 95% confidence interval

is 0.05. The subscript �/2 is written because the interval covering, for

example, 95% about the mean has �¼ 0.05 with 0.025% at one end

and 0.025% at the other (see figure 2.6).

When we are dealing with means of n repeat measurements, the

interval containing (1��) of the means is given by the standard

deviation of the mean, �n (see equation 2.4):

�� z�=2�n ¼ ��
z�=2�ffiffiffi

n
p ð2:7Þ

Comparing equations 2.6 and 2.7 we see that performing n repeated

experiments reduces the interval by 1=
p
n. In the case of the 95%

confidence interval, �/2¼ 0.025, z0.025¼ 1.96, and thus

��
z0:025�ffiffiffi

n
p ¼ ��

1:96�ffiffiffi
n

p ð2:8Þ

Although the interval in equation 2.8 is often expressed as a

probability interval for the population mean (‘‘The true value lies in

this interval with a probability of 95%’’), it is not. The population

mean � is what it is with 100% probability. (The only problem is that

we do not know it!) What the confidence interval tells us is that if a

large number of repeats of our n experiments were performed under

Figure 2.6 Probability distribution function of the normal distribution with

dashed lines drawn at �1.96�. The area between the lines contains 95% of the

distribution.
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identical conditions 95% of the confidence intervals calculated by

equation 2.8 would indeed include the value of �. In reality it is highly

unlikely that having done n experiments to give one mean and

confidence interval, you will now repeat the whole process again

and again to prove this. The 100(1��)% confidence interval on the

experimental mean x is given by

��
z�=2�ffiffiffi

n
p 5x5�þ

z�=2�ffiffiffi
n

p ð2:9Þ

We can rearrange this equation to give a confidence interval on �

given x:

x�
z�=2�ffiffiffi

n
p 5�5xþ

z�=2�ffiffiffi
n

p ð2:10Þ

Again the only correct statement about the confidence interval is the

one given above: that 95% of repeated confidence intervals will

include �. However, it is common to express this incorrectly as ‘‘that

with 100(1��)% confidence, the true mean is between the values

defined by the confidence limits.’’

The confidence interval is given by equation 2.10. The confidence

limits are the values defining the interval: x� z�=2�=
ffiffiffi
n

p
. Because

the normal distribution is symmetrical the same value ðz�=2�=
ffiffiffi
n

p
Þ

is added to the mean to give the upper confidence limit and is

subtracted from the mean to give the lower confidence limit. This may

not be the case for other distributions; for example, the lognormal

distribution has a longer tail on the high side of the mean. See

section 2.5.5 to learn under what circumstances this calculation is

applicable.

2.5.3 When you only have a small amount of data: Confidence
interval knowing the sample mean and standard deviation

There is a problem with equation 2.10 in that although we know x, n,

and z�/2, if we only have our n data, and n is small, we do not know �.

We can calculate the sample standard deviation s, but just as x is

an estimate of �, s is only an estimate of �. W.S. Gossett, while

working for Arthur Guinness’s brewery in Dublin, Ireland, in 1908,

published a paper using the pseudonym ‘‘Student,’’ which solved this

Describing Data: Means and Confidence Intervals 51



problem. The t-value or Student t-value is used to determine

the confidence interval for samples of finite size for which only the

sample standard deviation is known. Thus in equation 2.10, z�/2� is

replaced by t�, n�1s. The t-value depends on the probability level

required (�) and also the degrees of freedom, that is, the number of

repeat measurements (a table of t-values is given in the Appendix).

A confidence interval of a mean based on the sample standard

deviation is therefore

x�
t�,n�1sffiffiffi

n
p 5�5xþ

t�,n�1sffiffiffi
n

p ð2:11Þ

To illustrate the difference between these two calculations, look at

figure 2.7, which shows the difference between the 95% point on the

normal distribution (z¼ 1.96) and the corresponding Student t-value

for different degrees of freedom. The t-value depends on the degrees

of freedom, and asymptotically approaches the value of z as the

degrees of freedom tends to infinity. The important point is to note

how quickly this happens. For a sample of three measurements there

are two degrees of freedom and t0.05,2 is 4.3, more than twice z0.025.

Therefore a confidence interval based on a standard deviation of three

results will be twice that if the population standard deviation, � is

Figure 2.7 Plot of the Student t-value for calculation of a 95% confidence

interval with increasing degrees of freedom. The corresponding z-value from the

normal distribution is shown (z0.025¼ 1.96).
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known. However, as more results are taken the difference between

t and z becomes less. By the time we have 10 degrees of freedom the

extra width of the confidence interval is only 14%.

Figure 2.8 shows the confidence intervals calculated for the means

of the random data used earlier. Figure 2.8(a) shows 95% confidence

intervals based on the population standard deviation (which we know:

�¼ 1) and z-value (1.96), which is of course the same for each value.

Figure 2.8(b) is the 95% confidence interval calculated using equation

2.11. For small values of n the Student t interval is much greater

than the one based on a knowledge of �, because, as discussed above,

Figure 2.8 95% confidence intervals on the means shown in figure 2.1:

(a) calculated from the population standard deviation and z-value (equation

2.10); (b) calculated from the sample standard deviation and Student t-value

(equation 2.11).
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s calculated from n data is only an imperfect estimate of �. In fact

for one degree of freedom the interval is off the scale of the graph at

�10. The moral of this tale is do not bother calculating standard

deviations and confidence intervals if you only have two or three data;

some say you should have at least five to eight.

2.5.4 Tails

An unnecessary complication, which was possibly once introduced to

make life easier, is the distinction between one- and two-tailed Student

t-values (tails are also used in other statistics). Two-tailed probabili-

ties are spread over the two ends of the distribution with half the given

probability in each tail, and are denoted by putting a double prime (00)

after the probability value. One-tailed probabilities are shown as a

single prime ( 0 ) and refer to just one tail of the distribution. For

example, for a 95% confidence interval and 10 degrees of freedom,

t0.0250,10 is equal to t0.050 0,10, as can be seen from figure 2.9. Annoyingly,

in Excel the z values obtained from the normal distribution are

always one tailed (¼�NORMSINV( p)1) but the Student t-values

1NORMSINV(p) returns the x-value at which the area under the normal distribution pdf

(with �¼ 0 and �¼ 1) from �1 to x is p. Therefore a negative x is returned as the area

calculated is at the left-hand tail of the distribution.

Figure 2.9 Student t-distribution (T ) for 10 degrees of freedom. Solid vertical

line: value for which p(T4 t)¼ 0.05, that is, t0.050,10 (one-tailed). Dashed lines:

values for which p(T4 t,T5�t)¼ 0.05, that is, t0.050 0,10 (two-tailed)¼ t0.0250,10
(one-tailed).
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(¼TINV( p,df )) are two tailed. However, when the probability of

finding a Student t (T ) greater than a particular t is to be calculated

using TDIST, whether the one-tailed or two-tailed values are to be

returned must be specified (¼TDIST(t,df, tails)).

Example 2.2

Determine a probability (T4 t) from a t-value using Excel.

Problem

What is the probability associated with a two-tailed Student

t-value of 2.23 with 10 degrees of freedom?

Solution

This can simply be done in Excel using the function TDIST with

syntax TDIST(t, df, tails). Therefore in a blank cell of a spreadsheet

you would input ¼TDIST(2.23, 10, 2).

Answer

The probability associated with a two-tailed Student t-value of

2.23 with 10 degrees of freedom is 0.0498.

Comments

1. If ¼TDIST(2.23, 10, 1) were typed into a cell in the spread-

sheet then the output would be 0.024921 (i.e., 0.025) as this

refers to a one-tail probability.

2. The probability 0.050 is the value of � used in calculating

the percentage of data falling within a confidence interval

of 100(1��)%. Hence 2.23 is a t-value for a 95% confidence

interval.

3. The answer is given to three significant figures following the

number of significant figures in the question (2.23 has three

significant figures).
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2.5.5 After how many measurements can you assume s¼ �?

It would be a lot easier if we could ignore Student t-values and just

assume that the s calculated from our data is �. The value of z from

the normal distribution for the 95% confidence interval is, as we have

learned, 1.96. For 30 degrees of freedom, the error in using z and not

t (t0.050 0,30¼ 2.04) is about 4%. Hence the answer is that it depends

on the error you can tolerate, but you should usually consider

the Student t-distribution for less than about 30 data.

2.5.6 How do I write standard deviations and confidence intervals?

Whenever you write a result and decide to include a measure of

precision (as you always should) it is important to convey enough

information for the user of the result to assess the precision. Plus

and minus (�) should be reserved for a confidence interval, because

an interval is what � defines. The probability should be given

somewhere. It is not sufficient to assume the reader will know it is

95%; many authors put � before one sample standard deviation of

the mean, which encompasses only 68% of the distribution. The

degrees of freedom are allowed for in the value of t but it is good

practice to mention n. If you want to quote a standard deviation, it

should be given in parentheses and must also show the value of n.

See the answer for example 2.1b below for the appropriate way of

presenting an uncertainty with a confidence interval.

Example 2.1b

Problem

Calculate the mean and 95% confidence limits for the data in

example 2.1a.

Solution

In Example 2.1a the injection precision is determined by

calculating the mean, standard deviation, and RSD. We can now

use these values to obtain confidence limits at the required

probability. In this example the 95% confidence limit for the

injection precision data in example 2.1a is calculated.
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Calculating by hand

Recall the confidence interval is given by x� t�, n�1s=
ffiffiffi
n

p
with,

in this case, �¼ 0.0500, n¼ 6, x¼ 2919564, and s¼ 525705.

From the table of t-values (see Appendix) for five degrees of

freedom (as one degree of freedom is used up in the calculation of

the mean) the value of t0.050 0,5¼ 2.57. Therefore

x�
t0:0500, 5sffiffiffi

n
p ¼ 2919564�

2:57� 525705ffiffiffi
6

p ¼ 2919564� 551569

Answer

The mean and 95% confidence interval of the peak areas are

(2.92� 0.55)� 106 (n¼ 6).

Calculation using Excel

To calculate the 95% confidence limits using Excel, simply type

into a blank cell ¼STDEV(range)*TINV(0.05, n�1)/SQRT(n),
where range is the range of cells containing the n data. Typing

¼TINV(0.05,n�1) gives the t-value alone.

Hence for the set of data the spreadsheet will look like

spreadsheet 2.2.

Answer

The mean and 95% confidence interval of the peak areas are

(2.92� 0.55)� 106 (n¼ 6).

A B
1 Peak Area
2 2957398
3 3733127
4 2900811
5 3010190
6 2810196
7 2084063
8
9 2919564
10 525705
11 18.028499
12 551692
13 2.570578

=AVERAGE(A2:A7)

=STDEV(A2:A7)

=(A10/A9)*100

=STDEV(A2:A7)*TINV(0.05, 5)/SQRT(6)

=TINV(0.05, 5)

Spreadsheet 2.2
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Comments

1. Again, note the wording of the final answer. It was worded

this way to inform the reader that it is a 95% confidence limit

from 6 samples and hence the t-value that had been used was

for 5 degrees of freedom.

2. We recommend writing the standard deviation or 95%

confidence interval with two significant figures. The mean

is then quoted to the same significance (decimal places).

3. With very large or very small numbers, to avoid many zeros

that can be easily misread, use prefixes for units (e.g., mM,

nm, MPa) or use scientific notation by multiplying by 10 to a

suitable power as we have done here.

4. Note the value of the 95% confidence limit, before round-

ing, is larger than that obtained when calculating by hand.

This is simply because the spreadsheet uses the t-value of

2.57057763519696 while when calculating by hand we used

the truncated, tabulated value of 2.57. Despite this small

difference the answer is the same once we limit the confidence

interval to two significant figures.

5. As Excel only gives a two-tailed result from TINV, we must

use �00 ¼ 0.05.

2.5.7 How many measurements?

When establishing confidence intervals from data, analysts are

sometimes told to make seven measurements. The magical nature of

this number stems from the fact that the standard deviation of seven

results is just greater than the 95% confidence interval of the mean.

How so? Because the 95% confidence interval for n¼ 7 is t0.050 0,6
s/
p
7¼ (2.45 s)/2.65 (t0.050 0,6¼ 2.45 and

p
7¼ 2.65), and so these

nearly cancel leaving s as about the 95% confidence interval of the

mean.

The answer to how many measurements you should make is

answered by how precise you want your result. If the population

standard deviation is known, then if you want to make sure that the

error in your mean, that is, the difference between the mean and the

population mean that would be obtained by an infinite number of
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repeats, is no more than " with a probability of � then

" ¼ �� x ¼ z�=2
�ffiffiffi
n

p ð2:12Þ

Equation 2.12 may be rearranged to give

n ¼
z�=2�

"

� �2
ð2:13Þ

Equation 2.13 is instructive. It tells us that we must do more

experiments if we want a smaller uncertainty ("), a higher

probability (�), or have a smaller standard deviation of our

experiments.

If we do not know the population statistics � and � but only have

data from some preliminary experiments then we are in something of

a dilemma. First, because we have done some experiments perhaps we

have already done too many. Second, the equivalent expression to

equation 2.13 is

n ¼
t�00, n�1s

"

� �2
ð2:14Þ

where s is the sample standard deviation. It is possible to cast equation

2.14 in terms of the relative standard deviation and " as the relative

(%) target error:

n ¼
t�00, n�1RSD

"%

� �2

ð2:15Þ

The difficulty with using equation 2.14 or 2.15 is that we need to know

n to calculate the degrees of freedom, to give the Student t-value. It is

possible to iterate equation 2.14 or 2.15 with an initial guess at n to

give t which is then put back in n and so on. After the experiments are

performed it may be necessary to recalculate n to take into account

the new value for the standard deviation. In practice, we are usually

only interested in ball-park figures, for example 5% with anywhere

between 4 and 6% being acceptable, and hence the process is not too

tedious.
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Example 2.1c

The RSD of the injection volume for six injections was a poor 18%.

Problem

How many injections are required to reduce the relative error of

the mean to 5% with 95% confidence?

Solution

To solve this problem requires using equation 2.14. As the value of

t0.050 0, n�1 used is dependent on the value of n we must make a guess

at n to get t0.050 0, n�1 and then calculate a new value of n. The new n

is then input back into equation 2.14 and this iterative process is

repeated until a value of n is converged upon. This process could

be performed by hand but is far simpler to perform in Excel as

shown below.

Calculation using Excel

1. Input the values of the target error, ", and the calculated RSD

(in this case 5 and 18, respectively) into cells as shown in

spreadsheet 2.3.

2. Make an initial guess of the number of experiments required.

In the spreadsheet our initial guess is the number of

experiments performed, that is, 6, and hence the degrees of

freedom is 5.

3. Use the number of degrees of freedom and the probability to

calculate t0.050 0, n�1 using ¼TINV.

4. Define two columns as the number of degrees of freedom, df,

and the number of experiments n. In the first cells type

‘‘5’’ below df and ¼ROUND((TINV(0.05, A21)*$B$17/

$B$16)^2,0) below n. This expression is equation 2.14,

where A21 refers to df and ^2 squares the function. The

rounding function with syntax ROUND(number, decimal_
places) rounds the answer to a prescribed number of decimal

places. In this case, because you cannot do half experiments,
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the expression is rounded to 0 decimal places giving an

integral number of experiments to perform. The spreadsheet

looks like spreadsheet 2.3.

Answer

The number of experiments required to have 95% confidence that

the error in the injection precision is 5% or less is 52.

Comments

1. If this were a real-life problem, we would be in a dilemma.

It is unlikely each measurement could be repeated 51 times,

so our only recourse would be to renegotiate the target

uncertainty upwards (perhaps to 10% when ‘‘only’’ 15 repli-

cates need be done), or to revise our procedure to improve

the precision.

2.6 Robust Estimators

The average and sample standard deviation are known as ‘‘estima-

tors’’ of the population mean and standard deviation. We have seen

how the estimates improve as the number of data increases. As we

have stressed, the use of these statistics requires data that are normally

distributed, and for confidence intervals employing the standard

deviation of the mean this tends to be so. Real data may be so

distributed, but often the distribution will contain data that are

seriously flawed, as with the RACI titration competition described in

chapter 1. If we can identify such data and remove them from further

A B
16 Error 5
17 RSD 18
18 t-value 2.57
19 
20 df n
21 5 86
22 85 51
23 50 52
24 51 52
25 51 52
26 51 52

=TINV(0.05, $A$21)

=ROUND((TINV(0.05, A21)*$B$17/$B$16)^2,0)

=(B21-1)

=ROUND ((TINV(0.05, A22)*$B$17/$B$16)^2,0)

Spreadsheet 2.3
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consideration, then all is well. Sometimes this is possible, but not

always (the statistically valid identification of data as outliers is

discussed in chapter 3). This is a problem as a single rogue value can

seriously upset calculations of the mean and standard deviation.

Estimators that can tolerate a certain amount of bad data are called

robust estimators and can be used when it is not possible to ensure that

the data being processed has the correct characteristics. Here we shall

introduce the middle value of an ordered set of data (median) as a

robust estimator of the mean, and the range of the middle 68% of the

data (normalized interquartile range) as a robust estimator of the

standard deviation. Robust methods have their place, particularly

when we must keep all the data together in, for example, an

interlaboratory trial where an outlying result from a laboratory

cannot simply be ignored. However, robust estimators are not the

best statistics and wherever possible the statistics appropriate to

the distribution of the data should be used.

2.6.1 Median

The median is the middle value of a set of data when arranged in

ascending order. If there are an odd number of data then there is a

unique middle datum. If there are an even number then the median is

the average of the middle two data. It is robust, because no matter

how outrageous one or more extreme values are they are only

individual values at the end of a list. Their magnitude is immaterial.

The RACI data shown in table 1.2 are ordered in table 2.1

2.6.2 Interquartile range

The interquartile range (IQR) is the range of values that spans the

middle 50% of data. Three quarters of the IQR, known as the

Table 2.1 The results of 25 competitors in the 1997 RACI titration competition

of the concentration of a test acetic acid solution in units of mol L�1

0.0920, 0.0936, 0.1134, 0.1138, 0.1139, 0.1141, 0.1142, 0.1143, 0.1143, 0.1144,

0.1144, 0.1145, 0.1146, 0.1148, 0.1150, 0.1150, 0.1152, 0.1153, 0.1155, 0.1158,

0.1177, 0.1219, 0.1222, 0.1556, 0.9083
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normalized IQR, is an estimate of the standard deviation2. A problem

with the IQR is that it cannot be calculated for small data sets, as

there have to be sufficient data to define quartiles (sections of the

ordered data that contain one-quarter of the data).

Example 2.3

Calculation of robust estimators.

Problem

Use robust estimators to estimate the population mean and

population standard deviation for the RACI titration competition

data shown in table 2.1. Outliers from a normal distribution are

shown in italics (see section 3.4 for details of how to do this) and

the median is in bold.

Solution

The median is the middle value when the data are sorted into

ascending order. In this case there are 25 data and hence the 13th

datum is the median which is 0.1146 M.

The interquartile range is the middle 50% of the data. As

there are 25 data points we take the middle 13 from 0.1142

to 0.1155 which gives an interquartile range of 0.0013M. There-

fore the normalized interquartile range is 0.0013� 0.75¼

0.00098M.

Answer

For the RACI titration competition data the median is 0.1146M

and the normalized interquartile range is 0.00098M.

2 The IQR encompasses 50% of the data; a spread of two standard deviations about the

mean (�1) includes 68% of the data which leads to �¼ 0.73� IQR, which for ease of

calculation is rounded to 3⁄4 � IQR.
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Comments

1. The assigned value in the titration competition was 0.1147M,

which makes the median (0.1146M) a good estimate of the

mean, even with seven identifiable outliers. The average, on

the other hand, is 0.1470M which is hopelessly skewed to

higher values by the last value of 0.9083M. When the outliers

are not used, the mean is also 0.1146M.

2. The sample standard deviation of the whole RACI data set is

0.1590M, again greatly inflated by the high outliers. The

standard deviation suffers more than the mean from outliers

because of the squaring of the difference between the value

and the mean (equation 2.2). The normalized IQR of the

whole data set is 0.00098M and of the truncated set (minus

the seven outliers) is 0.00058M. The standard deviation of

the truncated set is 0.00063M.

2.7 Repeatability and Reproducibility of Measurements

What happens in real analytical laboratories? There is very rarely

sufficient time or resources to perform experiments enough times on

each test material to establish a reasonable mean and standard

deviation (and therefore confidence interval). Duplicate measure-

ments are the norm rather than the exception.

Many working laboratories will have performed a similar analysis

many times over, whether it be the analysis of active ingredients for a

pharmaceutical production line, or the analysis of an element in an

ore for a mining company. When the analytical method was first

established, method validation will have determined repeatability and

reproducibility standard deviations, and these will have been verified

for use in the particular laboratory.

The repeatability standard deviation is defined as ‘‘The precision of

a method expressed as the standard deviation of independent

determinations performed by a single analyst using the same

apparatus and techniques.’’ Hence the repeatability is what governs

any replicate measurements made in your laboratory by you on the

test material. The reference to ‘‘independent measurements’’ means

that a number of separate test portions should be weighed, dissolved,

and measured, not that the same solution should be presented to the
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analytical instrument a number of times. (If this were to be done the

standard deviation of these measurement results would be the

repeatability of the instrument measurement, not the repeatability

of the analysis.)

Reproducibility standard deviation is ‘‘The precision of a method

expressed as the standard deviation of determinations performed in

different laboratories.’’ Remembering the discussion of chapter 1 we

would expect the reproducibility to be greater than the repeatability,

as each laboratory will have its own repeatability (which might be

expected to be about the same) but the differences between the

laboratories reflecting different biases will now add to this to give

the reproducibility. Experience has shown that the interlaboratory

reproducibility is about two to three times the repeatability.

For completeness it should be noted that ‘‘intralaboratory

reproducibility’’ is sometimes used to refer to the standard deviation

of measurement results obtained within the same laboratory, but

perhaps by different analysts and/or different equipment and/or

different days.

Returning to the practical problem of routine measurement, if a

laboratory has established a reasonable estimate of the repeatability

standard deviation, then the routine duplicate measurements may be

checked against this value. Suppose the repeatability standard

deviation is �r. The standard deviation of the difference between

two measurements is
p
2�r and the 95% confidence interval on the

expected difference of 0 is � 1.96�
p
2�r¼ 2.8�r.

Therefore if the difference between duplicated results measured

under repeatability conditions is greater than 2.8�r there should be

concern that there is something wrong with the analysis. This can be

used as part of a quality control procedure to ensure consistency of

results. An equivalent difference can be defined for a reproducibility

standard deviation (�R) for checking results found between labora-

tories. The maximum permissible difference 2.8� �r is known as the

repeatability limit (r) and 2.8� �R is the reproducibility limit (R).

Describing Data: Means and Confidence Intervals 65



This page intentionally left blank 



3

Hypothesis Testing

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.1 What This Chapter Should Teach You

� To understand the concept of the null hypothesis and the role

of Type I and Type II errors.
� To test that data are normally distributed and whether a

datum is an outlier.
� To determine whether there is systematic error in the mean of

measurement results.
� To perform tests to compare the means of two sets of data.

3.2 Why Perform Hypothesis Tests?

One of the uses to which data analysis is put is to answer questions

about the data, or about the system that the data describes. In the

former category are ‘‘is the data normally distributed?’’ and ‘‘are there

any outliers in the data?’’ (see the discussions in chapter 1). Questions

about the system might be ‘‘is the level of alcohol in the suspect’s

blood greater than 0.05 g/100mL?’’ or ‘‘does the new sensor give the

same results as the traditional method?’’ In answering these questions

we determine the probability of finding the data given the truth of a

stated hypothesis—hence ‘‘hypothesis testing.’’

A hypothesis is a statement that might, or might not, be true.

Usually the hypothesis is set up in such a way that it is possible to

calculate the probability (P) of the data (or the test statistic calculated

from the data) given the hypothesis, and then to make a decision

about whether the hypothesis is to be accepted (high P) or rejected

(low P). A particular case of a hypothesis test is one that determines

whether or not the difference between two values is significant—a
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significance test. For this case we actually put forward the hypothesis

that there is no real difference and the observed difference arises from

random effects: it is called the null hypothesis (H0). If the probability

that the data are consistent with the null hypothesis falls below a

predetermined low value (say 0.05 or 0.01), then the hypothesis is

rejected at that probability. Therefore, p5 0.05 means that if the null

hypothesis were true we would find the observed data (or more

accurately the value of the statistic, or greater, calculated from the

data) in less than 5% of repeated experiments. To use this in

significance testing, a decision about the value of the probability

below which the null hypothesis is rejected, and a significant

difference concluded, must be made. So what is the predetermined

low value of the probability at which we decide to reject H0 and how

do we calculate the actual probability of finding the data given H0? If

you remember confidence limits—the range of values in which a

certain percentage of results should fall—we should be able to use

them to decide if the results we are comparing are near enough

together. The null hypothesis is rejected ‘‘at the 95% level of

confidence’’ if the probability of the test statistic, given the truth of

H0, falls below 0.05. In other words, if H0 is indeed correct, less than

5% (i.e., 1 in 20) means of repeated experiments would fall outside the

limits. In this case it is concluded that there was a significant

difference. If we think about a normal distribution with a 95%

confidence interval, it is so called because 95% of repeated

measurement results would fall inside the interval and 5% outside.

Therefore if we were to reject H0 at the 95% probability level we are

admitting that 5% (i.e., 1 in 20) of repeated experiments would be

rejected in error when they were really part of the distribution.

3.3 Levels of Confidence and Significance

A criminal court of law needs to be convinced of a defendant’s guilt

‘‘beyond all reasonable doubt.’’ Civil cases are decided ‘‘on the

balance of probabilities.’’ What do these statements mean? Courts are

very careful to avoid putting actual figures on these statements, but

the first (beyond all reasonable doubt) might be, say, 99.9% certain

while the second might only be 60% or less. If we have the luxury of

having data that do allow real probabilities to be determined then it

is possible to give the court the chance to decide what is ‘‘reasonable
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doubt.’’ Of course, criminal cases are extremely complex and although,

for example, the probability of a DNA match may be given in a

proper statistical fashion, the myriad of other evidence will still need

to be weighed by the jury without such help.

Many tests that are published in the chemical literature compare

a calculated value of a statistic with tables of critical values for this

statistic at a given probability (often p¼ 0.05, i.e., at the 95% level).

Papers in the literature often include statements such as ‘‘the results

were not significantly different (95% level),’’ or ‘‘there was a signifi-

cant difference with 95% probability,’’ and although there are better

ways of expressing the statistically correct statement, we do receive the

message about the relationship between the sets of data. The figure

of 95% is a somewhat arbitrary one, arising because of the accident

that �� 2� covers about 95% of a population. With modern com-

puters and spreadsheets it is possible to calculate the probability of

the statistic given a hypothesis, leaving the reader to decide whether

to accept or reject it. This approach is recommended in this text, and

hopefully will lead to a more considered view of hypothesis testing.

In deciding what is a reasonable level to accept or reject a

hypothesis, that is, how significant is ‘‘significant,’’ two scenarios, in

which the wrong conclusion is arrived at, need to be considered. First,

is the case in which we reject a hypothesis when it is actually true

(a so-called Type I error). In biosciences a Type I error is often

referred to as a false negative. Here, the conclusion of the significance

test is that the difference being tested is outside a reasonable range

of what would be expected of a normal distribution consistent with

the null hypothesis when in fact H0 is true. The second scenario is

the opposite of this, when the significance test leads to the analyst

wrongly accepting the null hypothesis although in reality H0 is false

(a Type II error). Type II errors will be familiar to bioscientists as

false positives. These are discussed further below.

Consider what the consequences of setting the probability level for

acceptance of H0 at 90, 95, and 99% might be. As an example suppose

an analytical method has been used to analyze a certified reference

material for the element zinc, that is, a material whose amount of

substance of zinc has been established to a high metrological standard

with low measurement uncertainty, with a view to deciding if there is

any significant systematic error in the method. The mean of n meas-

urement results has been determined and suppose that the population

standard deviation (�), and therefore the standard deviation of the
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mean (�/
ffiffiffi
n

p
), is known. The normal curve in figure 3.1 is the pdf of

the population of means (see chapter 1 for a description of the normal

pdf ) and the vertical lines indicate between which values of x different

percentages of the population lie. The x-axis shows the standard

deviation of the mean. Consider a result at the value labeled a. It is

between the 95% limit and the 99% limit. Deciding that there is a

significant systematic error, and so to reject the null hypothesis ‘‘that

there is no significant difference between the amount of substance of

zinc in the certified reference material determined by the analytical

method and the amount of zinc actually certified’’ at a particular

probability requires the measured mean to be outside the range

defined by the limits. In the example we would conclude that there

was a significant systematic error at the 95% level, but not at the

99% level. It is possible to calculate the probability at which the mean

is significantly different as 98%. We know therefore that only 2%

(100–98) of means determined by a method without systematic error

would be as far or farther away from the certified value by an amount

a�/
ffiffiffi
n

p
, with 1% greater and 1% less than the range. By choosing the

limits to include 100� (1��)% of the distribution, the probability

of making a Type I error introduced above is 100��%, here 2%.

It seems that to make a small as possible Type I error (that is,

wrongly rejecting the null hypothesis) all we have to do is to set higher

and higher probability limits by choosing smaller and smaller �. This

is up to the analyst, but as the limit for rejecting H0 is pushed farther

Figure 3.1 Normal distribution showing a result (a) that falls between the 95%

and 99% limits. In the example given in the text, x¼ 0 corresponds to the value of

the certified reference material and the axis shows values of standard deviations of

the mean from this value.
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out (90, 95, 99, 99.9%. . .) we run an increasing risk of the other

error—the Type II error of accepting H0 when it is false. Making a

Type II error arises when the result we are testing is determined to

belong to the population defining the null hypothesis, when in fact

belongs to some other population. Here lies a problem as our null

hypothesis population is always defined and � is always set, but rarely

do we know much about any of the other alternative populations

(with hypotheses H1, H2, etc.). Hence usual tests allow us to accept or

reject H0 but say nothing about alternatives.

As an example, observe the distributions of a hypothetical hormone

in the blood of healthy male athletes and in that of males given

hormone patches during a study (figure 3.2). Obviously the group that

has taken the drug has mostly higher levels, but there is some overlap

of the distributions. A person found to have an amount labeled b in

the figure may be an unusually naturally hormonal athlete or a drug

cheat who has not taken very much. Values to the left of b favor the

normal population and those to the right favor the drug-taking

population. The shaded area to the right of b gives the probability of

making a Type I error (�) and the shaded area to the left of b gives the

probability of making a Type II error (�) (remember that the area

under a pdf is proportional to the probability). Where should we draw

the line when testing athletes? The null hypothesis, H0, is that a result

comes from the population who do not take drugs. In terms of this

Figure 3.2 Distribution of ratios of hormones in the general public (left) and in a

group of athletes who have taken it as a performance-enhancing drug (right).

Point b is a ratio at which the probability of making a Type I or Type II error is

minimized.
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example a Type I error leads to the conviction of an innocent athlete,

with all the attendant publicity, loss of livelihood, and public disgrace.

A Type II error allows a drug cheat to get away with it. Ideally we

choose our method of chemical analysis so that the two populations

are far apart and so a measurement result clearly falls within one

population or the other. If this is not possible, many sporting

authorities accept that the innocent athletes must be protected and

require odds of around 1:30,000 against before the null hypothesis is

rejected and the athlete is prosecuted, implying a value for � of

3.3� 10�5 or certainty at the probability level of 99.997% (nearly 4�)

before rejecting H0 (¼ the athlete is a member of the normal,

nondrug-taking population). If there is overlap between the normal

and alternative (drug taking) populations, then there will be a number

of drug cheats who will get away with it, the price paid for protecting

the innocent.

The point about this example is that all analytical chemistry should

be fit for purpose. When you make a decision based on a statistical

test, the choice of the probability level at which the null hypothesis

is rejected is made by the user, not by a book or software package.

Do not adopt probability levels blindly, but consider the risk of

making the different types of error.

3.4 How to Test If Your Data Are Normally Distributed

Many of the statistics used by analytical chemists are based on the

assumption that the data are normally distributed. Sometimes, in the

case of the standard deviation of a mean, the data tend to the normal

distribution by theory, but most of the time we cross our fingers and

use the normal statistics anyway. Although there is no method that

can take three or four values and make a sensible statement about

their distribution, there are tests for the assumption of normality for

sets of data of at least 10 tests.

A useful graphical procedure to test the normality of a set of data

that can be implemented in a spreadsheet is the Rankit method. The

procedure, shown in example 3.1 below, is as follows for n data:

1. Sort data into increasing order of magnitude.

2. Write the cumulative frequency of each value, that is, how

many data have an equal or lesser value.
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3. Calculate the normalized cumulative frequency¼ cumulative

frequency/(nþ 1).

4. Calculate the value of the normal pdf associated with the

normalized cumulative frequency of each value (¼ z).

5. Plot z against the value.

In days gone by this was achieved using ‘‘probability paper,’’ specially

ruled graph paper which took care of the normal pdf. Nowadays,

spreadsheets have functions to perform this calculation: in Excel it

is NORMSINV(x), where x is the normalized cumulative frequency.

If the data are normally distributed this graph should be linear.

Obvious outliers are seen as points at the extremes of the x-axis, that

is, at values much greater than would be expected. Example 3.1 shows

how to determine whether data are normally distributed using a

Rankit plot in Excel.

Example 3.1

What results out of the RACI titration data shown in table 3.1 are

normally distributed?

Solution

For the data in table 3.1, the five steps listed above are performed

as shown below (spreadsheet 3.1):

1. The data are sorted in ascending order in column A. If the

data were added to the spreadsheet in random order this

could be done using the Sort. . . option in the Data menu.

The function RANK we shall use does not need sorted data,

but it is useful for us to see the sorted data.

2. The cumulative frequency for each datum is calculated in

column B. The cumulative frequency may be calculated using

Table 3.1 The results of 25 competitors in the 1997 RACI titration competition

of the concentration of a test acetic acid solution in units of mol L�1. The value in

bold is the median

0.0920, 0.0936, 0.1134, 0.1138, 0.1139, 0.1141, 0.1142, 0.1143, 0.1143, 0.1144,

0.1144, 0.1145, 0.1146, 0.1148, 0.1150, 0.1150, 0.1152, 0.1153, 0.1155, 0.1158,

0.1177, 0.1219, 0.1222, 0.1556, 0.9083
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the RANK function. RANK(number, range, order) returns

the rank of number within a given range. If the parameter

order is zero or omitted, the rank is as if the range were sorted

in descending order. In order to have the correct frequency in

the event of a tie it is necessary to use the following formula:

¼COUNT(range)þ 1�RANK (number, range).
3. The normalized cumulative frequency is given by the cumu-

lative frequency/(nþ 1). Therefore the normalized cumula-

tive frequency is calculated in Excel using¼ cell1/(COUNT

(range)þ1), where cell1 is the cell containing the cumulative

frequency. Here, as there are 25 data points, nþ 1¼ 26.

4. z is¼NORMSINV(cell2) where cell2 is the cell containing the
normalized cumulative frequency. Therefore z is given

by¼NORMSINV(cell1/(COUNT(range)þ 1)).

5. Plot z-score against the data on a scatter graph.
The Rankit plot is shown in figure 3.3(a), where z is plotted

against the determined concentration as an XY (scatter) chart.

A B C D
1 Data Cumu lative 

Frequency
Normalized Z 

2 0.092 1 0.038462 -1.76882 
3 0.0936 2 0.076923 -1.42608 
4 0.1134 3 0.115385 -1.19838 
5 0.1138 4 0.153846 -1.02008 
6 0.1139 5 0.192308 -0.86942 
7 0.1141 7 0.230769 -0.73632 
8 0.1142 7 0.269231 -0.61514 
9 0.1143 9 0.346154 -0.39573 
10 0.1143 9 0.346154 -0.39573 
11 0.1144 10 0.423077 -0.19403 
12 0.1144 11 0.423077 -0.19403 
13 0.1145 12 0.461538 -0.09656 
14 0.1146 14 0.5 5.47E-10  
15 0.1148 14 0.538462 0.096558  
16 0.115 15 0.615385 0.293381  
17 0.115 16 0.615385 0.293381  
18 0.1152 17 0.653846 0.395725  
19 0.1153 18 0.692308 0.502402  
20 0.1155 19 0.730769 0.615141  
21 0.1158 20 0.769231 0.736316  
22 0.1177 21 0.807692 0.869424  
23 0.1219 22 0.846154 1.020076  
24 0.1222 23 0.884615 1.19838  
25 0.1556 24 0.923077 1.426077  
26 0.9083 25 0.961538 1.768824

=COUNT($A$2:$A$26) + 1 – RANK(A2,$A$2:$A$26)

=B2/(COUNT($A$2:$A$26) + 1)

=NORMSINV(C2)

Spreadsheet 3.1
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Clearly the point at 0.9083 M is not part of the normal distri-

bution as it lies such a long way from a straight line which is

defined by the other points. One might suspect other points are

Figure 3.3 Rankit plots for results of the RACI titration competition: (a) All

data; (b) with extreme outlier at 0.9083 M removed; (c) with seven outliers

removed. Note the shrinking x-axis range.
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not part of the distribution, so after removal of 0.9083 M as an

outlier the process of drawing a Rankit plot is repeated to give

spreadsheet 3.2.
The resultant Rankit plot of z plotted against the determined

concentration is shown in figure 3.3(b), where again it is apparent

that the data points 0.092, 0.0936, 0.1177, 0.1219, 0.1222, and

0.1556M are outliers.
Removal of these points and again performing the calculations

to produce the Rankit plot gives figure 3.3(c), where finally it is

clear all points fall on a straight line.

Answer

The 18 points in table 3.1 that are not in italics are part of the

normal distribution of the data while the 7 points in italics are

outliers from the normal distribution.

A B C D 
1 Data Cumu lative

Frequency
Normalized Z 

2 0.092 1 0.04 -1.75069
3 0.0936 2 0.08 -1.40507
4 0.1134 3 0.12 -1.17499
5 0.1138 4 0.16 -0.99446
6 0.1139 5 0.2 -0.84162
7 0.1141 7 0.24 -0.7063
8 0.1142 7 0.28 -0.58284
9 0.1143 9 0.36 -0.35846
10 0.1143 9 0.36 -0.35846
11 0.1144 10 0.44 -0.15097
12 0.1144 11 0.44 -0.15097
13 0.1145 12 0.48 -0.05015
14 0.1146 14 0.52 0.050153
15 0.1148 14 0.56 0.150969
16 0.115 15 0.64 0.358459
17 0.115 16 0.64 0.358459
18 0.1152 17 0.68 0.467699
19 0.1153 18 0.72 0.582841
20 0.1155 19 0.76 0.706302
21 0.1158 20 0.8 0.841621
22 0.1177 21 0.84 0.994458
23 0.1219 22 0.88 1.174987
24 0.1222 23 0.92 1.405072
25 0.1556 24 0.96 1.750686

Spreadsheet 3.2
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Comments

1. Looking at the final plot in figure 3.3(c) with all outliers

removed, one can see it is a good straight line. Although it

is possible to quantify how well the data are normally

distributed, such calculations are not simple. Your ability to

determine linearity by eye is actually very reliable and

because of its simplicity this is the method most commonly

used. The question of how we can statistically justify

removing such outliers is the subject of the next section.

2. The one point from figure 3.3(b) that you may suspect is not

an outlier is the point at 0.1177 M. If you recalculate the data

with this point included and plot the Rankit plot it should be

clear to you why this point was excluded.

3. If you go back to figure 1.3, which is a histogram of these

same data, you will see that the identification of the outliers

in the present example is thankfully consistent with this

histogram where there are a number of analyses that appear

to fall outside the normal distribution.

3.5 Test for an Outlier

An outlier is a value that does not belong to the distribution of the rest

of the data. If it is included in calculating statistics such as the mean

and standard deviation the estimates will not be representative of

the true population mean and standard deviation. Therefore, it is

important that outliers be identified and excluded from further

calculations. In repeated chemical analyses, invariably outliers are

found at the extremes (i.e., the biggest or smallest result). Remember,

however, results cannot be simply discarded: there must be a basis for

identifying data as outliers and a strategy for dealing with them.

Outliers are still results and must be investigated and included in a

report, even if they are not used in subsequent data analysis. When

data have several outliers or contain values from two populations

a graphical method such as a Rankit plot as in figure 3.3 is very useful

in sorting out a normally distributed subset.

However, it is also useful to have a quick method to decide whether

a particular value is an outlier or not. The method recommended by

ISO is Grubbs’s test, although many older texts still present Dixon’s
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Q-test for testing outliers. Using the mean, �xx, and sample standard

deviation, s, of the whole set, including the suspect outlier, xsuspect, the

distance of the outlier from the mean is calculated as a number of

standard deviations:

G ¼
jxsuspect � �xxj

s
ð3:1Þ

G can be compared to tables of critical values for G at �¼ 0.05,

Gcritical, calculated using equation 3.2 below. If G4Gcritical then the

suspect point is rejected. Note that in the case of Grubbs’s test, we

compare with tabulated critical values simply because the calculation

of the probability associated with the value of G is nontrivial. We do

have a formula for the calculation of Gcritical:

Gcritical ¼
ðn� 1Þffiffiffi

n
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2
ð0:05=nÞ00n�2

n� 2þ t2
ð0:05=nÞ00n�2

vuut ð3:2Þ

Table 3.2 Values of Gcritical used for Grubbs’s test for outliers

Gcritical G90% G95% G99% G99.9%

� 0.1 0.05 0.01 0.001

Number

of data, n

3 1.153 1.154 1.155 1.155

4 1.463 1.481 1.496 1.500

5 1.671 1.715 1.764 1.783

6 1.822 1.887 1.973 2.020

7 1.938 2.020 2.139 2.217

8 2.032 2.127 2.274 2.383

9 2.110 2.215 2.387 2.524

10 2.176 2.290 2.482 2.645

11 2.234 2.355 2.564 2.750

12 2.285 2.412 2.636 2.843

14 2.372 2.507 2.755 2.997

16 2.443 2.586 2.852 3.122

18 2.504 2.652 2.932 3.226

20 2.557 2.708 3.001 3.314

30 2.745 2.909 3.236 3.612

40 2.868 3.036 3.381 3.787

50 2.957 3.128 3.482 3.908
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which may be implemented in Excel: ¼(n� 1)/SQRT(n)*SQRT((TINV

(0.05/n,n� 2))^2/(n� 2þTINV(0.05/n,n� 2)^2)).

Values of Gcritical are given in table 3.2.

In other significance tests we can calculate a probability associated

with the parameter; see the F test in example 3.4.

Example 3.2

The level of calcium in milk was determined using an EDTA

titration method. Ten repeat measurements were performed with

the following measured concentrations (units: mg g�1): 4.59, 10.00,

6.07, 4.73, 9.91, 5.28, 16.65, 5.17, 4.59, and 4.38.

Problem

Determine whether there are any outliers in this data set.

Solution

1. The suspect values are 16.65 or 4.38—remember they have

to be at the extremes of the data. Plot the data (figure 3.4)

and it becomes obvious that if there is an outlier it has to

Figure 3.4 Data from 10 measurements of calcium in milk by EDTA titration.

The outlier is circled. The solid line is the mean of the data ( �xx) and the dashed line

is at �xxþGcriticals, where s is the standard deviation of the data and Gcritical¼ 2.29,

which is the two-tailed G value at �¼ 0.05.
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be 16.65. Check 4.38 by all means, but there is no merit in

statistically proving the obvious.

2. To solve this example you first need the mean and standard

deviation. Use the Excel commands ¼AVERAGE(range)
and ¼STDEV(range) which give 7.14 and 3.96 for the mean

and standard deviation, respectively.

3. Calculate the absolute value of the standardized difference

between the suspect value and the mean (i.e., the G statistic).

This can be performed by hand or using Excel.

We will investigate the value 16.65 mg g�1 as the outlier by

Gsuspect ¼
jxsuspect � �xxj

s
¼

16:65� 7:137j j

3:961
¼ 2:402

The critical Grubbs’s value for �¼ 0.05 and n¼ 10 is 2.290.
As Gsuspect4Gcritical for the value 16.65 mg g�1, we reject H0

(the null hypothesis is that the value is not an outlier) and we

conclude that the point is an outlier. Another way of visualizing

this is to calculate and plot the x-value that would just give Gcritical

by xcritical ¼ �xxþ sGcritical: This is plotted as the dashed line in

figure 3.4, and we see that the value of 16.65mg g�1 is just greater

than it.
These steps are illustrated for spreadsheet 3.3.

A B
1 n [Ca] mg/g
2 1 4.5900
3 2 10.0000
4 3 6.0700
5 4 4.7300
6 5 9.9100
7 6 5.2800
8 7 16.6500
9 8 5.1700
10 9 4.5900
11 10 4.3800
12
13 Mean 7.137 
14 Std Dev 3.96104 
15
16 G = 2.4016
17 Gcrit = 2.2900 

=(ABS(B8-$B$13)/$B$14)

=(9/SQRT(10)*SQRT((TINV(0.05/10,
8))^2)/(8+TINV(0.05/10, 8)^2))

Spreadsheet 3.3
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Answer

As Gsuspect4Gcritical, the value 16.65mg g�1 is an outlier and can

be rejected at the 95% confidence level.

Comment

1. A query that may arise is if there are potential outliers at

each end of the data what should we do? The answer is that

Grubbs’s test is only for a single outlier.

2. By discarding the outlier you are saying that it is not part of

the normal distribution of data. Therefore, once it is rejected

the mean and standard deviation can be recalculated, in this

case to 6.08 and 2.25, respectively.

3. A common question is can you then perform an outlier test

on the next furthest value from the mean? Ideally Grubbs’s

test is for one potential outlier only, although it is quite

common to see the test then used on the next potential

outlier. One must be careful, however, as if you start to reject

too many points in a small data set (say less than 10 values)

then it is likely that the data are not normally distributed.

As all these statistics are based on the assumption of a

normal distribution of data, then what you have been doing

would be invalid. With large data sets (more than 10 values)

the best approach to identifying outliers is to obtain a Rankit

plot, where the points that deviate from the straight line are

not part of the normal distribution.

It might not be surprising to learn that with only a few data a

potential outlier to be excluded has to be quite far away from the

other data. In many cases there is not enough information to reject H0

(that the datum is not an outlier), although this does not mean that

the suspect point is not an outlier. Remember that you only have as

much information as the data can give you.
The next lesson is that an outlier is not necessarily the wrong

answer, just one that is significantly different from the rest. Take as

an example an international study of lithium in blood serum.

Six laboratories took part and analyzed two samples having the

same concentration of lithium (0.019mM). Figure 3.5 shows that

laboratory 4 appears to have quite different results from the other
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laboratories. The G statistic for one result of 0.025mM is 1.57, which

is less than the 95% value of the two-tailed G distribution of 1.89.

Even though the result of laboratory 4 looks very different from the

others, it is not an outlier according to this statistical test, and this is

just as well as it turned out to have the best answer.
Having decided that a datum should be rejected as an outlier, the

mean and standard deviation of the data should be recalculated

leaving out the errant result. However, always remember it can never

be totally expunged.

3.6 Determining Significant Systematic Error

Systematic error in an analytical method must be determined and

corrected for. We have seen that systematic error is assessed by

making a measurement on a certified reference material (sometimes

just referred to as a CRM). The mean of a number of determinations,

�xx, can be used to decide if the systematic error is significant by using

the equation for a confidence interval of the mean

�xx�
t�n�1sffiffiffi

n
p 5xCRM ¼ �5 �xxþ

t�n�1sffiffiffi
n

p ð3:3Þ

Figure 3.5 Results from a study of lithium in serum. Six laboratories analyzed

a test portion of serum for Li in duplicate. The horizontal line is the accepted

value. Data replotted from IMEP1. http://www.irmm.jrc.be/imep
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Taking xCRM as the quantity value of the CRM (it is possible to

extend the analysis if the value has its own uncertainty), then equation

3.3 can be used to calculate a t-value simply by setting �¼ xCRM:

xCRM ¼ �xx�
t�n�1sffiffiffi

n
p ð3:4Þ

and rearranging to give

t ¼
j�� �xxj

ffiffiffi
n

p

s
¼

jxCRM � �xxj
ffiffiffi
n

p

s
ð3:5Þ

With the test for systematic error the null hypothesis is that there

is no systematic error, that is, the mean of the population of measure-

ment results, �, is xCRM. The associated probability with the t-value

found using equation 3.5 can be calculated in Excel by TDIST

(t, n� 1, 2). This probability is the fraction of repeated analyses that

would have the observed jxCRM � �xxj or greater from a measurement

that really has no systematic error. The Excel function TDIST

(t, n�1, tails) calculates the probability of a t-value at n� 1 degrees of

freedom. The parameter tails takes the value 1 or 2 (see section 2.2).

If it is known that the error can be only positive or only negative,

then all the probability can be considered at that end of the distribu-

tion and tails¼ 1. Usually there is no particular reason why the

systematic error is either positive or negative and so tails¼ 2.

Figure 3.6 illustrates the distribution of the probability in each of

these cases.

Figure 3.6 One- and two-tailed probabilities. The extreme 5% of the distribution

can be shared equally between each end (two tailed), or the entire 5% can be

located at one end or the other.
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As in all such testing if the probability falls below the limit decided

(p5�) then the null hypothesis, that there is no systematic error, is

rejected, and we conclude that there is systematic error.

Example 3.3

The fluoride content in toothpaste is measured using a fluoride

ion-selective electrode. To perform the measurement requires

the sample to be prepared by extraction of the fluoride from the

toothpaste. To determine whether the extraction and measure-

ment procedure are free of systematic error a number of analysts

measured the fluoride content of a test toothpaste sample with

assigned mass fraction of 0.033m/m%. The measured mass

fractions of fluoride expressed as a percentage determined by the

nine analysts were 0.042, 0.040, 0.028, 0.035, 0.044, 0.035, 0.041,

0.043, 0.040m/m%.

Problem

Determine whether there is a systematic error in the method with

95% probability.

Solution

Using Excel:

1. Plot the data (figure 3.7). It looks as if there might be an

outlier with value 0.028m/m%.

2. Calculate the mean and standard deviation of the nine test

results.

3. Test for any outliers using Grubbs’s test: entering ¼

ABS((x�AVERAGE(range))/STDEV(range)) to calculate

G and compare with Gcritical. In this case G¼ 2.092 while

Gcritical¼ 2.215 for 9 data and the point is retained.

4. Calculate the value of t, t ¼ ðjxassigned � �xxj
ffiffiffi
n

p
Þ=s, using ¼

ABS (assignedvalue�AVERAGE( range))*SQRT(n)/STDEV
(range). For the data in spreadsheet 3.4 this t-value is 3.334.

5. Calculate the probability of this t-value using TDIST(t, n�1,

tails), which gives p¼ 0.0103.
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These steps are illustrated for spreadsheet 3.4, where cell A1

contains the assigned value.

Answer

The operations in cells B12 and C12 to test for systematic error

show the probability of H0 (that there is no systematic error) is

0.010323. Therefore as p5 0.05 the null hypothesis is rejected at

the 95% level and the conclusion is made that there is a systematic

error in the ion-selective electrode method.

Figure 3.7 Results from the measurement of fluoride in toothpaste. Data 1–9 are

replicate measurements. Dashed lines are �95% confidence intervals. The circled

datum (number 3) is the suspect outlier. The dotted line is the critical x value

calculated from the �¼ 0.0500, n¼ 9 Grubbs’s test. The datum numbered 12

(circled cross) is the reference value of the sample (0.033m/m%).

A B C 
1 0.033 Gcritical
2 0.028 2.092 2.21501 
3 0.035 
4 0.035 
5 0.04 
6 0.04 
7 0.041 
8 0.042 
9 0.043 
10 0.044 
11
12 0.038667 3.333974 0.010323 
13 0.005099 

The assigned value

=(ABS(A2-$A$12))/$A$13

=ABS(A1-A12)*SQRT(9)/$A$13

=TDIST(B12,8,2)

Mean and standard deviation

=8/SQRT(9)*SQRT((TINV(0.05/9,7))^2/(7
+TINV(0.05/9,7)^2))

Spreadsheet 3.4
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Comment

1. If you inspected the data you might suspect there was a

systematic error, as all but one of the data are higher than

the assigned value; however, without performing the test you

could not be confident that this was the case. Plotting the

points makes you even more concerned that 0.028m/m% is

an outlier. However, it falls just inside the critical value and

cannot be rejected.

2. The assigned value lies just outside the 95% confidence

interval which allows us to conclude there is a significant

difference. Note that plotting the data always is useful, but

you must calculate the probabilities.

3. Having determined p¼ 0.0103 we can conclude that H0 is

just accepted with 99% probability.

It is instructive to consider equation 3.5. If the sample mean ( �xx)

just happens to coincide with � then t is zero and there is no

question that the null hypothesis is supported by the data and the

conclusion is that there is no systematic error. The larger the value

of t the more likely you are to reject the null hypothesis and

conclude there is a systematic error. Equation 3.5 shows there are

three key factors that will give a larger value of t. The first is that

the greater the difference between the sample mean and the

assigned population mean, the greater the value of t. The second is

that t increases as the number of repeats increases; this is because

as more samples are measured the confidence in the sample mean

increases. The third factor that increases t is a decrease in the

standard deviation s. What these three factors mean is the more

care the analyst takes by performing repeated measurements with

a lower overall standard deviation the greater the value of t and

hence the greater the likelihood of a systematic error being

declared. This may at first seem unfair, as it suggests the sloppier

the chemist the less likely there is of a systematic error. In reality it

means the more careful chemist is more able to identify any

systematic error in the analysis. It may be better to think of a t-test

that arrives at the conclusion that H0 should not be rejected as

showing not that H0 is true, but that there is insufficient evidence

to reject H0: in legal terms ‘‘not proven’’ rather than ‘‘not guilty.’’
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3.7 Testing Variances: Are Two Variances Equivalent?

When choosing an analytical method to analyze a sample you need to

consider a number of things including the level of precision required.

This is done by comparing the variances of the analytical methods.

To decide if there is a significant difference between variances

the probability associated with the Fisher F-statistic is calculated.

Given two standard deviations s1 and s2, where s14 s2

F ¼
s21
s22

ð3:6Þ

For identical standard deviations F¼ 1. There is a known

distribution of F given the degrees of freedom of s1 and s2, which

allows calculation of the fraction of measurements of s1 and s2 from

populations of equal � that will lead to an F-value equal to or greater

than the value determined by equation 3.6. In terms of significance

testing, the null hypothesis is that the population standard deviations

are equal, and we decide there is a significant difference if the

probability of F falls below, say, 0.05 (95%). In Excel the probability

is given by ¼FDIST(F, n1� 1, n2� 1). Calculation of the F-statistic

is at the heart of analysis of variance (ANOVA), and is also used

to check for equality of variance before undertaking t-tests of means

(see section 3.8).

Example 3.4

Problem

An analytical laboratory performs the analysis of copper in tap

water by extracting the copper into chloroform that contains

the chelating ligand diethyldithiocarbamate (DEDTC). The resul-

tant Cu(DEDTC)2 complex is yellow and can be monitored at

436 nm using a UV–visible spectrophotometer. The manager of

the laboratory wants to know whether there is a significant

difference between the three analysts who perform this analysis

with regards to their precision. Each analyst performs nine analy-

ses of a reference material of assigned concentration of 1.6 ppm

Cu2þ. The results of each analyst are shown in table 3.3.
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An F-test is done to ascertain whether there is a significant

difference, at the 95% level, in the standard deviations obtained

by pairs of analysts.

Solution

This is most easily performed using Excel. The following steps

need to be performed:

1. Calculate the standard deviation of the results of each

analyst.

2. From the standard deviations calculate the F-value for

each combination of two analysts using equation 3.6. The

important thing to remember is that the numerator is always

the larger standard deviation.

3. Calculate the probability associated with the F-values using

¼FDIST(F, n1� 1, n2� 1). If the probability is greater than

0.05 the null hypothesis holds and it is concluded that there

is no significant difference. If p5 0.05 the null hypothesis

is rejected and it is concluded that there is a significant

difference.

These steps are illustrated for spreadsheet 3.5.
Do not forget to square the standard deviations! We compare

variances.

Table 3.3 Replicate results from three analysts for the measurement of the mass

fraction of copper in a solution of nominal concentration of 1.6 ppm

Analyst 1 (ppm) Analyst 2 (ppm) Analyst 3 (ppm)

1.61 1.55 1.68

1.48 0.73 1.05

1.71 1.52 1.52

1.48 1.56 1.14

1.53 1.64 1.67

1.57 1.60 2.11

1.78 1.61 2.16

1.52 1.84 2.20

1.84 1.49 0.95
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Answer

From the probabilities shown in cells A20, B20, and C20 it can be

seen that there is a significant difference at the 99.93% level

between analysts 1 and 3 and at the 98.6% level between analysts

1 and 2, but there is not a significant difference (i.e., p4 0.05)

between analysts 2 and 3.

Comments

1. Thus it appears that analyst 1 has a problem with his or her

precision. However, it should be pointed out that in fact

analyst 1 has a much smaller standard deviation than

analysts 2 and 3 and it is these two that could be in error.

How the failing of the null hypothesis between analysts 1 and

2 is interpreted is not the province of statistics and needs to

be assessed within the laboratory.

2. When calculating an F-value one common question is of the

two standard deviations which is s1 and which is s2? The

answer is simply the data set with the largest standard

deviation is s1. What this means is F is always greater than 1.

A B C 
1 Analyst 1 Analyst 2 Analyst 3 
2 1.61 1.55 1.68 
3 1.48 0.73 1.05 
4 1.71 1.52 1.52 
5 1.48 1.56 1.14 
6 1.53 1.64 1.67 
7 1.57 1.6 2.11 
8 1.78 1.61 2.16 
9 1.52 1.84 2.2 
10 1.84 1.49 0.95 
11
12
13
14
15 0.133041 0.307535 0.485707 
16
17 F value 
18 2 versus 1 3 versus 2 3 versus 1 
19 5.3433773 2.4943609 13.328311 
20 0.014464 0.1088231 0.0006992 

Standard deviation 

=(C15^2/A15^2)

=FDIST(C19, 8, 8)

Spreadsheet 3.5
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3.8 Testing Two Means (Means t-Test)

A common problem is to compare two or more sets of data. For

example, a new analytical method may be assessed by analyzing a test

material using the new and an established method. The means of a

number of replicate measurement results obtained by each method

will not be identical, but within the experimental uncertainty is there

a significant difference? The preferred method is to use analysis of

variance (ANOVA) which can accommodate a number of variables

and different numbers of data (see chapter 4). However, a quick test

for two means can be performed by calculating a t-statistic and its

associated probability.

First it is necessary to determine if the standard deviations of

the samples are significantly different. This is done by calculating the

F-statistic, as described above.

If the standard deviations are not significantly different then a

pooled standard deviation is calculated:

sp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � 1ð Þs21 þ n2 � 1ð Þs22

n1 þ n2 � 2

s
ð3:7Þ

with n1� 1þ n2� 1¼ n1þ n2� 2 degrees of freedom, and equation 3.3

can be employed once again to give

t ¼
�xx1 � �xx2j j

sp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n1 þ 1=n2

p ð3:8Þ

for which the probability may be determined. �xx1 and �xx2 are the means

of n1 and n2 data.

If the standard deviations are significantly different as tested by the

F-statistic, the t-value is now calculated by

t ¼
�xx1 � �xx2j jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s21=n1 þ s22=n2

q ð3:9Þ

with degrees of freedom calculated from

df ¼
s21=n1 þ s22=n2
� �2

ðs41=n
2
1 n1 � 1ð ÞÞ þ ðs42=n

2
2 n2 � 1ð ÞÞ

� � ð3:10Þ
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and then rounding down to the nearest integer. (Note that the Excel

function ¼ROUND(x, decimal places) rounds up 5–9 and down 0–4,

but it is possible to force rounding down by ¼ROUNDDOWN

(x, decimal places), which is considered a more conservative

approach.)

In each case the null hypothesis is that the two samples come from

populations with equal means (i.e., that �1¼�2, not that �xx1 ¼ �xx2,

which is clearly nonsense). As the t-value increases the probability of

the null hypothesis decreases, and when the probability reaches a

suitably low value ( p5�), H0 can be rejected. Note that the

assumption of unequal variances leads to a higher probability of the

data given H0, and so is more conservative in rejecting H0. For this

reason, some authorities recommend it best to always assume unequal

variances.

Example 3.5

An analytical laboratory analyses the glucose levels in soft drinks

using a spectroscopic enzyme assay and is considering using

an enzyme electrode instead. To ascertain whether the spectros-

copic assay and the enzyme electrode give means that are not

significantly different, a soft drink was analyzed six times by the

same analyst using each method. The concentration of glucose

(units: mM) determined for the 12 test portions were:

� Using the spectroscopic assay: 1.90, 1.82, 1.70, 1.94, 1.85, 1.90
� Using the enzyme electrode: 1.35, 1.65, 1.76, 1.41, 1.80, 1.33

Problem

At what probability are the mean results obtained by each method

significantly different? Would you infer that the methods did

indeed give different results?

Solution

The solution to this problem is to test the hypothesis that the

two methods have equal population means. This is therefore a
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problem of testing two means. The steps involved in testing the

two means are:

1. Calculate the mean and standard deviation for each set of

data using ¼AVERAGE(range) and ¼STDEV(range). For
the spectroscopic assay the values of the mean and standard

deviation are 1.852 and 0.085mM, respectively, and for the

enzyme electrode they are 1.550 and 0.212mM, respectively.

These are plotted for comparison in figure 3.8.

2. Calculate the F-statistic from s21=s
2
2, where s1 is the larger

standard deviation, in this case 0.212mM for the enzyme

electrode (F¼ 6.16).

3. Determine the probability associated with this F-statistic by

entering ¼FDIST(F, n1� 1, n2� 1), where n1 and n2 are

the number of data (here both are equal to 6). From

spreadsheet 3.6 for these data we see p¼ 0.034 and therefore

we conclude that the standard deviations are significantly

different at the 96.4% level. As a consequence, equations 3.9

and 3.10 should be used to calculate the t-statistic and the

degrees of freedom.

4. Calculate the t-statistic using equation 3.9 which in Excel

is ¼ABS(mean1�mean2)/SQRT(S1^2/n1 þ S2^2/n2). Here

t¼ 3.234 where n1¼ 6 and n2¼ 6.

5. Calculate the degrees of freedom using equation 3.10 which

in Excel is ¼(s1^2/n1þ s2^2/n2)^2/(s1^4/(n1^2*(n1�1))þ

s2^4/(n2^2*(n2� 1))). This function gives 6.583, so round

Figure 3.8 Means and 95% confidence intervals on the analysis of a sample of

glucose by a spectrophotometric method and an enzyme method.
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down to a result of 6 degrees of freedom (or use

ROUNDDOWN directly).

6. Calculate the associated probability for the t-statistic using

TDIST(t, df, tails) which gives the answer p¼ 0.017828 (see

spreadsheet 3.6).

Answer

Hence, the two data sets are concluded to come from populations

with different means ( p¼ 0.018, or with 98.2% probability).

Comments

1. If we had been asked to test at the 95% probability level the

two analytical methods would be judged to give different

results, but if the question were asked at 99% probability

then we would conclude the null hypothesis was accepted

and the difference between the means is not considered

significant.

2. There was a significant difference in the standard deviations

at the 95% level ( p5 0.05) and therefore equations 3.9 and

3.10 were used to calculate the t-statistic and its associated

degrees of freedom. If there were no significant difference

between the standard deviations then the pooled standard

deviation and the t-statistic could be calculated using equa-

tions 3.7 and 3.8.

A B 
1 Spectro Electrode 
2 1.9 1.35
3 1.82 1.65
4 1.7 1.76
5 1.94 1.41
6 1.85 1.80
7 1.9 1.33
8
9 1.852 1.550
10 0.085 0.212
11
12 F 6.156
13 p
14
15 t  3.23369
16 df 6 
17 p 0.017828

Mean and standard deviation 

=TDIST(B15, 6, 2)

=ROUNDDOWN((B10^2/6+A10^2/6)^2/(B10^4/36/5+A10^4/36/5),0)

=ABS(A9-B9)/SQRT(B10^2/6+A10^2/6)

=(B10)^2/(A10) ^2

Spreadsheet 3.6
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3. As with the other statistical tests, rather than compare to a

table of values of the t-statistic, when possible we use Excel

to calculate the probability associated with a t-statistic. This

example emphasizes that the question of significance is a

subjective one. You choose the probability at which you will

reject H0.

4. The statement you can make about this process is the

following: ‘‘If the experiments were repeated a large number

of times under exactly the same conditions with the same

global mean result, the calculated t-statistic for the difference

of a pair of means of six replicates by each method would

equal or exceed 3.23 in 1.8% of the cases.’’ ‘‘There is a

significant difference with 98.2% probability’’ is shorter, but

remember what the true statement is.

3.9 Paired t-Test

In some cases we do not have the luxury of repeated measurements of

a single test material, but do have one-off measurements of a number

of different test materials performed by two methods. The two

methods can be compared by considering the results of each pair of

one-off measurements. This is possible as for a particular test material

measured by each method the difference in the result should be zero if

the two methods give equivalent results. For a number of analyses of

different materials any pair of materials is the same and so the mean

of the differences can be tested against zero. If the two methods give

equivalent results within measurement uncertainty the difference

between results on the same material by each method should be zero.

In a paired t-test, therefore, the mean �xxd and standard deviation sd
of the differences are calculated and a t-statistic determined from

equation 3.5 with �¼ 0:

t ¼
j �xxdj

ffiffiffi
n

p

sd
ð3:11Þ

where n is the number of differences, that is, the number of pairs of

results. H0 is that the population mean of the differences is zero,

which is the case if the two methods give results with equal population

means.
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Example 3.6

The amount of calcium in different samples of milk powder (in mg

of calcium per g of milk powder) were analyzed by two methods,

one employing extraction followed by analysis using atomic

absorption spectroscopy, the other using a complexometric titra-

tion method. The results of nine analyses are shown in table 3.4.

Problem

Determine whether the two analytical methods give equivalent

analytical results.

Solution

As we have a number of one-off measurements, we will use a

paired t-test.

1. For each pair of data the difference is calculated (see

spreadsheet 3.7 and figure 3.9).

2. Calculate the average and standard deviation of the

differences (�0.92mg g�1 and 1.024mg g�1 in this case).

3. Calculate the t-value from the mean and standard deviation

using equation 3.11: t ¼ ðj �xxdj
ffiffiffi
n

p
Þ=sd ¼ ð0:92�

ffiffiffi
9

p
Þ=1:024

¼ 2:6905.

4. From the t-value calculate a probability using ¼TDIST

(t, n� 1, tails), where n is the number of pairs, which for this

set of data is ¼TDIST(2.6905, 8, 2), see spreadsheet 3.7.

p¼ 0.0275 means if we were to reject the null hypothesis we

would do so knowing we would make an error in 2.75% of

repeated experiments. As this is less than the usual 5% given

Table 3.4 Replicate results for the measurement of calcium in milk by two

methods

Test material 1 2 3 4 5 6 7 8 9

AASa (mg g�1) 3.01 2.58 2.52 1.00 1.81 2.83 2.13 5.14 3.20

CTb (mg g�1) 2.81 3.20 3.20 3.20 3.35 3.86 3.88 4.13 4.86

a Atomic absorption spectroscopy.
b Complexometric titration.
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by a test at 95% confidence we may decide that there is

sufficient evidence to reject the null hypothesis and conclude

there is a significant difference between the results of the two

methods.

Answer

The probability of the data given that there is no difference

between the methods is 0.0275. Therefore we conclude that there is

a significant difference in the analytical result obtained with the

AAS method of analysis of calcium in milk and the complexo-

metric titration method.

Figure 3.9 Difference between measurements of a number of test samples of

milk powder for calcium by two methods. The dashed line is the mean of the

differences.

 A B C 
1 AAS CT Difference 
2 3.01 2.81 0.20 
3 2.58 3.20 -0.62 
4 2.52 3.20 -0.68 
5 1.00 3.20 -2.20 
6 1.81 3.35 -1.54 
7 2.83 3.86 -1.03 
8 2.13 3.88 -1.75 
9 5.14 4.13 1.01 
10 3.20 4.86 -1.66 
11    
12   -0.92 
13   1.024591 
14    
15  t value 2.690505 
16  p 0.027475 

=(A3-B3)

Means and standard deviation of differences 

=(ABS(C12)*SQRT(10))/C13

=TDIST(C15, 8, 2)

Spreadsheet 3.7
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Comment

1. In seven out of the nine pairs the AAS method gave a smaller

value than the complexometric method, which should rouse

the suspicions of the analyst.

2. Without measurements on a CRM we cannot say whether

either of the two methods give a result that is without bias.

3.10 Hypothesis Testing in Excel

The equations above can be used to determine t- and F-statistics using

TDIST and FDIST to give the probability. Excel also provides a

function TTEST(range1,range2,tails,type) where type is 1 for a paired

t-test, 2 for a means test with equal variances, and 3 for a means test

with unequal variances, and tails is 1 or 2. The output of this function

is the probability of the data given the null hypothesis. There are

also menu-driven calculations in the Analysis Toolbox. Choose Tools,

Data Analysis from the menus, and there are three items: t-Test:

Paired Two Sample for Means; t-Test: Two Sample Assuming Equal

Variances; and t-Test: Two Sample Assuming Unequal Variances.

The dialogue boxes that appear when one of these items is chosen

require the two data ranges, the hypothesized mean difference (usually

zero, but it must be entered), whether there are column labels, the

probability level for a test (default 0.05), and an output range.

The output includes the one- and two-tailed probability values and

the t-statistic at the probability level for the test. Spreadsheet 3.8

shows the box for t-Test: Two Sample Assuming Equal Variances.

Spreadsheet 3.8
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4

Analysis of Variance

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.1 What This Chapter Should Teach You

� What ANOVA is, and what it is used for.
� To perform and interpret a one-way ANOVA.
� To determine which effects are significant using least

significant difference.
� To perform and interpret a two-way ANOVA.

4.2 What Is Analysis of Variance (ANOVA)?

ANOVA is the workhorse method of using statistics to compare

means and determine the effects of influence factors on measurement

results (i.e., anything that can be varied or measured that may affect

the result). In chapter 3 we learned how to use Student t-tests to

compare two means. There is nothing to stop us performing a series of

t-tests on pairs of means that must be compared, but a different

approach that looks at the variance of data, ANOVA, can decide if

there is a significant effect caused by a factor for which we have any

number of sets of data. ANOVA relies on an understanding of two

things. First, how the variances of different components can be

combined to give the overall observed variance of data. Second, that a

difference in means can lead to a spread of results of the combined

data that can be detected in terms of an increased variance. As an

example, consider an attempt to determine if there is a significant

difference between the means of replicate analyses conducted by two

methods. The standard deviation of each set of results will estimate

the repeatability of the measurement. If the two methods have

different means then the standard deviation of the combined data will
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be increased by any differences arising from the methods. This is

illustrated in figure 4.1. When the means are far apart, even though

the individual standard deviations are not great, the combination

has a huge standard deviation. ANOVA is powerful because it

can determine if there is significant difference among a number of

instances of the same factor (e.g., if we wanted to know if there

were any difference in the result between three or more analytical

methods), and also among different factors (e.g., what is the effect of

temperature and concentration on the yield of a reaction?). ANOVA

allows us to obtain a probability of finding the observed data given

that there is no effect of a particular influence factor (the null

Figure 4.1 Effect of a difference in means on the standard deviation of data:

(a) two normal distributions with m1¼ 4.8, �1¼ 0.14 and m2¼ 5.2, �2¼ 0.14

and the distribution of their combination, �¼ 0.16 (dashed line); (b) two

normal distributions with m1¼ 3.9, �1¼ 0.14 and m2¼ 5.9, �2¼ 0.14 and the

distribution of their combination, �¼ 1.2 (dashed line).
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hypothesis in ANOVA tests). Following a significance test it is then

possible to apportion the variance among the significant effects.

ANOVA does not require the effects to be independent, but the

data do need to be normally distributed.

In this chapter we briefly show how an ANOVA is performed for

the simplest case of a single factor (so-called one-way ANOVA) and

then for a two-way ANOVA. ANOVA is available (albeit in a

restricted form) in Excel, and in most other statistical packages.

Although we shall show you how to do a one-way ANOVA by hand,

the chapter will concentrate on the interpretation of ANOVA output

from software applications.

4.3 Jargon

We use the word ‘‘factor’’ to refer to the quantity that is being

investigated. An example would be an investigation of changing the

solvent polarity on the result of a high-performance liquid chromatog-

raphy (HPLC) analysis. The factor is solvent polarity and we may

make measurements, in the example, using three solvents of different

polarity. The ANOVA we do in this case is a single-factor or one-way

ANOVA because there is only one factor being investigated—the

solvent polarity. In an example later in the chapter, two factors are

considered in the calibration of pipettes, the method of using the

pipette and the analyst. A factor may be a continuous variable, such

as temperature, or may be discrete entities such as analysts, or drums

of chemicals, or pipettes.

How much the measurand changes as the factor is varied is known

as the ‘‘effect’’ of the factor. Often in ANOVA we are only interested

in testing whether there is any effect at all. In this case we use the

methods of significance testing explained in chapter 3 and test the

null hypothesis that the observed variance arises from random effects.

If the hypothesis is rejected at a particular probability (say 95%) then

we conclude that the effect is significant.

4.4 One-Way ANOVA

In a one-way ANOVA we have instances of the factor being

investigated, with replicate results for each instance. For example
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we may be evaluating the performance of three laboratories that

have each been asked to perform duplicate determinations of

identical samples. Thus here the factor is ‘‘laboratory’’ of which

we have three instances—laboratory A, laboratory B, and laboratory

C. The data (each measurement result) are laid out in a matrix with

the instances of the factor in each column and the replicates in each

row (table 4.1).

In our example there will be three columns, one for each labo-

ratory, and two rows for the duplicate measurement results. This is

shown in table 4.2.

The steps in calculating the ANOVA are as follows:

1. Calculate the mean of the entire data ( �xx�):

�xx�¼

P
j

P
i xi,j

N

where N¼
P

j nj is the total number of measurement results.

This mean is called the grand mean. Subtract �xx� from each

measurement result, that is, xi,j becomes ðxi, j � �xx�Þ. This is

Table 4.1 General layout of data for a one-way ANOVA

Instances of the Factor j¼ (1 . . . k)

1 2 . . . k

Replicates, i¼ (1 . . . nj)

1 x1,1 x1,2 . . . x1,k
2 x2,1 x2,2 . . . x2,k
..
.

. . . . . . xi, j . . .
..
.

. . . . . . . . . . . .

nj xn1,1 xn2,2 . . . xnk ,k

Table 4.2 Data entry grid for an ANOVA of the results of an interlaboratory

study

Laboratory

Replicate A B C

1

2
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known as correction for the mean and the values are called the

mean-corrected values.

2. Square each mean-corrected value and then sum them all to

give the total sum of squares also known as the corrected sum

of squares:

SST ¼
Xi¼nj

i¼1

Xj¼k

j¼1

xi, j � �xx�Þ2
�

3. For each column (i.e., instance of the factor) average the

mean-corrected values

¼
Xi¼nj

i¼1

ðxi,j � �xx�Þ

nj

square this average

¼

 Xi¼nj

i¼1

xi,j � �xx�

nj

� �!2

and multiply by the number of rows (nj) for that column

¼ nj

 Xi¼nj

i¼1

xi,j � �xx�

nj

! !2

Sum across the columns (sum j¼ 1 to k) to give the sum of

squares due to the factor studied:

SSc ¼
Xj¼k

j¼1

nj

 Xi¼nj

i¼1

 
xi,j � �xx�

nj

!!2

SSc is also known as the treatment sum of squares, hetero-

geneity sum of squares, or the between column sum of squares.

SSc is related to the variance between factors.

4. Calculate the residual sum of squares as SSr¼SST�SSc. SSr

is also known as the within variables sum of squares.

Having obtained these values, they are laid out in an ANOVA table

(table 4.3).
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Note that if there are the same number of repeats for each instance

of the factor (nj¼ n for all j), then N¼ kn and the within factor degrees

of freedom¼ k(n� 1). The residual mean square (SSr) is an estimate

of the average variance of the results within each instance of the

factor. In the case of replicated analytical results SSr is sr
2, an estimate

of the repeatability variance �2
r (see section 2.7). ANOVA is therefore

a useful way of estimating measurement precision. We usually want to

know something about the differences among our factor: for example,

‘‘Does laboratory A get the same results as laboratory B?’’

Unfortunately, SSc does not tell us the answer on its own because it

includes the measurement variance as well as anything to do with the

differences between the instances of the factor. Any measurement

will have an uncertainty so there is no simple way of teasing out

the pure effect of the factor being studied. Testing for a significant

effect requires us to compare the between factors and within factor

mean squares. If there were no effect, SSc and SSr would be equal.

Therefore we want to know whether the differences between the

instances of the factor are significantly greater than what we would

expect from the measurement repeatability, or ‘‘is SSc significantly

greater than SSr?’’ This is accomplished by determining the F-statistic

(see chapter 3) as the ratio of these quantities and finding its

probability at the requisite degrees of freedom (k� 1 for SSc, and

N� k for SSr). The probability is one tailed because this is an example

where SSc cannot be smaller than SSr, so we only need to compute the

probability that it is significantly greater.

Table 4.3 The output of a one-way ANOVA

Source Sum of Squares

Degrees of

Freedom

Mean

Square F

Between

factors

SSc ¼
Xj¼k

j¼1

nj
Xi¼nj

i¼1

xi,j � �xx�
� �

=nj

 !2

k� 1 SSc ¼
SSc

k� 1
F ¼

SSc

SSr

Within

factor

SSr¼SST�SSc N� k SSr ¼
SSr

N� k

TOTAL SST ¼
Xi¼nj

i¼1

Xj¼k

j¼1

xi,j � �xx�
� �2

N� 1

N is the total number of data, k the number of instances of the factor, and x the grand mean.
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4.4.1 Calculating the standard deviation due to the factor studied

It may be that the objective is only to determine if there is a significant

effect, but for some problems estimates of the within factor standard

deviation and between factors standard deviation are required. An

example is in sampling studies where the standard deviation of the

results is known to be composed of a measurement standard deviation

and the heterogeneity of the test material itself, both of which must be

estimated. For the case of equal numbers of replicate measurements

(i.e., nj¼ n for all j) the between factors mean square SSc is an

estimate of �2
r þ n�2

c , where �
2
c is the variance of the effect of the factor

and �2
r the repeatability variance:

SSr ¼ s2r � �2
r , SSc ¼ s2c � �2

r þ n�2
c ð4:1Þ

therefore

�r � sr ¼

ffiffiffiffiffiffiffiffi
SSr

q
ð4:2Þ

�c � sc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSc � SSr

n

s
ð4:3Þ

Hence from ANOVA we have estimates for the repeatability stan-

dard deviation (sr) and the standard deviation associated with the

effect (sc).

In an ANOVA in which a number of replicate analytical measure-

ments have been made we can use equation 4.2 to calculate the

repeatability and equation 4.3 to calculate the standard deviation due

to the factor.

4.5 Least Significant Difference

Although ANOVA can determine if there is a significant effect of

a factor, if there are more than two instances of the factor then when

a significant difference is found ANOVA does not tell which of those

instances contributes significantly to the difference. For example,

suppose we use ANOVA to decide if there is a significant difference

among the delivered volume of a batch of five 10mL pipettes,
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by weighing ten deliveries of each pipette. The data matrix has five

columns (each pipette) and ten rows (repeats), hence a total of 50

data. If the ANOVA does conclude there is a significant difference,

was there just one pipette that was different from the other four, or

were there more? It would be possible to find out by testing each

against the nominal 10mL by a t-test, or each against another in a

series of means t-tests. A reasonable idea about which pipette or

pipettes are different may be determined by the method of least signif-

icant difference (LSD). The ANOVA has given the within factor

standard deviation (
ffiffiffiffiffiffiffiffi
SSr

p
) which in this case is the repeatability of the

delivery and weighing (sr). The difference between the means of any

two columns of data would be expected to have a standard deviation

of
ffiffiffi
2

p
sr=

ffiffiffi
n

p
, where n is the number of replicates, here 10 (see section

2.7). The 95% confidence interval of the difference of any two means

is
ffiffiffi
2

p
t0:0500,45sr=

ffiffiffiffiffi
10

p
in this example, where the t-value is obtained at

45 degrees of freedom (N� k¼ 50� 5¼ 45). The degrees of freedom

is 45 since there are a total of 50 data and each instance of the factor

(of which there are five) takes one degree of freedom. The value offfiffiffi
2

p
t0:0500,45sr=

ffiffiffiffiffi
10

p
is the LSD, that is, the maximum difference between

means that we would accept as being not significant. If the means of

each column are arranged in increasing order of magnitude then any

difference between successive means greater than the LSD implies a

significant difference.

4.6 ANOVA in Excel

Excel offers three ‘‘flavors’’ of ANOVA via its Analysis ToolPak:

ANOVA: Single Factor; ANOVA: Two Factor with Replication; and

ANOVA: Two Factor without Replication. The first is what we have

just seen and accepts a data matrix set out as described, with variables

in columns and repeats in rows. In this case the Grouped By: Columns

radio button is checked. Column headers in the first row can be

included, which helps with interpreting the output. A value of �,

the probability at which the null hypothesis will be rejected, must be

specified for an F-test, with 0.05 being the default. Thus the F-value

is tested at the 95% probability level. The output looks like that

in table 4.3, except that the terms ‘‘within groups’’ and ‘‘between

groups’’ are used, and there are two extra columns. One has the
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probability associated with the calculated F-value and the last has the

critical F-value for the designated �.

Example 4.1

Problem

Example 3.5 looked at comparing two means for the glucose

levels in soft drinks being analyzed by a spectroscopic enzyme

assay and an alternative enzyme electrode method. The conclusion

of the analyses, using a t-test, was that the two means were

different. The analytical laboratory therefore decided to check

each method relative to an AOAC (Association of Official

Analytical Chemists) method that employed HPLC. The analytical

results for six replicate measurements (units mM) using each

method are:

� Using the spectroscopic assay: 1.90, 1.82, 1.70, 1.94, 1.85,

1.90
� Using the enzyme electrode: 1.35, 1.65, 1.76, 1.41, 1.80, 1.33
� Using the AOAC method: 1.92, 1.82, 1.85, 1.79, 1.89, 1.95

Compare the means to determine whether there are significant

differences between the methods at 95% probability.

Solution

An efficient way of determining whether there is a significant

difference is to do a one-factor ANOVA. The means and 95%

confidence intervals are calculated (see chapter 2) and plotted in

figure 4.2.

ANOVA Example by Hand

1. First calculate the grand mean which is the mean of the

all the data points. Therefore in Excel the overall mean is

¼AVERAGE(range) which for the above data included in

spreadsheet 4.1 is ¼AVERAGE(A2:C7) giving the value

1.757.

Analysis of Variance 107



2. Subtract the overall mean from each individual value and set

up these values in a new array. That is, for the value in cell

A2which is placed in A17 input¼ (A2� $B$12)which equals

0.014. Note $B$12 is the cell containing the grand mean.

3. Next calculate the between factors sum of squares, the within

factor sum of squares, and the total sum of squares using the

formulae given above.

4. Calculate the degrees of freedom. For between groups the

degrees of freedoms are given by the number of instances of

the factor (i.e., the number of columns) minus one, so for this

example 3� 1¼ 2. For within groups the degrees of freedom

is the total number of measurements minus the number of

instances of the factor ¼N� k, so for the present example

this is 18� 3¼ 15. Finally the total degrees of freedom is the

total number of data points minus one, so 3� 6� 1¼ 17.

5. Calculate the mean squares for the between and within

factors which in each case is simply the sum of squares (SSc

and SSr) divided by the degrees of freedom.

6. Divide the between factors mean square by the within factor

mean squares to calculate the F-value. Recall the F-value

is obtained by dividing the larger variance by the smaller

variance. In the case of ANOVA the larger variance should

be the between mean square and the between mean square is

divided by the within mean square.

7. Finally from the F-value determine the associated prob-

ability using ¼FDIST(F, df1, df2) where again for ANOVA this

Figure 2 Means for the data in example 4.1. Error bars are� one standard

deviation.
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df1 is the between factors degrees of freedom (k� 1) and df2
is the within factors degrees of freedom (N� k). If the value

of the probability is p5 0.05 then we decide that there is a

significant effect of the factor, which signifies that one at least

one of the means is significantly different from the others.

Spreadsheet 4.1 shows the data with the ANOVA table of results

at the bottom.

ANOVA Using Excel

To perform ANOVA calculations using Excel you need the Data

Analysis plug in.

1. Arrange the data with the repeats for a given variable going

down the columns and the different variables across the rows

as in spreadsheet 4.1.

A B C D E F 
1 Spectro Electrode AOAC 
2 1.90 1.35 1.92 
3 1.82 1.65 1.82 
4 1.70 1.76 1.85 
5 1.94 1.41 1.79 
6 1.85 1.80 1.89 
7 1.90 1.33 1.95 
8

9 1.852 1.550 1.870 
10 0.085 0.212 0.061 
11

12 Grand Mean 1.757222 
13

14

15

16 Spectro Electrode AOAC
17 0.14 -0.41 0.16 
18 0.06 -0.11 0.06 
19 -0.06 0.00 0.09 
20 0.18 -0.35 0.03 
21 0.09 0.04 0.13 
22 0.14 -0.43 0.19 
23

24

25 SS Df MS F P 
26 Between 0.387478 2 0.193739 10.39062 0.001473 
27 Within 0.2797 15 0.018646
28

29 Total 0.6672 17 

=SUMSQ(A17:C22)

Means of each method

Standard deviation of each method

=AVERAGE(A2:C7)

=(A2-$B$12)

=(C2-$B$12 )

=(6*(SUM(A17:A22)/6)^2)+(6*(SUM(B17:B22)/6)^2)+(6*
(SUM(C17: C22)/6) ^2)

=(B29-B26)

=B26/C26

=B27/C27
=D26/D27

=FDIST(E26,C26,C27)

Spreadsheet 4.1
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2. Go to the Tools menu and select Data Analysis. The Data

Analysis dialog box will pop up.

3. From the Data Analysis dialog box select ANOVA: Single

Factor. Single factor is chosen as only one factor is being

varied, the method of analysis. A box will pop up which

looks like spreadsheet 4.2.

4. Choose the range containing the data to be analyzed making

sure the data are grouped by columns, that is, replicates

going down a column and factors across the rows. Hence in

spreadsheet 4.2 the range to be selected would be A1:C7.

5. Note two things. First, the data are grouped by columns, so

columns radio button must be selected. Second, the data

labels are included in the first row so the check box for

‘‘Labels in the first row’’ must be checked. Including the

labels in the first row makes the interpretation of the results

simpler, as Excel includes those labels in the output.

6. Select a probability, �, which in this case is 0.05 as we are

assessing the significance at 95% probability.

7. Select a cell to be the top left hand corner of the output

range. You need to ensure the output does not overlap with

any data you may have on the spreadsheet. Excel does

prompt you if there is danger of cells being overwritten.

Alternatively you can select the output to be another New

Worksheet or New Workbook.

8. The output looks like spreadsheet 4.3. The first table is a sum-

mary of the input data and the second table is the ANOVA

Spreadsheet 4.2
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output, which is the same as the table in spreadsheet 4.1 in

which the ANOVA was calculated by hand. Note the output

also includes the critical value of F, Fcrit, for testing the

calculated F at �¼ 0.05.

9. The F-value is 10.39062 with an associated probability

of 0.001473. As this is less than 0.05 it tells us the null

hypothesis may be rejected at the 95% level (99.85%¼ 100

(1� 0.001473) actually) and therefore we conclude that there

is a significant difference in means due to the factor studied,

that is, the different analytical methods. Hence, regardless of

whether the ANOVA calculation was performed by hand or

using Excel (thankfully) the same answer is arrived at.

Answer

The value of the probability is p¼ 0.001473 and therefore as

p50.05 the null hypothesis is rejected with 95% probability and

there is a significant effect due to the method of measuring the

concentration of glucose in soft drinks.

Comments

1. Note that this is a fixed effect ANOVA, as the instances of

the factor are confined to specific values, that is, the method

of analysis is being chosen by the analyst.

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

Spectro 6 11.11 1.851667 0.007297

Electrode 6 9.3 1.55 0.04492

AOAC 6 11.22 1.87 0.00372

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 0.387478 2 0.193739 10.39062 0.001473 3.682317

Within Groups 0.279683 15 0.018646

Total 0.667161 17

Spreadsheet 4.3
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2. The answer is that there is a significant effect but we do not

know which of the parameters is responsible for this signifi-

cant effect. One mean could be different from the others, but

the result could imply all the means are different from each

other. To solve this problem requires doing a LSD test. The

LSD is calculated using

LSD ¼
ffiffiffi
2

p t0:0500,N�ksrffiffiffi
n

p

where sr¼SSr, n is the number of replicates (6), k is the number

of instances of the factor, and N� k is the degrees of freedom

between factors (15). Therefore, for the data above

LSD ¼
ffiffiffi
2

p t0:0500,150:018646ffiffiffi
6

p ¼ 0:0229451

3. Using an Excel spreadsheet, the calculation of LSD would be

written as¼TINV(0.05,df )*s*SQRT(2)/SQRT(n) which for

the above data would be¼TINV(0.05, 15)*D27*SQRT(2)/

SQRT(6). To use this number to determine which of the

instances of the factor are significantly different we arrange

the means in order of magnitude and determine the dif-

ferences between successive means, that is, AOAC (1.870

mM), Spectro (1.852mM), Electrode (1.550mM), and there-

fore AOAC� Spectro¼ 0.018mM, Spectro�Electrode¼

0.302mM. The difference in means between the spectro-

scopic method and the enzyme electrode method is

considerably greater than LSD and the difference between

the AOAC and the spectroscopic methods is just less than

LSD. Therefore the enzyme electrode method differs

significantly from the other two (you already knew this

from example 3.5). Looking at figure 4.2 the conclusion

appears quite reasonable.

4.7 Sampling

In analytical chemistry the test material analyzed is usually only a part

of the system for which information is required. It is common for the

system to be just too big to analyze all of it; for example, an ocean

or river, or, as in the case of the chemical industry, there would be
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nothing left to sell if the total output of a synthesis were destructively

analyzed. The chemist, therefore, takes only a small part as a repre-

sentative sample, and assumes that the results of the analysis can be

taken as the answer for the whole. ANOVA can be used to check this

assumption, and to determine the variation in the test portions chosen

and the contribution to the variation of the measurement process.

The total analysis variance is given by

�2
analysis ¼ �2

measure þ �2
sampling

where �2
measure is the variance in making the measurement and �2

sampling

is due to actual differences between test portions.

Example 4.2

Problem

A grain silo is sampled at the top, middle, and bottom with four

separate grab samples being taken at each level. The amount of

protein in the grain of each sample is then determined by a

Kjeldahl nitrogen analysis. The results are given in table 4.4.

Does the sampling procedure have a significant effect on the

results at the 95% probability level? If so, what are the standard

deviation in sampling and the standard deviation in the analytical

method? Therefore, determine the standard deviation expected of

single measurements taken at random from anywhere in the silo.

Solution

This is treated as a one-way ANOVA with the factor studied

being sampling position. Figure 4.3 shows the means and 95%

Table 4.4 Analysis of grain taken from different levels in a grain silo

Top (% protein) Middle (% protein) Bottom (% protein)

12.3 13.4 13.2

12.7 12.8 13.5

11.8 13.6 13.1

12.2 13.0 12.9
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confidence intervals of the results from each location.

1. An Excel spreadsheet is set up with each sampling location

across the columns and the repeats for a given location down

the rows.

2. Select ANOVA: One Factor from the Data Analysis dialog

box add-in under the Tools menu. Choose the range of data

to be analyzed, make sure the data are grouped by columns,

select the probability (in this case p¼ 0.05 as we want to

know whether the sampling variance is significant at a 95%

confidence level), and select the output range.

3. The output ANOVA table is shown in spreadsheet 4.4.

As the probability associated with the F-value less than 0.05

(0.0043335 0.05), or F4Fcrit (10.578954 4.256492), there is a

significant effect due to sampling at the 95% probability level.
The within groups mean square allows estimation of the

repeatability of the measurement and so

sr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:1108Þ

p
¼ 0:33% protein

Figure 4.3 Means for the data in example 4.2. Error bars are� one standard

deviation.

Source of Variation SS df MS F P-value F crit

Between Groups 2.345 2 1.1725 10.57895 0.004333 4.256492
Within Groups 0.9975 9 0.110833

Total 3.3425 11

Spreadsheet 4.4
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The parameter sr is an estimate of �measure the standard deviation

of the measurement.
As we have seen, the between groups mean square (SSc)

estimates the combination of the measurement variance ð�2
r Þ and

the variance due to the different sampling positions ð�2
c Þ, and from

equation 4.3

�c �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSc � SSr

n

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:1725� 0:1108

4

r
¼ 0:52% protein

Hence the variance of a single analysis is given by

�2
analysis ¼ �2

measure þ �2
sampling ¼ ð0:33Þ2 þ ð0:52Þ2 ¼ 0:376

and the standard deviation �analysis¼ 0.61% protein.

Answer

The variance in the sampling does have a significant effect on the

overall measurement variance at the 95% level as determined by

ANOVA. The standard deviation of sampling is 0.52% and the

standard deviation of the analysis is 0.33% protein. The estimated

standard deviation of single random samples is 0.61% protein.

Comment

It is common to find that the variability of sampling is greater

than that of the analytical measurement. This is particularly so in

environmental monitoring where the samples often show great

variation. In choosing an analytical technique, there is no point in

spending more funds in improving the precision of the method

if the majority of the variance arises from sampling. In the

example above, if the standard deviation of the analysis were

reduced 10-fold (to 0.033% protein) the standard deviation of a

single measurement would still be 0.52% protein.

4.8 Multiway ANOVA

The principles of ANOVA can be extended to two or more factors

and the variances of each factor and their interactions can be
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calculated and evaluated for significance. If measurements are

made at every combination of each factor then the system is said to

be cross-classified. If some of the factors are varied separately for

each level of another factor then the system is nested. An example

is a recent study of the effects of changing analyst, spectrometer,

and instrument settings on the quantitative NMR analysis of the

agricultural chemical Dalapon sodium. The experiments are laid out

in figure 4.4. Each analyst analyses every sample on both machines

and so the effects of analysts and machines are crossed. However, the

settings on the 300 MHz machine are specific to it and cannot be used

on the 600 MHz machine and vice versa. Hence the machine setting

is a factor that is nested.

4.9 Two-Way ANOVA in Excel

Excel only caters for one- and two-way ANOVA. In two-way

ANOVA there are two factors being considered. For example, we may

be interested in the effect of changing the catalyst and the temperature

in a synthesis. One factor is the catalyst (e.g., Zn or Li) and the

other is temperature (e.g., 50, 70, or 90�C). In two-way ANOVA

in Excel the distinction is made between measurements that are

repeated and those for which only a single measurement is made, at

each combination of factors. The layout for this example is given in

table 4.5.

Figure 4.4 Experiments performed to investigate the effect of factors on the

quantitative NMR of Dalapon sodium.
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In the second case the data are duplicated. Replication of data

allows independent estimation of the measurement (within variable)

standard deviation in addition to estimation of the effect of the

interaction of the factors. What is an interaction? If the effect of

each factor is independent, the interaction is zero and the changes

in the value of the measurand as a result of changing each factor

add up to give the overall change observed. The result at a level of

one factor is not at all influenced by the level of the other, and vice

versa. However, for many systems the level of one factor does have

an effect on the effect of the level of the other, and this is

determined in the ANOVA. An example is the effects of time and

temperature on the rate of a chemical reaction. At small times after

the commencement of the reaction, increasing the temperature will

speed up the reaction considerably, but as the reaction nears

equilibrium at longer times the effect of the temperature is less. The

result is an extra line in the ANOVA output table that quantifies

this interaction effect in addition to the so-called main effects of the

factors themselves. The input required is similar to the one-way

ANOVA. For two-way with replication, with the data laid out as

shown in table 4.5, the entire matrix of headers and data is selected

as the input range. Note that there is no box to check for labels, as

these must be included. It is necessary to specify how many repeats

there are per combination of factor levels, and these must be the

same. In the example of the Zn and Li catalysts the measurements

are duplicated.

Table 4.5 Data grid for a two-way ANOVA: with replication (two measure-

ments at each combination of factors) (right); and without replication (left)

Factor 2¼

temperature

Factor 1¼

catalyst
Factor 2¼

temperature

Factor 1¼

catalyst

Zn Li Zn Li

50�C 50�C

70�C 50�C

90�C 70�C

70�C

90�C

90�C
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The Excel output from the two-way ANOVA with replication has

summary statistics of each factor with an ANOVA table that looks

like spreadsheet 4.5.

Unfortunately, the labels are used for the statistics but do not find

their way to the ANOVA table. The word ‘‘Sample’’ refers to the

factor in the rows (having levels 50�C, 70�C, and 90�C in the exam-

ple), the columns are in ‘‘Columns’’ (Zn and Li), ‘‘Interaction’’ is as

described above, and ‘‘Within’’ is the residual or within factor vari-

ance. The interpretation of the columns of the ANOVA table is

exactly as described above for the one-way case.

Example 4.3

Problem

Two students calibrated an autopipette, of volume 500mL, using
forward and reverse pipetting. Forward pipetting is where the

pipette plunger is depressed to the first stop, an aliquot drawn into

the pipette and the aliquot dispensed by depressing the pipette

to the second stop where all the liquid is blown out of the pipette.

In reverse pipetting the pipette is depressed to the second stop,

the liquid drawn up, and dispensed by depressing the pipette to

the first stop, thus leaving some liquid in the pipette. The amount

of fluid dispensed by the pipette is determined by weighing.

The data obtained by the two students Quinn and Martin with

10 replicates with each method are shown in spreadsheet 4.6

(where the masses shown have units of mg).
Determine whether there is any difference in the means with

95% probability with regards to either the two analysts or the two

pipetting methods.

ANOVA

Source of Variation SS df MS F P-value F crit

Sample

Columns

Interaction

Within

Total

Spreadsheet 4.5
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Solution

The solution to this problem involves performing a two-factor

ANOVA with replication. This will be demonstrated using Excel.

First we plot the means and standard deviations to give a first

impression of the data. With two factors there are two options

for our plot. We can have the analyst as the x-variable and plot

the forward and reverse data on the graph, or vice versa with the

direction as the x-variable and the analysts on the graph. This is

shown in figure 4.5. To perform the calculation:

1. Arrange the data as shown in spreadsheet 4.8 with one factor

going across the columns (the student in this case) and the

other factor that contains replicates going down the column

(forward or reverse pipetting).

2. Go to the Tools menu and select Data Analysis. The Data

Analysis dialog box will pop up.

3. From the Data Analysis select ANOVA: Two Factors

With Replication. A box will pop up which looks like

spreadsheet 4.7.

4. Choose the range containing the data to be analyzed making

sure the data are grouped with one factor and replicates

down a column and the other factor across the rows. Hence,

in spreadsheet 4.7 the range to be selected would be A1:C21.

5. Select the number of rows per sample. In this case there are

10 replicates for each method of pipetting by each student so

the number of rows per sample is 10.

6. Choose the probability. In this example we want 95%

confidence levels so for ‘‘Alpha’’ we insert 0.05.

Quinn Martin
Forward Reverse Forward Reverse

495.3 488.9 495.3 488.9
496.0 488.0 496 489.6
498.7 489.2 498.7 488
497.7 485.4 497.7 489.2
498.3 488.4 498.4 488.4
498.0 488.1 498 488.4
498.2 487.5 498.2 485.4
497.6 489.5 497.6 488.1
498.1 490.3 498.1 487.5
497.2 488.8 497.2 489.5

Spreadsheet 4.6
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Figure 4.5 (a) Means of Quinn’s forward and reverse results, and Martin’s

forward and reverse results. (b) Means of the forward pipetting results for Quinn

and Martin, and reverse results for Quinn and Martin. Error bars are� one

standard deviation.

Spreadsheet 4.7
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7. Select an output range (as before, the top left-hand cell) or

you can select the output to be a New Worksheet or New

Workbook.

8. The output looks like spreadsheet 4.8.

9. As can be seen from the output, there is a summary of each

of the data for each factor followed by the ANOVA results

table. Recall there are three key F-values calculated.

(a) First, there is the row of data titled ‘‘Sample,’’ which

refers to a comparison between the sets of data down

the rows. In this example the two sets of data in

each column is a comparison between forward and

reverse pipetting. As the probability associated with

the F-value is 4.95� 10�24, which is50.05, then

we can say the null hypothesis is rejected and there

is a significant difference between forward and reverse

pipetting.

(b) The second F-value is titled ‘‘Columns’’ and is a

comparison between the factor across the columns.

In the example this is a comparison between the two

analysts. We can see that for this example P¼ 0.8505

which is40.05 and therefore the null hypothesis is

accepted: there is no difference in means between the

two analysts Quinn and Martin.

(c) The third row is titled ‘‘Interaction’’ and assesses

whether the difference between means for one factor is

influenced by the other. In terms of this example the

F-value in this row is a test of whether the significant

difference in means for forward versus reverse pipetting

is dependent on the analyst or not. In this case the

null hypothesis is that there is no interaction. In other

words, the difference in mean is not dependent on

the analyst. As can be seen from the output data, the

probability associated with the F-value of 0.021723 is

0.88 which is40.05 and therefore the null hypothesis

is accepted: there is no relationship between the analyst

and the difference in mean volume pipetted with the two

pipetting techniques.
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A B C D E F G 
1 Quinn Martin 
2 Forward 495.3 495.3 
3 Forward 496.0 496 
4 Forward 498.7 498.7 
5 Forward 497.7 497.7 
6 Forward 498.3 498.4 
7 Forward 498.0 498 
8 Forward 498.2 498.2 
9 Forward 497.6 497.6 
10 Forward 498.1 498.1 
11 Forward 497.2 497.2 
12 Reverse 488.9 488.9 
13 Reverse 488.0 489.6 
14 Reverse 489.2 488 
15 Reverse 485.4 489.2 
16 Reverse 488.4 488.4 
17 Reverse 488.1 488.4 
18 Reverse 487.5 485.4 
19 Reverse 489.5 488.1 
20 Reverse 490.3 487.5 
21 Reverse 488.8 489.5 
22
23 Anova: Two-Factor With Replication 
24
25 SUMMARY Quinn Martin Total 
26 Forward

27 Count 10 10 20 
28 Sum 4975.359 4975.2 9950.559 
29 Average 497.5359 497.52 497.5279 
30 Variance 1.159004 1.175111 1.1057 
31
32 Reverse

33 Count 10 10 20 
34 Sum 4884.263 4883 9767.263 
35 Average 488.4263 488.3 488.3631 
36 Variance 1.773636 1.5 1.554865 
37
38 Total

39 Count 20 20 
40 Sum 9859.622 9858.2 
41 Average 492.9811 492.91 
42 Variance 23.22739 23.63779 
43
44
45 ANOVA 

46 Source of
Variation

SS df MS F P-value F crit

47 Sample 839.9382 1 839.9382 599.1265 4.95E-24 4.113161 
48 Columns 0.050525 1 0.050525 0.036039 0.8505 4.113161 
49 Interaction 0.030454 1 0.030454 0.021723 0.883648 4.113161 
50 Within 50.46977 36 1.401938 
51
52 Total 890.489 39 

Spreadsheet 4.8

122



Answer

The two-factor ANOVA shows there is a significant difference in

the volume dispensed by a 500 mL autopipette if forward or reverse

pipetting is employed, which is independent of whether Quinn or

Martin used the pipette. There is no interaction between the

effects.

Comment

The row that assesses the interaction gives important information.

It was quite obvious from the data that the significant difference

between the means for the different pipetting techniques was

independent of the analyst. However, if the data were as in

spreadsheet 4.9, then you would suspect that a significant

difference in means between the two pipetting methods would be

dependent on whether Quinn was the analyst. The output of

the Two Factor with Replicates ANOVA for this data is shown

in spreadsheet 4.10.
Now there is a significant difference between reverse and forward

pipetting (see the P-value for the row labeled ‘‘Sample’’) and

between Quinn and Martin (see the P-value for the row labeled

‘‘Columns’’). The ‘‘Interaction’’ row also shows a significant F-

value. We can interpret this as that the difference in the pipetting

methods depends on the person doing the pipetting. This can be

Quinn Martin
Forward Reverse Forward Reverse
495.3236 488.9168 495.3 497.2
496.0243 488.0158 496 498.3
498.7272 489.2171 498.7 499
497.7261 485.4131 497.7 498.7
498.3267 488.4163 498.4 496
498.0264 488.1159 498 497.5
498.2266 487.5153 498.2 498.8
497.626 489.5174 497.6 498

498.1265 490.3183 498.1 498.1
497.2256 488.8167 497.2 499

497.5359 488.4263 497.52 498.06
1.076571 1.331779 1.084025 0.947746

Each cell in this row gives

the mean of the data in the

column above

Each cell in this row gives the 

standard deviation of the data

in the column above

Spreadsheet 4.9
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seen in a plot of the means (figure 4.6). If the slopes of the two

lines in either figure 4.6(a) or 4.6(b) are the same, then there is

no interaction effect. If they are significantly different there is an

effect. In figure 4.5 the lines in figure 4.5(a) are both nearly

horizontal and in figure 4.5(b) overlaid. Although this is a special

case where the effect of the analyst is zero, the slopes are the

same and it is concluded there is no interaction effect.

Figure 4.6 New data from Quinn and Martin plotted as for figure 4.5, showing

an interaction effect.

ANOVA

Source of Variation SS df MS F P-value F crit
Sample 183.5963 1 183.5963 146.7018 2.94E-14 4.113161 
Columns 231.257 1 231.257 184.7848 9.53E-16 4.113161 
Interaction 232.7883 1 232.7883 186.0084 8.63E-16 4.113161 
Within 45.05377 36 1.251494

Total 692.6955 39

Spreadsheet 4.10
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4.10 Calculations of Multiway ANOVA

It is not possible to perform three-way or higher ANOVA in Excel,

nor is it practical to perform the calculations manually. Many

statistical packages do offer such analysis and require the data to be in

a somewhat different form. The measurement results are in one

column (sometimes known as the dependent variable) and each factor

is represented by another column in which the level is given. Up to

now we have considered situations in which the different levels of a

factor are discrete entities—analysts, methods, etc. However, we have

also referred to factors that are continuous variables, such as time

and temperature. The model that ANOVA builds in each case is

slightly different, and most software can cope with this. The output

from different software programs varies but mostly contains the

important information of the mean squares, F values and associated

probabilities.

4.11 Variances in Multiway ANOVA

If the variance contributed by an effect must be known it can be

calculated from the mean square of the factor. The within variables

mean square is the square of the residual standard deviation as with

two-way ANOVA (�r), that is, it is the variance left over after the

variances due to all the effects have been extracted. For a system with

no significant interaction effects, it is usually possible to treat the

interaction variance as a residual variance, and in some software

packages there is an option to rerun the analysis without interaction

effects. In this case the variance of a factor is related to the mean

square calculated in the ANOVA:

SSfactor ¼ �2
r þ nfactor�

2
factor ð4:4Þ

therefore

�factor ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSfactor � SSr

nfactor

s
ð4:5Þ

where nfactor is the number of measurements made at each level of the

factor.
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5

Calibration

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.1 What This Chapter Should Teach You

� To describe the linear calibration model and how to estimate

uncertainties in the calibration parameters and test concentra-

tions determined from the model.
� To show how to perform calibration calculations using Excel.
� To calculate parameters and uncertainties in the standard

addition method.
� To calculate detection limits from measurements of blanks and

uncertainties of the calibration model.

5.2 Introduction

Calibration is at the heart of chemical analysis, and is the process by

which the response of an instrument (in metrology called ‘‘indication

of the measuring instrument’’) is related to the value of the

measurand, in chemistry often the concentration of the analyte.

Without proper calibration of instruments measurement results are

not traceable, and not even correct. Scales in supermarkets are

periodically calibrated to ensure they indicate the correct mass. Petrol

pumps and gas and electric meters all must be calibrated and

recalibrated at appropriate times.

A typical example in analytical chemistry is the calibration of a

GC (gas chromatography) analysis. The heights of GC peaks are

measured as a function of the concentration of the analyte in a series

of standard solutions (‘‘calibration solutions’’) and a linear equation

fitted to the data. Before the advent of computers, a graph would

be plotted by hand and used for calibration and subsequent
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measurement. Having drawn the best straight line through the points,

the unknown test solution would be measured and the peak height

read across to the calibration line then down on to the x-axis to give

the concentration (figure 5.1). Nowadays, the regression equation is

computed from the calibration data and then inverted to give the

concentration of the test solution. Although the graph is no longer

necessary to determine the parameters of the calibration equation, it

is good practice to plot the graph as a rapid visual check for outliers

or curvature. Because we can choose what values the calibration

concentrations will take, the concentration is the independent variable,

with the instrumental output being the dependent variable (because the

output of the instrument depends on the concentration).

The example given in figure 5.1 is an example of a univariate, linear

calibration. Univariate means that only one quantity is measured to

establish the relationship (in the example the quantity is peak height).

In modern instrumentation it is possible to collect many variables and

use all the data to calibrate. For example, spectrometers offer digital

output at hundreds or thousands of wavelengths, a mass spectrum

can give peaks at thousands of mass-to-charge ratios, and inductively

coupled plasma atomic emission spectrometry (ICPAES) gives

the absorbances of many element emission transitions simultaneously.

Figure 5.1 Schematic of calibration and measurement by a linear calibration

equation.
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All of these data are multivariate and mathematical analysis provides

calibration models, pattern recognition, and other methods to extract

useful information from this plethora of data. A linear calibration

model is one that has linear coefficients in the quantities, but the

concept is often used in the more restricted sense of linearity in the

independent variable. There is no reason why relations used for

calibration should in fact be linear in the independent variables. We

know from experience that most relationships in chemistry are not

strictly linear, but the conditions of use of an instrument or method

have usually been arranged to be ‘‘in the linear range.’’ There are

advantages in having a linear measurement model: in the past it was

by far the easiest to graph, it has a well-understood statistical model,

and data can be fitted to an equation with unique parameters.

However, spreadsheets have opened up the world of nonlinear fitting

of data. ‘‘Solver’’ in Excel can perform a limited iterative search to

minimize a function by changing specified coefficients, and there may

be good reason to set up a nonlinear calibration rather than worry

about whether or not the data are in some arbitrary linear range.

However, a linear model is still used in the majority of chemical

calibrations and therefore this chapter concentrates on linear

calibration.

5.3 Linear Calibration Models

Before an analysis is performed using a particular method and

instrument, there must be a measurement model, an equation that

relates the quantities that are to be measured to the indication of the

instrument and other influence quantities such as temperature and

pressure. From this model we derive the calibration equation.

Usually, the experiment is performed in such a way as to fix influence

quantities and the calibration equation is determined in terms of the

concentration of the measurand and some output of the instrument,

which might be peak height, peak area, potential, current, absor-

bance, etc. A simple linear relation is

Y ¼ aþ bx ð5:1Þ

where Y is the indication of the instrument (i.e., the instrument

response), x is the independent variable, which in most cases for our
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purpose may be the concentration of the measurand, and a and b are

the coefficients of the model and are known as the intercept and slope

and are determined from a number of measurements of Y at particular

values of x. The terms ‘‘intercept’’ and ‘‘slope’’ come from the days of

graphs, a being the Y value when x is zero (i.e., the intercept on the Y

axis) and b the rate of increase in Y with respect to x. Rather than be

tied to the graphical descriptions, which are no longer necessary

anyway, it is better to refer to b as the ‘‘analytical sensitivity.’’ It has

units of y/x. a is the expected indication of the instrument when x is

zero, and therefore may be considered the ‘‘indication of the blank.’’

The intercept has the same units as y. We decide on the values of x

before the experiment (hence independent variable) and measure the

indication of the instrument Y.

Any particular measurement of Y (yi) will be subject to measure-

ment error ("i), therefore

yi ¼ Yi þ "i ð5:2Þ

or

yi ¼ aþ bxi þ "i ð5:3Þ

We shall see that one of our assumptions in making our calibration is

that the uncertainty in the independent variable is much less that in

the dependent variable, hence only one error term, "i in Yi, is included.

Be aware, however, that there is uncertainty in the dependent variable,

and before using the model you must assure yourself that this

uncertainty is sufficiently small to be neglected. The process of

calibration involves the collection of data, namely values of yi at a

number of xi, then fitting the model of equation 5.3 to the data.

Having established the values of a and b by calibration, measure-

ment of the instrument response of an unknown material (y0) allows

calculation of its corresponding value of x, and uncertainty (see

section 5.4.1):

x̂x ¼
y0 � a

b
ð5:4Þ

As our calculation is an estimate of the quantity based on the

instrumental response and calibration, the x gains a ‘‘hat’’. There is

uncertainty in the value of x̂x because of the measurement uncertainty
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in establishing a and b and additionally in the subsequent measure-

ment of y0. Because we know, or assume, the statistical properties of

the calibration equation although we do not know the "i, it is possible

to calculate confidence intervals on the parameters a and b and then

on the estimated x.

Analytical methods for which a blank reading may be made and

subtracted from subsequent results rely on this procedure to force

the calibration through zero. The calibration model is now

Y ¼ bx ð5:5Þ

and

yi ¼ bxi þ "i ð5:6Þ

and the estimate of the concentration is thus

x̂x ¼
y0
b

ð5:7Þ

5.3.1 Determination of a and b

Even for a simple equation like equation 5.1, by making different

assumptions about the data we will arrive at different values of a

and b. Most spreadsheets and calculators perform ‘‘classic’’ linear

regression. The assumptions are:

1. The linear model is correct (i.e., the response of the measuring

instrument does indeed vary linearly with concentration).

2. All uncertainty resides in the dependent variable (Y) and is

normally distributed.

3. The data are known as homoscedastic, which means that

the errors in y are independent of the concentration. Data

for which the uncertainty, for example, grows with the

concentration are heteroscedastic data.

Most chemical systems break one or other of these assumptions,

but for reasonably linear data it is not seen to be of too great a

concern. It must be noted that, for some analyses, other types of

regression should be contemplated. For example, in ultratrace
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analysis, the successive dilutions that must be done to achieve suitably

low concentrations of calibration solutions lead to uncertainty in the

independent variable that is not negligible. In addition, modern

instrumentation and methods that deliver reduced measurement

uncertainty (in the dependent variable) lead to a situation in which

we can no longer ignore the contribution of this uncertainty. So-called

‘‘total’’ least squares, or the ‘‘errors in variables’’ model can be used in

these cases.

Data are often heteroscedastic. A relative standard deviation of 2%

that applies across a range of concentrations means that the standard

deviation of a measurement of 1mM is 0.02mM, but is 2mMwhen a

measurement of 0.1M is made. If this is the case the regression should

be performed by weighting the data by 1/�2, where � is the standard

deviation of the measurement. Thus results with smaller uncertainty

must be fitted more closely than those with greater uncertainty (Miller

and Miller—see Bibliography).

The assumptions given above lead to a desire to minimize sy/x
which is known as the standard error of the regression:

sy=x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi¼n
i¼1 ðyi � ŷyiÞ

2

df

s
ð5:8Þ

sy/x has the same units as y. yi is a measured value of the dependent

variable and ŷyi is the estimated value from the regression equation

(equation 5.2 or equation 5.5). The sum is over the n calibration data.

The difference yi � ŷyið Þ in equation 5.8 is known as the residual for the

obvious reason that it is what remains of a measured value of Y (yi)

when the estimated value, ŷyi, is subtracted from it. It is said, therefore,

that regression minimizes the sum of the squares of the residuals. The

degrees of freedom, df, is n� 2 for the calibration model in equation

5.1 because two coefficients (a and b) are calculated in the model, and

df is n� 1 for the calibration model in equation 5.5, for which only the

analytical sensitivity is calculated. If the data fit the equation perfectly

then yi¼ ŷyi, all the residuals are zero, and so sy/x¼ 0. Note that a point

that has a large residual adds disproportionately to sy/x because of

the square. This means that the regression will avoid one very large

residual in favor of a number of smaller ones, and so a single rogue

point can throw out the whole calibration. The tendency of a point to

drag the line toward it is known as ‘‘leverage.’’
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The coefficients of the equations are calculated from the data by

b ¼

Pi¼n
i¼1 xi � xð Þ yi � yð Þ½ 	Pi¼n

i¼1 xi � xð Þ
2

ð5:9Þ

a ¼ y� b �xx ð5:10Þ

where a bar indicates the mean of all the x or all the y data. That is,

x is the average concentration of all the calibrator concentrations

used to establish the calibration curve and y is the average of all

the measured responses (averaging all measured responses means

summing the response for every individual calibrator and dividing

by the number of calibrators).

Remember that the slope has units of the units of y over the units

of x, and the intercept has the units of y. In undergraduate reports

failure to include proper units invariably incurs the wrath of a

demonstrator. In the real world it makes you look unprofessional,

so try not to forget.

Standard deviations may be calculated for the coefficients:

sb ¼
sy=xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi¼n

i¼1 ðxi � xÞ2
q ð5:11Þ

sa ¼ sy=x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi¼n
i¼1 x

2
i

n
Pi¼n

i¼1 ðxi � xÞ2

s
ð5:12Þ

Confidence intervals on the slope and intercept are determined by

multiplying the standard deviations by a two-tailed Student t-value

(recall from chapter 2 that two tails refers to both halves of the

distribution) at an appropriate probability and degrees of freedom of

the regression. These can be used when the slope or intercept is needed

for further calculations, for example in determining the activation

energy from the slope of an Arrhenius plot (log (k) against 1/T ).

b� t�00,df sb ð5:13Þ

a� t�00,df sa ð5:14Þ

Recall here that df¼ n� 2, because two parameters are calculated

from n data. Of interest to analytical chemists is the uncertainty
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imparted to the estimate of a concentration determined from the

calibration equation. The standard deviation of the estimate of

concentration from m measurements of an unknown sample giving

mean response y0 is

sx̂x0 ¼
sy=x
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m
þ
1

n
þ

ðy0 � yÞ2

b2
Pi¼n

i¼1 ðxi � xÞ2

s
ð5:15Þ

This is an important equation as it allows the calculation of the

information you are looking for, the standard deviation in the deter-

mination of the concentration of the unknown sample. All the other

symbols refer to the calibration, including n, x, and y. Equation 5.15 is

most instructive in telling us about what makes good calibrations

and measurements. To make the standard deviation of the result

as small as possible the standard error of the regression, sy/x, must be

small (i.e., the calibration fit should be good) and the analytical

sensitivity (b) should be large (i.e., a small change in concentration

should cause a large change in the instrument response). Looking at

the terms under the square root sign, more calibration points (n) and

more repeats of the unknown (m) are better, but there is a law of

diminishing returns. Consider the 1/m and 1/n terms. If you only

measure your unknown once then the term has the value 1. It is halved

if the measurement is duplicated, but to halve it again four measure-

ments must be done. The best number of points in the calibration

curve is more tricky to decide, because n also appears in the degrees of

freedom of sy/x and the Student t-value if a confidence interval is

calculated. Six independently prepared solutions of different concen-

trations should be considered a minimum to establish a calibration

equation, and ten is better. If the calibration curve is to be used for a

number of determinations of unknowns it is certainly worth taking the

time to get it right. The third term under the square root in equation

5.15 is zero if the measured response of the unknown happens to be

at the mean of the calibration responses, that is, in the middle of

the range ðy0 � y ¼ 0Þ. As the unknown response moves toward the

extremes of the calibration range this contribution to the uncertainty

increases. Remember you should never use a calibration equation to

estimate an unknown outside the range of concentrations that were

used to establish the equation. Figure 5.2 shows the calibration line

and 95% confidence interval for measured concentrations for

different sets of data to illustrate the points made.
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Figure 5.2 Calibration line and 95% confidence intervals on concentrations

calculated from measurements of unknowns. Data are from calibration of a

glucose monitor. (a) Six calibration solutions with a single measurement of the

test solution; (b) six calibration solutions with three measurements of the test

solution; (c) three calibration solutions with a single measurement of the test

solution.
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Example 5.1

Problem

To determine the concentration and associated uncertainty of

glucose in a wine sample of unknown concentration using a

spectroscopic enzyme assay where the calibration data is given in

table 5.1.
Wine of unknown glucose concentration and calibration solutions

of glucose were treated in the same way as follows: Wine (200 mL)
or glucose solution (200mL) was diluted to 5mL in a volumetric

flask by the addition of enzyme solution and buffer. Triplicate

measurements of the absorbance of the treated wine solution were

0.253, 0.243, 0.238.

Solution

1. First it is always a good idea to plot the data as a visual aid.

Looking at the plot in figure 5.3 a linear calibration model

may be valid.

2. Calculate the coefficients of the linear calibration model a

and b using equations 5.10 and 5.9. In equation 5.9, xi and

yi are the individual values of x and y (i.e., the response

actually measured at each concentration), x is the means of

all the values of xi used in the calibration, and y is the mean

of all the measured responses. Therefore

x ¼ ð0þ 0:05þ 0:1þ 0:2þ 0:4þ 0:6þ 0:8Þ=7

¼ 0:3071mM

y ¼ ð0þ 0:057þ 0:119þ 0:221þ 0:383þ 0:599þ 0:730Þ=7

¼ 0:3013

Table 5.1 Calibration of the analysis of glucose by a spectroscopic enzyme

assay

[Glucose] (mM) 0.000 0.050 0.100 0.200 0.400 0.600 0.800

Absorbance 0.000 0.057 0.119 0.221 0.383 0.599 0.730
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Hence to calculate b use

b¼

Pi¼n
i¼1 ðxi � xÞðyi � yÞ½ 	Pi¼n

i¼1 ðxi � xÞ2

ð0� 0:3071Þ þ � � � þ ð0:8� 0:307Þ½ 	

� ð0� 0:301Þ þ � � � þ ð0:730� 0:301Þ½ 	

�
ð0� 0:3071Þ þ � � � þ ð0:8� 0:307Þ½ 	

2
¼ 0:9197mM�1

and to calculate a use

a ¼ y� bx ¼ 0:3013� ð0:9197� 0:3071Þ ¼ 0:0188

3. The next step is to calculate the standard error of the regres-

sion sy/x. First, we must calculate ŷyi the value of Y estimated

from the regression for each xi. Hence for each concentration

of the standards, xi, ŷyi can be calculated using the regression

equation we have now established: ŷy ¼ 0:0188þ 0:9197xi.

The calculated values of ŷyi for each xi are shown in

spreadsheet 5.1. Now we can determine sy/x using

sy=x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi¼n
i¼1 yi � ŷyið Þ

2

df

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0� 0:0188Þ þ ð0:057� 0:0648Þ½

þ � � � þ ð0:730� 0:7545Þ	2

5

vuuut
¼ 0:0212

4. The next step is to calculate the standard deviations for

the coefficients of the calibration a and b using equations

(5.12) and (5.11):

sb ¼
sy=xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi¼n

i¼1 xi � xð Þ
2

q ¼
0:0212ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð0� 0:3071Þ þ � � � þ ð0:8� 0:307Þ½ 	
2

q
¼ 0:0285mM�1

sa ¼ sy=x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi¼n
i¼1 x

2
i

n
Pi¼n

i¼1 xi � xð Þ
2

s
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¼ 0:02115�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
02 þ 0:052 þ � � � þ 0:82

7� ð0� 0:3071Þ þ � � � þ ð0:8� 0:307Þ½ 	
2

s

¼ 0:0118

where n¼ 7 is the number of data in the calibration. More

informative are the confidence intervals on the slope and

intercept. These are derived in the usual way:

b� t�00, dfsb ¼ b� t0:05,5sb ¼ 0:920� 2:57� 0:0285

¼ 0:920� 0:073mM�1

a� t�00, dfsa ¼ a� t0:05,5sa ¼ 0:019� 2:57� 0:0118

¼ 0:019� 0:031

A B C D E F G H
1 [G] /mM A xi-xav yi-yav (xi-xav)(yi-yav) y hat (yi-yihat) (yi-yihat)2

2 0 0 -0.3071 -0.0004 0.0001 0.0188 -0.0188 0.00035344
3 0.05 0.057 -0.2571 0.0566 -0.0146 0.0648 -0.0078 6.0606E-05
4 0.1 0.119 -0.2071 0.1186 -0.0246 0.1108 0.0082 6.7733E-05
5 0.2 0.221 -0.1071 .02206 -0.0236 0.2027 0.0183 0.00033343
6 0.4 0.383 0.0929 0.3826 0.0355 0.3867 -0.0037 1.3542E-05
7 0.6 0.599 0.2929 0.5986 0.1753 0.5706 0.0284 0.00080542
8 0.8 0.73 0.4929 0.7296 0.3596 0.7546 -0.0246 0.00060319
9 unknowns 0.253
10 0.243 0.5521 0.5078 Sums 0.00223737
11 0.238
12 mean 0.2447
13 b = 0.9197
14 S unkno wn 0.0160 Mean x = 0.3071 a = 0.0188
15 [Unkno wn] 0.2456 Mean y = 0.3013 Sb = 0.0285
16 (95% c.l) 0.0690 Sy/x = 0.0212 Sa = 0.0118
17 (95% c.l) b 0.0732
18 (95% c.l) a 0.0305

=(C12-H14)/H13

=TINV(0.05,2)*B14

=SQRT(SUM(H2:H8)/5)

=SUM(E2:E8)/SUMSQ(C2:C8)

=(E15-H13*E14)

=AVERAGE (A2:A8)

=AVERAGE (B2:B8)

=(A2-$E$14)

=(B2-$H$2)

=C2*D2
=$H$13*A2+$H$14

=(B2-F2)

=G2^2

=AVERAGE (B9:B11 )

=SUMSQ (C2:C8) =SUM(H2:H8)

=((E16/H13)*SQRT(1/3+1/7+((C
12-E15)^2/((H13^2)*(C10^2)))))

=SUM(E2:E8)

=E16/(SQRT(SUMSQ(C2:C8)))

=E16*SQR T(SUMSQ(A2:A8)/(7*SUMSQ(C2:C8)))

=TINV(0.05,5)*H15

=TINV(0.05,5)*H16

Spreadsheet 5.1
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Recall that the t-value can be determined in Excel using

¼TINV(�, df ), which here is ¼TINV(0.05, 5)¼ 2.57.

5. We now get to what we really wanted to know, how to

calculate the uncertainty of the concentration of the test

solution. This is done using equation 5.15. The triplicate

measurements of the absorbances of the unknown are 0.253,

0.243, 0.238 which have a mean of y0¼ 0.245. Therefore the

estimate of the concentration x̂x is

x̂x ¼
y0 � a

b
¼

0:02445� 0:0188

0:9197
¼ 0:246mM

and the uncertainty in x̂x is

sx̂x0 ¼
sy=x
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m
þ
1

n
þ

y0 � yð Þ
2

b2
P
i

xi � xð Þ
2

vuuut

¼
0:0212

0:9197

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
þ
1

7
þ

ð0:0245� 0:3013Þ2

ð0:9197Þ2 � ð0� 0:3071Þ þ � � � þ ð0:8� 0:307Þ½ 	
2

s

¼ 0:0161mM

Therefore the 95% confidence interval about the estimate is

�t0:05,5sx̂x0 ¼ �ð2:57� 0:0161Þ ¼ �0:041mM

Now recall that this is the concentration of glucose in the

test sample which contained only 200mL of wine in a 5mL

flask. Therefore the concentration in the wine and its uncer-

tainty is

ð0:246� 0:041Þ � 5=0:2 ¼ 6:2� 1:0 mM

Answer

The concentration of glucose in a wine sample and the asso-

ciated uncertainty, quoted as a 95% confidence interval, is 6.2�

1.0mM.
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Comments

1. Plotting the data allows you to have a feel for whether the

linear calibration model is valid or not, but be careful not to

add a regression line until after you have had a careful look

at the graph. Compare the two plots shown in figure 5.3.

These plot the same data, but whereas figure 5.3(a) looks as

if there may be a slight curve to the data, once the trend line

is added in figure 5.3(b) it is much more difficult to ascertain

whether or not the data are curved. This is not helped by

the default line thickness of the Trendline feature in Excel

being a thick 1.5 points.

2. An Excel spreadsheet, with some of the cell operations

shown, which could be used to perform the above calculation

Figure 5.3 Calibration of a spectrophotometric analysis of glucose: (a) plot of the

data; (b) with TRENDLINE.
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is shown as spreadsheet 5.1. We shall explain how to simplify

the calculations using Excel functions in a later section.

5.3.2 Outliers and the linear range

Two concerns of the analyst when calibrating a method are to ensure

that each of the responses measured for the calibration solutions are

suitably accurate, and that the range of concentrations chosen are in

the range of validity of the calibration model (for a general discussion

of how to choose a suitable calibration range see section 5.7). For a

linear model, this is known as the linear range. A typical situation

when there is a doubt about linearity is when the response of an

instrument saturates at high concentration. The breakdown of the

Beer–Lambert law of optical absorbance is an example of this

(figure 5.4). One way of testing for the linear range is to fit the likely

range from zero then predict the next point. The residual is then tested

against sy/x of the linear fit:

t ¼
ŷy� yexpt

����
sy=x

ð5:16Þ

It is necessary to anchor the line at zero, so a regression with zero

intercept is chosen. This restricts the method, but it is a common

occurrence in chemistry when the data have been corrected for the

blank. Figure 5.4 shows this procedure for data from the dye Sunset

Figure 5.4 Calibration of a spectrometer with a dye showing saturation at the

higher concentrations. The values on points are the probabilities of t-values

determined by the procedure of predicting the next point (see text).
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Yellow. By trial and error find the range for which all the subsequent

points fail a significance test (i.e., the probability of T4 t is less

than 0.05).

Unfortunately, sometimes the relation is nonlinear at all concen-

trations and when plotted the calibration line is a continuous curve.

Beware of plotting a trend line through the data too soon as the

straight line fools your eye into thinking the underlying data are also

linear. It is always a good idea to plot a graph of the residuals against

the concentrations. This magnifies any trends or discrepancies of

the calibration line and allows a quick and usually accurate assess-

ment of the quality of the fit. A well-behaved calibration has residuals

randomly distributed about zero. Figure 5.5 illustrates different

residual plots including cases where something has gone wrong. In the

case of a suspect outlier the regression should be recalculated without

the suspect point and the residual plot replotted including the suspect

point, when the outlier should be even more pronounced. Statistical

assessment of outliers is provided in a number of computer software

applications, but none is easily implemented by hand or in a simple

spreadsheet.

A rule of thumb is to suspect a point that has a residual of

magnitude greater than 3sy/x. However, you should not have outliers

in your calibration. If necessary solutions should be remeasured and

if the response still appears anomalous, the solution should be made

up again. You have control over your calibration, and if there is a

problem with it, you must rectify the situation before any measure-

ments of unknowns are made. Do not rely on statistics to bail you out

of poor chemical technique!

Example 5.2

Problem

The mass fraction of calcium in a milk sample was analyzed using

atomic absorption spectrometry (AAS). The calibration data are

shown in table 5.2.
The calibration plot with linear regression is shown in figure 5.6.

The regression equation is y¼ 0.0177xþ 0.1082.
Determine whether a linear calibration model is suitable for these

data.
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Figure 5.5 Calibration and residual plots illustrating different types of data.

(a) Appropriate data for linear regression with normally distributed error in the y

data only; (b) curvature throughout the range; (c) heteroscedacity with increasing

standard deviation of responses with increasing concentration; (d) curvature at

high concentrations—the dashed lines show the limiting linear and saturation

values; (e) an outlier—the dashed line in the calibration plot and open circles

in the residual plot are with the outlier removed.
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Figure 5.5 Continued.
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Figure 5.5 Continued.

Figure 5.6 Calibration of the analysis of calcium by a spectrophotometric

method.

Table 5.2 Calibration of an absorbance method for the analysis of calcium in

milk

[Ca2þ] (ppm) 4.00 10.0 15.0 20.0 25.0 30.0 35.0 40.0

Absorbance 0.127 0.281 0.400 0.515 0.580 0.629 0.730 0.779
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Solution

To ascertain the suitability of the linear calibration model, plot

the residual versus concentration. Remember, the residual is given

by ðyi � ŷyiÞ, where yi is the measured response of the AAS instru-

ment for a given calibrator concentration xi and ŷyi is the esti-

mated value from the regression equation. The calibration data can

be expressed in an Excel spreadsheet, as shown in spreadsheet 5.2.
The plot of the residual versus concentration is shown in

figure 5.7. There is a clear V-shape to the data. At low concentra-

tions the experimental points lie below the estimated straight line

Figure 5.7 Residuals plotted against concentration of calcium for the data in

example 5.2.

A B C D

1 C mg/ml Absorb y_hat Residual

2 4 0.127 0.179 0.0517

3 10 0.281 0.2852 0.0039

4 15 0.400 0.3737 -0.0263

5 20 0.515 0.4622 -0.0528

6 25 0.580 0.5507 -0.0293

7 30 0.629 0.6392 0.0102

8 35 0.730 0.7277 -0.0023

9 40 0.779 0.8162 0.0375

=TREND ($B$2:$B$9, $A$2:$A$9,A2,1)

=(C2-B2)

Spreadsheet 5.2
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(positive residuals); they then rise above the line (negative

residuals) and then fall back again. This is a clear signature of a

curvature in the original plot.

Comment

Looking at the original calibration plot there certainly seems to be

well-defined curve in the data rather than a random distribution of

calibration points around the regression line and hence a residual

plot with a clear trend in the data is not too surprising. Note,

however, it is not always easy to tell and hence a residual plot is

very useful. Take the calibration plot in example 5.1. A close look

at the plot suggests that there, too, may be a gentle curvature in the

calibration data. The residual plot in figure 5.8 shows reasonable

scatter of data and hence there is no reason to reject the linear

calibration model.

5.4 Calibration in Excel

5.4.1 Plotting calibration graphs

The Chart Wizard is the usual starting point for graphs in Excel,

and a number of different formats are on offer. For calibration graphs

always choose the ‘‘XY (Scatter)’’ plot, which is about halfway down

the menu. Do not choose ‘‘Line’’ which spaces out the points equally.

Figure 5.8 Residuals plotted against concentration of glucose for the data in

example 5.1.
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Following through the dialog boxes of the Wizard leads to a graph

with labeled axes, points and/or lines, and a graph title and legend.

Further manipulation is possible by clicking on different parts of the

graph and by calling up items from the Chart menu, which appears if

an existing chart is in focus (i.e., you have clicked on it). Everyone

has a preferred way of displaying a chart and we encourage readers to

find theirs.

5.4.2 Trendline

Right click on a point in the series and ‘‘Add Trendline’’ will be one of

the options. Different fits are on offer including, as default, a simple

straight line. By clicking on Options, the equation of the line may

be displayed on the graph along with r2. This is a dangerous option.

Do not use Trendline to obtain the equation for the line, as the

coefficients are displayed to limited precision. For serious work use the

functions described below and if desired only use Trendline to display

the fitted line on a calibration graph. Note that the use of Trendline

automatically chooses the whole range of points in the series. If

you have decided that one point is to be omitted from further consi-

deration then you will have to calculate the fitted line separately using

the functions given below and then graph these as a separate series.

Remember, Trendline is a quick way of displaying a fitted line on a

graph – nothing more.

5.4.3 Functions

There are many functions to help fit data, particularly for linear

regression. ¼SLOPE(y-range,x-range) and ¼INTERCEPT(y-range,
x-range) calculate their eponymous coefficients. ¼TREND( y-range,
x-range,x, const) calculates the dependent variable (y) at a given

independent variable (x) from a linear regression of the ranges speci-

fied (see example above). The input const is TRUE if there is to be

an intercept and FALSE if not (i.e., the graph is forced through zero).

As TREND calculates y from x it is not of particular use in calibration

and analysis, and only finds employment for creating data for

the linear fitted line for graphing, as an alternative to Trendline, or

for generating data for residual plots.

Of greatest use, although not so easy to use, is LINEST which in the

command line of Excel has the form ¼LINEST(y-range,x-range,
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const, stats). In analysis of calibration data y-range is the values of

the instrument response, yi, for a given range of calibrator concentra-

tions, xi, which is the x-range. The constant, const, is set to TRUE

to have the value of the intercept a calculated. If a is to be zero

then FALSE is input for const. The input stats is another flag which

if TRUE creates a number of useful statistics of a linear regression.

LINEST is an array function which means its output is over a number

of cells. Once you know how to perform a LINEST analysis in

Excel, determining the uncertainty in a linear regression certainly

requires much less effort than the first principles approach used in

example 5.1. This is illustrated below in example 5.3 for the same data

used in example 5.1.

Example 5.3

Problem

To determine the standard deviations in the calibration parameters

a and b for the calibration of a spectroscopic glucose oxidase

enzyme assay, where the calibration data are given in table 5.3.

Solution

The values and uncertainty in the calibration constants will be

determined using the array function LINEST. Note these data are

the same data as in example 5.1 and therefore the values deter-

mined by LINEST can be compared to the values obtained from

first principles in example 5.1.

1. Set up a spreadsheet with the values of xi and yi in columns.

2. Left click the mouse on a cell and drag across another cell

and down five cells. When you lift your finger from the

Table 5.3 Calibration of the analysis of glucose by an enzyme spectroscopic

method

[Glucose] (mM) 0.000 0.050 0.100 0.200 0.400 0.600 0.800

Absorbance 0.000 0.057 0.119 0.221 0.383 0.599 0.730
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mouse the block of cells two columns wide by five rows deep

will remain highlighted, as shown in spreadsheet 5.3.

3. Type ¼LINEST( in the command line and now go to the start

of the y range of data, left click, and drag down the column.

The range will appear in the function bar, for example

¼LINEST(B2:B8. Let go of the mouse button and type a

comma. Now left click and drag down the x range of data,

and again finish off with a comma. The entry should now

look like ¼LINEST(B2:B8,A2:A8, . Finish off with 1,1) or

0,1) depending on whether you want an intercept.

The number 1 is equivalent to TRUE, and quicker to type.

The final function in our example is ¼LINEST(B2:B8,

A2:A8,1,1). To complete the output of the array, hold down

Shift and Ctrl and press Enter. The 2� 5 block will fill with

numbers. If you just press Enter by mistake and a single

number appears in the top left hand cell, highlight the block

again, click in the formula box on the toolbar, and press

Shift-Ctrl-Enter again. The spreadsheet now looks like

spreadsheet 5.4. If you look carefully at these numbers and

compare them to the output spreadsheet from example 5.1

you can work out that the numbers in cells B10 and C10

are the calibration coefficients b and a, respectively. The

numbers in cells B11 and C11 are the standard deviations of

b and a, respectively, that is, sb and sa. The number in cell

A B C D E
1 [G] /mM A
2 0 0
3 0.05 0.057
4 0.1 0.119
5 0.2 0.221
6 0.4 0.383
7 0.6 0.599
8 0.8 0.73
9

10

11

12

13

14

15

16

Spreadsheet 5.3
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B12 is the r2 value (see section 5.5 for a discussion as to why

you should not use the r2 value as a parameter demonstrating

the goodness of fit of your linear regression), in cell C12 is

the value of sy/x, and in cell C13 the degrees of freedom.

These values and the last row of the array will be discussed

further in the comments section of this example.

Answer

The values of the coefficients of the calibration equation and their

associated standard deviations are a¼ 0.02, b¼ 0.92mM�1,

sa¼ 0.01, sb¼ 0.03mM�1.

Comments

1. Hence the output from LINEST gives the same values as the

first principle analysis in example 5.1, but it takes far less

time to implement.

2. Note that an alternative to inputting the ¼LINEST function

in the command line is to select your 2� 5 array of cells for

the output, then to use the function option (from the Insert

menu, or toolbar icon fx) and select LINEST. A dialogue box

similar to that shown in spreadsheet 5.5 appears and you can

enter the ranges for y and x and the constant and stats in the

appropriate spaces. You still need to press Ctrl-Shift-Enter

to see all the output in the 5� 2 array.

A B C D E
1 [G] /mM A
2 0 0

3 0.05 0.057

4 0.1 0.119

5 0.2 0.221

6 0.4 0.383

7 0.6 0.599

8 0.8 0.73

9

10 0.9196636 0.0188176

11 0.0284681 0.0118481

12 0.9952318 0.0211536

13 1043.6201 5

14 0.4669921 0.0022374

15

16

Spreadsheet 5.4
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3. The results in the array are the numbers representing the

parameters (table 5.4).

The number of degrees of freedom is n� 2 if the intercept is

calculated or is n� 1 if a is set to zero. The residual sum of squares,

SSresidual, is

SSresidual ¼
Xi¼n

i¼1

ðyi � ŷyiÞ
2
¼ df� s2y=x ð5:17Þ

SSresidual divided by the degrees of freedom is also known as the

mean square residual and is equal to the square of the standard

error of the regression:

SSresidual ¼
SSresidual

df
¼ s2y=x ð5:18Þ

Spreadsheet 5.5

Table 5.4 Output of the Excel LINEST function

Slope: b Intercept: a

Standard deviation of slope: sb Standard deviation of intercept: sa
Coefficient of determination: r2 Standard error of regression: sy/x

Fisher F-statistic: F ¼
SSregression

SSresidual

Degrees of freedom of the

regression: df¼ n� 1 or n� 2

Sum of squares due

to regression: SSregression

Sum of squares due to residual: SSresidual
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The sum of squares due to the regression is

SSregression ¼
Xi¼n

i¼1

ð y� ŷyiÞ
2

ð5:19Þ

The degrees of freedom of SSregression is the number of terms in the

calibration containing the dependent variable—here there is just

one term (bx), so SSregression ¼ SSregression. If this looks like the

ANOVA calculations then do not be surprised to learn we can

compare the mean square of the regression with the mean square

of the residuals to give an F-statistic. This F compares the mean

square arising from the regression to that of the residual. If it

is significantly greater than 1, then the regression is significant,

which means there is a linear relationship between the dependent

and independent variable. As we usually know the fact that we

are dealing with a bona fide straight line, the F-statistic is not of

great use to the analyst:

F ¼
SSregression

SSresidual

ð5:20Þ

This is the value in the LINEST table. The associated probability

may be calculated from ¼FDIST(F,1,df). However, as explained

above, it would be a terrible thing if our calibration did not lead

to a significant F, as we know that the model does fit the data

well (or we would not be using it for calibration!).
If we need only one of the LINEST outputs in a calculation,

it may be extracted by the function ¼INDEX(array, row, column),

without having to display the entire array. For example, the

standard error of the regression is ¼INDEX(LINEST( y-range,
x-range, const, stats),3,2) because sy/x is in the third row, second

column of LINEST.

5.5 r 2: A Much Abused Statistic

Calculators and spreadsheets invariably offer a statistic called r or r2.

This is hardly ever of use to an analytical chemist and should
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not be calculated or quoted to support the quality of a regression.

The statistic r is called the correlation coefficient and takes values

from �1 to þ1, and its square, r2, the coefficient of regression, is the

fraction of the variance in the dependent variable explained by the

relationship with the independent variable. It has values between 0

(no variance explained by the model) and þ1 (all variance explained

by the model). The correlation coefficient is much used in sciences

where relationships between variables subject to many influence

factors are being studied. An r2 of 0.5 might turn out to be highly

significant in the case of the epidemiology of some disease. For the

analytical chemist, the calibration model is usually a very good

description of the relationship between variables. When we construct

a linear calibration equation, we do not test that linearity with it, but

observe the random scatter of data about the relation. This is built

into the assumptions we make in using classic least squares. It would

be unusual to see an r2 of less than 0.9, and frequently 0.999 is

considered a minimum. Unfortunately, at this linearity the coefficient

of regression is a very poor indicator of the quality of the regression:

some quite passable curves have excellent r2 values. Take the data in

example 5.2 as a demonstration of the uselessness of r2 for calibration

data. We can see clearly that a linear calibration model is not valid,

and this is confirmed by the residual plot. However, the r2 value is

0.9756, which certainly seems acceptable until you look at the actual

data. The standard error of the regression is the best general statistic

and ultimately the uncertainty on a concentration derived from the

calibration is of major interest to the analyst.

5.6 The Well-Tempered Calibration

1. When choosing the range of concentrations to construct the

calibration relation, it is always good to choose the shortest

range possible for the likely range of unknown samples. There

is nothing to be gained by calibrating over some enormous

range then only using a small part of it. If the unknowns are

spread over a wide range it may be better to perform separate

calibrations over restricted ranges.

2. Choose sufficient calibration concentrations to cover the

range and give a suitable confidence interval on measurement
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results. Six should be a minimum number of calibration

concentrations with at least duplicate measurements of the

unknowns. Evenly space the concentrations throughout the

calibration range.

3. Make up calibration solutions independently from reference

materials with traceable purities or concentrations. Serial

dilutions of a stock solution should be avoided.

4. Choose the solutions for measurement randomly. Do not

start at the least concentrated solution and work up to the

most concentrated.

5. Inspect a residual plot and recalculate the regression, if

necessary, after remeasuring solutions that give apparent

outliers and after defining the linear range.

6. Calculate and quote the standard error of the regression.

Calculate 95% confidence intervals on any concentration

calculated from the calibration relation. If required, quote

the regression equation with standard deviations (or 95%

confidence intervals) on slope and intercept.

7. Do not forget units! The units of the intercept and its uncer-

tainty are those of y, and for the slope and its uncertainty the

units are those of y/x.

5.7 Standard Addition

Standard addition is a method of analysis in which a measure-

ment is made on the sample followed by a second measurement

after a known amount of a calibration material is added to the

sample.

Suppose the response follows a linear relation with concentra-

tion. Let the response of the instrument to the sample solution

containing analyte of concentration x0 before addition be y0. If a spike

is added to bring the added concentration to x1 with new response

y1, then

y0 ¼ bx0

y1 ¼ bðx0 þ x1Þ

ð5:21Þ
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Rearranging for x0

x0 ¼
x1y0

y1 � y0
ð5:22Þ

If the spike is added as a solution, it will also dilute the existing

analyte and so the equation must reflect this. Let the initial volume of

analyte be V and an addition be made of V0 of the spike, concentra-

tion x1. The original analyte is diluted by V/(VþV0) and the added

spike by V0/(VþV0). Now the equations are

y0 ¼ bx0

y1 ¼ b x0
V

Vþ V0
þ x1

V0

Vþ V0

� �
ð5:23Þ

and

x0 ¼
y0x1ðV

0=ðVþ V0ÞÞ

y1 � y0ðV=ðVþ V0ÞÞ
ð5:24Þ

Statistics can be applied to repeated determinations of x0 if sufficient

sample is available. More information can be obtained by repeated

additions of the standard solution, when the instrumental response

is plotted against the concentration of the added standard in the test

solution (see figure 5.9).

Figure 5.9 Instrument response as a function of added calibration material in

analysis by standard addition.
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Assuming a linear response with measurand, an estimate of the

concentration of analyte in the test solution is

x̂x ¼
a

b
ð5:25Þ

where a is the intercept and b the slope and x̂x has the same units as

the aliquot of the standard solution added. In terms of a graph of

instrument response against concentration of added standard the

estimate of x happens to be the negative intercept on the concentra-

tion axis and may be calculated as the intercept divided by the slope.

If there have been n measurements made (n4 2), the standard

deviation of the concentration estimate may be calculated from the

regression line through the points of figure 5.9:

sx̂x ¼
sx=y
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ

y2

b2
P
i

ðxi � xÞ2

vuut ð5:26Þ

From sx̂x the 95% confidence interval on the estimate may be

determined by multiplication by the appropriate t-value (t0.0500,n�2).

Standard addition is used when there are potential interferents that

would lead to a systematic error that is proportional to concentration.

Calculation of the concentration by the standard addition method

causes these errors in the measurements to cancel. It is also useful if

the analyte cannot be extracted from its matrix, and there is not a

matrix matched calibrant available. This may be the case in

environmental analysis. Note, however, that standard addition does

not compensate for a constant additive interferent.

Example 5.4

Problem

Determine the concentration of glucose in a wine sample and its

associated uncertainty as a 95% confidence interval by the

standard addition method using the enzyme spectroscopic assay

of example 5.1. An aliquot of 200mL of wine is added to a 5mL

volumetric flask to which the reagents for the enzyme assay are

added and then the flask is filled to the mark with buffer. The
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absorbances of solutions containing different concentrations of

added glucose standard are shown in table 5.5.

Solution

1. The first step is to plot the data (figure 5.10) and then

perform a regression analysis of the calibration data and

the uncertainty in the calibration coefficients a and b. This is

best performed using LINEST as shown in spreadsheet 5.6.

LINEST indicates the values of a and b are 0.2274 and

1.085mM�1, respectively, with the standard deviations

0.0095 for sa and 0.042mM�1 for sb.

2. The second step is to estimate the concentration of glucose in

the test sample. This is calculated using

x̂x ¼
a

b
¼

0:2274

1:0855
¼ 0:2095mM

3. Determine the uncertainty in the estimate using equation

5.26 where sy/x is obtained from LINEST, and (x� x) is

Figure 5.10 Standard addition for glucose concentration in a wine sample in

example 5.4.

Table 5.5 Analysis of glucose by standard addition

Added glucose, [glucose] (mM) 0.000 0.050 0.100 0.200 0.300 0.400

Absorbance 0.244 0.284 0.321 0.431 0.550 0.674
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calculated in spreadsheet 5.6. The spreadsheet shows that

sx̂x¼ 0.0159mM.

4. Finally calculate the uncertainty as a 95% confidence

interval using t0.0500,4 sx̂x¼ 2.7765� 0.0159¼ 0.0443mM.

Therefore in the 5mL volumetric flask the concentration of

glucose was 0.209� 0.044mM (95% confidence interval). Now the

5mL flask contained diluted wine, so in the original wine sam-

ple with a 95% confidence interval [glucose] ¼ (0.209� 0.044)�

5/0.2¼ 5.24� 0.40mM.

Answer

The concentration of glucose in the wine as determined using the

standard addition method is 5.24� 0.40mM (95% confidence

interval).

Comments

Note the standard addition method gives a smaller value for the

concentration of glucose than in example 5.1 where only a

A B C

1 [Glucose] /mM A x-xbar

2 0 0.244 -0.175

3 0.05 0.284 -0.125

4 0.1 0.321 -0.075

5 0.2 0.431 0.025

6 0.3 0.55 0.125

7 0.4 0.674 0.225

8

9 0.175 0.417333333 Means

10

11 LINEST

12 1.085473684 0.22737544

13 0.042296583 0.00949713

14 0.993963263 0.01457545

15 658.6095645 4

16 0.139917558 0.00084978

17

18 [Glucose] /mM 0.209471166

19 sx_hat 0.015952752

20 95% c.l. 0.044292032

=(A2-$A$9)

=AVERAGE(A2:A7)

=AVERAGE(B2:B7)

=C12/B12

=(C14/B12)*SQRT((1/6)+(B9^2/(B
12^2*SUMSQ(C2:C7))))

=TINV(0.05,4)*B19

Spreadsheet 5.6
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calibration curve was used. The greater value for the calibration

curve method suggests there was some interference in the

calibration curve which is contributing to the total absorbance

measured when analyzing the unknown sample.

There are drawbacks to the use of standard addition. First, the test

portion is destroyed by adding a calibrant. Second, the number of

analyses for each test material is at least two and is more if it is

decided to perform a regression. For a large number of similar

samples a separate calibration and the analysis of each test material

using that calibration can lead to fewer total measurements. Finally,

standard addition does not lead to cancellation of systematic errors

if the interferents are in a fixed amount: they just add a constant to

the response of the instrument and the result.

5.8 Limits of Detection and Determination

Important characteristics of a method are the limits of detection and

determination. The limit of detection is the smallest concentration

giving a significant response of the instrument that can be distin-

guished as being present to above the blank or background response.

The limit of determination is the smallest amount of measurand that

can be measured with a stated precision.

If a blank material, that is, the matrix of the test material without

the analyte, can be analyzed a number of times, the limit of detection

is often defined as three times the standard deviation of this blank

determination. The limit of detection of the instrumental response is

therefore yBþ 3sB, where the subscript B refers to a blank determi-

nation. The corresponding concentration is then calculated from the

calibration equation (equation 5.4), if it may be assumed that the

equation is valid down to that concentration:

x̂xDL ¼
yB þ 3sB � a

b
ð5:27Þ

It may be not possible to make a measurement in the absence of the

analyte. In this case it is reasonable to substitute the intercept of the

calibration equation for the blank response (after all, it is supposed to

be the response when the concentration is zero) and the standard error
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of the regression, sy/x for the standard deviation of the blank. In

equation 5.27, therefore, yB¼ a and sB¼ sy/x, which gives

x̂xDL ¼
3sy=x

b
ð5:28Þ

Equation 5.28 has the advantage that it is calculated entirely from

the calibration equation. A more statistically defensible equation from

calibration data has been published by ISO (ISO 11843-2:2000, ISO,

Geneva):

x̂xDL ¼
2t0:050,n�2sy=x

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K
þ

1

I� J
þ

x2

J
P

i xi � xð Þ
2

s
ð5:29Þ

Here, a calibration is performed with I independent calibration

materials (including a blank if possible and a calibrator having a

value near the expected detection limit) each measured J times. K is

the number of replicate measurements that will be done on each

test solution to give an average response. (If you are willing to

do more repeats you are more likely to pick up the presence of the

analyte at small concentrations.) Note that as the t-statistic limits

to the value 1.64 for large n, this equation multiplies sy/x/b by at least

3.3 (for K¼ 1), and so gives somewhat greater detection limits than

equation 5.28.

Example 5.5

The calibration data of an electrode for the selective detec-

tion of copper in water samples, where the electrode was pre-

pared by modifying a gold electrode with cysteine, is shown in

table 5.6.

Table 5.6 Calibration of an electrode for the determination of copper near the

detection limit

[Cu2þ] (nM) 0.0 3.1 6.3 12.6 15.2 20.5 26.8

I (mAcm�2) 0.8 2.8 4.9 8.3 10.2 12.9 16.4

The standard deviation of the blank, sB, is 0.2 nM (n¼ 3).
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Problem

From the calibration data determine the detection limit for copper

of the cysteine-modified electrode for a single measurement of

a test solution.

Solution

1. Plot the calibration data and determine the calibration

parameter and associated uncertainties using LINEST. The

calibration plot shown in figure 5.11 confirms the linearity

of the data. The results table from LINEST for this data is

shown in spreadsheet 5.7

2. The detection limit can be calculated using equation 5.29

where

x̂xDL ¼
2t0:050,n�2sy=x

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K
þ

1

IJ
þ

x2

J
P

i xi � xð Þ
2

s

¼
2� 2:015� 0:1441

0:5802

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1
þ
1

7
þ
ð12:07Þ2

557:6

s

¼ 1:865 nM

The input values can be obtained from spreadsheet 5.8.

Figure 5.11 Calibration of copper anodic stripping voltammetry experiment in

example 5.5.
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Answer

The detection limit of the cysteine-modified electrode for copper in

water samples is 1.87 nM.

Comments

1. A more simple, but less statistically defensible, equation is

equation 5.28. 3sy/x/b is 3� 0.2266/0.5802¼ 1.17mM. This

underestimates the detection limit.

2. As we have a number of blank measurements an alternative

to using equation 5.29 would be to use equation 5.27:

x̂xDL ¼
yB þ 3sB � a

b
¼

0:80þ 3� 0:20� 1:04

0:58
¼ 0:62 nM

The lower detection limit obtained using this equation is

certainly appealing, as is the simplicity in using this equation,

but it is important to emphasize that equation 5.29 is the

A B C
1 [Cu] / nM I / uA cm-2 x-x_bar
2 0.0 0.8 -12.0714
3 3.1 2.8 -8.97143
4 6.3 4.9 -5.77143
5 12.6 8.3 0.528571
6 15.2 10.2 3.128571
7 20.5 12.9 8.428571
8 26.8 16.4 14.72857
9

10 12.07143 557.5543
11
12 0.580246 1.038461
13 0.009598 0.144092
14 0.998634 0.22664
15 3654.592 5
16 187.7203 0.256828

=(A3-$A$10)

=AVERAGE(A2:A8)

=SUMSQ(C2:C8)

Output from LINEST

Spreadsheet 5.8

0.580246 1.038461
0.009598 0.144092
0.998634 0.22664

b

r2

a

sb

sa

sy/x

Spreadsheet 5.7
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more statistically defensible and more conservative method

of calculating the detection limit. The problem lies in only

using three measurements of the blank (thus sblank is not a

good estimate of �blank), and the accident that the blank

response happened to be smaller than the intercept.

3. If you need to establish the detection limit then this should

be done with some care. A calibration with blank and a

solution with near the expected detection limit should be

done, with the calculation of equation 5.29 ensuring that the

chance of both errors (deciding that there is a detectable

concentration when there is not, and missing the presence of

a detectable concentration) is about 5%.

If the detection limit is really important for a particular application

it is always a good idea to analyze a test solution containing the

estimated detection limit concentration. This is the only way that the

capabilities of the method can be shown for sure.

The limit of determination (as distinct from the limit of detection) is

even more of a movable feast, as it depends on the required precision.

A proposal that this limit be calculated as yBþ 10sB has not found

great favor. A suitable level really depends on the requirements of

the analysis. For some measurements a rather poor precision may be

‘‘fit for purpose,’’ while in others extreme precision may be necessary.

The concept of ‘‘target value for uncertainty’’ (TVU) or ‘‘target

measurement uncertainty’’ (TMU) has recently been adopted in a

number of fields. Here, the client, or where a TMU is specified for a

method to be used regularly for a particular purpose an independent

authority, specifies what the largest acceptable measurement uncer-

tainty will be for a given set of measurements. For example, a

maximum relative standard deviation of 0.5% might be set for

measurements of radioactive waste. This is policed using interlabora-

tory proficiency tests, in which a sample of known concentration is

sent to each of a number of participating laboratories, and each

laboratory is required to achieve the set measurement uncertainty

as a demonstration of its capability.
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Appendix

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The critical values of different statistics presented here have been

generated in Microsoft Excel, using inbuilt functions and other

formulae.

Table A.1 Two-tailed Student t-values (¼TINV(�, df ))

Confidence Interval

90% 95% 99% 99.9%

Degrees of Freedom �¼ 0.10 �¼ 0.05 �¼ 0.01 �¼ 0.001

1 6.31 12.7 63.7 637

2 2.92 4.30 9.92 31.6

3 2.35 3.18 5.84 12.9

4 2.13 2.78 4.60 8.61

5 2.02 2.57 4.03 6.87

6 1.94 2.45 3.71 5.96

7 1.89 2.36 3.50 5.41

8 1.86 2.31 3.36 5.04

9 1.83 2.26 3.25 4.78

10 1.81 2.23 3.17 4.59

11 1.80 2.20 3.11 4.44

12 1.78 2.18 3.05 4.32

14 1.76 2.14 2.98 4.14

16 1.75 2.12 2.92 4.01

18 1.73 2.10 2.88 3.92

20 1.72 2.09 2.85 3.85

30 1.70 2.04 2.75 3.65

50 1.68 2.01 2.68 3.50

1 1.64 1.96 2.58 3.29
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Table A.2 One-tailed Student t-values. As TINV only gives two-tailed values,

we must multiply � by 2 to calculate the correct value, i.e., ¼TINV(2��, df )

Confidence Interval

90% 95% 99% 99.9%

Degrees of Freedom �¼ 0.10 �¼ 0.05 �¼ 0.01 �¼ 0.001

1 3.08 6.31 31.82 318.29
2 1.89 2.92 6.96 22.33
3 1.64 2.35 4.54 10.21
4 1.53 2.13 3.75 7.17
5 1.48 2.02 3.36 5.89
6 1.44 1.94 3.14 5.21
7 1.41 1.89 3.00 4.79
8 1.40 1.86 2.90 4.50
9 1.38 1.83 2.82 4.30
10 1.37 1.81 2.76 4.14
11 1.36 1.80 2.72 4.02
12 1.36 1.78 2.68 3.93
14 1.35 1.76 2.62 3.79
16 1.34 1.75 2.58 3.69
18 1.33 1.73 2.55 3.61
20 1.33 1.72 2.53 3.55
30 1.31 1.70 2.46 3.39
50 1.30 1.68 2.40 3.26
1 1.28 1.64 2.33 3.09

Table A.3 Values of Gcritical used for Grubbs’s test for outliers, calculated as

¼ (n� 1)/SQRT(n)*SQRT((TINV(�/n,n� 2))^2/(n� 2þTINV(�/n,n� 2)^2))

Confidence Level

90% 95% 99% 99.9%

Number of Data, n �¼ 0.1 �¼ 0.05 �¼ 0.01 �¼ 0.001

3 1.15 1.15 1.15 1.15
4 1.46 1.48 1.50 1.50
5 1.67 1.72 1.76 1.78
6 1.82 1.89 1.97 2.02
7 1.94 2.02 2.14 2.22
8 2.03 2.13 2.27 2.38
9 2.11 2.22 2.39 2.52
10 2.18 2.29 2.48 2.64
11 2.23 2.35 2.56 2.75
12 2.28 2.41 2.64 2.84
14 2.37 2.51 2.76 3.00
16 2.44 2.59 2.85 3.12
18 2.50 2.65 2.93 3.23
20 2.56 2.71 3.00 3.31
30 2.75 2.91 3.24 3.61
40 2.87 3.04 3.38 3.79
50 2.96 3.13 3.48 3.91
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Table A.4 Two tailed Fisher F-values for �¼ 0.05. As Excel calculates one-tailed values, the function used is ¼TINV(0.025, df1, df2)

D
eg
re
es

o
f
F
re
ed
o
m

o
f
D
en
o
m
in
a
to
r

Degrees of Freedom of Numerator

1 2 3 4 5 6 7 8 9 10 11 12 14 16 18 20 30 50 1

1 161.5 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9 243.0 243.9 245.4 246.5 247.3 248.0 250.1 251.8 254.3

2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.40 19.41 19.42 19.43 19.44 19.45 19.46 19.48 19.50

3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.76 8.74 8.71 8.69 8.67 8.66 8.62 8.58 8.53

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.94 5.91 5.87 5.84 5.82 5.80 5.75 5.70 5.63

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.70 4.68 4.64 4.60 4.58 4.56 4.50 4.44 4.37

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.03 4.00 3.96 3.92 3.90 3.87 3.81 3.75 3.67

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.60 3.57 3.53 3.49 3.47 3.44 3.38 3.32 3.23

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.31 3.28 3.24 3.20 3.17 3.15 3.08 3.02 2.93

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.10 3.07 3.03 2.99 2.96 2.94 2.86 2.80 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.94 2.91 2.86 2.83 2.80 2.77 2.70 2.64 2.54

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.82 2.79 2.74 2.70 2.67 2.65 2.57 2.51 2.40

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.72 2.69 2.64 2.60 2.57 2.54 2.47 2.40 2.30

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.57 2.53 2.48 2.44 2.41 2.39 2.31 2.24 2.13

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.46 2.42 2.37 2.33 2.30 2.28 2.19 2.12 2.01

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.37 2.34 2.29 2.25 2.22 2.19 2.11 2.04 1.92

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.31 2.28 2.22 2.18 2.15 2.12 2.04 1.97 1.84

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.13 2.09 2.04 1.99 1.96 1.93 1.84 1.76 1.62

50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.99 1.95 1.89 1.85 1.81 1.78 1.69 1.60 1.44

1 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.79 1.75 1.69 1.64 1.60 1.57 1.46 1.35 1.03
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Table A.5 One-tailed Fisher F-values for � ¼ 0.05. Calculated in Excel by ¼TINV(0.05, df1, df2)

D
eg
re
es

o
f
F
re
ed
o
m

o
f
D
en
o
m
in
a
to
r

Degrees of Freedom of Numerator

1 2 3 4 5 6 7 8 9 10 11 12 14 16 18 20 30 50 1

1 161.5 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9 243.0 243.9 245.4 246.5 247.3 248.0 250.1 251.8 254.3

2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.40 19.41 19.42 19.43 19.44 19.45 19.46 19.48 19.50

3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.76 8.74 8.71 8.69 8.67 8.66 8.62 8.58 8.53

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.94 5.91 5.87 5.84 5.82 5.80 5.75 5.70 5.63

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.70 4.68 4.64 4.60 4.58 4.56 4.50 4.44 4.37

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.03 4.00 3.96 3.92 3.90 3.87 3.81 3.75 3.67

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.60 3.57 3.53 3.49 3.47 3.44 3.38 3.32 3.23

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.31 3.28 3.24 3.20 3.17 3.15 3.08 3.02 2.93

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.10 3.07 3.03 2.99 2.96 2.94 2.86 2.80 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.94 2.91 2.86 2.83 2.80 2.77 2.70 2.64 2.54

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.82 2.79 2.74 2.70 2.67 2.65 2.57 2.51 2.40

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.72 2.69 2.64 2.60 2.57 2.54 2.47 2.40 2.30

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.57 2.53 2.48 2.44 2.41 2.39 2.31 2.24 2.13

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.46 2.42 2.37 2.33 2.30 2.28 2.19 2.12 2.01

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.37 2.34 2.29 2.25 2.22 2.19 2.11 2.04 1.92

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.31 2.28 2.22 2.18 2.15 2.12 2.04 1.97 1.84

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.13 2.09 2.04 1.99 1.96 1.93 1.84 1.76 1.62

50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.99 1.95 1.89 1.85 1.81 1.78 1.69 1.60 1.44

1 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.79 1.75 1.69 1.64 1.60 1.57 1.46 1.35 1.03
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There is a wide and extensive literature of applied statistics. There are

texts for statistics in every kind of science and engineering, and we

have read many of them. The short list below represents books that

we feel will add value to what you have learned here. Rather than give

an exhaustive list, we have deliberately excluded books that, in our

opinion, will not help. Indeed some texts could undo what little good

we may have achieved.

Historical

There are some texts that are of historical interest that are still

readable today. While not recommending them as ‘‘must reads,’’ they

often contain nuggets that have been passed over in the retelling by

other texts (no doubt including ours). The book by Youden has been

reprinted by the National Institute of Standards and Technology

(NIST), for which it can be thanked, and can be downloaded for

free from http://physics.nist.gov/Divisions/Div844/facilities/phdet/

pdf/expmeas.pdf

1. Youden, W. J. (1961). Experimentation and Measure-

ment, National Institute of Standards and Technology,

Gaithersburg, Md.

2. Box, G., Hunter, W. et al. (1978). Statistics for Experimen-

ters, An Introduction to Design, Data Analysis and Model

Building, John Wiley, New York.
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3. Coombe, C. (1964). A Theory of Data, John Wiley,

Chichester, UK.

General Statistical Texts

We understand that chemistry is not statistics, and that books about

data analysis for chemists might miss the larger statistical points. Here

are a couple of books that might describe this greater picture in a way

that chemists might understand. The text by Wild is more dense

but does relate statistics to the underlying probability theory.

4. Ramsey, F. L. and Schafer, D. W. (2002). The Statistical

Sleuth, Duxbury Press, Pacific Grove, Calif.

5. Wild, C. J. (2000). Chance Encounters. A First Course in Data

Analysis and Inference, John Wiley, New York.

Statistics for Chemistry

Until we wrote this text, the book by Miller and Miller was the data

analysis book the we recommended in our courses. For a slim volume

our students thought it overpriced, and chemometrics introduced

in the recent revisions was, in our view, unnecessary, but the early

chapters do cover what an analytical chemist needs to know. Apart

from chapters in larger analytical textbooks, there is no other useful

book on the market.

6. Miller, J. N. and Miller, J. C. (2000). Statistics and

Chemometrics in Analytical Chemistry, 4th edition, Prentice

Hall, Harlow, UK.

7. Meier, P. C. and Zund, R. E. (1993). Statistical Methods in

Analytical Chemistry, Wiley Interscience, New York.

Data Analysis with Excel

There has been a realization that much of the basic data manipulation

may be done in a spreadsheet, and for the present moment in the

21st century this means Microsoft Excel. The Data Analysis ToolPak
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provides many useful routines that perform the functions described

in this book. While we have leaned heavily on the use of spreadsheets

we have tried to not let them take over. An alternative approach is to

focus on the practical aspects of spreadsheets and teach data analysis

from this standpoint. The first book by de Levie listed below is the

most comprehensive book on Excel and contains some very useful

macros for analytical chemistry. Our friend Les Kirkup, a physicist,

has hedged his bets with Excel in the title but the book is a more

traditional approach to general scientific data analysis. The text by

Billo is now somewhat out of date, although it does cover a wider

range of chemical applications.

8. de Levie, R. (2001). How to Use Excel in Analytical

Chemistry and in General Scientific Data Analysis,

Cambridge University Press, Cambridge, UK.

9. de Levie, R. (2004). Advanced Excel for Scientific Data

Analysis, Oxford University Press, New York.

10. Kirkup, L. (2002). Data Analysis with Excel�. An Introduc-

tion for Physical Scientists, Cambridge University Press,

Cambridge, UK.

11. Billo, E. J. (1997). Excel for Chemists, Wiley-VCH,

New York.

Chemometrics

Having mastered basic data analysis the world of chemometrics is open

to you. Data comes in many shapes and sizes and modern

instrumentation gives ever more potential information. Chemometrics

provides the tools to unlock that information through a range of

mathematical and computational methods. The current ‘‘bible’’ of

chemometrics is the two-volume work by Massart et al., which covers

all of the material in our text plus much more. It is very direct and,

although having good examples, requires careful reading to under-

stand the principles. Despite the many and varied specialist chemo-

metrics books, we mention only one other, a recent book by Brereton,

which combines good explanation with a rigorous treatment.

12. Massart, D. L., Vandeginste, B. G. M., Buydens, J. M. C.,

de Jong, S., Lewi, P. J., and Smeyers-Verberke, J. (1997).
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Handbook of Chemometrics and Qualimetrics, Elsevier,

Amsterdam.

13. Brereton, R. G. (2003). Chemometrics: Data Analysis for the

Laboratory and Chemical Plant, JohnWiley, Chichester, UK.

Quality Control

There is a nice book from the Royal Society of Chemistry that is

directed at the statistics associated with quality assurance in chemical

laboratories.

14. Mullins, E. (2003). Statistics for the Quality Control

Chemistry Laboratory, Royal Society of Chemistry,

Cambridge, UK.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

absorbance,
breakdown of Beer-Lambert

Law, 141
ICPAES, 128
in enzyme assay of glucose,136, 149

in enzyme assay of glucose by
standard addition, 158

of method for calcium in milk, 145

accuracy, 2, 3, 11, 24, 31–5, 37
analysis of variance. See ANOVA
Analysis ToolPak. See Excel
ANOVA,

least significant difference (LSD),
106, 112

multiway, 3, 4, 6, 115–16, 125

one-way, 6, 101–5, 113, 117, 118
two-way, 15, 119, 123

arithmetic mean. See mean

assigned value, 8, 9, 40, 64, 84–5,
86, 87
see also true value.

average. See mean
AVERAGE(), 18, 80, 84, 92, 107

example, 45, 57, 107, 109, 138,
159, 163

bias, 2, 14, 25, 65, 97
see also error, systematic

blank measurement, 4, 130, 131, 141,
160, 163, 164

blood glucose, 23, 36

calculator,
linear regression, 131, 153
standard deviation, 11, 46

calibration, 23, 127–64
curve, 2, 4, 5, 7, 8, 19, 43,

133–4, 160
parameters of, 125–6, 131–41

(see also intercept; slope)

validity of, 136, 140–1, 154, 160
central limit theorem, 2, 47, 49
Chart Wizard, 147–8

chemometrics, 171
chromatography,

gas, 23, 25, 36, 43, 127
liquid, 101

coefficient of determination (r2), 152
coefficient of variation (CV), 7, 43
confidence interval, 2–3, 34, 82,

85–6, 92
about estimated x in calibration,

134–5, 139

about mean, 18, 45, 49–54, 56–61
about regression parameters, 19,

131, 133, 138–9, 154, 155,

157, 159
of difference of two means, 106,

(see LSD)
RACI titration competition, 37

confidence level, 11, 81, 114, 119
confidence limit, 3, 12, 18, 49, 51,

56–8, 68

correlation coefficient, 154
critical value, 69

in F-test, 111

in G-test, 78
in t-test, 86

cross-classified factor, 3, 116
cumulative frequency. See Rankit
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data,

multivariate, 129
normally distributed.

See distribution, normal

Data Analysis Toolpak.
See Excel

degrees of freedom, 3, 5, 8, 17, 18,

46, 52–60
in ANOVA, 103–4, 106,

108–9, 112
in calibration, 132–4, 151–3

in hypothesis testing, 83, 87,
90, 92–3

dependent variable, 3, 125, 128,

130–2, 148, 153–4
see also independent variable

detection limit.

See limit of detection
distribution,

log normal, 51

of the mean, 49
normal, 2, 7, 8, 9, 12, 33–4, 49–52,

54, 56, 63, 68–77, 81, 100
t-, 54, 56

Dixon’s Q-test, 7, 77

enzyme analysis, 91–2, 107, 136,
149, 157

error,
gross, 3, 25–6, 28, 31, 38
random, 7, 11, 25–6, 28, 30, 33
standard, of regression, 5, 8, 17, 19,

132, 134, 137, 152–5
systematic, 2, 5, 8, 11, 14, 25–7,

30, 40–1, 69–70, 82–6, 157

Type I, Type II, 9, 13–15, 69–72
error bars, 108, 114, 120
errors in significance tests, 9, 13–15,

69–72
Excel. See also individual function

names

Chart Wizard, 147–8
Data Analysis ToolPak, 97,

106, 170
functions, 17–19

factor,
effect of, 3, 105

influence, 4, 99, 100, 154

two-, in ANOVA, 15, 119, 123
FALSE, 148–9
false negative, 9, 69

see also error, Type II
false positive, 9, 69

see also error, Type I

FDIST(), 18, 87–8, 92, 97, 108, 153
example, 89, 109

FINV(), 18
fit for purpose, 3, 11, 37–8, 48, 72

fraud, scientific, 25
F-statistic, 87, 90, 92, 97

in ANOVA, 104

in calibration, 152
F-test, 3, 5, 88

in ANOVA, 106

gas chromatography, 23, 25, 36,

43, 127
Gaussian distribution. See

distribution

graph, 73–4, 119, 148
calibration, 2, 4, 5, 7, 8, 16, 19,

23, 43, 127–9, 140, 147–8,

133–4, 160
in Excel, 19, 74, 147–53
residual, 142–3, 145, 147–8, 154–5

Grubbs’s test, 3, 7, 13, 18, 77–81,
84–5, 166

heteroscedacity, 4, 17, 131–2, 143
histogram, 13, 28–30, 33, 77

homoscedacity, 4, 15, 131
HPLC, 101
hypothesis, null, 3, 6, 9, 13, 68–70,

80, 83–9, 91, 93, 95–7, 101,
106, 111, 121

hypothesis test, 67, 69
F-test, 3, 5, 88, 106

outlier. See Grubbs’s test
t-test, 1, 5, 6, 8, 9, 13–16, 86–7,

94–5, 97, 99, 106

independent variable, 3, 4, 9,
128–30, 132, 148, 153–4
see also dependent variable

INDEX(), 19, 153
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indication of the blank, 4, 130

influence factor, 4, 99, 100, 154
interaction effect, 4, 115, 117–18,

121–5

intercept, 3, 4, 7, 16–17, 19, 46, 130,
133, 138, 141, 149–50, 152, 155,
157, 160, 164

INTERCEPT(), 19, 148
International Organization for

Standardization. See ISO
International System of Units.

See SI
interquartile range, 5, 12, 18, 62–3

normalized, 5, 62–3

IQR. See interquartile range
ISO, 78, 161

least significant difference, 106, 112
least squares, 7, 132, 154
leverage, 132

limit of detection, 5, 160–4
limit of determination, 5, 160, 164
linear correlation coefficient.

See correlation coefficient

LINEST(), 16–17, 19, 148–53
example, 150–2, 158–9, 162

liquid chromatography, 101

lognormal distribution, 51
LSD, 106, 112

mean,
arithmetic, 2
correction for the, 2
grand, 3, 102, 104, 107–9

population, 4, 5, 11, 40–2, 47,
49–50, 58, 61, 63, 77, 86, 94

sample, 2, 5, 11, 41–2, 51, 86

standard deviation of the, 8, 12,
39, 46–51, 56, 61, 70

mean square, 5, 103–4, 108, 114–15,

125, 152–3
measurand, 6, 10, 23–4, 31
measurement, 6, 21, 31, 127

blank, 4, 130, 131, 141, 160,
163, 164

measurement result, 2–4, 6, 11, 14,
22, 24, 30, 32, 72, 102

measurement uncertainty, 3, 6, 23,
30–1, 38, 69, 94, 130, 132, 164

median, 12, 18, 62–4, 73

MEDIAN(), 18
multivariate calibration, 6

normal distribution. See distribution
normality,

assessment of, 72–7

NORMSINV(), 18, 54, 73–4
null hypothesis, 3, 6, 9, 13, 68–70,

80, 83–9, 91, 93, 95–7, 101,

106, 111, 121

one-way ANOVA. See ANOVA

outlier, 3, 6, 10, 12–13, 17–18, 25, 28,
43, 62–4, 67, 73, 75–6, 84–6, 166

in calibration, 128, 141–3, 155

testing for, 77–82

pdf. See probability density function
pipette,

calibration example, 118–24
uncertainty of volume, 26–8,

101, 105–6
population,

mean, 4, 5, 11, 40–2, 47, 49–50,
58, 61, 63, 77, 86, 94

standard deviation, 8, 9, 11–12,

18, 40, 42, 46–7, 52–3, 58, 63,
69, 87

precision, 2, 3, 5, 7, 10, 12, 14, 31–3,

35, 43–4, 48, 56, 61, 64–5, 67, 89,
104, 115, 148, 160, 164

in Excel calculations, 17

probability density function, 5–7, 33
p-value, 15, 111, 114, 118, 122–4

quantity, 7, 20, 22
quartile, 63

see also interquartile range
QUARTILE(), 18

r. See correlation coefficient

r2. See coefficient of determination
RACI titration competition, 27–30,

32, 43, 61–4, 73–5
random error. See error

Rankit, 13, 72–3, 77, 81
example, 74–7

Index 175

Page links created automatically - disregard ones formed not from complete page numbers



regression,

linear, 131, 142–3, 148–9, 151
(see also calibration)

standard deviation of. See

standard error of the regression
relative standard deviation, 4, 7, 12,

18, 43, 45, 59, 132, 164

repeatability, 5, 7, 10, 39, 64–5, 99,
104–6, 114

reproducibility, 7, 10, 39, 64–5
residual, 8, 17, 132, 141–2, 153

plot, 142–3, 145, 147–8, 154–5
sum of squares, 5, 103, 118, 125, 152

response,

blank, 160, 164
of an instrument, 4, 9, 23, 127,

129–31, 133–4, 136, 141–2, 145,

149, 155–7, 160–1, 164
linear, 5, 7, 9, 157

result of a measurement. See

measurement result
ROUND(), 60–1, 91
ROUNDDOWN(), 91, 93
rounding numbers.

See significant figures
RSD. See standard deviation

sy/x. See standard error of the
regression

sample,

statistical, 8, 40–2, 47, 52, 90–1,
97, 115

test material, 9, 25, 28, 33, 43,
45, 58, 81, 84–7, 92, 95–6, 102,

113, 116, 136, 139, 142, 154–64
sampling, 15, 105, 112–15
scientific notation, 35–6, 58

SI, 10
significance test, 3, 6, 9, 10, 13–14,

68–9, 78, 87, 101, 142

significant figures 11, 17, 35–7, 46,
55, 58

slope, 2, 3, 7, 8, 16, 19, 46, 124, 130,

133, 138, 148, 152, 155, 157
SLOPE(), 19, 148
standard deviation,

in Excel. See STDEV()
population, 8, 9, 11–12, 18, 40, 42,

46–7, 52–3, 58, 63, 69, 87

relative, 4, 7, 12, 18, 43, 45,

59, 132, 164
sample, 3, 7–9, 11–12, 35, 39,

42–3, 46–9, 51–4, 56, 59, 61,

64, 78
standard error of the regression, 2,

5, 8, 11, 14, 25–7, 30, 40–1,

69–70, 82–6, 157
STDEV(), 18, 57, 80, 84, 92

example, 45, 57
Student-t. See distribution; hypothesis

test; t-test; value, t-
sum of squares,

corrected, 3, 9, 103

due to the factor studied, 8,
103, 108

due to the regression, 153

total. See sum of squares,
corrected

systematic error. See error

TDIST(), 18, 55, 83–4, 93, 95, 97
example, 85, 93, 96

t-distribution, 54, 56
test. See hypothesis test
TINV(), 18–19, 55, 57–8, 60, 78,

112, 139, 165
example, 57, 61, 85, 138, 159

traceability, 2, 23, 38

TREND(), 19, 146, 148
Trendline, in Excel, 19, 140, 148
TRUE, 148–50
t-test, 1, 8, 9, 13–16, 86–7, 99, 106

mean against assigned value,
82–6

paired, 6, 14, 94–7
two means, 5, 14, 39, 90–4

TTEST(), 97
two-way ANOVA. See ANOVA

Type I error, 9, 13–15, 69–72
Type II error, 9, 13–15, 69–72

uncertainty. See measurement
uncertainty

units,

of calibration parameters, 16,
130, 132–3, 155, 157

in Excel calculations, 18
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of a measurement result, 22–3, 39

of statistical parameters, 11, 43
univariate calibration, 9, 128

valid analytical measurement, 32, 37
validation, method, 64
value,

assigned, 8, 9, 40, 64, 84–5, 86, 87
of the measurand, 2, 3, 9, 24, 30–1,

117, 127
p-, 15, 111, 114, 118, 122–4

t-, 3, 8, 9, 18, 52–5, 57–9, 61, 83–4,
90–1, 95, 106, 133–4, 139, 157

true, 2, 3, 5, 7–10, 24–5, 30–1,

41, 49–51
VAM. See valid analytical

measurement

variable,

dependent, 3, 125, 128, 130–2,
148, 153–4

independent, 3, 4, 9, 128–30,

132, 148, 153–4
variance, 9, 11, 33, 41–6

(see also standard deviation)

analysis of, 99–126
explained in calibration, 154
F-test for equality, 87–9
in t-test of means, 90–1, 97

Worksheet, 110, 121

z, 10, 34, 49–56, 59
in Rankit, 73–6
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