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Abstract. In this work we investigate such online algorithms for the
data acknowledgement problem, which have extra information about the
arrival time of the packets in the following time interval of length c. We
present an algorithm with the smallest possible competitive ratio for the
maximum of delay type objective function. In the case of the sum of delay
type objective function we present an 1+ O(1/c)-competitive algorithm.
Moreover we show that no algorithm may have smaller competitive ratio
than 1+ §2(1/c?) in the case of that objective function.
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1 Introduction

In the communication of a computer network the information is sent by pack-
ets. If the communication channel is not completely safe then the arrival of the
packets must be acknowledged. The TCP implementations are also using ac-
knowledgement of the packets (see [I0]). In the data acknowledgement problem
we try to determine the time of sending acknowledgements. One acknowledge-
ment can acknowledge many packets but waiting for long time can cause the
resending of the packets and that results the congestion of the network. On the
other hand sending immediately an acknowledgement about the arrival of each
packet would cause again the congestion of the network.

The first online optimization model for determining the sending time of the
acknowledgements was developed in []. In the model each packet has an ar-
rival time, and at any time the algorithm has to make a decision about the
acknowledgement of the arrived packets without any information about the fur-
ther packets. Two objective functions are investigated. Both of them are the
convex combination of the number of acknowledgements and the total latency
cost assigned to the acknowledgements (with the coefficients 7,1 — 7). The dif-
ference is in the definition of the latency cost assigned to an acknowledgement.
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In the case of function fiax this is the maximum of the delays which the packets
have, in the case of fsum it is the sum of the delays of the packets acknowledged.
Optimal 2-competitive online algorithms are presented in both cases. Semi-
online algorithms with some lookahead properties are also considered. In the real
application the algorithms have to be online, they do not have lookahead infor-
mation about the further packets. On the other hand investigating lookahead al-
gorithms is also important for this problem (see []). Such algorithms can be used
to understand how useful some learning algorithm to estimate the further ar-
rivals of the packets can be. In the case of the fi,ax objective function it is enough
to know the arrival time of the next packet to achieve a 1-competitive algorithm.
On the other hand, in the case of the fium function the knowledge of the next k
arrivals is not enough to have better competitive ratio than 2 for any constant k.
In this paper we investigate another version of lookahead property. Instead
of giving the knowledge of the arrival times of the next k packets we allow the
algorithm to see the arrival times of the packets in a time interval of length c.
This type of lookahead is called time lookahead property and it is investigated
in [2] for online vehicle routing problems. This new type of lookahead property
gives completely different results than the lookahead property investigated in [4].
In the case of the function fy,,x we can obtain a 1-competitive algorithm if ¢ >
~v/(1—7) and we can define a 2—¢(1—+)/y-competitive algorithm for the smaller
values of ¢. We also prove that smaller competitive ratio can not be achieved.
In the case of the function fs,m, the new lookahead definition allows to achieve
smaller competitive ratio than 2. We present an algorithm with a competitive
ratio tending 1 in order of magnitude 1 + O(1/c¢) as ¢ is increasing. We also
show that no 1-competitive algorithm may exist for constant size of lookahead
intervals, we prove a 1+ 2(1/c?) lower bound on the possible competitive ratio.
We also present the lower bound 27v/(¢(1 — ) + ) for the smaller values of c.
There are some further results on the area of data acknowledgement. The
offline version of the problem with the function fsu, is further investigated in [§]
where a faster, linear time algorithm is developed for its solution. Randomized
online algorithms are considered in [7] and [9]. In [7] an e/(e — 1)-competitive
algorithm is given for the solution of the problem. In [J] it is shown that no
online randomized algorithm can have smaller competitive ratio than e/(e — 1).
Some further objective functions are investigated in [I] and [6]. In [I] the ob-
jective function is the sum of the number of acknowledgements and the maximum
delay of the packets. A generalized version of the function where the maximum
delay is on the power p is also investigated. In both cases optimal online algo-
rithms are presented, in the case of p = 1 the algorithm has the competitive ratio
72 /6, in the general case the competitive ratio can be given by Riemann’s zeta
function, it tends to 1.5 as p tends to co. The paper contains also lower bounds
on the competitive ratio of randomized algorithms. In [6] a further cost function
is investigated, which can be considered as an extension of fi,.x, and it is also re-
quired that the difference between the times of the acknowledgements is at least
one time unit. In that paper optimal (1++/5)/2-competitive deterministic and an
optimal (v/3 + 1)/2-competitive randomized algorithm are presented. Moreover
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a class of algorithms which are allowed to use only a limited number of random
bits is also investigated. A more general problem than the data acknowledgement
problem is investigated in [5]. In that paper an online problem motivated by ser-
vice call management is considered. The model in the case of two customers can
be considered as a generalization of the data acknowledgement problem.

Semi-online algorithms with lookahead are investigated for several online op-
timization problems. We do not collect all of these results here, we just mention
here the most recent paper on online vehicle routing (J2]), one can find further
examples in its list of references.

2 Preliminaries

We use the mathematical model which was defined in [4]. In the model the
input is the list of the arrival times aq,...,a, of the packets. We also denote
the packets by their arrival time. The decision maker has to determine when to
send acknowledgements, these times are denoted by t1,...,tx. We consider the
objective function

vk (1= Ly,

Jj=1

where k is the number of the sent acknowledgements and L; is the extra la-
tency belonging to the acknowledgement t; and v € (0,1) is a constant. We
consider two different cases. We obtain the objective function fuax if L; =
max;, ,<a,<t,(tj — a;), the maximal delay collected by j-th acknowledgement.
We obtain the objective function feum if Lj = th,1<ai§tj (t; — a;), the sum of
the delays collected by the j-th acknowledgement.

In the on-line problem at time t the decision maker only knows the arrival
times of the packets already arrived and has no information about the further
packets. We consider a semi-online model with time lookahead ¢, where at time
t the decision maker knows the arrival times of the packets already arrived and
also knows the arrival times of the packets arriving in the time interval (¢,¢ + c|.
We denote the set of the unacknowledged packets at the arrival time a; by o;.
For an arbitrary list L of packets and an algorithm A, we denote by A(L) the
total cost of the acknowledgements sent by algorithm A on list L. The total
cost of sending optimally the acknowledgements is denoted by OPT(L). We
use the competitive analysis to evaluate the algorithms, as it is usual in the
case of online and semi-online algorithms ([3]). An algorithm is d-competitive
it A(I) < d-OPT(I) is valid for every input I. The competitive ratio of an
algorithm is the smallest number d for which the algorithm is d-competitive.

We will examine time lookahead extensions of the online alarming algorithms
defined in [4], thus we recall here the definition of these algorithms. An alarming
algorithm works as follows. At the arrival time a; an alarm is set for time a; +e;.
If no packet arrives before time a; +¢;, then an acknowledgement is sent at time
a; + e; which acknowledges all of the unacknowledged packets. Otherwise at the
arrival of the next packet at time a;41 the alarm is reset for time aj41 + €j41.
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These algorithms are defined and analysed in [4]. In the case of function fiax the
alarming algorithm which uses the value e; = /(1 —~) for each j is an optimal
2-competitive algorithm. In the case of function fsum the alarming algorithm
which uses the value e; = (v/(1 —7) = >,,¢,, (a; — a;))/|o;| for each j is an
optimal 2-competitive algorithm. (It is worth noting that in this case e; is chosen
to balance the two types of cost, if no further packet arrives than sending an
acknowledgement at time a; + e; has latency cost ).

3 The fnax Objective Function

3.1 Algorithm

In [4] it is shown that the optimal offline solution has a very simple structure in
the case of function fiax. The following statement is valid.

Proposition 1. Under fi,ax there exists an optimal solution S that places an
acknowledgement at a; if and only if aj41 —a; > v/(1 —7).

We consider two cases depending on the value of ¢. When ¢ > «/(1 — ), then
we obtain a 1-competitive algorithm easily. The size of the lookahead interval
is large enough to determine whether aj41 —a; > /(1 — ) is valid or not,
thus an algorithm with lookahead ¢ can find the optimal solution described in
Proposition [

The case when ¢ < v/(1 — ) is more interesting. We define for this case an
extended version of the alarming algorithm developed in [4]. This time lookahead
alarming algorithm (TLA in short) works as follows. At the arrival time a; an
alarm is set for time a; + v/(1 — v) — c. If the packet a;41 arrives before the
alarm or we can see a;41 at time a; + /(1 — ) — ¢ in the lookahead interval
(aj +v/(1 —~) —c,a; + /(1 — )] then we postpone the alarm to the time
a1 +7/(1—~)—c. In the opposite case (no packet arrives in the time interval
(aj,a;+v/(1—7)]) an acknowledgement is sent at time a; +~/(1 —~) — ¢ which
acknowledges all of the unacknowledged packets.

Theorem 1. TLA is max{1,2 — 1;7 c}-competitive.

Proof. First we show that the algorithm is 2 — '~7 ¢c-competitive. Consider an
arbitrary input sequence ai,...,a,. Partition the sequence into phases. Let
Sy = {a1,...,ap)} where k(1) is the first index with the property ay(i)41 —
apy > v/(1 — 7). The other phases are defined in the same way S;;1 =
{ak(y+1,- -5 an@r1)} where k(j + 1) is the first index after k(j) with the prop-
erty ap(j+1)+1 — @r(j+1) = v/(1 —7). The last phase is ended by the last packet.
We will also use the value k(0) = 0.

Then an optimal offline algorithm sends an acknowledgement at the last
packet of each phase. Therefore it has the total cost OPT(S;) = v+ (1 —
Y)(ag(j) — agj—1)+1) for the acknowledgement of the j-th phase. On the other
hand TLA sends the acknowledgement for the phase at time a;;+v/(1—7v)—c,
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thus it has a total cost TLA(S;) = v+ (1 —v)(ar) +v/(1=7) —c— argi—1)+1)
for the acknowledgement of the j-th phase. We have TLA(S;)/OPT(S;) > 1,
thus decreasing both values by the same constant increases the ratio. Therefore
we obtain that

TLA(S;) v+ A=m0/A=7) =) _, _ .
OPT(S;) ~ g gl
Since the total cost is the sum of the costs of the phases, thus we obtain that
TLA is 2 — 1;'Yc—competitive.

3.2 Lower Bound

TLA has the smallest possible competitive ratio, as the following statement
shows.

Theorem 2. No semi-online algorithm with lookahead ¢ may have smaller com-
petitive ratio than max{1,2 — 1;7 ch.

Proof. If ¢ > /(1 —+) then the statement is obviously true, thus we can assume
that ¢ < v/(1 — 7). Consider an arbitrary online algorithm, denote it by A.
Define the following input sequence denoted by I,,. The arrival time of the first
packet is a3 = 0, then the i-th packet arrives (i = 2,...,n) ¢ time units after
the acknowledgement of the i — 1-th packet (a; = t;—1 + ¢).

We partition the input sequence into phases in the same way as in the proof
of Theorem [Il Denote the phases by Si,...,S;. Consider the phase .S;. To sim-
plify the notation denote the value k(i) — k(i — 1) by r;. Algorithm A sends an
acknowledgement for each packet thus we obtain that

k(4)

A(S;) =yri+(1—1) Z (tp — ap).
p=k(i—1)+1

The optimal solution sends only one acknowledgement at time ay;) thus
k(i)—1
OPT(S) =7+ (1=7( > (tp—ap) +clri—1)).
p=k(i—1)+1
Now suppose that i < j. If we calculate A(S;) — (2 — 1;”*(:)()PT(Si) and
we use that ¢, —ap, < v/(1 —~) —cforp = k(i —1)+1,...,k(i) — 1 and
i@y — ar@y > v/(1 —7) — ¢ then we obtain that

;) — —1_70 ; ri— 1—70 - 1_76— ri—1)c
As)-=" T00PT(S) 2 2trim2+ !9+ 7)(( o) (ri-ter

(Ti_l)(l;’yc_l)(lj’y_c)—’_lj’y_c> =y(ri—2+ 1;70)_

(L=7)(ri =Le+ (ri = (A =v)e=7)+7—c(l=7)=0.
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In the second equality we simplified the formula by eliminating (r; —1)( 1;7 c—1)c
which can be found in the formula with the coefficients +1 and —1.

Therefore we proved that A(S;) > (2 — 1;7 ¢)OPT(S;) if i < j. In the case
of S there is only one difference, we cannot state that the inequality #5;) —
ap(j) > v/(1 —=) — cis valid. But we can prove in the same way as above that
A(S)) +7/(L=7) —e= (2= '7c)OPT(S)).

Since the total cost is the sum of the costs of the phases, thus we obtain that
A(Ly) +v/(1—7v)—c> (2 — 1;’YC)OPT(In). On the other hand as n tends to
oo the value of OPT'(I,,) also tends to oo, thus the above inequality shows that
A(I,)/OPT(I,) can be arbitrarily close to 2 — 1;70 thus the competitive ratio

of A can not be smaller than 2 — 1;70.

4 The Sum Objective Function

4.1 Algorithms

It is a straightforward idea to also use the time lookahead extension of the
alarming algorithm from [4] in this case. We can define the TLA extension of
the alarming algorithm for this case as follows. At the arrival time a; an alarm is
set for time a; +e; where e; = (v/(1—7) — Zai@j (aj —a;))/]oj|. If the packet
a;41 arrives before the time max{a;, a;+e;—c} or we can see a;j41 at this time in
the lookahead interval, then we move to a;4; and reset the alarm. In the opposite
case (no packet arrives in the time interval (a;, a; + ¢;]) an acknowledgement is
sent at time max{a;, a; +e; — ¢} which acknowledges all of the unacknowledged
packets. Unfortunately this lookahead extension of the algorithm does not make
it possible to achieve a smaller competitive ratio than 2.

Theorem 3. The competitive ratio of TLA is 2 for arbitrary c.

Proof. The cost of this algorithm is at most the cost of the online alarm-
ing algorithm from [4] on any input, thus it follows immediately that TLA
is 2-competitive from the result that the online alarming algorithm is
2-competitive. TLA has no better performance as the following input sequence
shows. Let I, = {a1,...,a2,+1} where a; = 0 and ag; = iv/(1 —v) + (i — 1)e,
agi+1 =1iy/(1 =) +iec fori=1,...,n. Then TLA sends the acknowledgements
at ag, ..., a2y, max{azni1, @2n+1 + /(1 =) — ¢}. Thus TLA(L,) = (n+ 1)y +
ny—+(1—~)max{0,v/(1—v)—c}. An optimal offline algorithm sends an acknowl-
edgement at a1, ag, az, 1 and it has the cost OPT(I,) = (n + 1)y + (1 — y)ne.
The ratio of the costs tends to 2 as ¢ tends to 0 and n tends to oo, and this
yields that the competitive ratio is at least 2.

In the case when ¢ > 7/(1—7) we can achieve smaller competitive ratio than 2 by
the following algorithm. We present the Lookahead Interval Planning Algorithm
(LIP in short). The algorithm partitions the packets into blocks and for each
block determines the acknowledgments based on an offline optimal solution.
The block always starts at the first unacknowledged packet. First the algorithm
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examines whether there exist packets a;, a;41 in the ¢ length lookahead interval
with the property a;+1—a; > v/(1—=). If there exists such pair, then the block is
ended at the first such a;, otherwise the block has length ¢. Then LIP calculates
the optimal solution of the offline acknowledgement problem for the packets
in the block, it can use one of the algorithms which solves the offline problem
(such algorithms are presented in [4] and []]) and sends the acknowledgements
according to this solution and considers the next block.

Theorem 4. LIP is 1+ (1_'ch-competitive.

Proof. To prove that LIP is 1 + (ljv)c—competitive consider an arbitrary input
I. Divide the input into phases in the same way as in the proof of Theorem
Ml Let us observe that there exists an offline optimal algorithm which sends an
acknowledgement at the last packet of each phase. (Because, if last packet of
the phase is delayed, it incurs a delay cost of more than (1 —~)(y/(1 —7)) =
v, whereas it incurs a communication cost of exactly v if it is acknowledged.
Furthermore let us observe that the last packet of a phase is always a last packet
of some block, thus LIP also sends an acknowledgement at the last packet of the
phase.

Consider an arbitrary phase S;. Denote by r the number of blocks in the
phase. Consider an optimal solution of the phase. If we extend it with r — 1
further acknowledgements on the end of the first » — 1 blocks, then we obtain a
solution which acknowledges the blocks separately. But LIP gives the best such
solution therefore we obtain that (r — 1)y + OPT(S;) > LIP(S;) which yields
that LIP(S;)/OPT(S;) <1+ (r—1)v/OPT(S;).

Consider the value of OPT(S;). Since each block is in the same phase, thus
the length of each of the first » — 1 blocks is ¢, therefore the length of the phase is
at least (r—1)c. Suppose that the optimal offline algorithm sends k acknowledge-
ments in this phase. Then after each of the first k—1 acknowledgement there is an
at most /(1 —+) length interval without packet. This yields that in this case the
total latency cost of OPT is at least (1—+)((r—1)c—(k—1)v/(1—7)). Therefore
OPT(S;) 2 ky+ (A=) ((r—1)c—(k—1)y/(1=7)) = (1=7)(r—1)c+7. On the
other hand if we use this bound we obtain that LIP(S;)/OPT(S;) <1+ (1_77)C.
4.2 Lower Bounds

First we give a lower bound on the order of magnitude of the possible competitive
ratio. This bound is useful for large lookahead intervals, it shows that no constant
size lookahead is enough to achieve 1-competitiveness in the case of the fsum
function.

Theorem 5. No online algorithm may have smaller competitive ratio than 1+
2(1/c2).

Proof. To simplify the calculation suppose that ¢ = y(k —1/4)/(1 — ), where
k > 1is an integer. We can assume that without loss of generality since allowing
larger lookahead can not increase the competitive ratio and we are proving lower
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bound on the order of magnitude of the possible competitive ratio. Consider an
arbitrary algorithm A with lookahead c¢. Let = = Zé?fiﬁg and y = v/2(1 — 7).
Define the following sequences for each j =1,... k.

— Sgje = {a1,a9,...,as;} where agi—1 = (i—1)z+(i—1)y and ag; = iz+(1—1)y
fori=1,...,j. Let us note that asy = ¢ in Syps-

- Szjy = {al,az, .. .,a2j+1} where ag;_1 = (z—l)aj+(z—1)y fori=1,... ,J+1
and ag; =iz + (i — Dy fori=1,...,7.

— Syjy ={a1,a2,..., a2} where as,—1 = (i—1)y+(i—1)z and as; = iy+(i—1)x
fori=1,...,j.

— Syje ={a1,a2,...,a2j41} where ag;—1 = (i—1)y+(i—1)zfori=1,...,j+1
and ag; =iy + (1 — Lz fori=1,...,7.

Since v + (1 — v)(2y + ) = 2v + (1 — v)z, thus we obtain that there exist
optimal solutions for the above defined sequences which never acknowledge more
than 2 packets with one acknowledgement. Using this observation the following
lemma can be easily proven by induction.

Lemma 1. For each 1 < j < k we have OPT(Syj,) = OPT(Sy;z) =~v(j+1)+
(1 =9)jy. OPT(Szja) = vj + (L = y)jz, OPT(Sy;y) =i+ (1 = )jy.

Give Sk, as the first part of the input to A and wait till time y. Suppose that the
algorithm sends an acknowledgement at time z < y. Then it acknowledges the
packet a; and it has to handle the remaining part which is Sy _1),. Therefore
by Lemma [ we obtain that A(Syxz) > v+ (1 — )z +ky+ (1 —v)(k — 1)y.
Therefore we obtain that
AlSaka) L (k+Dy+(Q-nk-1y _ = 1
OPT(Szkz) — ky+ k(1 —7v)x - 6k+1°

Now suppose that A does not send an acknowledgement before time y. Then
at time y + ¢ a further packet arrives, thus the input is Syky. The algorithm
observes this packet at time y. If it acknowledges the first packet before time x
then A(Szry) > v+ (1 —v)y + OPT(Syry). Therefore by Lemma [I] we obtain
that the following inequality for this case:

A(Saky) L (kv +Q-k+l)y _ 0 1
OPT(Suky) = (k+1)y+ (1 —7)ky 3k 42

Finally, suppose that A does not send an acknowledgement before time .
If it sends its first acknowledgement later than z then its total cost is increas-
ing, therefore we can assume that the first acknowledgement is sent at time x.
Then the algorithm acknowledges the first two packets and the remaining part
is Sy (k—1)y, thus we obtain A(Syry) > v+ (1 =)+ OPT(Syk—1)y). Therefore
by Lemma [Tl we obtain that the following inequality for this case:

A(Sery) o (k4 Dy + (L =)+ (k= 1)y)
OPT(Swy) = (h+1y+(1—mhy  ~ 6k 44k

Since we examined all of the possible cases, we proved the statement of the
theorem.
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The above bound does not give better value than 1 in the case when the algorithm
has only a small lookahead interval. We also show a lower bound for ¢ < v/(1—7)
by extending the technique which is used to prove a lower bound in [4].

Theorem 6. No online algorithm with lookahead ¢ can have smaller competitive
ratio than 27v/(c(1 — ) + 7).

Proof. Consider an arbitrary on-line algorithm denote it by A. Analyze the
following input. Consider a long sequence of packets where the packets al-
ways arrive ¢ time units after the time when A sends an acknowledgement
(tj + ¢ = aj41). Then the on-line cost of a sequence containing 2n + 1 pack-
ets is A(Toni1) = y(2n+1)+ (1 —~) 7 (t; — a;). Consider the following two
offline algorithms. ODD sends the acknowledgements after the odd numbered
packets and after the last packet, and EV sends the acknowledgements after the
even numbered packets.
Then the costs achieved by these algorithms are

n

EV(IQn+1)=(n+1)7+(1—7)Z(agiﬂ az;)=(n+1)y+(1 nc—|—z to;—az;))
i=1
and
ODD=(n+1)y+(1 Z (agi—az;i—1) (n—i—l)v—&—(l—v)(nc—&—Z(tQi,l—agi,l)).
i=1 i=1

On the other hand none of the costs achieved by ODD and EV is smaller than
the optimal offline cost, thus OPT (Iap41) < min{EV (I3p41), ODD(I3p41)} <
(EV (I3p41) + ODD(I3,41))/2. Therefore we obtain that

Alloen) o 20@n+ )+ (- S2 l—a) _, 2y +dne(1—7)
OPT(I2n41) " y(2n+2) + (1 — ) (X", (t: — ai) +2nc) — ¥(2n+2) +2nc(1 — )

The ratio which we obtained as a lower bound on A(I2,+1)/OPT (I2,+1) tends
to 29/(c(1 —v) + ) as n tends to oo, and this proves the theorem.
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