On the Existence and Determination of
Satisfactory Partitions in a Graph

Cristina Bazgan', Zsolt Tuza2, and Daniel Vanderpooten!

! LAMSADE, Université Paris-Dauphine, France
{bazgan,vdp}@lamsade.dauphine.fr
2 Computer and Automation Institute, Hungarian Academy of Sciences, Budapest
and Department of Computer Science, University of Veszprém, Hungary

Abstract. The SATISFACTORY PARTITION problem consists in deciding
if a given graph has a partition of its vertex set into two nonempty
sets Vi1, V2 such that for each vertex v, if v € V; then dv,(v) > s(v),
where s(v) < d(v) is a given integer-valued function. This problem
was introduced by Gerber and Kobler [EJOR 125 (2000), 283-291] for
s = (%W In this paper we study the complexity of this problem for
different values of s.

Keywords: Satisfactory partition, graph, complexity, polynomial algo-
rithm, NP-complete, degree constraints.

1 Introduction

Gerber and Kobler introduced in [3] the problem of deciding if a given graph has
a vertex partition into two nonempty sets such that each vertex has at least as
many neighbors in its set as in the other. The complexity of this problem remains
open in their paper. They showed the strong NP-hardness of a generalization
of this problem where there are weights on the vertices and we ask for a vertex
partition into two nonempty sets such that for each vertex the sum of weights
of the neighbors in the same set is at least as large as the sum of weights of the
neighbors in the other set. The case where edges are weighted was also proved
to be strong NP-hard.

For a graph G = (V, E), vertex v € V, and subset Y C V we denote by dy (v) the
number of vertices in Y that are adjacent to v; and, as usual, we write d(v) for the
degree dy (v) of v in V. Throughout, the subgraph of graph G = (V, E) induced
by Y C V will be denoted by G[Y]. The general problem we are interested in is
as follows:

SATISFACTORY PARTITION

Input: A graph G = (V, E), and a function s : V' — IN such that s(v) < d(v),
for all v € V.

Question: Is there a nontrivial partition (V1, Va) of V such that, for every v € V|
if v € V; then dy, (v) > s(v) ?

T. Ibaraki, N. Katoh, and H. Ono (Eds.): ISAAC 2003, LNCS 2906, pp. 444-[453] 2003.
© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595.276 824.882] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

On the Existence and Determination of Satisfactory Partitions in a Graph 445

Considering A C V, a vertex v € A is satisfied in A if d4(v) > s(v). Moreover
A is a satisfactory subset if all of its vertices are satisfied in A. If A/B C V
are two disjoint, nonempty vertex subsets such that A and B are satisfactory
subsets, we say that (A, B) is a satisfactory pair. If, in addition, (A, B) is a vertex
partition then it will be called a satisfactory partition and a graph admitting
such a partition is said to be partitionable.

In our statement of the SATISFACTORY PARTITION problem, the function s
indicates the level of satisfaction required for the vertices to be satisfied. The
problem studied by Gerber and Kobler corresponds to s = [g] As remarked in
[B], this problem may have no solution. In particular, the following graphs are
not partitionable: complete graphs, stars, and complete bipartite graphs with at
least one of the two vertex classes having odd size. Some other graphs are easily
partitionable: cycles of size at least 4, trees which are not stars, and disconnected
graphs.

After stating some preliminary results (Section [2)), we study in Sections 3-5
SATISFACTORY PARTITION for different values of s. For s < [4] — 1, a result of
Stiebitz [5] indicates that the graph always has such a partition. The original
proof is not constructive, and we give here a polynomial-time algorithm that
finds such a partition (Section 3). For s = f%], we prove that for graphs with
maximum degree at most 4, both the decision and search problems are polyno-
mially solvable. This problem on general graphs remains open (Section 4). For
[47 41 < s < d— 1, SATISFACTORY PARTITION is proved to be NP-complete
(Section 5). For s = d, the problem is trivial since it consists in deciding whether
the graph is disconnected.

2 Preliminary Results

Firstly we establish a necessary and sufficient condition to obtain a satisfactory
partition.

Proposition 1. When s < [g], a graph G = (V, E) is partitionable if and only
if it contains a satisfactory pair (A, B). Moreover, if a satisfactory pair (A, B) is
given, then a satisfactory partition of G can be determined in polynomial time.

Proof. The necessary part is obvious. The sufficient part is proved as follows.
Let V; = A and V5, = B. While there is a vertex v in V' \ (V; U V3) such that
dy, (v) > s(v), insert v into V7. While there is a vertex v in V' \ (V3 U V3) such
that dy,(v) > s(v), insert v into V. At the end, if C = V' \ (V; U Va) # 0, then
dy, (v) < s(v) and dy, (v) < s(v) for any v € C. Since s(v) < [d(;)}, we have, for
any v € C, dy,uc(v) > s(v) and dy,uc(v) > s(v). Thus we can insert all vertices
of C' either into V; or into V3, forming a satisfactory partition. m|

We show now how to determine satisfactory subsets efficiently.

Proposition 2. For any s < d, it is decidable in polynomial time, if a subgraph
G[A] of a graph G contains a satisfactory subset.

446 C. Bazgan, Z. Tuza, and D. Vanderpooten

Proof. The algorithm iteratively removes from G[A] the vertices v of degree less
than s(v), while it is possible.

If at the end of the algorithm we obtain a non-empty subgraph G[A’], then
G[A] contains a satisfactory subset A’ since da/(v) > s(v), for all v € A’.

Conversely, suppose that the algorithm removes all vertices from A and that
G[A] would contain a satisfactory subset A’. The first vertex v of A’ considered
by the algorithm cannot be removed since its current degree is greater than or
equal to das(v) > s(v). In this way no vertex of A’ could be removed. Thus, if
the entire set A gets deleted, then G[A] does not contain a satisfactory subset.O

A minimal satisfactory subset A is a satisfactory subset such that, for every
A" C A, there exists a vertex u € A" with da/(u) < s(u) — 1.

Proposition 3. For any s < d, if a graph contains a satisfactory subset, then
a minimal satisfactory subset A can be found in polynomial time.

Proof. Let Ay be a satisfactory subset of G. We construct a sequence of sub-
graphs of G, G[A4], ..., G[A¢] such that 4,11 C A; and each A; is a satisfactory
subset:

In step i (i > 1), we select a vertex v € A;, tentatively remove from A; vertex
v and we iteratively remove from A; \ {v} the vertices u of degree less than s(u)
until we obtain a set X which is either empty or a satisfactory subset. If X = 0,
then we iterate the previous procedure for vertices v € A; until a set X # 0 is
obtained, and in this case we continue the construction with A4;1; = X. In the
other case, i.e. where all the sets X obtained are empty, we stop the algorithm
with ¢ = 4. The set A with the required properties is the set A;.

It is clear that A is a satisfactory subset. We have to prove that A is minimal.
Suppose on the contrary, that there exists a subset A’ C A such that da (v) >
s(v) for all v € A’. Choose any u € A\ A’. Continuing the procedure from
A; = A by removing u, a nonempty set A;11 2 A’ would be generated, which
contradicts the previous assumption that A;11 = @ holds for all u € A. O

3 The Case s < |—g-| -1

Stiebitz [5] proved the following result:

Theorem 1 ([5]). Let G = (V,E) be a graph, and let a,b : V — IN be two
functions such that d(x) > a(x) + b(x) + 1 for every x € V. Then, there is a
nontrivial vertex partition (A, B) of V such that da(x) > a(x) for every x € A,
and dg(x) > b(x) for every x € B.

Obviously, if we take a = b = s, Stiebitz’s result shows the existence of a
satisfactory partition for s < [4] — 1. The proof in [5] is not constructive. We
show here how to determine such a partition in polynomial time.

Proposition 4. Algorithm[finds in polynomial time a satisfactory pair in any
graph for s < [4] — 1.

On the Existence and Determination of Satisfactory Partitions in a Graph 447

Algorithm 1 Determination of a satisfactory pair (s < [4] — 1)

Find a minimal satisfactory subset A C V'
B+ V\A
if G[B] contains a satisfactory subset then
(A, B) is a satisfactory pair, B being a satisfactory subset of G|B]
else
while (G[A] or G[B] has no satisfactory subset) do
if G[B] has no satisfactory subset then
Let v € A such that da(v) < s(v)
A<+ A\ {v}; B+ BU{v}
end if
if G[A] has no satisfactory subset then
Let v € B such that dg(v) < s(v)
A+ Au{v}; B+ B\ {v}
end if
end while
(A, B) is a satisfactory pair where A and B are satisfactory subsets of G[A] and
G|[B], respectively
end if

Proof. Using Proposition [3, the first step is computable in polynomial time.
Using Proposition[2, the if and while conditions are polynomial-time decidable.
We justify that in the while loop the selection of a vertex v is always possible.
For this, we show that at the beginning of each iteration in the while loop,
G[A] and G[B] are such that all their subgraphs contain a vertex u of degree at
most s(u); and in addition at least one of G[A] and G[B] is such that all their
subgraphs contain a vertex u of degree at most s(u) — 1. In fact, before entering
the while loop, each subgraph of G[A] contains a vertex u of degree at most
s(u), since A is a minimal satisfactory subset. Also, before entering the while
loop, G[B] has no satisfactory subset, which means that each of its subgraphs
contains a vertex u of degree strictly smaller than s(u). At the end of an iteration
of the while loop after moving v from A to B for example, the degree of vertices
in G[B U {v}] increases with at most one, so in each subgraph of G[B U {v}],
there is a vertex u of degree at most s(u). Since we are inside the while loop
only if one of the graphs G[A] and G[B] is such that none of the subgraphs has
a satisfactory subset, the corresponding graph has in each subgraph a vertex u
of degree at most s(u) — 1 that can increase to at most s(u) after moving vertex
v into the other vertex class. Hence, the operations inside the loop can always
be performed.

We show now that the number of iterations is polynomially bounded. Con-
sider any iteration of the while loop. Assume, without loss of generality, that
G[B] has no satisfactory subset. By the choice of v, since d4(v) < s(v), we have
dp(v) > s(v) + 1. Thus, the number of edges between A and B decreases by at
least one and thus the algorithm finishes after at most |E| iterations. a

448 C. Bazgan, Z. Tuza, and D. Vanderpooten

Theorem 2. SATISFACTORY PARTITION for s < [%] — 1 is polynomial-time
solvable.

Proof. From Propositions [and [4. O

By slightly modifying Algorithm [[Jreplacing s by a or b in appropriate places
we obtain the following result:

Theorem 3. Let G = (V, E) be a graph, and let a,b:V — IN be two functions
such that d(x) > a(x)+b(z)+1 for every x € V.. Then, we can find in polynomial
time a nontrivial vertez partition (A, B) of V such that da(x) > a(zx) for every
x € A, and dp(x) > b(x) for every x € B.

4 The Case s = [g]

In this section we show that for graphs G with A(G) < 4 it is polynomial-

time solvable to decide if the graph is (not) partitionable, and also to find a

satisfactory partition if it exists. In particular, all cubic graphs except K, and

K3 3 are partitionable and all 4-regular graphs except K5 are partitionable.
Firstly we prove two propositions.

Proposition 5. Fach cubic graph containing a triangle, except Ky, is partition-
able.

Proof. Let G be a cubic graph, G # Ky, and let C be a triangle of G with
vertices v, v2, v3. Remark that a vertex outside C' cannot have all its neighbors
on C since G # Kjy.

If each vertex of V' \ V(C) has at most one neighbor on C then V; = V(C)
and Vo = V' \ V(C) form a satisfactory partition.

Suppose that there is a vertex vy with two neighbors vy, v on C. If vg and vy
have a common neighbor v, then Vi = {v1,v9,v3, 04,05} and Vo =V \ Vj # ()
form a satisfactory partition of G. Otherwise Vi = {v1,va,v3,v4} and Vo =
V \ V1 # 0 form a satisfactory partition of G. |

Proposition 6. Fach cubic graph containing a cycle of size 4, except K4 and
K3 3, is partitionable.

Proof. Let G be a cubic graph other than K, and K3 3. If G contains a triangle
then G is partitionable by Proposition Bl Otherwise let C' = viv9v3v4 be a cycle
of size 4. A vertex outside C' cannot have more than two neighbors on C since
otherwise G contains a cycle shorter than C.

If each vertex of V' '\ V(C) has at most one neighbor on C, then V; = V(C)
and Vo = V' \ V(C) form a satisfactory partition.

Otherwise, suppose that a vertex vs has neighbors vy and v3. Since G # K3 3
there is no vertex of G with the three neighbors vy, v4,vs. Thus, a vertex v;
with ¢ > 6 has at most two neighbors among {vs, v4,v5}. If all vertices v; with

On the Existence and Determination of Satisfactory Partitions in a Graph 449

i > 6 have at most one neighbor among {vs, v4, v5} then Vi = {v1, va, v3,v4,05}
and Vo = V \ V5 #) form a satisfactory partition of G. Otherwise, let vg be a
vertex that has vs, vy as neighbors. If all vertices v; with ¢ > 7 have at most one
neighbor among {vs,vs}, then Vi = {vy,v2,v3,v4, 05,06} and Vo =V \ V] #£ ()
form a satisfactory partition of G. Otherwise, there is another vertex vy with
neighbors vs, vg. In this case Vi = {v1,v2,v3,v4,v5,v6,v7} and Vo =V \ V] # 0
form a satisfactory partition of G.]

We show now how to determine a satisfactory partition.

Algorithm 2 Determination of a satisfactory partition for cubic and 4-regular
graphs
Let G be an (£ + 1)-regular graph (¢ = 2 or 3).
Search a shortest cycle C.
if |C| > 5 then
Vi« V(CO); Vo V\V(CO)
else
Vi« V(C)
while there exists a vertex v € V' \ Vi with at least £ neighbors in V; do
Vi<~WViu {’U}
end while
Vo= VAW
end if

Theorem 4. All cubic graphs except K4 and K33 are partitionable in polyno-
mial time.

Proof. Let G be a cubic graph, G # K4 and K3 3. Let us verify that Algorithm
with ¢ = 2 is correct.

If |C| = k > 5, then there are no two vertices on C' with a common neighbor
v outside C, since otherwise there exists in G a cycle of length at most |k/2] 4+ 2.
For k > 5 this would be a cycle shorter than C. So, each vertex outside C has at
least two neighbors among V' \ V(C) and thus V; = V(C) and Vo = V\V(C) # 0
form a partition where each vertex is satisfied.

If |C| < 4, then the proofs of the above propositions show that in the partition
(V1, Va) each vertex is satisfied. O

Theorem 5. All j-reqular graphs except Ks are partitionable, in polynomial
time.

Proof. Let us see in the following that Algorithm [with ¢ = 3 is correct.

If |C] > 5, then as above, V3 = V(C) and Vo = V \ V(C) # 0 form a
satisfactory partition.

If |C| = 4, then there is no vertex outside C' with three neighbors on C, and
thus V; = V(C) and Vo = V' \ V(C) # 0 form a satisfactory partition.

450 C. Bazgan, Z. Tuza, and D. Vanderpooten

If |C| = 3, then denote C' = vyvqv3. If each vertex of V\V(C) has at most two
neighbors on C, then G is partitionable, and Vi = V(C') and Vo = V\V(C) form
a satisfactory partition. Otherwise let vy be a vertex with neighbors vy, vs, vs.
If each vertex v;,7 > 5 has at most two neighbors among vy, v9, vz, v4 then G is
partitionable. Otherwise, since G # K3, let v5 be a vertex with three neighbors
among vy, va,vs,vs. Then Vi = {v1,ve,v3,v4,v5} and Vo = V \ V] # 0 form a
satisfactory partition of G.]

Thus, all cubic graphs except K4 and K3 3 are partitionable and all 4-regular
graphs except K5 are partitionable. These results cannot be extended for regular
graphs with degree greater than 4 since there are 5-regular graphs, different from
K¢ and K 5 that are not partitionable, and there are 6-regular graphs different
from K7 that are not partitionable (see Figure [I]).

Fig. 1. Non-partitionable 5-regular and 6-regular graphs

We consider now graphs with maximum degree at most 4. As usual, the mini-
mum and maximum degree of G will be denoted by §(G) and A(G), respectively.

Proposition 7. A graph G with §(G) = 3 and A(G) < 4 is partitionable if and
only if it contains two vertezx-disjoint cycles.

Proof. (If) Immediate from Proposition[l (Only if) If G is partionable then each
vertex has at least two neighbors in its part, so each part contains a cycle. O

Proposition 8. Let G be a graph with A(G) < 4. Then G is partitionable if
and only if we can add in G at most two disjoint edges between vertices of degrees
1 or 2, such that the resulting multigraph contains two vertez-disjoint cycles.

Proof. (If) If G contains two disjoint cycles Cy, Cs then V(Cy) and V(Cs) can
be completed to form a satisfactory partition, using Proposition [II

If G has no two disjoint cycles but adding one edge (v;,v;) the graph G’ =
(V, E U {(v;,v;)}) has two disjoint cycles C1,C5 then (v;,v;) belongs to one of

On the Existence and Determination of Satisfactory Partitions in a Graph 451

these cycles. Then V(Cp) and V(C2) form a satisfactory pair once we remove
(v;,v;) since v; and v; have degree at most two.

Assume now that the addition of two non-adjacent edges (v;,v;), (v, ve) is
such that the new graph contains two disjoint cycles. Since these two edges are
not adjacent, as above, the two disjoint cycles can be completed to a satisfactory
partition.

(Only if) Let (V1, V) be a satisfactory partition of G. If V; (i = 1, 2) contains
no cycle, then we add one edge between two degree-1 vertices of a tree component
inside V;. If the tree in question is just an edge, then we add a parallel edge
creating a multiple edge.]

Theorem 6. Let G be a graph with A(G) < 4. We can decide in polynomial
time if G is (not) partitionable, and find a satisfactory partition of G if it exists.

Proof. There is a polynomial number of choices to add at most two non-adjacent
edges in G. For a fixed choice, we first verify if there are multiple edges. If there
are two non-adjacent multiple edges, then we have found two disjoint cycles;
if there is one multiple edge, then we search a cycle in the graph obtained by
removing the two vertices incident to this edge. The graph is partitionable if and
only if such a cycle exists. If the graph has no multiple edges, then we apply
a polynomial algorithm that finds two disjoint cycles in a graph if they exist
(Bodlaender [1]), to decide if the graph is partitionable. O

5 The Case [g]—l—lgsgd—l

Chvétal introduced in [2] the decomposition problem of bicoloring the vertices
of a graph in such a way that each vertex has at most one neighbor with a
different color. He gave a polynomial-time algorithm for this problem for graphs
with maximum degree 3. For graphs with vertices of degree 2 and 3 this problem
coincides with SATISFACTORY PARTITION when s = [£]. Theorem [contains
this result. Chvatal also proved the NP-hardness of this problem for graphs with
minimum degree §(G) = 3 and maximum degree A(G) = 4. This result implies
the following result for our problem.

Theorem 7. SATISFACTORY PARTITION is NP-complete when s =d — 1, even
for graphs with 6(G) = 3 and A(G) = 4.

Observe that Chvétal’s problem coincides with SATISFACTORY PARTITION
when s = [4]+1 or s = d—1 for graphs G with §(G) = 4 and A(G) = 5. In order
to prove the NP-hardness of SATISFACTORY PARTITION when [$]+1 < s < d—1,

we just need to adapt Chvétal’s construction using a graph with 6(G) = 4 and
A(G) =5.

Theorem 8. SATISFACTORY PARTITION for [4]+1 < s < d—1 is NP-complete
even for graphs G with 6(G) = 4 and A(G) = 5.

452 C. Bazgan, Z. Tuza, and D. Vanderpooten

Before proving this theorem, we define a problem used in the reduction.

BICOLORING HYPERGRAPHS

Input: A hypergraph H = (V, E).

Question: Is there a coloring with two colors Red and Blue of the vertices such
that no hyperedge is monochromatic?

BICOLORING HYPERGRAPHS is NP-hard even if all hyperedges have size 3 ([4]).

Proof. The reduction is from BICOLORING HYPERGRAPHS with hyperedges of
size 3. Given an input hypergraph H = (V, E) where V = {v1,...,v,} and
E ={e1,...,em}, we construct a graph G = (V', E’) such that H is bicolorable
if and only if G is partitionable. We first briefly describe Chvatal’s construction,
which uses the following graph Qg that is a sequence of d triangles (see Figure

(a)).

(a,e,f)

(z,e,0) (y,e,0) (z,e,0)

(a) (b)
Fig. 2. (a) Graph Qq for d = 4; (b) The gadget T

Fig. 3. The gadget Cs, .

Graph G contains two subgraphs By, By and subgraphs A; for each v; € V.
By and B are graphs Qpnim—2 and A; is QQ2q,—1, where d; is the number of
hyperedges of H containing v;. In each By, £ = 0, 1 the first n consecutive vertices
of degree 2 are labeled by (v1,£), ..., (vn, £); the remaining m consecutive vertices
of degree 2 are labeled by (e, £),...,(em,?). The 2d; + 1 vertices of degree 2
in A; are labeled by v} and (v, e;,0), (v;,ej,1) if v; belongs to hyperedge e;.
Another gadget used by Chvétal is the graph of Figure 2 (b). For each £ = 0,1
and for each hyperedge e of H containing vertices z,y, z, we add the graph T ,.
This graph has the property that if the three vertices of degree 1 are in the
same part of a satisfactory partition then the other two vertices of T, , are in
the same part. Also, if two of the three vertices of degree 1 are in different parts

On the Existence and Determination of Satisfactory Partitions in a Graph 453

of a satisfactory partition then the vertex of degree 2 could be in either of the
two parts of the partition.

We specify in the following the edges in G that link the subgraphs Ay, ..., A,,
By, By. Each v} is joint with (v;,0) and (v;, 1) for ¢ = 1,...,n. Subgraphs By
and B are joined to subgraphs A;, j = 1,...,n using gadgets T. ¢, e € £ and
{ = 0,1, by identifying vertices with the same labels. With this construction
Chvatal proves the NP-hardness of this decomposition problem.

We introduce the gadget Cs ., (see FigureB) in order to transform any vertex
of the graph of Chvétal’s construction of degree 2 or 3 to a vertex of degree 4 or
5 while preserving the reduction. The property of this gadget is that its vertices
are necessarily in the same part of a satisfactory partition.

We identify vertex w of such a gadget Cs,, with vertices (v;,0) and (v;,1)
for i =1,...,n and with vertices (v;, e;,0) and (v;, e;,0) of the graphs A;. Also,
we identify vertex w of such a gadget C5 ,, with vertices (a, e,) of gadgets T 4.

We justify in the following that H is bicolorable if and only if G’ is parti-
tionable.

Suppose firstly that G’ is partitionable. It is easy to see that all vertices in By
must belong to the same part of the satisfactory partition. The same property
holds for By and also for A; for v; € V. Subgraphs By and B; must be in the
different parts of the satisfactory partition since otherwise all vertices of G would
be in the same part. We construct a vertex bicoloring of H from this partition as
follows: if A; is in the same part as By then v; is colored Red, and if it is in the
same part as By then v; is colored Blue. Given a hyperedge e of H containing
vertices x,y, z, it is easy to see using the properties of T, , that e cannot be
monochromatic, since otherwise (e,0) and (e, 1) would be in the same part of
the partition.

Suppose that H is bicolorable. All vertices of A; in G corresponding to ver-
tices v; in H of the same color belong to the same part. This partition can be
extended to a satisfactory partition. O

References

1. H. L. Bodlaender, On disjoint cycles, International Journal of Foundations of Com-
puter Science 5(1) (1994), 59-68.

2. V. Chvétal, Recognizing decomposable graphs, Journal of Graph Theory 8 (1984),
51-53.

3. M. Gerber and D. Kobler, Algorithmic approach to the satisfactory graph parti-
tioning problem, European Journal of Operation Research, 125 (2000), 283-291.

4. L. Lovész, Coverings and coloring of hypergraphs, In Proceedings of 4th Southeast-
ern Conference on Combinatorics, Graph Theory and Computing, Utilitas Math-
ematica, Winnipeg, 1973, 3-12.

5. M. Stiebitz, Decomposing graphs under degree constraints, Journal of Graph Theory
23 (1996), 321-324.

	Introduction
	Preliminary Results
	The Case $sleq delimiter "4264306 {begingroup dendgroup over 2}delimiter "5265307 -1$
	The Case $s = delimiter "4264306 {begingroup dendgroup over 2}delimiter "5265307 $
	The Case $delimiter "4264306 {begingroup dendgroup over 2}delimiter "5265307 + 1 leq s leq d-1$

