Methodology for Digital Money based on
General Cryptographic Tools*

Stefano D’Amiano! and Giovanni Di Crescenzo?

! Computer Science Department,
Cornell University, Ithaca, NY, USA

2 Dipartimento di Informatica ed Applicazioni,
Universita di Salerno, 84081 Baronissi (SA), Italy

Abstract. In this paper we investigate methodologies for off-line digital
cash using general cryptographic tools. First we give a way for off-line
spending of coins using non-interactive zero-knowledge proofs of knowl-
edge with preprocessing. Under this paradigm and using other general
cryptographic tools, we show how to obtain the property of dividability
of coins and give a technique for avoiding double spending of coins.
Chaum and Pedersen considered a model in which the Bank discovers
the author of a double spending of a coin immediately after that coin has
been deposited, and proved that in this model transferred coins grow in
size. We consider a different model and show how to obtain transferability
of coins without any increase in size.

1 Introduction

An electronic cash system is the digital equivalent of paper cash and can be
seen as a collection of protocols with one distinguished player called Bank. It
usually supports transactions of four different types, each one being the digital
equivalent of a real-life transaction: opening an account, withdrawing, spending
and depositing a coin.

An electronic cash system has the property of off-line spending of coins if the
Bank is not involved in the protocol for spending a coin. The main approaches to
the construction of an electronic cash system with the property of off-line spend-
ing are three and are based respectively on blind signatures, on zero-knowledge
proofs of knowledge and on oblivious authentication.

A blind signature scheme is a protocol between two parties in which a first
party (in a cash system, the Bank) signs a message received by the second party
(in a cash system, a user). The signature given is blind in the sense that the
first party does not get useful informations about the message signed. The first
blind signature scheme has been given in [4] using RSA. Other electronic cash
systems based on blind signatures are in [3, 12].

* Partially supported by Italian Ministry of University and Research (M.U.R.S.T.)
and by National Council for Research (C.N.R.).

Copyright (c) 1998, Springer-Verlag

157

An oblivious authentication scheme is a protocol between two parties in which
a first party (in a cash system, the Bank) issues to a second party (in a cash
system, a user) a digital document in which the user’s identity is embedded in
some way, together with a witness of this identity. The authentication given is
oblivious in the sense that the first party is not able at a later stage to link the
digital document to the time in which he has issued it. An oblivious authenti-
cation scheme has been given in [13] where it was implemented using one-way
functions plus a preprocessing stage and using RSA.

A non-interactive zero-knowledge proof system of knowledge with preprocess-
ing is a protocol between two parties in which, after an interactive preprocessing,
the first party (in a cash system, the spender) can send a single message to the
second party (in a cash system, the receiver) such that this message represents
a zero-knowledge proof (see [15]) that the first party knows a witness for the
truth of a certain statement. Such a system can be used by a spender to prove
to the receiver the knowledge of a signature of a coin released by the Bank. A
non-interactive zero-knowledge proof system of knowledge with preprocessing
based on general complexity assumptions and a cash system based on it have
been given in [6] (see also [21]).

Our results.

Taking the paper [6] as a starting point, we investigate methodologies for off-line
digital cash using general cryptographic tools. First we give a general way for off-
line spending of coins using non-interactive zero-knowledge proofs of knowledge
with preprocessing. Under this paradigm and using other general cryptographic
tools, we show how to obtain the property of dividability of coins and give a tech-
nique for avoiding multiple spending of coins even when the coin is transferred
to many users before being deposited to the Bank.

In [5] it is showed that transferred cash grows in size. The model considered
requires that the Bank discovers the author of a double spending of a coin
immediately after that coin has been deposited. By considering a different model,
we show how to obtain transferability of coins without any increase in their size.

Organization of the paper.

In Section 2 we give some notations and review some background cryptographic
notions that will be useful in our construction. In Section 3 we recall defini-
tion and properties of electronic cash systems. In Section 4 we give a general
way for off-line spending of coins using non-interactive zero-knowledge proofs of
knowledge with preprocessing. In Section 5 we show how to obtain the property
of dividability of coins. In Section 6 we give a technique for avoiding multiple
spending of coins. In Section 7 we give a sketch of proof of the correctness of our
construction.

2 Notations and basic tools

Notations. We use the symbols o and @ to denote respectively concatenation
and bitwise xor of binary strings. If S is a probability space, then “z — 5”7 de-

Copyright (c) 1998, Springer-Verlag

158

notes the algorithm which assigns to # an element randomly selected according
to S. If p(-, -, - - -) is a predicate, the notation Prob(z — S;y « T';.... p(z,y,---))
denotes the probability that p(z, y, - - -) will be true afier the ordered execution of
the algorithms z — S, y — 7, The notation {z — S;y «— T;---: (z,y,--)}
denotes the probability space over {(z,y, - -)} generated by the ordered execu-
tion of the algorithms 2 «— S, y « T, - --. By the writing (A,B) we denote a pair
of Turing machines A and B. By the writing (04,03)=(A,B)(i4,is) we denote an
execution of the protocol (A,B), where A’s input is 7,, B’s input is 43, A’s output
18 04 and B’s output is o03.

Basic tools.

Now we briefly review the concepts of pseudo-random functions, secure commit-
ment schemes, signature schemes and non-interactive zero-knowledge proofs of
knowledge with preprocessing, all playing an important role in our construction.

Pseudo-random Functions. The concept of pseudo-random function has been
introduced by Goldreich, Goldwasser, and Micali [14]. Intuitively, we can say that
a collection F' = {f,} of functions f, : {0,1}* — {0,1}*" is c-pseudo-random if
the output of a function randomly chosen from the collection and evaluated on
arguments chosen by a polynomial time algorithm cannot be distinguished from
the output of a truly random function. In [14] it is shown how to construct a c-
pseudo-random collection of function for any constant ¢ from any pseudo-random
generator. In the sequel, whenever the constant c is clear from the contest, we
will just say pseudo-random function.

Secure Commitment Schemes. Given the coin tosses s, r and a bit b, a secure
commitment scheme for the bit b is an efficient algorithm E such that: 1) it
is hard to compute a commitment which can be decommitted both as 0 and
as 1, and 2) it is computationally hard to distinguish commitments of 0 from
commitments of 1, where the string d = E(b, s, r) is a commitment to bit b, and
the strings s,r are a decommitment of d as the bit b. The secure commitment
scheme can be easily extended to any string z. If £ = by...b,, is an m-bit string
then E(z,s,r) is intended to consist of the m different commitments E(b;, s, r;),
it =1,...,m, where r = ry...rp, is an nm-bit string. In this case, it can be seen
that property 2 can be extended to any two strings. Also, we observe that if
d = E(z,s,r) and s and » are known, then the string 2 committed to by d can
be efficiently computed. This definition of commitment is inspired by the bit-
commitment protocol of Naor [18] which is based on any pseudorandom number
generator. The commitment is based on a random challenge given to the com-
mitter. For a random challenge and a random generator, there is no way to
cheat in a commit phase. Whenever a random reference string o is available, we
can implement the commitment scheme by applying Naor’s protocol by choos-
ing the generator (one way function) and the long-enough challenging string
non-interactively from some portion of the random string o (used just for this

purpose). All the commitments will, then, use this choice (for more details on
this, see [18]).

Copyright (c) 1998, Springer-Verlag

159

Signature Schemes. A signature scheme is a triple (G, S, V) of efficient algo-
rithms. G is a generation algorithm that on input a random string outputs a pair
(pk, sk), where pk is a public key and sk is a secret key. S is a signing algorithm
that on input a message m and the secret key sk, outputs a signature sigm. V
is a verification algorithm that on input a message m, the public key pk and the
signature sig,,, verifies that sig,, is a signature of message m computed using
the signing algorithm S. Two important properties of signature schemes are that
any party can verify the correctness of a signature of a given document, and that
no party can forge a signature for a new document, even after sceing arbitrary
signature samples adaptively chosen. Signature schemes have been introduced
by {10] and further elaborated by [16], [17], [19] and [22].

Zero-knowledge Proofs of Knowledge. Zero-knowledge proofs of membership
were introduced in [15]. Roughly speaking, a zero-knowledge proof of member-
ship is a two-party protocol in which one party, called the Prover, convinces the
second party, called the Verifier, that a certain input string = belongs o a lan-
guage L without releasing any additional knowledge. Subsequently, in [23] and
[11] the concept of a zero-knowledge proof of knowledge was considered. Here,
the Prover wants to convince the Verifier that he knows a witness w such that
the polynomial-time relation R(z,w) holds.

Non-Interactive Zero-Knowledge Proofs of Knowledge with Preprocessing.
The concept of a non-interactive zero-knowledge (NIZK) proof has been intro-
duced by [2] where it is proved that, if a random string readable by both the
prover and the verifier is available, it is possible for the prover to give non-
interactive zero-knowledge proofs for any NP language. (See [1] for formal defi-
nitions and proofs.) The definition of a NIZK proof of knowledge has been given
in [7] where it is shown a NIZK proof of knowledge for any polynomial-time
relation.

In a NIZK proof of knowledge with preprocessing, after an interactive prepro-
cessing stage, a prover can give any polynomial (in the length of the prepro-
cessing stage) number of NIZK proofs of knowledge to the verifier. Let R be a
polynomial-time relation and Ly be the language of strings = such that there
exists w for which R(z, w) = 1. Here we recall the definition of [6] of NIZK proof
system of knowledge with preprocessing for the relation R.

Definition1. Let P = (P, P;) and V = (V1, V2), where P; and V; are inter-
active probabilistic poly-time Turing machines, P, is a probabilistic poly-time
Turing machine, and V; is a deterministic poly-time Turing machine. The pair

(P,V) is a Non-Interactive Zero- Knowledge Proof System of Knowledge with Pre-
processing for the polynomial-time relation R if:

1. Completeness: For all constants ¢, all (z,w) € R and all sufficiently large »,
Prob({«, 8) — (Py, V1)(1*); (z, Proof) «— Pa(a, z,w) :

Vo(B, 2, Proof) =1) > 1 —1/n".

Copyright (c) 1998, Springer-Verlag

160

2. Soundness: There exists an extractor algorithm E = (E;, E3) such that for

all pairs P’ = (P, P}) of efficient algorithms, for all d and all sufficiently
large n,

Prob((a, 8) « (P{,E1)(1"); (z, Proof) — Pi(a);
w — E3(8, , Proof) : (2,w) € R) > (1 - n*d).
Prob((«, 8) «— (P, V1)(1™); (=, Proof) «— Py(c) : Va(B, z, Proof) = 1).

3. Zero-Knowledge: For each V', there exists an efficient algorithm S such that
for all zy,z»,... € Lg, for all efficient nonuniform algorithms D, for all
constants e, and all sufficiently large n,

|Prob(y «— Viewy (1%, 21,22,) : Din(y) = 1)—

Prob(y « S(1",21,22,---) : D1a(y) = 1)] < n~¢

where Viewyy/ (1", 21,2, -) is the view of V' in the executions of (P,V;)
and (P2,V3) on inputs z, zs,. ..

b

Essentially, we can think of (P1,Vy) as the protocol for the preprocessing stage
and of (P2,V3) as the (non-interactive) protocol for the proof stage.

A NIZK proof of knowledge with preprocessing has been given in [6]. An anony-
mous version of this protocol is in [9], where a verifier, after executing many
preprocessing protocols, is not able to associate the conversation of a proof pro-
tocol to any preprocessing protocol. We will use this version in the construction
of our electronic cash system.

3 Electronic cash systems

An Electronic Cash System is the digital counterpart of paper cash. It can be

seen as a set of cryptographic protocols where the players are a Bank B and a
collection of users {U;}.

An electronic cash system should allow the supportability of transactions and
operations representing the digital equivalent of (at least) all the real-life op-
erations, as opening an account; withdrawing, depositing and spending a coin.
Also, it can have some additional properties, as dividability of coins and off-line
spending of coins or any desired piece of coins. On the other hand, as real-life
coins are physical objects, they guarantee a satisfactory level of security to a
bank and to the users. Then an electronic cash system should provide (at least)
the same level of security guaranteed by its physical counterpart.

Our definition of electronic cash system is essentially based on those of [4,13].

Definition2. An off-line electronic cash system is a pair (S,Q), where § =
{Bank,Uy,...,U,} is a set of interactive probabilistic polynomial-time Tur-
ing machines, and Q is the fourtuple (OPEN, WITHDRAW, SPEND, DEPOSIT).
OPEN=0=(01,0,) is a protocol executed by the Bank and a user U; and allows
user U; to open an account; WITHDRAW=W=(W,W>) is a protocol executed by

Copyright (c) 1998, Springer-Verlag

161

the Bank and a user U; and allows user U; to withdraw a coin from his account;
SPEND=8=(S,,S;) is a protocol executed by two users U; and U; and allows
user U; to pass a coin to user U;; DEPOSIT=D=(D;,D,) is a protocol executed
by the Bank and a user U; and allows user U; to deposit a coin into his account.
Moreover, the pair (S, Q) satisfies the following requirements:

1. No forging: For all integers & > 0, given the transcripts of k protocols
Wi,..., Wy, for each efficient nonuniform algorithm Adwv, the probability that
Adv computes k + 1 coins ¢, ..., cxy1 such that for each i = 1,..., k+ 1,
S= (Adv,) (ci,-) = (-, accept) is negligible in n.

2. No tracing: For all integers k > 0, given the transcripts of k protocols
Wi,..,W; and of k protocols Dy,. .., Dy, for each efficient nonuniform algo-
rithm Adv, for each coin ¢ such that D=(-, Adv)(c,-) = (., accept) with
nonnegligible probability, for each i, € {1,...,n}, the probability that
Adv computes | € {i,j} such that W= (Adv,U;)(:,¢;) = (-, accept) or
S=(Us,-)(¢i,-) = (-, accept) is at most 1/2+ a term negligible in n.

3. No double spending: For each efficient nonuniform algorithm Adv, for each
pair (c1,c¢z) of coins such that S=(Adv,S;) (c;,) = (-, accept) for i = 1,2
with nonnegligible probability, there exists an efficient algorithm Detect such
that, given the transcripts of the execution of protocol S=(Adv,S;) on input
(¢i,-), for i = 1,2, outputs I D44, with nonnegligible probability in n.

4. No framing: For all integers k > 0, given the transcripts of k protocols
Wi,...,Wg and of k protocols Dy,...,Dy, for each efficient nonuniform algo-
rithm Adv, for each coin ¢, for each 7, j € {1,...,n}, the probability that Adv
computes ! € {3, j}, and ¢;, ¢ such that S=(U;,Uz) (c,-) = (-, ¢1 o accept)
and S=(U;,Ug) (¢,-) = (-, ¢z 0 accept), for some h,k € {1,...,n} is at most
1/2+ a term negligible in n.

Instead of giving a complete description of protocols OPEN, WITHDRAW, SPEND,
DeposIT, which would be hard to read, we divide the presentation into three
parts. First we give a way for off-line spending of coins using non-interactive
zero-knowledge proofs of knowledge with preprocessing. Then, using other gen-
eral cryptographic tools as pseudo-random functions and secure commitment
schemes, we show how to obtain dividability of coins. Finally, we give a tech-
nique based on signature schemes for avoiding multiple spending of coins even
when the coin is transferred to many users before being deposited to the Bank.

4 NIZK proofs of knowledge and digital money

In this section we show how non-interactive zero-knowledge proofs of knowl-
edge with preprocessing together with secure commitment schemes and signature
schemes give a methodology for obtaining off-line spendable digital money.

Copyright (c) 1998, Springer-Verlag

162

4.1 The cash system

Let E(-,-,-) be a secure commitment scheme and let (pkg,skp) be a pair of
a public and a secret key specifying the signature scheme (Gg, Sg, Vg) of the
Bank. Also, let (P,V) be the NIZK proof of knowledge with preprocessing for
any NP-complete language given in [9]; we denote by (P1,V1) its preprocessing
protocol and by (P3,V3) its proof protocol. Finally, let n be a security parameter,
o be a sufficiently long random reference string, and IDg, IDy be n-bit strings
denoting the identity of the Bank and of user U respectively.

We assume that at the beginning of the cash system all the above tools are
written on a public file PF. Then, in the protocol of the opening of an account,
a user U and the Bank establish some common information which will allow
user U to give non-interactive zero-knowledge proofs of knowledge at a later
stage. Essentially, they run the preprocessing stage of the given proof system of
knowledge.

Opening the account:

— Bank and U: run the protocol (P1,V;), where U runs algorithm P; and
the Bank runs algorithm V;.

The protocol for withdrawing a coin is made of two rounds: first the user U sends
its request to the Bank, and then the Bank sends its authorization to user U.
Informally, the protocol is the following: the user I/ randomly generates a string
¢ and sends to the Bank a commitment to ¢ computed using the secure commit-
ment scheme £. The Bank answers to U with a signature of the commitment,
computed using her signature scheme (Gg, Sp, Vg). The knowledge of this sig-
nature will represent her authorization to spend the coin c¢. More formally, the
protocol for withdrawing a coin is the following:

Withdrawing a coin:

— U: randomly choose an n-bit string ¢ and an n2-bit string r;
compute com = E(c, o, r) and send com to the Bank.

- Bank: compute sig.om = Sg(skg,com) and send sigeom to U.

— U:if Vg(pkp, com, sigeom) = 1 then accept the coin c.

Observe that the commitment to c is necessary, for otherwise the coin ¢ would
be later easily traceable from the Bank.

The protocol for spending a coin uses the non-interactive proof of knowledge.
To pass a coin ¢ to user Us, user U/; sends him the string ¢ and a non-interactive
zero-knowledge proof of knowledge of a commitment to ¢ and of a signature of
this commitment released by the Bank. If the proof is convincing, then user Us

accepts the coin ¢ from U;. More formally, the protocol for spending a coin is
the following:

Copyright (c) 1998, Springer-Verlag

163

Spending a coin:

— Ui let T be the statement “there exist r, comn, sigeom s. t. com = E(c,o,7)
and Ve(pkp, com, sigeom) = 17;
use algorithm Py, inputs », com, sig.om, and ¢ to prove statement T;
get as output Proof, a NIZK proof of knowledge of r, com, sig.om

such that 7" is true;

send ¢, Proof to Us.

— Us: use algorithm V5, statement 7" and o to verify Proof;

if all the verifications are successful then accept the coin c.

Observe that U; cannot directly pass sigeom to Us, for otherwise the coin ¢
would be later easily traceable from the Bank. On the other hand, he can prove
the knowledge of a valid commitment com of some coin ¢ and a valid signature
Stgcom for the commitment.

To transfer a coin ¢ to another user Us, user Us simply sends him the coin ¢ and
the string Proof received by ;.

The protocol to deposit a coin is the same than that for spending a coin, where
a user U plays the role of the spender and the Bank that of the receiver.

The technique of signing a commitment in the protocol for withdrawing a coin
and proving the knowledge of such a signature in the protocol for spending a
coin has been used also in [9] to obtain an anonymous version of the NIZK proof
system of knowledge with preprocessing given in [6].

5 Allowing dividability of coins

In this section we show how using the general paradigm for digital money de-
scribed in the previous section and the cryptographic tools of pseudo-random
functions and secure commitment schemes, it is possible to obtain the property
of dividability of coins. This property has been first given in [20], using quadratic
residues.

Let m be the (constant) number of different values that a coin can assume;
that is, the value of a coin will be 2%, for some k € {0,...,m — 1}. Also, let

F ={fs, |s| = n} a collection of pseudo-random functions, written on the public
file PF.

Consider the protocol for withdrawing a coin: the Bank has to issue coins in
such a way that at a later stage it will be possible for a user U; to divide the
coin withdrawn in smaller fractions and thus to spend an arbitrary piece of this
coin to a certain user U. Moreover, the user U, shall be able to do the same
with the coin received.

To this end, we require that each owner U; of a coin ¢ of value 2% for some
k € {0,...,m — 1}, can compute two coins 1 and ¢y of value 2¥~1, and so on
recursively. Thus, to the coin ¢ one can associate a complete binary tree T 3 of
height & in which each node is associated to a coin: that 18, the root is associated

to ¢, each of the 2 nodes at level 1 is associated to a coin of value 2%-1 and each

Copyright (c) 1998, Springer-Verlag

164

of the 2" nodes at level A is associated to a coin of value 2% for h=2,..., k.
In order to reach our goal, the tree T, ; has to satisfy the following properties:
a) before the execution of the spending protocol, U; is able to compute any coin
he desires in the tree whose root is associated to c (this allows user U; to divide
a coin owned into smaller fractions and thus pass any piece of it to a user U/y),
and b) after U; has given a coin d at level k to Uz, U, is able to compute any
coin he desires in the subtree whose root is associated to d (this allows U to do
the same with the coin received).

Let us informally describe how the protocol for withdrawing a coin is modified
in order to obtain the property of dividability of coins. In order to withdraw a
coin of value 2%, a user U; randomly chooses ¢ € {0,1}" and computes e; =
Jsi(e), ri = f5,(0), ¢i = e 0 524 0 82541 and d; = E(c;,0,1;), where the s;’s are
randomly chosen so that s; = s2; @ 8943, for i = 1,...,2% — 1. Then U, sends
to the Bank a (2F*! — 1)-tuple whose components represent the nodes of the
complete binary tree T ; of height k. Each node i at level h of T 1 is associated
to a commitment d; to the coin ¢; of value 2*~% that is represented by the
concatenation of the following strings: e¢; and two strings sq;, se;41 that allow to
decommit da;, dgi41 respectively. In such a way, for each coin ¢, the associated
tree T¢ r allows to compute all possible subdivisions of ¢ into coins of smaller
values. Then, for each i = 1,...,2¥+! — 1, U, receives from the Bank a signature
sigq, of the commitment d;, the index 7 and the value v; of the coin ¢;, where
sigq; is computed using the scheme (Gp, Sp, Vg). The knowledge of sigg, will
represent the authorization from the Bank to spend the coin ¢; of value v;.

In our scheme, given the random string r{, U; can compute the random strings
r; used for the commitment at each node i of the tree T, r, and thus obtain all
the coins that are possible subdivisions of the coin ¢ requested. Moreover, as we
will see later, to spend a part of ¢, say of value 2¥—* a second user Us gives only
the random string used for a commitment at a node at level h. It only remains
to describe how a user computes the random strings ; at each node i of a tree
using the random string r; associated to the root. The commitment d; in node
i of the tree Tt ; is computed using as random string r; = f;,(c), where o is the
random reference string written on the public file PF, f;, is a pseudo-random
function and s; is a random string committed in the node i. Then, given s;, a
user can compute r;, decommit the node ¢, and compute the indices sa;, 52i41
and the random strings rq;, r9;11. Thus, knowing a coin ¢; at a node ¢ allows to
compute coins cz; and ¢4 at its two children. On the other hand, knowing a
coin cg; at a node 2i does not allow to compute the coin ¢; at node i.

Now we formally describe the protocol for withdrawing a coin of value 2%.

Withdrawing a coin:

— U: randomly choose two n-bit strings ¢, s;
fori=1,...,2F -1,
randomly choose the n-bit strings sa; and compute s2;41 = 5; D 594,
fori=1,..., 21 1

Copyright (c) 1998, Springer-Verlag

165

compute e; = f,,(¢), ri = f,,(0), ¢; = €;082;089;41 and d; = E(e;,0,7;);
send the tree T, ; = (dy,...,dgx+1_1) to the Bank.
— Bank: fori=1,...,2F1 1
let v; be the value of coin d;;
compute sigg, = Sp(skp,d; 070 v;) and send sigy, to U.
~ Usfori=1,...,2¢1 -1,
if Vp(pkp,dioiowv;, sigs,) = 1 then accept the coin ¢;.

To deal with the case of dividability of coins, the spending protocol is modified
in the following way. A user U, has received an electronic coin ¢ of value 2% from
another user (or from the Bank) and wants to give a coin ¢; of value 2% to user
Us. User U, sends the string s;, the commitment d; and proof;, a NIZK proof
of knowledge of ¢;, of a signature of ¢, v; and d;. Also, user U; sends to user U,
all the strings s, d;, proof; that are associated to nodes in the subtree rooted
at ¢;. If all the proofs are convincing, then user U, accepts the coin ¢; from U;.
Formally, the protocol is:

Spending a coin:

— Uj: send ¢ to Usy;
for j € {1,...,2™ — 1} such that ¢; is associated to a descendant of c;,
let T; be the statement “there exist r;, stgq; such that
dj = E(fs;(c) © 835 0 83j41,0,75), 15 = fy,(c)
and Vp(pkp,d; o j o vj, sigq;) = 17;
use algorithm Pj, inputs r;, sig4;, and ¢ to prove statement Tj;
get as output Proof;, a NIZK proof of knowledge of 5, 5104,
such that 7; is true;
send s;,d;, Proof; to Us.
— Ua:for j € {1,...,2™ — 1} such that c; is associated to a descendant of ¢;,
use algorithm Vy, statement T; and o to verify Proof;;
if all the verifications are successful then accept the coin ¢.

The protocol to deposit a coin is similar to that for spending a coin, where a
user U plays the role of the spender and the Bank that of the receiver. The only
difference is that, instead of directly sending the commitment d;, user U sends a
non-interactive zero-knowledge proof of knowledge of d;, so that the Bank cannot
use d; to trace coin ¢; to the user which had originally withdrawn it.

6 Avoiding multiple spending of coins

In this section we consider the problem of avoiding multiple spending of coins
in the general paradigm for digital money described in the previous sections.

First of all we see the case in which dividability of coins is not allowed. To avoid
the double spending of a same coin, while spending a coin, a user should give

Copyright (c) 1998, Springer-Verlag

166

another message such that one of these messages gives no significant informa-
tion on the spender, but two of these messages for a same coin give sufficient
information to determine the author of the double spender. Nice solutions to
this problem have been given in [6, 13, 12]. As it is possible to use these ideas for
our general paradigm, we immediately get a way for avoiding double spending
in our setting by a simple application of results in the cited papers. However,
these ideas seem difficult to extend to the case of transferability of coins. Thus,
we give a different technique based on signatures which, even if working under
complexity assumptions (this is not the case for the cited techniques), allows to
determine the author of a double spending also in the case in which the coin
is transferred to many users before being deposited to the Bank. We observe
that we have a sequence of spending protocols followed by a deposit protocol,
and the Bank has to realize that a double spending has occurred only after the
deposit protocol. Thus, to allow the Bank to discover the author of such a fraud,
it must be the case that the user playing the role of spender of a certain coin has
to commit to this action in some sense. This can be done in the following way:
while spending a coin ¢, user U; also sends a signature of the coin and of the
identity of the receiver of that coin. This signature can be seen as a commitment
to the fact that user U, is passing the coin ¢ to user Us.

The modification to the protocols of previous sections are the following: while
opening an account, each user U generates a pair (pky,sky) for his signature
scheme (G, Su, V) and writes pky on the public file PF. Then, while passing
coin ¢ to user Us, user U; computes the signature dsigy, v, . = Sv,(sku,,c o
IDyr,) and sends it to Us. In this way, the Bank realizes that a double spending
has occurred as she receives two signatures from different users of a same coin.
Then, in order to discover the author of a double-spending, the bank runs the
procedure Detect. In this procedure the Bank broadcasts a message stating that
a double-spending of coin ¢ has occurred (for example using the public file). To
prove this, the Bank writes on the public file the two different signatures dsig. . .
of a same coin ¢. At this point each user U; that has received coin ¢ in some
spending protocols, sends to the Bank the signature dsigy, v, . received by some
user U; with this coin, thus proving that he has received the coin ¢ by user U;. In
this way each user involved in this phase will reveal an identity of another user
who has spent coin ¢ and thus the identity of the author of the double-spending
will be revealed twice to the Bank. More precisely, the procedure Detect is the
following;:

Procedure Detect (c, dsigy, dsiga).

— Bank: Broadcast a message in which it is stated that a double-spending has
occurred and users who have received the coin ¢ in some spending protocol
have to prove their honesty; write on the public file ¢, dsig1, dsiga.

— Each user Uj: If he has received the coin ¢ in some spending protocol then
send the signature dsig received with that coin.

Copyright (c) 1998, Springer-Verlag

167

— Bank: verify that the signatures received are properly computed by running
the corresponding verification algorithms; also, reconstruct the complete his-
tory of the coin ¢; if a user U sends a message not properly computed or the
identity of some user U is received from two different users then U is the
author of a double spending.

Let us now consider the case in which dividability of coins is allowed. In this
case a dishonest U could spend too many coins contained in the tree T, x, that
is a set of coins for which the sum of values is greater than 2*. To avoid this,
we impose that once a user has spent a coin ¢; in the tree T¢ r he cannot spend
coins ¢; in T,k such that ¢; and c; belong to a same path starting from the root
and finishing to a leave of T; ;. Thus we say that a coin c¢; is spendable by user
Uy if all paths from the root to any leave of T¢ r and containing ¢; do not contain
coins that have already been spent by U;. Also, we call inconsistent two coins
associated to nodes in a same path from the root to a leave of a tree Tek.

Now, let us consider the spending protocol. Again, a user U; has received an
electronic coin ¢ of value 2% from another user (or from the Bank) and wants to
give a coin ¢; of value 2% to user Us. The protocol is modified in the following
way: first of all user U; chooses ¢; as a spendable coin; then, while passing coin
¢; to user Uy, U; computes the signature dsigy, v,,e, = Su,(sky,,cn o IDy,),
for each ¢y in the subtree rooted at ¢;, and sends it to Us. Thus, a user spending
correctly two inconsistent coins will pass two different signatures of a same coin,
and so, also in this case, the Bank realizes that a double spending has occurred
as she receives two different signatures of a same coin. In order to determine the
author of such a double spending, the Bank proceeds exactly as before.

Remarks. Our solution allows transferability of coins without giving any increase
in the size of the coins transferred. To obtain this result, our protocol cannot
satisfy anonymous spending; that is, U;’s identity can be computed form the
message sent by Uy to U in the protocol for spending a coin. On the other hand,
if anonymous spending is required, the main result of {5] states that transferred
coins grow in size. The time users have to keep the signatures received in the
spending protocols depends from the implementation: for istance, if it is required
that each coin must be deposited before the end of the day in which it has been
issued, users keep their signatures for at most one day.

7 Proofs and properties

By properly putting together the procedures written in Sections 4,5, 6, 1t is easy
to construct the fourtuple @ =(OPEN, WITHDRAW, SPEND, DreposiT). Also,
let § = {Bank,U,...,U,}. In this section we give a sketch of proof that the
pair (8, Q) is an off-line electronic cash system and see that the electronic cash
system given satisfies also the properties of dividability and spending of pieces
of coins and off-line spending of coins. First, we show that the four requirements
of Definition 2 are satisfied.

Copyright (c) 1998, Springer-Verlag

168

No forging: Suppose that given the transcripts of k protocols Wy,...,W;, there
exists an efficient algorithm Adv which computes k& + 1 coins ¢y, ..., cg41 such
that with nonnegligible probability for each i = 1,...,k+1, S=(Adv,S3) (c;, ") =
(-, accept). Then the algorithm Adv can be used to efficiently compute a signature
of a given message m without the knowledge of the secret key skp in the following
way. On input m, generate coins ¢1,. .., ¢t and run S=(Adv,S2) on input (e;, -)
for i = 1,...,k + 1, where cx41 = m. The transcript of S=(Adv,S;) on input
(ck+1,-) is a valid proof of knowledge of the signature of m. This can be used
to contradict the properties of the proof system of knowledge (P,V) or of the
signature scheme (Gg, Sg, Vp).

No tracing: Suppose that given the transcripts of & protocols Wy,..., Wy and of
k protocols D4,.. ., Dy, there exists an efficient algorithm Adv which computes a
coin ¢ such that with probability at least 1/2 + a nonnegligible term, for some
i,j € {1,...,n} and I € {4,}, it holds that D=(D;,Adv)(c,-) = (,accept)
and W= (Adv,U;)(-,¢) = (-, accept); or D=(D1,Adv)(c,-) = (-,accept) and
S=(Ui,)(ci,-) = (-, accept). Then the algorithm Adv can be used to efficiently
compute with nonnegligible probability the identity of the withdrawer in some
withdrawing protocol or that of the spender in some spending protocol of coin
c. This contradicts the properties of the non-interactive zero-knowledge proof
system of knowledge used.

No double spending: Suppose that there exists an efficient nonuniform algorithm
Adv which computes a pair (c1,¢2) of coins such that S=(Adv,S;)(c;i,-) =
(-, accept) for i = 1,2. Then, a same coin is spent twice, and the Bank can realize
that a double spending has occurred and identify the author of the double spend-
ing by running the procedure Detect described in the previous section. In fact, if
a double spending has occurred, then a user I/ (by running algorithm Adv) has
given a same coin c, respectively to a user ¥, and another user Z;. Now, suppose
that V; has given ¢ to V3, and so on until some V}, has given it to the Bank. Anal-
ogously, suppose that Z; has given the same coin to Z, and so on until some Zj
has given it to the Bank (where the V; and the Z; are not necessarily different).
When running the procedure Detect, the Bank uses the signatures received to
completely reconstruct the history of the coin c. In particular, she computes the
two directed paths V,,Vi_1,...,V1,U and Z, Zx_y,..., Z1,U that have been
taken (in the opposite direction) by the coin ¢ during the spending protocols.
Thus she recognizes the author of the double-spending U from the fact that he
is the source of these two paths.

No framing: Suppose that given the transcripts of k protocols W1,. .., Wy and of
k protocols Dy,..., Dy, there exists an efficient algorithm Adv which computes
a coin ¢ such that for some i,j € {1,...,n}, computes | € {i,j} such that
S=(U;,Un)(c,-) = (-, ¢1 0 accept) and S=(U;,Ux)(c,-) = (-, ¢z o accept), for
some h,k € {1,...,n} with probability 1/2+ a term nonnegligible in n, where
c1 and ¢z are the messages sent by U; to Ui, and Uy, while spending coin ¢. Then
the algorithm Adv can be used to efficiently compute a signature of a given
message m without the knowledge of the secret key sky,. This contradicts the

Copyright (c) 1998, Springer-Verlag

169

properties of the signature scheme (Gy,, Su,, Vu,)-

Now we see that the electronic cash system given satisfies also the properties
of dividability of coins, spending of pieces of coins and off-line spending of coins.

Diwvidability of coins and spending of pieces of cotns: In our electronic cash sys-
tem a coin ¢; of value 2% is the concatenation of the following strings: a string
e¢; computed as f,,(c), where f;, is a pseudo-random function whose index s; is
known only to the owner of the coin ¢;; and two strings ss;, 52;41. These last
strings are the indices of the pseudo-random functions that generate the random
string r; = f,.(0), for j = 24,2i+1 used to compute the commitments dy;, da;41
respectively. Thus, given sa;, s2:41, the owner of ¢; can decommit ds;, do;41 and
compute the two coins ¢y, cai41 of value 2°~1 in which ¢; can be divided. By
repeating this process, given a coin ¢ of value 2%, any user U/; can obtain any

coin of value 2% as value, for h = 1,.. ., k, and thus spend any coin of value i,
fori=1,...,2%

Off-line spending of coins: This property is immediately obtained thanks to the
non-interactive proof used in the spending protocol of a coin.

Acknowledgements. Many thanks go to Alfredo De Santis, Tatsuaki Okamoto,
Giuseppe Persiano and Moti Yung for helpful discussions.

References

. M. Blum, A. De Santis, S. Micali, and G. Persiano, Non-Interactive Zero-
Knowledge, SIAM Journal of Computing, vol. 20, no. 6, Dec 1991, pp. 1084-1118.
2. M. Blum, P. Feldman, and S. Micali, Non-Interactive Zero-Knowledge and Appli-
cations, Proceedings of the 20th ACM Symposium on Theory of Computing, 1988,
pp. 103-112.

3. S. Brands, Untraceable Off-line Cash in Wallets with Observers, in “Advances in
Cryptology - CRYPTO 93”, vol. 773 of “Lecture Notes in Computer Science”,
Springer-Verlag, pp. 302-318.

4. D. Chaum, A. Fiat, and M. Naor, Untraceable Electronic Cash, in “Advances in
Cryptology - CRYPTO 88”, vol. 403 of “Lecture Notes in Computer Science”,
Springer-Verlag, pp. 319-327.

5. D. Chaum and T. Pedersen, Transferred Cash Grows in Size, in “Advances in
Cryptology - Eurocrypt 927, vol. 658 of “Lecture Notes in Computer Science”,
Springer-Verlag, pp. 390-407.

6. A. De Santis and G. Persiano, Communication Efficient Zero-Knowledge Proof of
knowledge (with Application to Electronic Cash), in Proceedings of STACS 92, pp.
449-460.

7. A. De Santis and G. Persiano, Zero-Knowledge Proofs of Knowledge Without In-
teraction, Proceedings of the 33rd IEEE Symposium on Foundations of Computer
Science, 1992, pp. 427-436.

8. G. Di Crescenzo, A Non-Interactive Electronic Cash System, in Proceedings of

Italian Conference on Algorithms and Complexity (CIAC 94), Springer Verlag.

—

Copyright (c) 1998, Springer-Verlag

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19,

20.

21.

22.

23.

170

G. Di Crescenzo, Anonymous NIZK Proofs of Knowledge with Preprocessing,
manuscript.

W. Diffie and M. E. Hellman, New Directions in Cryptography, IEEE Transaction
on Information Theory, vol. IT-22, no. 6, Nov. 1976. pp.644-654.

U. Feige, A. Fiat, and A. Shamir, Zero-knowledge Proofs of Identity, Journal of
Cryptology, vol. 1, 1988, pp. 77-94.

N. Ferguson, Single Term Off-Line Coins, in “Advances in Cryptology - Eurocrypt
93”, vol. 765 of “Lecture Notes in Computer Science”, Springer-Verlag, pp. 318-
328.

M. Franklin and M. Yung, Secure and Efficient Off-Line Digital Money, in Pro-
ceedings of ICALP 93, vol. 700 of “Lecture Notes in Computer Science”, Springer-
Verlag, pp. 265-276.

O. Goldreich, S. Goldwasser, and S. Micali, How to Construct Random Functions,
Journal of the Association for Computing Machinery, vol. 33, no. 4, 1986, pp.
792-807.

S. Goldwasser, S. Micali, and C. Rackoff, The Knowledge Complexzity of Interactive
Proof-Systems, SIAM Journal on Computing, vol. 18, n. 1, February 1989.

S. Goldwasser, S. Micali, and R. Rivest, A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attack, SIAM Journal of Computing, vol. 17, n. 2, April
1988, pp. 281-308.

S. Goldwasser and R. Ostrovsky, Invariant Signatures and Non-Interactive Zero-
Knowledge Proofs are Equivalent,in “Advances in Cryptology - CRYPTO 92, vol.
470 of “Lecture Notes in Computer Science”, Springer-Verlag, pp. 246-259.

M. Naor, Bit Commitment using Pseudo-randomness,in “Advances in Cryptology
- CRYPTO 897, vol. 435 of “Lecture Notes in Computer Science”, Springer-Verlag.
M. Naor and M. Yung, Universal One-way Hash Functions and their Cryptographic
Applications, Proceedings of 21st ACM Symposium on the Theory of Computing,
1989.

T. Okamoto and K. Ohta, Universal Electronic Cash, in “Advances in Cryptology
- CRYPTO 917, vol. 576 of “Lecture Notes in Computer Science”, Springer- Verlag,
pp. 324-337.

T. Okamoto and K. Ohta, Disposable Zero-knowledge Authentications and their Ap-
plications to Untraceable Electronic Cash, in “Advances in Cryptology - CRYPTO
89”7, vol. 435 of “Lecture Notes in Computer Science”, Springer-Verlag, pp. 481-
496.

J. Rompel, One-way Functions are Necessary and Sufficient for Secure Signatures,
Proceedings of the 22nd ACM Symposium on Theory of Computing, 1990, pp.
387-394.

M. Tompa and H. Woll, Random Self- Reducibility and Zero-knowledge Interactive
Proofs of Possession of Information, Proceedings of 28th Symposium on Founda-
tions of Computer Science, 1987, pp. 472-482.

Copyright (c) 1998, Springer-Verlag

