
Optimal Distance Labeling for Interval and
Circular-Arc Graphs

Cyril Gavoille1 and Christophe Paul2

1 LaBRI, Université Bordeaux I, gavoille@labri.fr
2 LIRMM, CRNS, paul@lirmm.fr

Abstract. In this paper we design a distance labeling scheme with
O(log n) bit labels for interval graphs and circular-arc graphs with n
vertices. The set of all the labels is constructible in O(n) time if the
interval representation of the graph is given and sorted. As a byproduct
we give a new and simpler O(n) space data-structure computable after
O(n) preprocessing time, and supporting constant worst-case time dis-
tance queries for interval and circular-arc graphs. These optimal bounds
improve the previous scheme of Katz, Katz, and Peleg (STACS ’00) by
a log n factor. To the best of our knowledge, the interval graph family is
the first hereditary family having 2Ω(n log n) unlabeled n-vertex graphs
and supporting a o(log2 n) bit distance labeling scheme.

Keywords: Data-structure, distance queries, labeling scheme, interval
graphs, circular-arc graphs

1 Introduction

Network representation plays an extensive role in the areas of distributed com-
puting and communication networks (including peer-to-peer protocols). The
main objective is to store useful information about the network (adjacency, dis-
tances, connectivity, etc.) and make it conveniently accessible.

This paper deals with distance representation based on assigning vertex la-
bels [25]. Formally, a distance labeling scheme for a graph family F is a pair
〈L, f〉 of functions such that L(v, G) is a binary label associated to the vertex v
in the graph G, and such that f(L(x, G), L(y, G)) returns the distance between
the vertices x and y in the graph G, for all x, y of G and every G ∈ F . The label-
ing scheme is said an �(n)-distance labeling if for every n-vertex graph G ∈ F ,
the length of the labels are no more than �(n) bits.

A labeling scheme using short labels is clearly a desirable property for a
graph, especially in the framework of distributing computing where individual
processor element of a network want to communicate with its neighbors but has
not enough local memory resources to store all the underlying topology of the
network. Schemes providing compact labels play an important role for localized
distributed data-structures (see [14] for a survey).

G. Di Battista and U. Zwick (Eds.): ESA 2003, LNCS 2832, pp. 254–265, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595.276 824.882] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Abbrechen
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Error
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

Optimal Distance Labeling for Interval and Circular-Arc Graphs 255

1.1 Related Works

In this framework, Peleg [24] introduced informative labeling schemes for graphs
and thereby captured a whole set of already known results. Among them implicit
representation or adjacency labeling [4,18] whose objective is only to decide
adjacency between two vertex labels, compact routing [11,29] whose objective
is to provide the first edge on a near-shortest path between the source and the
destination, nearest common ancestor and other related functions for trees [2,3,
1,19] (used for instance in XML file engine), flow and connectivity [20].

A first set of results about distance labeling can be found in [15]. It is shown,
for instance, that general n-vertex graphs enjoy an optimal Θ(n)-distance label-
ing, and trees an optimal Θ(log2 n)-distance labeling. It is also proved a lower
bound of Ω(

√
n) on the label length for bounded degree graphs, and of Ω(n1/3)

for planar graphs. There are still intriguing gap between upper and lower bounds
for these two latter results. The upper bound for planar graphs is O(

√
n log n),

coming from a more general result about graphs having small separators. Re-
lated works concern distance labeling schemes in dynamic tree networks [22],
and approximate distance labeling schemes [12,27,28].

Several efficient schemes have been designed for specific graph families: in-
terval and permutation graphs [21], distance hereditary graphs [13], bounded
tree-width graphs (or graphs with bounded vertex-separator), and more gener-
ally bounded clique-width graphs [9]. All support an O(log2 n)-distance labeling
scheme. Except for the two first families (interval and permutation graphs), these
schemes are known to be optimal as theses families include trees.

1.2 Our Results

An interval graph is a graph whose vertices are intervals of the real line and
whose edges are defined by the intersecting intervals. The interval graph family
is hereditary, i.e., a family closed under vertex deletion, and supports a straight-
forward adjacency labeling with O(log n) bit labels. Finding the complexity of
distance label length for interval graphs is a difficult problem. The best scheme
up to date is due to Katz, Katz, and Peleg [21]. It is based on the particular
shape of the separators (that are cliques) and uses O(log2 n) bit labels. The
Ω(log2 n) lower bound of [15] does not apply because interval graphs do not
contain trees. As shown in [18], information-theoretic lower bound coming from
the number of n-vertex graph in the family play an important role for the label
length. Kannan, Naor, and Rudich [18] conjecture that any hereditary family
containing no more than 2k(n)n graphs of n vertices enjoys a O(k(n))-adjacency
distance labeling, Ω(k(n)) being clearly a lower bound. Interval graphs, like trees
and several other families cited above (including bounded tree-width, bounded
clique-width, bounded genus graphs, etc.), are hereditary and support O(log n)
bit adjacency labels. However, there are much more interval graphs than all the
above mentioned graphs. Indeed, trees, bounded tree-width, bounded clique-
width, and bounded genus graphs possess only 2O(n) unlabeled n-vertex graphs.
As we will see later there are 2Ω(n log n) unlabeled interval graphs. Moreover, up

256 C. Gavoille and C. Paul

to now, no hereditary graph family is known to support an o(log2 n)-distance
labeling scheme1. All these remarks seem to plead in Katz-Katz-Peleg’s favor
with their O(log2 n)-distance labeling scheme [21].

Surprisingly, we show that the interval graph family enjoys a 5 log n-distance
labeling scheme2, and that any �(n)-distance labeling on this family requires
�(n) � 3 log n − O(log log n). The lower bound derives from an new estimate
of the number of interval graphs. We also show that proper interval graphs, a
sub-family of interval graphs, enjoy a 2 log n-distance labeling, and we prove an
optimal lower bound of 2 log n − O(log log n).

Moreover, once the labels have been assigned, the distance computation from
the labels takes a constant number of additions and comparisons on O(log n) bit
integers. Even more interesting, the preprocessing time to set all the labels runs
optimally in O(n) time, once the sorted list of intervals of the graph is done.
Our scheme extends to circular-arc graphs, a natural generalization of interval
graphs, where the same bounds apply.

At this step, it is worth to remark that any �(n)-distance labeling scheme
on a family F converts trivially into a non-distributed data-structure for F of
O(�(n) n/ log n) space supporting distance queries within the same time com-
plexity, being assumed that a cell of space can store Ω(log n) bits of data.
Therefore, our result implies that interval graphs (and circular-arc graphs) have
a O(n) space data-structure, constructible in O(n) time, supporting constant
time distance queries.

This latter formulation implies the result of Chen et al. [6]. However, we
highlight that both approaches differ in essence. Their technique consists in
building a one-to-one mapping from the vertices of the input graph to the nodes
of a rooted tree, say T . Then, distances are computed as follows. Let l(v) be the
level of v in T (i.e., the distance from the root), and let A(i, v) be the i-th ancestor
of v (i.e., the i-th node on the path from v to the root). The distance d between
x and y is computed by: if l(x) > l(y)+1 then d = l(x)− l(y)−1+d1(z, x) where
z = A(l(x) − l(y) − 1, x), and where d1(z, x) is the distance between two nodes
whose levels differ by at most 1. The distance d1 is 1, 2 or 3 and is computed by a
case analysis with the interval representation of the involved vertices. Answering
query is mainly based on the efficient implementation of level ancestor queries
on trees (to compute z) given by Berkman and Vishkin [5]. However, this clever
scheme cannot be converted into a distributed data-structure as ours for the
following reason. As the tree has to support level ancestor queries, it implies
that any node, if represented with a local label, can extract any of its ancestors
with its level. In particular, x and y can extract from their label their nearest
common ancestor and its level, so x and y can compute their distance in T . By

1 It is not difficult to construct a family of diameter two graphs whose adjacency can be
decided with O(log n) bit labels (some bipartite graphs for instance), so supporting
an O(log n) distance labeling scheme. However, “diameter two” is not a hereditary
property.

2 In this paper all the logarithms are in based two.

Optimal Distance Labeling for Interval and Circular-Arc Graphs 257

the lower bound of [15], this cannot be done in less than Ω(log2 n) bit labels.
So, access to a global data-structure is inherent to the Chen et al. [6] approach.

1.3 Outline of the Paper

Let us sketch our technique (due to space limitation proofs have been removed
from this extended abstract). The key of our scheme is a reduction to proper
interval graphs, namely the family of graphs having an interval representation
with only proper intervals, i.e., with no strictly included intervals. We carefully
add edges to the input graph (by extending the length of non-proper intervals) to
obtain a proper interval graph. Distances in the original graph can be retrieved
from the label of two vertices of the proper interval graph and from the original
interval (see Section 3).

Therefore, the heart of our scheme is based on an efficient labeling of proper
interval graphs, and it is presented in Section 2. First, an integer λ(x) is associ-
ated to every vertex x with the property that the distance d between x and y is:
d = λ(y)−λ(x)+δ(x, y), if λ(y) � λ(x), and where δ(x, y) = 0 or 1. Another key
property of λ is that the binary relation δ has the structure of a 2-dimensional
poset (thus adjacency is feasible within two linear extensions). Actually, we show
how to assign in O(n) time a number π(x) to every x such that δ(x, y) = 1 iff
π(x) > π(y). It gives a 2 log n-distance labeling for proper interval graphs (with
constant time decoding), and this is optimal from the lower bound presented in
Section 5.

For general interval graphs we construct a 5 log n-distance labeling scheme
(see Section 3). In Section 5, we also prove a lower bound of 3 log n−O(log log n).
A byproduct of our counting argument used for the lower bound, is a new asymp-
totic of 22n log n−o(n log n) on the number of labeled n-vertex interval graphs, solv-
ing an open problem of the 1980’s [16].

In Section 4 we show how to reduce distance labeling scheme on circular-
arc graphs to interval graphs by “unrolling” twice the input circular-arc graph.
Distances can be recovered by doubling the label length.

2 A Scheme for Proper Interval Graphs

For all vertices x, y of a graph G, we denote by distG(x, y) distance between x
and y in G.

Proper interval graphs form a sub-family of interval graphs. A layout of an
interval graph is proper if there is no intervals strictly contained in another one,
i.e., there are no intervals [a, b] and [c, d] with a < c < d < b. A proper interval
graph is an interval graph having a proper layout.

There are several well known characterizations of this sub-family: G is a
proper interval graph iff G is an interval graph without any induced K1,3 [30]; G
is a proper interval graph iff it has an interval representation using unit length
interval [26]. The layout of an interval graph, and a proper layout of a proper
interval graph can be computed in linear time [8,10,17].

258 C. Gavoille and C. Paul

From now on we consider that the input graph G = (V, E), a connected, un-
weighted and n-vertex proper interval graph, is given by a proper layout I. If the
layout is not proper, we use the general scheme described in Section 3. For every
vertex x, we denote by l(x) and r(x) respectively the left and the right bound-
ary of the interval I(x). As done in [6], the intervals are assumed to be sorted
according to the left boundary, breaking the tie with increasing right boundary.
We will also assume that the 2n boundaries are pairwise distinct. If not, it is not
difficult to see that in O(n) time one can scan all the boundaries from minx l(x)
to maxx r(x) and compute another layout of G that is still proper, and with
sorted and distinct boundaries3.

Let x0 be the vertex with minimum right boundary. The base-path [x0, . . . , xk]
is the sequence of vertices such that ∀i > 0, xi is the neighbor of xi−1 whose
r(xi) is maximum. The layer partition V1, . . . , Vk is defined by:

Vi = {v | l(v) < r(xi−1)} \
⋃

0�j<i

Vj with V0 = ∅.

Given the sorted list of intervals, the base-path and the layer partition can be

1
2

5
4

2 4

1 3 5

6
7

8

9
10

11

6
7
8

9
10
11

1
2

3 5
4 7

6 9
10

118

3

Fig. 1. A proper interval graph with an interval representation and the associated layer
partition. The base-path is in bold.

computed in O(n) time. Let λ(x) denote the unique index i such that x ∈ Vi.
Let H be the digraph on the vertex set V composed of all the arcs xy such that
λ(x) < λ(y) and (x, y) ∈ E. Note that H is a directed acyclic graph. Let Ht

denote the transitive closure of H (since H is acyclic, Ht defines a poset), and
let adjHt(x, y) be the boolean such that adjHt(x, y) = 1 iff xy is an arc of Ht.

The scheme we propose is based on the following theorem:
3 Another technical assumption it that all the boundaries of the layout are positive

integers bounded by some polynomial of n, so that boundaries can be manipulated in
constant time on RAM-word computers. Note that recognizing linear time algorithms
produce such layout.

Optimal Distance Labeling for Interval and Circular-Arc Graphs 259

Theorem 1. For all distinct vertices x and y such that λ(x) � λ(y),

distG(x, y) = λ(y) − λ(x) + 1 − adjHt(x, y) (1)

Therefore to compute the distance between any pair of vertices we have to
test whether adjHt(x, y) = 1. For this reason Ht can be considered as the graph
of errors associated to the layer partition.

Theorem 2. There exists a linear ordering π of the vertices, constructible in
O(n) time, such that:

adjHt(x, y) = 1 iff λ(x) < λ(y) and π(y) < π(x) (2)

Proof. The ordering π is defined by the following simple algorithm:

π is the pop ordering of a DFS on H using l(x) as a priority rule.

This algorithm can be seen as an elimination ordering of the vertices such that at
each step, the sink of the subgraph of H induced by the non-eliminated vertices,
that has a minimum left bound, is removed. On the example of Fig. 1, we obtain
the following ordering:

vertex x 1 9 6 4 2 10 7 11 8 5 3
π(x) 1 2 3 4 5 6 7 8 9 10 11

This algorithm can be implemented to run in O(n) time. First the digraph
H can be stored in O(n) space. The set of vertices are sorted in an array with
respect to the left boundaries of their interval. Notice that the layers and also
the neighborhood in H of any vertex appear consecutively in this array. So each
vertex is associated to its first and last vertex in the array.

The priority rule implies that when a vertex v is popped by the algorithm,
any vertex u of the same layer such that l(u) < l(v) has already been popped.
It means that when a vertex is at the top of the stack during the DFS, we can
find in O(1) the next vertex to be pushed if the layer of each vertex is also stored
and for each layer, the index of the last popped vertex is maintained.

Let us now prove the correctness of Eq. (2).

⇒ It is easy to check that if there is an arc from x to y in Ht, then λ(x) < λ(y)
and π(y) < π(x).

⇐ So let x and y be two non-adjacent vertices in Ht such that λ(x) < λ(y) (it
implies that l(x) < l(y)).
We first show that ∀z such that xz ∈ E(Ht), then yz ∈ E(Ht). If λ(x) =
λ(y), yz exists since l(x) < l(y). So assume that λ(x) < λ(y). If xz exists
but not yz, then we can enlighten a K1,3 containing x, y and z with a vertex
v ∈ Vλ(z) that belongs to a shortest x, z-path in G: contradiction, G is a
proper interval graph.
By the way at the step y becomes a sink, there remains no vertex z such
that λ(y) < λ(z) and xz ∈ E(Ht). If x is also a sink, then by the priority
rule π(x) < π(y). If it is not the case, then λ(x) < λ(y) and there exists a

260 C. Gavoille and C. Paul

sink x′ such that xx′ ∈ E(Ht) and λ(x′) � λ(y). Notice that l(x′) < l(y).
Otherwise we would have λ(x′) = λ(y) and the existence of a shortest x, x′-
path of length λ(x′)−λ(x) (see Theorem 1), would implies the existence of a
x, y-path of same length. Therefore xy would be an arc of Ht: contradiction.
Since l(x′) < l(y), the priority rule implies that x′ is popped before y.
Recursively applying this argument, we can prove that x will be popped
before y by the algorithm and so π(y) < π(x). �

The dimension of a poset P is the minimum number d of linear orderings
ρ1, . . . , ρd such that x <P y iff x <ρi y for every i. The next corollary follows
immediately from Theorem 2.

Corollary 1. The graph of errors Ht is a poset of dimension two.

To each vertex x of G, we assign the label L(x, G) = 〈λ(x), π(x)〉. The dis-
tance decoder is given by Eq. (1) and (2). Clearly, λ(x), π(x) ∈ {1, . . . , n}, so:

Theorem 3. The family of n-vertex proper interval graphs enjoys a distance
labeling scheme using labels of length 2 �log n	, and the distance decoder has
constant time complexity. Moreover, given the sorted list of intervals, all the
labels can be computed in O(n) time.

3 A Scheme for Interval Graphs

In this section, we assume that G = (V, E) is an interval graph, connected and
unweighted, and that a layout I of G is given by a sorted list of intervals. Up
to an O(n) preprocessing time, we assume that interval boundaries are pairwise
distinct and taken from the set {1, . . . , 2n}.

From I we will build a family of intervals I ′ that is the layout of a proper
interval graph G′ = (V, E′) so that the distance in G can be retrieved from the
distances in G′ plus some additional information. From now l(x) and r(x) will
denote the boundaries of I(x), and l

′(x) and r
′(x) the boundaries of I ′(x).

Let x ∈ V such that I(x) ⊂ I(y) for some vertex y, then the enclosed
neighbor of x, denoted by Ne(x), is the neighbor of x such that I(x) ⊂ I(Ne(x))
and such that r(Ne(x)) is maximum. As the boundaries of I are pairwise disjoint,
the enclosed neighbor, if it exists, is unique for every vertex. The layout I ′ is
obtained from I as follows: if x has an enclosed neighbor then we set I ′(x) =
[l(x),r(Ne(x))], and we set I ′(x) = I(x) otherwise. Let us remark:

1. l
′(x) = l(x) and r

′(x) � r(x);
2. by maximality of its right boundary, I(Ne(x)) = I ′(Ne(x)); and
3. G is a subgraph of G′, and thus E ⊆ E′.

Lemma 1. The layout I ′ of G′ is proper.

Note that in the above transformation, the proper layout obtained may have
I ′(x) ⊂ I ′(y) and r

′(x) = r
′(y). However I ′ is a proper layout, so the scheme of

Section 2 applies. We say that a vertex x has been extended in G′ if r
′(x) > r(x).

Optimal Distance Labeling for Interval and Circular-Arc Graphs 261

Lemma 2. If x and y are two vertices such that r(x) = r
′(x) � r(y). Then

distG(x, y) = distG′(x, y).

For any vertex x, define the maximum neighbor of x, denoted by Nm(x), as
the neighbor of x such that r(Nm(x)) is maximum. Like enclosed neighbors, max-
imum neighbors are not extended in G′. Otherwise we would have I(Nm(x)) ⊂
I(v) for some vertex v and r(Nm(x)) < r(v). Since I(x) ∩ I(Nm(x))
= ∅, we
also have I(x)∩I(v)
= ∅. Since r(Nm(x)) < r(v), by definition, we should have
v = Nm(x): contradiction.

Theorem 4. Let x and y be two vertices such that r(x) � r(y). Then,

distG(x, y) = distG′(Nm(x), y) + 1 − adjG(x, y) . (3)

Eq. (3) directly gives a distance labeling scheme for the family of interval
graphs. To each vertex, we have to associate L(x, G):

– r(x) and l(x) the boundaries of I(x);
– L(x, G′) and L(Nm(x), G′), the labels of x and Nm(x) in the proper interval

graph G′.

The distance decoder is the function described in Eq. (3). It uses the distance
decoder of proper interval graph given in the previous section. These labels,
composed a priori of 6 integers, can be compacted. Indeed, there is no possible
edge in G between any pair of vertices that do not belong to the same or con-
secutive layers of the layer partition. Thus, we have either λ(Nm(x)) = λ(x) or
λ(Nm(x)) = λ(x)+1. We do not need to store the pair 〈λ(x), λ(Nm(x))〉. A single
bit, say b(x), suffices to recover the second part of this information. Therefore
the label of a vertex x is:

L(x, G) = 〈l(x),r(x), λ(x), π(x), b(x), π(Nm(x))〉

As 1 � l(x) < r(x) � 2n, 2 �log n	 + 2 bits suffice two store the two first
integers. The four next fields can be stored with 3 �log n	 + 1 bits, summing up
to 5 �log n	 + 3. Since all the labels in proper interval graphs can be computed
in O(n), and since G′ can be obtained within the same complexity, all the labels
of G can be computed in O(n) time.

Theorem 5. The family of n-vertex interval graphs enjoys a distance labeling
scheme using labels of length 5 �log n	+3, and the distance decoder has constant
time complexity. Moreover, given the sorted list of intervals, all the labels can be
computed in O(n) time.

4 A Scheme for Circular-Arc Graphs

Circular-arc graphs are a natural generalization of interval graphs, in which
vertices correspond to arcs of a circle rather than intervals on the real line.

262 C. Gavoille and C. Paul

Circular-arc graphs can be recognized in O(n2) time [23]. Consider an circular-
arc graph G. We can associate to every vertex x of G a range I(x) = [θr(x), θl(x)]
of angles where θr(x) and θl(x) are taken clockwise in [0, 2π). The range I(x)
can be seen as a “cyclic” interval in which [θr(x), θl(x)] for θr(x) > θl(x) stands
for [θr(x), 2π) ∪ [0, θl(x)]. The vertices x and y are adjacent if I(x) ∩ I(y)
= ∅.

Let x1, . . . , xn the vertices of G ordered such that θr(xi) � θr(xi+1) for every
i ∈ {1, . . . , n − 1}. We associate to G a new intersection graph G̃ with vertex set
V (G̃) =

⋃
1�i�n

{
I(x1

i), I(x2
i)

}
where, for every 1 � i � n:

I(x1
i) =

{
[θr(xi), θl(xi)] if θr(xi) � θl(xi)
[θr(xi), θl(xi) + 2π] if θr(xi) > θl(xi)

I(x2
i) =

{
[θr(xi) + 2π, θl(xi) + 2π] if θr(xi) � θl(xi)
[θr(xi) + 2π, θl(xi) + 4π] if θr(xi) > θl(xi)

Intuitively, G̃ is obtained by unrolling twice the graph G. To form G̃, we list
all the intervals of G according to increasing angle θr, starting from the arc of
x1, and clockwise turning two rounds. So, each vertex xi in G appears twice in
G̃ as x1

i and x2
i . We check that G̃ is an interval graph.

Lemma 3. For every i < j, distG(xi, xj) = min
{
distG̃(x1

i , x
1
j), distG̃(x1

j , x
2
i)

}
.

Therefore, a distance labeling scheme for interval graphs can be transformed
into a scheme for circular-arc graph family by doubling the number of vertices,
and the label length.

Theorem 6. The family of n-vertex circular-arc graphs enjoys a distance label-
ing scheme using labels of length O(log n), and the distance decoder has constant
time complexity. Moreover, given the sorted list of intervals, all the labels can be
computed in O(n) time.

5 Lower Bounds

For any graph family F , let Fn denote the set of graphs of F having at most n
vertices. Before proving the main results of this section, we need some prelimi-
naries.

An α-graph, for integer α � 1, is a graph G having a pair of vertices (l, r),
possibly with l = r, such that l and r are of eccentricity at most α. Let H =
(G0, G1, . . . , Gk) be a sequence of α-graphs, and let (li, ri) denote the pair of
vertices that defines the α-graph Gi, for i ∈ {0, . . . , k}. For each non-null integer
sequence W = (w1, . . . , wk), we denote by HW the graph obtained by attaching
a path of length wi between the vertices ri−1 and li, for every i ∈ {1, . . . , k} (see
Fig. 2).

A sub-family H ⊂ F of graphs is α-linkable if H consists only of α-graphs
and if HW ∈ F for every graph sequence H of H and every non-null integer
sequence W .

Optimal Distance Labeling for Interval and Circular-Arc Graphs 263

Gi−1G0 Gi Gkwi wkw1

li rili−1 ri−1l0 r0 lk rk

Fig. 2. Linking a sequence of α-graphs.

The following lemma shows a lower bound on the length of the labels used by
a distance labeling scheme on any graph family having an α-linkable sub-family.
The bound is related to the number of labeled graphs contained in the sub-family.
As we will see later, the interval graph family supports a large 1-linkable sub-
family (we mean large w.r.t. n), and the proper interval graph family supports
large 2-linkable sub-family.

Lemma 4. Let F be any graph family, and let F (N) be the number of labeled
N -vertex graphs of an α-linkable sub-family of F . Then, every distance labeling
scheme on Fn requires a label of length at least 1

N log F (N) + log N − 9, where
N = �n/(α log n)�.

Let us sketch the proof of this lemma. We use a sequence H of Θ(log n)
α-graphs Gi taken from an arbitrary α-linkable sub-family, each with N =
Θ(n/ log n) vertices, and spaced with paths of length Θ(n/ log n). Intuitively,
the term 1

N log F (N) measures the minimum label length required to decide
whether the distance between any two vertices of a same Gi’s is one or two.
And the term log N denotes the minimum label length required to compute the
distance between two vertices of consecutive Gi’s. The difficulty is to show that
some vertices require both information, observing that one can distribute in-
formation on the vertices in a non trivial way. For instance, the two extremity
vertices of a path of length wi does not require log wi bit labels, but only 1

2 log wi

bits: each extremity can store one half of the binary word representing wi, and
merge their label for a distance query.

Let I(n) be the number of labeled interval graphs with n vertices. At every
labeled interval graph G with n − 1 vertices, one can associated a new labeled
graph G′ obtained by attaching a vertex r, labeled n, to all the vertices of G.
As the extra vertex is labeled n, all the associated labeled graphs are distinct,
and thus their number is at least I(n − 1). The graph G′ is an interval 1-graph,
choosing l = r. Clearly, such interval 1-graphs can be linked to form an interval
graph. It turns out that interval graphs have a 1-linkable sub-family with at least
I(n − 1) graphs of n vertices.

To get a lower bound on the label length for distance labeling on interval
graphs, we can apply Lemma 4 with I(n). However, computing I(n) is an un-
solved graph-enumeration problem. Cohen, Komlós and Muller gave in [7] the
probability p(n, m) that a labeled n-vertex m-edge random graph is an inter-
val graph under conditions on m. They have computed p(n, m) for m < 4, and
showed that p(n, m) = exp

(−32c6/3
)
, where limn→+∞ m/n5/6 = c. As the to-

tal number of labeled n-vertex m-edge graphs is
((n

2)
m

)
, it follows a formula of

264 C. Gavoille and C. Paul

p(n, m) ·((n
2)
m

)
for the number of labeled interval graphs with m = Θ(n5/6) edges.

Unfortunately, using this formula it turns out that I(n) � 2Ω(n5/6 log n) = 2o(n),
a too weak lower bound for our needs. The exact number of interval graphs is
given up to 30 vertices in [16]. Actually, the generating functions for interval
and proper interval graphs (labeled and unlabeled) are known [16], but only an
asymptotic of 22n+o(n) for unlabeled proper interval graphs can be estimated
from these equations. In conclusion Hanlon [16] left open to know whether the
asymptotic on the number of unlabeled interval graphs is 2O(n) or 2Ω(n log n).

As the number of labeled interval graphs is clearly at least n! = 2(1−o(1))n log n

(just consider a labeled path), the open question of Hanlon is to know whether
I(n) = 2(c−o(1))n log n for some constant c > 1. Hereafter we show that c = 2,
which is optimal.

Theorem 7. The number I(n) of labeled n-vertex connected interval graphs sat-
isfies 1

n log I(n) � 2 log n − log log n − O(1). It follows that there are 2Ω(n log n)

unlabeled n-vertex interval graphs.

We have seen that the interval graph family has a 1-linkable sub-family with
at least I(n − 1) graphs of n vertices. By Theorem 7 and Lemma 4, we have:

Theorem 8. Any distance labeling scheme on the family of n-vertex interval
graphs requires a label of length at least 3 log n − 4 log log n.

Using a construction of a 2-linkable sub-family of proper interval graphs with
at least (n − 2)! graphs of n vertices, one can also show:

Theorem 9. Any distance labeling scheme on the family of n-vertex proper in-
terval graphs requires a label of length at least 2 log n − 2 log log n − O(1).

References

1. S. Abiteboul, H. Kaplan, and T. Milo, Compact labeling schemes for ancestor
queries, in 12th Symp. on Discrete Algorithms (SODA), 2001, pp. 547–556.

2. S. Alstrup, P. Bille, and T. Rauhe, Labeling schemes for small distances in
trees, in 15th Symp. on Discrete Algorithms (SODA), 2003.

3. S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe, Nearest common ances-
tors: A survey and a new distributed algorithm, in 14th ACM Symp. on Parallel
Algorithms and Architecture (SPAA), Aug. 2002, pp. 258–264.

4. S. Alstrup and T. Rauhe, Small induced-universal graphs and compact implicit
graph representations, in 43rd IEEE Symp. on Foundations of Computer Science
(FOCS), 2002, pp. 53–62.

5. O. Berkman and U. Vishkin, Finding level-ancestors in trees, J. of Computer
and System Sciences, 48 (1994), pp. 214–230.

6. D. Z. Chen, D. Lee, R. Sridhar, and C. N. Sekharan, Solving the all-pair
shortest path query problem on interval and circular-arc graphs, Networks, 31
(1998), pp. 249–257.

7. J. E. Cohen, J. Komlós, and T. Mueller, The probability of an interval graph,
and why it matters, Proc. of Symposia in Pure Mathematics, 34 (1979), pp. 97–115.

Optimal Distance Labeling for Interval and Circular-Arc Graphs 265

8. D. Corneil, H. Kim, S. Natarajan, S. Olariu, and A. Sprague, Simple linear
time algorithm of unit interval graphs, Info. Proces. Letters, 55 (1995), pp. 99–104.

9. B. Courcelle and R. Vanicat, Query efficient implementation of graphs of
bounded clique width, Discrete Applied Mathematics, (2001). To appear.

10. C. de Figueiredo Herrera, J. Meidanis, and C. Picinin de Mello, A linear-
time algorithm for proper interval recognition, Information Processing Letters, 56
(1995), pp. 179–184.

11. C. Gavoille, Routing in distributed networks: Overview and open problems, ACM
SIGACT News - Distributed Computing Column, 32 (2001), pp. 36–52.

12. C. Gavoille, M. Katz, N. A. Katz, C. Paul, and D. Peleg, Approximate
distance labeling schemes, in 9th European Symp. on Algorithms (ESA), vol. 2161
of LNCS, Springer, 2001, pp. 476–488.

13. C. Gavoille and C. Paul, Distance labeling scheme and split decomposition,
Discrete Mathematics, (2003). To appear.

14. C. Gavoille and D. Peleg, Compact and localized distributed data structures,
Research Report RR-1261-01, LaBRI, University of Bordeaux, Aug. 2001. To
appear in J. of Distributed Computing for the PODC 20-Year Special Issue.

15. C. Gavoille, D. Peleg, S. Pérennes, and R. Raz, Distance labeling in graphs,
in 12th Symp. on Discrete Algorithms (SODA), 2001, pp. 210–219.

16. P. Hanlon, Counting interval graphs, Transactions of the American Mathematical
Society, 272 (1982), pp. 383–426.

17. P. Hell, J. Bang-Jensen, and J. Huang, Local tournaments and proper circular
arc graphs, in Algorithms, Int. Symp. SIGAL, vol. 450 of LNCS, 1990, pp. 101–108.

18. S. Kannan, M. Naor, and S. Rudich, Implicit representation of graphs, SIAM
J. on Discrete Mathematics, 5 (1992), pp. 596–603.

19. H. Kaplan, T. Milo, and R. Shabo, A comparison of labeling schemes for an-
cestor queries, in 14th Symp. on Discrete Algorithms (SODA), 2002.

20. M. Katz, N. A. Katz, A. Korman, and D. Peleg, Labeling schemes for flow and
connectivity, in 13th Symp. on Discrete Algorithms (SODA), 2002, pp. 927–936.

21. M. Katz, N. A. Katz, and D. Peleg, Distance labeling schemes for well-
separated graph classes, in 17th Symp. on Theoretical Aspects of Computer Science
(STACS), vol. 1770 of LNCS, Springer Verlag, 2000, pp. 516–528.

22. A. Korman, D. Peleg, and Y. Rodeh, Labeling schemes for dynamic tree
networks, in 19th Symp. on Theoretical Aspects of Computer Science (STACS),
vol. 2285 of LNCS, Springer, 2002, pp. 76–87.

23. R. M. McConnell, Linear-time recognition of circular-arc graphs, in 42th IEEE
Symp. on Foundations of Computer Science (FOCS), 2001.

24. D. Peleg, Informative labeling schemes for graphs, in 25th Int. Symp. on Mathe-
matical Foundations of Computer Science (MFCS), vol. 1893 of LNCS, Springer,
2000, pp. 579–588.

25. , Proximity-preserving labeling schemes, J. of Graph Theory, 33 (2000).
26. F. Roberts, Indifference graphs, in Proof Techniques in Graph Theory, Academic

Press, 1969, pp. 139–146.
27. M. Thorup, Compact oracles for reachability and approximate distances in planar

digraphs, in 42th IEEE Symp. on Foundations of Computer Science (FOCS), 2001.
28. M. Thorup and U. Zwick, Approximate distance oracles, in 33rd ACM Symp.

on Theory of Computing (STOC), 2001, pp. 183–192.
29. , Compact routing schemes, in 13th ACM Symp. on Parallel Algorithms and

Architectures (SPAA), 2001, pp. 1–10.
30. G. Wegner, Eigenschaften der Neuen homologish-einfacher Familien im Rn, PhD

thesis, University of Göttingen, 1967.

	Introduction
	Related Works
	Our Results
	Outline of the Paper

	A Scheme for Proper Interval Graphs
	A Scheme for Interval Graphs
	A Scheme for Circular-Arc Graphs
	Lower Bounds

