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Preface

In this second edition I have made some corrections to errors in algebraic
expressions that I missed in the first edition and I have briefly expanded on some
sections of the original where I thought such expansion would make the
narrative clearer or more useful. The main change is the inclusion of two new
chapters; one on factor analysis and one on the rise of the use of ANOVA in
psychological research. I am still of the opinion that factor analysis deserves its
own historical account, but I am persuaded that the audience for such a work
would be limited were the early mathematical contortions to be fully explored.
I have tried to provide a brief non-mathematical background to its arrival on the
statistical scene.

I realized that my account of ANOVA in the first edition did not do justice
to the story of its adoption by psychology, and largely due to my re-reading of
the work of Sandy Lovie (of the University of Liverpool, England) and Pat
Lovie (of Keele University, England), who always write papers that 1 wish I had
written, decided to try again. | hope that the Lovies will not be too disappointed
by my attempt to summarize their sterling contributions to the history of both
factor analysis and ANOVA.

As before, any errors and misinterpretations are my responsibility alone. |
would welcome correspondence that points to alternative views.

I would like to give special thanks to the reviewers of the first edition for
their kind comments and all those who have helped to bring about the revival
of this work. In particular Professor Niels Waller of Vanderbilt University must
be acknowledged for his insistent and encouraging remarks. I hope that I have

ix



X PREFACE

deserved them. My colleagues and many of my students at York University,
Toronto, have been very supportive. Those students, both undergraduate and
graduate, who have expressed their appreciation for my inclusion of some
historical background in my classes on statistics and method have given me
enormous satisfaction. This relatively short account is mainly for them, and
I hope it will encourage some of them to explore some of these matters further.

There seems to be a slow realization among statistical consumers in
psychology that there is more to the enterprise than null hypothesis significance
testing, and other controversies to exercise us. It is still my firm belief that just
a little more mathematical sophistication and just a little more historical
knowledge would do a great deal for the way we carry on our research business
in psychology.

The editors and production people at Lawrence Erlbaum, ever sharp and
efficient, get on with the job and bring their expertise and sensible advice to the
project and I very much appreciate their efforts.

My wife has sacrificed a great deal of her time and given me considerable
help with the final stages of this revision and she and my family, even yet, put
up with it all. Mere thanks are not sufficient.

Michael Cowles
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1

TheDevelopment
of Statistics

EVOLUTION, BIOMETRICS, AND EUGENICS

The central concern of the life sciences is the study of variation. To what extent
does this individual or group of individuals differ from another? What are the
reasons for the variability? Can the variability be controlled or manipulated?
Do the similarities that exist spring from a common root? What are the effects
of the variation on the life of the organisms? These are questions asked by
biologists and psychologists alike.

The life-science disciplines are defined by the different emphases placed on
observed variation, by the nature of the particular variables of interest, and by
the ways in which the different variables contribute to the life and behavior of
the subject matter. Change and diversity in nature rest on an organizing
principle, the formulation of which has been said to be the single most influential
scientific achievement of the 19th century: the theory of evolution by means of
natural selection. The explication of the theory is attributed, rightly, to Charles
Darwin (1809—1882). His book The Origin of Species was published in 1859,
but a number of other scientists had written on the principle, in whole or in part,
and these men were acknowledged by Darwin in later editions of his work.

Natural selection is possible because there is variation in living matter. The
struggle for survival within and across species then ruthlessly favors the indi-
viduals that possess a combination of traits and characters, behavioral and
physical, that allows them to cope with the total environment, exist, survive,
and reproduce.

Not all sources of variability are biological. Many organisms to a greater or

1



2 1. THE DEVELOPMENT OF STATISTICS

lesser extent reshape their environment, their experience, and therefore their
behavior through learning. In human beings this reshaping of the environment
has reached its most sophisticated form in what has come to be called cultural
evolution. A fundamental feature of the human condition, of human nature, is
our ability to process a very great deal of information. Human beings have
originality and creative powers that continually expand the boundaries of
knowledge. And, perhaps most important of all, our language skills, verbal and
written, allow for the accumulation of knowledge and its transmission from
generation to generation. The rich diversity of human civilization stems from
cultural, as well as genetic, diversity.

Curiosity about diversity and variability leads to attempts to classify and to
measure. The ordering of diversity and the assessment of variation have spurred
the development of measurement in the biological and social sciences, and the
application of statistics is one strategy for handling the numerical data obtained.

As science has progressed, it has become increasingly concerned with
quantification as a means of describing events. It is felt that precise and
economical descriptions of events and the relationships among them are best
achieved by measurement. Measurement is the link between mathematics and
science, and the apparent (at any rate to mathematicians!) clarity and order of
mathematics foster the scientist’s urge to measure. The central importance of
measurement was vigorously expounded by Francis Galton (1822-1911): “Un-
til the phenomena of any branch of knowledge have been submitted to meas-
urement and number it cannot assume the status and dignity of a Science.”

These words formed part of the letterhead of the Department of Applied
Statistics of University College, London, an institution that received much
intellectual and financial support from Galton. And it is with Galton, who first
formulated the method of correlation, that the common statistical procedures
of modern social science began.

The nature of variation and the nature of inheritance in organisms were
much-discussed and much-confused topics in the second half of the 19th
century. Galton was concerned to make the study of heredity mathematical and
to bring order into the chaos.

Francis Galton was Charles Darwin’s cousin. Galton’s mother was the
daughter of Erasmus Darwin (1731-1802) by his second wife, and Darwin’s
father was Erasmus’s son by his first. Darwin, who was 13 years Galton’s senior,
had returned home from a 5-year voyage as the naturalist on board H.M.S.
Beagle (an Admiralty expeditionary ship) in 1836 and by 1838 had conceived
of the principle of natural selection to account for some of the observations he
had made on the expedition. The careers and personalities of Galton and Darwin
were quite different. Darwin painstakingly marshaled evidence and single-
mindedly buttressed his theory, but remained diffident about it, apparently
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uncertain of its acceptance. In fact, it was only the inevitability of the an-
nouncement of the independent discovery of the principle by Alfred Russell
Wallace (1823—1913) that forced Darwin to publish, some 20 years after he had
formed the idea. Galton, on the other hand, though a staid and formal Victorian,
was not without vanity, enjoying the fame and recognition brought to him by
his many publications on a bewildering variety of topics. The steady stream of
lectures, papers and books continued unabated from 1850 until shortly before
his death.

The notion of correlated variation was discussed by the new biologists.
Darwin observes in The Origin of Species:

Many laws regulate variation, some few of which can be dimly seen, . .. I will
here only allude to what may be called correlated variation. Important changes
in the embryo or larva will probably entail changes in the mature animal . . .
Breeders believe that long limbs are almost always accompanied by an elongated
head . . .cats which are entirely white and have blue eyes are generally deaf . . .
it appears that white sheep and pigs are injured by certain plants whilst
dark-coloured individuals escape . . . (Darwin, 1859/1958, p. 34)

Of course, at this time, the hereditary mechanism was unknown, and, partly
in an attempt to elucidate it, Galton began, in the mid-1870s, to breed sweet
peas.' The results of his study of the size of sweet pea seeds over two generations
were published in 1877. When a fixed size of parent seed was compared with
the mean size of the offspring seeds, Galton observed the tendency that he called
then reversion and later regression to the mean. The mean offspring size is not
as extreme as the parental size. Large parent seeds of a particular size produce
seeds that have a mean size that is larger than average, but not as large as the
parent size. The offspring of small parent seeds of a fixed size have a mean size
that is smaller than average but now this mean size is not as small as that of the
fixed parent size. This phenomenon is discussed later in more detail. For the
moment, suffice it to say that it is an arithmetical artifact arising from the fact
that offspring sizes do not match parental sizes absolutely uniformly. In other
words, the correlation is imperfect.

Galton misinterpreted this statistical phenomenon as a real trend toward a
reduction in population variability. Paradoxically, however, it led to the forma-
tion of the Biometric School of heredity and thus encouraged the development
of a great many statistical methods.

! Mendel had already carried out his work with edible peas and thus begun the science of
genetics. The results of his work were published in a rather obscure journal in 1866 and the wider
scientific world remained oblivious of them until 1900.



4 1. THE DEVELOPMENT OF STATISTICS

Over the next several years Galton collected data on inherited human
characteristics by the simple expedient of offering cash prizes for family
records. From these data he arrived at the regression lines for hereditary stature.
Figures showing these lines are shown in Chapter 10.

A common theme in Galton’s work, and later that of Karl Pearson
(1857-1936), was a particular social philosophy. Ronald Fisher (1890—-1962)
also subscribed to it, although, it must be admitted, it was not, as such, a direct
influence on his work. These three men are the founders of what are now called
classical statistics and all were eugenists. They believed that the most relevant
and important variables in human affairs are inherited. One’s ancestors rather
than one’s environmental experiences are the overriding determinants of intel-
lectual capacity and personality as well as physical attributes. Human well-
being, human personality, indeed human society, could therefore, they argued,
be improved by encouraging the most able to have more children than the least
able. MacKenzie (1981) and Cowan (1972, 1977) have argued that much of the
early work in statistics and the controversies that arose among biologists and
statisticians reflect the commitment of the founders of biomerry, Pearson being
the leader, to the eugenics movement.

In 1884, Galton financed and operated an anthropometric laboratory at the
International Health Exhibition. For a charge of threepence, members of the
public were measured. Visual and auditory acuity, weight, height, limb span,
strength, and a number of other variables were recorded. Over 9,000 data sets
were obtained, and, at the close of the exhibition, the equipment was transferred
to the South Kensington Museum where data collection continued. Francis
Galton was an avid measurer.

Karl Pearson (1930) relates that Galton’s first forays into the problem of
correlation involved ranking techniques, although he was aware that ranking
methods could be cumbersome. How could one compare different measures of
anthropometric variables? In a flash of illumination, Galton realized that
characteristics measured on scales based on their own variability (we would
now say standard score units) could be directly compared. This inspiration is
certainly one of the most important in the early years of statistics. He recalls
the occasion in Memories of my Life, published in 1908:

As these lines are being written, the circumstances under which I first

clearly grasped the important generalisation that the laws of heredity were solely
concerned with deviations expressed in statistical units are vividly recalled to
my memory. It was in the grounds of Naworth Castle, where an invitation had
been given to ramble freely. A temporary shower drove me to seek refuge ina
reddish recess inthe rock by the side of the pathway. There the idea flashed
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across me and I forgot everything else for amoment in my great delight. (Galton,
1908, p. 300) 2

This incident apparently took place in 1888, and before the year was out,
Co-relations and Their Measurement Chiefly From Anthropometric Data had
been presented to the Royal Society. In this paper Galton defines co-relation:
“Two variable organs are said to be co-related when the variation of one is
accompanied on the average by more or less variation of the other, and in the
same direction” (Galton, 1888, p. 135).

The last five words of the quotation indicate that the notion of negative
correlation had not then been conceived, but this brief but important paper shows
that Galton fully understood the importance of his statistical approach. Shortly
thereafter, mathematicians entered the picture with encouragement from some,
but by no means all, biologists.

Much of the basic mathematics of correlation had, in fact, already been
developed by the time of Galton’s paper, but the utility of the procedure itself
in this context had apparently eluded everyone. It was Karl Pearson, Galton’s
disciple and biographer, who, in 1896, set the concept on a sound mathematical
foundation and presented statistics with the solution to the problem of repre-
senting covariation by means of a numerical index, the coefficient of correla-
tion.

From these beginnings spring the whole corpus of present-day statistical
techniques. George Udny Yule (1871-1951), an influential statistician who was
not a eugenist, and Pearson himself elaborated the concepts of multiple and
partial correlation. The general psychology of individual differences and re-
search into the structure of human abilities and intelligence relied heavily on
correlational techniques. The first third of the 20th century saw the introduction
of factor analysis through the work of Charles Spearman (1863-1945), Sir
Godfrey Thomson (1881-1955), Sir Cyril Burt (1883-1971), and Louis L.
Thurstone (1887-1955).

A further prolific and fundamentally important stream of development arises
from the work of Sir Ronald Fisher. The technique of analysis of variance was
developed directly from the method of intra-class correlation — an index of the
extent to which measurements in the same category or family are related, relative
to other categories or families.

2 Karl Pearson (1914—1930) in the volume published in 1924, suggested that this spot deserves
acommemorative plague. Unfortunately, it looks as though the inspiration can never be so marked,
for Kenna (1973), investigating the episode, reports that: “In the grounds of Naworth Castle there
are not any rocks, reddish or otherwise, which could provide arecess, . . . ” (p. 229), and he suggests
that the location of the incident might have been Corby Castle.
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Fisher studied mathematics at Cambridge but also pursued interests in
biology and genetics. In 1913 he spent the summer working on a farm in Canada.
He worked for a while with a City investment company and then found himself
declared unfit for military service because of his extremely poor eyesight. He
turned to school-teaching for which he had no talent and which he hated. In
1919 he had the opportunity of a post at University College with Karl Pearson,
then head of the Department of Applied Statistics, but chose instead to develop
a statistical laboratory at the Rothamsted Experimental Station near Harpenden
in England, where he developed experimental methods for agricultural research.

Over the next several years, relations between Pearson and Fisher became
increasingly strained. They clashed on a variety of issues. Some of their
disagreements helped, and some hindered, the development of statistics. Had
they been collaborators and friends, rather than adversaries and enemies,
statistics might have had a quite different history. In 1933 Fisher became Galton
Professor of Eugenics at University College and in 1943 moved to Cambridge,
where he was Professor of Genetics. Analysis of variance, which has had such
far-reaching effects on experimentation in the behavioral sciences, was devel-
oped through attempts to tackle problems posed at Rothamsted.

It may be fairly said that the majority of texts on methodology and statistics
in the social sciences are the offspring (diversity and selection notwithstanding!)
of Fisher’s books, Statistical Methods for Research Workers® first published in
1925(a), and The Design of Experiments first published in 1935(a).

In succeeding chapters these statistical concepts are examined in more detail
and their development elaborated, but first the use of the term statistics is
explored a little further.

THE DEFINITION OF STATISTICS

In an everyday sense when we think of statistics we think of facts and figures,
of numerical descriptions of political and economic states (from which the word
is derived), and of inventories of the various aspects of our social organization.
The history of statistical procedures in this sense goes back to the beginnings
of human civilization. When trade and commerce began, when governments
imposed taxes, numerical records were kept. The counting of people, goods,
and chattels was regularly carried out in the Roman Empire, the Domesday Book
attempted to describe the state of England for the Norman conquerors, and
government agencies the world over expend a great deal of money and

3 Maurice Kendall (1963) says of this work, “It is not an easy book. Somebody once said
that no student should attempt to read it unless he had read it before” (p. 2).
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energy in collecting and tabulating such information in the present day. Statis-
tics are used to describe and summarize, in numerical terms, a wide variety of
situations.

But there is another more recently-developed activity subsumed under the
term statistics: the practice of not only collecting and collating numerical facts,
but also the process of reasoning about them. Going beyond the data, making
inferences and drawing conclusions with greater or lesser degrees of certainty
in an orderly and consistent fashion is the aim of modern applied statistics. In
this sense statistical reasoning did not begin until fairly late in the 17th century
and then only in a quite limited way. The sophisticated models now employed,
backed by theoretical formulations that are often complex, are all less than 100
years old. Westergaard (1932) points to the confusions that sometimes arise
because the word statistics is used to signify both collections of measurements
and reasoning about them, and that in former times it referred merely to
descriptions of states in both numerical and non-numerical terms.

In adopting the statistical inferential strategy the experimentalist in the life
sciences is accepting the intrinsic variability of the subject matter. In recogniz-
ing a range of possibilities, the scientist comes four-square against the problem
of deciding whether or not the particular set of observations he or she has
collected can reasonably be expected to reflect the characteristics of the total
range. This is the problem of parameter estimation, the task of estimating
population values (parameters) from a consideration of the measurements made
on a particular population subset — the sample statistics. A second task for
inferential statistics is hypothesis testing, the process of judging whether or not
a particular statistical outcome is likely or unlikely to be due to chance. The
statistical inferential strategy depends on a knowledge of probabilities.

This aspect of statistics has grown out of three activities that, at first glance,
appear to be quite different but in fact have some close links. They are actuarial
prediction, gambling, and error assessment. Each addresses the problems of
making decisions, evaluating outcomes, and testing predictions in the face of
uncertainty, and each has contributed to the development of probability theory.

PROBABILITY

Statistical operations are often thought of as practical applications of previously
developed probability theory. The fact is, however, that almost all our present-
day statistical techniques have arisen from attempts to answer real-life problems
of prediction and error assessment, and theoretical developments have not
always paralleled technical accomplishments. Box (1984) has reviewed the
scientific context of a range of statistical advances and shown that the funda-
mental methods evolved from the work of practising scientists.
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John Graunt, a London haberdasher, born in 1620, is credited with the first
attempt to predict and explain a number of social phenomena from a considera-
tion of actuarial tables. He compiled his tables from Bills of Mortality, the parish
accounts of deaths that were regularly, if somewhat crudely, recorded from the
beginning of the 17th century.

Graunt recognizes that the question might be asked: “To what purpose tends
all this laborious buzzling, and groping? To know, 1. the number of the People?
2. How many Males, and Females? 3. How many Married, and single?” (Graunt,
1662/1975, p. 77), and says: “To this I might answer in general by saying, that
those, who cannot apprehend the reason of these Enquiries, are unfit to trouble
themselves to ask them.” (p. 77).

Graunt reassured readers of this quite remarkable work:

The Lunaticks are also but few, viz. 158 in 229250 though I fear many more than are
set down inour Bills . . .

So that, this Casualty being so uncertain, I shall not force my self to make any
inference from the numbers, and proportions we finde in our Bills concerning it:
onely I dare ensure any man at this present, well in his Wits, for one in the thousand,
that he shall not die a Lunatick in Bedlam, within these seven years, because I finde
not above one in about one thousand five hundred have done so. (pp. 35-36)

Here is an inference based on numerical data and couched in terms not so
very far removed from those in reports in the modern literature. Graunt’s work
was immediately recognized as being of great importance, and the King himself
(Charles II) supported his election to the recently incorporated Royal Society.

A few years earlier the seeds of modern probability theory were being sown
in France.* At this time gambling was a popular habit in fashionable society and
a range of games of chance was being played. For experienced players the
oddsapplicable to various situations must have been appreciated, but no formal
methods for calculating the chances of various outcomes were available.
Antoine Gombauld, the Chevalier de Méré, a “man-about-town™ and gambler
with a scientific and mathematical turn of mind, consulted his friend, Blaise
Pascal (1623—1662), a philosopher, scientist, and mathematician, hoping that

* But note that there are hints of probability concepts in mathematics going back at least as
far as the 12th century and that Girolamo Cardano wrote Liber de Ludo Aleae, (The Book on Games
of Chance) a century before it was published in 1663 (see Ore, 1953). There is also no doubt that
quite early in human civilization, there was an appreciation of long-run relative frequencies,
randomness, and degrees of likelihood in gaming, and some quite formal concepts are to be found
in Greek and Roman writings.
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he would be able to resolve questions on calculation of expected (probable)
frequency of gains and losses, as well as on the fair division of the stakes in
games that were interrupted. Consideration of these questions led to correspon-
dence between Pascal and his fellow mathematician Pierre Fermat (1601-1665).
No doubt their advice aided de Méré’s game.> More significantly, it was from
this exchange that some of the foundations of probability theory and combina-
torial algebra were laid.

Christian Huygens (1629-1695) published, in 1657, a tract On Reasoning
With Games of Dice (1657/1970), which was partly based on the Pascal-Fermat
correspondence, and in 1713, Jacques Bernoulli’s (1654—1705) book The Art of
Conjecture developed a theory of games of chance.

Pascal had connected the study of probability with the arithmetic triangle
(Fig. 1.1), for which he discovered new properties, although the triangle was
known in China at least five hundred years earlier. Proofs of the triangle’s
properties were obtained by mathematical induction or reasoning by recurrence.

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
(1/2+l/2)4=L A, 6 4 1

FIG. 1.1 Pascal's Triangle

3 poisson (1781-1840), writing of this episode in 1837 says, “A problem concerning games
of chance, proposed by a man of the world to an austere Jansenist, was the origin of the calculus
of probabilities” (quoted by Struik, 1954, p. 145). De Méré was certainly “a man of the world”
and Pascal did become austere and religious, but at the time of de Méré’s questions Pascal was in
his so-called “worldly period” (1652—1654). 1 am indebted to my father-in-law, the late Professor
F.T.H. Fletcher, for many insights into the life of Pascal.
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Pascal’s triangle, as it is known in the West, is a tabulation of the binomial
coefficients that may be obtained from the expansion of (P + Q)" where P = Q
= -;— The expansion was developed by Sir Isaac Newton (1642-1727), and,
independently, by the Scottish mathematician, James Gregory (1638-1675).
Gregory discovered the rule about 1670. Newton communicated it to the Royal
Society in 1676, although later that year he explained that he had first formulated
itin 1664 while he was a Cambridge undergraduate. The example shown in Fig.
1.1 demonstrates that the expansion of (5 + % )* generates, in the numerators
of the expression, the numbers in the fifth row of Pascal’s triangle. The terms
of this expression also give us the five expected frequencies of outcome (0, 1,
2, 3, or 4 heads) or the probabilities when a fair coin is tossed four times. Simple
experiment will demonstrate that the actual outcomes in the"real world" of coin
tossing closely approximate the distribution that has been calculated from a
mathematical abstraction.

During the 18th century the theory of probability attracted the interest of
many brilliant minds. Among them was a friend and admirer of Newton,
Abraham De Moivre (1667-1754). De Moivre, a French Huguenot, was in-
terned in 1685 after the revocation by Louis XIV of the Edict of Nantes, an edict
which had guaranteed toleration to French Protestants. He was released in 1688,
fled to England, and spent the remainder of his life in London. De Moivre
published what might be described as a gambler’s manual, entitled The Doctrine
of Chances or a Method of Calculating the Probabilities of Events in Play. In
the second edition of this work, published in 1738, and in a revised third edition
published posthumously in 1756, De Moivre (1756/1967) demonstrated a
method, which he had first devised in 1733, of approximating the sum of a very
large number of binomial terms when nin (P + Q)" is very large (an immensely
laborious computation from the basic expansion).

It may be appreciated that as n grows larger, the number of terms in the
expansion also grows larger. The graph of the distribution begins to resemble
a smooth curve (Fig. 1.2), a bell-shaped symmetrical distribution that held great
interest in mathematical terms but little practical utility outside of gaming.

It is safe to say that no other theoretical mathematical abstraction has had
such an important influence on psychology and the social sciences as that
bell-shaped curve now commonly known by the name that Karl Pearson decided
on— the normal distribution—although he was not the first to use the term. Pierre
Laplace (1749-1827) independently derived the function and brought together
much of the earlier work on probability in Théorie Analytique des Probabilités,
published in 1812. It was his work, as well as contributions by many others, that
interpreted the curve as the Law of Error and showed that it could be applied to
variable results obtained in muitiple observations. One of the first applications
of the distribution outside of gaming was in the assessment of errors in
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astronomical observations. Later the utility of the “law” in error assessment was
extended to land surveying and even to range estimation problems in artillery
fire. Indeed, between 1800 and 1820 the foundations of the theory of error
distribution were laid.

Carl Friedrich Gauss (1777-1855), perhaps the greatest mathematician of all
time, also made important contributions to work in this area. He was a
consultant to the governments of Hanover and of Denmark when they undertook
geodetic surveys. The function that helped to rationalize the combination of
observations is sometimes called the Laplace-Gaussian distribution.

Following the work of Laplace and Gauss, the development of mathematical
probability theory slowed somewhat and not a great deal of progress was made
until the present century. But it was during the 19th century, through the
development of life insurance companies and through the growth of statistical
approaches in the social and biological sciences, that the applications of
probability theory burgeoned. Augustus De Morgan (1806—1871), for example,
attempted to reduce the constructs of probability to straightforward rules of
thumb. His work 4An Essay on Probabilities and on Their Application to Life
Contingencies and Insurance Offices, published in 1838, is full of practical
advice and is commented on by Walker (1929).

THE NORMAL DISTRIBUTION

The normal distribution was so named because many biological variables when
measured in large groups of individuals, and plotted as frequency distributions,
do show close approximations to the curve. It is partly for this reason that the
mathematics of the distribution are used in data assessment in the social sciences
and in biology. The responsibility, as well as the credit, for this extension of the
use of calculations designed to estimate error or gambling expectancies into the
examination of human characteristics rests with Lambert Adolphe Quetelet
(1796—1874), a Belgian astronomer.

In 1835 Quetelet described his concept of the average man — /’homme moyen.
L’homme moyen is Nature’s ideal, an ideal that corresponds with a middle,
measured value. But Nature makes errors, and in, as it were, missing the target,
produces the variability observed in human traits and physical characters. More
importantly, the extent and frequency of these errors often conform to the law
of frequency of error — the normal distribution.

John Venn (1834—1933), the English logician, objected to the use of the word
error in this context: “When Nature presents us with a group of objects of every
kind, it is using rather a bold metaphor to speak in this case also of a law of
error” (Venn, 1888, p. 42), but the analogy was attractive to some.

Quetelet examined the distribution of the measurements of the chest girths
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of 5,738 Scottish soldiers, these data having been extracted from the 13th
volume of the Edinburgh Medical Journal. There is no doubt that the measure-
ments closely approximate to a normal curve. In another attempt to exemplify
the law, Quetelet examined the heights of 100,000 French conscripts. Here he
noticed a discrepancy between observed and predicted values:

The official documents would make it appear that, of the 100,000 men, 28,620
are of less height than 5 feet 2 inches: calculation gives only 26,345. Is it not a
fair presumption, that the 2,275 men who constitute the difference of these
numbers have been fraudulently rejected? We can readily understand that it is
an easy matter to reduce one’s height a half-inch, or an inch, when so great an
interest is at stake as that of being rejected. (Quetelet, 1835/1849, p. 98)

Whether or not the allegation stated here — that short (but not zoo short)
Frenchmen have stooped so low as to avoid military service — is true is no
longer an issue. A more important point is noted by Boring (1920):

While admitting the dependence of the law on experience, Quetelet proceeds in
numerous cases to analyze experience by means of it. Such a double-edged
sword is a peculiarly effective weapon, and it is no wonder that subsequent
investigators were tempted to use it in spite of the necessary rules of scientific
warfare. (Boring, 1920, p. 11)

The use of the normal curve in statistics is not, however, based solely on the
fact that it can be used to describe the frequency distribution of many observed
characteristics. It has a much more fundamental significance in inferential
statistics, as will be seen, and the distribution and its properties appear in many
parts of this book.

Galton first became aware of the distribution from his friend William
Spottiswoode, who in 1862 became Secretary of the Royal Geographical
Society, but it was the work of Quetelet that greatly impressed him. Many of
the data sets he collected approximated to the law and he seemed, on occasion,
to be almost mystically impressed with it.

I know of scarcely anything so apt to impress the imagination as the wonderful
form of cosmic order expressed by the “Law of Frequency of Error.” The law
would have been personified by the Greeks and deified, if they had known of it.
It reigns with serenity and in complete self-effacement amidst the wildest
confusion. The huger the mob and the greater the apparent anarchy, the more
perfect is its sway. It is the supreme law of Unreason. Whenever a large sample
of chaotic elements are taken in hand and marshalled in the order of their
magnitude, an unsuspected and most beautiful form of regularity proves to have
been latent all along. (Galton, 1889, p. 66)
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This rather theological attitude toward the distribution echoes De Moivre,
who, over a century before, proclaimed in The Doctrine of Chances:

Altho’ chance produces irregularities, still the Odds will be infinitely great, that
in the process of Time, those irregularities will bear no proportion to the
recurrency of that Order which naturally results from ORIGINAL DESIGN. ..
Such Laws, as well as the original Design and Purpose of their Establishment,
must all be from without . . . if we blind not ourselves with metaphysical dust,
we shall be led, by a short and obvious way, to the acknowledgement of the great
MAKER and GOVENOUR of all; Himself all-wise, all-powerful and good. (De
Moivre, 1756/1967 p. 251-252)

The ready acceptance of the normal distribution as a law of nature encouraged
its wide application and also produced consternation when exceptions were
observed. Quetelet himself admitted the possibility of the existence of asym-
metric distributions, and Galton was at times less lyrical, for critics had objected
to the use of the distribution, not as a practical tool to be used with caution where
it seemed appropriate, but as a sort of divine rule:

It has been objected to some of my former work, especially in Hereditary Genius,
that 1 pushed the application of the Law of Frequency of Error somewhat too
far.

1 may have done so, rather by incautious phrases than in reality; . . . [ am
satisfied to claim the Normal Law is a fair average representation of the observed
Curves during nine-tenths of their course; . . . (Galton, 1889, p. 56) ¢

BIOMETRICS

In 1890, Walter F. R. Weldon (1860-1906) was appointed to the Chair of
Zoology at University College, London. He was greatly impressed and much
influenced by Gaiton’s Natural Inheritance. Not only did the book show him
how the frequency of the deviations from a “type” might be measured, it opened
up for him, and for other zoologists, a host of biometric problems. In two papers
published in 1890 and 1892, Weldon showed that various measurements on
shrimps might be assessed using the normal distribution. He also demonstrated
interrelationships (correlations) between two variables within the individuals.

But the critical factor in Weldon’s contribution to the development of statistics
was his professorial appointment, for this brought him into contact with Karl
Pearson, then Professor of Applied Mathematics and Mechanics, a post Pearson
had held since 1884. Weldon was attempting to remedy his weakness in

® Note that this quotation and the previous one from Galton are 10 pages apart in the same
work!
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mathematics so that he could extend his research, and he approached Pearson
for help. His enthusiasm for the biometric approach drew Pearson away from
more orthodox work.

A second important link was with Galton, who had reviewed Weldon’s first
paper on variation in shrimps. Galton supported and encouraged the work of
these two younger men until his death, and, under the terms of his will, left
£45,000 to endow a Chair of Eugenics at the University of London, together
with the wish that the post might be offered first to Karl Pearson. The offer was
made and accepted.

In 1904, Galton had offered the University of London £500 to establish the
study of national eugenics. Pearson was a member of the Committee that the
University set up, and the outcome was a decision to appoint the Galton Research
Fellow at what was to be named the Eugenics Record Office. This became the
Galton Laboratory for National Eugenics in 1906, and yet more financial
assistance was provided by Galton. Pearson, still Professor of Applied Mathe-
matics, was its Director as well as Head of the Biometrics Laboratory. This latter
received much of its funding over many years from grants from the Worshipful
Company of Drapers, which first gave money to the University in 1903.

Pearson’s appointment to the Galton Chair brought applied statistics, bio-
metrics, and eugenics together under his direction at University College. It
cannot however be claimed absolutely that the day-to-day work of these units
was driven by a common theme. Applied statistics and biometrics were primar-
ily concerned with the development and application of statistical techniques to
a variety of problems, including anthropometric investigations; the Eugenics
Laboratory collected extensive family pedigrees and examined actuarial death
rates. Of course Pearson coordinated all the work, and there was interchange
and exchange among the staff that worked with him, but Magnello (1998, 1999)
has argued that there was not a single unifying purpose in Pearson’s research.
Others, notably MacKenzie (1981), Kevles (1985), and Porter (1986), have
promoted the view that eugenics was the driving force behind Pearson’s statis-
tical endeavors.

Pearson was not a formal member of the eugenics movement. He did not
join the Eugenics Education Society, and apparently he tried to keep the two
laboratories administratively separate, maintaining separate financial accounts,
for example, but it has to be recognized that his personal views of the human
condition and its future included the conviction that eugenics was of critical
importance. There was an obvious and persistent intermingling of statistical
results and eugenics in his pronouncements. For example, in his Huxley Lecture
in 1903 (published in Biometrika in 1903 and 1904), on topics that were clearly
biometric, having to do with his researches on relationships between moral and
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intellectual variables, he ended with a plea, if not a rallying cry, for eugenics:

The mentally better stock in the nation is not reproducing itself at the same rate as it
did of old; the less able, and the less energetic, are more fertile than the better stocks.
... The only remedy, if one be possible at all, is to alter the relative fertility of the
good and the bad stocks in the community. . . . intelligence can be aided and be
trained, but no training or education can create it. You must breed it, that is the broad
result for statecraft which flows from the equality in inheritance of the psychical and
the physical characters in man. (Pearson, 1904a, pp. 179-180).

Pearson’s contribution was monumental, for in less than 8 years, between
1893 and 1901, he published over 30 papers on statistical methods. The first
was written as a result of Weldon’s discovery that the distribution of one set of
measurements of the characteristics of crabs, collected at the zoological station
at Naples in 1892, was “double-humped.” The distribution was reduced to the
sum of two normal curves. Pearson (1894) proceeded to investigate the general
problem of fitting observed distributions to theoretical curves. This work was
to lead directly to the formulation of the y* test of “goodness of fit” in 1900, one
of the most important developments in the history of statistics.

Weldon approached the problem of discrepancies between theory and
observation in a much more empirical way, tossing coins and dice and compar-
ing the outcomes with the binomial model. These data helped to produce
another line of development.

In a letter to Galton, written in 1894, Weldon asks for a comment on the
results of 7,000 tossings of 12 dice collected for him by a clerk at University
College:

A day or two ago Pearson wanted some records of the kind in a hurry, in order
to illustrate a lecture, and 1 gave him the record of the clerk’s 7000 tosses . . . on
examination he rejects them, because he thinks the deviation from the theoreti-
cally most probable result is so great as to make the record intrinsically
incredible. (quoted by E. S. Pearson, 1965, p. 11)

This incident set off a good deal of correspondence between Karl Pearson,
F.Y. Edgeworth (1845-1926), an economist and statistician, and Weldon, the
details of which are now only of minor importance. But, as Karl Pearson
remarked, “Probabilities are very slippery things” (quoted by E. S. Pearson,
1965, p.14), and the search for criteria by which to assess the differences
between observed and theoretical frequencies, and whether or not they could be
reasonably attributed to chance sampling fluctuations, began. Statistical re-
search rapidly expanded into careful examination of distributions other than
the normal curve and eventually into the properties of sampling distributions,
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particularly through the seminal work of Ronald Fisher.

In developing his research into the properties of the probability distributions
of statistics, Fisher investigated the basis of hypothesis testing and the founda-
tions of all the well-known tests of statistical significance. Fisher’s assertion
that p = .05 (1 in 20) is the probability that is convenient for judging whether or
not a deviation is to be considered significant (i.e. unlikely to be due to chance),
has profoundly affected research in the social sciences, although it should be
noted that he was not the originator of the convention (Cowles & Davis, 1982a).

Of course, the development of statistical methods does not end here, nor have
all the threads been drawn together. Discussion of the important contribution
of W. 8. Gosset (“Student,” 1876-1937) to small sample work and the refine-
ments introduced into hypothesis testing by Karl Pearson’s son, Egon S.
Pearson (1895—1980) and Jerzy Neyman (1899-1981) will be found in later
chapters, when the earlier details have been elaborated.

Biometrics and Genetics

The early years of the biometric school were surrounded by controversy.
Pearson and Weldon held fast to the view that evolution took place by the
continuous selections of variations that were favorable to organisms in their
environment. The rediscovery of Mendel’s work in 1900 supported the concept
that heredity depends on self-reproducing particles (what we now call genes),
and that inherited variation is discontinuous and saltatory. The source of the
development of higher types was occasional genetic jumps or mutations.
Curiously enough, this was the view of evolution that Galton had supported.
His misinterpretation of the purely statistical phenomenon of regression led him
to the notion that a distinction had to be made between variations from the mean
that regress and what he called “sports” (a breeder’s term for an animal or plant
variety that appears apparently spontaneously) that will not.

A champion of the position that mutations were of critical importance in the
evolutionary process was William Bateson (1861—1926) and a prolonged and
bitter argument with the biometricians ensued. The Evolution Committee of the
Royal Society broke down over the dispute. Biometrika was founded by Pearson
and Weldon, with Galton’s financial support, in 1900, after the Royal Society
had allowed Bateson to publish a detailed criticism of a paper submitted by
Pearson before the paper itself had been issued. Britain’s important scientific
journal, Nature, took the biometricians’ side and would not print letters from
Bateson. Pearson replied to Bateson’s criticisms in Biometrika but refused to
accept Bateson’s rejoinders, whereupon Bateson had them privately printed by
the Cambridge University Press in the format of Biometrika!

At the British Association meeting in Cambridge in 1904, Bateson, then
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President of the Zoological Section, took the opportunity to deliver a bitter attack
on the biometric school. Dramatically waving aloft the published volumes of
Biometrika, he pronounced them worthless and he described Pearson’s correla-
tion tables as: “a Procrustean bed into which the biometrician fits his unanalysed
data.” (quoted by Julian Huxley, 1949).

It is even said that Pearson and Bateson refused to shake hands at Weldon’s
funeral. Nevertheless, after Weldon’s death the controversy cooled. Pearson’s
work became more concerned with the theory of statistics, although the influ-
ence of his eugenic philosophy was still in evidence, and by 1910, when Bateson
became Director of the John Innes Horticultural Institute, the argument had died.

However, some statistical aspects of this contentious debate predated the
evolution dispute, and echoes of them — indeed, marked reverberations from
them — are still around today, although of course Mendelian and Darwinian
thinking are completely reconciled.

STATISTICAL CRITICISM

Statistics has been called the “science of averages,” and this definition is not
meant in a kindly way. The great physiologist Claude Bernard (1813-1878)
maintained that the use of averages in physiology could not be countenanced:

because the true relations of phenomena disappear in the average; when dealing
with complex and variable experiments, we must study their various circum-
stances, and then present our most perfect experiment as a type, which, however,
still stands for true facts.

. averages must therefore be rejected, because they confuse while aiming to
unify, and distort while aiming to simplify. (Bernard, 1865/1927, p. 135)

Now it is, of course, true that lumping measurements together may not give
us anything more than a picture of the lumping together, and the average value
may not be anything like any one individual measurement at all, but Bernard’s
ideal type fails to acknowledge the reality of individual differences. A rather
memorable example of a very real confusion is given by Bernard (1865/1927):

A startling instance of this kind was invented by a physiologist who took urine from
arailway station urinal where people of all nations passed, and who believed that he
could thus present an analysis of average European urine! (pp. 134-133).

A less memorable, but just as telling, example is that of the social psycholo-
gist who solemnly reports “mean social class.”
Pearson (1906) notes that:

One of the blows to Weldon, which resulted from his biometric view of life
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was that his biological friends could not appreciate his new enthusiasms. They
could not understand how the Museum “specimen” was in the future to be
replaced by the “sample” of 500 to 1000 individuals. (p. 37)

The view is still not wholly appreciated. Many psychologists subscribe to
the position that the most pressing problems of the discipline, and certainly the
ones of most practical interest, are problems of individual behavior. A major
criticism of the effect of the use of the statistical approach in psychological
research is the failure to differentiate adequately between general propositions
that apply to most, if not all, members of a particular group and statistical
propositions that apply to some aggregated measure of the members of the
group. The latter approach discounts the exceptions to the statistical aggregate,
which not only may be the most interesting but may, on occasion, constitute a
large proportion of the group.

Controversy abounds in the field of measurement, probability, and statistics,
and the methods employed are open to criticism, revision, and downright
rejection. On the other hand, measurement and statistics play a leading role in
psychological research, and the greatest danger seems to lic in a nonawareness
of the limitations of the statistical approach and the bases of their development,
as well as the use of techniques, assisted by the high-speed computer, as recipes
for data manipulation.

Miller (1963) observed of Fisher, “Few psychologists have educated us as
rapidly, or have influenced our work as pervasively, as did this fervent, clear-
headed statistician.” (p. 157).

Hogben (1957) certainly agrees that Fisher has been enormously influential
but he objects to Fisher’s confidence in his own intuitions:

This intrepid belief in what he disarmingly calls common sense . . . has led Fisher
... to advance a battery of concepts for thesemantic credentials of which neither
he nor his disciples offer any justification en rapport with the generally accepted
tenets of the classical theory of probability. (Hogben, 1957, p. 504)

Hogben also expresses a thought often shared by natural scientists when
they review psychological research, that:

Acceptability of a statistically significant result of an experiment on animal
behaviour in contradistinction to a result which the investigator can repeat before
a critical audience naturally promotes a high output of publication. Hence the
argument that the techniques work has a tempting appeal to young biologists.
(Hogben, 1957, p. 27)

Experimental psychologists may well agree that the tightly controlled ex-
periment is the apotheosis of classical scientific method, but they are not so
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arrogant as to suppose that their subject matter will necessarily submit to this
form of analysis, and they turn, almost inevitably, to statistical, as opposed to
experimental, control. This is not a muddle-headed notion, but it does present
dangers if it is accepted without caution.

A balanced, but not uncritical, view of the utility of statistics can be arrived
at from a consideration of the forces that shaped the discipline and an exami-
nation of its development. Whether or not this is an assertion that anyone, let
alone the author of this book, can justify remains to be seen.

Yet there are Writers, of a Class indeed very different from that of James Bernoulli,
who insinuate as if the Doctrine of Probabilities could have no place in any serious
Enquiry; and that Studies of this kind, trivial and easy as they be, rather disqualify
a man for reasoning on any other subject. Let the Reader chuse. (De Moivre,
1756/1967, p. 254)



Science, Psychology,
and Statistics

DETERMINISM

It is a popular notion that if psychology is to be considered a science, then it
most certainly is not an exact science. The propositions of psychology are
considered to be inexact because no psychologist on earth would venture a
statement such as this: “All stable extraverts will, when asked, volunteer to
participate in psychological experiments.” The propositions of the natural
sciences are considered to be exact because all physicists would be prepared to
attest (with some few cautionary qualifications) that, “fire burns” or, more
pretentiously, that “e = mc?.” In short, it is felt that the order in the universe,
which nearly everyone (though for different reasons) is sure must be there, has
been more obviously demonstrated by the natural rather than the social scien-
tists.

Order in the universe implies determinism, a most useful and a most vexing
term, for it brings those who wonder about such things into contact with the
philosophical underpinnings of the rather everyday concept of causality. No one
has stated the situation more clearly than Laplace in his Essai:

Present events are connected with preceding ones by a tie based upon the evident
principle that a thing cannot occur without a cause which produces it. This axiom
known by the name of the principle of sufficient reason, extends even to actions
which are considered indifferent; the freest will is unable without a determinative
motive to give them birth; . . .

We ought then to regard the present state of the universe as the effect of its anterior

' Not wishing to make pronouncements on the probabilistic nature of the work of others, the writer
is making an oblique reference to work in which he and a colleague (Cowles & Davis, 1987) found that
there is an 80% chance that stable extraverts will volunteer to participate in psychological research.

21
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state and as the cause of the one that is to follow. Given for one instant an intelligence
which could comprehend all the forces by which nature is animated and the
respective situations of the beings who compose it — an intelligence sufficiently vast
to submit these data to analysis — it would embrace in the same formula the
movements of the greatest bodies of the universe and those of the lightest atom; for
it nothing would be uncertain and the future, as the past, would be present to its eyes.
(Laplace, 1820/1951, pp. 3-4)

The assumption of determinism is simply the apparently reasonable notion
that events are caused. Science discovers regularities in nature, formulates
descriptions of these regularities, and provides explanations, that is to say,
discovers causes. Knowledge of the past enables the future to be predicted.
This is the popular view of science, and it is also a sort of working rule of thumb
for those engaged in the scientific enterprise. Determinism is t4e central feature
of the development of modern science up to the first quarter of the 20th century.
The successes of the natural sciences, particularly the success of Newtonian
mechanics, urged and influenced some of the giants of psychology, particularly
in North America, to adopt a similar mechanistic approach to the study of
behavior. The rise of behaviorism promoted the view that psychology could
be a science, “like other sciences.” Formulae could be devised that would allow
behavior to be predicted, and a technology could be achieved that would enable
environmental conditions to be so manipulated that behavior could be control-
led. The variability in living things was to be brought under experimental
control, a program that leads quite naturally to the notion of the stimulus control
of behavior. It follows that concepts such as will or choice or freedom of action
could be rejected by behavioral science.

In 1913, John B. Watson (1878-1958) published a paper that became the
behaviorists’ manifesto. It begins, “Psychology as the behaviorist views it is a
purely objective experimental branch of natural science. Its theoretical goal is
the prediction and control of behavior” (Watson, 1913, p. 158).

Oddly enough, this pronouncement coincided with work that began to
question the assumption of determinism in physics, the undoubted leader of the
natural sciences. In 1913, a laboratory experiment in Cambridge, England,
provided spectroscopic proof of what is known as the Rutherford-Bohr model
of the atom. Ernest Rutherford (later Lord Rutherford, 1871-1937) had pro-
posed that the atom was like a miniature solar system with electrons orbiting a
central nucleus. Niels Bohr (1885-1962), a Danish physicist, explained that the
electrons moved from one orbit to another, emitting or absorbing energy as they
moved toward or away from the nucleus. The jumping of an electron from orbit
to orbit appeared to be unpredictable. The totality of exchanges could only be
predicted in a statistical, probabilistic fashion. That giant of modern physicists,
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Albert Einstein (1879-1955), whose work had helped to start the revolution in
physics, was loath to abandon the concept of a completely causal universe and
indeed never did entirely abandon it. In the 1920s, Einstein made the statement
that has often been paraphrased as, “God does not play dice with the world.”
Nevertheless, he recognized the problem. In a lecture given in 1928, Einstein
said:

Today faith in unbroken causality is threatened precisely by those whose path it had
illumined as their chief and unrestricted leader at the front, namely by the repre-
sentatives of physics . . . All natural laws are therefore claimed to be, “in principle,”
of a statistical variety and our imperfect observation practices alone have cheated us
into a belief in strict causality. (quoted by Clark, 1971, pp. 347-348)

But Einstein never really accepted this proposition, believing to the end that
indeterminacy was to be equated with ignorance. Einstein may be right in
subscribing ultimately to the inflexibility of Laplace’s all-seeing demon, but
another approach to indeterminacy was advanced by Werner Heisenberg
(1902-1981) a German physicist who, in 1927, formulated his famous uncer-
tainty principle. He examined not merely the practical limits of measurement
but the theoretical limits, and showed that the act of observation of the position
and velocity of a subatomic particle interfered with it so as to inevitably produce
errors in the measurement of one or the other. This assertion has been taken to
mean that, ultimately, the forces in our universe are random and therefore
indeterminate. Bertrand Russell (1931) disagrees:

Space and time were invented by the Greeks, and served their purpose admirably
until the present century. Einstein replaced them by akind of centaur which he called
“space-time,” and this did well enough for a couple of decades, but modern quantum
mechanics has made it evident that a more fundamental reconstruction is necessary.
The Principle of Indeterminacy is merely an illustration of this necessity, not of the
failure of physical laws to determine the course of nature. (pp. 108-109)

The important point to be aware of is that Heisenberg’s principle refers to
the observer and the act of observation and not directly to the phenomena that
are being observed. This implies that the phenomena have an existence outside
their observation and description, a contention that, by itself, occupies philoso-
phers. Nowhere is the demonstration that technique and method shape the way
in which we conceptualize phenomena more apparent than in the physics of
light. The progress of events in physics that led to the view that light was both
wave and particle, a view that Einstein’s work had promoted, began to dismay
him when it was used to suggest that physics would have to abandon strict
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continuity and causality. Bohr responded to Einstein’s dismay:

You, the man who introduced the idea of light as particles! If you are so concerned
with the situation in physics in which the nature of light allows for a dual interpre-
tation, then ask the German government to ban the use of photoelectric cells if you
think that light is waves, or the use of diffraction gratings if light is corpuscular.
(quoted by Clark, 1971, p. 253)

The parallels in experimental psychology are obvious. That eminent histo-
rian of the discipline, Edwin Boring, describes a colloquium at Harvard when
his colleague, William McDougall, who: “believed in freedom for the human
mind — in at least a little residue of freedom — believed in it and hoped for as
much as he could save from the inroads of scientific determinism,” and he, a
determinist, achieved, for Boring, an understanding:

McDougall’s freedom was my variance. McDougall hoped that variance would
always be found in specifying the laws of behavior, for there freedom might still
persist. I hoped then — less wise than I think 1 am now (it was 31 years ago) — that
science would keep pressing variance towards zero as a limit. Atany rate this general
fact emerges from this example: freedom, when you believe it is operating, always
resides in an area of ignorance. If there is a known law, you do not have freedom.
(Boring, 1957, p. 190)

Boring was really unshakable in his belief in determinism, and that most
influential of psychologists, B. F. Skinner, agrees with the necessity of assuming
order in nature:

It is a working assumption which must be adopted at the very start. We cannot apply
the methods of science to a subject matter which is assumed to move about
capriciously. Science not only describes, it predicts. It deals not only with the past
but with the future . . . If we are to use the methods of science in the field of human
affairs, we must assume that behavior is lawful and determined. (Skinner, 1953,

p. 6)

Carl Rogers is among those who have adopted as a fundamental position the
view that individuals are responsible, free, and spontaneous. Rogers believes
that, “the individual chooses to fulfill himself by playing a responsible and
voluntary part in bringing about the destined events ofthe world” (Rogers, 1962,
quoted by Walker, 1970, p. 13).

The use of the word destined in this assertion somewhat spoils the impact of
what most take to be the individualistic and humanistic approach that is espoused
by Rogers. Indeed, he has maintained that the concepts of scientific determi-
nism and personal choice can peacefully coexist in the way in which the particle
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and wave theories of light coexist. The theories are true but incompatible.

These few words do little more than suggest the problems that are faced by
the philosopher of science when he or she tackles the concept of method in both
the natural and the social sciences. What basic assumptions can we make? So
often the arguments presented by humanistic psychologists have strong moral
or even theological undertones, whereas those offering the determinist’s view
point to the regularities that exist in nature — even human nature — and aver that
without such regularities, behavior would be unpredictable. Clearly, beings
whose behavior was completely unpredictable would have been unable to
achieve the degree of technological and social cooperation that marks the human
species. Indeed, individuals of all philosophical persuasions tend to agree that
someone whose behavior is generally not predictable needs some sort of
treatment. On the other hand, the notion of moral responsibility implies free-
dom. If] am to be praised for my good works and blamed for my sins, a statement
that “nature is merely unfolding as it should” is unlikely to be accepted as a
defense for the latter, and unlikely to be advanced by me as a reason for the
former. One way out of the impasse, it is suggested, is to reject strict “100
percent” determinism and to accept statistical determinism. “Freedom” then
becomes part of the error term in statistical manipulations. Griinbaum (1952)
considers the arguments against both strict determinism and statistical determi-
nism, arguments based on the complexity of human behavior, the concept of
moral choice, and the assignment of responsibility, assertions that individuals
are unique and that therefore their actions are not generalizable in the scientific
sense, and that human beings via their goal-seeking behavior themselves
determine the future. He concludes, “Since the important arguments against
determinism which we have considered are without foundation, the psychologist
need not be deterred in his quest and can confidently use the causal hypothesis
as a principle, undaunted by the cavear of the philosophical indeterminist”
(Griinbaum, 1952, p. 676).

Feigl (1959) insists that freedom must not be confused with the absence of
causality, and causal determination must not be confused with coercion or
compulsion or constraint. “To be free means that the chooser or agent is an
essential link in the chain of causal events and that no extraneous compulsion
- be it physical, biological, or psychological — forces him to act in a direction
incompatible with his basic desires or intentions” (Feigl, 1959, p. 116).

To some extent, and many modern thinkers would say to a large extent (and
Feigl agrees with this), philosophical perplexities can be clarified, if not entirely
resolved, by examining the meaning of the terms employed in the debate rather
than arguing about reality.

Two further points might be made. The first is that variability and uncertainty
in observations in the natural as well as the social sciences require a statistical
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approach in order to reveal broad regularities, and this applies to experimenta-
tion and observation now, whatever philosophical stance is adopted. If the very
idea of regularity is rejected, then systematic approaches to the study of the
human condition are irrelevant. The second is that, at the end of the discussion,
most will smile with Dr Samuel Johnson when he said, “1 know that [ have free
will and there’s an end on it."

PROBABILISTIC AND DETERMINISTIC MODELS

The natural sciences set great store by mathematical models. For example, in
the physics of mass and motion, potential energy is given by PE = mgh, where
m is mass, g is acceleration due to gravity, and h is height. Newton’s second
law of motion states that F' = ma, where F is force, m is mass, and a is
acceleration.

These mathematical functions or models may be termed deterministic models
because, given the values on the right-hand side of the equation, the construct
on the left-hand side is completely determined. Any variability that might be
observed in, for example, Force for a measured mass and a given acceleration
is due only to measurement error. Increasing the precision of measurement using
accurate instrumentation and/or superior technique will reduce the error in F to
very small margins indeed.’

Some psychologists, notably, Clark Hull in learning theory and Raymond
B. Cattell in personality theory and measurement, approached their work with
the aim (one might say the dream!) of producing parallel models for psycho-
logical constructs. Econometricians similarly search for models that will de-
scribe the market with precision and reliability. For social and biological
scientists there is a persistent and enduring challenge that makes their disciplines
both fascinating and frustrating. That challenge is the search for means to assess
and understand the variability that is inherent in living systems and societies.

In univariate statistical analysis we are encompassing those procedures
where there is just one measured or dependent variable (the variable that appears
on the left-hand side of the equals sign in the function shown next) and one or
more independent or predictor variables: those that are seen on the right-hand

2 For those of you who have been exposed to physics, it must be admitted that although
Newton’s laws were more or less unchallenged for 200 years the models he gave us are not definitions
but assumptions within the Newtonian system, as the great Austrian physicist, Ernst Mach, pointed
out. Einstein’s theory of relativity showed that they are not universally true. Nevertheless, the
distinction between the models of the natural and the social and biological sciences is, for the
moment, a useful one.
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side of the equation. The function is known as the general linear model.
y = Bo+B1X1+ﬂ2X2+’3})C3+... +ann+8

The independent variables are those that are chosen and/or manipulated by
the investigator. They are assumed to be related to or have an effect on the
dependent variable. In this model the independent variables, x; x2 x5, x. , are
assumed to be measured without error. Bo, 1 B2, B3, B, are unknown parame-
ters. Bo is a constant equivalent to the intercept in the simple linear model, and
the others are the weights of the independent variables affecting, or being used
to estimate, a given observation y. Finally, € is the random error associated with
the particular combination of circumstances: those chosen variables, treat-
ments, individual difference factors, and so on. But these models are prob-
abilistic models. They are based on samples of observations from perhaps a
variety of populations and they may be tested under the hypothesis of chance.
Even when they pass the test of significance, like other statistical outcomes they
are not necessarily completely reliable. The dependent variable can, at best, be
only partly determined by such models, and other samples from other popula-
tions, perhaps using differently defined independent variables, may, and some-
times do, give us different conclusions.

SCIENCE AND INDUCTION

It is common to trace the Western intellectual tradition to two fountainheads,
Greek philosophy, particularly Aristotelian philosophy, and Judaic/Christian
theology. Science began with the Greeks in the sense that they set out its
commonly accepted ground rules. Science proceeds systematically. It gives us
a knowledge of nature that is public and demonstrable and, most importantly,
open to correction. Science provides explanations that are rational and, in
principle, testable, rather than mystical or symbolic or theological. The cold
rationality that this implies has been tempered by the Judaic/Christian notion of
the compassionate human being as a creature constructed in the image of God,
and, by the belief that the universe is the creation of God and as such deserves
the attention of the beings that inhabit it. It is these streams of thought that give
us the debate about intellectual values and scientific responsibility and sustain
the view that science cannot be metaphysically neutral nor value free.

But it is not true to say that these traditions have continuously guided Western
thought. Christianity took some time to become established. Greek philosophy
and science disappeared under the pragmatic technologists of Rome. Judaism,
weakened by the loss of its home and the persecution of its adherents, took
refuge in the refinement and interpretation of its ancient doctrines. When
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Christianity did become the intellectual shelter for the thinkers of Europe, it
embraced the view that God revealed what He wished to reveal and that nature
everywhere was symbolic of a general moral truth known only to Him. These
ideas, formalized by the first great Christian philosopher, St. Augustine
(354-430), persisted up to, and beyond, the Renaissance, and simplistic versions
may be seen in the expostulations of fundamentalist preachers today. For the
best part of 1,000 years scientific thinking was not an important part of
intellectual advance.

Aristotle’s rationalism was revived by “the schoolmen,” of whom the greatest
was Thomas Aquinas (12257-1274), but the influence of science and the
shaping of the modern intellectual world began in the 17th century.

The modern world, so far as mental outlook is concerned, begins in the seventeenth
century. No Italian of the Renaissance would have been unintelligible to Plato or
Aristotle; Luther would have horrified Thomas Aquinas, but would not have been
difficult for him to understand. With the seventeenth century it is different: Plato
and Aristotle, Aquinas and Occam, could not have made head or tail of Newton.
(Russell, 1946, p. 512)

This is not to deny the work of earlier scholars. Leonardo da Vinci (1452
—~1519) vigorously propounded the importance of experience and observation,
and enthusiastically wrote of causality and the “certainty” of mathematics.
Francis Bacon (1561-1626) is a particular example of one who expressed the
importance of system and method in the gaining of new knowledge, and his
contribution, although often underestimated, is of great interest to psychologists.
Hearnshaw (1987) gives an account of Bacon that shows how his ideas can be
seen in the foundation and progress of experimental and inductive psychology.
He notes that: “Bacon himself made few detailed contributions to general
psychology as such, he saw more clearly than anyone of his time the need for,
and the potentialities of, a psychology founded on empirical data, and capable
of being applied to ‘the relief of man’s estate’” (Hearnshaw, 1987, p. 55).

A turning point for modern science arrives with the work of Copernicus
(1473-1543). His account of the heliocentric theory of our planetary system
was published in the year of his death and had little impact until the 17th century.
The Copernican theory involved no new facts, nor did it contribute to mathe-
matical simplicity. As Ginzburg (1936) notes, Copernicus reviewed the existing
facts and came up with a simpler physical hypothesis than that of Ptolemaic
theory which stated that the earth was the center of the universe:

The fact that PTOLEMY and his successors were led to make an affirmation in
violence to the facts as then known shows that their acceptance of the belief in the
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immobility of the earth at the centre of the universe was not the result of incomplete
knowledge but rather the result of a positive prejudice emanating from non-scientific
considerations. (Ginzburg, 1936, p. 308)

This statement is one that scientists, when they are wearing their scientists’
hats, would support and elaborate upon, but an examination of the state of the
psychological sciences could not fully sustain it. Nowhere is our knowledge
more incomplete than in the study of the human condition, and nowhere are our
interpretations more open to prejudice and ideology. The study of differences
between the sexes, the nature-nurture issue in the examination of human
personality, intelligence, and aptitude, the sociobiological debate on the inter-
pretation of the way in which societies are organized, all are marked by
undertones of ethics and ideology that the scientific purist would see as outside
the notion of an autonomous science. Nor is this a complete list.

Science is not so much about facts as about interpretations of observation,
and interpretations as well as observations are guided and molded by precon-
ceptions. Ask someone to “observe™ and he or she will ask what it is that is to
be observed. To suggest that the manipulation and analysis of numerical data,
in the sense of the actual methods employed, can also be guided by preconcep-
tions seems very odd. Nevertheless, the development of statistics was heavily
influenced by the ideological stance of its developers. The strength of statistical
analysis is that its latter-day users do not have to subscribe to the particular views
of the pioneers in order to appreciate its utility and apply it successfully.

A common view is that science proceeds through the process of induction.
Putsimply, this is the view that the future will resemble the past. The occurrence
of an event 4 will lead us to expect an event B if past experience has shown B
always following A. The general principle that B follows 4 is quickly accepted.
Reasoning from particular cases to general principles is seen as the very
foundation of science.

The concepts of causality and inference come together in the process of
induction. The great Scottish philosopher David Hume (1711-1776) threw
down a challenge that still occupies the attention of philosophers:

As to past experience, it can be allowed to give direct and certain information of
those precise objects only, and that precise period of time, which fell under its
cognizance: but why this experience should be extended to future times, and to other
objects, which for aught we know, may be only in appearance similar; this is the main
question on which I would insist.

These two propositions are far from being the same, [ have found that such an
object has always been attended with such an effect and I foresee that other objects,
which are, in appearance, similar, will be attended with similar effects. 1 shall allow,
if you please, that the one proposition may justly be inferred from the other: I know,



30 2. SCIENCE, PSYCHOLOGY, AND STATISTICS

in fact, that it always is inferred. But if you insist that the inference is made by a
chain of reasoning, 1 desire you to produce that reasoning. (Hume, 1748/1951, pp.
33-34)

The arguments against Hume’s assertion that it is merely the frequent
conjunction or sequencing of two events that leads us to a belief that one causes
the other have been presented in many forms and this account cannot examine
them all. The most obvious counter is that Hume’s own assertion invokes
causality. Contiguity in time and space causes us to assume causality. Popper
(1962) notes that the idea of repetition based on similarity as the basis of a belief
in causality presents difficulties. Situations are never exactly the same. Similar
situations are interpreted as repetitions from a particular point of view — and
that point of view is a system of “expectations, anticipations, assumptions, or
interests” (Popper, 1962, p. 45).

In psychological matters there is the additional factor of volition. | wish to
pick up my pen and write. A chain of nervous and muscular and cognitive
processes ensues and [ do write. The fact that human beings can and do control
their future actions leads to a situation where a general denial of causality flies
in the face of common sense. Such a denial invites mockery.

Hume’s argument that experience does not justify prediction is more diffi-
cult to counter. The course of natural events is not wholly predictable, and the
history of the scientific enterprise is littered with the ruins of theories and
explanations that subsequent experience showed to be wanting. Hume’s skep-
ticism, if it was accepted, would lead to a situation where nothing could be
learned from experience and observation. The history of human affairs would
refute this, but the argument undoubtedly leads to a cautious approach. Predict-
ing the future becomes a probabilistic exercise and science is no longer able to
claim to be the way to certainty and truth.

Using the probability calculus as an aid to prediction is one thing; using it
to assess the value of a particular theory is another. Popper (1962) regards
statements about theories having a high degree of probability as misconcep-
tions. Theories can be invoked to explain various phenomena and good theories
are those that stand up to severe test. But, Popper argues, corroboration cannot
be equated with mathematical probability:

All theories, including the best, have the same probability, namely zero.

That an appeal to probability is incapable of solving the riddle of experience is a
conclusion first reached long ago by David Hume. . .

Experience does not consist in the mechanical accumulation of observations.
Experience is creative. It is the result of free, bold and creative interpretations,
controlled by severe criticism and severe tests. (Popper, 1962, pp. 192-193)
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INFERENCE

Induction is, and will continue to be, a large problem for philosophical discus-
sion. Inference can be narrowed down. Although the terms are sometimes used
in the same sense and with the same meaning, it is useful to reserve the term
inference for the making of explicit statements about the properties of a wider
universe that are based on a much narrower set of observations. Statistical
inference is precisely that, and the discussion just presented leads to the
argument that all inference is probabilistic and therefore all inferential state-
ments are statistical.

Statistical inference is a way of reasoning that presents itself as a mathemati-
cal solution to the problem of induction. The search for rules of inference from
the time of Bernoulli and Bayes to that of Neyman and Pearson has provided
the spur for the development of mathematical probability theory. It has been
argued that the establishing of a set of recipes for data manipulation has led to
a situation where researchers in the social sciences “allow statistics to do the
thinking for them.” [t has been further argued that psychological questions that
do not lend themselves to the collection and manipulation of quantitative data
are neglected or ignored. These criticisms are not to be taken lightly, but they
can be answered. In the first place, statistical inference is only a part of formal
psychological investigation. An equally important component is experimental
design. It is the lasting contribution of Ronald Fisher, a mathematical statistician
and a champion of the practical researcher, that showed us how the formulation
of intelligent questions in systematic frameworks would produce data that, with
the help of statistics, could provide intelligent answers. In the second place, the
social sciences have repeatedly come up with techniques that have enabled
qualitative data to be quantified.

In experimental psychology two broad strategies have been adopted for
coping with variability. The experimental analytic approach sets out boldly to
contain or to standardize as many of the sources of variability as possible. In
the micro-universe of the Skinner box, shaping and observing the rat’s behavior
depend on a knowledge of the antecedent and present conditions under which
a particular piece of behavior may be observed. The second approach is that of
statistical inference. Experimental psychologists control (in the sense of stand-
ardize or equalize) those variables that they can control, measure what they wish
to measure with a degree of precision, assume that noncontrolled factors operate
randomly, and hope that statistical methods will tease out the “effects” from the
“error.” Whatever the strategy, experimentalists will agree that the knowledge
they obtain is approximate. It has also been generally assumed that this
approximate science is an interim science. Probability is part of scientific
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method but not part of knowledge. Some writers have rejected this view.
Reichenbach (1938), for example, sought to devise a formal probability logic
in which judgments of the truth or falsity of propositions is replaced by the
notion of weight. Probability belongs to a class of events. Weight refers to a
single event, and a single event can belong to many classes:

Suppose a man forty years old has tuberculosis; . . . Shall we consider . . . the
frequency of death within the class of men forty years old, or within the class of
tubercular peopie?. . .

We take the narrowest class for which we have reliable statistics . . . we should
take the class of tubercular men of forty . . . the narrower the class the better the
determination of weight . . . a cautious physician will even place the man in question
within a narrower class by making an X-ray; he will then use as the weight of the
case, the probability of death belonging to a condition of the kind observed on the
film. (Reichenbach, 1938, pp. 316-317)

This is a frequentist view of probability, and it is the view that is implicit in
statistical inference. Reichenbach’s thesis should have an appeal for experimen-
tal psychologists, although it is not widely known. It reflects, in formal terms,
the way in which psychological knowledge is reported in the journals and
textbooks, although whether or not the writers and researchers recognize this
may be debated. The weight of a given proposition is relative to the state of our
knowledge, and statements about particular individuals and particular behaviors
are prone to error. [t is not that we are totally ignorant, but that many of our
classes are too broad to allow for substantial weight to be placed on the evidence.
Popper (1959) takes issue with Reichenbach’s attempts to extend the relative
frequency view of probability to include inductive probability. Popper, with
Hume, maintains that a theory of induction is impossible:

We shall have to get accustomed to the idea that we must not look upon science as
a “body of knowledge”, but rather as a system of hypotheses; that is to say, as a
system of guesses or anticipations . . . of which we are never justified in saying that
we know that they are “true” or “more or less certain” or even “probable”. (Popper,
1959, p. 317)

Now Popper admits only that a system is scientific when it can be tested by
experience. Scientific statements are tested by attempts to refute or falsify them.
Theories that withstand severe tests are corroborated by the tests, but they are
not proven, nor are they even made more probable. It is difficult to gainsay
Popper’s logic and Hume’s skepticism. They are food for philosophical thought,
but scientists who perhaps occasionally worry about such things will put them
aside, if only because working scientists are practical people. The principle of
induction is the principle of science, and the fact that Popper and Hume can
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shout from the philosophical sidelines that the “official” rules of the game are
irrational and that the “real” rules of the game are not fully appreciated, will not
stop the game from being played.

Statistical inference may be defined as the use of methods based on the rules
of chance to draw conclusions from quantitative data. It may be directly
compared with exercises where numbered tickets are drawn from a bag of tickets
with a view to making statements about the composition of the bag, or where a
die or a coin is tossed with a view to making statements about its fairness.
Suppose a bag contains tickets numbered 1, 2, 3, 4,and 5. Each numeral appears
on the same, very large, number of tickets. Now suppose that 25 tickets are
drawn at random and with replacement from the bag and the sum of the numbers
is calculated. The obtained sum could be as low as 25 and as high as 125, but
the expected value of the sum will be 75, because each of the numerals should
occur on one fifth of the draws or thereabouts. The sum should be 5(1 + 2 + 3
+4 +5)="75. In practice, a given draw will have a sum that departs from this
value by an amount above or below it that can be described as chance error.
Thelikely size of this error is given by a statistic called the standard error, which
is readily computed from the formula 6/Vn , where & is the standard deviation
of the numbers in the bag. Leaving aside, for the moment, the problem of
estimating o when, as is usual, the contents of the bag are unknown, all classical
statistical inferential procedures stem from this sort of exercise. The real vari-
ability in the bag is given by the standard deviation, and the chance variability
in the sums of the numbers drawn is given by the standard error.

STATISTICS IN PSYCHOLOGY

The use of quantitative methods in the study of mental processes begins with
Gustav Fechner (1801-1887) who set himself the problem of examining the
relationship between stimulus and sensation. In 1860 he published Elemente der
Psychophysik, in which he describes his invention of a psychophysical law that
describes the relationship between mind and body. He developed methods of
measuring sensation based on mathematical and statistical considerations, meth-
ods that have their echoes in present-day experimental psychology. Fechner
made use of the normal law in his development of the method of constant stimuli,
applying it in the Gaussian sense as a way of dealing with error and uncontrolled
variation.

Fechner’s basic assumptions and the conclusions he drew from his experi-
mental investigations have been shown to be faulty. Stevens’ work inthe 1950s
and the later developments of signal detection theory have overtaken the work
of the 19th century psychophysicists, but the revolutionary nature of Fechner’s
methods profoundly influenced experimental psychology. Boring (1950)
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devotes a whole chapter of his book to the work of Fechner.

Investigations of mental inheritance and mental testing began at about the
same time with Galton, who took the normal law of error from Quetelet and
made it the centerpiece of his research. The error distribution of physics became
adescription of the distribution of values about a value that was “most probable.”
Galton laid the foundations of the method of correlation that was refined by Karl
Pearson, work that is examined in more detail later in this volume. At the turn
of the century, Charles Spearman (1863-1945) used the method to define
mental abilities as factors. When two apparently different abilities are shown to
be correlated, Spearman took this as evidence for the existence of a general
factor G, a factor of general intelligence, and factors that were specific to the
different abilities. Correlational methods in psychology were dominant for
almost the whole of the first half of this century and the techniques of factor
analysis were honed during this period. Chapter 11 provides a review of its
development, but it is worth noting here that Dodd (1928) reviewed the
considerable literature that had accumulated over the 23 years since Spearman’s
original work, and Wolfle (1940) pushed this labor further. Wolfle quotes Louis
Thurstone on what he takes to be the most important use of factor analysis:

Factor analysis is useful especially in those domains where basic and fruitful concepts
are essentially lacking and where crucial experiments have been difficult to conceive.
... They enable us to make only the crudest first map of a new domain. But if we
have scientific intuition and sufficient ingenuity, the rough factorial map of a new
domain will enable us to proceed beyond the factorial stage to the more direct forms
of psychological experimentation in the laboratory. (Thurstone, 1940, pp. 189-190)

The interesting point about this statement is that it clearly sees factor analysis
as a method of data exploration rather than an experimental method. As Lovie
(1983) points out, Spearman’s approach was that of an experimenter using
correlational techniques to confirm his hypothesis, but from 1940 on, that view
of the methods of factor analysis has not prevailed.

Of course, the beginnings of general descriptive techniques crept into the
psychological literature over the same period. Means and probable errors are
commonly reported, and correlation coefficients are also accompanied by
estimates of their probable error. And it was around 1940 that psychologists
started to become aware of the work of R. A. Fisher and to adopt analysis of
variance as the tool of experimental work. It can be argued that the progression
of events that led to Fisherian statistics also led to a division in empirical
psychology, a split between correlational and experimental psychology.

Cronbach (1957) chose to discuss the “two disciplines™ in his APA presiden-
tial address. He notes that in the beginning:
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All experimental procedures were tests, all tests were experiments. . . .the statistical
comparison of treatments appeared only around 1900 . . . Inference replaced
estimation: the mean and its probable error gave way to the critical ratio. The
standardized conditions and the standardized instruments remained, but the focus
shifted to the single manipulated variable, and later, following Fisher, to multivariate
manipulation. (Cronbach, 1957, p. 674)

Although there have been signs that the two disciplines can work together,
the basic situation has not changed much over 30 years. individual differences
are error variance to the experimenter; it is the between-groups or trearment
variance that is of interest. Differential psychologists look for variations and
relationships among variables within treatment conditions. Indeed, variation in
the situation here leads to error.

It may be fairly claimed that these fundamental differences in approach have
had the most profound effect on psychology. And it may be further claimed that
the sophistication and success of the methods of analysis that are used by the
two camps have helped to formalize the divisions. Correlation and ANOVA
have led to multiple regression analysis and MANOVA, and yet the methods
are based on the same model — the general linear model. Unfortunately,
statistical consumers are frequently unaware of the fundamentals, frightened
away by the mathematics, or, bored and frustrated by the arguments on the
rationale of the probability calculus, they avoid investigation of the general
structure of the methods. When these problems have been overcome, the face
of psychology may change.



Measurement

IN RESPECT OF MEASUREMENT

In the late 19th century the eminent scientist William Thomson, Lord Kelvin
(1824-1907), remarked:

I often say that when you can measure what you are speaking about, and express it
in numbers, you know something about it; but when you cannot measure it, when
you cannot express it in numbers, your knowledge is of a meagre and unsatisfactory
kind: it may be the beginning of knowledge, but you have scarcely, in your thoughts,
advanced to the stage of science whatever the matter might be. (William Thomson,
Lord Kelvin, 1891, p. 80)

This expression of the paramount importance of measurement is part of our
scientific tradition. Many versions of the same sentiment, for example, that of
Galton, noted in chapter 1, and that of S. S. Stevens (1906-1973), whose work
is discussed later in this chapter, are frequently noted with approval. Clearly,
measurement bestows scientific respectability, a state of affairs that does scant
justice to the work of people like Harvey, Darwin, Pasteur, Freud, and James,
who, it will be noted, if they are to be labeled “scientists,” are biological or
behavioral scientists. The nature of the data and the complexity of the systems
studied by these men are quite different in quality from the relatively simple
systems that were the domain of the physical scientist. This is not, of course, to
deny the difficulty of the conceptual and experimental questions of modern
physics, but the fact remains that, in this field, problems can often be dealt with
in controlled isolation.

It is perhaps comforting to observe that, in the early years, there was a

36
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skepticism about the introduction of mathematics into the social sciences.
Kendall (1968) quotes a writer in the Saturday Review of November 11, 1871,
who stated:

If we say that G represents the confidence of Liberals in Mr Gladstone and D the
confidence of Conservatives in Mr Disraeli and x, y the number of those parties; and
infer that Mr Gladstone’s tenure of office depends upon some equation involving
dGldx, dD/dy, we have merely wrapped up a plain statement in a mysterious
collection of letters. (Kendall, 1968, p. 271)

And for George Udny Yule, the most level-headed of the early statisticians:

Measurement does not necessarily mean progress. Failing the possibility of measur-
ing that which you desire, the lust for measurement may, for example, merely result
in your measuring something else — and perhaps forgetting the difference— or in your
ignoring some things because they cannot be measured. (Yule, 1921, pp. 106-107)

To equate science with measurement is a mistake. Science is about system-
atic and controlled observations and the attempt to verify or falsify those
observations. And if the prescription of science demanded that observations
must be quantifiable, then the natural as well as the social sciences would be
severely retarded. The doubts about the absolute utility of quantitative descrip-
tion expressed so long ago could well be pondered on by today’s practitioners
of experimental psychology. Nevertheless, the fact of the matter is that the early
years of the young discipline of psychology show, with some notable excep-
tions, a longing for quantification and, thereby, acceptance. In 1885 Joseph
Jacobs reviewed Ebbinghaus’s famous work on memory, Ueber das Gedacht-
nis. He notes “If science be measurement it must be confessed that psychology
is in a bad way™ (Jacobs, 1885, p. 454).

Jacobs praises Ebbinghaus’s painstaking investigations and his careful re-
porting of his measurements:

May we hope to see the day when school registers will record that such and such a
lad possesses 36 British Association units of memory power or when we shall be
able to calculate how long a mind of 17 “macaulays”™ will take to learn Book ii of
Paradise Lost? If this be visionary, we may at least hope for much of interest and
practical utility in the comparison of the varying powers of different minds which
can now at last be laid down to scale. (Jacobs, 1885, p. 459)

The enthusiasm of the mental measurers of the first half of the 20th century
reflects the same dream, and even today, the smile that Jacobs’ words might
bring to the faces of hardened test constructors and users contains a little of the
old yearning. The urge to quantify our observations and to impose sophisticated
statistical manipulations on them is a very powerful one in the social sciences.
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It is of critical importance to remember that sloppy and shoddy measurement
cannot be forgiven or forgotten by presenting dazzling tables of figures, clean
and finely-drawn graphs, or by statistical legerdemain.

Yule (1921), reviewing Brown and Thomson’s book on mental measurement,
comments on the problem in remarks that are not untypical of the misgivings
expressed, on occasion, by statisticians and mathematicians when they see their
methods in action:

Measurement! O dear! Isn’t it almost an insult to the word to term some of these
numerical data measurements? They are of the nature of estimates, most of them,
and outrageously bad estimates often at that.

And it should always be the aim of the experimenter not to revel in statistical
methods (when he does revel and not swear) but steadily to diminish, by continual
improvement of his experimental methods, the necessity for their use and the
influence they have on his conclusions. (Yule, 1921, pp. 105-106)

The general tenor of this criticism is still valid, but the combination of
experimental design and statistical method introduced a little later by Sir Ronald
Fisher provided the hope, if not the complete reality, of statistical as opposed to
strict experimental control. The modern statistical approach more readily rec-
ognizes the intrinsic variability in living matter and its associated systems.
Furthermore, Yule’s remarks were made before it became clear that a/l acts of
observation contain irreducible uncertainty (as noted in chap. 2).

Nearly 40 years after Yule’s review, Kendall (1959) gently reminded us of
the importance of precision in observation and that statistical procedures cannot
replace it. In an acute and amusing parody, he tells the story of Hiawatha. [tis
atragic tale. Hiawatha, a “mighty hunter,” was an abysmal marksman, although
he did have the advantage of having majored in applied statistics. Partly relying
on his comrades’ ignorance of the subject, he attempted to show that his patently
awful performance in a shooting contest was not significantly different from
that of his fellows. Still, they took away his bow and arrows:

In a corner of the forest

Dwells alone my Hiawatha
Permanently cogitating

On the normal law of error.
Wondering in idle moments
Whether an increased precision
Might perhaps be rather better
Even at the risk of bias

If thereby one, now and then, could
Register upon the target.
(Kendall, 1959, p. 24)
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Measurement is the application of mathematics to events. We use numbers to
designate objects and events and the relationships that obtain between them. On
occasion the objects are quite real and the relationships immediately compre-
hensible; dining-room tables, for example, and their dimensions, weights,
surface areas, and so on. At other times, we may be dealing with intangibles
such as intelligence, or leadership, or self-esteem. In these cases our measure-
ments are descriptions of behavior that, we assume, reflects the underlying
construct. But the critical concern is the hope that measurement will provide
us with precise and economical descriptions of events in a manner that is readily
communicated to others. Whatever one’s view of mathematics with regard to
its complexities and difficulty, it is generally regarded as a discipline that is
clear, orderly, and rational. The scientist attempts to add clarity, order, and
rationality to the world about us by using measurement.

Measurement has been a fundamental feature of human civilization from its
very beginnings. Division of labor, trade, and barter are aspects of our condition
that separate us from the hunters and gatherers who were our forebears. Trade
and commerce mean that accounting practices are instituted and the “worth” of
a job or an artifact has to be labeled and described. When groups of individuals
agreed that a sheep could fetch three decent-sized spears and a couple of
cooking-pots, the species made a quantum leap into a world of measurement.
Counting, making a tally, represents the simplest form of measurement. Simple
though it is, it requires that we have devised an orderly and determinate number
system.,

Development of early societies, like the development of children, must have
included the mastery of signs and symbols for differences and sameness and,
particularly, for oneness and twoness. Most primitive languages at least have
words for “one,” “two,” and “many,” and modern languages, including English,
have extra words for one and two (single, sole, lone, couple, pair, and so on).

Trade, commerce, and taxation encouraged the development of more com-
plex number systems that required more symbols. The simple tally recorded by
a mark on a slate may be made more comprehensible by altering the mark at
convenient groupings, for example, at every five units. This system, still
followed by some primitive tribes, as well as by psychologists when construct-
ing, by hand, frequency tables from large amounts of data, corresponds with a
readily available and portable counting aid — the fingers of one hand.

It is likely that the familiar decimal system developed because the human
hands together have 10 digits. However, vigesimal systems, based on 20, are
known, and language once again recognizes the utility of 20 with the word score
in English and quatre-vingt for 80 in French. Contrary to general belief, the
decimal system is not the easiest to use arithmetically, and it is unlikely that
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decimal schemes will replace all other counting systems. Eggs and cakes will
continue to be sold in dozens rather than tens, and the hours about the clock will
still be 12. This is because 12 has more integral fractional parts than 10; that
is, you can divide 12 by more numbers and get whole numbers and not fractions
(which everyone finds hard) than you can 10. Viewed in this way, the now-aban-
doned British monetary system of 12 pennies to the shilling and 20 shillings to
the pound does not seem so odd or irrational.

Systems of number notation and counting have a base or radix. Base 5
(quinary), 10 (decimal), 12 (duodecimal), and 20 (vigesimal) have been men-
tioned, but any base is theoretically possible. For many scientific purposes,
binary (base 2) is used because this system lies at the heart of the operations of
the electronic computer. Its two symbols, 0 and 1, can readily be reproduced in
the off and on modes of electrical circuitry. Octal (base 8) and hexadecimal (base
16) will also be familiar to computer users. The base of a number system
corresponds to the number of symbols that it needs to express a number,
provided that the system is a place system. A decimal number, say 304, means
3 X 100plus0 X 10plus4 X 1.

The symbol for zero signifies an empty place. The invention of zero, the
earliest undoubted occurrence of which is in India over 1,000 years ago but
which was independently used by the Mayas of Yucatan, marks an important
step forward in mathematical notation and arithmetical operation. The ancient
Babylonians, who developed a highly advanced mathematics some 4,000 years
ago, had a system with a base of 60 (a base with many integral fractions) that
did not have a zero. Their scripts did not distinguish between, say, 125 and
7,205, and which one is meant often has to be inferred from the context. The
absence ofa zero in Roman numerals may explain why Rome is not remembered
for its mathematicians, and the relative sophistication of Greek mathematics
leads some historians to believe that zero may have been invented in the Greek
world and thence transmitted to India.

Scales of Measurement

Using numbers to count events, to order events, and to express the relationship
between events, is the essence of measurement. These activities have to be
carried out according to some prescribed rule. S. S. Stevens (1951) in his classic
piece on mathematics and measurement defines the latter as “the assignment of
numerals to objects or events according to rules” (p. 1).

This definition has been criticized on the reasonable grounds that it apparently
does not exclude rules that do not help us to be informative, nor rules that ensure
that the same numerals are always assigned to the same events under the same
conditions. Ellis (1968) has pointed out that some such rule as, “Assign the first
number that comes into your head to each of the objects on the table in turn,"
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must be excluded from the definition of measurement if it is to be determinative
and informative. Moreover, Ellis notes that a rule of measurement must allow
for different numerals, or ranges of numerals, to be assigned to different things,
or to the same things under different conditions. Rules such as “Assign the
number 3 to everything” are degenerate rules. Measurement must be made on
a scale, and we only have a scale when we have a nondegenerate, informative,
determinative rule.

For the moment, the historical narrative will be set aside in order to delineate
and comment on the matter. Stevens distinguished four kinds of scales of
measurement, and he believes that all practical common scales fall into one or
other of his categories. These categories are worth examining and their utility
in the scientific enterprise considered.

The Nominal Scale

The nominal scale, as such, does not measure quantities. It measures identity
and difference. It is often said that the first stage in a systematic empirical
science is the stage of classification. Like is grouped with like. Events having
characteristics in common are examined together. The ancient Greeks classified
the constitution of nature into earth, air, fire, and water. Animal, vegetable, or
mineral are convenient groupings. Mendeleev’s (1834-1907) periodic table of
the elements in chemistry, and plant and animal species classification in biology
(the Systema Naturae of the great botanist Carl von Linne, known as Linnaeus
[1707-1778]), and the many typologies that exist in psychology are further
examples.

Numbers can, of course, be used to label events or categories of events. Street
numbers, or house numbers, or numbers on football shirts “belong” to particular
events, but there is, for example, no quantitative significance between player
number 10 and player number 4, on a hockey team, in arithmetical terms. Player
number 10 is not 2.5 times player number 4. Such arithmetical rules cannot be
applied to the classificatory exercise. However, it is frequently the case that a
tally, a count, will follow the construction of a taxonomy.

Clearly, classifications form a large part of the data of psychology. People
may be labeled Conservative, Liberal, Democrat, Republican, Socialist, and so
on, on the variable of “political affiliation,” or urban, suburban, rural, on the
variable of “location of residence,” and we could think of dozens, if not scores,
of others.

The Ordinal Scale

The essential relationship that characterizes the ordinal scale is greater than
(symbolized >) or less than (symbolized <). These scales of measurement have
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proved to be very useful in dealing with psychological variables. It might, for
example, be comparatively easy to state that, according to some specified set of
criteria, Bill is more neurotic than Zoe, who is more neurotic than John, or that
Mary is more musical than Sue, who is more musical than Jane, and so on, even
though we are not in possession of a precise measuring instrument that will
determine by how much the individuals differ on our criteria. It follows that the
numbers that we assign on the ordinal scale represent only an order.

In ordering a group of 10 individuals according to judgments in terms of a
particular set of criteria for leadership, we may designate the one with the most
leadership ability “1" and go through to the one with the least and rank this
person ”10," or we may start with the one with least ability and rank him or her
“1,” progressing to the one with most whom we rank “10.” Either method of
ordering is permissible and both give precisely the same sort of information,
provided that the one doing the ordering adheres to the system being used and
communicates the rule to others.

The Interval and Ratio Scales

When the gaps between equal points, in the numerical sense, on the measure-
ment scale are truly quantitatively equal, then the scale is called an interval scale.
The difference between 130 cm and 137 cm is exactly the same as the difference
between 137 cm and 144 cm. When this sort of scale starts at a true zero point,
as in the distance or length scale just mentioned, Stevens designates them ratio
scales. For example, an individual who is 180 cm tall is twice the height of the
child of 90 cm, who, in turn, is twice the length of the baby of 45 cm. But when
the scale has an arbitrary zero point — for example, the Fahrenheit and Celsius
temperature scales — these ratio operations are not legitimate. [t is neither
meaningful nor correct to say that a temperature of 30 is three times as hot as a
temperature of 10. This ratio does not represent three times any temperature-
related characteristic. Perhaps a more readily appreciated example is that of
calendar time. Although it is true to say that 60 years is twice 30 years, it is
meaningless to say that 2000 A.D. will be twice 1000 A.D. in any description
of “age.” In 1000 A.D. the famous Parthenon in Athens was not twice as old
as it was in 500 A.D. Why not? Because it was built in about 440 B.C. 1t
follows from these examples that arithmetical operations on a ratio scale are
conducted on the scale values themselves, but on the interval scale with its
arbitrary zero such operations are conducted on the interval values.

The higher-order interval and ratio scales have all the properties of the
lower-order nominal and ordinal scales and may be so applied. Psychologists,
however, strive where possible for interval measurement, for it has the
appearance at least of greater precision. This desire sometimes leads to
conceptual difficulties and statistical misunderstandings. It is easy to see that
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the 3 cm by which a line 4 of 12 cm differs from a line B of 9 cm is the same
as the 3 cm by which B exceeds the 6-cm-long line C. We are agreed on how
we will define a centimeter, and measurement of length in these units is
comparatively straightforward.

But what of this statement? “Albert has an Intelligence Quotient (IQ) of
120, Billy one of 110, and Colin of 100.” The meaning of the 10-point
differences between these individuals, even when the measuring instrument (the
test) used is specified, is not so easy to see, nor is it possible to say with complete
confidence that the gap in intelligence between Albert and Billy is precisely the
same amount as the gap between Billy and Colin. Suppose that Question 1 on
our test, say, of numerical ability, asks the respondent to add 123 to 456;
Question 2, to divide 432 by 144; and Question 3 to add the square of 123 to
the square root of 144. Few would argue that these demands exhibit the same
degree of difficulty, and, by the same token, few would agree on the weighting
that might be assigned to the marks for each question. These weightings would,
to some extent, reflect the differing concepts of numerical ability. How much
more numerically able is the individual who has grasped the concept of square
root than the one who understands nothing beyond addition and subtraction?
Although these examples could, quite justifiably, be described as exaggerated,
they are given to show how difficult, indeed, impossible, it is to construct a true
interval scale for a test of intelligence.

Leaving aside for the moment the fact that no perfectly reliable instrument
exists for the measurement of 1Q, we alse know that there is no clear agreement
on the definition of IQ. In other words, statements about the magnitude of the
differences in length between lines 4, B, and C, or in 1Q between Albert, Billy,
and Colin, depend on the existence of a standard unit of measurement and on a
constant unit of measurement, one that is the same over all points on the scale.
In the case of the measurement of length these conditions exist, but in the
measurement of [Q they do not.

Do our arithmetical manipulations of psychometric test scales, as though
they were true interval scales, suggest that psychologists are prepared to ignore
the imperfections in their scales for the sake of computational convenience?
Certainly the situation just described emphasizes the responsibility of the
measurer to report on how the scales he or she employs are used and to keep
their limitations in mind.

Many, perhaps most, discussions of scales of measurement reveal a serious
misconception that also arises from Stevens’ examination. It is that the level of
measurement, that is, the specific measurement scale used in a particular
investigation, governs the application of various statistical procedures when the
data come to be analyzed. Briefly, the notion is abroad that an interval scale of
measurement is required for the adhibition of parametric test: the t-ratio,
F-ratio, Pearson’s correlation coefficient, and so on, all of which are discussed



44 3. MEASUREMENT

later in this work. Gaito (1980) is one of a number of writers who have tried to
expose the fallacy, noting that it is based on a confusion between measurement
theory and statistical theory. Gaito reiterates some of the criticisms made by
Lord (1953), who, in a witty and brilliant discussion, tells the story of a professor
who computed the means and standard deviations of test scores behind locked
doors because he had taught his students that such ordinal scores should not be
added. Matters came to a head when the professor, in a story that should be read
in the original, and not paraphrased, discovers that even the numbers on football
jerseys behave as if they were “real,” that is, interval scale, numbers. In fact,
“the numbers don’t remember where they came from” (p. 751).

It is important to realize that the preceding remarks do not detract from
Stevens’ sterling contribution to the development of coherent concepts regard-
ing scales in measurement theory. The difficulties arise when these are regarded
as prescriptions for the choice and use of a wide variety of statistical techniques.

ERROR IN MEASUREMENT

All acts of measurement involve practical difficulties that are lumped together
as the source of measurement error. From the statistical standpoint, measure-
ment error increases the variability in data sets, decreasing the precision of our
summaries and inferences. It follows that scientists strive for accuracy by
continually refining measuring techniques and instruments. The odd fact is that
this strategy proceeds even though we know that absolutely precise measure-
ment is impossible.

It is clear that a meter rule must be made from rigid material and that
measuring tapes must not be elastic. Without this the instruments lack reliability
and self-consistency and, put simply, separate and independent measurements
of the same event are unlikely to agree with each other. Only very rarely do
paper-and-pencil tests, or two forms of the same test (say, a test of personality
factors), give exactly the same results when given to an individual or group on
two occasions. In a sense these tests are like elastic measuring tapes, and the
discrepancy between the outcomes is an index of their reliability. Perfect
reliability is indexed 1. Poor reliability would be indexed 0.3 or less, and good
reliability 0.8 or more. In accepting this latter figure as good reliability, the
psychologist is accepting the inevitable error in measurement, being prepared
to do so because he or she feels that a quantitative description better serves to
grasp the concepts under investigation, to communicate ideas about the concepts
more efficiently, and to describe the relationships between these concepts and
others more clearly.

Reliability is not just a function of the quality of the instrument being used.
In 1796, Maskelyne, Astronomer Royal and Director of the Royal Observatory
at Greenwich, near London, England, dismissed Kinnebrook, an assistant,
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because Kinnebrook’s timing of stellar transits differed from his, sometimes by
as much as 1 sec.” The accuracy of such measurements is, of course, crucial to
the calculation of the distance of the star from Earth. Some 20 years later this
incident suggested to Bessel, the astronomer at Konigsberg, that such errors
were the result of individual differences in observers and led to work on the
personal equation. The astronomers believed that these discrepancies were due
to physiological variability and early experiments on reaction time reflect this
view. But as scientific psychology has grown, the reaction-time variable has
been used to study choice and discrimination, predisposition, attitudes, and the
dynamics of motivation. These events mark the beginnings of the psychology
of individual differences. For the immediate argument, however, they illustrate
the importance of both inter-observer and intra-observer reliability.

The circumstances of an exercise in measurement must remain constant for
each separate observation. If we were, say, measuring the heights of individuals
in a group, we would ensure that each of them stood up straight with heels
together, chin in, chest out, head erect, no slouching, no tiptoeing, and so on.
Quite simply, height has to be defined, and our measurements are made in accord
with that definition.

When a concept is defined in terms of the operations, manipulations, and
measurements that are made in referring to it, we have an operational definition.
Intelligence might be defined as the score obtained on a particular test; a
character trait like generosity might be defined as the proportion of one’s income
that one gives away. These sorts of definition serve to increase the precision of
communication. They most certainly do not imply immediate agreement among
scientists about the nature of the phenomena thus defined. Very few people
would maintain that the preceding definitions of intelligence and generosity are
entirely satisfactory.

Operationalism is closely allied to the philosophy of the Vienna Circle, a
group, formed in the late 1920s, that aimed to clarify the logic of the scientific
enterprise. The members of the Vienna Circle, mainly scientists and mathema-
ticians, came to be known as logical positivists, They hoped to rid the language
of science of all ambiguity and to confine the business of science to the testing
of hypotheses about the observable world. In this philosophy, meaning is
equated with verifiability, and constructs that are not accessible to observation
are meaningless. Psychologists will recognize this approach as closely akin to
the doctrine of behaviorism. The view that theoretical constructs can be grasped
via the measurement operations that describe them is an interesting one, for it
challenges the contention that there can be no measurement without theory and
that operations cannot be described in nontheoretical terms.

! Kinnebrook was employed at the observatory from May 1794 to February 1796. For some
more details of the incident and what happened to him, see Rowe (1983).
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The logical positivist view is obviously attractive to the working scientist
because it seems to be eminently “hard-nosed.” The doctrine of operationalism
demands an analysis of the nature of measurement and its contribution to the
description of facts. To state that science is concerned with the verification of
facts is to imply that there will be agreement among observers. It follows that
new methods and new observational tools, as well as observer disagreement,
will change the facts. The fact or reality of a tomato is quite different for the
artist, the gourmet cook, and the botanist, and the botanical view changed
dramatically when it became possible to view the cellular structure of the fruit
through a high-power microscope.

In the broad view, this argument includes not only the idea of levels of
agreement and verification, but also the validity oftools and measurements. Do
they, in fact, measure what they were designed to measure? And what is meant
by “designed to measure” must have some basis in a conceptual disposition if
not a full-blown theory.

We must not only consider levels of measurement, but also the limits of
measurement. In chapter 2 it was noted that observing a system disturbs the
system, affects the act of measurement, and thus provokes an irreducible
uncertainty in all scientific descriptions. This proposition is embodied in the
Uncertainty Principle of Heisenberg: the nearer one tries to obtain an accurate
measurement of either the momentum or the position of a subatomic particle,
the less certain becomes the measurement of the other. Ultimately the principle
applies to all acts of measurement.

The world of psychological measurement is beset with system-disturbing
features. Experimenter-participant interactions and the arousing and motivat-
ing properties of the setting, be it the laboratory or the natural environment,
contribute to variance in the data. These factors have been variously described
as experimenter effect, demand characteristics, and, more generally, as the
social psychology of the psychological experiment. They are examined at length
by Rosenthal and Rosnow (1969) and Miller (1972).

Despite the difficulties, logical and practical, of the procedures, scientists
will continue to measure. The behavioral scientist is trying to pin down, with as
much rigor as possible, the variability of the properties of living matter that arise
as a result of the interaction of environmental and genetic factors. As mentioned
in chapter 1, Quetelet (1835/1849) described these in terms of what we now call
the normal distribution, using the analogy of Nature’s “errors.”

Although Quetelet and Galton and others may be criticized for the promo-
tion of the distribution as a “law of nature,” their work recognized the irreducible
variance in living matter. This brings out the essence of the statistical approach.
There can be no absolute accuracy in measurement but only a judgment of
accuracy in terms of the inherent variation within and between individuals.
Statistics are the tools for assessing the properties of these random fluctuations.
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The Organization
of Data

THE EARLY INVENTORIES

The counting of people and livestock, hearths and homes, and goods and chattels
is an exercise that has a long past. The ancient civilizations of Babylon and
Egypt conducted censuses for the purposes of taxation and the raising of armies,
perhaps 3,000 years before the birth of Christ, and indeed the birthplace of Christ
himself was determined partly by the fact that Mary and Joseph traveled to
Bethlehem in order to be registered for a Roman tax. Censuses were carried out
fairly regularly by the Romans, but after the fall of Rome many centuries passed
before they became part of the routine of government. It can be argued that
these exercises are not really important in statistical history because they were
not used for the purposes of making comparisons or for drawing inferences in
the modern sense (that is, by using the probability calculus), but they are early
examples of the descriptions of States.

When inferences were drawn they were informal. The utility of such descrip-
tions was recognized by Aristotle, who prepared accounts, which were largely
non-numerical, of 158 states, listing details of their methods of administration,
judicial systems, customs, and so on. Although almost all of these descriptions
are lost, they clearly were intended to be used for comparative purposes and
compiled as part of Aristotle’s theory of the State. Such systematic descriptions
became part of our intellectual tradition in Europe, particularly in the German
States, during the 17th and 18th centuries. Staatenkunde, the comparative
description of states, made for the purposes of throwing light on their organiza-
tion, their power, and their weaknesses, became an important discipline pro-
moted especially by Gottfried Achenwall (1719-1772), who was Professor at
the University of Gottingen, Hans Anchersen (1700-1765), a Danish historian,
introduced tables into his work, and although these early tables were largely
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non-numerical, they form a bridge between the early comparative descriptions
and Political Arithmetic, where we see the first inferences based on vital
statistics (see Westergaard, 1932, for an account of these developments).

Some early statistical accounts were, until quite recently, thought to have
been made solely for the purposes of taxation. Notable among these is Domes-
day Book, ordered in 1085 by William the Conqueror, “ to place the government
of the conquered on a written basis ” (Finn, 1973, p. 1). This massive survey,
which was completed in less than 2 years, is not just a tax roll, but an
administrative record made to assist in government. Moreover, Galbraith
(1961) notes that the Domesday Inquest made no effort to preserve the over-
whelming mass of original returns: “Instead, the practical genius of the Norman
king preserved in a ‘fair copy’ what was little more than an abstract of the total
returns” (Galbraith, 1961, p. 2), so that Domesday Book is perhaps one of the
earliest examples of a summary of a large amount of data.

POLITICAL ARITHMETIC

The student in statistics who develops an interest in their history will be
astonished if he or she visits a good library and searches out titles on the history
of statistics or old books with the word statistics or statistical in the title. Very
soon, for example, The History of Statistics, published in 1918 to commemorate
the 75th anniversary of The American Statistical Association, and edited by
Koren, will be discovered. But there are no means or variances or correlation
coefficients to be found here. This volume contains memoirs from contributors
from 15 countries detailing the development of the collection and collation of
economic and vital statistics, for all kinds of motives and using all kinds of
methods, within the various jurisdictions. Such works are not unusual, and they
relate to a variety of endeavors concerned with the use of numerical data both
for comparative and inferential purposes. They reflect the layman’s view of
statistics in the present day.

Political arithmetic may be dated from the publication by John Graunt
(1620-1674), in 1662, of Natural and Political Observations Mentioned in a
Following Index and Made Upon the Bills of Mortality, although the name
political arithmetic was apparently the invention of Graunt’s friend William
Petty (1623—1687). It has been reported that Petty was in fact the author of the
Observations, but this is not so. Petty’s Political Arithmetick was written in
about 1672 but was not published until 1690. Petty’s work was of interest to
government and surely had ruffled some feathers. Petty’s son, dedicating his
father’s book to the king, writes:

He was allowed by all, to be the Inventor of this Method of Instruction; where the
perplexed and intricate ways of the World are explain’d by a very mean peice of
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Science; and had not the Doctrins of this Essay offended France, they had long since
seen the light, and had found Followers, as well as improvements before this time,
to the advantage perhaps of Mankind. (Lord Shelborne, Dedication, in Petty, 1690)

That the work had the imprimatur of authority is given in its frontispiece:

Let this Book called Political Arithmetick, which was long since Writ by Sir William
Petty deceased, be Printed.

Given at the Court at Whitehall the 7th day of Novemb. 1690.

Nottingham.

It was Karl Pearson’s (1978) view, however, that Petty owed more to Graunt
than Graunt to Petty. Graunt was a well-to-do haberdasher who was influential
enough to be able to secure a professorship at Gresham College, London, for
Petty, a man who had a variety of posts and careers. Graunt was a cultured,
self-educated man and was friends with scientists, artists, and businessmen. The
publication of the Observations led to Charles Il himself supporting his election
to the Royal Society in 1662. Graunt’s work was the first attempt to interpret
social behavior and biological trends from counts of the rather crude figures of
births and deaths reported in London from 1604 to 1661 —the Bills of Mortality.
A continuing theme in Graunt’s work is the regularity of statistical summaries.
He apparently accepted implicitly the notion that when a statistical ratio was
not maintained then some new influence must be present, that some additional
factor is there to be discovered. For example, he tried to show that the number
of deaths from the plague had been under-reported' and by examining the
number of christenings reasoned that the decrease in population of London
because of the plague would be recovered in 2 years. He attempted to estimate
the population distribution by sex and age and constructed a mortality table.
Essentially, Graunt’s work, and that of Petty, emphasizes the use of mathematics
to impose order on data and, by extension, on society itself.

Petty was a founding member of the Royal Society, which was granted its
charter in 1662. Although he had been a supporter of Cromwell and the
Commonwealth, he was knighted in 1661 by Charles II. He was not so much
concerned with the vital statistics studied by Graunt. Rather, in his early work
he suggested ways in which the expenses of the state could be curtailed and the

! The weekly accounting of burials was begun to allay public fears about the plague. However,
in epidemic years when anxiety was at its highest, it appears that cases of the plague were concealed
because members of families with the illness were kept together, both the sick and the well.
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revenue from taxes increased, and a continuing theme in his work is the
estimation of wealth.

His Political Arithmetick (Petty, 1690) compares England, France, and
Holland in terms of territory, trade, shipping, housing, and so on. His interest
was in practical political matters and money, topics that reflected his profes-
sional career as well as his philosophy.

In the context of the times, Graunt and Petty’s work may be seen as a
demonstration of their belief that quantification provided knowledge that was
free from controversy and conflict. Buck (1977) discusses these efforts in the
political climate of the times. The 17th century was, to say the least, a difficult
time for the people of England. The Civil War, the execution of the King, the
turmoil of the Commonwealth, religious conflict, the Restoration, the weakness
of the monarchs of the Stuart line, the Glorious Revolution that swept James 11
from the throne — all contributed to civil strife and political unease. And yetthe
post-Restoration years saw the founding of the Royal Society, the establishment
of the Royal Observatory at Greenwich, and the setting of the stage for the
triumphs of Newtonian science in the 18th century. It was also the era of
Restoration literature. Both John Evelyn (the diarist who gave the Society its
name and its motto) and the poet Dryden were members of the Royal Society.
Buck (1977) and others have argued that the philosophy underlying the contri-
butions of Petty and Graunt differs from that of the [8th century in that it does
not accept the existence of natural order in society. Indeed it could not, because
the political mechanisms necessary for the maintenance of a relatively stable
social system had not been established.

The practical effects of the work that was begun by Petty has its counterpart
in the present-day agencies of the state that collect data for all manner of
purposes. In this account of the development of statistics, however, this path
will be left for now, in order to return to the enterprise that sprang from Graunt’s
mortality tables. Actuarial science has more to do with our perspective because
it involves the early study of probability and risk and the use of these mathe-
matics for inference.

VITAL STATISTICS

Actuarial science has been defined as the application of probability to insurance,
particularly to life insurance. But to apply the rules of probability theory there
have to be data, and these data are provided by mortality tables. Life expectancy
tables go back as far as the 4th century, when they were used under Roman law
to estimate the value of annuities, but the major impetus to the systematic
examination of the mathematics of tontines and annuities is generally placed in
17th century Holland. John De Witt (1625-1672), the Grand Pensionary of
Holland and West Friesland, applied probability principles to the calculation of
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annuities.” Dawson (1901/1914) states that De Witt must be considered to be
the founder of actuarial science, although his work was not rediscovered until
1852. More prominent is the work of De Witt’s contemporaries, Christiaan
Huygens (1629-1695) and John Hudde (1628-1704). Graunt’s work influenced
that of Huygens and his younger brother, who debated the relative merits of
estimating the mean duration of life and the probability of survival or death at
a given age.

These attempts to bring rationality and order into the general area of life
insurance was aided considerably by the work of Edmund Halley (1656—-1742),
the English astronomer and mathematician and patron of Newton. He published
An Estimate of the Mortality of Mankind, Drawn From Curious Tables of the
Births and Funerals at the City of Breslaw; With an Attempt to Ascertain the
Price of Annuities on Lives, in Philosophical Transactions in 1693, He was a
brilliant man, and his clear exposition of the problems is remarkable on two
counts. The first is that it was produced in order to fulfill a promise to the Royal
Society to contribute material for the Transactions, which had resumed publi-
cation after a break of several years, and was a topic that was out of the
mainstream of his work. The second is that the early life offices in England did
not use the material, the common opinion being that insurance was largely a
game of chance. The general realization that an understanding of probabilities
helped in the actual determination of gains and losses in both games of chance
and life insurance was not to come until almost the middle of the 18th century.
The necessity of reliable systems for the determination of premiums for all kinds
of insurance became more and more important in the rise of 18th century trade
and commerce.

This account of the beginnings of actuarial science is by no means complete,
but the brief description highlights the utility of data organization and prob-
ability for the making of inferences and the business of practical prediction. As
Karl] Pearson (1978) noted in his lectures, there were two main lines of descent
from Graunt; the probability-mathematicians and actuaries, and the 18th century
political arithmeticians. Of the probability-mathematicians perhaps the most
entertaining and enterprising was a physician, John Arbuthnot (1667-1735). He
was able, he was intellectual, he was a wit, and he can be credited with the first
use of an abstract mathematical proposition, the binomial theorem, to test the
probability of an observed distribution, namely, the proportion of male and
female births. In fact, he appears to have been the first person to assess observed
data, chance, and alternative hypotheses using a statistical test. Arbuthnot had,
in 1692, published a translation of Huygens work on probability with additions
of his own. In this book he observes that probability may be applied to

2 Tontines were once a popular form of annuity. Subscribers paid into a joint fund, and the income
they received increased for the survivors as the members died off.
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Graunt’s suggestion in the Observations that the greater number of male than
female births was a matter of divine providence and not chance. In An
Argument for Divine Providence, Taken From the Constant Regularity
Observ’d in the Births of Both Sexes, published in 1710, Arbuthnott (sometimes,
as he did here, he spelled his name with two t’s) uses the binomial expansion to
argue that the observed distribution of male and female christenings (which he
equates with births) departs so much from equality as to be impossible, “from
whence it follows that it is Art, not Chance, that governs” (p. 189). An excess
of males is prevented by:

the wise Oeconomy of Nature; and to judge of the wisdom of the Contrivance, we
must observe that the external Accidents to which Males are subject (who must seek
their Food with danger) do make a great havock of them, and that this loss exceeds
far that of the other Sex, occasioned by the Diseases incident to it, as Experience
convinces us. To repair that Loss, provident Nature, by the Disposal of its wise
Creator, brings forth more Males than Females; and that in almost constant propor-
tion. (Arbuthnott, 1710, p. 188)

The resulting near-equal proportions of the sexes ensures that every male
may have a female of suitable age, and Arbuthnot concludes, as did Graunt, that:

Polygamy is contrary to the Law of Nature and Justice, and to the Propagation of the
Human Race; for where Males and Females are in equal number, if one Man takes
Twenty Wives, Nineteen Men must live in Celibacy, which is repugnant to the Design
of Nature; nor is it probable that Twenty Women will be so well impregnated by one
Man as by Twenty. (Arbuthnott, 1710, p. 189)

which are as ingenious statements of what we now call alternative hypotheses
as one could find anywhere.

The most outstanding of the probability-mathematicians of the era was
Abraham De Moivre (1667-1754). He was born at Vitry in Champagne, a
Protestant and the son of a poor surgeon. From an early age, although an able
scholar of the humanities, he was interested in mathematics. After the repeal
of the Edict of Nantes in 1685, he was interned and was faced with the choice
of renouncing his religion or going into exile. He chose the latter and in 1688
went to England. By chance he met Isaac Newton and read the famous
Principia, which had been published in 1687. He mastered the new infinitesimal
calculus and passed into the circles of the great mathematicians, Bernoulli,
Halley, Leibnitz, and Newton. Despite the efforts of his friends, he was unable
to obtain a secure academic position and supported himself as a peripatetic
teacher of mathematics, “and later in life sitting daily in Slaughter’s Coffee
House in Long Acre, at the beck and call of gamblers, who paid him a small
sum for calculating odds, and of underwriters and annuity brokers who wished
their values reckoned” (K. Pearson, 1978, p. 143).
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De Moivre first published his treatise on annuities in 1725. Essentially and
without going into the details, and some of the defects, of his procedures, De
Moivre used the summation of series to compute compound interests and
annuity values. The crucial factor was in applying the relatively straightforward
mathematics to a mortality table. He examined Halley’s Breslau table and
concluded that the number of individuals who survived to a given age from a
total starting out at an earlier age could be expressed as decreasing terms in an
arithmetic series. In short, De Moivre combined probabilities and the interest
factor to compute annuity values in a manner that pointed the way to modern
actuarial science. Thomas Simpson (1710-1761) has been described as De
Moivre’s younger rival. He is certainly remembered in the history of life
insurance as an innovator. He appears initially to have argued with De Moivre
that mortality tables should be used as they were found and not fitted to
mathematical rules. Simpson is dismissed by Karl Pearson (1978) as a plagiarist
who “set out to boil down De Moivre’s work and sell the result at a lower price”
(p. 176), whereas Dawson (1901/1914) describes his book as “an attempt to
popularize the science, never a popular movement among those who hope to
profit by keeping it exclusive” (p. 102).

De Moivre was undoubtedly upset by Simpson’s reproduction of his ideas,
but Pearson’s view of Simpson’s character is not shared by many historians of
mathematics, who have described him as a self-taught genius.

The application of mathematical rules to tables of mortality are the earliest
examples of the use of theoretical abstractions for practical purposes. They
are attempts to organize and make sense of data. The development of, and
rationales behind, modern statistical summaries are of immediate interest.

GRAPHICAL METHODS

As knowledge increases amongst mankind and transactions multiply, it becomes
more and more desirable to abbreviate and facilitate the modes of conveying
information from one person to another and from one individual to the many.

I confess I was long anxious to find out whether I was actually the first who applied
the principles of geometry to matters of finance as it had long before been applied
to chronology with great success. I am now satisfied upon due inquiry, that I was
the first:

As the eye is the best judge of proportion being able to estimate it with more
accuracy than any other of our organs, it follows, that wherever relative quantities
are in question, a gradual increase or decrease of any . . . value is to be stated, this
mode of representing it is peculiarly applicable.

That I have succeeded in proposing and putting in practice a new and useful mode
of stating accounts . . . and as much information may be obtained in five minutes as
would require whole days to imprint on the memory, in a lasting manner, by a table
of figures. (Playfair, 1801a, pp. ix—x)
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These quotations are taken from Playfair’s Commercial and Political Atlas,
the third edition of which was published in 1801. They provide an unequivocal
statement of his view, and the view of many historians, that he was the inventor
of statistical graphical methods, methods that he termed lineal arithmetic. Also
in 1801, Playfair’s Statistical Breviary; Shewing, on a Principle Entirely New,
the Resources of Every State and Kingdom in Europe, appeared. We see, in
handsome hand-colored, copper-plate engravings, line and bar graphs in the
Atlas, and these together with circle graphs and pie charts in the Breviary. They
illustrate revenues, imports and exports, population distributions, taxes, and
other economic data, and they are accompanied by constant reminders of the
utility of the graphical method for the examination of fiscal and trade matters.

William Playfair (1759-1823) was the younger brother of John Playfair, the
mathematician. He had a variety of occupations, beginning as an apprentice
mechanical engineer and draftsman and later as a writer and rather unsuccessful
businessman. In his examination of the history of graphical methods, Funk-
houser (1937) notes that the French translation of the Atlas was very well
received on the continent; in fact, much more attention was paid to it there than
in England. He also suggests that this might account for the greater interest
shown in graphical work by the French over the next century.

As a method of summarizing data, we must give full credit to Playfair for
the development of the graphical method, but there are examples of the use of
graphs that predate his work by many centuries. Funkhouser (1937) mentions
the use of coordinates by Egyptian surveyors and that latitudes and longitudes
were used by the geographers and cartographers of ancient Greece. Nicole
Oresme (c. 1323-1382) developed the essentials of analytic geometry, which is
René Descartes’ (1596—1650) greatest contribution to mathematics, although it
is of course true that graphs could have been used, and in fact occasionally were
used, without any formal knowledge of the fact that the curve of a graph can be
represented by a mathematical function. Funkhouser (1936) reports on a 10th-
century graph of planetary orbits as a function of time, and over the years there
have been other examples of the method, perhaps the most obvious of which is
musical notation.

Despite Playfair’s ingenuity and his attempts at the promotion of the tech-
nique, the use of graphs was surprisingly slow to develop. We find Jevons in
1874 describing the production of “best fit” curves by eye and suggesting the
procuring or preparation of “paper divided into equal rectangular spaces, a
convenient size for the spaces being one-tenth of an inch square” (p. 493), and
not until its 11th edition, published in 1910, did Encyclopaedia Britannica
devote an entry to graphical methods. Funkhouser (1937) suggests, and the
suggestion is eminently plausible, that the collection of public statistics was
affected by an ongoing controversy as to whether verbal descriptions of political
and economic states were superior to numerical tables. If statistical tables were
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regarded with suspicion, then graphs would have been greeted with even more
opprobrium. In France and Germany the use of graphs was openly criticized by
some statisticians.

In the social sciences the person who most helped to promote the use of the
graph as a tool in statistical analysis was Quetelet, who has already been
mentioned. It has been noted that the use of the Normal Curve for the description
of human characteristics begins with his work. The law of error and Quetelet’s
adaptation of it is of great importance.



Probability

A proposition that would find favor with most of us is that the business of life
is concerned with attempts to do more or less the right thing at more or less the
right time. It follows that a great deal of our thinking, in the sense of deliberating,
about our condition is bound up with the problem of making decisions in the
face of uncertainty. A traditional view of science in general, on the other hand,
is that it searches for conclusions that are to be taken to be true, that the
conclusions should represent an absolute certainty. If one ofits conclusions fails,
then the failure is put down to ignorance, or poor methodology, or primitive
techniques — the truth is still thought to be out there somewhere. In chapter 2,
some of the difficulties that can arise in trying ‘to sustain this position were
discussed. Probability theory provides us with a means of reaching answers and
conclusions when, as is the case in anything but the most trivial of circum-
stances, the evidence is incomplete or, indeed, can never be complete. Put
simply, what is the best bet, what are the odds on our winning, and how confident
can we be that we are right? The derivation of theories and systems that may
be applied to assist us in answering these questions continues to present
intellectual challenges.

THE EARLY BEGINNINGS

The early beginnings are very early indeed. David (1962) tells us that many
archeological digs have produced quantities of astragali, animal heel bones, with
the four flatter sides marked in various ways. These bones may have been used
as counting aids, as children’s toys, or as the forerunners of dice in ancient
games. The astragalus was certainly used in board games in Egypt about 3,500
years before the birth of Christ. David suggests that gaming may have been
developed from game-playing and reports that it is said to have been introduced
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in Greece just 300 years before Christ. She also suggests that gaming may have
emerged from the wager, and the wager from divination and the interrogation
of oracles with origins in religious ritual. We know that gaming was a common
pastime in both Greece and Rome from at least 100 years before Christ. David
notes that Claudius (10 B.C.— 54 A.D.) wrote a book on how to win at dice,
which, regrettably, has not survived. David also comments on a remark in
Cicero’s De Divinatione, Book I:

When the four dice produce the venus-throw [the outcome when four dice, or
astragali, are tossed and the faces shown are all different] you may talk of accident:
but suppose you made a hundred casts and the venus-throw appeared a hundred
times; could you call that accidental? (David, 1962, p. 24)

This may be one of the earliest statements of the circumstances in which we
might accept or reject the null hypothesis. Cicero quite clearly had some grasp
of the concepts of randomness and chance and that rare events do occur in the
long run. A variety of explanations may be advanced for the fact that these early
insights did not lead to a mathematical calculus of probabilities. Greek philoso-
phy, in the works of Plato and Aristotle, searched for order and regularity in the
phenomena of the universe, and later, as Christianity spread, the Church
promoted the idea of an omnipotent God who was unceasingly aware of, and
responsible for, the slightest perturbation in natural affairs. Human beings were
doomed to be ignorant of the succession of natural events and could achieve
salvation only by submission to the will of an Almighty. A more mundane
explanation may be provided by the fact that early arithmetic, at any rate in what
we would now call Western culture, was hampered by the absence of a logical
and efficient system of number notation. Whatever the reasons, and many
others have been suggested (see, e.g., Acree, 1978; Hacking, 1975), we know
that about 1,600 years elapsed before a foundation for probability theory was
laid.

THE BEGINNINGS

The reader is referred to David’s interesting book (1962) for a review of the
contributions that emerged in Europe during the first millennium and beyond.
In the 17th century, Gerolamo Cardano’s book Liber de Ludo Aleae [The Book
on Games of Chance] was published (in 1663, some 87 years after the death of
its author). A translation of this work by S. H. Gould is to be found in Ore
(1953). The treatise is full of practical advice on both odds and personality,
noting that persons who are renowned for wisdom, or old and dignified by civil
honor or priesthood, should not play, but that for boys, young men, and soldiers,
it is less of a reproach.

Cardarno also cautions that doctors and lawyers play at a disadvantage, for
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“if they win, they seem to be gamblers, and if they lose, perhaps they may be
taken to be as unskilful in their own art as in gaming. Men of these professions
incur the same judgment if they wish to practice music" (Ore, 1953, pp.
187-188).

It cannot be claimed that Cardano produced a theory with this book.
However, it can be stated that he understood the importance of the relationship
between theoretical reasoning and events in the “real world” of gaming.

The birth of the mathematical theory of probability, that is, “when the infant
really sees the light of day” (Weaver, 1963/1977, p. 31), took place in 1654, In
that year, Antoine Gombauld, Chevalier de Méré (1607-1684), posed the
questions to Blaise Pascal (1623—-1662) that initiated the endeavor. The two may
have met in the summer of 1652 and soon become friends, although there is
some doubt about both the time and the circumstances of their meeting. David,
in her book, deals rather harshly with de Méré. She dismisses him as having “a
second-rate intelligence” and indicates that his writings do not show evidence
of mathematical ability, “being literary pieces of not very high calibre” (David,
1962, p. 85). De Méré was not a mathematician, although there is no doubt that
he held a good opinion of his abilities in a number of fields. What he appears
to have been was France’s leading arbiter of good taste and manners, a man who
studied the ways of polite society with care and dedication.' His writings were
sought after, and his opinions respected, by those who wished to maintain good
standing in the drawing rooms of Paris (see St. Cyres, 1909, pp. 136-158, for
an account of de Méré). Pascal appears to have been a willing pupil, although
toward the end of 1654 he underwent his second conversion to the religious life.
The notion that, astonishingly, the calculus of probabilities was the offspring of
a dilettante and an ascetic, which Poisson’s remark (footnoted in chap. 1) has
been taken to imply, is a not quite accurate reflection.

Every account of the history of the concept of probability shows how
important the search for ways of assessing the odds in various gaming situations
has been in shaping its development. There seems to be little doubt but that
Pascal had spent sessions at the gaming tables, and it seems unlikely that various
situations had not been discussed with de Méré. What moved the matter into
the realm of mathematical discourse was the correspondence between Pascal
and his fellow mathematician Pierre Fermat, sparked by specific questions that
had been raised by de Méré.

An old gambling game involves the “house” offering a gambler even money
that he or she will throw at least 1 six in 4 throws of a die. In fact, the odds are
slightly favorable to the house. De Méré’s problem concerned the question of
the odds in a situation where the bet was that a player would throw at least |

! That David’s judgment on the matter may be in error is likely. Michéa (1938) maintains that
Descartes’ bon sens and Pascal’s coeur can be equated with de Méré’s bon gout, and no one could
find that Descartes and Pascal had second-rate intelligences.
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double six in 24 throws of 2 dice. Here the odds are, in fact, slightly against
the house, even though 24 isto 36 as 4 isto 6. De Méré had solved this problem
but used the outcome to argue to Pascal that it showed that arithmetic was
self-contradictory!? A second problem, which de Méré was unable to solve,
was the “problem of points,” which concerns, for example, how the stakes or
the “pot” should be divided among the players, according to the current scores
of the participants, if a game is interrupted. This is an altogether more difficult,
question and the exchanges between Pascal and Fermat that took place over the
summer of 1654 devote much space to it. The letters® show the beginning of
the applications of combinatorial algebra and of the arithmetic triangle.

In 1655, Christiaan Huygens (1629-1695), a Dutch mathematician, visited
Paris and heard of the Pascal-Fermat correspondence. There was enormous
interest in themathematics of chance but a seeming reluctance to announce
discoveries and reveal the answers to questions under discussion, perhaps
because of the material value of the findings to gamblers. Huygens returned to
Holland and worked out the answers for himself. His short account De
Ratiociniis in Ludo Aleae [Calculating in Games of Chance] was published in
1657 by Frans van Schooten (1615-1660), who was Professor of mathematics
at Leyden. This book, the first on the probability calculus, was an important
influence on James Bernoulli and De Moivre.

James (also referred to as Jacques or Jakob) Bernoulli (1654-1705) was one
of an extended family of mathematicians who made many valuable contribu-
tions. Itis his Ars Conjectandi [The Art of Conjecture], published in 1713 after
editing by his nephew Nicholas, that is of most interest. The first part of the
book is a reproduction of Huygens’ work with a commentary. The second and
third parts deal with the mathematics of permutations and combinations and its
application to games of chance. In the fourth part of the book we find the
theorem that Bernoulli called his “golden theorem,” the theorem named “The
Law of Large Numbers” by Poisson in 1837. In an excellent and most readable
commentary, Newman (1956) declares the theorem to be “of cardinal signifi-
cance to the theory of probability,” for it “was the first attempt to deduce
statistical measures from individual probabilities” (vol. 3, p. 1448). Hacking
(1971) has examined the whole work in some considerable depth.

Bernoulli likely did not anticipate all of the debates and confusions and

2 The probability of not getting a six in a single throw of a die is 5/6 and the probability of no
sixes in 4 throws is (5/6)*. The probability of at least 1 six in 4 throws is 1 — (5/6)*, which is
.51775, which is favorable to the house. The probability of nor getting 2 sixes in a single throw
of 2 dice is 35/36 and the probability of the event of at least once getting 2 sixes in 24 throws of
2 dice is 1 — (35/36)%*, which is .49140, which is slightly unfavorable to the house.

3 Translations of the Pascal-Fermat correspondence are to be found in David’s (1962) book and in
Smith (1929).
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misconceptions, both popular and academic, that his theorem would generate,
but that it was a source of intellectual puzzlement may be taken from the fact
that its author states that he meditated on it for 20 years. In its simplest form,
the theorem states that if an event has a probability p, of occurring on a single
trial, and # trials are to be made, then the proportion of occurrences of the event
over the n trials is also p. As n increases, the probability that the proportion will
differ from p by less than a given amount, no matter how small, also increases.
Italso becomes increasingly unlikely that the number of occurrences of the event
will differ from pn by less than a fixed amount, however large. In a series of n
tosses of a “fair” coin the probability of heads occurring close to 50% of the
time (0.5n occurrences) increases as » increases, and there is a much greater
probability of a difference of, say, 10 heads from what would be expected in
1,000 tosses of the coin than in 100 tosses of the coin. Kneale (1949) notes that
it is often supposed that the theorem is:

A mysterious law of nature which guarantees that in a sufficiently large number of
trials a probability will be “realized as a frequency.”

A misunderstanding of Bernoulli’s theorem is responsible for one of the common-
est fallacies in the estimation of probabilities, the fallacy of the maturity of the
chances. When a coin has come down heads twice in succession, gamblers some-
times say that it is more likely to come down tails next time because “by the law of
averages” (whatever that may mean) the proportion of tails must be brought to right
some time. (Kneale, 1949, pp. 139-140)

The fact is, of course, that the theorem is no more and no less than a formal
mathematical proposition and not a statement about realities and, as Newman
(1956) puts it, “ neither capable of validating ‘facts’ nor of being invalidated by
them” (vol. 3, p. 1450). Now this statement accurately represents the situation,
but it must not be passed by without comment. If reality departs severely from
the law, then clearly we do not doubt reality, and nor do we doubt the law. What
we might do, however, is to doubt some of our initial assumptions about the
observed situation. If red were to turn up 100 times in a row at the roulette table,
it might be prudent to bet on red on the 101st spin because this sequence departs
so much from expectation that we might conclude that the wheel is “stuck” on
red. In fact, we might use this observation as support for an assertion that the
wheel is not fair. This example moves us away from probability theory and into
the realm of practical statistical inference, an inference about reality that is based
on probabilities indicated by an abstract mathematical proposition.

THE MEANING OF PROBABILITY

A problem has been raised. The difficulty inherent in any attempt to apply
Bernoulli’s theorem is that we assume that we know the prior probability p of
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a given event on a single trial — that, for example, we know that the value of p
for the appearance of heads when a coin is tossed is 2. If we do know p, then
predictions can be made, and, given a series of observations, inferences may
be drawn from them. The problem is to state the grounds for setting p at a
particular value, and this raises the question of what it is that we mean by
probability. The issue was always there, but it was not really confronted until
the 19th century.

The title of this section is taken from Ernest Nagel’s paper presented at the
annual meeting of the American Statistical Association in 1935 and printed in
its journal in 1936. Nagel’s clear and penetrating account does not, as he admits,
resolve the difficult problems raised in attempts to examine the concept,
problems that are still the source of sometimes quite heated debate among
mathematicians and philosophers. What it does is present the alternative views
and comment on the conclusions that adoption of one or other of the positions
entails.* Nagel first examines the methodological principles that can be brought
to bear on the question; then he delineates the contexts in which ideas of
probability may be found; and, finally, he examines the three interpretations of
probability that are extant. What follows draws heavily on Nagel’s review.

Appeals to probabilities are found in everyday discussion, applied statistics
and measurement, physical and biological theories, the comparison of compet-
ing theories, and in the mathematical probability calculus. The three important
interpretations of the concept are the classical; the notion of probability as
“rational belief”; and the long-run relative frequency definition.

Laplace (1749-1827) and De Morgan (1806—1871) were the chief expo-
nents of the classical view that regards probability as, in De Morgan’s words,
“a state of mind with respect to an assertion” (De Morgan, 1838). The strength
of our beliefabout any given proposition is its probability. This is what is meant
in everyday discourse when we say (though perhaps not every day!) that “It is
probable that gaming emerged from game-playing.” In evaluating competing
theories this view is also evident, as when it is said by some, for example, that,
“Biologically based trait theories of personality are more probably correct than
social learning theories.” This interpretation is not what is meant when statis-
tical assertions about the weather, the probability of precipitation, for example,
or the outcome of an atomic disintegration are made.

John Maynard Keynes (later Lord Keynes, 1883-1946) interpreted prob-
ability as rational belief, and it has been asserted that this is the most appropriate
view for most applications of the term. Evidence about the moral character of
witnesses would lead to statements about the probability of the truth of one
person’s testimony rather than another’s or, in examining the results of evidence
that attempted to show, for example, that a social learning theory interpretation

4 Acree (1978) gives an extensive review that, for the present writer, is sometimes difficult to follow.
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of achievement motivation is more probable than one based on trait theory.
These statements rest on rational insights into the relationship between evidence
and conclusion, not on statistical frequencies, because we do not have such
information. It is Nagel’s view, and the view of others, that both the classical
and the Keynesian views violate an important methodological principle — that
of verifiability:

On Keynes’ view a degree of probability is assignable to a single proposition with
respect to given evidence. But what verifiable consequences can be drawn from the
statement that with respect to the evidence the proposition that on the next throw
with a given pair of dice a 7 will appear, has a probability of 1/6? For on the view
that it is significant to predicate a probability to the single instance there is nothing
to be verified or refuted. (Nagel, 1936, p. 18)

The conclusion is that the views we have described “cannot be regarded as
a satisfactory analysis of probability propositions in the sciences which claim
to abide by this canon” (Nagel, 1936, p. 18).

The third interpretation of probability is the statistical notion of long-run
relative frequency. Bolzano (1781-1841), Venn (1834-1923), Cournot
(1801-1877), Peirce (1839-1914), and, more recently, von Mises (1883-1953)
and Fisher (1890-1962) are among the scientists and mathematicians who
supported this view. In a simple example, if you are told that your probability
of survival and recovery after a particular surgical procedure is 80%, then this
means that of 100 patients who have undergone this operation, 80 have recov-
ered.

The majority of working scientists in psychology who rely on statistical
manipulations in the examination of data implicitly or explicitly subscribe to
this meaning. Whether or not it is appropriate to the endeavor and whether or
not the consequences of its acceptance are fully appreciated is a question to be
considered. It is important to note, and this is not meant to be facetious, that
following the operation you are either alive or you are dead. In other words,
the probability statement is about a relationship between events, or rather
propositions concerning the occurrence of events, not about a single event. In
this respect the frequentists have no quarrel with the Keynesians.

The most common logical objection (in fact, it is a class of objections) to
the frequency view concerns the vague term long-run. Clearly, in order to
establish a frequency ratio the run has to stop somewhere, and yet probability
values are defined as the limit of an infinite sequence. Nagel’s answer to the
objection, which von Mises (1957) also deals with at some length, is that
empirically obtained ratios can be used as hypotheses for the true values of the
infinite series, and these hypotheses can be tested. Further, probability values
might be arrived at by using some other theory than that obtained from a
statistical series, for example, using theoretical mechanics to predict the
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probability of a fair coin turning up heads. Again the predicted probability can
be tested empirically. Nagel also argues that Keynesian examples about the
credibility of witnesses could be examined in frequency terms; for instance, “the
relative frequency with which a regular church-goer tells lies on important
occasions is a small number considerably less than '4” (Nagel, 1936, p. 23). It
is obviously the case that there is more than one conception of probability and
that each one has value in its particular context. Nagel concludes that the
frequency view is satisfactory for “every-day discourse, applied statistics and
measurement, and within many branches of the theoretical sciences” (p. 26).

It has been noted that psychological scientists have accepted this view.
Nevertheless, the fact that probability has to do both with frequencies and with
degrees of belief is the aleatory and epistemological duality that is clearly and
cogently discussed by Hacking (1975). We blur the issue as we compute our
statistics and speak of the confidence we have in our results. The fact that the
answer to the question “Who, in practice, cares?” is “Probably very few,” is
based on an admittedly informal frequency analysis, but it is one in which we
can believe!

Probability and the Foundations of Error Estimation

The practical spur to the development of probability theory was simply the
attempt to formulate rules that, if followed assiduously, would lead to a gambler
making a profit over the long run, although, of course, it was not possible to
assert how long the run might have to be for profit to be assured. Probability
was therefore bound up with the notion of expectancies, and the 150 years that
followed the end of the 17th century saw its constructs being applied to
expectancies in life insurance and the sale of annuities. John de Witt
(1625-1672) and John Hudde (1628-1704), who calculated annuities based on
mortality statistics and whose work was mentioned earlier, corresponded and
consulted with Huygens and drew heavily on his writings.

An important figure in the history of probability, although the extent of his
contribution was not fully recognized until long, long after his death, was
Abraham De Moivre (1667-1754). His book The Doctrine of Chances: or A
Method of Calculating the Probabilities of Events in Play was first published
in 1718, but it is the second (1738) and third (1756) editions of the work that
are of most interest here. De Moivre’s A Treatise of Annuities on Lives, editions
of which were published in 1724, 1743, and 1750, applies The Doctrine of
Chances to the “valuation of annuities.” The Treatise is to be found bound
together with the 1756 edition of the Doctrine.

Here the problems of the gaming rooms and the questions of actuarial
prediction in the mathematics of expectancies are linked. A third strand was
not to emerge for over 50 years with investigations on the estimation of error.
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This latter is associated most closely with the work of Laplace (1749—1827) and
Gauss (1777-1855) and the derivation of “The Law of Frequency of Error,” or
the normal curve as it came to be known. And yet we now know that this
fundamental function had, in fact, been demonstrated by De Moivre,who first
published it in 1733 (the Approximatio ad Summam Terminorum Binomii
(a+b)" in Seriem Expansi), and English translations of the work are to be found
in the last two editions of The Doctrine of Chances. The Approximatio is
examined by Todhunter (1820-1884), whose monumental History of the
Mathematical Theory of Probability From the Time of Pascal to That of
Laplace, published in 1865, still stands as one of the most comprehensive and
one of the dullest books on probability. Todhunter devotes considerable space
in his book to De Moivre’s work, but, according to Karl Pearson (1926), he
“misses entirely the epoch-making character of the ‘Approximatio” as well as
its enlargement in the ‘Doctrine.” He does not say: Here is the original of
Stirling’s Theorem, here is the first appearance of the normal curve, here De
Moivre anticipated Laplace as the latter anticipated Gauss” (Pearson, 1926,
p- 552).

[t is true that Todhunter does not state any of the above precisely, and it is
therefore now often reported that Karl Pearson discovered the importance of the
Approximatio in 1922 while he was preparing for his lecture course on the
history of statistics that he gave at University College London between 1921
“and certainly continuing up till 1929” (E. S. Pearson & Kendall, 1970, p. 479).
Karl Pearson published an article on the matter in 1924 (K.Pearson 1924a) and
some details are provided by Daw and E. S. Pearson (1972/1979). Quite how
much credit we can give Pearson for the revelation and how justified he was in
his judgment that “Todhunter fails almost entirely to catch the drift of scientific
evolution.” (Pearson, 1926, p. 552) can be debated. It is certainly the case that
one is not carried along by the excitement of the progression of discovery as
one ploughs one’s way through Todhunter’s book, but he does say, in a section
where he refers to the pages of the third edition of the Doctrine, which give the
Approximatio and show an important result:

Thus we have seen that the principal contributions to our subject from De Moivre
are his investigations respecting the Duration of Play, his Theory of Recurring Series,
and his extension of the value of Bernoulli’s Theorem by the aid of Stirling’s
Theorem. Our obligations to De Moivre would have been still greater if he had not
concealed the demonstrations of the important results which we have noticed . . . ;
but it will not be doubted that the Theory of Probability owes more to him than to
any other mathematician, with the sole exception of Laplace. (Todhunter, 1865/1965,
pp- 192-193)

It is also worth noting that De Moivre’s contribution was remarked on by
the American historian of psychology, Edwin Boring, in 1920, before Pearson,
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and without so much fuss. In a footnote referring to the “normal law of error”
he says, “The so-called ‘Gaussian’ curve. The mathematical propadeutics for
this function were prepared as long ago as the beginning of the 18th century (De
Moivre, 1718 [sic]). See Todhunter . ..” (Boring, 1920, p. 8).

A more detailed discussion of the Approximatio and the properties of the
normal distribution is given in the next chapter. The roles of Laplace and Gauss
in the derivation and applications of probability theory are of very great
importance. Laplace brought together a great deal of work that had been
published separately as memoirs in his great work Théorie Analytique des
Probabilités, first published in 1812, with further editions appearing in 1814
and 1820. Todhunter (1865/1965) devotes almost one quarter of his book to
Laplace’s work. From the standpoint of statistics as they developed in the social
sciences, it is perhaps only necessary to mention two of his contributions: the
derivation of the “Law of Error,” and the notion of inverse probability.
Laplace’s theorem, the proof of which, in modern terms, may be found in David
(1949), and which had been anticipated by De Moivre, shows the relationship
between the binomial series and the normal curve. Put very simply, and in
modern parlance, as # in (a+b)"" approaches infinity, the shape of the discrete
binomial distribution approaches the continuous bell-shaped normal curve. It
is therefore possible to express the sum of a number of binomial probabilities
by means of the area of the normal curve, and indeed the value of this sum
derived: from the familiar tables of proportions of area under the normal
distribution is quite close to the exact value even for »# of only 10. The details
of this procedure are to be found in many of the elementary manuals of statistics.

Laplace’s work gives a number of applications of probability theory to
practical questions, but it is the bell-shaped curve as it is applied to the estimation
of error that is of interest here. Both Gauss and Laplace investigated the question
independently of each other. Errors are inescapable, even though they may not
always be of critical importance, in all observations that involve measurement.
Despite the most sophisticated of instruments and the most skilled users,
measurements of, say, distances between stars in our galaxy at a particular time,
or points on the surface of the earth, will, when repeated, not always produce
exactly the same result. The assumption is made that the values that we require
are definite and, to all intents and purposes, unchanging — that is to say, a true
value exists. Variations from the true value are errors. Laplace assumed that
every instance of an error arose because of the operation of a number of sources
of error, each one of which may affect the outcome one way or the other. The
argument proceeds to maintain that the mathematical abstraction that we now
call the normal law represents the distribution of the resultant errors.

Gauss’s approach is essentially the same as Laplace’s but has a more
unashamedly practical flavor. He assumed that there was an equal probability
of errors of over-estimation and under-estimation and showed, by the method
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of least squares, that it is the arithmetic mean of'the distribution of measurements
that best reflects the true value of the measurement we wish to make. The
distribution of measurements, the variation in which represents error on these
assumptions, is precisely that of Laplace’s theorem, or the normal curve, or, as
it is sometimes termed, the Gaussian distribution.

FORMAL PROBABILITY THEORY

From the 17th to the 20th century, mathematical approaches to probability have
been algebraical and geometrical. The work of Pascal and Fermat led to
combinatorial algebra. The invention of the calculus led to formal examinations
of theoretical probability distributions. Gaussian methods are essentially geo-
metrical. Always the probability calculus found itself in difficulties over the
absence of a formal definition of probability that was universally accepted.
Modern probability theory, but not, it must be noted, statistics, has escaped this
difficulty by developing an arithmetical axiomatic model. The renowned Ger-
man mathematician David Hilbert (1862—-1943), Professor of Mathematics at
Gottingen, presented a remarkable paper to the International Congress of
Mathematics meeting in Paris in 1900. In it he presented mathematics with a
series of no less than 23 problems that, he believed, would be the ones that
mathematics should address during the 20th century.® Among them was a call
for a theory of probability based on axiomatic foundations. Atthattime, various
attempts were being made to develop a theory of arithmetic based on a small
number of fundamental postulates or axioms. These axioms have no basis in
what is called the real world. Questions such as “What do they mean?” are
excluded, ambiguity is avoided. The axioms themselves do not depend on any
assumptions. For example, one of the best-known of the mathematical logicians,
Guiseppe Peano (1858—-1932), based his arithmetic on postulates such as “Zero
is a number.” This is not the place to attempt to discuss the difficulties that have
been uncovered in the axiomatic approach or in set theory, with which it is
closely allied. Suffice it to say that modern mathematical probability theory is
largely based on the work of Andrei Kolmogorov (1903-1987), a Russian
mathematician whose book Foundations of the Theory of Probability was first
published in 1933. Set theory is most closely linked with the work of Georg
Cantor (1845-1918), born in St. Petersburg of Danish parents but who lived
most of his life in Germany. Set theory grew out of a new mathematical
conception of infinity. The theory has profound philosophical as well as mathe-
matical implications but its basis is easy to understand. It is a mathematical

5 In the actual talk Hilbert only had time to deal with 10 of the problems, but entire manuscript in
English, can be found in the Bulletin of the American Mathematical Society (1902).
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system that deals with defined collections, lists, or classes of objects or elements:

The theory of probability, as a mathematical discipline, can and should be developed
from axioms in exactly the same way as Geometry and Algebra. This means that
after we have defined the elements to be studied and their basic relations, and have
stated the axioms by which these relations are to be governed, all further propositions
must be based exclusively on these axioms, independent of the usual concrete
meaning of these elements and their relations . . .

... the concept of a field of probabilities is defined as a system of sets which satisfies
certain conditions. What the elements of this set represent is of no importance in the
purely mathematical development of the theory of probability. (Kolmogorov,
1933/1956, p. 1)

The system cannot be fully delineated here, but this chapter will end with an
illustration of its mathematical elegance in arriving at the well-known rules of
mathematical probability theory. This account follows Kolmogorov closely,
although it does not use his terminology and symbols precisely.

E is a collection of elements called clementary events. f is a set of subsets
of E. The elements of f are random events.
The axioms are:
1. fisafield of sets.
2. f contains the set E.
3. Toeachset A in f is assigned a non-negative real number p(4). This is called
the probability of event A.
4. p(E)=1.
5. If 4 and B have no element in common, then p(4 + B) = p(4) + p(B)

In set theory, 4 has a complementary set A’. In the language of random events,
A' means the non-occurrence of 4. To say that 4 is impossible is to write 4 = 0,
and to say that 4 must occur is to write 4 = E.

Because 4 + 4’ = E and from the 4th and 5th axioms, p(4) + p(4') =1 and
p(d) = 1— p(4') and because £' =0, p(£') = 0. Axiom 5 is the addition rule.

If p(4) > 0, then p(B| A4) = [fég) , which is the conditional probability of
the event B under condition 4. From this follows the general formula known
as the multiplication rule, p(4B) = p(4)p(B | A), and as we show in chapter 7,
this leads to Bayes’ theorem. Note that p(B | 4) 20, p(E | 4) = 1, and
pl(B+C) | 4i=p(B|4) +p(C| 4).

For readers of a mathematical inclination who wish to see more of the
development of this approach (it does get a little more difficult), Kolmogorov’s
book is concise and elegant.
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Distributions

When Graunt and Halley and Quetelet made their inferences, they made them
on the basis of their examination of frequency distributions. Tables, charts, and
graphs — no matter how the information is displayed — all can be used to show
a listing of data, or classifications of data, and their associated frequencies.
These are frequency distributions. By extension, such depictions of the fre-
quency of occurrence of observations can be used to assess the expectation of
particular values, or classes of values, occurring in the future. Real frequency
distributions can then be used as probability distributions. In general, however,
the probability distributions that are familiar to the users of statistical techniques
are theoretical distributions, abstractions based on a mathematical rule, that
match, or approximate, distributions of events in the real world. When bodies
of data are described, it is the graph and the chart that are used. But the
theoretical distributions of statistics and probability theory are described by the
mathematical rules or functions that define the relationships between data, both
real and hypothetical, and their expected frequencies or probabilities.

Over the last 300 years or so, the characteristics of a great many theoretical
distributions, all of which have been found to have some practical utility in one
situation or another, have been examined. The following discussion is limited
to three distributions that are familiar to users of basic statistics in psychology.
An account of some fundamenta! sampling distributions is given later.

THE BINOMIAL DISTRIBUTION

In the years 1665-1666, when Isaac Newton was 23 and had just earned his
degree, his Cambridge college (Trinity) was closed because of the plague.
Newton went home to Woolsthorpe in Lincolnshire and began, in peace and
leisure, a scientific revolution. These were the years in which Newton developed

68
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some of the most fundamental and important of his ideas: universal gravitation,
the composition of light, the theory of fluxions (the calculus), and the binomial
theorem.

The binomial coefficients for integral powers had been known for many
centuries, but fractional powers were not considered until the work of John
Wallis (1616—1703), Savilian Professor of Geometry at Oxford, and the most
influential of Newton’s immediate English predecessors. However, expansions
of expressions such as (x — x* }"* were achieved by Newton early in 1665. He
announced his discovery of the binomial theorem in 1676 in letters written to
the Secretary of the Royal Society, although he never formally published it nor
did he provide a proof. Newton proceeded from earlier work of Wallis, who
published the theorem, with credit to Newton, in 1685. The problem was to
find the area under the curve with ordinates (x —x* )" When n is zero the first

two terms are x — % (x3 ), and when nis | they are x — % (x3 ) Newton, using the
method of interpolation employed so much by Wallis, reasoned that when » was

1.3
- X
Y2 the corresponding terms should be, x - —2—:-;— . He arrived at the series
1,3 1,5 1,7
LA L L
3 5 7

and then discovered that the same result could be obtained by deriving, and
subsequently integrating

7}
A-x) =1-=x"—=x —Lx

)
the binomial expansion of (1 - x°) a. The interesting and important point to be
noted is that Newton’s discovery was not made by considering the binomial
.coefficients of Pascal’s triangle but by examining the analysis of infinite series,
a discovery of much greater generality and mathematical significance. Figure
6.1 shows the binomial distribution for n=7.

Newton’s discovery of the calculus in his “golden years” at Woolsthorpe
establishes him as its originator, but it was Gottfried Wilhelm Leibniz
(1646—1716), the German philosopher and mathematician, who has priority of
publication, and it is pretty well established that the discoveries were inde-
pendent. However, a bitter quarrel developed over the claims to priority of
discovery and allegations were made that, on a visit to London in 1673, Leibniz
could have seen the manuscript of Newton’s De Analysi Aequationes Numero
Terminorum Infinitas, which, though written in 1669, was not published until
1711. Abraham De Moivre was among those appointed by the Royal Society
in 1712 to report on the dispute. De Moivre made extensive use of the method
in his own work, and it was his Approximatio, first printed and circulated to
some friends in 1733, that links the binomial to what we now call the normal
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FIG. 6.1 The Binomial Distribution for N =7

distribution. The Approximatio is included in the second (1738) and third
(1756) editions of the Doctrine.

It should be mentioned that a Scottish mathematician, James Gregory
(1638-1675), working at the time (1664-1668) in Italy, derived the binomial
expansion and produced important work on the mathematics of infinite series,
discovered quite independently of Newton.

THE POISSON DISTRIBUTION

Before the structure of the normal distribution is examined, the work of
Siméon-Denis Poisson (1781-1840) on a useful special case of the binomial
will be described. The Ecole Polytechnique was founded in Paris in 1794. It was
the model for many later technical schools, and its methods inspired the
production of many student texts in mathematics and engineering which are the
forerunners of present-day textbooks. Among the brilliant mathematicians of
the Ecole during the earlier years of the 19th century was Poisson. His name is
a familiar label in equations and constants in calculus, mechanics, and electric-
ity. He was passionately devoted to mathematics and to teaching, and published
over 400 works. Among these was Recherche sur la Probabilité des Jugements
in 1837. This contains the Poisson Distribution, sometimes called Poisson’s law
oflarge numbers. It was noted earlier that as » in (P + ()" increases, the binomial
distribution tends to the normal distribution. Poisson considered the case where
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as n increases toward infinity, P decreases toward zero, and nP remains constant.
The resulting distribution has a remarkable application.

Data collected by insurance companies on relatively rare accidents, say,
people trapping their fingers in bathroom doors, indicates that the probability
of this event happening to any one individual is very low, in fact near zero.
However, a certain number of such accidents (X) is reported every year, and the
number of these accidents varies from year to year. Over a number of years a
statistical regularity is apparent, a regularity that can be described by Poisson’s
distribution.

If we set X at &, an integer, then
e
Px (k) = k!

where A is any positive number, e is the constant 2.7183. . ., and &/ is factorial
k.

Although the distribution is not commonly to be found in the basic statistics
tests in psychology, it is used in the social sciences and it does have a surprising
range of applications. It has been used to fit distributions in, for example, quality
control (defects per number of units produced), numbers of patients suffering
from certain specific diseases, earthquakes, wrong-number telephone connec-
tions, the daily number of hits by flying bombs in London during World War
II, misprints in books, and many others.
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Poisson attempted to extend the possible utility of probability theory, for he
applied it to testimony and to legal decisions. These applications received much
criticism but Poisson greatly valued them. Poisson formally discussed the
concepts of a random quantity and cumulative distribution functions, and these
are significant theoretical contributions. But his name and work in probability
does not occupy much space in the literature, perhaps because he was overshad-
owed by famous contemporaries such as Laplace and Gauss. Sheynin (1978)
has given us a comprehensive review of his work in the area. An example of a
Poisson distribution is given in Figure 6.2.

THE NORMAL DISTRIBUTION

The binomial and Poisson distributions stand apart from the normal distribution
because they are applied to discrete frequency data. The invention of the
calculus provided mathematics with a tool that allowed for the assessment of
probabilities in continuous distributions. The first demonstration of integral
approximation, to the limiting case of the binomial expansion, was given by De
Moivre. In the Approximatio, De Moivre begins by acknowledging the work
of James Bernoulli:

Altho’ the Solution of Problems of Chance often requires that several Terms of the
Binomial (a + b)" [this is modern notation] be added together, nevertheless in very
high Powers the thing appears so laborious, and of so great difficulty, that few people
have undertaken that Task; for besides James and Nicholas Bernoulli, two great
Mathematicians, I know of no body that has attempted it; in which, tho’ they have
shown very great skill, and have the praise which is due to their Industry, yet some
things were farther required; for what they have done is not so much an Approxima-
tion as the determining very wide limits, within which they demonstrated that the
Sum of Terms was contained. (De Moivre, 1756/1967, 3rd Ed., p. 243}

De Moivre proceeds to show how he arrived at the expression of the ratio of
the middle term to the sum of all the terms in the expansion of (1 +1)” when n
is a very high power. His answer was 2B+, where “B represents the Number
of which the Hyperbolic Logarithm is [ — 1/12 + 1/360 — 1/1260 + 1/1080, &c.”
He acknowledges the help of James Stirling who had found that “B did denote
the Square-root of the Circumference of a Circle whase Radius is Unity, so that
if that Circumference be called ¢, the Ratio of the middle Term to the Sum of
all the Terms will be expressed by 2Alnd)” (De Moivre, 1756, 3rd Ed., p. 244).

De Moivre had thus obtained (in modern notation) the expression

Yo 2 . .
— = ———, for large n, where Y, is the middle term.
2 T Namn O BE M WRETE T



THE NORMAL DISTRIBUTION 73

He also gives the logarithm of the ratio of the middle term to any term distant
from it by an interval las (m + - 12)log{m +1— 1} + (m - 1 + Vo)log {m -1
+ 1} —2mlogm + log {(m +0/ m}, where m = '4n and concludes, in the first of
nine corollaries numbered 1 through 6 and 8 through 10, 7 having been omitted
from the numbering, that, “if m or “in be a Quantity infinitely great, then the
Logarithm of the Ratio, which a Term distant from the these middle by the
Interval I, has to the middle Term, is —2/i/n” (p. 245). This is merely the

2h
expression that, Y, = Yoe > , for large n.

The second corollary obtains the “Sum of the Terms intercepted between the
Middle, and that whole distance from it . . . denoted by [”, in modern terms, the
sumof Yo+Y +Y,+Ys+ ...+Y,, as

2 ies- 2L a8 aer 3"
Nne I(3n) ~ 2(5nn) 6(7;13) 24(9;1“) 120(11n9)’

which is the expansion of the integral
1

2 J‘e_zlz "dl
N(2nn)
0
When [ is expressed as Svn , and S interpreted as ', the sum becomes

2.1 1 1 L, ] 2
o M0 T 3@) T 26)®) T e()(10) T 24(9)(32) ~ 120(11)(64) €

... which converges so fast, that by help of no more than seven or eight Terms, the
Sum required may be carried to six or seven places of Decimals: Now that Sum will
be found to be 0.427812, independently from the common Multiplicator 24%, and
therefore to the Tabular Logarithm of 0.427182, which is 9.6312529, adding the
Logarithm of A%, viz. 9.9019400, the sum will be 19.5331929, to which answers the
number 0.341344. (De Moivre, 1756, 3rd Ed., p. 245)

This familiar final figure is the area under the curve of the normal distribution
between the mean (which is, of course, also the middle value) and an ordinate
one standard deviation from the mean. In the third corollary De Moivre says:

And therefore, if it was possible to take an infinite number of Experiments, the
Probability that an Event which has an equal number of Chances to happen or fail,
shall neither appear more frequently than Y2 n+ 14 Vr times, nor more rarely than
U n— V5 Vn times, will be expressed by the double Sum of the number exhibited in
the second Corollary, that is, by 0.682688, and consequently the Probability of



74 6. DISTRIBUTIONS

thecontrary ... will be 0.317312, those two Probabilities together compleating Unity,
which is the measure of Certainty. (De Moivre, 1756, 3rd Ed., p. 246)’

Lo is what today we call the standard deviation. De Moivre did not name
it but he did, in Corollary 6, say that Vi “will be as it were the Modulus by
which we are to regulate our Estimation” (De Moivre, 1756, 3rd Ed., p. 248).

In fact what De Moivre does is to expand the exponential and to integrate
from 0 to So. _

In Corollary 6 De Moivre notes that if / is interpreted as Vn rather than
Lo , then the series does not converge so fast and that more and more terms
would be required for a reasonable approximation as / becomes a greater
proportion of Vr,

... for which reason I make use in this Case of the Artifice of Mechanic Quadratures,
first invented by Sir Isaac Newton. . .; it consists in determining the Area of a Curve
nearly, from knowing a certain number of its Ordinates A, B, C, D, E, F, &c. placed
at equal Intervals, (De Moivre, 1756, 3rd Ed., p. 247)

He uses just 4 ordinates for his quadrature and finds, in effect, that the area
between 20 or Yn £ Vn is 0.95428, and that the area in what we now call the
tails is 0.04572. The true value is a little less than this but it is, nevertheless,
familiar.

These results can be extended to the expansion of (a + 5)" and where a and
b are not equal.

If the Probabilities of happening and failing be in any given Ratio of inequality, the
Problems relating to the Sum of the Terms of the Binomial (a + b)" will be solved
with the same facility as those in which the Probabilities of happening and failing
are in a Ratio of Equality. (De Moivre, 1756/1967, 3rd Ed., p. 250)

In Corollary 9, De Moivre in effect, and in modern terms, introduces
(npq) , the expression we use today for the standard deviation of the normal
approximation to the binomial distribution.

The sum and substance of the Approximatio is that it gives, for the first time,
the function that was rediscovered much later, the function that dominates
so-called classical statistical inference — the normal distribution — which in
modern terminology is given by the density function

l ¥ 2 2

f(X)=\7=—?

! The value for the proportion of area between 1o is 0.6826894, so that De Moivre was out
by one unit in the sixth decimal place.



THE NORMAL DISTRIBUTION

The normal distribution is shown in Figure 6.3.

De Moivre’s philosophical position is revealed in the sections headed
“Remark I” in the 1738 edition of the Doctrine and an additional, and much
longer, “Remark I1” in 1756. De Moivre sets his work in the philosophical
context of an ordered determinate universe. His notion of Original Design (see
the quotation in chapter 1) is a notion that persisted at least down to Quetelet.
A powerful deity reveals the grand design through statistical averages and stable

statistical ratios. Chance produces irregularities. As Pearson remarked:

There is much value in the idea of the ultimate laws being statistical laws, though
why the fluctuations should be attributed to a Lucretian ‘Chance’, | cannot say. It
is not an exactly dignified conception of the Deity to suppose him occupied solely
with first moments and neglecting second and higher moments! (Pearson, 1978, p.

160)

and elsewhere:

The causes which led De Moivre to his “Approximatio” or Bayes to his theorem
were more theological and sociological than mathematical, and until one recognizes
that the post-Newtonian English mathematicians were more influenced by Newton’s
theology than by his mathematics, the history of science in the eighteenth century —
in particular that of the scientists who were members of the Royal Society — must

remain obscure. (Pearson, 1926, p. 552)
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FIG. 6.3 The Normal Distribution
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It is interesting that this is precisely the sort of analysis that has been brought
to bear on the work of Galton and Karl Pearson himself, save that it is the
philosophy of eugenics that influenced their work, rather than Christian theol-
ogy. In Remark II, De Moivre takes up Arbuthnot’s argument for the ratio of
male to female births, which was discussed in Chapter 4, defending the argu-
ment against the criticisms that had been advanced by Nicholas Bernoulli, who
had noted that a chance distribution of the actual male/female birth ratio would
be found if the hypothesized ratio (i.e., the ratio under what we would now call
the null hypothesis) had been taken to be 18:17 rather than 1:1. But De Moivre
insists:

This Ratio once discovered, and manifestly serving to a wise purpose, we conclude
the Ratio itself, or if you will the Form of the Die, to be an Effect of Intelligence and
Design. As if we were shewn a number of Dice, each with 18 white and 17 black
faces, which is Mr. Bernoulli’s supposition, we should not doubt but that those Dice
had been made by some Artist; and that their form was not owing to Chance, but
was adapted to the particular purpose he had in View. (De Moivre, 1756/1967, 3rd
Ed., p. 253)

With the greatest respect to De Moivre, this was clearly not Arbuthnot’s
argument, and De Moivre’s view that he might have said it is somewhat
specious. Like Quetelet’s use of the normal curve many years later, De Moivre’s
view is a prejudgment and all findings must be made to fit it. Karl Pearson
(1978) makes essentially the same point, but it is apparently a point that he did
not recognize in his own work.
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Practical Inference

Some of the philosophical questions surrounding induction and inference were
dealt with in chapter 2. Here the foundations of practical inference are consid-
ered.

INVERSE PROBABILITY AND THE FOUNDATIONS
OF INFERENCE

The first exercises in statistical inference arose from a consideration of statistical
summaries such as those found in mortality tables. The development of theories
of inference from the standpoint of the implications of mathematical theory can
be dated from the work of Thomas Bayes (1702-1761), an English Noncon-
formist clergyman whose ministry was in Tunbridge Wells. Bayes was recog-
nized as a very good mathematician, although he published very little, and he
was elected to the Royal Society in 1742 (see Barnard, 1958, for a biographical
note). Curiously enough, the paper for which he is remembered was commu-
nicated to the Royal Society by his friend Richard Price' more than 2 years after
his death, and the celebrated forms of the theorem that bear his name, although
they follow from the essay, do not actually appear in the work. A4n Essay
Towards Solving a Problem in the Doctrine of Chances (Bayes, 1763) is still
the subject of much discussion and controversy both as to its contents and
implications and as to how much of its import was contributed by its editor,
Richard Price. The problem that Bayes addressed is stated by Price in the letter

! Price was also a Unitarian Church minister. His church still stands in Newington Green in north
London and is the oldest Nonconformist church building still being so used in London. Next door and
abutting the church is a licensed betting shop. It has been noted that Bayesian analysis, resting, as it
does, on the notion of conditional probability, is akin to gambling,

77



78 7. PRACTICAL INFERENCE

accompanying his submission of the essay:

Mr De Moivre . . . has . . . after Bernoulli, and to a greater degree of exactness, given
rules to find the probability there is, that if a very great number of trials be made
concerning any event, the proportion of the number of times it will happen, to the
number of times it will fail in those trials, should differ less than by small assigned
limits from the proportion of the probability of its happening to the probability ofits
failing in one single trial. But I know of no person who has shewn how to deduce
the solution of the converse problem to this; namely, “the number of times an
unknown event has happened and failed being given, to find the chance that the
probability of its happening should liec somewhere between any two named degrees
of probability.” (Bayes, 1763, pp. 372-373)

A demonstration of some simple rules of mathematical probability, using a
frequency model, will help to derive and illustrate Bayes’ Theorem. The
probability of drawing a red card from a standard deck of playing cards is 26/52
or p(R) = 1/2. The probability of drawing a picture card from the deck is 12/52
or p(P) = 3/13. The probability of drawing a red picture card is 6/52 or p(R &
P)=3/26. What is the probability of drawing either a red card or a picture card?
The answer is, of course, 32/52 or p(R or P) = 8/13. Note that:

P(R or P) =p(R) + p(P) — p(R & P), [8/13 = (1/2 + 3/13) — 3/26].

This is known as the addition rule.

Suppose that you draw a card from the deck, but you are not allowed to see
it. What is the probability that it is a red picture card? We can calculate the
answer to be 6/52. Now suppose that you are told that it is a red card. What now
is the probability of it being a picture card? The probability of drawing a red
card is 26/52. We also can figure out that if the card drawn is a red card then
the probability of it also being a picture card is 6/26. In fact,

P(R & P) = p(R)[p(PR)], [6/52 = 26/52(6/26)]
The term p(P|R) symbolizes the conditional probability of P, that is, the
probability of P given that R has occurred and the expression denotes the

multiplication rule. Note that p(R & P) is the same as p(P & R), and that this is
equal to p(P)[p(R|P)], or 6/52 = 12/52(6/12). From this fact we see that:

- (ERP)

which is the simplest form of Bayes’ Theorem. In current terminology, the left-
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hand side of this equation is termed the posterior probability, the first term on
the right-hand side the prior probability, and the ratio p(P|R)/p(R), the likeli-
hood ratio.

From the addition rule we can also show that the probability of a red card is
the sum of the probabilities of a red picture card and a red number card minus
the probability of a picture number card (which does not exist!), or:

P(R) =p(R & P) + p(R & N) — p(P & N).

But p(P & N) =0 because the events picture card and number card are
mutually exclusive. So Bayes’ Theorem may be written:

p(RIP)
P(P)[P(RIP)] + p(N)[P(RIN)]

p(PIR) = p(P)

The fact that this formula is arithmetically correct may be checked by
substituting the values we can obtain from the known distribution of cards in
the standard deck. However, this does not demonstrate the alleged utility of the
theorem for statistical inference. For that we must turn to another example after
substituting D (for Data) in place of R, and H, (for Hypothesis 1) in place of P,
and H, (for Hypothesis 2) in place of N, where H, and H, are two mutually
exclusive and exhaustive hypotheses. We have:

p(DH))
p(H)[p(DH))] + p(H2)[p(D{H)]

p(HD) = p(H)

Bayes’ Theorem apparently provides a means of assessing the probability
of a hypothesis given the data (or outcome), which is the inverse of assessing
the probability of an outcome given a hypothesis (or rule), and of course we
may envisage more than two hypotheses. In the original essay, Bayes demon-
strated his construct using as an example the probability of balls coming to rest
on one or other of the parts of a plane table. Laplace, who in 1774 arrived at
essentially the same result as Bayes, but provided a more generalized analysis,
used the problem of the probability of drawing a white ball from an urn
containing unknown proportions of black and white balls given that a sampling
of a particular ratio has been drawn. Traditionally, writers on Bayes make heavy
use of “urn problems,” and tradition is followed here with a simple example.
Phillips (1973) gives a comprehensive account of Bayesian procedures and
shows how they can be applied to data appraisal in the social sciences. Suppose
we are presented with two identical urns W and B. W contains 70 white and 30
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black balls, and B contains 40 white and 60 black balls. From one of the urns
we are allowed to draw 10 balls, and we find that 6 of them are white and 4 of
them are black. Is the urn that we have chosen more likely to be W or more
likely to be B? Presumably most of us would opt for W. What is the probability
that it was W?

p(H,|D) is the probability of W given the data, and p(H,|D)is the probability
of B given the data. Now the probability of drawing a white ball from W is 7/10
and from B it is 4/10. The probability of the data given H, [p(D|H;)] is

(0.7)°(0.3)", and p(D[H2) is (0.4)°(0.6)".
Now we apply Bayes’ Theorem:

0.0009
P(H,)(0.0009) + p(H2)(0.0005)

p(HiD) = p(H))

In order to complete the calculation, we have to have values for p(H,) and
p(H,) — the prior probabilities. And here is the controversy. The objectivist
view is that these probabilities are unknown and unknowable because the state
of the urn that we have chosen is fixed. There are no grounds for saying that
we have chosen W or B. The personalist would say that we can always state
some degree of belief. If we are completely ignorant about which urn was
chosen, then both p(H;) and p(H,) can be expressed as 0.5. This is a formal
statement of Laplace’s Principle of Insufficient Reason, or Bayes’ Postulate. If
we put these values in our equation, p(H;|D) works out to be 0.64, which
matches common sense. This value could then be used to revise p(H,) and p(H,)
and further data collected. For its proponents, the strength of Bayesian methods
lies in the claim that they provide formal procedures for revising many kinds of
opinion in the light of new data in a direct and straightforward way, quite unlike
the inferential procedures of Fisherian statistics. The most important point that
has to be accepted, however, is the justification for the assignment of prior
probabilities. Although in this simple example there might seem to be little
difficulty, in more complex situations, where probabilities, based on relative
frequency 2, hunches, or on opinion, cannot be assigned precisely or readily, the
picture is far less clear. Furthermore, the principle of the equal distribution of
ignorance has itself come under a great deal of philosophical attack. “Itis rather
generally believed that he [Bayes] did not publish because he distrusted his
postulate, and thought his scholium defective. 1f so he was correct” (Hacking,
1965, p. 201).

2 Presumably it could be argued that our urn with its unknown ratio of black and white balls
is one of an infinite distribution of urns with differing make-ups.
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FISHERIAN INFERENCE

When the justification for the probabilistic basis of inference in the sense of
revising opinion on the basis of data was thought of at all, it was the Bayesian
approach that held sway until this century. Its foundations had come under
attack primarily on the grounds that probability in any practical sense of the
word must be based on relative frequency of observations and not on degrees
of belief. Venn (1888) was perhaps the most insistent spokesman for this view.
Sir Ronald Fisher (1890-1962), certainly the most influential statistician of all
time, set out to replace it. In 1930 he published a paper that supposedly set out
his notion of fiducial probability, claiming, “Inverse probability has, | believe,
survived so long in spite of its unsatisfactory basis, because its critics have until
recent times put forward nothing to replace it as a rational theory of learning by
experience” (Fisher, 1930, p. 531).

There is no doubt that Fisher’s methods, and the contributions of Neyman
and Pearson that have been grafted on to them, have provided us with a set of
inferential procedures. There seems to be considerable doubt as to whether he
provided us with a coherent non-Bayesian theory. Fisher himself asserted that
the concept of the likelihood function was fundamental to his new approach and
distinguished it from Bayesian probability. Kendall (1963) in his obituary of
Fisher says this:

It appears to me that, at this point [1922], his ideas were not very well thought out.
Certainly his exposition of them was obscure. But, in retrospect, it becomes plain
that he was thinking of a probability function f{x.0) in two different ways: as the
probability distribution of x for given 0, and as giving some sort of permissible range
of B for an observed x. To this latter he gave the the name of ‘fiducial probability
distribution’ (later to be known as a fiducial distribution) and in doing so began a
long train of confusion; for it is not a probability distribution to anyone who rejects
Bayes’s approach, and indeed, may not be a distribution of anything. Fisher
nevertheless manipulated it as if it were, and thereafter maintained an attitude of
rather contemptuous surprise towards anyone who was perverse enough to fail in
understanding his argument. . . .

The position on both sides has been restated ad rauseam, without much attempt
atreconciliation or, as I think, without an explicit recognition of the real point, which
is that a man’s attitude towards inference, like his attitude towards religion, is
determined by his emotional make-up, not by reason or mathematics. (Kendall,
1963, p. 4)

Richard von Mises (1957) is baffled also:

Fisher introduces the term [likelihood] in order to denote something different from
probability. As he fails to give a definition for either word, i.e., he does not indicate
how the value of either is to be determined in a given case, we can only try to derive
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the intended meaning by considering the context in which he uses these words.

1 do not understand the many beautiful words used by Fisher and his followers in
support of the likelihood theory. The main argument, namely, that p [the probability
of the hypothesis] is not a variable but an “unknown constant,” does not mean
anything to me. (von Mises 1957, pp. 157-158)

It is tempting to leave it at that, but some attempt at capturing the flavor of
Fisher’s position must be made. Clearly, if one has knowledge of a distribution
of probabilities of events, then that knowledge can be used to establish the
probability of an event that has not yet been observed, for example, the
probability that the next roll of two dice will produce a 7 (p = .167). What of
the situation where an event has been observed — the roll did produce a 7 — can
we say anything about the plausibility of an event with p =.167 having occurred?
This is a decidedly odd sort of question because the event has indeed occurred!
Before the draw from a lottery with 1,000,000 tickets is made, the probability
of my winning is .000001. It will be difficult to convince me affer the draw, as
I clutch the winning ticket, that what has happened is impossible, or even very,
very unlikely to have occurred by chance, and if you continue to insist I shall
merely keep on showing you my ticket.

Fisher, in 1930, puts the situation in this way:

There are two different measures of rational belief appropriate to different cases.
Knowing the population we can express our incomplete knowledge of, or expectation
of, the sample in terms of probability: knowing the sample we can express our
incomplete knowledge of the population in terms of likelihood. (Fisher, 1930, p.
532)

'Likelihood then is a numerical measure of rational belief different from
probability. Whether or not the logic of the situation is understood, all users of
statistical methods will recognize the reasoning as crucial to both estimation
and hypothesis testing. The method of maximum likelihood that Fisher pro-
pounds (although it had been put forward by Daniel Bernoulli in 1777; see
Kendall, 1961) justifies the choice of population parameter. The method simply
says that the best estimate of the parameter is the value that maximizes the
probability of the observations, or that what has occurred is the most likely thing
that could have occurred. A number of writers, for example, Hogben (1957),
have stated that this assumption cannot be justified without an appeal to inverse
probability, so that Fisher did not succeed in detaching inference from Bayes’
Theorem. Nevertheless, the basic notion is that we can find the likelihood of a
particular population parameter, say the correlation coefficient R, by defining
it as a value that is proportional to the probability that from a population with
that value we have obtained a sample with an observed value r.
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There is no doubt that Fisher’s argument will continue to be controversial
and that many attempts to resolve the ambiguities will be made. Dempster
(1964) is among those who have entered the fray, and Hacking’s (1965)
rationale has resulted in one well-known statistician (Bartlett, 1966) proposing
that the resulting theory be renamed “‘the Fisher-Hacking theory of fiducial
inference.”

BAYES OR p < .05?

Criticism of Fisherian methods arrived almost as soon as they began to be
adopted. In more recent years, criticism of null hypothesis significance testing
(NHST) appears to have become an ‘area’ in its own right. Berkson (1938)
probably led the way, when he noted that:

if the number of observations is extremely large — for instance on the order of
200,000 — the chi-square P will be small beyond any usual level of significance . . .
For we may assume that it is practically certain that any series of real observations
does not follow a normal curve with absolute exactitude in all respects . (p. 526)

Berkson was expressing in essence what many, many other writers in the
following 60 years have observed: that when H_ is expressed as an exact null
hypothesis (zero difference or no relationship) then very small deviations from
this (dare one say it?) pedantic view will be declared significant!

Some of the more recently-expressed doubts have been brought together by
Henkel and Morrison (1970), but the papers they collected together were most
certainly not the last word. Indeed, Hunter (1997) called for a ban on NHST,
and reported that no less a body than the American Psychological Association
has a “committee looking into whether the use of the significance test should
be discouraged” (p. 6)!

The main criticisms, endlessly repeated, are easily listed. NHST does not
offer any way of testing the alternative or research hypothesis; the null hypothe-
sis is usually false and when differences or relationships are trivial, large
samples will lead to its rejection; the method discourages replication and
encourages one-shot research; the inferential model depends on assumptions
about hypothetical populations and data that cannot be verified; and there are
more. Some of the criticisms are valid and need to be faced more carefully, even
more boldly than they are, while some seem to be ‘straw men’ set up to be blown
down. For example, the fact that we only reject H, and do not test H, is not
particularly satisfying, but the notion that that inference is faulty because in
some way it rests on characteristics of populations not observed or not yet
observed is merely stating a fact of inference! Moreover, most of the criticism
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would be diluted, if not eliminated, if greater attention to parameters of a test
other than alpha level were considered, that is to say, effect size, sample size,
and power.

Even Fisher’s most supportive and ardent colleague, Frank Yates (1964)
said:

The most commonly occurring weakness in the application of Fisherian methods is,
1 think, undue emphasis on tests of significance and failure to recognize that in many
types of experimental work estimates of the treatment effects, together with estimates
of the errors to which they are subject are the quantities of primary interest. To some
extent Fisher himself is to blame for this. Thus in The Design of Experiments he
wrote: “Every experiment may be said to exist only in order to give the facts a chance
of disproving the null hypothesis.” (p. 320)

Yates goes on to say that the null hypothesis, as usually expressed, is
“certainly untrue” and that:

such experiments [variety and fertilizer trials] are in fact undertaken with the different
purpose of assessing the magnitude of the effects. . . [Fisher] did not . . . sufficiently
emphasise the point in his writings. Scientists were thus encouraged to expect final
and definitive answers. . . some of them, indeed, came to regard the achievement of
a significant result as an end in itself. (p. 320)

Although a number of modifications of, or alternatives to, NHST have been
suggested (see, for example, confidence intervals, discussed in chapter 13, p..
199) by far the most popular of the suggested replacements (rather than salvage
operations for the Fisherian model) is Bayesian analysis. The claim is usually
made that Bayesian methods are concerned with the alternative hypothesis, that
they encourage replication, that, in fact, they reflect more clearly the traditional
‘scientific method.” Curiously enough, it is also often claimed that despite the
so-called subjectivity of Bayesian priors, a Bayesian analysis will arrive at the
same conclusion as a ‘classical’ analysis. This leaves the journeyman psycho-
logical researcher with nothing but the tired protest that nothing has been offered
as a reward for changing from the familiar routines!
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Sampling
and Estimation

RANDOMNESS AND RANDOM NUMBERS

In common parlance, to choose “at random” is to choose without bias, to make
the act of choosing one without purpose even though the eventual outcome may
be used for a decision. The emphasis here is on the act rather than the outcome.
It is certainly not true to say that ordinary folk accept that random choice means
absence of design in the outcome. Politicians, examining the polls, have been
known to remark that the result was “in the cards.” Primitive notions of fate,
demons, guardian angels, and modern appeals to the “will of God” often lie
behind the drawing of lots and the tossing of coins to “decide” if Mary loves
John, or to take one course of action rather than another. It is absence of design
in the manner of choosing that is important. The point must not be labored, but
everyday notions of chance are still construed, even by the most sophisticated,
in ways that are not too far removed from the random element in divination and
sortilege practiced by the oracles and priests who were consulted by our remote,
and not-so-remote, ancestors. And, as already noted, perhaps one of the reasons
for the delay in the development of the probability calculus arose from a
reluctance to attempt to “second-guess” the gods.

The concepts of randomness and probability are, therefore, inextricably
intertwined in statistics. The difficulties inherent in defining probability, which
were discussed earlier, are once more presented in an examination of random-
ness. It is commonly thought that everyone knows what randomness is. The
great statistician Jerzy Neyman (1894-1981) states, “The method of random
sampling consists, as it is known, in taking at random elements from the
population which it is intended to study. The elements compose a sample which
is then studied” (Neyman, 1934, p. 567).

Itis unlikely that this definition would be given a high grade by most teachers
of statistics. Later in this paper and, this inadequate definition notwithstanding,

85
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itis a paper of central and enormous importance, Neyman does note that random
sampling means that each element in the population must have an equal chance
of being chosen, but it is not uncommon for writers on the method to ignore
both this simple directive and instructions as to the means of its implementation.
Of course, the use of the words “equal chance” in the definition brings us back
to what we mean by chance and probability. For most purposes we fall back
on the notion of long-run relative frequency, rather than leaving these constructs
as undefined ideas that make intuitive sense. Practical tests of randomness rest
on the examination of the distribution of events in long series. It is also the case,
as Kendall and Babington Smith (1938) point out, that random sampling
procedures may follow a purposive process. For example, the number 7 is not
a random number, but its calculation generates a series of digits that may be
random. These authors are among the earliest to set out the bases of random
sampling from a straightforward practical viewpoint, and they were writing a
mere 60 years ago. The concept of a formal random sample is a modern one;
concerns about its place and importance in scientific inference and significance
testing paralleled the development of methods of experimental design and
technical approaches to the appraisal of data. Nevertheless, informal notions of
randomness that imply lack of partiality and “choice by chance” go back many
centuries.

Stigler (1977) researched the procedure known as “the trial of the Pyx,” a
sampling inspection procedure that has been in existence at the Royal Mint in
London for almost eight centuries. Over a period of time, a coin would be taken
daily from the batch that had been minted and placed in a box called the Pyx.
At intervals, sometimes separated by as much as 3 or 4 years, the Pyx was
opened and the contents checked and assayed in order to ensure that the coinage
met the specifications laid down by the Crown. Stigler quotes Oresme on the
procedure followed in 1280:

When the Master of the Mint has brought the pence, coined, blanched and made
ready, to the place of trial, e.g. the Mint, he must put them all at once on the counter
which is covered with canvas. Then, when the pence have been well turned over
and thoroughly mixed by the hands of the Master of the Mint and the Changer, let
the Changer take a handful in the middle of the heap, moving round nine or ten times
in one direction or the other, until he has taken six pounds. He must then distribute
these two or three times into four heaps, so that they are well mixed. (Stigler, 1977,
p- 495)

The Master of the Mint was allowed a margin of error called the remedy and
had to make good any deficit that was discovered. Although mathematical
statistics played no part in these tests, and if they had they would have been
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more precise,' the procedure itself mirrors modern practice.

The trial of the Pyx even in the Middle Ages consisted of a sample being drawn, a
null hypothesis (the standard) to be tested, a two-sided alternative, and a test statistic
and a critical region (the total weight of the coins and the remedy). The problem
even carried with itself a loss function which was easily interpretable in economic
terms. (Stigler, 1977, p. 499)

Random selections may be made from real, existent universes, for example,
the population of Ontario, or from hypothetical universes, for example, indi-
viduals who, over a period of time, have taken a particular drug as part of a
clinical trial. In the latter case, to talk of “selection” in any real sense of the word
is stretching credulity, but we do use the results based on the individuals actually
examined to make inferences about the potential population that may be given
the drug. In the same way, the samples of convenience that are used in
psychological research are hardly ever selected randomly in the formal sense.
Undergraduate student volunteers are not labeled as automatically constituting
random samples, but they are often assumed to be unbiased with respect to the
dependent variables of interest, an assumption that has produced much criticism.
This latter statement emphasizes the fact that a sampling method, whatever it
is, relates to the universe under study and the particular dependent variable or
variables of interest. A questionnaire asking about attitudes to health and fitness
given to members of the audience at, say, a symphony concert may well be
generalizable to the population of the city, but the same instrument given to the
annual convention of a weight watchers’ club would not. These statements seem
to be so obvious and yet, as we shall see, overlooking possible sources of bias
either by accident or design has led to some expensive fiascos. Unfortunately,
the method of sampling can never be assuredly independent of the variable
under study. Kendall and Babington-Smith (1938) note that “The assumption
of independence must therefore be made with more or less confidence on a
priori grounds. It is part of the hypothesis on which our ultimate expression of
opinion is based” (p. 152).

Kendall and Babington Smith comment on the use of “random” digits in
random sampling, and it is worth examining these applications because most of
the present-day statistical cookbooks at least pay lip-service to the procedures
by including tables of random numbers and some instruction as to their use.
Individual units in the population are numbered in some convenient way, and

! Stigler notes that the remedy was specified on a per pound basis and that all the coin weights were
combined. This, together with the central limit theorem, almost guarantees that the Master would not
exceed the remedy.
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then numbers, taken from the tables, are matched with the individuals to select
the sample. This procedure may result in a sample of individuals numbered 1,
2,3,4,5,6,7,8,9,0r2,4,6,8,10, 12, 14, 16, 18, 20, groupings that may invite
comment because they follow immediately recognizable orders but that never-
theless could be generated by a random selection. The fact that a random
selection produces a grouping that looks to be biased or non-representative led
to a great deal of debate in the 1920s and 1930s. The sequence 1, 4,2, 7,9, has
the appearance of being random but the sequence 1, 4,2,7,9,1,4,2,7,9, has
not. Finite sequences of random numbers are therefore only locally random.
Even the famous tables of one million random digits produced by the RAND
Corporation (1965) can only, strictly speaking, be regarded as locally random,
for it nay be that the sequence of one million was about to repeat itself. Random
sequences may also be “patchy.” Yule (1938b), for example, after examining
Tippett’s tables, which had been constructed by taking numbers at random from
census reports, gained the impression that they were rather patchy and pro-
ceeded to apply further tests that gave some support to his view. Tippett (1925)
used his tables (not then published) to examine experimentally his work on the
distribution of the range.

Simple tests for local randomness are outlined by Kendall and Babington-
Smith, tests that Tippett’s tables had passed, and although much more extensive
appraisals can be made today by using computers, these prescriptions illustrate
the sort of criteria that should be applied. Each digit should appear approxi-
mately the same number of times; no digit should tend to be followed by another
digit; there are certain expectations in blocks of digits with regard to the
occurrence of three, four, or five digits that are all the same; there are certain
expectations regarding the gaps in the sequence between digits that are the same.
Tests of this sort do not exhaust the many that can be applied. Whitney (1984)
has recently noted that “It has been said that more time has been spent generating
and testing random numbers than using them” (p. 129).

COMBINING OBSERVATIONS

The notion of using a measure of the average as an adequate and convenient
summary or description of a number of data is an accepted part of everyday
discourse. We speak of average incomes and average prices, of average speeds
and average gas consumption, of average men and average women. We are
referring to some middling, nonextreme value that we take as a fair repre-
sentation of our observations. The easy use of the term does not reflect the
logical problems associated with the justification for the use of particular
measures of the average. The term itself, we find from the Oxford English
Dictionary, refers, among other things, to notions of sharing labor or risk, so
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old forms of the word refer to work done by tenants for a feudal superior or to
shared risks among merchants for losses at sea. Modern conceptions of the word
include the notion of a sharing or evening out over a range of disparate values.

A large series of observations or measurements of the same phenomenon
produces a distribution of values. Given the assumption that a single true value
does, in fact, exist, the presence of different values in the series shows that there
are errors. The assumption that over-estimations are as likely as under-estima-
tions would provide support for the use of the middle value of the series, the
median, as representing the true value. The assumption that the value we observe
most frequently is likely the true value justifies the use of the mode, and the
“evening out” of the different values is seen in the use of the arithmetic mean.
It is this latter measure that is now the statistic of choice when observations are
combined, and there are a number of strands in our history that have contributed
to the justification for its use. The employment of the arithmetic mean and the
use of the Jaw of error have sound mathematical underpinnings in the Principle
of Least Squares, which will be considered later. First, however, a somewhat
critical look at the use of the mean is in order.

The Arithmetic Mean

In the 1755 Philosophical Transactions, and in a revision in Miscellaneous
Tracts of 1757, Thomas Simpson argues the case for the arithmetic mean in An
Attempt to Show the Advantage arising by Taking the Mean Of a Number of
Observations in Practical Astronomy. These are valuable contributions that
discuss, for the first time, measurement errors in the context of probability and
point the way toward the idea of a law of facility of error. Simpson (1755)
complains that “some persons, of considerable note, have been of opinion, and
even publickly maintained, that one single observation, taken with due care, was
as much to be relied upon as the Mean of a great number” (pp. 82—83).

In the revision, Simpson (1757) states as axioms that positive and negative
errors are equally probable and that there are assignable limits within which
errors can be taken to fall. He also diagrams the law of error as an isosceles
triangle and shows that the mean is nearer to the true value than a single random
observation. The claim of the arithmetic mean to be the best representation of
a large body of data is often justified by appeal to the principle of least squares
and the law of error. This is high theory, and in appealing to it there is a danger
of overlooking the /ogic of the use of the mean. Simply, as John Venn (1891),
who was mentioned in chapter 1, puts it:

Why do we resort to averages at all?
How can a single introduction of our own, and that a fictitious one, possibly take the
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place of the many values which were actually given to us? And the answer surely
is, that it can rof possibly do so; the one thing cannot take the place of the other for
purposes in general, but only for this or that specific purpose. (pp. 429-430)

This seemingly obvious statement is one that has frequently been ignored in
statistics in the social sciences. Venn points out the different kinds of averages
that can be used for different purposes and notes cases where the use of any sort
of average is misleading. Edgeworth (1887) had provided an attempt to examine
the mathematical justifications for the different averages and Venn and many
others refer to this treatment. Edgeworth’s paper also examines the validity of
the least squares principle in this context. Venn illustrates his argument with
some straightforward examples. [f two people reckoned the distance of Cam-
bridge from London to be 50 and 60 miles, in the absence of any information
that would lead us to suspect either of the measures, one would guess that 55
miles was the probable distance. However, if one person said that someone they
knew lived in Oxford and another that the individual lived in Cambridge, the
most probable location would not be at some place in between. In the latter case,
in the absence of any other information, one would have a chance at arriving at
the truth by choosing at random.

Edgeworth’s papers on the best mean represent some of his most useful
work. A particular service is rendered by his distinction between real or
objective means and fictitious or subjective means. The former arise when we
use the arithmetic mean as the true value underlying a group of measurements
that are subject to error; the latter is a description of a set.

The mean of observations is a cause, as it were the source from which diverging
errors emanate. The mean of statistics is a description, a representative of the group,
that quantity which, if we must in practice put one quantity for many, minimises the
error unavoidably attending such practice.

Observations are different copies of one original; statistics are different originals
affording one ‘generic portrait.’ (Edgeworth, 1887, p. 139)

This formal distinction is clear. However, because the mathematics of the
analysis of errors and the manipulations of modern statistics rest on the same
principles, the logic of inference is sometimes clouded. It is Quetelet who
brought the mathematics of error estimation in physical measurement into the
assessment of the dispersion of human characteristics. Clearly, something of the
sort had been done before in the examination of mortality tables for insurance
purposes, but we see Quetelet making a direct statement that only partially
recognizes Edgeworth’s later distinction:

Everything occurs then as though there existed a type of man, from which all other
men differed more or less. Nature has placed before our eyes living examples of
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what theory shows us. Each people presents its mean, and the different variations
from this mean which may be calculated a priori. (Quetelet, 1835/1849, p. 96)

We noted in chapter 1 that it was Quetelet’s view that the average value of
mental and moral, as well as physical, characteristics represented the ideal type,
I’homme moyen (the average man) for which Nature was constantly striving.
Quetelet’s own pronouncements were somewhat inconsistent in that he some-
times promoted the view of the “average being” as a universal biological type
and at other times suggested that the average differed across groups and
circumstances. Nevertheless, his methods were the forerunners of work that
attempts to establish “norms” in biology, anthropology, and the psychology of
individual differences. One of the requirements of a “good” psychometric test
is that it be accompanied by norms. These norms provide standards for com-
parisons across individual test scores and, just as Quetelet’s characterization of
the average as the ideal type aroused opposition and controversy, so the
establishment of national norms and sub-group norms and racial norms pro-
duces heated debate today.

The Principle of Least Squares

In its best-known form, this famous principle states that the sum of squared
differences of observations from the mean of those observations is a minimum;
that is to say, it is smaller than the sum of squared differences from any other
reference point.

Legendre (1752-1833) announced the Principle of Least Squares in 1805,
but in Theoria Motus Corporum Coelestium, published in 1809, Gauss
(1777-1855) discussing the method, refers to his work on it in 1795 (when he
was a 1 7-year-old student preparing for his university studies). This claim to
priority upset Legendre and led to some bitter dispute. Today the method is most
frequently associated with Gauss, who is often identified as the greatest mathe-
matician of all time. That the method very quickly became a topic of much
commentary and discussion may be demonstrated by the fact that in the 70 or
so years following Legendre’s publication no less than 193 authors produced
72 books, 23 parts of books, and 313 memoirs relating to it. Merriman (1877)
provides a list of these titles together with some notes. Faced with such sources,
to say nothing of the derivations, papers, commentaries, and monographs
published in the last 110 years, the following represents perhaps one of adozen
ways of commenting on its origins.

Using the mean to combine a set of independent observations was a tech-
nique that had been used in the 17th century. Gauss later examined the problem
of selecting from a number of possible ways of combining data the one
that produced the least possible uncertainty about the “true value.” Gauss noted
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that in the combination of astronomical observations the mathematical treatment
depended on the method of combination. He approached the problem from the
standpoint that the method should lead to the cancellation of random errors of
measurement and that, as there was no reason to prefer one method over another,
the arithmetic mean should be chosen. Having appreciated that the “best,” in
the sense of “most probable,” value could not be known unless the distribution
of errors was known, he turned to an examination of the distribution, which gave
the mean as the most probable value. Gauss’s approach was based on practical
considerations, and because the procedures he examined did produce workable
solutions in astronomical and geodetic observations, the method was vindicated.
In fact, the principle of least squares, as Gauss himself noted, can be considered
independently of the calculus of probabilities.

If we have » observations X, X, X; ...X,, from a population with a mean
H, what is the least squares estimate of u? It is the value of u that minimizes,

=) + =) + (K= + .+ K p) =S — )

2 —_ - 2 —
Now Z(X; - 1) = Z(X;— X+ X - ), where X is the mean of the » observa-
tions.

B = EXK-X) +2(X-p) 2K - D) +n(X-p)’
But Z(X; —Ff) =0, so that, Z(X; - p)2 = XX, —;()2 + n()_(— u)2

Clearly the right-hand side of the last expression is at a minimum when,
X = p, which demonstrates the principle.

This easily obtained result provides a rationale for estimating the population
mean from the sample mean that is intuitively sensible. The law of error enters
the picture when we consider the arithmetic mean as the most probable result.
In this case we find that the law is in fact given by the normal distribution, often
referred to as the Laplace-Gaussian distribution. It has been stated on more than
one occasion that Laplace assumed the normal law in arriving at the mean to
provide what he described as the most advantageous combination of observa-
tions. Laplace certainly considered the case when positive and negative errors
are equally likely, and these cases rest on the error law being what we now call
“normal” in form. The threads of the argument are not always easy to disentan-
gle, but one of the better accounts, for those who are prepared to grapple with
a little mathematics, was given by Glaisher as long ago as 1872. The crucial
point is that of the rationale for the two fundamental constructs of statistics,
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the mean, X, and the variance, T(X - X’)Z/ n. The essential fact is easily seen.
Given that a distribution of observations is normal in form, and given that we
know the mean and the variance of the distribution, then the distribution is
completely and uniquely specified. All its properties can be ascertained given
this information.

In the context of statistics in the social sciences, both the normal law and the
least squares principle are best understood in the context of the linear model.
The model encompasses these constructs and brings together in a formal sense
the mathematics of the combination of observations developed for use in error
estimation and mathematical statistics as exemplified by analysis of variance
and regression analysis.

Representation and Bias

The earliest examples of the use of samples in social statistics we have seen in
the work of Graunt, Petty, Halley, and the early actuaries. These samples were
neither random nor representative, and mistaken inferences were plentiful. In
any event, it was not until much later, when attempts were made to collect
information on populations, inferential exercises repeated, and the results
compared, that critical examinations of the techniques employed could be made.
Stephan (1948) reports that Sir Frederick Morton Eden estimated the population
of Great Britain in 1800 to be about 9,000,000. This estimate, which was based
on the number of births and the average number of inhabitants in each house (a
number that was obtained by sampling), was confirmed by the first British
census in 1801. Earlier attempts to estimate populations had been made in
France, and Laplace in 1802 made an attempt to do so that followed a scheme
he had devised and published in 1786, a scheme that included a probability
measure of the precision of the estimate. Specifically, Laplace averred that the
odds were 1,161 to 1 that the error would not reach half a million. Westergaard
(1932) provides some more details of these exercises. Elsewhere in Europe and
in the United States the 19th century saw various censuses conducted, as well
as attempts to estimate the size of the population from samples. In the United
States the Constitution provided for a census every 10 years in order to
determine Congressional representation, but a Bill introduced into the British
Parliament in 1753 to establish an annual census was defeated in the House of
Lords.

It appears that the probability mathematicians and the rising group of
political arithmeticians never joined forces in the 19th century. The latter
favored the institution of complete censuses and, generally speaking, were not
mathematicians, and the former were scientists who had many other problems
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to test their mettle. Almost 100 years passed before scientific sampling proce-
dures were properly investigated.

Stephan (1948) lists four areas where modern sampling methods could have
been used to advantage: agricultural crop and livestock estimates, economic
statistics, social surveys and health surveys, and public opinion polls. The last
will be considered here in a little more detail because it is in this area that the
accuracy of forecasts is so often and so quickly assessed and breakdowns in
sampling procedures detected with the benefit of hindsight.

The Raleigh Star in Raleigh, North Carolina, conducted “straw votes™ as
ecarly as 1824, covering political meetings and trying to discover the “sense of
the people.” By the turn of the century, many newspapers in the United States
were regularly conducting opinion polls, a common method being merely to
invite members of the public to clip out a ballot in the paper and to mail it in.
The same basic procedure was followed by all the publications. Then the large-
circulation magazines, notably Literary Digest, began to mail out ballots to very
large numbers of people, sometimes as many as 11,000,000. In 1916 this
publication correctly predicted the election of Wilson to the presidency and from
then until 1936 enjoyed consistent and much admired success. Its predictions
were very accurate. For example, in 1932 its estimate of the popular vote for
each candidate in the presidential election came to within 1.4% of the actual
outcome. In 1936 came disaster. For years Literary Digest had conducted polls
on all kinds of issues, mailing out millions of ballots, at considerable expense,
to telephone subscribers and automobile owners. In 1936 the magazine pre-
dicted that Alfred M. Landon would win the presidency on the basis of the return
of over 2,300,000 replies from over 10,000,000 mailed ballots. The record
shows that Franklin D. Roosevelt won the presidency with one of the largest
majorities in American presidential history. The reasons for this disastrous
mistake are now easy to see. Prior to 1936, preference for the two major political
parties in the United States was not related to level of income. In that year it
seems that it was. The telephone subscribers and car owners (and in 1936 these
were the rather more affluent) who had received the Literary Digest ballots
were, in the main, Republicans. In 1937 the magazine ceased publication. Crum
(1931) and Robinson (1932, 1937) gave commentaries on some of these early
polls.

Fortune magazine fared no better in 1948, underestimating the vote for the
Democrats and Harry Truman by close to 12% and, of course, failing to pick
the winner. In 1936, with a much, much smaller sample than that of Literary
Digest (less than 5,000), it had forecast Roosevelt’s vote to within 1%. The
explanation for its failure in 1948 rests with the swing of both decided and
undecided voters between the September poll and the November election and
failure to correct for a geographic sampling bias. Parten (1966) has some
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commentary on these and other polls. One of the most successful polling
organizations, the American Institute of Public Opinion, headed by George
Gallup, began its work in 1933. But the Gallup poll also predicted a win for
Dewey over Truman in 1948, and many people have seen the Life photograph
of a victorious president holding the Chicago Daily Tribune with its famous
Type I error headline, “Dewey defeats Truman.”

The result produced one of the first claims that the polls influenced the
outcome, inducing complacency in the Republicans and a small turnout of their
supporters, leading to the defeat of the Republican candidate. Today there is
much controversy over the conducting and the use of polls. They will survive
because in general they are correct much more often than not. Their success is
due to the development of refined sampling techniques.

SAMPLING IN THEORY AND IN PRACTICE

Chang (1976) gives a quite thorough review of inferential processes and
sampling theory, and it is worth sketching in some of its development in the
context of survey sampling. However, from the standpoint of statistics and
sampling in psychology, there is no doubt but that the rationale of sampling
procedures for hypothesis testing rather than parameter estimation is of greater
import. The two are related. ,

The early political arithmeticians held to the view that statistical ratios — for
example, males to females, average number of children per family, and so on—
were approximately constant, and, as a result, proceeded to draw inferences
from figures collected in a single town or parish to whole regions and even
countries. The early 19th century saw the introduction of the law of error by
Gauss and Laplace and an awareness that variability was an important consid-
eration in the assessment of data. Populations are now defined by two parame-
ters, the mean and the variance. One of the earliest attempts to put a measure of
precision onto a sampling exercise was that of Laplace in 1802. The sample he
used was not random, although he appears to have assumed that it was.
Communes distributed across France were chosen to balance out climatic
differences. Those having mayors known for their “zeal and intelligence” were
also selected so that the data would be the most precise. Laplace also assumed
that birth rate was homogeneous across the French population, exactly the sort
of unwarranted assumption that was made by the early political arithmeticians.
Nevertheless, Laplace estimated the population total from his figures and,
appealing to the central limit theorem (which he had discussed in 1783),
approximated the distribution of estimation errors to the normal curve.

Survey sampling for all kinds of social investigations owes a great deal to
Sir Arthur Lyon Bowley (1869-1957). In his time he was recognized as a
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pioneer in the definition of sampling techniques, and his methods and assump-
tions were the subject of much debate. In the event, some of his approaches
were found to be defective, but his work focussed attention on the problem. In
1926 he summarized the theory of sampling, and a short paper of 1936 outlines
the application of sampling to economic and social problems. He served on
numerous official committees that investigated the economic state of the na-
tion,social effects of unemployment and so on, and worked directly on many
surveys. Maunder (1972) has written a memoir that points up Bowley’s
contributions, contributions that were somewhat overshadowed by the work of
his contemporaries Pearson, Fisher, and Neyman. He was a calm and courteous
man, enormously concerned with social issues, and he occupied, at the London
School of Economics, the first Chair devoted to statistics in the social sciences.
Bowley (1936) defines the sampling problem simply:

We are here concerned . . . with the investigation of the numerical structure of an
actual and limited universe, or “population” which is the better word for our purpose.
Our problems are quite definitely to infer the population from the sample.

The problem is strictly analogous to that of estimating the proportion of the various
colours of balls ina limited urn on the basis of one or more trial draws. (pp. 474-475)

In the early years of this century, Bowley began to examine both the practice
and theory of survey sampling. His work helped to highlight the utility of
probability sampling of one form or another. Systematic selection was adopted
and advocated by A. N. Kiaer (1838-1919), Director of the Norwegian Bureau
of Statistics, in his examinations of census data, but the majority of influential
statisticians, represented by the International Statistical Institute, rejected sam-
pling, pressing for complete enumeration. It took almost 30 years for the utility
and benefits of the methods to be appreciated. Seng (1951) and Kruskal and
Mosteller (1979) give accounts of this most interesting period in statistical
history. The latter authors give a translation and paraphrase of the remarks of
Georg von Mayer, Professor at the University of Munich, on Kiaer’s work on
the representative method, which was presented at a meeting of the Institute in
Berne in 1895:

I regard as most dangerous the point of view found in his work. I understand that
representative samples can have some value, but it is a value restricted to terrain
already illuminated by full coverage. One cannot replace by calculation the real
observation of facts. A sample provides statistics for the units actually observed, but
not true statistics for the entire terrain.

It is especially dangerous to propose representative sampling in the midst of an
assembly of statisticians. Perhaps for legislative or administrative goals sampling
may have uses - but one must never forget that it cannot replace a complete survey.
It is necessary to add that there is among us these days a current in the minds of
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mathematicians that would, in many ways, have us calculate rather than observe.
We must remain firm and say: no calculations when observations can be made. (von
Mayer, quoted by Kruskal & Mosteller, 1979, pp. 174-175)

Oddly enough, Kiaer’s work is not mathematical in the sense that modern
methods of parameter estimation are mathematical. At the time those methods
were not fully delineated nor understood. Kiaer aimed, by a variety of tech-
niques, to produce a miniature of the population, although he noted as early as
1899 the necessity for the investigation of both the practical and theoretical
aspects of his methods. At a meeting in 1901 (a report of which was published
in 1903), Kiaer returned to the theme and it was in a discussion of his
contribution that L. von Bortkiewicz suggested that the “calculus of prob-
abilities” could be used to test the efficacy of sampling. By establishing how
much of a difference between sample and population could be obtained acci-
dentally and checking whether or not an observed difference lay outside those
limits, the representativeness of the sample could be decided on. Bortkiwiecz
did not, apparently, formulate all the necessary tests, and others had employed
this method, but he seems to have been the first to draw the attention of
practicing statisticians to the possibilities.

In 1903, Kiaer must have thought that the sampling argument was won, for
a subcommittee of the International Statistical [nstitute proposed a resolution at
the Berlin meeting:

The Committee, considering that the correct application of the representative
method, in a certain number of cases, can furnish exact and detailed observations
from which the results can be generalized, within certain limits, recommends its use,
provided that in the publication of the results the conditions under which the selection
of the observation units is made are completely specified. The question will be kept

- on the agenda, so that a report may be presented in the next session on the application
of the method in practice and on the value of the results arrived at. (quoted by Seng,
1951, p. 230)

What is more, a discussant at the meeting, the French statistician Lucien
March, returned to the ideas that had been put forward by Bortkiewicz and
outlined some of the basics of probability sampling (see Kruskal & Mosteller,
1979, for a short summary of this presentation). The way ahead seemed clear.

In fact the question was, for all intents and purposes, shelved for more than
20 years, and it was not until 1925, at the Rome session of the Institute, that the
advantages of the sampling method were fully recognized. This was in no small
way due to the theoretical work of Bowley. Bowley had suggested in his
Presidential address to the Economic Science and Statistical Section of the
British Association as early as 1906 that a systematic approach to the problem
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of sampling would bear fruit:

In general, two lines of analysis are possible: we may find an empirical formula (with
Professor Karl Pearson) which fits this class of observations {Bowley is referring to
data that may not be normally distributed], and by evaluating the constants determine
an appropriate curve of frequency, and hence allot the chances of possible differences
between our observation and the unknown true value; or we may accept Professor
Edgeworth’s analysis of the causes which would produce his generalised law of great
numbers, and determine a priori or by experiment whether this universal law may
be expected or is to be found in the case in question. (Bowley, 1906, pp. 549-550)

Edgeworth’s method is based on the Central Limit Theorem, and Bowley
explains its utility clearly and simply:

If quantities are distributed according to almost any curve of frequency, . . . the
average of successive groups of . . . these conform to a normal curve (the more and
more closely as 7 is increased) whose standard deviation diminishes in inverse ratio
to the number in each sample . . . If we can apply this method . . ., we are able to give
not only a numerical average, but a reasoned estimate for the real physical quantity
of which the average is a local or temporary instance. (Bowley, 1906, p. 550)

The procedure demands random sampling:

The chances are the same for all the items of the groups to be sampled, and the way
they are taken is absolutely independent of their magnitude.

It is frequently impossible to cover a whole area as the census does, . . . but it is not
necessary. We can obtain as good results as we please by sampling, and very often
quite small samples are enough; the only difficulty is to ensure that every person or
thing has the same chance of inclusion in the investigation. (Bowley, 1906, pp.
551-553)

THE THEORY OF ESTIMATION

Over the next 20 years, Bowley and his associates completed a number of
surveys, and his theoretical researches produced The Measurement of the
Precision Attained in Sampling in 1926. This paper formed part of the report of
the International Statistical Institute, which recommended and drew attention
to the methods of random selection and purposive selection: “A number of
groups of units are selected which together yield nearly the same characteristics
as the totality” (p. 2). The report does not directly address the method of
stratified sampling, even though the technique had been in general use. This
procedure received close attention from Neyman in his paper of 1934. Bowley
had attempted to present a theory of purposive sampling in his 1926 report.
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A distinctive feature of this method, according to Bowley, was that it was a case of
cluster sampling. It was assumed that the quantity under investigation was correlated
with a number of characters, called controls, and that the regression of the cluster
means of the quantity on those of each control was linear. Clusters were to be selected
in such a way that average of each control computed from the chosen clusters should
(approximately) equal its population mean. It was hoped that, due to the assumed
correlations between controls and the quantity under investigation, the above method
of selection would result in a representative sample with respect to the quantity under
investigation. (Chang, 1976, pp. 305-306)

Unfortunately, a practical test of the method (Gini, 1928) proved unsatisfactory
and Neyman’s analysis concluded that it was not a consistent nor an efficient
procedure.

As Neyman pointed out, the problem of sampling is the problem of estima-
tion. The first forays into the establishment of a theory had been made by Fisher
(19214, 1922b, 1925b), but the manner of sampling had received little attention
from him. The method of maximum likelihood, which rested entirely on the
properties of the distribution of observations, gave the most efficient estimate.
Any appeal to the properties of the a priori distribution — the Bayesian approach
- was rejected by Fisher. Neyman attempted to clarify the situation:

We are interested in characteristics of a certain population, say, n, . . . it has been
usually assumed that the accurate solution of such a problem requires the knowledge
of probabilities a priori attached to different admissible hypotheses concerning the

values of the collective characters [the parameters] of the population n. (Neyman,
1934, p. 561)

He then turns to Bowley’s work, noting that when the population  is known,
then questions about the sort of samples that it could produce can be answered
from “the safe ground of classical theory of probability” (p. 561). The second
question involves the determination, when we know the sample, of the prob-
abilities a posteriori to be ascribed to hypotheses concerning the populations.
Bowley’s conclusions are based:

on some quite arbitrary hypotheses concerning the probabilities a priori, and
Professor Bowley accompanies his results with the following remark: “It is to be
emphasized that the inference thus formulated is based on assumptions that are
difficult to verify and which are not applicable in all cases.” (Neyman, 1934, p. 562)

Neyman then suggests that Fisher’s approach (that involving the notion of
fiducial probability, although Neyman does not use the term) “removes the
difficulties involved in the lack of knowledge of the a priori probability law”
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(p. 562). He further suggests that these approaches have been misunderstood,
due, he thinks, to Fisher’s condensed form of explanation and difficult method
of attacking the problem:

The form of the solution consists in determining certain intervals which I propose
to call confidence intervals . . ., in which-we may assume are contained the values
of the estimated characters of the population, the probability of the error in a
statement of this sort being equal to or less than 1 —£ , where £ is any number 0 <
€ <1, choseninadvance. The numberg I call the confidence coefficient. (Neyman,
1934, p. 562)

Neyman’s comments on Fisher’s ability to explain his view produced, in
the discussion of his paper, the first (mild) reaction from Fisher. Subsequent
reactions to Neyman’s work and that of his collaborator, Egon Pearson, became
increasingly vitriolic. The report reads:

Dr Fisher thought Dr Neyman must be mistaken in thinking the term fiducial
probability [Neyman had used the term “confidence coefficient”] had led to any
misunderstanding; he had not come upon any signs of it in the literature. When Dr
Neyman said “it really cannot be distinguished from the ordinary concept of
probability,” Dr Fisher agreed with him . . . He qualified it from the first with the
word fiducial . . . Dr Neyman qualified it with the word confidence. The meaning
was evidently the same, and he did not wish to deny that confidence could be used
adjectivally. They were all too familiar with it, as Professor Bowley had reminded
them, in the phrase “confidence trick.” (discussion on Dr Neyman’s paper, 1934,
p.617)

From the standpoint of the familiar statistical procedures found in our texts,
this paper is important for its treatment of confidence intervals and its emphasis
of the importance of random sampling. It extended estimation from so-called
point estimation, the use of a sample value to infer a population value, to interval
estimation, which assesses the probability of a range of values. Neyman
demonstrates the use of the Markov? method for deriving the best linear

? Andrei Andreyevich Markov (or MarkofY, 1856-1922) is best known for his studies of the
probabilities of linked chains of events. Markov chains have been used in a variety of social and
biological studies in the last 30 or 40 years. But Markov made many contributions to probability theory.
If we have a random variable X, then regardless of its distribution, for any positive number ¢ (i.e. ¢ >
0), the probability, Px(X = cp), that the random variable X is greater than ¢ times its expected value py
= does not exceed 1/c. That is, Px(X 2 cp) < l/e. This is known as the Markov Inequality. Markov
was a student of Pafnuti L. Tchebycheff (sometimes spelled Chebychev or Chebichev, 1821-1894), who

formulated the Tchebycheff Inequality which states that, Px(X <p —do or X2 +do) = Y7 where X

is a random variable with expected value u and variance o2, and &> 0. This result was independently
arrived at by the French mathematician 1.J. Bienaymé (1796-1876). These inequalities are important
in the development of the descriptions of the properties of probability distributions.
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unbiased estimators. It also contains other important ideas, in particular, a
discussion of the methods of stratified sampling and appropriate statistical
models for it. Neyman’s paper marks a new era in both the method and theory
of sampling, although, at the time, it was its treatment of the problem of
estimation that received the most attention. In a sense it complemented and
supplemented the work of Ronald Fisher that was going on at Rothamsted, but
it became evident that Fisher did not quite see it that way.

THE BATTLE FOR RANDOMIZATION

There is no doubt that the requirement that samples should be randomly drawn
was thought of by the survey-makers as a protection against selection bias. And
there is also no doubt that when sample size is large it affords such protection,
but not, it must be stressed, a guarantee.

In agricultural research, it had long been recognized that reduction of
experimental error was of critical importance. At Rothamsted two methods were
available: repeating the experiments over many years, and multiplying the
number of plots on a field. Mercer and Hall (1911) discuss the problem in
considerable detail and give suggestions for arranging the plots so that they may
be “scattered.” This was the approach that was abandoned, although not imme-
diately, when Fisher started his important work at the Station. Eventually, for
Fisher and his coworkers the argument for randomization had a quite different
motive from that of trying to obtain a representative sample, one that is crucial
for an appreciation of the use of statistics in psychology. Fisher, although a
brilliant mathematician, was a practical statistician, and his approach to statis-
tics can only be understood through his work on the design of experiments and
the analysis of the resultant data. The core of Fisher’s argument rests on the
contention that the value of an experiment depends on the valid estimation of
error, an argument that everyone would agree with. But how was the estimate
to be made?

In nearly all systematic arrangements of replicated plots care is taken to put the unlike
plots as close together as possible, and the like plots consequently as far apart as
possible, thus introducing a flagrant violation of the conditions upon which a valid
estimate is possible.

One way of making sure that a valid estimate of error will be obtained is to arrange
the plots deliberately at random.

The estimate of error is valid, because, if we imagine a large number of different
results obtained by different random arrangements, the ratio of the real to the
estimated error, calculated afresh for each of these arrangements, will be actually
distributed in the theoretical distribution by which the significance of the result is
tested. Whereas if a group of arrangements is chosen such that the real errors in this
group are on the whole less than those appropriate to random arrangements, it has
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now been demonstrated that the errors, as estimated, will, in such a group, be higher
than is usual in random arrangements, and that, in consequence, within such a group,
the test of significance is vitiated. (Fisher, 1926b, pp. 506-507)

The contribution of Fisher that is overwhelmingly important is the develop-
ment of the # and z tests and the general technique of analysis of variance. The
essence of these procedures is that they provide estimates of error in the
observations and the application of tests of statistical significance. These meth-
ods were not immediately recognized as being useful for larger-scale sample
surveys, and it was partly the work of Neyman (mentioned earlier) and others
in the mid-1930s that, ironically, introduced them to this area.

Arguments about randomized versus systematic designs began in the mid-
1920s. Mostly they revolved around the issue of what to do when there was an
unwanted assignment of treatments to experimental units, that is, when the
assignment had a pattern that the researcher either knew or suspected might
confound the treatments. Fisher argued very strongly against the use of system-
atic designs, on the basis of theory, but his argument was not wholly consistent.
Some had suggested that if a random design produced a pattern then it should
be discarded and another random assignment drawn. Of course, the subjectivity
introduced by this sort of procedure is precisely that of the deliberate balancing
of the design. And how many draws might one be allowed?

Most experimenters on carrying out a random assignment of plots will be shocked
to find out how far from equally the plots distribute themselves. . . if the experimenter
rejects the arrangement arrived at by chance as altogether “too bad,” or in other ways
“cooks” the arrangement to suit his preconceived ideas, he will either (and most
probably) increase the standard error as estimated from the yields; or, if his luck or
his judgment is bad, he will increase the real errors while diminishing his estimate
of them. (Fisher, 1926b, pp. 509-510)

But even Fisher never quite escaped the difficulty. Savage (1962) talked
with him:

“What would you do,” | had asked, “if, drawing a Latin Square at random for an
experiment, you happened to draw a Knut Vik square?” Sir Ronald said he thought
he would draw again and that, ideally, a theory explicitly excluding regular squares
should be developed. (Savage, 1962, p. 88)

Students and teachers cursing their way through statistical theory and practice
should take some comfort from the inconsistencies expressed by the master.
The debate reached its height in argument between “Student” and Fisher.
“Student” consistently advocated systematic arrangements. In a letter to Egon
Pearson (Pearson, 1939a) written shortly before his death in 1937, “Student”
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comments on work by Tedin (1931) that had examined the outcomes when
sytematic, as opposed to random, Latin squares were used in experimental
designs. The “Knight’s move” Latin square he prefers above all others: “It is
interesting as an illustration of what actually happens when we depart from
artificial randomisation: I would Knight’s move every time!” (quoted by E. S.
Pearson, 1939a, p. 248).3

Over the previous year a series of papers, letters, and letters of rebuttal had
come forth from “Student” and Fisher. “Student” was adamant to the end, and
Fisher reiterated his claim that valid error estimates cannot be computed in
arranged designs and that in such cases the test of significance is made ineffec-
tive. Picard (1980) describes and discusses the argument and also examines the
contributions of Pearson and Yates, who had succeeded Fisher at Rothamsted.

Others entered the debate. Jeffreys (1939) is puzzled:

Reading “Student’s” paper [of 1937] and Fisher’s Design of Experiments 1 find
myself in almost complete agreement with both; and I should therefore have expected
them to agree with each other.

But it seems to me that “Student” is wrong in regarding Fisher as an advocate of
extreme randomness, and possibly Fisher has not sufficiently emphasized the amount
of system in his methods. (Jeffreys, 1939, p. §)

Jeffreys makes the point that omitting to take account of relevant information
makes avoidable errors:

The best procedure is to design the work so as to determine it {the error] as accurately
as possible and not to leave it to chance whether it can be determined at all. . . . The
hypothesis is a considered proposition. . . The argument is inductive and not
deductive; it is not dealt with by considering an estimable error that has nothing to
do with it. (Jeffreys, 1939, p. 5)

As ever, Jeffreys’ argument is a paragon of logic, and it notes that Fisher’s
advice to balance or eliminate the larger systematic effects as accurately as
possible and randomize the rest “sums up the situation very well” (p. 7). This
is the prescription that the design of experiments follows today.

E. S. Pearson (1938b) attempted to expand on and to clarify “Student’s”
stand, but he clearly understood the view of the opposition. Nevertheless, he
concluded that balanced layouts could give some slight advantage.

3 An illustration of “Two Knight’s moves™ would be
DEABC
BCDEA
EABCD
CDEAB
ABCDE
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Yates (1939), in a lengthy paper also goes over the whole of “Student’s”
on the matter, but his conclusion supports the essence of Fisher’s views:

views

The conclusion is reached that in cases where Latin square designs can be used, and
in many cases where randomized blocks have to be employed, the gain in accuracy
with systematic arrangements is not likely to be sufficiently great to outweigh the

disadvantages to which systematic designs are subject.

On the other hand, systematic arrangements may in certain cases give decidedly
greater accuracy than randomized blocks, but it appears that in such cases the use of
the modern devices of confounding, quasi-factorial designs, or split-plot Latin
squares which are much more satisfactory statistically, are likely to give a similar

gain in accuracy. (Yates, 1939, p. 464)

This brings us to the approaches of the present day.

The realization that sampling was important in psychological research, and
that its techniques had been much neglected, was presented to the discipline by
McNemar (1940a). In an extensive discussion, he points out situations that are

still with us:

One wonders, for instance, how many psychometric test scores for policeman,
firemen, truck drivers ef al. have been interpreted by the clinician in terms of college

SOphOH’lOl’C norms.

In psychological research we are more frequently interested in making an inference
regarding the likeness or difference of two differentially defined universes, such as
two racial groups, or an experimental vs. a control group. The writer ventures the

guess that at least 90% of the research in psychology involves such comparisons.

It

is not only necessary to consider the problem of sampling in the case of experimental
and control groups, but also convenient from the viewpoint of both good experimen-

tation and sound statistics to do so. (McNemar, 1940a, p. 335)

This paper, which, regrettably, is not among those most widely cited in the
psychological literature, should be required reading for all those embarking on
research in any aspect of the social sciences. Its closing remarks contain a
prediction that has been most certainly fulfilled and whose content is dealt with

shortly:

The applicability in psychology of certain of Professor R. A. Fisher’s designs should
be examined. Eventually, the analysis of variance will come into use in psychological

research. (McNemar, 1940a, p. 363)

For the moment, no more needs to be said.



Sampling Distributions

Large sets of elementary events are commonly called populations or universes
in statistics, but the set theory term sample space is perhaps more descriptive.
The term population distribution refers to the distribution of the values of the
possible observations in the sample space. Although the characteristics or
parameters of the population (e.g., the mean, p, or the standard deviation, &)
are of both practical and theoretical interest, these values are rarely, if ever,
known precisely. Estimates of the values are obtained from corresponding
sample values, the statistics. Clearly, for a sample of a given size drawn
randomly from a sample space, a distribution of values of a particular summary
statistic exists. This simple statement defines a sampling distribution. In statis-
tical practice it is the properties of these distributions that guides our inferences
about properties of populations of actual or potential observations. In chapter
6 the binomial, the Poisson, and the normal distributions were discussed. Now
that sampling has been examined in some detail, three other distributions and
the statistical tests associated with them are reviewed.

THE CHI SQUARE DISTRIBUTION

The development of the 3 (chi-square) test of “goodness-of-fit” represents one
of the most important breakthroughs in the history of statistics, certainly as
important as the development of the mathematical foundations of regression.
The fact that both creations are attributable to the work of one man,' Karl

T MacKenzie (1981) gives a brief account of Arthur Black (1851-1893), a tragic figure who, on his
death, left a lengthy, and now lost, manuscript, A/gebra of Animal Evolution, which was sent to Karl
Pearson. “Pearson started to read it, but realized immediately that it discussed topics very similar to
those he was working on, and decided not to read it himself but to send it to Francis Galton for his advice”
(p. 99). Of great interest is that buried among Black’s notebooks, which have survived, is a derivation
of the chi-square approximation to the multinomial distribution.

105
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Pearson, is impressive attestation to his role in the discipline. There are a number
of routes by which the test can be approached, but the path that has been followed
thus far is continued here. This path leads directly to the work of Pearson and
Fisher, who did not make use, and, it seems, were in general unaware, of the
earlier work on goodness-of-fit by mathematicians in Europe. Before looking
at the development of the test of goodness-of-fit the structure of the chi-square
distribution itself is worth examining. Figure 9.1 shows two chi-square distri-
butions. Given a normally distributed population of scores ¥ with a mean p, and
a variance a7, suppose that samples of size n=1 are drawn from the distribution
and each score is converted to its corresponding standard score z.

2
z=(Y-p)/cand y’ = (Y- p) /o defines the chi-square distribution with
one degree of freedom. If samples of n =2 are drawn, then y’ is given by
2, )
Y, - p.)z/cs2 + (Y, — ) /o". In fact if » independent measures are taken ran-

domly from a distribution with mean y, and variance o°, %’ is defined as the
sum of the squared standardized scores:

n 2
(Yi-w
2 1

Xz__i__-
[}
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This is the essence of the distribution® that Pearson used in his formulation of
the test of goodness-of-fit. Why was such a test so necessary?

Games of chance and observational errors in astronomy and surveying were
subject to the random processes that led scientists in the 18th and early 19th
centuries to the examination of error distributions. The quest was fora sound
mathematical basis for the exercise of estimating true values. Simpson intro-
duced a triangular distribution and Daniel Bernoulli in 1777 suggested a
semicircular one. In the absence of empirical data, these distributions, estab-
lished on a priori grounds, were somewhat arbitrarily regarded as having no
more and no less claim to accuracy and utility. But the 19th century saw the
normal law established. It had powerful credentials because of the fame of its
two main developers, Gauss and Laplace. Starting from the assumption that the
arithmetic mean represented the true value, Gauss showed that the error distri-
bution was normal. Laplace, starting from the view that every individual
observation arises from a very great number of independently acting random
factors (the essence of the central limit theorem), came to the same result.
Gauss’s proof of the method of least squares further established the importance
of the normal distribution, and when, in 1801, he used the initial data collected
from observations on a new planet, Ceres,’ to accurately predict where it would
be observed later in the year, these procedures, as well as Gauss’s reputation,
were firmly established in astronomy.

In astronomy as well as in biology and social science, the Laplace-Gaussian
distribution was indeed law; it was indeed regarded as normal. This prescription
led to Quetelet’s use of it as a “double-edged sword” (see chapter 1) and led to
many astronomers using it as a reason to reject observations that were consid-
ered to be doubtful, for example Peirce (1852). Quetelet’s procedure for
establishing the “fit” of the normal curve was the same as that of the early
astronomers. The tabulation, and later the graphing, of observed and expected
frequencies led to their being compared by nothing more than visual inspection
(see, e.g., Airy, 1861).

ZA history of the mathematics of the xz distribution would include the development of the gamma
function by the French mathematician [. J. Bienaymé (1796—1876), who, in the 1850s, found a statistic

that is equivalent to the Pearson xz in the context of least squares theory. Pearson was apparently not
aware of his work; nor were F. R. Helmert and E. Abbé, who, in the 1860s and 1870s, also arrived at the

x2 distribution for the sum of squares of independent normal variates. Long afier the test had become

commonly used, von Mises (1919} linked Biecnaymé’s work to the Pearson xz. Details of this aspect of
the test and distribution’s history are given by Lancaster (1966), Sheynin (1966), and Chang (1973).

3 Ceres was the first discovered “planetoid” in the asteroid belt. Gauss also determined the
orbit of Pallas, another planetoid.
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There was some dissent. Egon Pearson (1965) notes:

Asareaction to this view among astronomers I remember how Sir Arthur Eddington
in his Cambridge lectures about 1920 on the Combination of Observations used to
quote the remark that “to say that errors must obey the normal law means taking
away the right of the free-born Englishman to make any error he darn well pleases!”

p- 6)

Karl Pearson’s first statistical paper (1894) was on the problem of interpret-
ing a bimodal distribution as two normal distributions, the problem that had
arisen as a result of Weldon’s discovery that the distribution of the relative
frontal breadths of his sample of Naples crabs was a double-humped curve. This
paper introduced the method of moments as a means of fitting a theoretical curve
to a set of observations. As Egon Pearson (1965) states it:

The question “does a Normal curve fit this distribution and what does this mean if it
does not?” was clearly prominent in their discussions. There were three obvious
alternatives;

(a) The discrepancy between theory and observation is no more than might be
expected to arise in random sampling.

(b) The data are heterogeneous, composed of two or more Normal distributions.

(c) The data are homogeneous, but there is real asymmetry in the distribution of
the variable measured.

The conclusion (¢) may have been hard to accept, such was the prestige surrounding

the Normal law. (p. 9)

It appears from Yule’s lecture notes* that Karl Pearson probably was em-
ploying a procedure that used the ratio of an absolute deviation from expectation
to its standard error to examine the record of 7,000 (actually 7,006) tosses of 12
dice made by Mr Hull, a clerk at University College. This was the record (see
chapter 1) that Weldon said Karl Pearson had rejected as “intrinsically incred-
ible.” Yule’s notes also contain an empirical measure of goodness of fit that
Egon Pearson says may be set down roughly as R=Z|O - T|/ZT, where
|0 —T] is the absolute value of the difference between the observed and
theoretical frequency and T the total theoretical frequency, though it should be
mentioned that the actual notes do not contain the formula in this form. This
expression mean absolute error was in use during the latter years of the 19th
century, and Bowley used it in the first edition of his textbook in 1902,

Karl Pearson’s second statistical paper (1895) on asymmetrical frequency
curves occupied the attention of the biologists, but the question of the biological
meaning of skewed distributions was not one that, at the time, was in the

* These notes are reproduced in Biometrika's Miscellanea (Yule, 1938a).
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forefront of Pearson’s thoughts. Interestingly enough, Pearson did not use the
mean absolute error as a test of fit in any of his work. His preoccupation was
with the development of a theory of correlation, and it was in this context that
he solved the goodness-of-fit problem. The 1895 paper and two supplements
that followed in 1901 and 1916b introduced a comprehensive system of fre-
quency curves that pointed a way to sampling distributions that are central to
the use of statistical tests, but it was a way that Pearson himself did not fully
develop.

Pearson’s (1900a) seminal paper begins, “The object of this paper is to
investigate a criterion of the probability on any theory of an observed system of
errors, and to apply it to the determination of goodness of fit in the case of
Jfrequency curves” (p. 157).

Pearson takes a system of deviations x,, x, , . . . , x, from the means of »
variables with standard deviations 6, ©,, ..., 6, and with correlations »,,, 7,3,
r235 ..., "y, and derives x* as “the equation to a generalized “ellipsoid,” all
over the surface of which the frequency of the system of errors or deviations x;,
X3,..., X, isconstant” (p. 157).

It was Pearson’s derivation of the multivariate normal distribution that
formed the basis of the x° test. Large x,s represent large discrepancies between
theory and observation and in turn would give large values of x*. But x* can
be made to become a test statistic by examining the probability of a system of
errors occurring with a frequency as great or greater than the observed system.
Pearson had already obtained an expression for the multivariate normal surface,
and he here gives the probability of » errors when the ellipsoid, mentioned
earlier is squeezed to become a sphere, which is the geometric representation
of zero correlation in the multivariate space, and shows how one arrives at the
probability for a given value of x°. When we compare Pearson’s mathematics
with Hamilton Dickson’s examination of Galton’s elliptic contours, seen in the
scatterplot of two correlated variables while Galton was waiting for a train, we
see how far mathematical statistics had advanced in just 15 years.

Pearson considers an (n +1)-fold grouping with observed frequencies,
m',m),my', ..., m, m,', and theoretical frequencies known a priori, m,,
My My, ..., My, My, y. Zm= Zm' = N, is the total frequency,ande =m' —m
is the error. The total error Ze (i.e., e, + e, + e; +. . . + e, ) is zero. The degrees
of freedom, as they are now known, follow; “Hence only » of the n + 1 errors
are variables; the # + 1th is determined when the first #» are known, and in using
formula (ii) [Pearson’s basic x° formula] we treat only of # variables” (Pearson,
1900a, pp. 160-161).

Starting with the standard deviation for the random variation of error and
the correlation between random errors, Pearson uses a complex trigonometric
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transformation to arrive at a result “of very great simplicity”:

X = E(ez/m)

Chi-square (the statistic) is the weighted sum of squared deviations.

Pearson (1904b, 1911) extended the use of the test to contingency tables and
to the two sample case and in 1916(a) presented a somewhat simpler derivation
than the one given in 1900a, a derivation that acknowledges the work of Soper
(1913). The first 20 years of this century brought increasing recognition that
the test was of the greatest importance, starting with Edgeworth , who wrote to
Pearson, “I have to thank you for your splendid method of testing my mathe-

matical curves of frequency. That x° of yours is one of the most beautiful of
the instruments that you have added to the Calculus™ (quoted by Kendall, 1968,
p. 262).

And even Fisher, who by that time had become a fierce critic: “The test of
goodness of fit was devised by Pearson, to whose labours principally we now
owe it, that the test may readily be applied to a great variety of questions of
frequency distribution” (Fisher, 1922b, p. 597).

In the next chapter the argument that arose between Pearson and Yule on the
assumption of continuous variation underlying the categories in contingency
tables is discussed. When Fisher’s modifications and corrections to Pearson’s
theory were accepted, it was Yule who helped to spread the word on the
interpretation of the new idea of degrees of freedom.

The goodness-of-fit test is readily applied when the expected frequencies
based on some hypothesis are known. For example, hypothesizing that the
expected distribution is normal with a particular mean and standard deviation
enables the expected frequency of any value to be quickly calculated. Today
x> is perhaps more often applied to contingency tables, where the expected
values are computed from the observed frequencies.

This now routine procedure forms the basis of one of the most bitter disputes
in statistics in the 1920s. In 1916 Pearson examined the question of partial
contingency. The fixed r in a goodness-of-fit test imposes a constraint on the
frequencies in the categories; only k— 1 categories are free to vary. Pearson
realized that in the case of contingency tables additional linear constraints were
placed on the group frequencies, but he argued that these constraints did not
allow for a reduction in the number of variables in the case where the theoretical
distribution was estimated from the observed frequencies. Other questions had
also been raised.

Raymond Pearl (1879-1940), an American researcher who was at the
Biometric Laboratory in the mid-1910s, pointed out some problems in the
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application of %’ in 1912, noting that some hypothetical data he presents clearly
show an excellent “fit” between observed and expected frequency but that the

2 . . .
value of %~ was infinite! Pearson, of course, replied, but Pearl was unmoved.

I have earlier pointed out other objections to the x2 test ... I have never thought it
necessary to make any rejoinder to Pearson’s characteristically bitter reply to my

criticism, nor do [ yet. The xz test leads to this absurdity. (Pearl, 1917, p. 145)

Pearl repeats the argument that essentially notes that in cases where there are
small expected frequencies in the cells of the table, the value of x* can be grossly
inflated.

Karl Pearson (1917), in a reproof that illustrates his disdain for those he
believed had betrayed the Biometric school, responds to Pearl: “Pearl . . .
provides a striking illustration of how the capable biologist needs a long
continued training in the logic of mathematics before he ventures into the field
of probability” (p. 429).

Pearl had in fact raised quite legitimate questions about the application of
the x2 test, but in the context of Mendelian theory, to which Pearson was
steadfastly opposed. A close reading of Pearl’s papers perhaps reveals that he
had not followed all Pearson’s mathematics, but the questions he had raised were
germane. Pearson’s response is the apotheosis of mathematical arrogance that,
on occasion, frightens biologists and social scientists today:

Shortly Dr Pearl’s method is entirely fallacious, as any trained mathematician would
have informed Dr Pearl had he sought advice before publication. It is most regret-
table that such extensions of biometric theory should be lightly published, without
any due sense of responsibility, not solely in biological but in psychological journals.
It can only bring biometry into contempt as a science if, professing a mathematical
foundation, it yet shows in its manifestations most inadequate mathematical reason-
ing. (Pearson, 1917, p. 432)

Social scientists beware!

In 1916 Ronald Fisher, then a schoolmaster, raised his standard and made
his first foray into what was to become a war. The following correspondence
is to be found in E. S. Pearson (1968):

Dear Professor Pearson,
There is an article by Miss Kirstine Smith in the current issue of Biometrika which,
I think, ought not to pass without comment. I enclose a short note upon it.

Miss Kirstine Smith proposes to use the minimum value of x? as a criterion to
determine the best form of the frequency curve; . . . It should be observed that x2
can only be determined when the material is grouped into arrays, and that its value



112 9. SAMPLING DISTRIBUTIONS

depends upon the manner in which it is grouped.
There is . . . something exceedingly arbitrary in a criterion which depends entirely
upon the manner in which the data happens to be grouped. (pp. 454-455)

Pearson replied:

Dear Mr Fisher,
I am aftaid that I don’t agree with your criticism of Freken K. Smith (she is a pupil
of Thiele’s and one of the most brilliant of the younger Danish statisticians). . . .

your argument that xz varies with the grouping is of course well known . .. What we
have to determine, however, is with given grouping which method gives the lowest

%2 (p. 455)

Pearson asks for a defense of Fisher’s argument before considering its publica-
tion. Fisher’s expanded criticism received short shrift. After thanking Fisher
for a copy of his paper on Mendelian inheritance (Fisher, 1918), he hopes to
find time forit,> but points out that he is “not a believer in cumulative Mendelian
factors as being the solution of the heredity puzzie” (p. 456). He then rejects
Fisher’s paper.

Also 1 fear that I do not agree with your criticism of Dr Kirstine Smith’s paper and
under present pressure of circumstances must keep the little space I have in
Biometrika free from controversy which can only waste what power I have for
publishing original work. (p. 456)

Egon Pearson thinks that we can accept his father’s reasons for these rejections;
the pressure of war work, the suspension of many of his projects, the fact that
he was over 60 years old with much work unfinished, and his memory of the
strain that had been placed on Weldon in the row with Bateson. But if he really
was trying to shun controversy by refusing to publish controversial views, then
he most certainly did not succeed. Egon Pearson’s defense is entirely under-
standable but far too charitable. Pearson had censored Fisher’s work before and
appears to have been trying to establish his authority over the younger man and
over statistics. Even his offer to Fisher of an appointment at the Galton
Laboratory might be viewed in this light. Fisher Box (1978) notes that these
experiences influenced Fisher in his refusal of the offer, in the summer of 1919,
recognizing that, “nothing would be taught or published at the Galton laboratory

3 Here Pearson is dissembling. Fisher’s paper was originally submitted to the Royal Society
and, although it was not rejected outright, the Chairman of the Sectional Committee for Zoology
“had been in communication with the communicator of the paper, who proposed to withdraw it.”
Kar] Pearson was one of the two referees. Norton and Pearson (1976) describe the event and
publish the referees’ reports.
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without the approval of Pearson” (p. 82).
The last straw for Fisher came in 1920 when he sent a paper on the probable
error of the correlation coefficient to Biometrika:

Dear Mr Fisher,
Only in passing through Town today did [ find your communication of August 3rd.
I am very sorry for the delay in answering . . .

As there has been a delay of three weeks already, and as I fear if I could give full
attention to your paper, which I cannot at the present time, I should be unlikely to
publish it in its present form . . . I would prefer you published elsewhere . . . I am
regretfully compelled to exclude all that I think erroneous on my own judgment,
because 1 cannot afford controversy. (quoted by E .S. Pearson, 1968, p. 453)

Fisher never again submitted a paper to Biometrika, and in 1922(a) tackled
the y’ problem:

This short paper with all its juvenile inadequacies, yet did something to break the
ice. Any reader who feels exasperated by its tentative and piecemeal character should
remember that it had to find its way to publication past critics who, in the first place,
could not believe that Pearson’s work stood in need of correction, and who, if this
had to be admitted, were sure that they themselves had corrected it. (Fisher’s
comment in Bennett, 1971, p. 336)

Fisher notes that he is not criticizing the general adequacy of the 3 test but
that he intends to show that:

the value of #' with which the table should be entered is not now equal to the number
of cells but to one more than the number of degrees of freedom in the distribution.
Thus for a contingency table of r rows and ¢ columns we should take #’ = (¢ — 1)(r
— 1)+ 1 instead of #' =c¢r. This modification often makes a very great difference
1o the probability (P) that a given value of xz should have been obtained by chance.
(Fisher, 1922a, p. 88)

It should be noted that Pearson entered the tables using »' = v + 1, where
n' is the number of variables (i.e., categories) and v is what we now call degrees
of freedom. The modern tables are entered using v={_c — 1)(r - 1). The use of
n* to denote sample size and » to denote degrees of freedom, even though in
many writings » was also used for sample size, sometimes leads to frustrating
reading in these early papers.

It is clear that Pearson did not recognise that in all cases linear restrictions imposed
upon the frequencies of the sampled population, by our methods of reconstructing
that population, have exactly the same effect upon the distribution of x2 as have
restrictions placed upon the cell contents of the sample. (Fisher, 1922a, p. 92)
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Pearson was angered and contemptuously replied in the pages of Biometrika.
He reiterates the fundamentals of his 1900 paper and then says:

The process of substituting sample constants for sampled population constants does
not mean that we select out of possible samples of size », those which have precisely
the same values of the constants as the individual sample under discussion. . . . In
using the constants of the given sample to replace the constants of the sampled
population, we in no wise restrict the original hypothesis of free random samples
tied down only by their definite size. We certainly do not by using sample constants
reduce in any way the random sampling degrees of freedom.

The above re-description of what seem to me very elementary considerations
would be unnecessary had not a recent writer in the Journal of the Royal Statistical
Society appeared to have wholly ignored them . . . the writer has done no service to
the science of statistics by giving it broad-cast circulation in the pages of the Journal
of the Royal Statistical Society. (K. Pearson, 1922, p. 187)

And on and on, never referring to Fisher by name but only as “my critic” or “the
writer in the Journal of the Royal Statistical Society,” until the final assault when
he accuses Fisher of a disregard for the nature of the probable error:

1 trust my critic will pardon me for comparing him with Don Quixote tilting at the
windmill; he must either destroy himself, or the whole theory of probable errors, for
they are invariably based on using sample values for those of the sampled population
unknown to us. For example here is an argument for Don Quixote of the simplest
nature . . . (K. Pearson, 1922, p. 191)

The editors of the Journal of the Royal Statistical Society turned tail and ran,
refusing to publish Fisher’s rejoinder. Fisher vigorously protested, but to no
avail, and he resigned from the Society. There were other questions about
Pearson’s paper that he dealt with in Bowley’s journal Economica in 1923 and
in the Journal of the Royal Statistical Society (Fisher, 1924a), but the end came
in 1926 when, using data tables that had been published in Biometrika, Fisher

calculated the actual average value of %° which he had proved earlier should
theoretically be unity and which Pearson still maintained should be 3. In every case
the average was close to unity, in no case near to 3. .. . There was no reply. (Fisher
Box, 1978, p. 88, commenting on Fisher, 1926a)

THE t DISTRIBUTION

W. S. Gosset was a remarkable man, not the least because he managed to
maintain reasonably cordial relations with both Pearson and Fisher, and at the
same time. Nor did he avoid disagreeing with them on various statistical issues.
He was born in 1876 at Canterbury in England, and from 1895 to 1899 was



THE ¢t DISTRIBUTION 115

at New College, Oxford, where he took a degree in chemistry and mathematics.
In 1899 Gosset became an employee of Arthur Guinness, Son and Company
Ltd., the famous manufacturers of stout. He was one of the first of the scientists,
trained either at Oxford or Cambridge, that the firm had begun hiring (E. S.
Pearson, 1939a). His correspondence with Pearson, Fisher, and others shows
him to have been a witty and generous man with a tendency to downplay his
role in the development of statistics. Compared with the giants of his day he
published very little, but his contribution is of critical importance. As Fisher
puts it in his Statistical Methods for Research Workers:

The study of the exact distributions of statistics commences in 1908 with “Student’s”
paper The Probable Error of the Mean. Once the true nature of the problem was
indicated, a large number of sampling problems were within reach of mathematical
solution. (Fisher, 1925/1970, p. 23)

The brewery had a policy on publishing by its employees that obliged Gosset
to publish his work under the nom de plume “Student.” In essence, the problem
that “Student” tackled was the development of a statistical test that could be
applied to small samples. The nature of the process of brewing, with its
variability in temperature and ingredients, means that it is not possible to take
large samples over a long run. In a letter to Fisher in 1915, in which he thanks
Fisher for the Biometrika paper that begins the mathematical solution to the
small sample problem, “Student” says:

The agricultural (and indeed almost any) Experiments naturally required a solution
of the mean/S.D. problem, and the Experimental Brewery which concerns such
things as the connection between analysis of malt or hops, and the behaviour of the
beer, and which takes a day to each unit of the experiment, thus limiting the numbers,
demanded an answer to such questions as, “If with a small number of cases [ get a
value r, what is the probability that there is really a positive correlation of greater
value than (say) .25?” (quoted by E. S. Pearson, 1968, p. 447)

Egon Pearson (1939a) notes that in his first few years at Guinness, Gosset
was making use of Airy’s Theory of Errors (1861), Lupton’s Notes on Obser-
vations (1898), and Merriman’s The Method of Least Squares (1884). In 1904
he presented a report to his firm that stated clearly the utility of the application
of statistics to the work of the brewery and pointed up the particular difficulties
that might be encountered. The report concludes:

We have been met with the difficulty that none of our books mentions the odds, which
are conveniently accepted as being sufficient to establish any conclusion, and it might
be of assistance to us to consult some mathematical physicist on the matter. (quoted
by Pearson, 1939a, p. 215)
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A meeting was in fact arranged with Pearson, and this took place in the
summer of 1905. Not all of Gosset’s problems were solved, but a supplement
to his report and a second report in late August 1905 produced many changes
in the statistics used in the brewery. The standard deviation replaced the mean
error, and Pearson’s correlation coefficient became an almost routine procedure
in examining relationships among the many factors involved with brewing. But
one feature of the work concerned Gosset: “Correlation coefficients are usually
calculated from large numbers of cases, in fact [ have found only one paper in
Biometrika of which the cases are as few in number as those at which I have
been working lately” (quoted by Pearson, 1939a, p. 217).

Gosset expressed doubt about the reliability of the probable error formula
for the correlation coefficient when it was applied to small samples. He went to
London in September 1906 to spend a year at the Biometric Laboratory. His
first paper, published in 1907, derives Poisson’s limit of the binomial distribu-
tion and applies it to the error in sampling when yeast cells are counted in a
haemacytometer. But his most important work during that year was the prepa-
ration of his two papers on the probable error of the mean and of the correlation
coefficient, both of which were published in 1908.

The usual method of determining that the mean of the population lies within a given
distance of the mean of the sample, is to assume a normal distribution about the mean
of the sample with a standard deviation equal to ¥ Vn, where s is the standard
deviation of the sample, and to use the tables of the probability integral.

But, as we decrease the value of the number of experiments, the value of the
standard deviation found from the sample of experiments becomes itself subject to
increasing error, until judgements reached in this way become altogether misleading.
(“Student,” 1908a, pp. 1-2)

“Student” sets out what the paper intends to do:

1. The equation is determined of the curve which represents the frequency distribu-
tion of standard deviations of samples drawn from a normal population.

1I. There is shown to be no kind of correlation between the mean and the standard
deviation of such a sample.

HI. The equation is determined of the curve representing the frequency distribution
of a quantity z, which is obtained by dividing the distance between the mean of the
sample and the mean of the population by the standard deviation of the sample.

IV. The curve found in I. is discussed.

V. The curve found in II1. is discussed.

VI. The two curves are compared with some actual distributions.

VIIL. Tables of the curves found in 111 are given for samples of different size.

VIII and IX. The tables are explained and some instances are given of their use.
X. Conclusions.

(“Student,” 1908, p. 2)
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“Student” did not provide a proof for the distribution of z. Indeed, he first
examined this distribution, and that of s, by actually drawing samples (of size 4)
from measurements, made on 3,000 criminals, taken from data used in a paper
by Macdonell (1901). The frequency distributions for s and z were thus directly
obtained, and the mathematical work came later. There has been comment over
the years on the fact that “Student’s” mathematical approach was incomplete,
but this should not detract from his achievements. Welch (1958) maintains that:

The final verdict of mathematical statisticians will, [ believe, be that they have lasting
value. They have the rare quality of showing us how an exceptional man was able
to make mathematical progress without paying too much regard to the rules. He
fortified what he knew with some tentative guessing, but this was backed by
subsequent careful testing of his results. (pp. 785-786)

In fact “Student” had given to future generations of scientists, in particular
social and biological scientists, a new and powerful distribution, The z test,
which was to become the 7 test,® led the way for all kinds of significance tests,
and indeed influenced Fisher as he developed that most useful of tools, the
analysis of variance. 1t is also the case that the 1908 paper on the probable error
of the mean (“Student,” 1908a) clearly distinguished between what we now call
sample statistics and population parameters, a distinction that is absolutely
critical in modern-day statistical reasoning,

The overwhelming influence of the biometricians of Gower Street can
perhaps partly account for the fact that “Student’s” work was ignored. In 1939
Fisher said that “Student’s” work was received with “weighty apathy,” and, as
late as 1922, Gosset, writing to Fisher, and sending a copy of his tables, said,
“You are the only man that’s ever likely to use them!” (quoted by Fisher Box,
1981, p. 63). Pearson was, to say the least, suspicious of work using small
samples. It was the assumption of normality of the sampling distribution that led
to problems, but the biometricians never used small samples, and “only naughty
brewers take » so small that the difference is not of the order of the probable
error!” (Pearson writing to Gosset, September 1912, quoted by Pearson, 1939a,
p. 218).

Some of “Student’s” ideas had been anticipated by Edgeworth as early as
1883 and, as Welch (1958) notes, one might speculate as to what Gosset’s
reaction would have been had he been aware of this work.

Gosset’s paper on the probable error of the correlation coefficient (“Student,”
1908b) dealt with the distribution of the r values obtained when sampling from

¢ Eisenhart (1970) concludes that the shift from z to ¢ was due to Fisher and that Gosset chose
¢ for the new statistic. In their correspondence Gosset used ¢ for his own calculations and x for those
of Fisher.



118 9. SAMPLING DISTRIBUTIONS

a population in which the two variables were uncorrelated, that is, R = 07. This
endeavor was again based on empirical sampling distributions constructed from
the Macdonell data and a mathematical curve fitted afterwards. With charac-
teristic flair, he says that he attempted to fit a Pearson curve to the “no

correlation” distribution and came up with a Type II curve. “Working from
0 n—4)y/2
y-= yo(1 —x?) for samples of 4, I guessed the formula y = yo(1 —xz)( )

and proceeded to calculate the moments" (“Student,” 1908b, p. 306).

He concludes his paper by hoping that his work “may serve as illustrations
for the successful solver of the problem” (p. 310). And indeed it did, for Fisher’s
paper of 1915 showed that “Student” had guessed correctly. Fisher had been in
correspondence with Gosset in 1912, sending him a proof that appealed to
n-dimensional space of the frequency distribution of z. Gosset wanted Pearson
to publish it.

Dear Pearson,

I am enclosing a letter which gives a proof of my formulae for the frequency
distribution of z(=x/s), . . . Would you mind looking at it for me; I don’t feel at home
in more than three dimensions even if 1 could understand it otherwise.

It seemed to me that if it’s all right perhaps you might like to put the proof in a note.
It’s so nice and mathematical that it might appeal to some people. (quoted by E. S.
Pearson, 1968, p. 446)

In fact the proof was not published then, but again approaching the mathe-
matics through a geometrical representation, Fisher derived the sampling dis-
tribution of the correlation coefficient, and this, together with the derivation of
the z distribution, was published in the 1915 paper. The sampling distribution
of r was, of course, of interest to Pearson and his colleagues; after all, » was
Pearson’s statistic. Moreover, the distribution follows a remarkable system of
curves, with a variety of shapes that depart greatly from the normal, depending
on n and the value of the true unknown correlation coefficient R, or, as it is now
generally known, p. Pearson was anxious to translate theory into numbers, and
the computation of the distribution of » was commenced and published as the
“co-operative study” of Soper, Young, Cave, Lee, and K. Pearson in 1917.
Although Pearson had said that he would send Fisher the proofs of the paper
(the letter is quoted in E. S. Pearson, 1965), there is, apparently, no record that
he in fact received them. E. S. Pearson (1965) suggests that Fisher did not know
“until late in the day” of the criticism of his particular approach in a section of
the study, “On the Determination of the ‘Most Likely’ Value of the Correlation

7 R was Gosset’s symbol for the population correlation coefficient. p (the Greek letter rho)
appears to have been first used for this value by Soper (1913). The important point is that a different
symbol was used for sample statistic and population parameter.
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in the Sampled Population.” Egon Pearson argues that his father’s criticism,
for presumably the elder Pearson had taken a major role in the writing of the
“co-operative study,” was a misunderstanding based on Fisher’s failure to
adequately define what he meant by “likelihood” in 1912 and the failure to make
clear that it was not based on the Bayesian principle of inverse probability.
Fisher Box (1978) says, “their criticism was as unexpected as it was unjust, and
it gave an impression of something less than scrupulous regard for a new and
therefore vulnerable reputation™ (p. 79).

Fisher’s response, published in Metron in 1921(a), was the paper, mentioned
earlier, that Pearson summarily rejected because he could not afford contro-
versy. In this paper Fisher makes use of the r = tanh z transformation, a
transformation that had been introduced, a little tentatively, in the 1915 paper.
Its immense utility in transforming the complex system of distributions of » to
a simple function of z, which is almost normally distributed, made the laborious
work of the co-operative study redundant. In a paper published in 1919, Fisher
examines the data on resemblance in twins that had been studied by Edward L.
Thorndike in 1905. This is the earliest example of the application of Fisherian
statistics to psychological data, for the traits examined were both mental and
physical. Fisher looked at the question of whether there were any differences
between the resemblances of twins in different traits and here uses the z
transformation:

When the resemblances have been expressed in terms of the new variable, a
correlation table may be constructed by picking out every pair of resemblances
between the same twins in different traits. The values are now centered symmetri-
cally about a mean at 1.28, and the correlation is found to be — 016 + .048, negative
but quite insignificant. The result entirely corroborates THORNDIKE’S conclusions
as to the specialization of resemblance. (Fisher, 1919, p. 493)

These manipulations and the development of the same general approach to
the distribution of the intraclass correlation coefficient in the 1921 paper are
important for the fundamentals of analysis of variance.

From the point of view of the present-day student of statistics, Fisher’s
(1925a) paper on the applications of the ¢ distribution is undoubtedly the most
comprehensible. Here we see, in familiar notation and most clearly stated, the
utility of the ¢ distribution, a proof of its “exactitude . . . for normal samples”
(p- 92), and the formulae for testing the significance of a difference between
means and the significance of regression coefficients.

Finally the probabitity integral with which we are concerned is of value in calculating
the probability integral of a wider class of distributions which is related to “Student’s”

distribution in the same manner as that of ¥° is related to the normal distribution.
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This wider class of distributions appears (i) in the study of intraclass correlations
(ii) in the comparison of estimates of the variance, or of the standard deviation from
normal samples (iii) in testing the goodness of fit of regression lines (iv) in testing
the significance of a multiple correlation, or (v) of a correlation ratio. (Fisher, 1925a,
pp. 102-103)

These monumental achievements were realized in less than 10 years after
Gosset’s mixture of mathematical conjecture, intuition, and the practical neces-
sities of his work led the way to the ¢ distribution.

From 1912, Gosset and Fisher had been in correspondence (although there
were some lengthy gaps), but they did not actually meet until September 1922,
when Gosset visited Fisher at Harpenden. Fisher Box (1981) describes their
relationship and reproduces excerpts from their letters. Atthe end of World War
I, in 1918, Gosset did not even know how Fisher was employed, and when he
learned that Fisher had been a schoolmaster for the duration of the war and was
looking for a job wrote, “I hear that Russell [the head of the Rothamsted
Experimental station] intends to get a statistician soon, when he gets the money
[ think, and it might be worth while to keep your ears open to news from
Harpenden” (quoted by Fisher Box, 1981, p. 62).

In 1922, work began on the computation of a new set of / tables using values
of t=zNn—1 rather than z, and the tables were entered with the appropriate
degrees of freedom rather than ». Fisher and Gosset both worked on the new
tables, and after delays, and fits and starts, and the checking of errors, the tables
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were published by “Student” in Merron in 1925, Figure 9.2 compares two ¢
distributions to the normal distribution. Fisher’s “Applications” paper, men-
tioned earlier, appeared in the same volume, but it had, in fact, been written quite
early in 1924. At that time Fisher was completing his 1925 book and needed
tables. Gosset wanted to offer the tables to Pearson and expressed doubts about
the copyright, because the first tables had been pubtished in Biometrika. Fisher
went ahead and computed all the tables himself, a task he completed later in the
year (Fisher Box, 1981).

Fisher sent the “Applications” paper to Gosset in July 1924. He says that
the note is:

larger than | had intended, and to make it at all complete should be larger still, but [
shall not have time to make it so, as | am sailing for Canada on the 25th, and will not
be back till September. (quoted by Fisher Box, 1981, p. 66)

The visit to Canada was made to present a paper (Fisher, 1924b) at the
International Congress of Mathematics, meeting that year in Toronto. This paper
discusses the interrelationships of y°, z,and . Fisher was only 35 years old, and
yet the foundations of his enormous influence on statistics were now securely
laid.

THE F DISTRIBUTION

The Toronto paper did not, in fact, appear until almost 4 years after the meeting,
by which time the first edition of Statistical Methods for Research Workers
(1925) had been published. The first use of an analysis of variance technique
was reported earlier (Fisher & Mackenzie, 1923), but this paper was not
encountered by many outside the area of agricultural research. It is possible
that if the mathematics of the Toronto paper had been included in Fisher’s book
then much of the difficulty that its first readers had with it would have been
reduced or eliminated, a point that Fisher acknowledged.

After a general introduction on error curves and goodness-of-fit, Fisher
examines the ” statistic and briefly discusses his (correct) approach to degrees
of freedom. He then points out that if a number of quantities x,, . . ., x, are
distributed independently in the normal distribution with unit standard devia-
tion, then xz = ¥x" is distributed as “the Pearsonian measure of goodness of
fit.” In fact, Fisher uses S(x?) to denote the latter expression, but here, and in
what follows on the commentary on this paper, the more familiar modern
notation is employed. Fisher refers to “Student’s” work on the error curve of
the standard deviation of a small sample drawn from a normal distribution and
shows its relation to 3.
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where n — 1 is the number of degrees of freedom (one less than the number in
the sample) and s* is the best estimate from the sample of the true variance .

For the general z distribution, Fisher first points out that s,2 and s22 are
misleading estimates of 0',2 and 0'22 when sample sizes, drawn from normal
distributions, are small:

The only exact treatment is to climinate the unknown quantities ¢, and o, from the
distribution by replacing the distribution of s by that of log s, and so deriving the
distribution of log 5,/s,. Whereas the sampling errors in s, are proportional to 5,
the sampling errors of log s, depend only upon the size of the sample from which
s, was caiculated. (Fisher, 1924b, p. 808)
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then z will be distributed about log G, /5, as mode, in a distribution which depends
wholly upon the integers #; and n,. Knowing this distribution we can tell at once if
an observed value of z is or is not consistent with any hypothetical value of the ratio

o, /o, . (Fisher, 1924b, p. 808)

The cases for infinite and unit degrees of freedom are then considered. In
the latter case the “Student” distributions are generated.

In discussing the accuracy to be ascribed to the mean of a small sample, “Student”
took the revolutionary step of allowing for the random sampling variation of his
estimate of the standard error. If the Standard error were known with accuracy the
deviation of an observed value from expectation (say zero), divided by the standard
error would be distributed normally with unit standard deviation; but if for the
accurate standard deviation we substitute an estimate based on n — 1 degrees of
freedom we have

xVn

1 = '———sz
2 _
P
2x m=n

consequently the distribution of ¢ is given by putting n, [degrees of freedom] = 1
and substituting z = % log t%. (Fisher, 1924b, pp. 808-809)



THE F DISTRIBUTION 123

For the case of an infinite number of degrees of freedom, the ¢ distribution
becomes the normal distribution.

In the final sections of the paper the r = tanh z transformation is applied to
the intraclass correlation, an analysis of variance summary table is shown, and
z=log, s /s, is the value that may be used to test the significance of the intraclass
correlation. These basic methods are also shown to lead to tests of significance
for multiple correlation and m (eta), the correlation ratio.

The transition from z to F was not Fisher’s work. In 1934, George W.
Snedecor, in the first of a number of texts designed to make the technique of
analysis of variance intelligible to a wider audience, defined F as the ratio of
the larger mean square to the smaller mean square taken from the summary
table, using the formula z = 'Zlog_F. Figure 9.3 shows two F distributions.
Snedecor was Professor of Mathematics and Director of the Statistical Labora-
tory at lowa State College in the United States. This institution was largely
responsible for promoting the value of the modern statistical techniques in North
America.

Fisher himself avoided the use of the symbol F because it was not used by
P. C. Mahalonobis, an Indian statistician who had visited Fisher at Rothamsted
in 1926, and who had tabulated the values of the variance ratio in 1932, and thus
established priority. Snedecor did not know of the work of Mahalonobis, a
clear-thinking and enthusiastic worker who became the first Director of the
Indian Statistical Institute in 1932. Today it is still occasionally the case that the
ratio is referred to as “Snedecor’s F'” in honor of both Snedecor and Fisher.
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THE CENTRAL LIMIT THEOREM

The transformation of numerical data to statistics and the assessment of the
probability of the outcome being a chance occurrence, or the assessment of a
probable range of values within which the outcome will fall, is a reasonable
general description of the statistical inferential strategy. The mathematical
foundations of these procedures rest on a remarkable theorem, or rather a set of
theorems, that are grouped together as the Central Limit Theorem. Much of the
work that led to this theorem has already been mentioned but it is appropriate
to summarize it here.

In the most general terms, the problem is to discover the probability
distribution of the cumulative effect of many independently acting, and very
small, random effects. The central limit theorem brings together the mathemati-
cal propositions that show that the required distribution is the normal distribu-
tion. In other words, a summary of a subset of random observations X, X, . .
., X, say theirsum ZX =X, + X, +...+X, or their mean, (£X) /# has a sampling
distribution that approaches the shape of the normal distribution. Figure 9.4 is
an illustration of a sampling distribution of means. This chapter has described
distributions of other statistical summaries, but it will have been noted that, in
one way or another, those distributions have links with the normal distribution.
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Fig. 9.4 A Sampling Distribution of Means (n = 6). 500 draws
from the numbers 1 through 10.
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The history of the development of the theorem has been brought together in
a useful and eminently readable little book by Adams (1974). The story begins
with the definition of probability as long-run relative frequency, the ratio of the
number of ways an event can occur to the total number of possible events, given
that the events are independent and equally likely. The most important contri-
bution of James Bernoulli’s Ars Conjectandi is the first limit theorem of
probability theory. The logic of Bernouilli’s approach has been the subject of
some debate, and we know that he himself wrestled with it. Hacking (1971)
states:

No one writes dispassionately about Bernoulli. He has been fathered with the first
subjective concept of probability, and with a completely objective concept of
probability as relative frequency determined by trials on a chance set-up. He has
been thought to favour an inductive theory of probability akin to Carnap’s. Yet he
is said to anticipate Neyman’s confidence interval technique of statistical inference,
which is quite opposed to inductive probabilities. In fact Bernoulli was, like so many
of us, attracted to many of these seemingly incompatible ideas, and he was unsure
where to rest his case. He left his book unpublished. (pp. 209-210)

But Bernoulli’s mathematics are not in question. When the probability p of
an event £ is unknown and a sequence of » trials is observed and the proportion
of occurrences of E is E, then Bernoulli maintained that an “instinct of nature”
causes us to use £, as an estimate of p. Bernoulli’s Law of Large Numbers
shows that for any small assigned amount €, | p — E, | < ¢ increases to 1 as n
increases indefinitely:

It is concluded that in 25,550 trials it is more than one thousand times more likely
that the r/t [the ratio of what Bernoulli calls “fertile” events to the total, that is, the
event of interest here called E] will fall between 31/50 and 29/50 than that r/t will
fall outside these limits. (Bemoulli, 1713/1966, p. 65)

The above results hold for known p, If p is 3/5, then we can be morally certain that
... the deviation . . . will be less than 1/50. But Bernoulli’s problem is the inverse
of this. When p is unknown, can his analysis tell when we can be morally certain
that some estimate of p is right? That is the problem of statistical inference. (Hacking,
1971, p. 222)

The determination of p was of course the problem tackled by De Moivre.
He used the integral e™ to approximate it, but as Adams (1974) and others have
noted, there is no direct evidence that implies that De Moivre thought of what
is now called the normal distribution as a probability distribution as
such. Simpson introduced the notion of a probability distribution of obser-
vations, and others, notably Joseph Lagrange (1736—1813) and Daniel Bernoulli
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(1700-1782), who was James’s nephew, elaborated laws of error. The late 18th
century saw the culmination of this work in the development of the normal law
of frequency of error and its application to astronomical observations by Gauss.
It was Laplace’s memoir of 1810 that introduced the central limit theorem, but
the nub of his discovery was described in nonmathematical language in his
famous Essai published as the introduction to the third edition of Théorie
Analytique des Probabilités in 1820:

The general problem consists in determining the probabilities that the values of one
or several linear functions of the errors of a very great number of observations are
contained within any limits. The law of the possibility of the errors of observations
introduces into the expressions of these probabilities a constant, whose value seems
to require the knowledge of this law, which is almost always unknown. Happily this
constant can be determined from the observations.

There often exists in the observations many sources of errors: . . . The analysis
which I have used leads easily, whatever the number of the sources of error may be,
to the system of factors which gives the most advantageous results, or those in which
the same error is less probable than in any other system.

I ought to make here an important remark. The small uncertainty that the
observations, when they are not numerous, leave in regard to the values of the
constants . . . renders a little uncertain the probabilities determined by analysis. But
it almost always suffices to know if the probability, that the errors of the results
obtained are comprised within narrow limits, approaches closely to unity; and when
it is not, it suffices to know up to what point the observations should be multiplied,
in order to obtain a probability such that no reasonable doubt remains. . . The analytic
formulae of probabilities satisfy perfectly this requirement; . . . They are likewise
indispensable in solving a great number of problems in the natural and moral
sciences. (Laplace, 1820, pp. 192195 in the translation by Truscott & Emory, 1951)

These are elegant and clear remarks by a genius who succeeded in making the
labors of many years intelligible to a wide readership.

Adams (1974) gives a brief account of the final formal development of the
abstract Central Limit Theorem.The Russian mathematician Alexander
Lyapunoff (1857-1918), a pupil of Tchebycheff, provided a rigorous
mathematical proof of the theorem. His attention was drawn to the problem
when he was preparing lectures for a course in probability theory, and his
approach was a triumph. His methods and insights led, in the 1920s, to many
valuable contributions and even more powerful theorems in probability mathe-
matics.
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Comparisons, Correlations
and Predictions

COMPARING MEASUREMENTS

Since the time of De Moivre, the variables that have been examined by workers
in the field of probability have expressed measurements as multiples of a variety
of basic units that reflect the dispersion of the range of possible scores. Today
the chosen units are units of standard deviation, and the scores obtained are
called standard scores or z scores. Karl Pearson used the term standard
deviation and gave it the symbol ¢ (the lower case Greek letter sigma) in 1894,
but the unit was known (although not in its present-day form) to De Moivre. It
corresponds to that point on the abscissa of a normal distribution such that an
ordinate erected from it would cut the curve at its point of inflection, or, in simple
terms, the point where the curvature of the function changes from concave to
convex. Sir George Airy (1801-1892) named o\2 the modulus (although this
term had been used, in passing, for Yn by De Moivre as early as 1733) and
described a variety of other possible measures, including the probable error, in
1875." This latter was the unit chosen by Galton (whose work is discussed later),
although he objected strongly to the name:

It is astonishing that mathematicians, who are the most precise and perspicacious of
men, have not long since revolted against this cumbrous, slip-shod, and misleading
phrase. . . . Moreover the term Probable Error is absurd when applied to the subjects

! The probable error is defined as one half of the quantity that encompasses the middie 50% of a
normal distribution of measurements. 1t is equivalent to what is sometimes called the semi-interquartile
range (that portion of the distribution between the first quartile or the twenty-fifth percentile, and the
third quartile or the seventy-fifth percentile, divided by two). The probable error is 0.67449 times the
standard deviation. Nowadays, everyone follows Pearson (1894), who wrote, “I have always found it
more convenient to work with the standard deviation than with the probable error or the modulus, in
terms of which the error function is usually tabulated” (p. 88).

127
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now in hand, such as Stature, Eye-colour, Artistic Faculty, or Disease. I shall
therefore usually speak of Prob. Deviation. (Galton, 1889, p. 58)

This objection reflects Galton’s determination, and that of his followers, to
avoid the use of the concept of error in describing the variation of human
characteristics. It also foreshadows the well-nigh complete replacement of
probable error with standard deviation, and law of frequency of error with
normal distribution, developments that reflect philosophical dispositions rather
than mathematical advance. Figure 10.1 shows the relationship between stand-
ard scores and probable error.

Perhaps a word or two of elaboration and example will illustrate the utility
of measurements made in units of variability. It may seem trite to make the
statement that individual measurements and quantitative descriptions are made
for the purpose of making comparisons. Someone who pays $1,000 for a suit
has bought an expensive suit, as well as having paid a great deal more than the
individual who has picked up a cheap outfit for only $50. The labels “expensive”
and “cheap” are applied because the suit-buying population carries around with
it some notion of the average price of suits and some notion of the range of

60

Ordinate Height - %
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FIG.10.1  The Normal Distribution — Standard
Scores and the Probable Error
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prices of suits. This obvious fact would be made even more obvious by the
reaction to an announcement that someone had just purchased a new car for
$1,000. What is a lot of money for a suit suddenly becomes almost trifling for
a brand new car. Again this judgment depends on a knowledge, which may not
be at all precise, of the average price, and the price range, of automobiles. One
can own an expensive suit and a cheap car and have paid the same absolute
amount for both, although it must be admitted that such a juxtaposition of
purchases is unlikely! The point is that these examples illustrate the fundamental
objective of standard scores, the comparison of measurements.

If the mean price of cars is $9,000 and the standard deviation is $2,500 then
our $1,000 car has an equivalent z score of ($1,000 — $9,000)/$2,500 or —3.20.

If suit prices have a mean of $350 and a standard deviation of $150, then the
$1,000.00 suit has an equivalent z score of ($1,000 — $350)/$150 or +4.33.

We have a very cheap car and a very, very expensive suit. It might be added
that, at the time of writing, these figures were entirely hypothetical.

These simple manipulations are well-known to users of statistics, and, of
course, when they are applied in conjunction with the probability distributions
of the measurements, they enable us to obtain the probability of occurrence of
particular scores or particular ranges of scores. They are intuitively sensible.
A more challenging problem is that of the comparison of sets of pairs of scores
and of determining a quantitative description of the relationship between them.
It is a problem that was solved during the second half of the 19th century.

GALTON’S DISCOVERY OF “REGRESSION”

Sir Francis Galton (his work was recognized by the award of a knighthood in
1909) has been described as a Victorian genius. If we follow Edison’s oft-
quoted definition® of this condition then there can be no quarrel with the
designation, but Galton was a man of great flair as well as great energy and his
ideas and innovations were many and varied. In a long life he produced over
300 publications, including 17 books. But, in one of those odd happenings in
the history of human invention, it was Galton’s discovery and subsequent
misinterpretation of a statistical artifact that marks the beginning of the tech-
nique of correlation as we now know it.

1860 was the year of the famous debate on Darwin’s work between Thomas
Huxley (1825-1895) and Bishop Samuel Wilberforce (1805—1873). This en-
counter, which held the attention of the nation, took place at the meeting of the
British Association (for the Advancement of Science) held that year at Oxford.
Galton attended the meeting, and although we do not know what role he had at
it, we do know that he later became an ardent supporter of his cousin’s theories.

% In 1932, Thomas Alva Edison said that “Genius is one percent inspiration and ninety-nine per cent
perspiration.”
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The Origin of Species, he said, “made a marked epoch on my development, as
it did in that of human thought generally” (Galton, 1908, p. 287).

Cowan (1977) notes that, although Galton had made similar assertions
before, the impact of The Origin must have been retrospective, describing his
initial reaction to the book as, “pedestrian in the extreme.” She also asserts that
“Galton never really understood the argument for evolution by natural selection,
nor was he interested in the problem of the creation of new species” (Cowan,
1977, p. 165).

In fact, it is apparent that Galton was quite selective in using his cousin’s
work to support his own view of the mechanisms of heredity.

The Oxford debate was not just a debate about evolution. MacKenzie (1981)
describes Darwin’s book as the “basic work of Victorian scientific naturalism”
(p. 54), the notion of the world, and the human species and its works, as part of
rational scientific nature, needing no recourse to the supernatural to explain the
mysteries of existence. Naturalism has its origins in the rise of science in the
17th and 18th centuries, and its opponents expressed their concern, because of
its attack, implicit and overt, on traditional authority. Asone 19th century writer
notes, for example:

Wider speculations as to morality inevitably occur as soon as the vision of God
becomes faint; when the Almighty retires behind second causes, instead of being felt
as an immediate presence, and his existence becomes the subject of logical proof.
(Stephen, 1876, Vol II, p. 2).

The return to nature espoused by writers such as Jean Jacques Rousseau
(1712-1778) and his followers would have rid the world of kings and priests
and aristocrats whose authority rested on tradition and instinct rather than
reason, and thus, they insisted, have brought about a simple “natural” state of
society. MacKenzie (1981), citing Turner (1978), adds a very practical note to
this philosophy. The battle was not just about intellectual abstractions but about
who should have authority and control and who should enjoy the material
advantages that flow from the possession of that authority. Scientific naturalism
was the weapon of the middle class in its struggle for power and authority based
on intellect and merit and professional elitism, and not on patronage or nobility
or religious affiliation.

These ideas, and the new biology, certainly turned Galton away from
religion, as well as providing him with an abiding interest in heredity. Forrest
(1974) suggests that Galton’s fascination for, and work on, heredity coincided
with the realization that his own marriage would be infertile. This also may have
been a factor in the mental breakdown that he suffered in 1866. “Another
possible precipitating factor was the loss of his religious faith which left him
with no compensatory philosophy until his programme for the eugenic improve-
ment of mankind became a future article of faith” (Forrest, 1974, p. 85).
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During the years 1866 to 1869 Galton was in generally poor health, but he
collected the material for, and wrote, one of his most famous books, Hereditary
Genius, which was published in 1869. In this book and in English Men of
Science, published in 1874, Galton expounds and expands upon his view that
ability, talent, intellectual power, and accompanying eminence are innately
rather than environmentally determined. The corollary of this view was, of
course, that agencies of social control should be established that would encour-
age the “best stock™ to have children, and to discourage those whom Galton
described as having the smallest quantities of “civic worth” from breeding. It
has been mentioned that Galton was a collector of measurements to a degree
that was almost compulsive, and it is certain that he was not happy with the fact
that he had had to use qualitative rather than quantitative data in support of his
arguments in the two books just cited.

MacKenzie (1981) maintains that:

the needs of eugenics in large part determined the content of Galton’s statistical
theory. . . . If the immediate problems of eugenics research were to be solved, a new
theory of statistics, different from that of the previously dominant error theorists had
to be constructed. (MacKenzie, 1981, p. 52)

Galton embarked on a comparative study of the size and weight of sweet pea
seeds over two generations,® but, as he later remarked, “It was anthropological
evidence that I desired, caring only for the seeds as means of throwing light on
heredity in man. I tried in vain for a long and weary time to obtain it in sufficient
abundance” (Galton, 1885a, p. 247).

Galton began by weighing, and measuring the diameters of, thousands of
sweet pea seeds. He computed the mean and the probable error of the weights
of these seeds and made up packets of 10 seeds, each of the seeds being exactly
the same weight. The smallest packet contained seeds weighing the mean minus
three times the probable error, the next the mean minus twice the probable error,
and so on up to packets containing the largest seeds weighing the mean plus
three times the probable error. Sets of the seven packets were sent to friends
across the length and breadth of Britain with detailed instructions on how they
were to be planted and nurtured. There were two crop failures, but the produce
of seven harvests provided Galton with the data for a Royal Institution lecture,
“Typical Laws of Heredity,” given in 1877. Complete data for Galton’s experi-
ment are not available, but he observed what he stated to be a simple law that
connected parent and offspring seeds. The offspring of each of the parental

% In Memories of My Life (1908), Galton says that he determined on experimenting with sweet peas
in 1885 and that the suggestion had come to him from Sir Joseph Hooker (the botanist, 1817-1911) and
Darwin. But Darwin had died in 1882 and the experiments must have been suggested and were begun
in 1875. Assuming that this is not just a typographical error, perhaps Galton was recalling the date of
his important paper on regression in hereditary stature.
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weight categories had weights that were what we would now call normally
distributed, and, the probable error (we would now calculate the standard
deviation) was the same. However, the mean weight of each group of offspring
was not as extreme as the parental weight. Large parent seeds produced larger
than average seeds, but mean offspring weight was not as large as parental
weight. Atthe other extreme small parental seeds produced, on average, smaller
offspring seeds, but the mean of the offspring was found not to be as small as
that of the parents. This phenomenon Galton termed reversion.

Seed diameters, Galton noted, are directly proportional to their weight, and
show the same effect:

By family variability is meant the departure of the children of the same or similarly
descended families, from the ideal mean type of all of them. Reversion is the
tendency of that ideal mean filial type to depart from the parent type, “reverting”
towards what may be roughly and perhaps fairly described as the average ancestral
type. If family variability had been the only process in simple descent that affected
the characteristics of a sample, the dispersion of the race from its mean ideal type
would indefinitely increase with the number of generations; but reversion checks
this increase, and brings it to a standstill. (Galton, 1877, p. 291)

In the 1877 paper, Galton gives a measure of reversion,which he symbolized 7,
and arrives at a number of the basic properties of what we now call regression.
Some years passed before Galton returned to the topic, but during those years
he devised ways of obtaining the anthropometric data he wanted. He offered
prizes for the most detailed accounts of family histories of physical and mental
characteristics, character and temperament, occupations and illnesses, height
and appearance, and so on, and in 1884 he opened, at his own expense, an
anthropometric laboratory at the International Health Exhibition.

For a small sum of money, members of the public were admitted to the
laboratory. In return the visitors received a record of their various physical
dimensions, measures of strength, sensory acuities, breathing capacity, color
discrimination, and judgments of length. 9,337 persons were measured, of
whom 4,726 were adult males and 1,657 adult females. At the end of the
exhibition, Galton obtained a site for the laboratory at the South Kensington
Museum, where data continued to be collected for close to 8 more years. These
data formed part of a number of papers. They were, of course, not entirely free
from errors due to apparatus failure, the circumstances of the data recording,
and other factors that are familiar enough to experimentalists of the present day.
Some artifacts might have been introduced in other ways. Galton (1884)
commented, “Hardly any trouble occurred with the visitors, though on some
few occasions rough persons entered the laboratory who were apparently not
altogether sober” (p. 206).

In 1885, Galton’s Presidential Address to the Anthropological Section of
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the British Association (1885b), meeting that year in Aberdeen, Scotland,
discussed the phenomenon of what he now termed regression toward mediocrity
in human hereditary stature. An extended paper (1885a) in the Journal of the
Anthropological Institute gives illustrations, which are reproduced here.

First it may be noted that Galton used a measure of parental heights that he
termed the height of the “mid-parent.” He multiplied the mother’s height by
1.08 and took the mean of the resulting value and the father’s height to produce
the mid-parent value.* He found that a deviation from mediocrity of one unit
of height in the parents was accompanied by a deviation, on average, of about
only two-thirds of a unit in the children (Fig. 10.2). This outcome paralleled
what he had observed in the sweet pea data.

When the frequencies of the (adult) children’s measurements were entered
into a matrix against mid-parent heights, the data being “smoothed” by comput-
ing the means of four adjacent cells, Galton noticed that values of the same
frequency fell on a line that constituted an ellipse. Indeed, the data produced a
series of ellipses all centered on the mean of the measurements. Straight lines
drawn from this center to points on the ellipse that were maximally distant (the
points of contact of the horizontal and vertical tangents — the lines YN and XM
in Fig. 10.3) produce the regression lines, ON and OM, and the slopes of these
lines give the regression values of 3 and 5.

The elliptic contours, which Galton said he noticed when he was pondering
on his data while waiting for a train, are nothing more than the contour lines
that are produced from the horizontal sections of the frequency surface gener-
ated by two normal distributions (Fig. 10.4).

The time had now come for some serious mathematics.

All the formulae for Conic Sections having long since gone out of my head, I went
on my return to London to the Royal Institution to read them up. Professor, now Sir
James, Dewar, came in, and probably noticing signs of despair on my face, asked
me what [ was about; then said, “Why do you bother over this? My brother-in-law,
J. Hamilton Dickson of Peterhouse loves problems and wants new ones. Send it to
him.” [ did so, under the form of a problem in mechanics, and he most cordially
helped me by working it out, as proposed, on the basis of the usually accepted and
generally justifiable Gaussian Law of Error. (Galton, 1908, pp. 302-303)

[ may be permitted to say that I never felt such a glow of loyalty and respect towards
the sovereignty and magnificent sway of mathematical analysis as when his answer

* Galton (1885a) maintains that this factor “differs a very little from the factors employed by other
anthropologists, who, moreover, differ a trifle between themselves; anyhow it suits my data better than
1.07 or 1.09" (p. 247). Galton also maintained (and checked in his data) “that marriage selection takes
little or no account of shortness or tallness . . . we may therefore regard the married folk as couples picked
out of the general population at haphazard" (1885a, pp. 250-251) — a statement that is not only
implausible to anyone who has casually observed married couples but is also not borne out by reasonably
careful investigation.
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reached me, confirming, by purely mathematical reasoning, my various and
laborious statistical conclusions than I had dared to hope, for the original data ran
somewhat roughly, and I had to smooth them with tender caution. (Galton, 1885b,
p. 509)

Now Galton was certainly not a mathematical ignoramus, but the fact that
one of statistics’ founding fathers sought help for the analysis of his momentous
discovery may be of some small comfort to students of the social sciences who
sometimes find mathematics such a trial. Another breakthrough was to come,
and again, it was to culminate in a mathematical analysis, this time by Karl
Pearson, and the development of the familiar formula for the correlation
coefficient.

In 1886, a paper on “Family Likeness in Stature,” published in the Proceed-
ings of the Royal Society, presents Hamilton Dickson’s contribution, as well as
data collected by Galton from family records. Of passing interest is his use of
the symbol w for “the ratio of regression” (short-lived, as it turns out) as he
details correlations between pairs of relatives.

Galton’s work had led him to a method of describing the relationship
between parents and offspring and between other relatives on a particular
characteristic by using the regression slope. Now he applied himself'to the task
of quantifying the relationship between different characteristics, the sort of data
collected at the anthropometric laboratory. It dawned on him in a flash of insight
that if each characteristic was measured on a scale based on its own variability
(in other words, in what we now call standard scores), then the regression
coefficient could be applied to these data. It was noted in chapter | that the
location of this illumination was perhaps not the place that Galton recalled in
his memoirs (written when he was in his eighties) so that the commemorative
tablet that Pearson said the discovery deserved will have to be sited carefully.

Before examining some of the consequences of Galton’s inspiration, the
phenomenon of regression is worth a further look. Arithmetically it is real
enough, but, as Forrest (1974) puts it:

It is not that the offspring have been forced towards mediocrity by the pressure of
their mediocre remote ancestry, but a consequence of a less than perfect correlation
between the parents and their offspring. By restricting his analysis to the offspring
of a selected parentage and attempting to understand their deviations from the mean
Galton fails to account for the deviation of all offspring. ... Galton’s conclusion is
that regression is perpetual and that the only way in which evolutionary change can
occur is through the occurrence of sports. (p. 206) >

% In this context the term “sport” refers to an animal or a plant that differs strikingly from its species
type. In modern parlance we would speak of “mutations.” 1t is ironic that the Mendelians, led by William
Bateson (1861-1926), used Galton’s work in support of their argument that evolution was discontinuous
and saltatory, and that the biometricians. led by Pearson and Weldon, who held fast to the notion that
continuous variation was the fountainhead of evolution, took inspiration from the same source.
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Wallis and Roberts (1956) present a delightful account of the fallacy and
give examples of it in connection with company profits, family incomes,
mid-term and final grades, and sales and political campaigns. As they say:

Take any set of data, arrange them in groups according to some characteristic, and
then for each group compute the average of some second characteristic. Then the
variability of the second characteristic will usually appear to be less than that of the
first characteristic. ( p. 263)

In statistics the term regression now means prediction, a point of confusion
for many students unfamiliar with its history. Yule and Kendall (1950) observe:

The term “regression” is not a particularly happy one from the etymological point
of view, but it is so firmly embedded in statistical literature that we make no attempt
to replace it by an expression which would more suitably express its essential
properties. (p. 213)

The word is now part of the statistical arsenal, and it serves to remind those
of us who are involved in its application of an important episode in the history
of the discipline.

GALTON’S MEASURE OF CO-RELATION

On December 20th, 1888, Galton’s paper, Co-relations and Their Measure-
ment, Chiefly from Anthropometric Data, was read before the Royal Society of
London. It begins:

“Co-relation or correlation of structure™ is a phrase much used in biology, and not
least in that branch of it which refers to heredity, and the idea is even more frequently
present than the phrase; but I am not aware of any previous attempt to define it clearly,
to trace its mode of action in detail, or to show how to measure its degree. (Galton,
1888a, p. 135)

He goes on to state that the co-relation between two variable organs must be
due, in part, to common causes, that if variation was wholly due to common
causes then co-relation would be perfect, and if variation “were in no respect
due to common causes, the co-relation would be nil” (p. 135). His aim then is
to show how this co-relation may be expressed as a simple number, and he uses
as an illustration the relationship between the left cubit (the distance between
the elbow of the bent left arm and the tip of the middle finger) and stature,
although he presents tables showing the relationships between a variety of other
physical measurements. His data are drawn from measurements made on 350
adult males at the anthropometric laboratory, and then, as now, there were
missing data. “The exact number of 350 is not preserved throughout, as injury
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to some limb or other reduced the available number by 1, 2, or 3 in different
cases” (Galton, 1888a, p. 137).

After tabulating the data in order of magnitude, Galton noted the values at
the first, second, and third quartiles. One half the value obtained by subtracting
the value at the third from the value at the second quartile gives him @, which,
he notes, is the probable error of any single measure in the series, and the value
at the second quartile is the median. For stature he obtained a median of 67.2
inches and a  of 1.75, and for the left cubit, a median of 18.05 inches and a Q
of 0.56. It should be noted that although Galton calculated the median, he refers
to it as being practically the mean value, “because the series run with fair
symmetry” (p. 137). Galton clearly recognized that these manipulations did not
demand that the original units of measurement be the same:

It will be understood that the O value is a universal unit applicable to the most varied
measurements, such as breathing capacity, strength, memory, keenness of eyesight,
and enables them to be compared together on equal terms notwithstanding their
intrinsic diversity. (Galton, 1888a, p. 137)

Perhaps in an unconscious anticipation of the inevitable universality of the

metric system, he also records his data on physical dimensions in centimeters.
Figure 10.5 reproduces the data (Table [11 in Galton’s paper) from which the

closeness of the co-relation between stature and cubit was calculated.

A graph was plotted of stature, measured in deviations from A in units of
Q,, against the mean of the corresponding left cubits, again measured as
deviations, this time from M, in units of O, (column A against column B in the
table). Between the same axes, left cubit was plotted as a deviation from M,
measured in units of Q. against the mean of corresponding statures measured
as deviations from M, in units of Q, (columns C and D in the table). A line is
then drawn to represent “the general run” of the plotted points:

It is here seen to be a straight line, and it was similarly found to be straight in every
other figure drawn from the different pairs of co-related variables that I have as yet
tried. But the inclination of the line to the vertical ditfers considerably in different
cases. In the present one the inclination is such that a deviation of 1 on the part of
the subject [the ordinate values], whether it be stature or cubit, is accompanied by a
mean deviation on the part of the relative [the values of the abscissa], whether it be
cubit or stature, of 0.8. This decimal fraction is consequently the measure of the
closeness of the co-relation. (Galton, 1888a, p. 140)

Galton also calculates the predicted values from the regression line. He takes
what he terms the “smoothed” (i.e., read from the regression line) value for a
given deviation measure in units of Q. or O, , multiplies it by Q. or Q,, and adds
the result to the mean M, or M,. For example, +1.30(0.56) + 18.05 = 18.8. In
modern terms, he computes 2’ (s) + X=X.Itis illuminating to recompute and
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to replot Galton’s data and to follow his line of statistical reasoning.
Finally, Galton returns to his original symbol », to represent degree of

co-relation, the symbol which we use today, and redefines f= V1 - ¥ as “the o
value of the distribution of any system of x values, as x,, x,, x;, &c., round the
mean of all of them, which we may call X ” (p. 144), which mirrors our
modern-day calculation of the standard error of estimate, and which Galton
had obtained in 1877.

This short paper is not a complete account of the measurement of correlation.
Galton shows that he has not yet arrived at the notion of negative correlation
nor of multiple correlation, but his concluding sentences show just how far he
did go:

Let y = the deviation of the subject, whichever of the two variables may be taken in
that capacity; and let x,, x,, x,, &c., be the corresponding deviations of the relative,
and let the mean of these be X. Then we find: (1) that y = rX for all values of y; (2)
that r is the same whichever of the two variables is taken for the subject; (3) that » is
always less than 1; (4) that » measures the closeness of co-relation. (Galton, 1888a,
p. 145)

Chronologically, Galton’s final contribution to regression and heredity is his
book Natural Inheritance, published in 1889. This book was completed several
months before the 1888 paper on correlation and contains none of its important
findings. It was, however, an influential book that repeats a great deal of
Galton’s earlier work on the statistics of heredity, the sweet pea experiments,
the data on stature, the records of family faculties, and so on. It was enthusias-
tically received by Walter Weldon (1860—-1906), who was then a Fellow of St
John’s College, Cambridge, and University Lecturer in Invertebrate Morphol-
ogy, and it pointed him toward quantitative solutions to problems in species
variation that had been occupying his attention. This book linked Galton with
Weldon, and Weldon with Pearson, and then Pearson with Galton, a concate-
nation that began the biometric movement.

THE COEFFICIENT OF CORRELATION

In June 1890, Weldon was elected a Fellow of the Royal Society, and later that
year became Jodrell Professor of Zoology at University College, London. In
March of the same year the Royal Society had received the first of his biometric
papers that describes the distribution of variations in a number of measurements
made on shrimps. A Marine Biological Laboratory had been constructed at
Plymouth 2 years earlier, and since that time Weldon had spent part of the year
there collecting'measurements of the physical dimensions of these creatures and
their organs. The Royal Society paper had been sent to Galton for review, and
with his help the statistical analyses had been reworked. This marked the
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beginning of Weldon’s friendship with Galton and a concentration on biometric
work that lasted for the rest of his life. In fact, the paper does not present the
results of a correlational analysis, although apparently one had been carried out.

I have attempted to apply to the organs measured the test of correlation given by Mr.
Galton . . . and the result seems to show that the degree of correlation between two
organs is constant in all the races examined; Mr. Galton has, in a letter to myself,
predicted this result. A result of this kind is, however, so important to the general
theory of heredity, that I prefer to postpone a discussion of it until a larger body of
evidence has been collected. (Weldon, 1890, p. 453)

The year 1892 saw these analyses published. Weldon begins his paper by
summarizing Galton’s methods. He then describes the measurements that he
made, presents extensive tables of his calculations, the degree of correlation
between the pairs of organs, and the probable error of the distributions

(Q‘]l —7*). The actual calculation of the degree of correlation departs some-
what from Galton’s method, although, because Galton was in close touch with
Weldon, we can assume that it had his blessing. It is quite straightforward and
is here quoted in full:

(1.)... let all those individuals be chosen in which a certain organ, A, differs from
its average size by a fixed amount, Y then, in these individuals, let the deviations of
asecond organ, B, from its average be measured. The various individuals will exhibit
deviations of B equal to x;, x,, X3, . . ., whose mean may be called x,,,. The ratio x,/Y
will be constant for all values of Y.

In the same way, suppose those individuals are chosen in which the organ B has
aconstant deviation, X; then, in these individuals, y .. the mean deviation of the organ
A, will have the same ratio to X, whatever may be the value of X.

(2.) The ratios x,/Y and y,/X are connected by an interesting relation. Let Q,
represent the probable error of distribution of the organ A about its average, and Q,
that of the organ B; then —

ymie O gy Ymp,
==50 3 =%
Xy O” Aa "Qn

a constant.

So that by taking a fixed deviation of either organ, expressed in terms of its
probable error, and by expressing the mean associated deviation of the second organ
in terms of its probable error, a ratio may be determined, whose value becomes + 1
when a change in either organ involves an equal change in the other, and 0 when the
two organs are quite independent. This constant, therefore, measures the “degree of
correlation” between the two organs. (Weldon, 1892, p. 3)

In 1893, more extensive calculations were reported on data collected from
two large (each of 1,000 adult females) samples of crabs, one from the Bay of
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Naples and the other from Plymouth Sound. In this work, Weldon (1893)
computes the mean, the mean error, and the modulus. His greater mathematical
sophistication in this work is evident. He states:

The probable error is given below, instead of the'mean error, because it is the constant
which has the smallest numerical value of any in general use. This property renders
the probable error more convenient than either the mean error, the modulus, or the
error of mean squares, in the determination of the degree of correlation which will
be described below. (Weldon, 1893, pp. 322-323)

Weldon found that in the Naples specimens the distribution of the “frontal
breadth” produced what he terms an “asymmetrical result.” This finding he
hoped might arise from the presence in the sample of two races of individuals.
He notes that Karl Pearson had tested this supposition and found that it was
likely. Pearson (1906) states in his obituary of Weldon that it was this problem
that led to his (Pearson’s) first paper in the Mathematical Contributions to the
Theory of Evolution series, received by the Royal Society in 1893.

Weldon defined r and attempted to name it for Galton:

a measure of the degree to which abnormality in one organ is accompanied by

abnormality in a second. It becomes =1 when a change in one organ involves an
equal change in the other, and 0 when the two organs are quite independent. The
importance of this constant in all attempts to deal with the problems of animal
variation was first pointed out by Mr. Galton . . . the constant . . . may fitly be known
as “Galton’s function.,” (Weldon, 1893, p. 325)

The statistics of heredity and a mutual interest in the plans for the reform of
the University of London (which are described by Pearson in Weldon’s obitu-
ary) drew Pearson and Weldon together, and they were close friends and
colleagues until Weldon’s untimely death. Weldon’s primary concern was to
make his discipline, particularly as it related to evolution, a more rigorous
science by introducing statistical methods. He realized that his own mathemati-
cal abilities were limited, and he tried, unsuccessfully, to interest Cambridge
mathematical colleagues in his endeavor. His appointment to the University
College Chair brought him into contact with Pearson, but, in the meantime, he
attempted to remedy his deficiencies by an extensive study of mathematical
probability. Pearson (1906) writes:

Of this the writer feels sure, that his earliest contributions to biometry were the direct
results of Weldon’s suggestions and would never have been carried out without his
inspiration and enthusiasm. Both were drawn independently by Galton’s Natural
Inheritance 1o these problems. (p. 20)

Pearson’s motivation was quite different from that of Weldon. MacKenzie
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(1981) has provided us with a fascinating account of Pearson’s background,
philosophy, and political outlook.. He was allied with the Fabian socialists ° ;
he held strong views on women’s rights; he was convinced of the necessity of
adopting rational scientific approaches to a range of social issues; and his
advocacy of the interests of the professional middle-class sustained his promo-
tion of eugenics.

His originality, his real transformation rather than re-ordering of knowledge, is to be
found in his work in statistical biology, where he took Galton’s insights and made
out of them a new science. It was the work of his maturity — he started it only in his
mid-thirties — and in it can be found the flowering of most of the major concerns of
his youth. (MacKenzie, 1981, pp. 87-88)

It can be clearly seen that Pearson was not merely providing a mathematical apparatus
for others to use . . . Pearson’s point was essentially a political one: the viability, and
indeed superiority to capitalism, of a socialist state with eugenically-planned repro-
duction. The quantitative statistical form of his argument provided him with con-
vincing rhetorical resources. (MacKenzie, 1981, p. 91}

MacKenzie is at pains to point out that Pearson did not consciously set out
to found a professional middle-class ideology. His analysis confines itself to
the view that here was a match of beliefs and social interests that fostered
Pearson’s unique contribution, and that this sort of sociological approach may
be used to assess the work of such exceptional individuals. Pearson did not seek
to become the leader of a movement; indeed, the compromises necessary for
such an aspiration would have been anathema to what he saw as the role of the
scientist and the intellectual.

However one assesses the operation of the forces that molded Pearson’s
work, it is clear that, from a purely technical standpoint, the introduction, at this
juncture, of an able, professional mathematician to the field of statistical
methods brought about a rapid advance and a greatly elevated sophistication.’
The third paper in the Mathematical Contributions series was read before the
Royal Society in November 1895. It is an extensive paper which deals with,
among other things, the general theory of correlation. It contains a number of
historical misinterpretations and inaccuracies, that Pearson (1920) later

6 The Fabian Society (the Webbs and George Bemard Shaw were leading members) took its name
from Fabius, the Roman Emperor who adopted a strategy of defense and harrassment in Rome’s war
with Hannibal and avoided direct confrontations. The Fabians advocated gradual advance and reform
of society, rather than revolution.

7 Pearson placed Third Wrangler in the Mathematical Tripos at Cambridge in 1879. The “Wran-
glers” were the mathematics students at Cambridge who obtained First Class Honors — the ones who
most successfully “wrangle” with math problems. This method of classification was abandoned in the
early years of this century.
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attempted to rectify, but for today’s users of statistical methods it is of crucial
importance, for it presents the familiar deviation score formula for the coeffi-
cient of correlation.

[t might be mentioned here that the latter term had been introduced for r by
F. Y. Edgeworth (1845-1926) in an impossibly difficult-to-follow paper pub-
lished in 1892. Edgeworth was Drummond Professor of Political Economy at
Oxford from 1891 until his retirement in 1922, and it is of some interest to note
that he had tried to attract Pearson to mathematical economics, but without
success. Pearson (1920) says that Edgeworth was also recruited to correlation
by Galton’s Natural Inheritance, and he remained in close touch with the
biometricians over many years.

Pearson’s important paper (published in the Philosophical Transactions of
the Royal Society in 1896) warrants close examination. He begins with an
introduction that states the advantages and limitations of the statistical approach,
pointing out that it cannot give us precise information about relationships
between individuals and that nothing but means and averages and probabilities
with regard to large classes can be dealt with.

On the other hand, the mathematical theory will be of assistance to the medical man
by answering, inter alia, in its discussion of regression the problem as to the average
effect upon the offspring of given degrees of morbid variation in the parents. It may
enable the physician, in many cases, to state a belief based on a high degree of
probability, if it offers no ground for dogma in individual cases. (Pearson, 1896, p.
255)

Pearson goes on to define the mean, median, and mode, the normal prob-
ability distribution, correlation, and regression, as well as various terms em-
ployed in selection and heredity. Next comes a historical section,which is
examined later in this chapter. Section 4 of Pearson’s paper examines the
“special case of two correlated organs.” He derives what he terms the “well-
known Galtonian form of the frequency for two correlated variables,” and says
that » is the “GALTON function or coefficient of correlation” (p. 264).
However, he is not satisfied that the methods used by Galton and Weldon give
practically the best method of determining 7, and he goes on to show by what
we would now call the maximum likelihood method that S(xy)/(nc, ¢>) is the
best value (today we replace S by X for summation). This expression is familiar
to every beginning student in statistics. As Pearson (1896) puts it, “This value
presents no practical difficulty in calculation, and therefore we shall adopt it”
(p. 265). 1t is now well-known that we have done precisely that.?

§ Pearson (1896, p. 265) notes “that S(xy) corresponds to the product-moment of dynamics, asS(xz)
to the moment of inertia™ This is why r is often referred to as the “product-moment coefficient of
correlation.”
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There follows the derivation of the standard deviation of the coefficient of
correlation, (1 — ) /Vn(1 — r*), which Pearson translates to the probable error,

0.674506(1 — #2)/Nn(1 — #*) . These statistics are then used to rework Weldon’s
shrimp and crab data, and the results show that Weldon was mistaken in
assuming constancy of correlation in local races of the same species. Pearson’s
exhaustive re-examination of Galton’s data on family stature also shows that
some of the earlier conclusions were in error. The details of these analyses are
now of narrow historical interest only, but Pearson’s general approach is amodel
for all experimenters and users of statistics. He emphasizes the importance of
sample size in reducing the probable error, mentions the importance of precision
in measurement, cautions against general conclusions from biased samples, and
treats his findings with admirable scientific caution.”

Pearson introduces ¥ = (6/m) 100 , the coefficient of variation, as a way of
comparing variation, and shows that “the significance of the mutual regressions
of . .. two organs are as the squares of their coefficients of variation” (p. 277).
It should also be noted that, in this paper, Pearson pushes much closer to the
solution of problems associated with multiple correlation.

This almost completes the account of a historical perspective of the devel-
opment of the Pearson coefficient of correlation as it is widely known and used.
However, the record demands that Pearson’s account be looked at in more detail
and the interpretation of measures of association as they were seen by others,
most notably George Udny Yule (1871-1951), who made valuable contribu-
tions to the topic, be examined.

CORRELATION - CONTROVERSIES AND CHARACTER

Pearson’s (1896) paper includes a section on the history of the mathematical
foundations of correlation. He says that the fundamental theorems were “ex-
haustively discussed” by Bravais in 1846. Indeed, he attributes to Bravais the
invention of the GALTON function while admitting that “a single symbol is not
used for it” (p. 261). He also states that S(xy)/(no; 2) “is the value given by
Bravais, but he does not show that it is the best” (p. 265). In examining the
general theorem of a multiple correlation surface, Pearson refers to it as
Edgeworth’s Theorem. Twenty-five years later he repudiates these statements
and attempts to set his record straight. He avers that:

They have been accepted by later writers, notably Mr Yule in his manual of statistics,
who writes (p. 188): “Bravais introduced the product-sum, but not a single symbol
for a coefficient of correlation. Sir Francis Galton developed the practical method,
determining his coefficient (Galton’s function as it was termed at first) graphically.
Edgeworth developed the theoretical side further and Pearson introduced the prod-
uct-sum formula.”
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Now I regret to say that nearly the whole of the above statements are hopelessly
incorrect. (Pearson, 1920, p. 28)

Now clearly, it is just not the case “that nearly the whole of the above
statements are hopelessly incorrect.” In fact, what Pearson is trying to do is to
emphasize the importance of his own and Galton’s contribution and to shift the
blame for the maintenance of historical inaccuracies to Yule, with whom he
had come to have some serious disagreement. The nature of this disagreement
is of interest and can be examined from at least three perspectives. The first is
that of eugenics, the second is that of the personalities of the antagonists, and
the third is that of the fundamental utility of, and the assumptions underlying,
measures of association. However, before these matters are examined, some
brief comment on the contributions of earlier scholars to the mathematics of
correlation is in order.

The final years of the 18th century and the first 20 years of the 19th was the
period in which the theoretical foundations of the mathematics of errors of
observation were laid. Laplace (1749-1827) and Gauss (1777-1855) are the
best-known of the mathematicians who derived the law of frequency of error
and described its application, but a number of other writers also made significant
contributions (see Walker, 1929, for an account of these developments). These
scholars all examined the question of the probability of the joint occurrence of
two errors, but “None of them conceived of this as a matter which could have
application outside the fields of astronomy, physics, and geodesy or gambling”
(Walker, 1929, p. 94).

In fact, put simply, these workers were interested solely in the mathematics
associated with the probability of the simultaneous occurrence of two errors in,
say, the measurement of the position of a point in a plane or in three dimensions.
They were clearly not looking for a measure of a possible relationship between
the errors and certainly not considering the notion of organic relationships
among directly measured variables. Indeed, astronomers and surveyors sought
to make their basic measurements independent. Having said this, it is apparent
that the mathematical formulations that were produced by these earlier scientists
are strikingly similar to those deduced by Galton and Hamilton Dickson.

Auguste Bravais (1811-1863), who had careers as a naval officer, an
astronomer and physicist, perhaps came closest to anticipating the correlation
coefficient; indeed, he even uses the term correlation in his paper of 1846.
Bravais derived the formula for the frequency surface of the bivariate normal
distribution and showed that it was a series of concentric ellipses, as did Galton
and Hamilton Dickson 40 years later. Pearson’s acknowledgment of the work
of Bravais led to the correlation coefficient sometimes being called the Bravais-
Pearson coefficient.

When Pearson came, in 1920, to revise his estimation of Bravais’ role, he
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describes his own early investigations of correlation and mentions his lectures
on the topic to research students at University College. He says:

I was far too excited to stop to investigate properly what other people had done. [
wanted to reach new results and apply them. Accordingly I did not examine carefully
either Bravais or Edgeworth, and when I came to put my lecture notes on correlation
into written form, probably asked someone who attended the lectures to examine the
papers and say what was in them. Only when I now come back to the papers of
Bravais and Edgeworth do I realise not only that [ did grave injustice to others, but
made most misleading statements which have been spread broadcast by the text-book
writers. (Pearson, 1920, p. 29)

The “Theory of Normal Correlation” was one of the topics dealt with by
Pearson when he started his lectures on the “Theory of Statistics” at University
College in the 18941895 session, “giving two hours a week to a small but
enthusiastic class of two students — Miss Alice Lee, Demonstrator in Physics at
the Bedford College, and myself” (Yule, 1897a, p. 457).

One of these enthusiastic students, Yule, published his famous textbook, 4n
Introduction to the Theory of Statistics, in 1911, a book that by 1920 was in its
fifth edition. Later in the 1920 paper, Pearson again deals curtly with Yule. He
is discussing the utility of a theory of correlation that is not dependent on the
assumptions of the bivariate normal distribution and says, “As early as 1897 Mr
G. U. Yule, then my assistant, made an attempt in this direction” (Pearson, 1920,
p. 45).

In fact, Yule (1897b) in a paper in the Journal of the Royal Statistical Society,
had derived least squares solutions to the correlation of two, three, and four
variables. This method is a compelling demonstration of appropriateness of
Pearson’s formula for » under the least squares criterion. But Pearson is not
impressed, or at least in 1920 he is not impressed:

Are we not making a fetish of the method of least squares as others made a fetish of
the normal distribution? . . . It is by no means clear therefore that Mr Yule’s
generalisation indicates the real line of future advance. (Pearson, 1920, p. 45)

This, to say the least, cold approach to Yule’s work (and there are many
other examples of Pearson’s overt invective) was certainly not evident over the
10 years that span the turn of the 19th to the 20th centuries. During what Yule
described as “the old days” he spent several holidays with Pearson, and even
when their personal relationship had soured, Yule states that in nonintellectual
matters Pearson remained courteous and friendly (Yule, 1936), although one
cannot but help feel that here we have the words of an essentially kind and gentle
man writing an obituary notice of one of the fathers of his chosen discipline.
What was the nature of this disagreement that so aroused Pearson’s wrath?

In 1900, Yule developed a measure of association for nominal variables, the
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frequencies of which are entered into the cells of a contingency table. Yule
presents very simple criteria for such measures of association, namely, that they
should be zero when there is no relationship (i.e., the variables are independent),
+1 when there is complete dependence or association, and —1 when there is a
complete negative relationship. The illustrative example chosen is that of a
matrix formed from cells labeled as follows:

Vaccinated B-————— Unvaccinated
Survived A AB AB
Died aB of

and Yule devised a measure, O (named, it appears, for Quetelet), that satisfies
the stated criteria, and is given by,

_ [(AB)(ap) - (AB)(aB)]
[(AB)(ap) + (AB)(aB)]

Q

Yule’s paper had been “received” by the Royal Society in October 1899,
and “read” in December of the same year. It was described by Pearson (1900b),
in a paper that examines the same problem, as “Mr Yule’s valuable memoir”
(p- 1). In his paper, Pearson undertakes to investigate “the theory of the whole
subject” (p. 1) and arrives at his measure of association for two-by-two contin-
gency table frequencies, an index that he called the tetrachoric coefficient of
correlation. He examines other possible measures of association, including
Yule’s Q, but he considers them to be merely approximations to the tetrachoric
coefficient. The crucial difference between Yule’s approach and that of Pearson
is that Yule’s criteria for a measure of association are empirical and arithmetical,
whereas the fundamental assumption for Pearson was that the attributes whose
frequencies were counted in fact arose from an underlying continuous bivariate
normal distribution. The details of Pearson’s method are somewhat complex
and are not examined here. There were a number of developments from this
work, including Pearson’s derivation, in 1904, of the mean square contingency
and the contingency coefficient. All these measures demanded the assumption
of an underlying continuous distribution, even though the variables, as they were
considered, were categorical. Battle commenced late in 1905 when Yule
criticized Pearson’s assumptions in a paper read to the Royal Society (Yule,
1906). Biometrika’s readers were soon to see, “Reply to Certain Criticisms of
Mr G. U. Yule” (Pearson, 1907) and, after Yule’s discussion of his indices
appeared in the first edition of his textbook, were treated to David Heron’s
exhortation, “The Danger of Certain Formulae Suggested as Substitutes for the
Correlation Coefficient” (Heron, 1911). These were stirring statistical times,
marked by swingeing attacks as the biometricians defended their position:



150 10. COMPARISONS, CORRELATIONS AND PREDICTIONS

If Mr Yule’s views are accepted, irreparable damage will be done to the growth of
modern statistical theory . . . we shall term Mr Yule’s latest method of approaching
the problem of relationship of attributes the method of pseudo-ranks . .. we. .. reply
to certain criticisms, not to say charges, Mr Yule has made against the work of one
or both of us. (Pearson & Heron, 1913, pp. 159-160)

Articulate sniping and mathematical bombardment were the methods of
attack used by the biometricians. Yule was more temperate but nevertheless
quite firm in his views:

All those who have died of small-pox are all equally dead: no one of them is more
dead or less dead than another, and the dead are quite distinct from the survivors.

The introduction of needless and unverifiable hypotheses does not appear to me
to be a desirable proceeding in scientific work. (Yule, 1912, pp. 611-612)

Yule, and his great friend Major Greenwood, poked private fun at the
opposition. Parts of a fantasy sent to Yule by Greenwood in November 1913
are reproduced here:

Extracts from The Times, April 1925

G. Udny Yule, who had been convicted of high treason on the 7th ult., was executed
this morning on a scaffold outside Gower St. Station. A short but painful scene
occurred on the scaffold. As the rope was being adjusted, the criminal made some
observation, imperfectly heard in the press enclosure, the only audible words being
“the normal coefficient is —.” Yule was immediately seized by the Imperial guard
and gagged.

Up to the time of going to press the warrant for the apprehension of Greenwood had
not been executed, but the police have what they regard to be an important clue.
During the usual morning service at St. Paul’s Cathedral, which was well attended,
the carlovingian creed was, in accordance with an imperial rescript, chanted by the
choir. When the solemn words, “I believe in one holy and absolute coefficient of
four-fold correlation” were uttered a shabbily dressed man near the North door
shouted “balls.” Amid a scene of indescribable excitement, the vergers armed with
several volumes of Biometrika made their way to the spot. (Greenwood, quoted by
MacKenzie, 1981, pp. 176-177)

The logical positions of the two sides were quite different. For Pearson it
was absolutely necessary to preserve the link with interval-level measurement
where the mathematics of correlation had been fully specified.

Mr Yule . . . does not stop to discuss whether his attributes are really continuous or
discrete, or hide under discrete terminology true continuous variates. We see under
such class indices as “death” or “recovery”, “employment” or “non-employment” of
mother, only measures of continuous variates . . . (p. 162)

The fog in Mr Yule’s mind is well illustrated by his table. . . (p. 226)
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Mr Yule is juggling with class-names as if they represented real entities, and his
statistics only a form of symbolic logic. No knowledge of a practical kind ever came
out of these logical theories. (p. 301) (Pearson and Heron, 1913)

Yule is attacked on almost every one of this paper’s 157 pages, but for him
the issue was quite straightforward. Techniques of correlation were nothing
more and nothing less than descriptions of dependence in nominal data. If
different techniques gave different answers, a point that Pearson and his
followers frequently raised, then so be it. The mean, median, and mode give
different answers to questions about the central tendency of a distribution, but
each has its utility. '

Of course the controversy was never resolved. The controversy can never
be resolved, for there is no absolute, “right” answer. Each camp started with
certain basic assumptions, and a reconciliation of their views was not possible
unless one or both sides were to have abrogated those assumptions, or unless it
could have been shown with scientific certainty that only one side’s assumptions
were viable. For Yule it was a situation that he accepted. In his obituary notice
of Pearson he says, “Time will settle the question in due course” (p. 84). In this
he was wrong, because there is no longer a question. The pragmatic practitioners
of statistics in the present day are largely unaware that there ever even was a
question.

The disagreement highlights the personality differences of the protagonists.
Pearson could be described as a difficult man. He held very strong views on a
variety of subjects, and he was always ready to take up his pen and write scathing
attacks on those whom he perceived to be misguided or misinformed. He was
not ungenerous, and he devoted immense amounts of time and energy to the
work of his students and fellow researchers, but it is likely that tact was not one
of his strong points and any sort of compromise would be seen as defeat.

In 1939, Yule commented on Pearson’s polemics, noting that, in 1914,
Pearson said that “Writers rarely . . . understand the almost religious hatred
which arises in the true man of science when he sees error propagated in high
places” (p. 221).

Surely neither in the best type of religion nor in the best type of science should Aatred
enter in at all. . . . In one respect only has scientific controversy perforce improved
since the seventeenth century. If 4 disagrees with B’s arguments, dislikes his
personality and is annoyed by the cock of his hat, he can no longer, failing all else,
resort to abuse of B’s latinity. (Yule, 1939, p. 221)

Yule had respect and affection for “K.P.” even though he had distanced
himself from the biometricians of Gower Street (where the Biometric Labora-
tory was located). He clearly disliked the way in which Pearson and his
followers closed ranks and prepared for combat at the sniff of criticism. Insome
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respects we can understand Pearson’s attitudes. Perhaps he did feel isolated and
beset. Weldon’s death in 1906 and Galton’s in 1911 affected him greatly He
was the colossus ofhis field, and yet Oxford had twice (in 1897 and 1899) turned
down his applications for chairs, and in 1901 he applied, again unsuccessfully,
for the chair of Natural Philosophy at Edinburgh. He felt the pressure of
monumental amounts of work and longed for greater scope to carry out his
research. This was indeed to come with grants from the Drapers’ Company,
which supported the Biometric Laboratory, and Galton’s bequest, which made
him Professor of Eugenics at University College in 1911. But more controversy,
and more bitter battles, this time with Fisher, were just over the horizon.

Once more, we are indebted to MacKenzie, who so ably puts together the
eugenic aspects of the controversy. Itis his view that this provides a much more
adequate explanation than one derived from the examination of a personality
clash. It is certainly unreasonable to deny that this was an important factor.

Yule appears to have been largely apolitical. He came from a family of
professional administrators and civil servants, and he himself worked for the
War Office and for the Ministry of Food during World War I, work for which
he received the C.B.E. (Commander of the British Empire) in 1918. He was not
a eugenist, and his correspondence with Greenwood shows that his attitude
toward the eugenics movement was far from favorable. He was an active
member of the Royal Statistical Society, a body that awarded him its highest
honor, the Guy Medal in gold, in 1911. The Society attracted members who
were interested in an ameliorative and environmental approach to social issues
— debates on vaccination were a continuing fascination. Although Major Green-
wood, Yule’s close friend, was at first an enthusiastic member of the biometric
school, his career, as a statistician in the field of public health and preventive
medicine, drew him toward the realization that poverty and squalor were
powerful factors in the status and condition of the lower classes, a view that
hardly reflected eugenic philosophy.

For Pearson, eugenics and heredity shaped his approach to the question of
correlation, and the notion of continuous variation was of critical importance.

His notion of correlation, as a function allowing direct prediction from one variable
to another, is shown to have its roots in the task that correlation was supposed to
perform in evolutionary and eugenic prediction. It was not adequate simply to know
that offspring characteristics were dependent on ancestral characteristics: this de-
pendence had to be measured in such a way as to allow the prediction of the effects
of natural selection, or of conscious intervention in reproduction. To move in the
direction indicated here, from prediction to potential control over evolutionary
processes, required powerful and accurate predictive tools: mere statements of
dependence would be inadequate. (MacKenzie, 1981, p. 169)

MacKenzie’s sociohistorical analysis is both compelling and provocative,
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but at least two points, both of which are recognized by him, need to be made.
The first is that this view of Pearson’s motivations is contrary to his earlier
expressed views of the positivistic nature of science (Pearson, 1892), and
second, the controversy might be placed in the context of a tightly knit academic
group defending its position. To the first MacKenzie says that practical consid-
erations outweighed philosophical ones, and yet it is clear that practical demands
did not lead the biometricians to form or to join political groups that might have
made their aspirations reality. The second view is mundane and realistic. The
discipline of psychology has seen a number of controversies in its short history.
Notable among them is the connectionist (stimulus-response) versus cognitive
argument in the field of learning theory. The phenomenological, the psychody-
namic, the social-learning, and the trait theorists have arraigned themselves
against each other in a variety of combinations in personality research. Argu-
ments about the continuity—discontinuity of animals and humankind are exem-
plified perhaps by the controversy over language acquisition in the higher
primates. All these debates are familiar enough to today’s students of psychol-
ogy, and it is not inconceivable to view the correlation debate as part of the
system of academic “rows” that will remain as long as there is freedom for
intellectual controversy and scientific discourse.

But the Yule-Pearson debate and its implications are not among those
discussed in university classrooms across the globe. For a multitude of reasons,
not the least of which was the horror of the negative eugenics espoused by the
German Nazis, and the demands of the growing discipline of psychology for
quantitative techniques that would help it deal with its subject matter, very few
if any of today’s practitioners and researchers in the social sciences think of
biometrics when they think of statistics. They busily get on with their analyses
and, if they give thanks to Pearson and Galton at all, they remember them for
their statistical insights rather than for their eugenic philosophy.
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Factor Analysis

FACTORS

A feature of the ideal scientific method that is always hailed as most admirable
is parsimony. To reduce a mass of facts to a single underlying factor or even to
just a few concepts and constructs is an ongoing scientific concern. In psychol-
ogy, the statistical technique known as factor analysis is most often associated
with the attempt to comprehend the structure of intelligence and the dimensions
of personality. The intellectual struggles that accompany discussion of these
matters are a very long way from being over.

Of all the statistical techniques discussed in this book, factor analysis may
be justly claimed as psychology’s own. As Lawley and Maxwell (1971) and
others have noted, some of the early controversies that swirled around the
methods employed arose from arguments about psychological, rather than
mathematical, matters. Indeed, Lawley and Maxwell suggest that the controver-
sies “discouraged the interest shown by mathematicians in the theoretical
problems involved.” (p. 1). In fact, the psychological quarrels stem from a much
older philosophical debate that is most often traced to Francis Bacon, and his
assertion that “the mere orderly arrangement of data would make the right
hypothesis obvious” (Russell, 1961, p. 529). Russell goes on:

The thing that is achieved by the theoretical organization of science is the collection
of all subordinate inductions into a few that are very comprehensive — perhaps only
one. Such comprehensive inductions are confirmed by so many instances that it is

thought legitimate to accept, as regards them, an induction by simple enumeration.
This situation is profoundly unsatisfactory. (p. $30)

To be just a little more concrete, in psychology:

We recognize the importance of mentality in our lives and wish to characterize it, in

154



FACTORS 165

part so that we can make the divisions and distinctions among people that our cultural
and political systems dictate. We therefore give the word “intelligence” to this
wondrously complex and multifaceted set of human capabilities. This shorthand
symbol is then reified and intelligence achieves its dubious status as a unitary thing.
(Gould, 1981, p. 24)

To be somewhat trite, it is clear that among employed persons there is a high
correlation between the size of a monthly paycheck and annual salary, and it is
easy to sec that both variables are a measure of income — the “cause” of the
correlation is clear and obvious. It is therefore tempting not only to look for the
underlying bases of observed interrelationships among variables but to endow
such findings with a substance that implies a causal entity, despite the protesta-
tions of those who assert that the statistical associations do not, by themselves,
provide evidence for its existence. The refined search for these statistical
distillations is factor analysis, and it is important to distinguish between the
mathematical bases of the methods and the interpretation of the result of their
application.

Now the correlation between monthly paycheck and annual salary will not
be perfect. Interest payments, profits, gifts, even author’s royalties, will make
r less than +1, but presumably no one would argue with the proposition that if
one requires a reasonable measure of income and material well-being, either
variable is adequate and the other thereby redundant. Galton (1888a), in
commenting on Alphonse Bertillon’s work that was designed to provide an
anthropometric index of identification, in particular the identification of crimi-
nals, points to the necessity of estimating the degree of interdependence among
the variables employed, as well as the importance of precision in measurement
and of not making measurement classifications too wide. There is little or
nothing to be gained from including in the measurements a number of variables
that are highly correlated, when one would suffice.

A somewhat different line of reasoning is to derive from the intercorrelations
of the measured variables a set of components that are uncorrelated. The number
of components thus derived would be the same as the number of variables. The
components are ordered so that the initial ones account for more of the variance
than the later ones that are listed in the outcome. This is the method of principal
component analysis, for which Pearson (1901) is usually cited as the original
inspiration and Hotelling (1933, 1935) as the developer and refiner, although
there is no indication that Hotelling was influenced by Pearson’s work. In fact,
Edgeworth (1892, 1893) had suggested a scheme for generating a function
containing uncorrelated terms that was derived from correlated measurements.
Macdonell (1901) was also an early worker in the field of “criminal anthro-
pometry.” He acknowledges in his paper that Pearson has pointed out to him a
method of arriving at ideal characteristics that “would be given if we calculated
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the seven [there were seven measures] directions of uncorrelated variables, that
is, the principal axes of the correlation “ellipsoid’” (p. 209).

The method, as Lawley and Maxwell (1971) have emphasized, although it
has links with factor analysis, is not to be taken as a variety of factor analysis.
The latter is a method that attempts to distill down or concentrate the covariances
in a set of variables to a much smaller number of factors. Indeed, none other
than Godfrey Thomson (1881-1955), a leading British factor theorist from the
1920s to the 1940s, maintained in a letter to D. F. Vincent of Britain’s National
Institute of Industrial Psychology that “he did not regard Pearson’s ‘lines of
closest fit as anything to do with factor analysis.”” (noted by Hearnshaw, 1979,
p- 176). The reason for the ongoing association of Pearson’s name with the birth
of factor analysis is to be found in the role played by another leading British
psychologist, Sir Cyril Burt (1883—1971) in the writing and the rewriting of the
history of factor analysis, an episode examined later in this chapter.

In essence, the method of principal components may be visualized by
imagining the variables measured — the tests — as points in space. Tests that are
correlated will be close together in clusters, and tests that are not related will be
further away from the cluster. Axes or vectors may be projected into this space
through the clusters in a fashion that allows for as much of the variance as
possible to be accounted for. Geometrically this projection can take place in
only three dimensions, but, algebraically an n-dimensional space can be con-
ceptualized.

THE BEGINNINGS

In 1904 Charles Spearman (1863—1945) published two papers (1904a, 1904b)
in the same volume of the American Journal of Psychology, then the leading
English language journal in psychology. The first of these, a general account of
correlation methods, their strengths and weaknesses, and the sources of error
that may be introduced that might “dilate” or “constrict” the results, included
criticism of Pearson’s work.

In his Huxley lecture (sponsored by the Anthropological Institute of Great
Britain and Ireland) of 1903, Pearson reported on a great amount of data that
had been collected by teachers in a number of schools. The physical variables
measured included health, hair and eye color, hair curliness, athletic power, head
length, breadth, and height, and a “cephalic index.” The psychological charac-
teristics were assertiveness, vivacity, popularity, introspection, conscientious-
ness, temper, ability, and handwriting. The average correlations (omitting
athletic power) reported between the measures of brother, sister, and brother-
sister pairs are extraordinarily similar, ranging from .51 to .54.

We are forced, I think literally forced, to the general conclusion that the physical and
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psychical characters in men are inherited within broad lines in the same manner and
with the same intensity. (Pearson, 1904a, p. 156).

Spearman felt that the measurements taken could have been affected by
“systematic deviations,” “attenuation” produced by the suggestion that the
teacher’s judgments were not infallible, and by lack of independence in the
judgements, finally maintaining that:

When we further consider that each of these physical and mental characteristics will
have quite a different amount of such error (in the former this being probably quite
insignificant) it is difficult to avoid the conclusion that the remarkable coincidences
announced between physical and mental heredity can hardly be more than mere
accidental coincidence. (Spearman, 1904a, p. 98).

But Pearson’s statistical procedures were not under fire, for later he says:

If this work of Pearson has thus been singled out for criticism, it is certainly from no
desire to undervalue it. . . . My present object is only to guard against premature
conclusions and to point out the urgent need of still further improving the existing
methodics of correlational work. (Spearman, 1904a, p.99)

Pearson was not pleased. When the address was reprinted in Biometrika in
1904 he included an addendum referring to Spearman’s criticism that added fuel
to the fire:

The formula invented by Mr Spearman for his so-called “dilation” is clearly wrong
... not only are his formulae, especially for probable errors erroneous, but he quite
misunderstands and misuses partial correlation coefficients. (p. 160).

It might be noted that neither man assumed that the correlations, whatever
they were, might be due to anything other than heredity, and that Spearman
largely objected to the data and possible deficiencies in its collection and
Pearson largely objected to Spearman’s statistics. The exchange ensured that
the opponents would never even adequately agree on the location of the
battlefield, let alone resolve their differences. Spearman was to become, suc-
cessively, Reader and head of a psychological laboratory at University College,
London, in 1907, Grote Professor of the Philosophy of Mind and Logic in 1911,
and Professor of Psychology in 1928 until his retirement in 1931. He was
therefore a colleague of Pearson’s in the same college in the same university
during almost the whole of the latter’s tenure of the Chair of Eugenics. Their
interests and their methods had a great deal in common, but they never
collaborated and they disliked each other. They clashed on the matter of
Spearman’s rank-difference correlation technique, and that and Spearman’s
new criticism of Pearson and Pearson’s reaction to it began the hostilities that
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continued for many years, culminating in Pearson’s waspish, unsigned review
(1927) of Spearman’s (1927) book The Abilities of Man. Pearson dismisses
the book as, “distinctly written for the layman” (p. 181) and claims that, “what
Professor Spearman considers proofs are not proofs . . . With the failure of
Chapter X, that is, ‘Proofthat G and S exist,” the very backbone disappears from
the body of Prof. Spearman’s work” (p. 183).

Nowhere in this book does Pearson’s name appear! In his 1904 paper,
Spearman acknowledges that Pearson had given the name the method of
“product moments " to the calculation of the correlation coefficient, but, in a
footnote in his book, Spearman (1927), commenting again on correlation
measures, remarks that:

easily foremost is the procedure which was substantially given in a beautiful memoir
of Bravais and which is now called that of “product moments.” Such procedures
have been further improved by Galton who invented the device — since adopted
everywhere — of representing all grades of interdependence by a single number, the
“coefficient,” which ranges from unity for perfect correlation down to zero for entire
absence of it. (p. 56)

So much for Pearson!
The second paper of 1904 had produced Spearman’s initial conclusion that:

The . . . observed facts indicate that all branches of intellectual activity have in
common one fundamental function (or group of functions) , whereas the remaining
or specific elements of the activity seem in every case to be wholly different from that
in all the others. (Spearman, 1904b, p. 284)

This is Spearman’s first general statement of the two-factor theory of
intelligence, a theory that he was to vigorously expound and defend. Central to
this early work was the notion of a hierarchy of intelligences. In examining data
drawn from the measurement of children from a “High Class Preparatory School
for Boys” on a variety of tests, Spearman starts by adjusting the correlation
coefficients to eliminate irrelevant influences and errors using partial correlation
techniques and then ordering the coefficients from highest to lowest. He
observed a steady decrease in the values from left to right and from top to bottom
in the resulting table.

The sample was remarkably small (only 33), but Spearman (1904b) confi-
dently and boldly proclaims that his method has demonstrated the existence of
“General Intelligence,” which, by 1914, he was labeling g. He made no attempt
at this time to analyze the nature of his factor, but he notes:

An important practical consequence of this universal Unity of the Intellectual
Function, the various actual forms of mental activity constitute a stable inter-
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Classics | French English | Math Discrim | Music
Classics 0.83 0.78 0.70 0.66 0.63
French | 0.83 0.67 0.67 0.65 0.57
English | 0.78 0.67 0.64 0.54 0.51
Math 0.70 0.67 0.64 0.45 0.51
Discrim | 0.66 0.65 0.54 0.45 0.40
Music 0.63 0.57 0.51 0.51 0.40

FIG 11.1 Spearman’s hierarchical ordering of correlations

connected Hierarchy according to the different degrees of intellective saturation. (p.
284)

This work may be justly claimed to include the first factor analysis. The
intercorrelations are shown in Figure 11.1.

The hierarchical order of the correlations in the matrix is shown by the
tendency for the coefficients in a pair of columns to bear the same ratio to one
another throughout that column.

Of course, the technique of correlation that began with Galton (1888b) is
central to all forms of factor analysis, but, more particularly, Spearman’s work
relied on the concept of partial correlation, which allows us to examine the
relationships between, for example, two variables when a third is held constant.
The method gave Spearman the means of making mathematical the notion that
the correlation of a specific test with a general factor was common to all tests
of intellectual functioning. The remaining portion of the variance, error ex-
cepted, is specific and unique to the test that measures the variable. This is the
essence of what came to be known as the two-factor theory.

The partial correlation of variables 1 and 2 when a third, 3, is held constant
is given by
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If there are two variables @ and b and g is a constant and the only cause of

the correlation (r,;) between a and b is g, then r,,, would be zero and hence

Fab = Vag . Vg
. 2
If ais setto equal bthenr,, = r'y

This latter represents the variance in the variable a that is accounted for by
g and leads us to the communalities in a matrix of correlations.

If now we were to take four variables g, b, ¢, and d, and to consider the
correlation of g and b with ¢ and d, then

Yac = Vag . Vegs Yad = Vag. Vg Vbc = Fhy . ¥egs ANA Fog = Foy . Tug,
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Sothat-= = = and therefore, 7a.7ss — Fou.¥pe = 0
Fad Ybd

The left-hand side of this latter equation is Spearman’s famous tetrad
difference, and his proof of it is given in an appendix to his 1927 book. The term
tetrad difference first appears in the mid 1920s (see e.g., Spearman & Holzinger,
1925).

So, a matrix of correlations such as

¢ d
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b r, o

generates the tetrad difference ,#,, — ;. and, without being too mathemati-
cal, this is the value of the minor determinant of order two. When all these
minor determinants are zero, the matrix is of rank one. Moreover, the correla-
tions can be explained by one general factor.

Wolfle (1940) has noted that confusion about what the tetrad difference
meant or implied persisted over a good many years. It was sometimes thought
that when a matrix of correlations satisfied the tetrad equation, every individual
measurement of every variable could only be divided into two independent
parts. Spearman insisted that what he maintained was that this division could
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be made, not that it was the only possible division. Nevertheless, pronounce-
ments about the tetrad equation by Spearman were frequently followed by
assertions such as, “The one part has been called the ‘general factor’ and denoted
by the letter g . . . The second part has been called the *specific factor’ and
denoted by the letter s” (Spearman, 1927, p. 75).

Moreover, Spearman’s frequent references to “mental energy” gave the
impression that g was “real,” even though, especially when challenged, he
denied that it was anything more than a useful, mathematical, explanatory
construction. Spearman made ambiguous statements about g, but it scems that
he was convinced that the two-factor theory was paramount and the tetrad
difference formed an important part of his argument. Not only that, Spearman
was satisfied that Garnett’s earlier “proof™ (1920) of the two-factor theory had
effectively dealt with any criticism:

There is another important limitation to the division of the variables into factors. It
is that the division into general and specific factors all mutually independent can be
effected in one way only; in other words, it is unique. (Spearman, 1927, p. vii)

In 1933 Brown and Stephenson attempted a comprehensive test of the theory
using an initial battery of 22 tests on a sample of 300 boys aged between 10 and
10%; years. But they “purified” the battery by dropping tests that for one reason
or another did not fit and found support for the two-factor theory. Wolfle’s
(1940) review of factor analysis says of this work: “Whether one credits the
attempt with success or not, all that it proves is this; if one removes all tetrad
differences which do not satisfy the criterion, the remaining ones do satisfy it”
. 9).

Pearson and Moul (1927), in a lengthy paper, attempt a dissection of
Spearman’s mathematics, in particular examining the sampling distribution of
the tetrads and whether or not it can be justified as being close to the normal
distribution. They conclude: “the claim of Professor Spearman to have effected
a Copernican revolution in psychology seems at present premature” (p. 291).

However, they do state that even though they believe the theory of general
and specific factors is “too narrow a structure to form a frame for the great
variety of mental abilities,” they believe that it should and couid be tested more
adequately.

Spearman’s annoyance with Pearson’s view of his work was not so troubling
as the pronouncements on it made by the American mathematician E. B. Wilson
(1879-1964), Professor of Vital Statistics at Harvard’s School of Public Health.
The episode has been meticulously researched and a comprehensive account
given by Lovie and Lovie (1995). Spearman met Wilson at Harvard during a
visit to the United States late in 1927. Wilson had read The Abilities of Man
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and had formed the opinion that its author’s mathematics were wanting and had
tried to explain to him that it was possible to “get the tetrad differences to vanish,
one and all, in so many ways that one might suspect that the resolution into a
general factor was not unique” (quoted by Lovie & Lovie, 1995, p. 241).

Wilson subsequently reviewed Spearman’s book for Science. 1t is generally
a friendly review. Wilson describes the book as “an important work,” written
“clearly, spiritedly, suggestively, in places even provocatively,” and his words
concentrate on the mathematical appendix. Wilson admits that his review is
“lop-sided,” but he maintains that Spearman has missed some of the logical
implications of the mathematics, and in particular that his solutions are indeter-
minate. But he leaves a loophole for Spearman:

Dog .. g,,... whether determined or undeterminable represent the intelligence
ofx, y,..."? The author advances a deal of argument and of statistics to show that
they do. This is for psychologists, not for me to assess (Wilson, 1928, p. 246)

Wilson did not want to destroy the basic philosophy or to undermine
completely the thrust of Spearman’s work. Later in 1929, Wilson published a
more detailed mathematical critique (1929b) and a correspondence between him
and Spearman ensued, lasting at least until 1933. The Lovies have analyzed
these exchanges and show that a solution, or, as they term it, “an uneasy
compromise” was reached. A “socially negotiated” solution saw Spearman
accepting Wilson’s critique, Garnett to modifying his earlier “proof” of the
two-factor theory, and Wilson offering ways in which the problems might be at
least modified, if not overcome. More specifically, the idea of a partial
indeterminacy in g was suggested.

REWRITING THE BEGINNINGS

In 1976, the world of psychology, and British psychology in particular, was
shaken by allegations published in the Sunday Times by Oliver Gillie, to the
effect that Sir Cyril Burt (1883-1971), Spearman’s successor as Professor of
Psychology at University College, had faked a large part of the data for his
research on twins and, among other labels in a series of articles, called Burt “a
plagiarist of long standing.” Burt was a prominent figure in psychology in the
United Kingdom and his work on the heritability of intelligence bolstered by
his data on its relationship among twins reared apart, was not only widely cited,
but influenced educational policy. Leslie Hearnshaw, Professor Emeritus of
Psychology at the University of Liverpool, was, at that time, researching his
biography (published in 1979) of Burt, and when it appeared he had not only
examined the apparent fraudulent nature of Burt’s data but he also reviewed the
contributions of Burt to the technique of factor analysis.
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The “Burt Scandal” led to a debate by the British Psychological Society, the
publication of a “balance sheet” (Beloff, 1980), and a number of attempts to
rehabilitate him (Fletcher, 1991; Jensen, 1992; Joynson, 1989). It must be said
that Hearnshaw’s view that Burt re-wrote history in an attempt to place himself
rather than Spearman as the founder of factor analysis has not been viewed as
seriously as the allegations of fraud. Nevertheless, insofar as Hearnshaw’s
words have been picked over in the attempts to at least downplay, if not discredit,
his findings, and insofar as the record is important in the history and develop-
ment of factor analysis, they are worth examining here. Once more the credit
must go to the Lovies (1993), who have provided a “side-by-side” comparison
of Spearman’s prepublication notes and comments on Burt’s work and the
relevant sections of the paper itself.

The publication of Burt’s (1909) paper on “general intelligence” was pre-
ceded by some important correspondence with Spearman, who saw the paper
as offering support for his two-factor theory. In fact, Spearman re-worked the
paper, and large sections of Spearman’s notes on it were used substantially
verbatim by Burt. As the Lovies point out, this was not blarant plagiarism on
Burt’s part, even though the latter’s acknowledgement of Spearman’s role was
incomplete:

but was a kind of reciprocated self-interest about the Spearman-Burt axis at this time
which allowed Burt to copy from Spearman, and Spearman to view this with
comparative equanimity because the article provided such strong support for the two
factor theory. (p. 315)

However, of more import as far as our history is concerned is Hearnshaw’s
contention that Burt, in attempting to displace Spearman, used subtle and
sometimes not-so-subtle commentary to place the origins of factor analysis with
Pearson’s (1901) article on “principle axes” and to suggest that he (Burt) knew
of these methods before his exchanges with Spearman. Indeed, Hearnshaw
(1979) reports on Burt’s correspondence with D. F. Vincent (noted earlier) in
which Burt claimed that he had learned of Pearson’s work when Pearson visited
Oxford and that it was then that he and McDougall (Burt’s mentor) became
interested in the techniques. After Spearman died, Burt’s papers repeatedly
emphasize the priority of Pearson and Burt’s role in the elaboration of methods
that became known as factor analysis. Hearnshaw notes that Burt did not
mention Pearson’s 1901 work until 1947 and implies that it was the publication
of Thurstone’s book (1947) Multiple Factor Analysis and its final chapter on
“The Principal Axes” that alerted Burt. It should also be noted that Wolfle’s
(1940) review, although citing 11 of Burt’s papers of the late 1930s, does not
mention Pearson at all.

It will be some years before the “Burt scandal” becomes no more than an
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historical footnote. Burt’s major work The Factors of the Mind remains a
significant and important contribution, not only to the debate about the nature
of intelligence, but also to the application of mathematical methods to the testing
of theory. Even the most vehement critics of Burt would likely agree and, with
Hearnshaw, might say, “It is lamentable that he should have blotted his record
by the delinquencies of his later years.” In particular, Burt’s writings moved
factor theorizing away from the Spearman contention that g was invariant no
matter what types of tests were used — in other words, that different batteries of
tests should produce the same estimates of g. The idea of a number of group
factors that may be identified from sets of tests that had similar, although not
identical, content, — for example, verbal factors, numeracy factors, spatial
factors and so on — was central in the development of Burt’s writings. Overlap
among the tests within each factor did not suggest that the g values were
identical. Again, Spearman did not dismiss these approaches out of hand, but
it is plain that he always favored the two-factor model.

THE PRACTITIONERS

Although the distinction may be somewhat simplistic, it is possible to separate
the theoreticians from the applied practitioners in these early years of factor
analysis. Lovie (1983) discusses the essentially philosophical and experimental
drive underlying Spearman’s work, as well as that of Thomson and Thurstone.
Spearman’s early paper (1904a) begins with an introduction that discusses the
“signs of weakness” in experimental psychology; he avers that “Wundt’s
disciples have failed to carry forward the work in all the positive spirit of their
master,” and he announces a:

“correlational psychology,” for the purpose of positively determining all psychical
tendencies, and in particular those which connect together the so-called “mental
tests” with psychical activities of greater generality and interest. (p. 205)

The work culminated in a book that set out his fundamental, if not yet
watertight and complete, conceptual framework. Burt’s work with its continu-
ing premise of the heritability of intelligence also shows the need to seek support
for a particular construction of mental life.

On the other hand, a number of contemporary researchers, whose contribu-
tions to factor analysis were also impressive, were fundamentally applied
workers. Two, Kelley and Thomson, were in fact Professors of Education, and
a third, Louis Thurstone, was a giant in the field of scaling techniques and
testing. Their contributions were marked by the task of developing tests of
abilities and skills, measures of individual differences. Truman L. Kelley
(1884-1961), Professor of Education and Psychology at Stanford University,
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published his Crossroads in the Mind of Man in 1928. In his preface he
welcomes Spearman’s work, but in his first chapter, “Boundaries of Mental
Life, ” he makes it clear that his work indicates that several traits are included
in Spearman’s g, and he emphasises these group factors throughout his book:

Mental life does not operate in a plain but in a network of canals. Though each canal
may have indefinite limits in length and depth, it does not in width; though each
mental trait may grow and become more and more subtle, it does not lose its character
and discreteness from other traits. (p. 23)

Lovie and Lovie (1995) report on correspondence between Wilson and
H. W. Holmes, Dean of the School of Education at Harvard, after Wilson had
read and reviewed (1929a) Kelley’ s book “If Spearman is on dangerous ground,
Kelley is sitting on a volcano.”

Wilson’s (1929a) review of Kelley again concentrates on the mathematics
and again raises, in even more acute fashion, the problem of indeterminacy. It
is not an unkind review, but it turns Kelley’s statement (quoted above) on its
head:

Mental life in respect of its resolution into specific and general factors does not
operate in a network of canals but in a continuously distributed hyperplane . . . no
trait has any separate or discrete existence, for each may be replaced by proper linear
combinations of the others proceeding by infinitesimal gradations and it is only the
complex of all that has reality. Instead of writing of crossroads in the mind of man
one should speak of man’s trackless mental forest or tundra or jungle — mathemati-
cally mind you, according to the analysis offered. The canals or crossroads have been
put in without any indication, so far as [ can see, that they have been put in any other
way than we put in roads across our midwestern plains, namely to meet the
convenience or to suit the fancy of the pioneers. (p. 164)

Wilson, a highly competent mathematician, had obviously had a struggle
with Kelley’s mathematics. He concludes:

The fact of the matter is that the author after an excellent introductory discussion of
the elements of the theory of the resolution into general and specific factors . . . gives
up the general problem entirely, throws up his hands so to speak, and proceeds to
develop special methods of examining his variables to see where there seem to be
specific bonds between them. (p. 160)

Kelley, perhaps a little bemused, perhaps a little rueful, and almost certainly
grateful that Wilson’s review had not been more scathing, responds: “The
mathematical tool is sharp and | may nick, or may already have nicked myself
with it. At any rate I do still enjoy the fun of whittling and of fondling such
clean-cut chips as Wilson has let fall” (p. 172).

Sir Godfrey Thomson was Professor of Education at the University of
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Edinburgh from 1925 to 1951. He had little or no training in psychology;
indeed, his PhD was in physics. After graduate studies in Strasbourg, he returned
home to Newcastle, England, where he was obliged to take up a post in education
to fulfill requirements that were attached to the grants he had received as a
student. His work at Edinburgh was almost wholly concerned with the devel-
opment of mental tests and the refining of his approach to factor analysis. In
1939 his book The Factorial Analysis of Human Ability was published, a book
that established his reputation and set him firmly outside the Spearman camp.
A later edition (1946) expanded his views and introduced to a wider audience
the work of Louis Thurstone (1887-1955). Thomson’s name is not as well-
known as Spearman’s, nor is his work much cited. This is probably because he
did not develop a psychological theory of intelligence, although he did offer
explanations for his findings. He can, however, be regarded as Spearman’s main
British rival, and he parts company with him on three main grounds: first, that
Spearman’s analysis had not and could not conclusively demonstrate the “ex-
istence” of g; second, that even if the existence of g was admitted, it was
misleading and dangerous to reify it so that it became a crucial psychological
entity; and third, that Spearman’s hierarchical model had been overtaken by
multiple factor models that were at once more sophisticated and had more
explanatory power.

The Spearman school of experimenters , however, tend always to explain as much
as possible by one central factor. . . .

There are innumerable other ways of explaining these same correlations . . .

And the final decision between them has to be made on some other grounds. The
decision may be psychological. . . . Or the decision may be made on the ground that
we should be parsimonious in our invention of “factors,” and that where one general
and one group factor will serve we should not invent five group factors.. (Thomson,
1946, p. 14-15)

Thomson was not saying that Spearman’s view does not make sense but that
it is not inevitably the only view. Spearman had agreed that g was present in
all the factors of the mind, but in different amounts or “weights,” and that in
some factors it was small enough to be neglected. Thomson welcomed these
views, “provided that g is interpreted as a mathematical entity only, and
judgement is suspended as to whether it is anything more than that” (p. 240).

And his verdict on two-factor theory? After commenting that the method
of two factors was an analytical device for indicating their presence, that
advances in method had been made that led to multiple factor analysis, and
further “It was Professor Thurstone of Chicago who saw that one solution to the
problem could be reached by a generalization of Spearman’s idea of zero tetrad
differences.” (p. 20).
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Thomson himself had suggested a “sampling theory” to replace Spearman’s
approach:

The alternative theory to explain the zero tetrad differences is that each test calls
upon a sample of bonds which the mind can form, and that some of these bonds are
common to two tests and cause their correlation. (p. 45)

Thomson did not give more than a very general view of what the bonds might
be, although it seems that they were fundamentally neurophysiological and,
from a psychological standpoint, akin to the connections in the connectionist
views of learning first advanced by Thorndike:

What the “bonds” of the mind are, we do not know. But they are fairly certainly
associated with the neurones or nerve cells of our brains . . . Thinking is accompanied
by the excitation of these neurones in patterns. The simplest patterns are instinctive,
more complex ones acquired. Intelligence is possibly associated with the number
and complexity of the patterns which the brain can (or could) make. (Thomson, 1946,

p.51)

And, lastly, to complete this short commentary on Thomson’s efforts, his
demonstration of geometrical methods for the illustration of factor theory
contrasts markedly with both Spearman and Burt’s work and is much more in
tune with the “rotation” methods of later contributors, notably Thurstone.

In 1939, as part of a General Meeting of the British Psychological Society,
Burt, Spearman, Thomson (1939a), and Stephenson each gave papers on the
factorial analysis of human ability. These papers were published in the British
Journal of Psychology, together with a summing up by Thomson (1939b).
Thomson points out that neither Thurstone nor any of his followers were present
to defend their views and gives a very brief and favorable summary of them.
He even says, citing Professor Dirac at a meeting of the Royal Society of
Edinburgh:

When a mathematical physicist finds a mathematical solution or theorem which is
particularly beautiful . . . he can have considerable confidence that it will prove to
correspond to something real in physical nature. Something of the same faith seems
to lie behind Prof. Thurstone’s trust in the coincidence of “*Simple Structure” in the
matrix of factor loadings with psychological significance in the factors thus defined.
(Thomson, 1939b, p. 105)

He also noted that Burt had “expressed the hope that the ‘tetrad difference’ of
the four symposiasts would be found to vanish!” (p. 108).

Louis L. Thurstone produced his first work on *the multiple factor problem”
in 1931. The Vectors of the Mind appeared in 1935 and what he himself defined
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as a development and expansion of this work, Muitiple Factor Analysis, in
1947. Reprints of the book were still being published long after his death. The
following scheme might give some feel for Thurstone’s approach. We looked
earlier at the matrix of correlations that produce a tetrad difference. Now
consider:

d e f
a Fod Yo For
b Voa Fpe Yoy
c Fo r, T

This is a minor determinant of order three. Now a new tetrad can be formed:

Void Voe — Yoy Voo Yai Top — Tha -Fof
Fod Foo — FegFos FaiFyg — Fog-Fof

If this new tetrad is zero then the determinant “vanishes.” This procedure
can be carried out with determinants of any order and if we come to a stage
when all the minors “vanish” the “rank” of the correlation matrix will be reduced
accordingly. Thurstone found that tests could be analyzed into as many com-
mon factors as the reduced rank of the correlation matrix. The present account
follows that of Thomson (1946, chap. 2), who gives a numerical example. The
rank of the matrix of all the correlations may be reduced by inserting values in
the diagonal of the matrix — the communalities. These values may be thought
of as self-correlations, in which case they are all 1. But they may also be regarded
as that part of the variance in the variable that is due to the common factors, in
which case they have to be estimated in some fashion. They might even be
merely guessed. Thurstone chose values that made the tetrads zero. If these
methods seem not to be entirely satisfactory now, they were certainly not
welcomed by psychologists in the 1920s, 1930s and 1940s who were trying to
come to grips with the new mathematical approaches of the factor theorists and
their views of human intelligence. Thurstone’s centroid method bears some
similarities to principal components analysis. The word centroid refers to a
multivariate average, and Thurstone’s “first centroid” may be thought of as an
average of all the tests in a battery. Central to the outcome of the analysis is the
production of factor loadings — values that express the relationship of the tests
to the presumed underlying factors. The ways in which these loadings are
arrived at are many and various, and Thurstone’s centroid technique was just
one early approach. However, it was an approach that was relatively easy to
apply and (with some mathematics) relatively easy to understand. How the
factors were interpreted psychologically was, and is, largely a matter for the
researcher. Thus tests that were related that involved arithmetic or numerical
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reasoning or number relationships might be labeled numerical, or numeracy.

Thurstone maintained that compiete interpretation of factors involved the
technique of rotation. Loadings in a principal factors matrix reflect common
factor variances in test scores. The matrices are arbitrary for they can be
manipulated to show different axes — different “frames of reference.” We can
only make scientific sense of the outcomes when the axes are rotated to pass
through loadings that show an assumed factor that represents a “psychological
reality.” Such rotations, which may produce orthogonal (uncorrelated) axes or
oblique (correlated) axes, were first carried out by a mixture of mathematics,
intuition, and inspiration and have become a standard part of modern factor
analysis. It is perhaps worth noting that Thurstone’s early training was in
engineering and that he taught geometry for a time at the University of Minne-
sota.

The configurational interpretations are evidently distasteful to Burt, for he does not
have a single diagram in his text. Perhaps this is indicative of individual differences
in imagery types which leads to differences in methods and interpretation among
scientists. (Thurstone, 1947, p. ix)

Thurstone’s work eventually produced a set of seven primary mental abili-
ties, verbal comprehension, word fluency, numerical, spatial, memory, percep-
tual speed, and reasoning. This kind of scheme became widely popular among
psychologists in the United States, although many were disconcerted by the fact
that the number of factors tended to grow. J. P. Guilford (1897-1987) devised
a theoretical model that postulated 120 factors (1967), and by 1971 the claim
was made that almost 100 of them had been identified.

An ongoing problem for the early researchers was the evident subjective
element in all the methods. Mathematicians stepped into the picture (Wilson
was one of the early ones), often at the request of the psychologists or educa-
tionists who were not generally mathematical sophisticates (Thomson, not
trained as a psychologist, was an exception), but they were remarkably quick
learners. The search for analytical methods for assessing “simple structure”
began. Carroll (1953) was among the earliest who tackled the problem:

A criticism of current practice in multiple factor analysis is that the transformation
of the initial factor matrix £ to a rotated “simple stucture” matrix } must apparently
be accompanied by methods which allow considerable scope for subjective judge-
ment. (p. 23)

Carroll’s paper goes on to describe a mathematical method that avoids
subjective decisions. Modern factor analysis had begun. From then on a great
variety of methods was developed, and it is no accident that such solutions were
developed coincidentally with the rise of the use of the high-speed digital
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computer, which removed the computational labor from the more complex
procedures. Harman (1913-1976), building on earlier work (Holzinger
[1892-1954] & Harman, 1941), published Modern Factor Analysis in 1960,
with a second and a third (1976) edition, and the book is a classic in the field.

In research on the structure of human personality, the giants in the area were
Raymond Cattell (1905-1998) and Hans Eysenck (1916-1997). Cattell had
been a student of Cyril Burt, and in his early work had introduced the concept
of fluid intelligence that is akin to g, a broad, biologically based construct of
general mental ability and crystallized intelligence that depends on learning and
environmental experience. Later, Cattell’s work concentrated on the identifica-
tion and measurement of the factors of human personality (1965a), and his 16PF
(16 personality factors) test is widely used. His Handbook of Multivariate
Experimental Psychology (1965b) is a compendium of the multivariate ap-
proach with a number of eminent contributors. Cattell himself contributed 6
of the 27 chapters and co-authored another.

Cattell’s research output, over a very long career, was massive, as was that
of Eysenck. The latter’s method, which he termed criterion analysis, was a use
of factor analysis that attempted to confirm the existence of previously hypothe-
sized factors. Three dimensions were eventually identified by Eysenck and his
work helped to set off one of psychology’s ongoing arguments about just how
many personality factors there really were. This is not the place to review this
debate, but it does, once again, place factor analysis at the center of sometimes
quite heated discussion about the “reality” of factors and the extent to which
they reflect the theoretical preconceptions of the investigators. “What comes
out is no more than what goes in.” is the cry of the critics. What is absolutely
clear from this situation is that it is necessary to validate the factors by
experimental investigation that stands aside from the methods used to identify
the factors and avoid capitalizing on semantic similarities among the tests that
were originally employed. It has to be acknowledged, of course, that both Cattell
and Eysenck (1947; Eysenck & Eysenck, 1985) and their many collaborators
have tried to do just that.

Recent years have seen an increase in the use of factor-analytic techniques
in a variety of disciplines and settings, even apparently in the analysis of the
performance of racehorses! In psychology, the sometimes heated discussion of
the dangers of the reification of factors, their treatment as psychological entities,
as well as arguments over, for example, just how many personality dimensions
are necessary and/or sufficient to define variations in human temperament,
continue. At bottom, a large part of these problems concerns the use of the
technique either as a confirmatory tool for theory or as a search for new structure
in our data. Unless these two quite different views are recognized at the start of
discussion the debate will take on an exasperating futility that stifles all progress.
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The Design
of Experiments

THE PROBLEM OF CONTROL

When Ronald Fisher accepted the post of statistician at Rothamsted Experimen-
tal Station in 1919, the tasks that faced him were to make what he could of a
large quantity of existing data from ongoing long-term agricultural studies (one
had begun in 1843!) and to try to improve the effectiveness of future field trials.
Fisher later described the first of these tasks as “raking over the muck heap”;
the second he approached with great vigor and enthusiasm, laying as he did so
the foundations of modern experimental design and statistical analysis.

The essential problem is the problem of control. For the chemist in the
laboratory it is relatively easy to standardize and manipulate the conditions of
a specific chemical reaction. Social scientists, biologists, and agricultural re-
searchers have to contend with the fact that their experimental material (people,
animals, plants) is subject to irregular variation that arises as a result of complex
interactions of genetic factors and environmental conditions. These many
variations, unknown and uncertain, make it very difficult to be confident that
observed differences in experimental observations are due to the manipulations
of the experimenter rather than to chance variation. The challenge of the
psychological sciences is the sensitivity of behavior and experience to a multi-
plicity of factors. But in many respects the challenge has not been answered
because the unexplained variation in our observations is generally regarded as
a nuisance or as irrelevant.

It is useful to distinguish between experimental control and the controlled
experiment. The former is the behaviorist’s ideal, the state where some consis-
tent behavior can be set off and/or terminated by manipulating precisely
specified variables. On the other hand, the controlled experiment describes a
procedure in which the effect of the manipulation of the independent variable
or variables is, as it were, checked against observations undertaken in the
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absence of the manipulation. This is the method that is employed and supported
by the followers of the Fisherian tradition. The uncontrolled variables that affect
the observations are assumed to operate in a random fashion, changing individ-
ual behavior in all kinds of ways so that when the data are averaged their effects
are canceled out, allowing the effect of the manipulated variable to be seen. The
assumption of randomness in the influence of uncontrolled variables is, of
course, not one that is always easy to justify, and the relegation of important
influences on variability to error may lead to erroneous inferences and disastrous
conclusions.

Malaria is a disease that has been known and feared for centuries. It
decimated the Roman Empire in its final years, it was quite widespread in Britain
during the 17th century, and indeed it was still found there in the fen country in
the 19th century. The names malaria, marsh fever, and paludism all reflect the
view that the cause of the disease was the breathing of damp, noxious air in
swamp lands. The relationship between swamp lands and the incidence of
malaria is quite clear. The relationship between swamp lands and the presence
of mosquitos is also clear. But it was not until the turn of the century that it was
realized that the mosquito was responsible for the transmission of the malarial
parasite, and only 20 years earlier, in 1880, was the parasite actually observed.
In 1879, Sir Patrick Manson (1844-1922), a physician whose work played a
role in the discovery of the malarial cycle, presented a paper in which he
suggested that the disease elephantiasis was transmitted through insect bites.
The paper was received with scorn and disbelief. The evidence for the life cycle
of the malarial parasite in mosquitos and human beings and its being established
as the cause of the illness came in a number of ways — not the least of which
was the healthy survival, throughout the malarial season, of three of Manson’s
assistants living in a mosquito-proof hut in the middle of the Roman Campagna
(Guthrie, 1946, pp. 357-358). This episode is an interesting example of the
control of a concomitant or correlated bias or effect that was the direct cause of
the observations.

In psychological studies, some of the earliest work that used true experimen-
tal designs is that of Thorndike and Woodworth (1901) on transfer of training.
They used “before-after” designs, control group designs, and correlational
studies in their work. However, the now routine inclusion of control groups in
experimental investigations in psychology does not appear to have been an
accepted necessity until about 50 years ago. In fact, controlled experimentation
in psychology more or less coincided with the introduction of Fisherian statis-
tics, and the two quite quickly became inseparable. Of course it would be both
foolish and wrong to imply that early empirical investigations in psychology
were completely lacking in rigor, and mistaken conclusions rife. The point is
that it was not until the 1920s and 1930s that the “rules” of controlled
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experimentation were spelled out and appreciated in the psychological sciences.
The basic rules had been in existence for many decades, having been codified
by John Stuart Mill (1806-1873) in a book, first published in 1843, that is
usually referred to as the Logic (1843/1872/1973). These formulations had been
preceded by an earlier British philosopher, Francis Bacon, who made recom-
mendations for what he thought would be sound inductive procedures.

METHODS OF INQUIRY

Mill proposed four basic methods of experimental inquiry, and the five Canons,
the first of which is, “If two or more instances of the phenomenon under
investigation have only one circumstance in common, the circumstance in
which alone all the instances agree, is the cause (or effect) of the given
phenomenon” (Mill, 1843/1872, 8th ed., p. 390).

If observations a4, b, and ¢ are made in circumstances 4, B, and C, and
observations a, d, and e in circumstances 4, D, and E, then it may be concluded
that 4 causes a. Mill commented, “As this method proceeds by comparing
different instances to ascertain in what they agree, | have termed it the Method
of Agreement” (p. 390).

As Mill points out, the difficulty with this method is the impossibility of
ensuring that A4 is the only antecedent of a that is common to both instances.
The second canon is the Method of Difference. The antecedent circumstances
A, B, and C are followed by a, b, and ¢. When 4 is absent only b and ¢ are
observed:

If an instance in which the phenomenon under investigation occurs, and an instance
in which it does not occur, have every circumstance in common save one, that one
occurring only in the former; the circumstance in which alone the two instances
differ, is the effect or the cause, or an indispensable part of the cause of the
phenomenon. (p. 391)

This method contains the difficulty in practice of being unable to guarantee
that it is the crucial difference that has been found. As part of the way around
this difficulty, Mill introduces a joint method in his third canon:

If two or more instances in which the phenomenon occurs have only one circum-
stance in common, while two or more instances in which it does not occur have
nothing in common save the absence of that circumstance; the circumstance in which
alone the two sets of instances differ, is the effect, or the cause, or an indispensable
part of the cause, of the phenomenon. (p. 396)

In 1881 Louis Pasteur (1822-1895) conducted a famous experiment that
exemplifies the methods of agreement and difference. Some 30 farm animals
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were injected by Pasteur with a weak culture of anthrax virus. Later these
animals and a similar number of others that had not been so “vaccinated” were
given a fatal dose of anthrax virus. Within a few days the non-vaccinated
animals were dead or dying, the vaccinated ones healthy. The conclusion that
was enthusiastically drawn was that Pasteur’s vaccination procedure had pro-
duced the immunity that was seen in the healthy animals. The effectiveness of
vaccination is now regarded as an established fact. But it is necessary to guard
against incautious logic. The health of the vaccinated animals could have been
due to some other fortuitous circumstance. Because it is known that some
animals infected with anthrax do recover, an experimental group composed of
these resistant animals could have resulted in a spurious conclusion. It should
be noted that Pasteur himself recognized this as a possibility.

Mill’s Method of Residues proclaims that having identified by the methods
of agreement and differences that certain observed phenomena are the effects
of certain antecedent conditions, the phenomena that remain are due to the
circumstances that remain. “Subduct from any phenomenon such part as is
known by previous inductions to be the effect of certain antecedents, and the
residue of the phenomenon is the effect of the remaining antecedents”
(1843/1872, 8th ed., p. 398).

Mill here uses a very modern argument for the use of the method in
providing evidence for the debate on racial and gender differences:

Those who assert, what no one has shown any real ground for believing, that there
is in one human individual, one sex, or one race of mankind over another, an inherent
and inexplicable superiority in mental faculties, could only substantiate their propo-
sition by subtracting from the differences of intellect which we in fact see, all that
can be traced by known laws either to the ascertained differences of physical
organization, or to the differences which have existed in the outward circumstances
in which the subjects of the comparison have hitherto been placed. What these causes
might fail to account for, would constitute a residual phenomenon, which and which
alone would be evidence of an ulterior original distinction, and the measure of its
amount. But the assertors of such supposed differences have not provided them-
selves with these necessary logical conditions in the establishment of their doctrine.
(p. 429)

The final method and the fifth canon is the Method of Concomitant Vari-
ations: “Whatever phenomenon varies in any manner whenever another phe-
nomenon varies in some particular manner, is either a cause or an effect of that
phenomenon, or is connected with it through some fact of causation” (p. 401).

This method is essentially that of the correlational study, the observation of
covariation:

Let us suppose the question to be, what influence the moon exerts on the surface of
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the earth. We cannot try an experiment in the absence of the moon, so as to observe
what terrestrial phenomenon her annihilation would put an end to; but when we find
that all the variations in the positions of the moon are followed by corresponding
variations in the time and place of high water, the place always being either the part
of the earth which is nearest to, or that which is most remote from, the moon, we
have ample evidence that the moon is, wholly or partially, the cause which determines
the tides. (p. 400)

Mill maintained that these methods were in fact the rules for inductive logic,
that they were both methods of discovery and methods of proof. His critics, then
and now, argued against a /ogic of induction (see chapter 2), but it is clear that
experimentalists will agree with Mill that his methods constitute the means by
which they gather experimental evidence for their views of nature.

The general structure of all the experimental designs that arec employed in
the psychological sciences may be seen in Mill’s methods. The application and
withholding of experimental rreatments across groups reflect the methods of
agreement and differences. The use of placebos and the systematic attempts to
eliminate sources of error make up the method of residues, and the method of
concomitant variation is, as already noted, a complete description of the corre-
lational study. It is worth mentioning that Mill attempted to deal with the
difficulties presented by the correlational study and, in doing so, outlined the
basics of multiple regression analysis, the mathematics of which were not to
come for many years:

Suppose, then, that when 4 changes in quantity, a also changes in quantity, and in
such a manner that we can trace the numerical relation which the changes of the one
bear to such changes of the other as take place within the limits of our observation.
We may then safely conclude that the same numerical relation will hold beyond those
limits. (Mill, 1843/1872, 8th ed., p. 403)

Mill elaborates on this proposition and goes on to discuss the case where a
is not wholly the effect of 4 but nevertheless varies with it:

It is probably a mathematical function not of A alone, but of 4 and something else:
its changes, for example, may be such as would occur if part of it remained constant,
or varied on some other principle, and the remainder varied in some numerical
relation to the variations of A. (p. 403)

Mill’s Logic is his principal work, and it may be fairly cast as the book that
first describes both a justification for and the methodology of, the social
sciences. Throughout his works, the influence of the philosophers who were,
in fact, the early social scientists, is evident. David Hartley (1705-1757)
published his Observations on Man in 1749. This book is a psychology rather
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than a philosophy (Hartley, 1749/1966). It systematicaily describes associa-
tionism in a psychological context and is the first text that deals with physi-
ological psychology. James Mill (1773-1836), John Stuart’s father, much
admired Hartley and his major work became one of the main source books that
Muill the elder introduced to his son when he started his formal education at the
age of 3 (when he learned Ancient Greek), although he did not get to formal
logic until he was 12. Another important early influence was Jeremy Bentham
(1748-1832), a reformer who preached the doctrine of Utilitarianism, the
essential feature of which is the notion that the several and joint effects of
pleasure and pain govern all our thoughts and actions. Later Mill rejected strict
Benthamism and questioned the work of a famous and influential contemporary,
Auguste Comte (1798-1857), whose work marks the foundation of positivism
and of sociology. The influence of the ideas of these thinkers on early experi-
mental psychology is strong and clear, but they will not be explored here. The
main point to be made is that John Stuart Mill was an experimental psycholo-
gist’s philosopher. More, he was the methodologist’s philosopher. In a letter
to a friend, he said:

If there is any science which 1 am capable of promoting, I think it is the science of
science itself, the science of investigation — of method. 1 once heard Maurice say
. .. that almost all differences of opinion when analysed, were differences of method.
(quoted by Robson in his textual introduction to the Logic, p. xlix)

And it is clear that all subsequent accounts of method and experimental
design can be traced back to Mill.

THE CONCEPT OF STATISTICAL CONTROL

The standard design for agricultural experiments at Rothamsted in the days
before Fisher was to divide a field into a number of plots. Each plot would
receive a different treatment, say, a different manure or fertilizer or manure/fer-
tilizer mixture. The plot that produced the highest yield would be taken to be
the best, and the corresponding treatment considered to be the most effective.
Fisher, and others, realized that soil fertility is by no means uniform across a
large field and that this, as well as other factors, can affect the yields. In fact,
the differences in the yields could be due to many factors other than the
particular treatments and the highest yield might be due to some chance
combination of these factors. The essential problem is to estimate the magni-
tude of these chance factors — the errors — to eliminate, for example, the
differences in soil fertility.

Some of the first data that Fisher saw at Rothamsted were the records of
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daily rainfall and yearly yields from plots in the famous Broadbalk wheat
field. Fertilizers had been applied to these plots, using the same pattern, since
1852. Fisher used the method of orthogonal polynomials to obtain fits of the
yields over time. In his paper (1921b) on these data published in 1921 he
describes analysis of variance (ANOVA) for the first time.

When the variation of any quantity (variate) is produced by the action of two or more
independent causes, it is known that the variance produced by all the causes
simultaneously in operation is the sum of the values of the variance produced by
each cause separately . . . In Table 1] is shown the analysis of the total variance for
each plot, divided according as it may be ascribed (i) to annual causes, (ii) to slow
changes other than deterioration, (iii) to deterioration; the sixth column shows the
probability of larger values for the variance due to slow changes occurring fortui-
tously. (Fisher, 1921b, pp. 110-111)

The method of data analysis that Fisher employed was ingenious and
painstaking, but he realized quickly that the data that were available suffered
from deficiencies in the design of their collection. Fisher set out on a new series
of field trials.

He divided a field into blocks and subdivided each block into plots. Each
plot within the block was given a different treatment, and each treatment was
assigned to each plot randomly. This, as Bartlett (1965) puts it, was Fisher’s
“vital principle.”

When statistical data are collected as natural observations, the most sensible assump-
tions about the relevant statistical model have to be inserted. In controlled experi-
mentation, however, randomness could be introduced deliberately into the design,
so that any systematic variability other than [that] due to imposed treatments could
be eliminated.

The second principle Fisher introduced naturally went with the first. With
statistical analysis geared to the design, all variability not ascribed to the influence
of treatments did not have to inflate the random error. With equal numbers of
replications for the treatments each replication could be contained in a distinct block,
and only variability among plots in the same block were a source of error — that
between blocks could be removed. (Bartlett, 19635, p. 405)

The statistical analysis allowed for an even more radical break with tradi-
tional experimental methods:

No aphorism is more frequently repeated in connection with field trials, than that we
must ask Nature few questions, or, ideally, one question, at a time. The writer is
convinced that this view is wholly mistaken. Nature, he suggests, will best respond
to a logical and carefully thought out questionnaire; indeed, if we ask her a single
question, she will often refuse to answer until some other topic has been discussed.
(Fisher, 1926b, p. 511)
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Fisher’s “carefully thought out questionnaire” was the factorial design. All
possible combinations of treatments would be applied with replications. For
example, in the application of nitrogen (N), phosphate (P), and potash (K) there
would be eight possible treatment combinations: no fertilizer, N, P, K, N & P,
N&K,P&K,andN & P & K. Separate compact blocks would be laid out and
these combinations would be randomly applied to plots within each block. This
design allows for an estimation of the main effects of the basic fertilizers, the
first-order interactions (the effect of two fertilizers in combination), and the
second-order interaction (the effect of the three fertilizers in combination). The
1926(b) paper sets out Fisher’s rationale for field experiments and was, as he
noted, the precursor of his book, The Design of Experiments (1935/1966),
published 9 years later. The paper is illustrated with a diagram (Fig. 12.1) of a
“complex experiment with winter oats” that had been carried out with a
colleague at Rothamsted (Eden & Fisher, 1927).

Here 12 treatments, including absence of treatments — the “control” plots —
were tested.
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FIG. 12.1 Fisher's Design 1926. Journal of the Ministry
of Agriculture
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Any general difference between sulphate and chloride, between early and late
application, or ascribable to quantity of nitrogenous manure, can be based on
thirty-two comparisons, each of which is affected by such soil heterogeneity as
exists between plots in the same block. To make these three sets of comparisons
only, with the same accuracy, by single question methods, would require 224 plots,
against our 96; but in addition many other comparisons can be made with equal
accuracy, for all combinations of the factors concerned have been explored. Most
important of all, the conclusions drawn from the single-factor comparisons will be
given, by the variation of non-essential conditions, a very much wider inductive
basis than could be obtained, by single question methods, without extensive
repetitions of the experiment. (Fisher, 1926b, p. 512)

The algebra and the arithmetic of the analysis are dealt with in the following
chapter. The crucial point of this work is the combination of statistical analysis
with experimental design. Part of the stimulus for this paper was Sir John
Russell’s (1926) article on field experiments, which had appeared in the same
journal just months earlier. Russell’s review presents the orthodox approach to
field trials and advocated carefully planned, systematic layouts of the experi-
mental plots. Sir John Russell was the Director of the Rothamsted Experimental
Station, he had hired Fisher, and he was Fisher’s boss, but Fisher dismissed his
methodology. In a footnote in the 1926(b) paper, Fisher says:

This principle was employed in an experiment on the influence of the weather on the
effectiveness of phophates and nitrogen alluded to by Sir John Russell. The author
must disclaim all responsibility for the design of this experiment, which is, however,
a good example of its class. (Fisher, 1926b, p. 506)

And as Fisher Box (1978) remarks:

It is a measure of the climate of the times that Russell, an experienced research
scientist who . . . had had the wisdom to appoint Fisher statistician for the better
analysis of the Rothamsted experiments, did not defer to the views of his statistician
when he wrote on how experiments were made. Design was, in effect, regarded as
an empirical exercise attempted by the experimenter; it was not yet the domain of
statisticians. (p. 153)

In fact the statistical analysis, in a sense, arises from the design. Nowadays,
when ANOVA is regarded as efficient and routine, the various designs that are
available and widely used are dictated to us by the knowledge that the reporting
of statistical outcomes and their related levels of significance is the sine qua non
of scientific respectability and acceptability by the psychological establishment.
Historically, the new methods of analysis came first. The confounds, defects,
and confusions of traditional designs became apparent when ANOVA was used
to examine the data and so new designs were undertaken.
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Randomization was demanded by the logic of statistical inference. Esti-
mates of error and valid tests of statistical significance can only be made when
the assumptions that underlie the theory of sampling distributions are upheld.
Put crudely, this means that “blind chance” should not be restricted in the
assignment of treatments to plots, or experimental groups. It is, however,
important to note that randomization does not imply that no restrictions or
structuring of the arrangements within a design are possible.

Figure 12.2 shows two systematic designs: (a) a block design and (b) a Latin
square design, and two randomized designs of the same type, (¢) and (d). The
essential difference is that chance determines the application of the various
treatments applied to the plots in the latter arrangements, but the restrictions are
apparent. In the randomized block and in the randomized Latin square, each
block contains one replication of all the treatments.

The estimate of error is valid, because, if we imagine a large number of different
results obtained by different random arrangements, the ratio of the real to the
estimated error, calculated afresh for each of these arrangements, will be actually
distributed in the theoretical distribution by which the significance of the result is
tested. Whereas if a group of arrangements is chosen such that the real errors in this
group are on the whole less than those appropriate to random arrangements, it has
now been demonstrated that the errors, as estimated, will, in such a group, be higher
than is usual in random arrangements, and that, in consequence, within such a group,
the test of significance is vitiated. (Fisher, 1926b, p. 507)

Treatmentis A Standard Latin Square
12 3 4 6
Block 1 A B CDE A B CD
Block 2 A B CDE B ADC
Block 3 A B CDE C DBA
Block 4 A BCDE D CAB
Biock 6 A B CDE
(a) {b)
Treatments A Random Latin Square
12 3 4 6
Block 1 D CEAB D ACB
Block 2 A DB CE C B D A
Block 3 B AECD B DAC
Block 4 EDCAHB A CBD
Block 5 B ADEC
() (d)

FIG. 12.2 Experimental Designs
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Fisher later examines the utility of the Latin square design, pointing out that
itis by far the most efficient and economical for “those simple types of manurial
trial in which every possible comparison is of equal importance” (p. 510). In
1925 and early 1926, Fisher enumerated the 5 x 5 and 6 X 6 squares, and in the
1926 paper he made an offer that undoubtedly helped to spread the name, and
the fame, of the Rothamsted Station to many parts of the world:

The Statistical Laboratory at Rothamsted is prepared to supply these, or other types of
randomized arrangements, to intending experimenters; this procedure is considered the more
desirable since it is only too probable that new principles will, at their inception, be, in some
detail or other, misunderstood and misapplied; a consequence for which their originator, who
has made himself responsible for explaining them, cannot be held entirely free from blame.
(Fisher, 1926b, pp. 510-511)

THE LINEAR MODEL

Fisher described ANOVA as a way of “arranging the arithmetic” (Fisher Box,
1978, p. 109), an interpretation with which not a few students would quarrel.
However, the description does point to the fact that the components of variance
are additive and that this property is an arithmetical one and not part of the
calculus of probability and statistical inference as such.

The basic construct that marks the culmination of Fisher’s work is that of
specifying values of an unknown dependent variable, y, in terms of a linear set
of parameters, each one of which weights the several independent variables x,,
X2, X3, ... , X, that are used for prediction, together with an error component €
that accounts for the random fluctuations in y for particular fixed values of x;,
X3, X3, ...,X, Inalgebraic terms,

y = ﬁo+ﬁ1X1+B2X2+B3X3+... +ann+8

As we noted earlier, the random component in the model and the fact that it
is sample-based make it a probabilistic model, and the properties of the
distribution of this component, real or assumed, govern the inferences that may
be made about the unknown dependent variable. Fisher’s work is the crucial
link between classical least squares analysis and regression analysis.

As Seal (1967) notes, “The linear regression model owes so much to Gauss
that we believe it should bear his name” (p. 1).

However, there is little reason to suppose that this will happen. Twenty years
ago Seal found that very few of the standard texts on regression, or the linear
model, or ANOVA made more than a passing reference to Gauss, and the
situation is little changed today. Some of the reasons for this have already been
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mentioned in this book. The European statisticians of the 18th and 19th centuries
were concerned with vital statistics and political arithmetic, and inference and
prediction in the modern sense were, generally speaking, a long way off'in these
fields. The mathematics of Legendre and Gauss and others on the theory of
errors did not impinge on the work of the statisticians. Perhaps more strikingly,
the early links between social and vital data and error theory that were made by
Laplace and Quetelet were largely ignored by Karl Pearson and Ronald Fisher.

Why, then, could not the Theory of Errors be absorbed into the broader concept of
statistical theory . .. ? ... The original reason was Pearson’s preoccupation with the
multivariate normal distribution and its parameters. The predictive regression equa-
tion of his pathbreaking ‘regression’ paper (1896) was not seen to be identical in
form and solution to Gauss’s Theoria Motus (1809) model. R. A. Fisher and his
associates . . . were rediscovering many of the mathematical results of least squares(or
error) theory, apparently agreeing with Pearson that this theory held little interest to
the statistician. (Seal, 1967, p. 2)

There might be other more mundane, nonmathematical reasons. Galton and
others were strongly opposed to the use of the word error in describing the
variability in human characteristics, and the many treatises on the theory might
thus have been avoided by the new social scientists, who were, in the main, not
mathematicians.

In his 1920 paper on the history of correlation, Pearson is clearly most
anxious to downplay any suggestion that Gaussian theory contributed to its
development. He writes of the “innumerable treatises” (p. 27) on least squares,
of the lengthy analysis, of his opinion that Gauss and Bravais “contributed
nothing of real importance to the problem of correlation” (p. 82), and of his view
that it is not clear that a least squares generalization “indicates the real line of
future advance” (p. 45). The generalization had been introduced by Yule, who
Pearson and his Gower Street colleagues clearly saw as the enemy. Pearson
regarded himself as the father of correlation and regression insofar as the
mathematics were concerned. Galton and Weldon were, of course, recognized
as important figures, but they were not mathematicians and posed no threat to
Pearson’s authority. In other respects, Pearson was driven to try to show that
his contributions were supreme and independent.

The historical record has been traced by Seal (1967), from the fundamental
work of Legendre and Gauss at the beginning of the 19th century to Fisher over
100 years later.

THE DESIGN OF EXPERIMENTS

A lady declares that by tasting a cup of tea made with milk she can discriminate
whether the milk or the tea infusion was first added to the cup. We will consider the
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problem of designing an experiment by means of which this assertion can be tested.
(Fisher, 1935/1966, 8th ed., p. 11)

With these words Fisher introduces the example that illustrated his view of the
principles of experimentation. Holschuh (1980) describes it as “the somewhat
artificial ‘lady tasting tea’ experiment™ (p. 35), and indeed it is, but perhaps an
American writer does not appreciate the fervor of the discussion on the best
method of preparing cups of tea that still occupies the British! Fisher Box (1978)
reports that an informal experiment was carried out at Rothamsted. A colleague,
Dr B. Muriel Bristol, declined a cup of tea from Fisher on the grounds that she
preferred one to which milk had first been added. Her insistence that the order
in which milk and tea were poured into the cup made a difference led to a
lighthearted test actually being carried out.

Fisher examines the design of such an experiment. Eight cups of tea are
prepared. Four of them have tea added first and four milk. The subject is told
that this has been done and the cups of tea are presented in a random order. The
task is, of course, to divide the set of eight into two sets of four according to the
method of preparation. Because there are 70 ways of choosing a set of 4 objects
from 8:

A subject without any faculty of discrimination would in fact divide the 8 cups
correctly into two sets of 4 in one trial out of 70, or, more properly, with a frequency
which would approach 1 in 70 more and more nearly the more often the test were
repeated. . . . The odds could be made much higher by enlarging the experiment,
while if the experiment were much smaller even the greatest possible success would
give odds so low that the result, might with considerable probability, be ascribed to
chance. (Fisher, 1935/1966, 8th ed., pp. 12—13)

Fisher goes on to say that it is “usual and convenient to take 5 per cent. asa
standard level of significance,” (p. 13) and so an event that would occur by
chance once in 70 trials is decidedly significant. The crucial point for Fisher is
the act of randomization:

Apart, therefore, from the avoidable error of the experimenter himself introducing
with his test treatments, or subsequently, other differences in treatment, the effects
of which the experiment is not intended to study, it may be said that the simple
precaution of randomisation will suffice to guarantee the validity of the test of
significance, by which the result of the experiment is to be judged. (Fisher,
1935/1966, 8th ed., p. 21)

This is indeed he crucial requirement. Experimental design when variable
measurements are being made, and statistical methods are to be used to tease
out the information from the error, demands randomization. But there are
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ironies here in this, Fisher’s elegant account of the lady tasting tea. It has been
hailed as the model for the statistical inferential approach:

1t demands of the reader the ability to follow a closely reasoned argument, but it will
repay the effort by giving a vivid understanding of the richness, complexity and
subtlety of modern experimental method. (Newman, 1956, Vol. 3, p. 1458)

In fact, it uses a situation and a method that Fisher repudiated elsewhere.
More discussion of Fisher’s objections to the Neyman-Pearson approach are
given later. For the moment, it might be noted that Fisher’s misgivings center
on the equation of hypothesis testing with industrial quality control acceptance
procedures where the population being sampled has an objective reality, and
that population is repeatedly sampled. However, the tea-tasting example appears
to follow this model! Kempthorne (1983) highlighted problems and indicated
the difficulties that so many have had in understanding Fisher’s pronounce-
ments.

In his book Statistical Methods and Scientific Inference, first published in
1956, Fisher devotes a whole chapter to “Some Misapprehensions about Tests
of Significance.” Here he castigates the notion that ‘the level of significance’
should be determined by “repeated sampling from the same population”,
evidently with no clear realization that the population in question is hypotheti-
cal" (Fisher, 1956/1973, 3rd ed., pp. 81-82).

He determines to illustrate “the more general effects of the confusion
between the level of significance appropriately assigned to a specific test, with
the frequency of occurrence of a specified type of decision” (Fisher, 1956/1973,
3rd ed., p. 82). He states, “In fact, as a matter of principle, the infrequency with
which, in particular circumstances, decisive evidence is obtained, should not be
confused with the force, or cogency of such evidence” (Fisher, 1956/1973, 3rd
ed., p. 96).

Kempthorne (1983), whose perceptions of both Fisher’s genius and incon-
sistencies are as cogent and illuminating as one would find anywhere, wonders
if this book’s lack of recognition of randomization arose because of Fisher’s
belated, but of course not admitted, recognition that it did not mesh with
“fiduciating.” Kempthorne quotes a “curious” statement of Fisher’s and com-
ments, “Well, well!” A slightly expanded version is given here:

Whereas in the “Theory of Games™ a deliberately randomized decision (1934) may
often be useful to give an unpredictable element to the strategy of play; and whereas
planned randomization (1935-1966) is widely recognized as essential in the selection
and allocation of experimental material, it has no useful part to play in the formation
of opinion, and consequently in tests of significance designed to aid the formation
of opinion in the Natural Sciences. (Fisher, 1956/1973, 3rd ed., p. 102)
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Kendall (1963) wishes that Fisher had never written the book, saying, “If
we had to sacrifice any of his writings, [this book] would have a strong claim
to priority” (p. 6).

However he did write the book, and he used it to attack his opponents. In
marshaling his arguments, he introduced inconsistencies of both logic and
method that have led to confusion in lesser mortals. Karl Pearson and the
biometricians used exactly the same tactics. In chapter 15 the view is presented
that it is this rather sorry state of affairs that has led to the historical development
of statistical procedures, as they are used in psychology and the behavioral
sciences, being ignored by the texts that made them available to a wider, and
undoubtedly eager, audience.
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Assessing Differences
and Having Confidence

FISHERIAN STATISTICS

Any assessment of the impact of Fisher’s arrival on the statistical battlefield has
to recognize that his forces did not really seek to destroy totally Pearson’s work
or its raison d’étre. The controversy between Yule and Pearson, discussed
earlier, had a philosophical, not to say ideological, basis. If, at the height of the
conflict, one or other side had “won,” then it is likely that the techniques
advocated by the vanquished would have been discarded and forgotten. Fisher’s
war was more territorial. The empire of observation and correlation had to be
taken over by the manipulations of experimenters. Although he would never
have openly admitted it — indeed, he continued to attack Pearson and his works
to the very end of his life (which came 26 years after the end of Pearson’s) —
the paradigms and procedures he developed did indeed incorporate and improve
on the techniques developed at Gower Street. The chi-square controversy was
not a dispute about the utility of the test or its essential rationale, but a bitter
disagreement over the efficiency and method of its application. For a number
of reasons, which have been discussed, Fisher’s views prevailed. He was right.

In the late 1920s and 1930s Fisher was at the height of his powers and
vigorously forging ahead. Pearson, although still a man to be reckoned with,
was nearly 30 years away from his best work, an old man facing retirement,
rather isolated as he attacked all those who were not unquestioningly for him.
Last, but by no means least, Fisher was the better mathematician. He had an
intuitive flair that brought him to solutions of ingenuity and strength. At the
same time, he was able to demonstrate to the community of biological and
behavioral scientists, a community that so desperately needed a coherent system
of data management and assessment, that his approach had enormous practical
utility.

186
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Pearson’s work may be characterized as large sample and correlational,
Fisher’s as small sample and experimental. Fisher’s contribution easily absorbs
the best of Pearson and expands on the seminal work of “Student.” Assessing
the import and significance of the variation in observations across groups
subject to different experimental treatments is the essence of analysis of
variance, and a haphazard glance at any research journal in the field of
experimental psychology attests to its impact.

THE ANALYSIS OF VARIANCE

The fundamental ideas of analysis of variance appeared in the paper that
examined correlation among Medelian factors (Fisher, 1918). At this time,
eugenic research was occupying Fisher’s attention. Between 1915 and 1920,
he published half a dozen papers that dealt with matters relevant to this interest,
an interest that continued throughout his life. The 1918 paper uses the term

variance for gc.z + 0'2(2), 6, and o> representing two independent causes of
variability, and referred to the normally distributed population.

We may now ascribe to the constituent causes fractions or percentages of the total
variance which they together produce. It is desirable on the one hand that the
elementary ideas at the basis of the calculus of correlations should be clearly
understood, and easily expressed in ordinary language, and on the other that loose
phrases about the “percentage of causation,” which obscure the essential distinction
between the individual and the population, should be carefully avoided. (Fisher,
1918, pp. 399 — 400)

Here we see Fisher already moving away from Pearsonian correlational
methods as such and appealing to the Gaussian additive model. Unlike Pear-
son’s work, it cannot be said that the particular philosophy of eugenics directly
governed Fisher’s approach to new statistical techniques, but it is clear that
Fisher always promoted the value of the methods in genetics research (see, e.g.,
Fisher, 1952). What the new techniques were to achieve was a recognition of
the utility of statistics in agriculture, in industry, and in the biological and
behavioral sciences, to an extent that could not possibly have been foreseen
before Fisher came on the scene.

The first published account of an experiment that used analysis of variance
to assess the data was that of Fisher and MacKenzie (1923) on The Manurial
Response of Different Potato Varieties.

Two aspects of this paper are of historical interest. At that time Fisher did not fully
understand the rules of the analysis of variance — his analysis is wrong — nor the role
of randomization. Secondly, although the analysis of variance is closely tied to
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additive models, Fisher rejects the additive model in his first analysis of variance,
proceeding to a multiplicative model as more reasonable. (Cochrane, 1980, p. 17)

Cochrane points out that randomization was not used in the layout and that
an attempt to minimize error used an arrangement that placed different treat-
ments near one another. The conditions could not provide an unbiased estimate
of error. Fisher then proceeds to an analysis based on a multiplicative model:

Rather surprisingly, practically all of Fisher’s later work on the analysis of variance
uses the additive model. Later papers give no indication as to why the product model
was dropped. Perhaps Fisher found, as 1 did, that the additive model is a good
approximation unless main effects are large, as well as being simpler to handle than
the product model. (Cochrane, 1980, p. 21)

Fisher’s derivation of the procedure of analysis of variance and his under-
standing of the importance of randomization in the planning of experiments are
fully discussed in Statistical Methods for Research Workers (1925/1970), first
published in 1925. This work is now examined in more detail.

Over 45 years and 14 editions, the general character of the book did not
change. The 14th edition was published in 1970, using notes left by Fisher at
the time of his death. Expansions, deletions, and elaborations are evident over
the years. Notable are Fisher’s increasing recognition of the work of others and
greater attention to the historical account. Fisher’s concentration on his row with
the biometricians as time went by is also evident. The preface to the last edition
follows earlier ones in stating that the book was a product of the research needs
of Rothamsted. Further:

It was clear that the traditional machinery inculcated by the biometrical school was
wholely unsuited to the needs of practical research. The futile elaboration of
innumerable measures of correlation, and the evasion of the real difficulties of
sampling problems under cover of a contempt for small samples, were obviously
beginning to make its pretensions ridiculous. (Fisher, 1970, 14th ed., p. v)

The opening sentence of the chapter on correlation in the first edition reads:

No quantity is more characteristic of modern statistical work than the correlation
coefficient, and no method has been applied successfully to such various data as the
method of correlation. (Fisher, 1925, 1st ed., p. 129)

and in the 14th edition:

No quantity has been more characteristic of biometrical work than the correlation
coefficient, and no method has been applied to such various data as the method of
correlation. (Fisher, 1970, 14th ed., p. 177)
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This not-so-subtle change is reflected in the divisions in psychology that are still
evident. The two disciplines discussed by Cronbach in 1957 (see chapter 2) are
those of the correlational and experimental psychologists.

In his opening chapter, Fisher sets out the scope and definition of statistics.
He notes that they are essential to social studies and that it is because the methods
are used there that “these studies may be raised to the rank of sciences” (p. 2).
The concepts of populations and parameters, of variation and frequency distri-
butions, of probability and likelihood, and of the characteristics of efficient
statistics are outlined very clearly. A short chapter on diagrams ought to be
required reading, for it points up how useful diagrams can be in the appraisal of
data.’ The chapter on distributions deals with the normal, Poisson, and binomial
distributions. Of interest is the introduction of the formula:

s = ! l S(x—f)2

(Fisher uses S for summation) for variance, noting that s is the best estimate

of ¢.

Chapter 4 deals with tests of goodness-of-fit, independence, and homoge-
neity, giving a complete description of the application of the y° tests, including
Yates’ correction for discontinuity and the procedure for what is now known as
the Fisher Exact Test. Chapter 5 is on tests of significance, about which more
is said later. Chapter 6 manages to discuss, quite thoroughly, the techniques of
interclass correlation without mentioning Pearson by name except to acknow-
ledge that the data of Table 31 are Pearson and Lee’s. Failure to acknowledge
the work of others, which was a characteristic of both Pearson and Fisher, and
which, to some extent, arose out of both spite and arrogance, at least partly
explains the anonymous presentation of statistical techniques that is to be found
in the modern textbooks and commentaries.

And then chapter 7, two-thirds of the way through the book, introduces that
most important and influential of methods — analysis of variance. Fisher
describes analysis of variance as “the separation of the variance ascribable to
one group of causes from the variance ascribable to other groups™ (Fisher,
1925/1970, 14th ed., p. 213), but he examines the development of the technique
from a consideration of the intraclass correlation. His example is clear and
worth describing. Measurements from »’' pairs of brothers may be treated in
two ways in a correlational analysis. The brothers may be divided into two

! Scatterplots, that so quickly identify the presence of “outliers,” are critical in correlational
analyses. The geometrical exploration of the fundamentals of variance analysis provides insights which
cannot be matched (see, ¢.g., Kempthomne, 1976).
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classes, say, the elder brother and the younger, and the usual interclass correla-
tion on some measured variable may be calculated. When, on the other hand,
the separation of the brothers into two classes is either irrelevant or impossible,
then a common mean and standard deviation and an intraclass correlation may
be computed.

Given pairs of measurements, x; , x"1 ; X2, X2 X3, X35 ... X , X'
the following statistics may be computed:

x = 2(x+x)

.

2n'

& = 2L [SGc-%) +2(¢ -]
N

L5 [~ D - D)
2n's

r =

In the preceding equations, Fisher’s S has been replaced with X and r, used
to designate the intraclass correlation coefficient. The computation of r, is very
tedious, as the number of classes & and the number of observations in each class
increases. Each pair of observations has to be considered twice, (x; , x"y) and
(x'1,x;) forexample. A setof k values gives k (k— 1) entries in a symmetrical
table. “To obviate this difficulty Harris [1913] introduced an abbreviated
method of calculation by which the value of the correlation given by the
symmetrical table may be obtained directly from two distributions” (Fisher,
1925/1970, 14th ed., p. 216). In fact:

kZ (x, —x)2 = n's"1 + (k- Dy

Fisher goes on to discuss the sampling errors of the intraclass correlation
and refers them to his z distribution. Figure 13.1 shows the effect of the
transformation of r to z.

Curves of very unequal variance are replaced by curves of equal variance, skew
curves by approximately normal curves, curves of dissimilar form by curves of
similar form. (Fisher, 1925/1970, 14th ed., p. 218)

The transformation is given by:

Fisher provides tables of the r to z transformation. After giving an example
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of the use of the table and finding the significance of the intraclass correlation,
conclusions may be drawn. Because the symmetrical table does not give the
best estimate of the correlation, a negative bias is introduced into the value for
z and Fisher shows how this may be corrected. Fisher then shows that intraclass
correlation is an example of the analysis of variance: “A very great simplifica-
tion is introduced into questions involving intraclass correlation when we
recognise that in such cases the correlation merely measures the relative
importance of two groups of variation” (Fisher, 1925/1970, 14th ed., p. 223).

Figure 13.2 is Fisher’s general summary table, showing, “in the last column,
the interpretation put upon each expression in the calculation of an, intraclass
correlation from a symmetrical table” (p. 225).

Degrees of

Frecdom. | Sum of Squares,

kn'

Within families wk-1) §(.::—f,,)2 wsXk—1X1-7)
" .
Between families -1 k?(fp— z a1+ (k- 1)7}
h’
Total wk—1 §(:—i')’ nstk

FIG. 13.2 ANOVA summary table 1 (from Fisher's
Statistical Methods for Research Workers

A quantity made up of two independently and normally distributed parts
with variances A and B respectively, has a total variance of (A + B). A sample
of n' values is taken from the first part and different samples of & values from
the second part added to them. Fisher notes that in the population from which
the values are drawn, the correlation between pairs of members of the same
family is:

A
T A+B

P

and the values of A and B may be estimated from the set of kn' observations.
The summary table is then presented again (Fig. 13.3) and Fisher points out that
“the ratio between the sums of squares is altered in the ration’ : (»'— 1),
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Degrees of Sum of
Frecdom. Squares.
. . k!" wJ
Within | n'(k-1) | S(x=%) n'(k - )B=n's3(k - 1)(1~7)

families

“'
Between| #'-1 AS(z, - £) & ~-DUEALB)=(" = 1)s¥1 + (4~ 1)r}
families 1 '

kn’
Total | ah-1 | S(z-2) | (o -1+ (w'h=1)B=stwk-1-(4~1)}

FIG. 13.3 ANOVA summary table 2 (from Fisher,
Statistical Methods for Research Workers

which precisely eliminates the negative bias observed in z derived by the
previous method" (Fisher, 1925/1970, 14th ed., p. 227).

The general class of significance tests applied here is that of testing whether
an estimate of variance derived from n, degrees of freedom is significantly
greater than a second estimate derived from n, degrees of freedom. The
significance may be assessed without calculating . The value of z may be
calculated as 14 log. {(n' — 1)(kA + B) ~ n'(k — 1)B}. Fisher provides tables of
the z distribution for the 5% and 1% points. In the later editions of the book he
notes that these values were calculated from the corresponding values of the
variance ratio, ¢Z, and refers to tables of these values prepared by Mahalonobis,
using the symbol x in 1932, and Snedecor, using the symbol F' in 1934. In fact:

z = Ylog. F

“The wide use in the United States of Snedecor’s symbol has led to the
distribution being often referred to as the distribution of F'”* (Fisher, 1925/1970,
14th ed., p. 229). Fisher ends the chapter by giving a number of examples of the
use of the method.

It should be mentioned here that the details of the history of the relationship
of ANOVA to intraclass correlation is a neglected topic in almost all discussions
of the procedure. A very useful reference is Haggard (1958).

The final two chapters of the book discuss further applications of analysis
of variance and statistical estimation. Of most interest here is Fisher’s demon-
stration of the way in which the technique can be used to test the linear model
and the “straightness” of the regression line. The method is the link between
least squares and regression analysis. Also of importance is Fisher’s discussion
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of Latin square designs and the analysis of covariance in improving the effi-
ciency and precision of experiments.

Fisher Box notes that the book did not receive a single good review. An
example, which reflected the opinions of many, was the reviewer for the British
Medical Journal:

If he feared that he was likely to fall between two stools, to produce a book neither
full enough to satisfy those interested in its statistical algebra nor sufficiently simple
to please those who dislike algebra, we think Mr. Fisher’s fears are justified by the
result. (Anonymous, 1926, p. 815)

Yates (1951) comments on these early reviews, noting that many of them
expressed dismay at the lack of formal mathematical proofs and interpreted the
work as though it was only of interest to those who were involved in small
sample work. Whatever its reception by the reviewers, by 1950, when the book
was in its 1 1th edition, about 20,000 copies had been sold.

But it is fair to say that something like 10 years went by from the date of the
original publication before Fisher’s methods really started to have an effect on
the behavioral sciences. Lovie (1979) traces its impact over the years 1934 to
1945. He mentions, as do others, that the early textbook writers contributed to
its acceptance. Notable here are the works of Snedecor, published in 1934 and
1937. Lush (1972) quotes a European researcher who told him, “When you see
Snedecor again, tell him that over here we say, ‘Thank God for Snedecor; now
we can understand Fisher’ ” (Lush, 1972, p. 225).

Lindquist published his Statistical Analysis in Educational Research in
1940, and this book, too, was widely used. Even then, some authorities were
skeptical, to say the least. Charles C. Peters in an editorial for the Journal of
Educational Research rather condescendingly agrees that Fisher’s statistics are
“suitable enough” for agricultural research:

And occasionally these techniques will be useful for rough preliminary exploratory
research in other fields, including psychology and education. But if educationists
and psychologists, out of some sort of inferiority complex, grab indiscriminately at
them and employ them where they are unsuitable, education and psychology will
suffer another slump in prestige such as they have often hitherto suffered in
consequence of the pursuit of fads. (Peters, 1943, p. 549)

That Peters’ conclusion partly reflects the situation at that time, but some-
what misses the mark, is best evidenced by Lovie’s (1979) survey, which we
look at in the next chapter. Fifty or sixty years years on, sophisticated designs
and complex analyses are common in the literature but misapprehensions and
misgivings are still to be found there. The recipes are enthusiastically applied
but their structure is not always appreciated.
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If the early workers relied on writers like Snedecor to help them with
Fisherian applications, later ones are indebted to workers like Eisenhart (1947)
for assistance with the fundamentals of the method. Eisenhart sets out clearly
the importance of the assumptions of analysis of variance, their critical function
in inference, and the relative consequences of their not being fulfilled. Eisen-
hart’s significant contribution has been picked up and elaborated on by sub-
sequent writers, but his account cannot be bettered.

He delineates the two fundamentally distinct classes of analysis of variance
— what are now known as the fixed and random effects models. The first of
these is the most familiar to researchers in psychology. Here the task is to
determine the significance of differences among treatment means: “Tests of
significance of employed in connection with problems of this class are simply
extensions to small samples of the theory of least squares developed by Gauss
and others — the extension of the theory to small samples being due principally
to R. A. Fisher” (Eisenhart, 1947, pp. 3-4).

The second class Eisenhart describes as the true analysis of variance. Here
the problem is one of estimating, and inferring the existence of, the components
of variance, “ascribable to random deviation of the characteristics of individuals
of a particular generic type from the mean value of these characteristics in the
‘population’ of all individuals of that generic type™ (Eisenhart, 1947, p. 4).

The failure of the then current literature to adequately distinguish between
the two methods is because the emphasis had been on tests of significance rather
than on problems of estimation. But it would seem that, despite the best efforts
of the writers of the most insightful of the now current texts (e.g., Hays, 1963,
1973), the distinction is stitl not fully applied in contemporary research. In other
words, the emphasis is clearly on the assessment of differences among pairs of
treatment means rather than on the relative and absolute size of variances.

Eisenhart’s discussion of the assumptions of the techniques is a model for
later writers. Random variation, additivity, normality of distribution, homoge-
neity of variance, and zero covariance among the variables are discussed in
detail and their relative importance examined. This work can be regarded as a
classic of its kind.

MULTIPLE COMPARISON PROCEDURES

In 1972, Maurice Kendall commented on how regrettable it was that during the
1940s mathematics had begun to “spoil” statistics. Nowhere is the shift in
emphasis from practice, with its room for intuition and pragmatism, to theory
and abstraction more evident than in the area of multiple comparison proce-
dures. The rules for making such comparisons have been discussed ad nauseam,
and they continue to be discussed. Among the more complete and illuminating
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accounts are those of Ryan (1959) and Petrinovich and Hardyck (1969). Davis
and Gaito (1984) provide a very useful discussion of some of the historical
background. Incommenting on Tukey’s (1949) intention to replace the intuitive
approach (championed by “Student”) with some hard, cold facts, and to provide
simple and definite procedures for researchers, they say:

[This is] symptomatic of the transition in philosophy and orientation from the early
use of statistics as a practical and rigorous aid for interpreting research results, to a
highly theoretical subject predicated on the assumption that mathematical reasoning
was paramount in statistical work. (Davis & Gaito, 1984, p. 5)

It is also the case that the automatic invoking, from the statistical packages,
of any one of half a dozen procedures following an F test has helped to promote
the emphasis on the comparison of treatment means in psychological research.

No one would argue with the underlying rationale of multiple comparison
procedures. Given that the task is to compare treatment means, it is evident that
to carry out multiple ¢ tests from scratch is inappropriate. Over the long run it
is apparent that as larger numbers of comparisons are involved, using a
procedure that assumes that the comparisons are based on independent paired
data sets will increase the Type | error rate considerably when all possible
comparisons in a given set of means are made. Put simply, the number of false
positives will increase. As Davis and Gaito (1984) point out, with o set at the
.05 level and H,, true, comparisons, using the ¢ test, among 10 treatment means
would, in the long run, lead to the difference between the largest and the smallest
of them being reported as significant some 60% of the time. One of the problems
here is that the range increases faster than the standard deviation as the size of
the sample increases. The earliest attempts to devise methods to counteract this
effect come from Tippett (1925) and “Student” (1927), and later workers
referred to the “studentizing” of the range, using tables of the sampling distri-
bution of the range/standard deviation ratio, known as the g statistic. Newman
(1939) published a procedure that uses this statistic to assess the significance of
multiple comparisons among treatment means.

In general, the earlier writers followed Fisher, who advocated performing ¢
tests following an analysis that produced an overall z that rejected the null
hypothesis, the variance estimate being provided by the error mean square and
its associated degrees of freedom. Fisher’s only cautionary note comes in a
discussion of the procedure to be adopted when the z test fails to reject the null
hypothesis:

Much caution should be used before claiming significance for special comparisons.
Comparisons, which the experiment was designed to make, may, of course, be made
without hesitation. It is comparisons suggested subsequently, by a scrutiny of the
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results themselves, that are open to suspicion; for if the variants are numerous, a
comparison of the highest with the lowest observed value, picked out from the results,
will often appear to be significant, even from undifferentiated material. (Fisher,
1935/1966, 8th ed., p. 59)

Fisher is here giving his blessing to planned comparisons but does not
mention that these comparisons should, strictly speaking, be orthogonal or
independent. What he does say is that unforeseen effects may be taken as
guides to future investigations. Davis and Gaito (1984) are at pains to point out
that Fisher’s approach was that of the practical researcher and to contrast it with
the later emphasis on fundamental logic and mathematics.

Oddly enough, a number of procedures, springing from somewhat different
rationales, all appeared on the scene at about the same time. Among the best
known are those of Duncan (1951, 1955), Keuls (1952), Scheffé (1953), and
Tukey (1949, 1953). Ryan (1959) examines the issues. After contending that,
fundamentally, the same considerations apply to both a posteriori (sometimes
called post hoc) and a priori (sometimes called planned) comparisons, and
drawing an analogy with debates over one-tail and two-tail tests (to be discussed
briefly later), Ryan defines the problem as the control of error rate. Per
comparison error rates refer to the probability that a given comparison will be
wrongly judged significant. Per experiment error rates refer not to probabilities
as such, but to the frequency of incorrect rejections of the null hypothesis in an
experiment, over the long run of such experiments. Finally, the so-calied
experimentwise error rate is a probability, the probability that any one particular
experiment has at least one incorrect conclusion. The various techniques that
were developed have all largely concentrated on reducing, or eliminating, the
effect of the latter. The exception seems to be Duncan, who attempted to
introduce a test based on the error rate per independent comparison. Ryan
suggests that this special procedure seems unnecessary and Scheffé (1959), a
brilliant mathematical statistician, is unable to understand its justification.
Debates will continue and, meanwhile, the packages provide us with all the
methods for a keypress or two.

For the purposes of the present discussion, the examination of multiple
comparison procedures provides a case history for the state of contemporary
statistics. First, it is an example, to match all examples, of the quest for rules
for decision making and statistical inference that lie outside the structure and
concept of the experiment itself. Ryan argues “that comparisons decided upon
a priori from some psychological theory should not affect the nature of the
significance tests employed for multiple comparisons” (Ryan, 1959, p. 33).
Fisher believed that research should be theory driven and that its results were
always open to revision.

“Multiple comparison procedures” could easily replace, with only some
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slight modification, the subject of ANOVA in the following quotation:

The quick initial success of ANOVA in psychology can be attributed to the unattrac-
tiveness of the then available methods of analysing large experiments, combined
with the appeal of Fisher’s work which seemed to match, with a remarkable degree
of exactness, the intellectual ethos of experimental psychology of the period, with
its atheoretical and situationalist nature and its wish for more extensive experiments.
(Lovie, 1979, p. 175)

Fisher would have deplored this; indeed, he did deplore it. Second, it reflects
the emphasis, in today’s work, on the avoidance of the Type 1 error. Fisher
would have had mixed feelings about this. On the one hand, he rejected the
notion of “errors of the second kind” (to be discussed in the next chapter); only
rejection or acceptance of the null hypothesis enters into his scheme of things.
On the other, he would have been dismayed — indeed, he was dismayed — by
a concentration on automatic acceptance or rejection of the null hypothesis as
the final arbiter in assessing the outcome of an experiment.

Criticizing the ideologies of both Russia and the United States, where he felt
such technological approaches were evident, he says:

How far, within such a system [Russia], personal and individual inferences from
observed facts are permissible we do not know, but it may perhaps be safer . . . to
conceal rather than to advertise the selfish and perhaps heretical aim of understanding
for oneself the scientific situation. In the U.S. also the great importance of organized
technology has I think made it easy to confuse the process appropriate for drawing
correct conclusions with those aimed rather at, let us say, speeding production, or
saving money. (Fisher, 1955, p. 70)

Third, the multiple comparison procedure debate reflects, as has been noted,
the increasingly mathematical approach to applied statistics. In the United
States, a Statistical Computing Center at the State College of Agriculture at
Ames, lowa (now fowa State University), became the first center of its kind. It
was headed by George W. Snedecor, a mathematician, who suggested that
Fisher be invited to lecture there during the summer session of 1931. Lush
(1972) reports that academic policy at that institution was such that graduate
courses in statistics were administered by the Department of Mathematics. At
Berkeley, the mathematics department headed by Griffith C. Evans, who went
there in 1934, was to be instrumental in making that institution a world center
in statistics. Fisher visited there in the late summer of 1936 but made a very
poor personal impression. Jerzy Neyman was to join the department in 1939.
And, of course, Annals of Mathematical Statistics was founded at University of
Michigan in 1930. On more than one occasion during those years at the end of
the 1930s, Fisher contemplated moving to the United States, and one may
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wonder what his influence would have been on statistical developments had he
become part of that milieu.

And, finally, the technique of multiple comparisons establishes, without a
backward glance, a system of statistics that is based unequivocally on a long-run
relative frequency definition of probability where subjective, a priori notions
at best run in parallel with the planning of an experiment, for they certainly do
not affect, in the statistical context, the real decisions.

CONFIDENCE INTERVALS AND SIGNIFICANCE TESTS

Inside the laboratory, at the researcher’s terminal, as the outcome of the job
reveals itself, and most certainly within the pages of the journals, success means
statistical significance. A very great many reviews and commentaries, some of
which have been brought together by Henkel and Morrison (1970), deplore the
concentration on the Type | error rate, the a level, as it is known, that this
implies. To a lesser extent, but gaining in strength, is the plea for an alternative
approach to the reporting of statistical outcomes, namely, the examination of
confidence intervals. And, to an even lesser extent, judging from the journals,
is the challenge that the statistical outcomes made in the assessment of
differences should be translated into the reporting of strengths of effects. Here
the wheel is turning full circle, back to the appreciation of experimental results
in terms of a correlational analysis.”

Fisher himself seeme to believe that the notion of statistical significance
was more or less self-evident. Even in the last edition of Statistical Methods,
the words null and hypothesis do not appear in the index, and significance and
tests of significance, meaning of have one entry, which refers to the following:

From a limited experience, for example, of individuals of a species, . . . we may
obtain some idea of the infinite hypothetical population from which our sample has
been drawn, and so of the probable nature of future samples. . .. Ifa second sample
belies this expectation we infer that it is, in the language of statistics, drawn from a
second population; that the treatment . . . did in fact make a material difference. . . .
Critical tests of this kind may be called tests of significance, and when such tests are
available we may discover whether a second sample is or is not significantly different
from the first. (Fisher, 1925/1970, 14th ed., p. 41)

A few pages later, Fisher does explain the use of the rail area of the
probability interval and notes that the p = .05 level is the “convenient” limit for
judging significance. He does this in the context of examples of how often

2 Of interest here, however, is the increasing use, and the increasing power, of regression
models in the analysis of data;, see, for example, Fox (1984).
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deviations of a particular size occur in a given number of trials — that twice the
standard deviation is exceeded about once in 22 trials, and so on. There is little
wonder that researchers interpreted significance as an extension of the propor-
tion of outcomes in a long-run repetitive process, an interpretation to which
Fisher objected! In The Design of Experiments, he says:

In order to assert that a natural phenomenon is experimentally demonstrable we need,
not an isolated record, but a reliable method of procedure. In relation to the test of
significance, we may say that a phenomenon is experimentally demonstrable when
we know how to conduct an experiment which will rarely fail to give us a statistically
significant result. (Fisher, 1935/1966, 8th ed., p.14)

Here Fisher certainly seems to be advocating “rules of procedure,” again a
situation which elsewhere he condemns. Of more interest is the notion that
experiments might be repeated to see if they fail to give significant results. This
seems to be a very curious procedure, for surely experiments, if they are to be
repeated, are repeated to find support for an assertion. The problems that these
statements cause are based on the fact that the null hypothesis is a statement that
is the negation of the effect that the experiment is trying to demonstrate, and
that it is this hypothesis that is subjected to statistical test. The Neyman-Pearson
approach (discussed in chapter 15) was an attempt to overcome these problems,
but it was an approach that again Fisher condemned.

It appears that Fisher is responsible for the first formal statement of the .05
level as the criterion for judging significance, but the convention predates his
work (Cowles & Davis, 1982a). Earlier statements about the improbability of
statistical outcomes were made by Pearson in his 1900(a) paper, and “Student”
(1908a) judged that three times the probable error in the normal curve would
be considered significant. Wood and Stratton (1910) recommend “taking
30 to 1 as the lowest odds which can be accepted as giving practical certainty
that a difference in a given direction is significant” (p. 433).

Fisher Box mentions that Fisher took a course at Cambridge on the theory
of errors from Stratton during the academic year 1912-1913.

Odds of 30 to 1 represent a little more than three times the probable etror
(P.E.) referred to the normal probability curve. Because the probable error is
equivalent to a little more than two-thirds of a standard deviation, three P.E.s is
almost two standard deviations, and, of course, reference to any table of the
“areas under the normal curve” shows that a z score of 1.96 cuts off 5% in the
two tails of the distribution. With some little allowance for rounding, the .05
probability level is seen to have enjoyed acceptance some time before Fisher’s
prescription.

A test of significance is a test of the probability of a statistical outcome under
the hypothesis of chance. In post-Fisherian analyses the probability is that of
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making an error in rejecting the null hypothesis, the so-called Type I error. It
is, however, not uncommon to read of the null hypothesis being rejected at the
5% level of confidence, an odd inversion that endows the act of rejection with
a sort of statement of belief about the outcome. Interpretations of this kind
reflect, unfortunately in the worst possible way, the notions of significance tests
in the Fisherian sense, and confidence intervals introduced in the 1930s by Jerzy
Neyman. Neyman (1941) states that the theory of confidence intervals was
established to give frequency interpretations of problems of estimation, The
classical frequency interpretation is best understood in the context of the
long-run relative frequency of the outcomes in, say, the rolling of a die. Actual
relative frequencies in a finite run are taken to be more or less equal to the
probabilities, and in the “infinite” run are equal to the probabilities. In his 1937
paper, Neyman considers a system of random variables x; x; x3, . .. x, desig-
nated E, and a probability law p(£| 6, 8-, ...8,) where 8, 0, ...6, are un-
known parameters. The problem is to establish:

single-valued functions of the x s § (£) and 8(£) having the property that, whatever
the values of the 8's, say 0’1, 0’2, . . . 8',, the probability of 8(£) falling short of 6"
and at the same time of B(F) exceeding ©' is equal to a number « fixed in advance
sothatO<a < 1,

P{B(F) <0\ <B(E)| 0,07, ...00)=a

[t is essential to notice that in this problem the probability refers to the values of
O(E) and B(E) which, being single-valued functions of the x 's are random variables.
0" being a constant, the lefti-hand side of [the above] does nor represent the
probability of 6, falling within some fixed limits. (Neyman, 1937, p. 379)

The values (E) and 6(E) represent the confidence limits for 8'; and span
the confidence interval for the confidence coefficient a.. Care must be taken here
not to confuse this a with the symbol for the Type I error rate; in fact this o is
1 minus the Type | error rate. The last sentence in the quotation from Neyman
just given is very important. First, an example of a statement of the confidence
interval in more familiar terms is, perhaps, in order. Suppose that measurements
on a particular fairly large random sample have produced a mean of 100 and
that the standard error of this mean has been calculated to be 3. The routine
method of establishing the upper and lower limits of the 90% confidence interval
would be to compute 100 + 1.65(3). What has been established? The textbooks
will commonly say that the probability that the population mean, p, falls within
this interval is 90%, which is precisely what Neyman says is not the case.

For Neyman, the confidence limits represent the solution to the statistical
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problem of estimating 8, independent of a priori probabilities. What Neyman
is saying is that, over the long run, confidence intervals, calculated in this way,
will contain the parameter 90% of the time. [t is not just being pedantic to insist
that, in Neyman’s terms, to say that the one interval actually calculated contains
the parameter 90% of the time is mistaken. Nevertheless, that is the way in
which confidence intervals have sometimes come to be interpreted and used.

A number of writers have vigorously propounded the benefits of confidence
intervals as opposed to significance testing:

Whenever possible, the basic statistical report should be in the form of a confidence
interval. Briefly, a confidence interval is a subset of the alternative hypotheses
computed from the experimental data in such a way that for a selected confidence
level o, the probability that the the true hypothesis is included in a set so obtained is
a. Typically, an a -level confidence interval consists of those hypotheses under
which the p value for the experimental outcome is larger than | — a. . . . Confidence
intervals are the closest we can at present come to quantitative assessment of
hypothesis-probabilities . . . and are currently our most effective way to eliminate
hypotheses from practical consideration — if we choose to act as though none of the
hypotheses not included in a 95% confidence interval are correct, we stand only a
5% chance of error. (Rozeboom, 1960, p. 426)

Both Ronald Fisher and Jerzy Neyman would have been very unhappy with
this advice! It does, however, reflect once again the way in which researchers
in the psychological sciences prescribe and propound rules that they believe will
lead to acceptance of the findings of research. Rozeboom’s paper is a thoughtful
attempt to provide alternatives to the routine null hypothesis significance test
and deals with the important aspect of degree of belief in an outcome.

One final point on confidence interval theory: it is apparent that some early
commentators (e.g., E. S. Pearson, 1939b; Welch, 1939) believed that Fisher’s
“fiducial theory” and Neyman's confidence interval theory were closely related.
Neyman himself (1934) felt that his work was an extension of that of Fisher.
Fisher objected strongly to the notion that there was anything at all confusing
about fiducial distributions or probabilities and denied any relationship to the
theory of confidence intervals, which he maintained, was itself inconsistent. In
1941 Neyman attempted to show that there is no relationship between the two
theories, and here he did not pull his punches:

The present author is inclined to think that the literature on the theory of fiducial
argument was born out of ideas similar to those underlying the theory of confidence
intervals. These ideas, however, seem to have been too vague to crystallize into a
mathematical theory. Instead they resulted in misconceptions of “fiducial prob-
ability” and “fiducial distribution of a parameter” which seem to involve intrinsic
inconsistencies. . .. Inthis light, the theory of fiducial inference is simply non-existent
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in the same sense as, for example, a theory of numbers defined by mutually
contradictory definitions. (Neyman, 1941, p. 149)

To the confused onlooker, Neyman does seem to have been clarifying one
aspect of Fisher’s approach, and perhaps for a brief moment of time there was
a hint of a rapprochement. Had it happened, there is reason to believe that
unequivocal statements from these men would have been of overriding impor-
tance in subsequent applications of statistical techniques. In fact, their quarrels
left the job to their interpreters. Debate and disagreement would, of course,
have continued, but those who like to feel safe could have turned to the
orthodoxy of the masters, a notion that is not without its attraction.

A NOTE ON “ONE-TAIL” AND “TWO-TAIL” TESTS

In the early 1950s, mainly in the pages of Psychological Bulletin and the
Psychological Review — then, as now, immensely important and influential
journals — a debate took place on the utility and desirability of one-tail versus
two-tail tests (Burke, 1953; Hick, 1952; Jones, 1952, 1954; Marks, 1951, 1953).
It had been stated that when an experimental hypothesis had a directional
component — that is, not merely that a parameter p, differed significantly from
a second parameter Ll,, but that, for example, p, > p, —then the researcher was
permitted to use the area cut off in only one tail of the probability distribution
when the test of significance was applied. Referred to the normal distribution,
this means that the critical value becomes 1.65 rather than 1.96. It was argued
that because most assertions that appealed to theory were directional — for
example, that spaced was better than massed practice in learning, or that
extraverts conditioned poorly whereas introverts conditioned well — the actual
statistical test should take into account these one-sided alternatives. Arguments
against the use of one-tailed tests primarily centered on what the researcher does
when a very large difference is obtained, but in the unexpected direction. The
temptation to “cheat” is overwhelming! It was also argued that such data ought
not to be treated with the same reaction as a zero difference on scientific
grounds: “It is to be doubted whether experimental psychology, in its present
state, can afford such lofty indifference toward experimental surprises” (Burke,
1953, p. 385).

Many workers were concerned that a move toward one-tail tests represented
a loosening or a lowering of conventional standards, a sort of reprehensible
breaking of the rules and pious pronouncements about scientific conservatism
abound. Predictably, the debate led to attempts to establish the rules for the use
of one-tail tests (Kimmel, 1957).

What is found in these discussions is the implicit assumption that formally
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stated alternative hypotheses are an integral part of statistical analysis. What is
not found in these discussions is any reference to the logic of using a probability
distribution for the assessment of experimental data. Put baldly and simply,
using a one-tail test means that the researcher is using only half the probability
distribution, and it is inconceivable that this procedure would have been
acceptable to any of the founding fathers. The debate is yet another example of
the eagerness of practical researchers to codify the methods of data assessment
so that statistical significance has the maximum opportunity to reveal itself, but
in the presence of rules that discouraged, if not entirely eliminated, “fudging.”

Significance levels, or p levels, are routinely accepted as part of the inter-
pretation of statistical outcomes. The statistic that is obtained is examined with
respect to a hypothesized distribution of the statistic, a distribution that can be
completely specified. What is not so readily appreciated is the notion.of an
alternative model. This matter is examined in the final chapter. For now, a
summary of the process of significance testing given in one of the weightier and
more thoughtful texts might be helpful.

1. Specification of a hypothesized class of models and an alternative class of models.
2. Choice of a function of the observations T.
3. Evaluation of the significance level, i.e, SL = P(T 2 ¢), where ¢ is the observed
value of T and where the probability is calculated for the hypothesized class of
models.

In most applied writings the significance level is designated by P, a custom which
has engendered a vast amount of confusion.

It is quite common to refer to the hypothesized class of models as the null
hypothesis and to the alternative class of models as the alternative hypothesis. We
shall omit the adjective “null” because it may be misleading. (Kempthorne & Folks,
1971, pp. 314-315)
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Treatments and Effects:
The Rise of ANOVA

THE BEGINNINGS

In the last chapter we considered the development of analysis of variance,
ANOVA . Here the incorporation of this statistical technique into psychological
methodology is examined in a little more detail.

The emergence of ANOVA as the most favored method of data appraisal in
psychology from the late 1930s to the 1960s represents a most interesting mix
of forces. The first was the continuing need for psychology to be “respectable”
in the scientific sense and therefore to seek out mathematical methods. The
correlational techniques that were the norm in the 1920s and early 1930s were
not enough, nor did they lend themselves to situations where experimental
variables might be manipulated. The second was the growth of the commenta-
tors and textbook writers who interpreted Fisher with a minimum need of
mathematics. From a trickle to a flood, the recipe books poured out over a
period of about 25 years and the flow continues unabated. And the third is the
emergence of explanations of the models of ANOVA using the concept of
expected mean squares. These explanations, which did not avoid mathematics,
but which were at a level that required little more than high school math, opened
the way for more sophisticated procedures to be both understood and applied.

THE EXPERIMENTAL TEXTS

It is clear, however, that the enthusiasm that was mounting for the new methods
is not reflected in the textbooks of experimental psychology that were published
in those years. Considering four of the books that were classics in their own
time shows that their authors largely avoided or ignored the impact of Fisher’s
statistics. Osgood’s Method and Theory in Experimental Psychology (1953)

205
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mentions neither Fisher nor ANOVA, neither Pearson nor correlation. Wood-
worth and Schlosberg’s Experimental Psychology (1954) ignores Pearson by
name, and the authors state, “To go thoroughly into correlational analysis lies
beyond the scope of this book™ (p. 39). The writers, however, show some
recognition of the changing times, admitting that the “old standard ‘rule of one
variable’ ” (p. 2) does not mean that no more than one factor may be varied. The
experimental design must allow, however, for the effects of single variables to
be assessed and also the effect of possible interactions. Fisher’s Design of
Experiments is then cited, and Underwood’s (1949) book is referenced and
recommended as a source of simple experimental designs. And that is it!

Hilgard’s chapter in Stevens’ Handbook of Experimental Psychology (1951)
not only gives a brief description of ANOVA in the context of the logic of the
control group and factorial design but also comments on the utility of matched
groups designs, but other commentaries, explanations, and discussions of
ANOVA methods do not appear in the book. Stevens himself recognizes the
utility of correlational techniques but admits that his colleague Frederick
Mosteller had to convince him that his claim was overly conservative and that:
“rank order correlation does not apply to ordinal scales because the derivation
of the formula for this correlation involves the assumption that the differences
between successive ranks are equal. (p. 27).” An astonishing claim.

Underwood’s (1949) book is a little more encouraging, in that he does
recognize the importance of statistics. His preface clearly states how important
it is to deal with both method and content. His own teaching of experimental
psychology required that statistics be an integral part of it: ““I believe that the
factual subject matter can be comprehended readily without a statistical knowl-
edge, but a full appreciation of experimental design problems requires some
statistical thinking” (p. v) .

But, in general, it is fair to say that many psychological researchers were not
in tune with the statistical methods that were appearing. “Statistics” seems to
have been seen as a necessary evil! Indeed, there is more than a hint of the same
mindset in today’s texts. An informal survey of introductory textbooks publish-
ed in the last 10 years shows a depressingly high incidence of statistics being
relegated to an appendix and of sometimes shrill claims that they can be
understood without recourse to mathematics. In using statistics such as the
t ratio and more comprehensive analyses such as ANOVA, the necessity of
randomization is always emphasized. Researchers in the social and educational
areas of psychology realized that such a requirement when it came to assigning
participants to “treatments” was just not possible. Levels of ability, socioeco-
nomic groupings, age, sex, and so on cannot be directly manipulated. When
methodologists such as Campbell and Stanley (1963), authorities in the classi-
fication and comparison of experimental designs, showed that meaningful
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analyses could be achieved through the use of “found groups” and what is often
called quasi-experimental designs, the potential of ANOVA techniques wid-
ened considerably. The argument was, and is, advanced that unless the experi-
menter can control for all relevant variables alternative explanations for the
results other than the influence of the independent variable can be found — the
so-called correlated biases. The skeptic might argue that, in addition to the fact
that statistical appraisals are by definition probabilistic and therefore uncertain,
direct manipulation of the independent variable does not assuredly guard against
mistaken attribution of its effects.

And, very importantly, the commentaries, such as they were, on experimen-
tal methods have to be seen in the light of the dominant force, in American
psychology at least, of behaviorism. For example, Brennan’s textbook History
and Systems of Psychology (1994) devotes two chapters and more than 40 pages
out of about 100 pages to Twentieth-Century Systems (omitting Eastern Tradi-
tions, Contemporary Trends and the Third Force Movement). This is not to be
taken as a criticism of Brennan: indeed, his book has run to several editions and
is an excellent and readable text.! The point is that from Watson’s (1913) paper
until well on into the 1960s, experimental psychology was, for many, the
experimental analysis of behavior — latterly within a Skinnerian framework.
Sidman’s (1960) book Tactics of Scientific Research: Evaluating Experimental
Data in Psychology is most certainly not about statistical analysis!

Science is presumably dedicated to stamping out ignorance, but statistical evaluation
of data against a baseline whose characteristics are determined by unknown variables
constitutes a passive acceptance of ignorance. This is a curious negation of the
professed aims of science. More consistent with those aims is the evaluation of data
by means of experimental control. (p. 45)

In general, the experimental psychologists of this ilk eschewed statistical
approaches apart from descriptive means, frequency counts, and straightfor-
ward assessments of variability.

THE JOURNALS AND THE PAPERS

Rucci and Tweney (1980) have carried out a comprehensive analysis of the use
of ANOVA from 1925 to 1950, concentrating mainly, but not exclusively, on
American publications. They identify the earliest research to use ANOVA as a
paper by Reitz (1934). The author checked for homogeneity of variance, gave

the method for computing z, and noted its relationship with n°. An early paper

! Perhaps one might be permitted to ask Brennan to include a chapter on the history and
influence of statistics!
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that uses a factorial design is that of Baxter (1940). The author, at the University
of Minnesota, acknowledges the statistical help given to him by Palmer Johnson,
and he also credits Crutchfield (1938) with the first application of a factorial
design to a psychological study. Baxter states that his aim is “an attempt to show
how factorial design, as discussed by Fisher and more specifically by Yates
.. ., has been applied to a study of reaction time” (p.494). The proposed study
presented for illustration deals with reaction time and examined three factors:
the hand used by the participant, the sensory modality (auditory or visual), and
discrimination (a single stimulus, two stimuli, three stimuli). Baxter explains
how the treatment combinations could be arranged and shows how partial
confounding (which results in some possible interactions becoming untestable)
is used to reduce subject fatigue. The paper is altogether a remarkably clear
account of the structure of a factorial design. And Baxter followed through by
reporting (1942) on the outcome of a study which used this design.

Rucci and Tweney examined 6,457 papers in six American psychological
journals. They find that from 1935 to 1952 there is a steady rise in the use of
ANOVA, which is paralleled by a rise in the use of the # ratio. The rise became
a fall during the war years, and the rise became steeper after the war. It is
suggested that the younger researchers, who would have become acquainted
with the new techniques in their pre-war graduate school training, would have
been eligible for military service and the “old-timers” who were left used older
procedures, such as the critical ratio. It is not the case that the use of correlational
techniques diminished. Rucci and Tweney’s analysis indicates that the percent-
age of articles using such methods remained fairly steady throughout the period
examined. Their conclusion is that ANOVA filled the void in experimental
psychology but did not displace Cronbach’s (see chapter 2, p. 35) other disci-
pline of scientific psychology. Nevertheless, the use of ANOVA was not
established until quite late and only surpassed its pre-war use in 1950.

Overall, Rucci and Tweney’s analysis leads, as they themselves state, to the
view that “ANOVA was incorporated into psychology in logical and orderly
steps” (p. 179), and their introduction avers that “It took less than 15 years for
psychology to incorporate ANOVA” (p. 166). They do not claim ~ indeed they
specifically deny — that the introduction of these techniques constitutes a
paradigm shift in the Kuhnian sense.

An examination of the use of ANOVA from 1934 to 1945 by a British
historian of science, Lovie (1979), gives a somewhat different view from that
offered by Rucci and Tweney, who, unfortunately, do not cite this work, for it
is an altogether more insightful appraisal, which comes to somewhat different
conclusions:

The work demonstrates that incorporating the technique [ANOVA] into psychology
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was a long and painful process. This was due more to the substantive implications
of the method than to the purely practical matters of increased arithmetical labour
and novelty of language. (p. 151)

Lovie also shows that ANOVA can be regarded, as he puts it, as “one of the
midwives of contemporary experimental psychology” (p. 152). A decidedly
non-Kuhnian characterization, but close enough to an indication of a paradigm
shift! Three case studies described by Lovie show the shift, over a period from
1926 to 1932, from informal, as it were, “let-me-show-you™ analysis through a
mixture of informal and statistical analysis to a wholly statistical analysis. It was
the design of the experiment that occupied the experimenter as far as method
was concerned, and the meaning of the results could be considered to be “a
scientifically acceptable form of consensual bargaining between the author and
the reader on the basis of non-statistical common-sense statements about the
data” (p. 155).

When ANOVA was adopted, the old conceptualizations of the interpreta-
tions of data died hard, and the results brought forth by the method were used
selectively and as additional support for outcomes that the old verbal methods
might well have uncovered. Lovie’s valuable account and his examination of
the early papers provides detailed support for the reasons why many of the first
applications of ANOVA were trivial and why more enlightened and effective
uses were slow to emerge in any quantity.

A series of papers by Carrington (1934, 1936, 1937) in the Proceedings of
the Society for Psychical Research report on results given by one-way ANOVA.
The papers deal with the quantitative analysis of trance states and show that the
pioneers in systematic research in parapsychology were among the earliest users
of the new methods. Indeed, Beloff (1993) makes this interesting point:

Statistics, after all, have always been a more critical aspect of experimental para-
psychology than they have been for psychophysics or experimental psychology
precisely because the results were more likely to be challenged. There is, indeed,
some evidence that parapsychology acted as a spur to statisticians in developing their
own discipline and in elaborating the concept of randomness. (p. 126)

It is worth noting that some of the most well-known of the early rigorous
experimental psychologists, for example, Gardner Murphy and William
McDougall, were interested in the paranormal, and it was the latter who, leaving
Harvard for Duke University, recruited J. B. Rhine, who helped to found, and
later directed, that institution’s parapsychology laboratory.

Of course, there were several psychological and educational researchers who
vigorously supported the “new” methods. Garrett and Zubin (1943) observe that
ANOVA had not been used widely in psychological research. These authors
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make the point that:

Even as recently as 1940, the author of a textbook [Lindquist] in which Fisher’s
methods are applied to problems in educational rersearch, found it necessary to use
artificial data in several instances because of the lack of experimental material in the
field. (p. 233)

These authors also offer the opinion that the belief that the methods deal
with small samples had influenced their acceptance — a belief, nay, a fact, that
has led others to point to it as a reason why they were welcomed! They also
worried about “the language of the farm,” “soil fertility, weights of pigs,
effectiveness of manurial treatments and the like” (p. 233). Hearnshaw, the
eminent historian of psychology, also mentions the same difficulty as a reason
for his view that “Fisher’s methods were slow to percolate into psychology both
in this country [Britain] and in America” (1964, p. 226). Although it is the case
that agricultural examples are cited in Fisher’s books, and phrases that include
the words “blocks,” “plots,” and “split-plots™ still seem a little odd to psycho-
logical researchers, it is not true to say that the world of agriculture permeates
all Fisher’s discussions and explanations, as Lovie (1979) has pointed out.
Indeed, the early chapter in The Design of Experiments on the mathematics of
alady tasting tea is clearly the story of an experiment in perceptual ability, which
is about as psychological as one could get.

It must be mentioned that Grant (1944) produced a detailed criticism of
Garrett and Zubin’s paper, in particular taking them to task for citing examples
of reports where ANOVA is wrongly used or inappropriately applied. From the
standpoint of the basis of the method, Grant states that in the Garrett and Zubin
piece:

The impression is given . . . that the primary purpose of analysis of variance is to
divide the total variance into two or more components (the mean squares) which are
to be interpreted directly as the respective contributions to the total variance made
by the experimental variables and experimental error. (pp. 158-159)

He goes on to say that the purpose of ANOVA is to test the significance of
variation and, while agreeing that it is possible to estimate the proportional
contribution of the various components, “the process of estimation must be
clearly differentiated from the test of significance” (p. 159). These are valid
criticisms, but it must be said that such confusion as some commentaries may
bring, reflects Fisher’s (1934) own assertion in remarks on a paper given by
Wishart (1934) at a meeting of the Royal Statistical Society that ANOVA ”is
not a mathematical theorem, but rather a convenient method of arranging the
arithmetic" (p. 52). In addition the estimation of treatment effects is considered
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by many researchers to be critical (and see chapter 7, p. 83).

What is most telling about Grant’s remarks, made more than 50 years ago,
is that they illustrate a criticism of data appraisal using statistics that persists to
this day, that is, the notion that the primary aim of the exercise is to obtain
significant results and that reporting effect size is not a routine procedure. Also
ofinterest is Grant’s inclusion of expressions for the expected values of the mean
squares, of which more later.

A detailed appraisal of the statistical content of the leading British journal
has not been carried out, but a review of that publication over 10 year periods
shows the rise in the use of statistical techniques of increasing variety and
sophistication. The progression is not dissimilar from that observed by Rucci
and Tweney. The first issue of the British Journal of Psychology appeared in
1904 under the distinguished co-editorships of James Ward (1843-1925) and
W. H. R. Rivers (1864-1922). Some papers in that volume made use of such
statistics as were generally available, averages, medians, mean variation, stand-
ard deviation, and the coefficient of variation. Statistics were there at the start.

By 1929-1930, correlational techniques appeared fairly regularly in the
journal. Volume 30, in 1940, contained 29 papers and included the use of %%,
the mean, the probable error, and factor analysis. There were no reports that
used ANOVA and nor did any of the 14 papers published in the 1950 volume
(Vol. 41), But 7, and the ¢ ratio still found a place. Fitt and Rogers (1950), the
authors of the paper that used the ¢ ratio for the difference between the means
felt it necessary to include the formula and cited Lindquist (1940) as the source.
The researchers of the 1950s who were beginning to use ANOVA, followed the
appearance of a significant F value with post hoc multiple ¢ tests. The use of
multiple comparison procedures (chapter 13, p. 195) had not yet arrived on the
data analysis scene. Six of the 36 papers published in 1960 included ANOVA,
one of which was an ANOVA by ranks. Kendall’s Tau, the ¢ ratio, correlation,
partial correlation, factor analysis, the Mann-Whitney U test — all were used.
Statistics had indeed arrived and ANOVA was in the forefront..

A third of the papers (17 out of 52, to be more precise!) in the 1970 issue
made use of ANOVA in the appraisal of the data. Also present were Pearson
correlation coefficients, the Wilcoxon T, Tau, Spearman’s rank difference
correlation, the Mann-Whitney U, the phi coefficient, and the ¢ ratio.

Educational researchers figured largely in the early papers that used
ANOVA, both as commentators on the method and in applying it to their own
research. Of course, many in the field were quite familiar with the correlational
techniques that had led to factor analysis and its controversies and mathematical
complexities. There had been more than 40 years of study and discussion of
skill and ability testing and the nature of intelligence — the raison d étre of factor
analysis — and this was central to the work of those in the field. They were ready,
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even eager, to come to grips with methods that promised an effective way to
use the multi-factor approach in experiments, an approach that offered the
opportunity of testing competing theories more systematically than before.

And it was from the educational researcher’s standpoint that Stanley (1966)
offered an appraisal of the influence of Fisher’s work “thirty years later.” He
makes the interesting point that although there were experimenters with “con-
siderable ‘feel’ for designing experiments, . . . perhaps some of them did not
have the technical sophistication to do the corresponding analyses.” This
judgment is based on the fact that 5 of the 21 volunteered papers submitted to
the Division of Educational Psychology of the American Psychological Asso-
ciation annual convention in 1965 had to be returned to have more complex
analysis carried out. This may have been due to lack of knowledge, it may have
been due to uncertainty about the applicability of the techniques, but it also
reflects perhaps the lingering appeal of straightforward and even subjective
analysis that the researchers of 20 years before favored, as we noted earlier in
the discussion of Lovie’s appraisal. It is also Stanley’s view that “the impact of
the Fisherian revolution in the design and analysis of experiments came slowly
to psychology” (p. 224). It surely is a matter of opinion as to whether Rucci
and Tweney’s count of less than 5 per cent of papers in their chosen journals in
1940 to between 15 and 20 per cent in 1952 is slow growth, particularly when
it is observed that the growth of the use of ANOVA varied considerably across
the journals.? This leads to the possibility that the editorial policy and practice
of their chosen journals could have influenced Rucci and Tweney’s count.? It
is also surely the case that if a new technique is worth anything at all, then the
growth of its use will show as a positively accelerated growth curve, because
as more people take it up, journal editors have a wider and deeper pool of
potential referees who can give knowledgeable opinions. Rucci and Tweney’s
remark, quoted earlier, on the length of time it took for ANOVA to become part
of experimental psychology, has a tone that suggests that they do not believe
that the acceptance can be regarded as “slow.”

THE STATISTICAL TEXTS

The first textbooks that were written for behavioral scientists began to appear
in the late 1940s and early 1950s although it must be noted that the much-cited

2 Stanley observes that the Journal of General Psychology was late to include ANOVA and it did
not appear at all in the 1948 volume.

® The author, many years ago, had a paper sent back with a quite kind note indicating that the
journal generally did not publish “correlational studies.” Younger researchers soon learn which journals
are likely to be receptive to their approaches!
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text by Lindquist was published in 1940. The impact of the first edition of this
book may have been lessened, however, by a great many errors, both typo-
graphic and computational. Quinn McNemar (1940b), in his review, observes
that the volume, “in the opinion of the reviewer and student readers, suffers from
an overdose of wordiness” (p. 746). He also notes that there are several major
slips, although acknowledging the difficulty in explaining several of the topics
covered, and declares that the book “should be particularly useful to all who are
interested in obtaining non-mathematical knowledge of the variance technique”
(p. 748).

Snedecor, an agricultural statistician, published a much-used text in 1937,
and he is often given credit for making Fisher comprehensible (see chapter 13,
p- 194). Rucci and Tweney place George Snedecor of lowa State College,
Harold Hotelling, an economist at Columbia, and Palmer Johnson of the
University of Minnesota, all of whom had spent time with Fisher himself, as the
founders of statistical training in the United States. But any informal survey of
psychologists who were undergraduates in the 1950s and early 1960s would
likely reveal that a large number of them were reared on the texts of Edwards
(1950) of the University of Washington, Guilford (1950) of the University of
Southern California, or McNemar (1949) of Stanford University. Guilford had
published a text in 1942, but it was the second edition of 1950 and the third of
1956 that became very popular in undergraduate teaching. In Canada a some-
what later popular text was Ferguson’s (1959) Statistical Analysis in Psychology
and Education, and in the United Kingdom, Yule’s An Introduction to the
Theory of Statistics, first published in 1911, had a 14th edition published (with
Kendall) in 1950 that includes ANOVA.

EXPECTED MEAN SQUARES

In his well-known book, Scheffé (1959) says:

The origin of the random effects models, like that of the fixed effects models, lies in
astronomical problems; statisticians re-invented random-effects models long after
they were introduced by astronomers and then developed more complicated ones.
(p.221)

Scheffé cites his own 1956(a) paper,which gives some historical background
to the notion of expected mean squares — E(MS). The estimation of variance
components using E(MS) was taken up by Daniels (1939) and later by Crump
(1946, 1951). Eisenhart’s (1947) influential paper on the assumptions underly-
ing ANOV A models also discusses them in this context. Anderson and Bancroft
(1952) published one of the earliest texts that examines mathematical expecta-
tion — the expected value of a random variable “over the long run” — and early
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in this work they state the rules used to operate with expected values.

The concept is easily understood in the context of a lottery. Suppose you
buy a $1.00 ticket for a draw in which 500 tickets are to be sold. The first and
only prize is $400.00. Your “chances” of winning are 1 in 500 and of losing 499
in 500. If Y is the random variable,

When Y = —$1.00, the probability of ¥, i.e., p(¥) = 499/500.
When Y = $399.00 (you won!), the probability p(¥) = 1/500.
The expectation of gain over the long run is:

E(Y)=ZYp(Y) = (=1)(499/500) + (399)(1/500) = —0.0998 + 0.798 = - 0.20

If you joined in the draw repeatedly you would “in the long run” lose 20 cents.

In ANOVA we are concerned with the expected values of the various
components — the mean squares — over the long run.

Although largely ignored by the elementary texts, the slightly more ad-
vanced approaches do treat their discussions and explanations of ANOVA’s
model from the standpoint of £(MS). Cornfield and Tukey (1956) examine the
statistical basis of E(MS), but Gaito (1960) claims that “there has been no
systematic presentation of this approach in a psychological text or journal which
will reach most psychologists” (p. 3), and his paper aims to rectify this. The
approach, which Gaito rightly refers to as “illuminating,” offers some mathe-
matical insight into the basis of ANOVA and frees researchers from the “recipe
book” and intuitive methods that are often used. Eisenhart makes the point that
these methods have been worthwhile and that readers of the books for the
“non-mathematical” researcher have achieved sound and quite complex analy-
ses in using them. But these early commentators saw the need to go further.
Gaito’s short paper offers a clear statement of the general £(MS) model, and his
contention that this approach brings psychology a tool for tackling many
statistical problems has been borne out by the fact that now all the well-known
intermediate texts that deal with ANOVA models use it.

This is not the place to detail the algebra of E(MS) but here is the statement
of the general case for a two-factor experiment:

EMS) ={1-2]c2+n|1 _b Oup +nbo,’

N B
E(MS;) = 1—% Zn 1—-;1 Oy’ + nacy’
E(MSw) =| 1 - |0 + noeg’
EMSe) =[1 -2 6.2

ERR) — N G¢
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In the fixed effects model — often referred to as Model [ — inferences can be
made only about the treatments that have been applied. In the random effects
model the researcher may make inferences not only about the treatments
actually applied but about the range of possible levels. The treatments applied
are a random sample of the range of possible treatments that could have been
applied. Then inferences may be made about the effects of all levels from the
sample of factor levels. This model is often referred to as Model I1. In the case
where there are two factors A and B there are 4 potential levels of A but only
a levels are included in the experiment. When @ = A then factor A is a fixed
factor. If the a levels included are a random sample of the potential A levels then
factor A is a random factor. Similarly for factor B there are B potential levels
of the factor and b levels are used in the experiment. When a = 4 then £ = 1

and when B is a random effect, the levels sample size b is usually very, very
much smaller than B and % becomes vanishingly small, as does £ where n is

-sample size and N is population size.

Obtaining the variance components allows us to see which components are
included in the model, be the factor fixed or random, and to generate the
appropriate F ratios to test the effects.

For fixed effects: E(MS,) = a,” +nbo,’, E(MSy) =6, + nacy’,

E(MSy5) = 6. + no-aﬂz, and the error term is .-

For random effects: E(MS,) = o, + ncmg2 +nbol,

E(MS5) = 6 + no,y” + nacy’, E(MS4s) = 6, + nGyy’, the error term is ..
When A is fixed and B is random: E(MSy) = 6,” + noy” + nbo,’,

E(MSs) =06 + nacgz, EMSu) =0 + ncagz, the error term is o
Given that the structure of the F ratio requires that its numerator consists of the
components for a given source and its denominator the same components save
the one associated with the source, we find, for example, that to test for A, the
F ratio for fixed effects is:

F= % , whereas for random effects it is F' = % .

There is little doubt that development of this approach has enabled ANOVA to
be more closely appreciated by its practitioners.

Finally, it is only in recent years that there has been a full realization that
mathematically the ANOVA approach and the regression approach can be
brought together. Cronbach’s delineation of the “two disciplines” (1957, and
see chapter 2), the neglect by the textbook writers of any meaningful account
of the general linear model, and the avoidance by the introductory text authors
of a discussion of expected mean squares, have all contributed to a misunder-
standing of the unifying basis of statistical methods.
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The Statistical Hotpot

TIMES OF CHANGE

The later years of the 1920s were watershed years for statistics. Karl Pearson
was approaching the end of his career (he retired in 1933), and some of the older
statisticians were not able to cope with the new order. The divisions had been,
and were still being, drawn. Yule retired from full-time teaching at Cambridge
in 1930, and, writing to Kendall after K.P.’s death in 1936 said, “I feel as though
the Karlovingian era has come to an end, and the Piscatorial era which succeeds
it is one in which I can play no part” (quoted by Kendall, 1952, p. 157).

Yule’s text had not by then tackled the problems of small samples. The ¢
tests were not discussed until the 11th edition of 1937, a revision that was, in
fact, undertaken by Maurice Kendall. The changes that were taking place in
statistical methodology led to positions being adopted that were often based
more on personality and style and loyalties than rational argument on the basic
logic and utility of the approaches. Yates, who succeeded Fisher at Rothamsted
in 1933, was to write, in 1951, in a commentary on Statistical Methods for
Research Workers:

Because of the importance that correlation analysis had assumed it was natural that
the analysis of variance should be approached via correlation, but to those not trained
in the school of correlational analysis (of which { am fortunate to be able to count
myself one) this undoubtedly makes this part of the book more difficult to compre-
hend. (Yates, 1951, p. 24, emphasis added)

And Yates was a solid supporter of Fisher to the very end.

Fisher published his text in 1925, and in the same year his paper on the
applications of “Student’s” distribution appeared. Egon Pearson and Jerzy
Neyman met that year. They were to introduce new features into statistics that
Fisher would vehemently oppose to the end of his life.

216
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It is a curious fact that what most social scientists now take to be inferential
statistics is a mixture of procedures that, as presented in many of the current
statistical cookbooks,' would be criticized by its innovators, Ronald A. Fisher,
Jerzy Neyman, and Egon Pearson. Fisher established the present-day paramount
importance of the rejection or acceptance of the null hypothesis in the determi-
nation of a decision on a statistical outcome — the hypothesis that the outcome
is due to chance. The new participants — they could not be described as partners
~in the union that became statistics argued for an appreciation of the probability
of an alternative hypothesis.

In 1925 Jerzy Neyman, on a Polish government fellowship and with a new
PhD from Warsaw, arrived at University College, London, to study statistics
with Karl Pearson. Neyman was born in Russia in 1894 and read mathematics
at the University of Kharkov. In 1921, he moved to the new Republic of Poland,
where he became an assistant at the University of Warsaw and where he worked
for the State Meteorological Institute. His initial months in London were
difficult, partly because of his struggles with English and partly because of
misunderstandings with “K.P.,” but gradually he struck up a friendship that led
to aresearch collaboration with Egon Pearson. Neyman’s professional progress
and his social and academic relationships have been recounted in a sympathetic
and revealing account by Constance Reid (1982).

The younger Pearson has been described by many as a somewhat diffident
and introverted man who was very much in the shadow of his father. Reid tells
us of his feelings:

Pearson had decided that if he was going to be a statistician he was going to have to
break with his father’s ideas and construct his own statistical philosophy. In
retrospect, he describes what he wanted to do as “bridging the gap” between “Mark
I” statistics — a shorthand expression he uses for the statistics of K.P., which was
based on large samples obtained from natural populations — and the statistics of
Student and Fisher, which had treated small samples obtained in controlled experi-
ments — “Mark Il statistics.” (Reid, 1982, p. 60)

Pearson (1966) himself describes “the first steps.” In 1924 papers by E. C.
Rhodes and by Karl Pearson (1924b) had explored the problem of choosing

' The phrase statistical cookbook has a a pejorative ring, which is not wholly justified.
There are many excellent basic texts available, and there are many excellent cookery books.
Both are necessary to our well-being. The point is that conflicting recipes lead to statistical
and gastronomic confusion, and the fact that such conflicts exist has, by and large, been
ignored by consumers in the social sciences.
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between alternative tests for the significance of differences, tests that had the
same logical validity but that gave different levels of significance for the
outcome:

I set about exploring the multi-dimensional sample space and comparing what came
to be termed the rejection regions associated with alternative tests. Could one find
some general principle or principles appealing to intuition, which would guide one
in choosing between tests? (E. S. Pearson, 1966, p. 6)

Pearson had pondered the question: what, exactly, was the interpretation of
“Student’s” test?

In large samples . . . the ratio 7 = (X — p)Vn/s could be regarded as the best estimate
available of the desired ratio (x — p)\[ﬁ /6 and, as such, referred to the normal
probability scale. If the sample was . . . small . . . a sample with a less divergent
mean x;, might well provide a larger value of ¢ than a second sample with a more
divergent mean, x,, simply because s, in the first sample happened through sampling
fluctuations to be smaller than s; in the second. To someone brought up with the
older point of view this seemed at first sight paradoxical . . .

1 realize that a reorientation of outlook must for me at any rate have been
necessary. It was a shift which I think K. P. was not able or never saw the need to
make. (E. S. Pearson, 1966, p. 6)

In 1926 Pearson, put the problem to “Student,” and the latter’s reply shows,
once more, the fertility of his ideas. Just as they had aided Fisher’s inspirations,
his comments now set the younger Pearson and later Neyman on the path that
led to the Neyman-Pearson Theory. After noting what, of course, was widely
accepted, that with large samples one is able to find the chance that a given value
for the mean of the sample lies at any given distance from the mean of the
population, and that, even if the chance is very small, there is no proof that the
sample has not been randomly drawn, he says:

What it does is to show that if there is any alternative hypothesis which will explain
the occurrence of the sample with a more reasonable probability, say 0.05 (such as
that it belongs to a different population or that the sample wasn’t random or whatever
will do the trick) you will be very much more inclined to consider that the original
hypothesis is not true. (quoted by Pearson, 1966, p. 7, emphasis added)

Pearson recalls that during the autumn of 1926, the problems of the specifi-
cation of the class of alternative hypotheses and their definition, the rejection
region in the sample space, and the two sources of error were discussed. At the
end of the year, Pearson was examining the likelihood ratio criterion as a way
of approaching the question as to whether the alternative, or what Fisher later
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called the null, hypothesis was the more likely. Pearson always recognized that
he was a weak mathematician and that he needed help with the mathematical
formulation of the new ideas. He recalled to Reid (1982) that he approached
Neyman, the new post-doctoral student at Gower Street, perhaps because he
was “so ‘fresh’ to statistics” (p. 62) and because other possible collaborators
would all have preferences for either Mark I or Mark Il statistics. Neyman was
nota member of either of the camps. He really knew very little of the statistical
work of the elder Pearson, nor that of “Student” or Fisher. But an immediate
and close collaboration was not possible. Although Egon Pearson and Neyman
had a good deal of social contact over the summer of 1926 and Pearson
remembered that they had touched on the new questions, Neyman was disen-
chanted with the Biometric Laboratory. It was not the frontier of mathematical
statistics that he had expected, and he determined to go to Paris (where his wife
was an art student) and press on with his work in probability and mathematics.

At the end of 1926, correspondence began between Neyman and Pearson,
and Pearson visited his colleague in Paris in the spring of 1927. Reid (1982)
reports that she gave copies of Neyman’s letters to Pearson to Erich Lehmann,
an early student of Neyman’s at Berkeley and an authority on the Neyman-
Pearson theory (Lehmann, 1959), for his comment. Lehmann’s conclusion was
that, at any rate until early in 1927, Neyman “obviously didn’t understand what
Pearson was talking about” (p. 73).

The first joint paper, in two parts, was published in Biometrika in 1928.
Neyman had returned to Poland for the academic year 1927-1928, teaching both
at Warsaw and at Krakow, and he clearly felt that he had not played as big a
role in the first paper as had Pearson. The paper (Part I) ends with Neyman’s
disclaimer:

N.B. I feel it necessary to make a brief comment on the authorship of this paper. Its
origin was a matter of close co-operation, both personal and by letter, and the ground
covered included the general ideas and the illustration of these by sampling from a
normal population. A part of the results reached in common are included in Chapters
I, IT and IV. Later | was much occupied with other work, and therefore unable to
co-operate. The experimental work, the calculation of tables and the development
of the theory of Chapters IIl and IV are due entirely to Dr Egon S. Pearson. (p. 240)

It might be, too, that at this time Neyman wanted to distance himself just a
little from the maximum likelihood criterion, which was the main theoretical
underpinning of the ideas developed in the paper. In the early correspondence
with Pearson, Neyman referred to it as “your principle” and was not convinced
that it was the only possible approach.

The 1928 (Part ) paper begins by stating the important problem of statistical
inference, that of determining whether or not a particular sample (Z) has
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been randomly drawn from a population (w). Hypothesis 4 is that indeed it has.
But ¥ may have been drawn from some other population 7', and thus, two sorts
of error may arise. The first is when A is rejected but £ was drawn from x, and
the second is when 4 is accepted but £ has been drawn from n':

In the long run of statistical experience the frequency of the first source of error (or
in a single instance its probability) can be controlled by choosing as a discriminating
contour, one outside which the frequency of occurrence of samples from n is very
small - say, 5 in 100 or 5 in 1000.

The second source of error is more difficult to control. . . . It is not of course
possible to determine n’,. . . but . . . we may determine a “probable” or “likely” form
of it, and hence fix the contours so that in moving “inwards” across them the
difference between n and the population from which it is “most likely” that T has
been sampled should become less and less. This choice also implies that on moving
“outwards” across the contours, other hypotheses as to the population sampled
become more and more likely than Hypothesis 4. (Neyman & Pearson, 1928, p.
177)

Hypothesis 4 corresponds to Z having been drawn from =, and Hypothesis
A’ to £ having been drawn from n’. A ratio of the probabilities of 4 and 4’ is
a measure for their comparison. But:

Probability is a ratio of frequencies and this relative measure cannot be termed the
ratio of the probabilities of the hypotheses. unless we speak of probability a posteriori
and postulate some a priori frequency distribution of sampled populations. Fisher
has therefore introduced the term likelihood, and calls this comparative measure the
ratio of the likelihoods of the two hypotheses. (Neyman & Pearson, 1928, p. 186)

The likelihood criterion is given by:

___Likelihood of m
Likelihood of n’'(max.)

This ratio defines surfaces in a probability space such that it decreases from
1 to 0 as a specific point moves outward and alternatives to the statistical
hypothesis become more likely:

One had then to decide at which contour H” should be regarded as no longer tenable,
that is where should one choose to bound the rejection region? To help in reaching
this decision it appeared that the probability of falling into the region chosen, if H
were true, was one necessary piece of information. In taking this view it can of course
be argued that our outlook was conditioned by current statistical practice, (E. S.
Pearson, 1966, p. 10)
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The paper does consider other approaches and notes that the authors do not
claim that the principle advanced is necessarily the best to adopt, but it is clear
that it is favored:

We have endeavoured to connect in a logical sequence several of the most simple
tests, and in so doing have found it essential to make use of what R. A, Fisher has
termed “the principle of likelihood.”

The process of reasoning, however, is necessarily an individual matter, and we
do not claim that the method which has been most helpful to ourselves will be of
greatest assistance to others. It would seem to be a case where each individual must
reason out for himself his own philosophy. (Neyman & Pearson, 1928, p. 230)

There are faint echoes here of the subjective element in Neyman’s initial
reasoning, commented on by Lehmann and reported by Reid (1982)— the notion
that belief in a prior hypothesis affects the consideration of the evidence:

There is a subjective element in the theory which expresses itself in the choice of
significance level you are going to require; but it is qualitative rather than quantita-
tive.2 While it is not very satisfying and rather pragmatic, 1 think this reflects the
way our minds work better than the more extreme positions of either denying any
subjective element in statistics or insisting upon its complete quantification.
(Lehmann, quoted by Reid, 1982, p. 73)

Neyman, in Poland in 1929, wanted to present a joint paper at the Interna-
tional Statistical Institute meeting, scheduled to be held there that year. The
paper that Neyman was preparing dealt with the Bayesian approach to the
problem that he and Pearson had considered and was to attempt to show that it
led to essentially the same solution. Egon Pearson just could not agree to a
collaboration that admitted, in the slightest, the notion of inverse probability:

Pearson . . . pointed out to Neyman that if they published the proposed paper, with
its admission of inverse probability. they would find themselves in a disagreement
with Fisher. . . . Many years later he explained, “The conflict between K.P. and
R.AF. left me with a curious emotional antagonism and also fear of the latter so that
it upset me a bit to see him or to hear him talk.” (Reid, 1982, p. 84)

He would not put his name to the paper. The curious fact is that neither
Neyman nor Pearson ever wholeheartedly subscribed to the inverse probability
approach, but Neyman felt that it should be addressed. Pearson’s attempt to
avoid a confrontation was doomed to failure, just as his father’s earlier attempts

% Cowles and Davis (1982b) carried out a simple experiment that supports the suggestion that the
.05 level of significance is subjectively reasonable. Sandy Lovie pointed out to the author that the same
experiment, in a slightly different context, was performed by Bilodeau (1952).
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to deflect Fisher’s views had been.

The years that spanned the turn of the 1920s to the 1930s were not particu-
larly happy ones for the collaborators. Pearson was enduring the agonies of an
unhappy romance and finding his relationship with his father increasingly
frustrating. Neyman found his work greatly constrained by economic and
political difficulties in Poland, and the elder Pearson rejected a paper he
submitted to Biometrika. But, albeit in an intermittent fashion, the collaboration
continued as they worked toward what they described as their “big paper.”

This was communicated to the Royal Society by Karl Pearson in August of
1932, read in November of that year, and published in Philosophical Transac-
tions in 1933. Neyman had written to Fisher, with whom he was then on
reasonably amicable terms, about the paper, and the latter had indicated that
were it to be sent to the Royal Society, he would likely be a referee:

To Neyman it has always been a source of satisfaction and amusement that his and
Egon’s fundamental paper was presented to the Royal Society by Karl Pearson, who
was hostile and skeptical of its contents, and favourably refereed by the formidable
Fisher, who was later to be highly critical of much of the Neyman-Pearson theory.
(Reid, 1982, p. 103)

Reid reports that when she wrote to the librarian of the Royal Society to
discover the name of the second referee, she found that there had only been one
referee, and that he was A. C. Aitken of Edinburgh (a leading innovator in the
field of matrix algebra).

In fact, two papers were pubiished in 1933. The Royal Society paper dealt
with procedures for the determination of the most efficient tests of statistical
hypotheses. There is no doubt that it is one of the most influential statistical
papers ever written. It transformed the way in which both the reasoning behind,
and the actual application of], statistical tests were perceived. Forty years later,
Le Cam and Lehmann enthusiastically assessed it:

The impact of this work has been enormous. It is, for example, hard to imagine
hypothesis testing without the concept of power. . . . However, the influence of the
work goes far beyond. . . . By deriving tests as the solutions of clearly defined
optimum problems, Neyman and Pearson established a pattern for Wald’s general
decision theory and for the whole field of mathematical statistics as it has developed
since then. (Le Cam & Lehmann, 1974, p. viii)

The later paper (Neyman & Pearson, 1933), presented to the Cambridge
Philosophical Society, again sets out the Neyman-Pearson rationale and proce-
dures for hypothesis testing. Its stated aim is to separate hypothesis testing from
problems in estimation and to examine the employment of tests independently
of a priori probability laws. The authors have rejected the Bayesian approach
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and employed the frequentist’s view of probability. A concept of central
importance is that of the power of a statistical test, and the term is introduced
here for the first time. A Type [ error is that of rejecting a statistical hypothesis,
H,, when it is true. The Type II error occurs when H, is not rejected but some
rival, alternative hypothesis is, in fact, true:

If now we have chosen a region w, in the sample space W, as critical region to test
H_, then the probability that the sample point  defined by the set of variates Ix,x,
-, x ] falls into w, if H_is true, may be written as:

P(W\H()):S

The chance of rejecting H if itis true is therefore equal to €, and w may be termed
of size ¢ for H . The second type of error will be made when some alternative A,
istrue,and £ falls inw=W-w. If we denote by P (w), P (w)and P (w) the chancc
of an error of the first kind, the chance of an error of the second kind and the total
chance of error using w as critical region, then it follows that:

Pi(w) = o P (w| Ho)
Pu(w)=3 @1 P(w|H)
i=1

P(w)=Pi(w)+ Pu(w)
(Neyman & Pearson, 1933, p. 495)

The rule then is to set the chance of the first kind of error (the size or what
we would now call the ¢ level) at a small value and then choose a rejection class
so that the chance of the second kind of error is minimized. In fact, the procedure
attempts to maximize the power of the test for a given size. The probability of
rejecting the statistical hypothesis, H, when in fact the true hypothesis is H,
thatis P (w | H ), is called the power of the critical region w with respect to 1’-1l

If we now consider the probability Py (w) of type Il errors when using atest T based

on the critical region w, we may describe
m

1= Qo= Pu (W) =3 o1 P(w| H)|
i=1
as the resultant power of the test 7. . . . It is seen that while the power of a test with
regard to a given alternative H; is independent of the probabilities a priori, and is
therefore known precisely as soon as /j and w are specified, this is not the case with
the resultant power, which is a function of the ¢i’s. (Neyman & Pearson, 1933b, p.
499)
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Note here that the @’s are the probabilities a priori of the admissible
alternative hypotheses. Neyman and Pearson of course fully recognized that the
¢’s cannot often be expressed in numerical form and that the statistician has to
consider the sense, from a practical point of view, in which tests are independent
of probabilities a priori, noting:

This aspect of the error problem is very evident in a number of fields where tests
must be used in a routine manner, and errors of judgment lead to waste of energy or
financial loss. Such is the case in sampling inspection problems in mass-production
industry. (Neyman & Pearson, 1933, p. 493)

This apparently innocuous statement alludes to the features of the Neyman-
Pearson theory of hypothesis testing that, over the course of the next few years,
Fisher vigorously attacked, that is, (a) the notion that hypothesis testing can be
regarded as a decision process akin to methods used in quality control, and
reduced to a set of practical rules, and (b) the implication that “repeated sampling
from the same population” — which occurs in industry when similar samples are
drawn from the same production run — determines the level of significance.
These suggestions were anathema to Fisher. They were, however, the very
features that made statistics so welcome in psychology and the social sciences
— that is, the promise of a set of rules with apparently respectable mathematical
foundations that would allow decisions to be made on the meaning in noisy
quantitative data. Few ventured into an examination of the logic of the methods;
very few would wish to be trampled as the giants fought in the field. These
matters are examined later in this chapter.

Perhaps we should spare a thought for Sir Ronald Fisher, curmudgeon that
he was. He must indeed be constantly tossing in his grave as lecturers and
professors across the world, if they remember him at all, refer to the content of
most current curricula as Fisherian statistics.

STATISTICS AND INVECTIVE

The full force of Fisher’s opposition to the Neyman-Pearson theory was not
immediately felt in 1933. The circumstances of his developing fury are, how-
ever, evident. In a decision that could hardly have been less conducive to
harmony in the development of statistics, the University of London split Karl
Pearson’s department when he retired in 1933:

Statistics was taught at no other British university, nor was there another professor
of eugenics, charged with the duty and the means of research into human heredity.
If Fisher were to teach at a university, it would have to be as Pearson’s successor.
(Fisher Box, 1978, p. 257)
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Fisher became Galton Professor in the Department of Eugenics, and Egon
Pearson, promoted to Reader, headed the Department of Applied Statistics.
There, in Gower Street, Fisher’s department on the top floor and Egon Pearson’s
on the floor below, the rows began to simmer. Fisher Box (1978) reports that
her father had ascertained, before accepting the appointment, that Egon Pearson
was well disposed to it. Fisher corresponded with him, apparently in the hope
that they might resolve conflicts in the teaching of statistics. Fisher Box (1978)
learned from correspondence with Egon Pearson that Fisher had even suggested
that, despite the decision to split the old department, he and Pearson should
reunite it. Pearson’s response was to the effect that no lectures in the theory of
statistics should be given by Fisher, that the territories had been defined, and
that each should stay within them.

Early in 1934 Pearson invited Jerzy Neyman to join his department, tempo-
rarily, as an assistant. Neyman accepted and, in the summer of 1934, received
an appointment as lecturer.

The moods at Gower Street must have been impossible, and the intensity of
the strain is difficult to imagine and reconstruct:

[Karl} Pearson was made an honorary member of the Tea Club, and when he joined
them in the Common Room, it was observed that Fisher did him the unique honour
of breaking out of conversation to step forward and greet him cordially. (Fisher Box,
1978, p. 260)

Or,

The Common Room was carefully shared. Pearson’s group had tea at 4; and at 4:30,
when they were safely out of the way, Fisher and his group trooped in. Karl Pearson
had withdrawn across the college quadrangle with his young assistant Florence
David. He continued to edit Biometrika: but, as far as Miss David remembers, he
never again entered his old building. (Reid, 1982, p. 114)

It appears that, at first, Neyman and Fisher got on quite well and that Neyman
tried to bring Fisher and Egon Pearson together. His work on estimation, rather
than the joint work with Pearson on hypothesis testing, occupied his attention.
His 1934 paper (discussed earlier) was, in the main, well-received by Fisher,
and Fisher’s December 1934 paper, presented to the Royal Statistical Society
(Fisher, 1935), was commented on favorably by Neyman.

But any harmony disappeared at meetings of the Industrial and Agricultural
Section of the Royal Statistical Society in 1935. Neyman presented his “Statis-
tical Problems in Agricultural Experimentation” in which he questioned the
efficiency of Fisher’s handling of Randomized Block and Latin Square designs,
illustrating his talk with wooden models that had been prepared for him
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at University College.’ Fisher’s response to the paper (for which he was
supposed to give the vote of thanks) began by expressing the view, to put it
bluntly (which he did), that he had hoped that Neyman would be speaking on
something that he knew something about. His closing comments disparaged
the Neyman-Pearson approach.

Frank Yates (1935) presented a paper on factorial designs to the Royal
Statistical Society later that year. Neyman expressed doubts about the interpre-
tation of interactions and main effects when the number of replications was
small. The problem has been examined more recently by Traxler (1976). The
details of these criticisms, and they had validity, did not concern Fisher:

[Neyman had] asserted that Fisher was wrong. This was an unforgivable offense —
Fisher was never wrong and indeed the suggestion that he might be was treated by
him as a deadly assault. Anyone who did not accept Fisher’s writing as the God-given
truth was at best stupid and at worst evil. (Kempthorne, 1983, p. 483)

Oscar Kempthorne, quoted here, and undoubtedly an admirer of Fisher’s
work, had what he has described as a *“partial relationship” with Fisher when he
worked at Rothamsted from 1941 to 1946 and knew Fisher’s fiery intransigence.
It is understandable that Fisher Box (1978) presents a view of these troubled
times that is more sympathetic to Fisher, couching her commentary in terms
that do reflect an important aspect of the situation. Statistics was becoming
more mathematical, and the shift of its intellectual power base to the United
States was 1o make it even more mathematical. Fisher Box (1978) comments,
“Fisher was a research scientist using mathematical skills, Neyman a mathema-
tician applying mathematical concepts to experimentation” (p. 265).

She quotes Neyman’s reply to Fisher, in which he explains his concerns
about inconsistencies in the application of the z test. The test is deduced from
the sums of two independent squares but the restricted sampling of randomized
blocks and Latin squares, leads to the mutual dependence of results:

Mathematicians tended to formulate the argument in these terms, that is in terms of
normal theory, ignoring randomization. Nevertheless, in doing so they exhibited a
fundamental misunderstanding of Fisher’s work, for it happens to be false that the
derivation of the z distribution depends on the assumptions Neyman criticized.
(Fisher Box, 1978, p. 266)

Fisher Box defends this view, but it was not a view that convinced many
mathematicians and statisticians outside the Fisherian camp.

3 Reid (1982) relates a story told by both Neyman and Pearson. One evening they returned to the
department after dinner and found the models strewn about the floor. They suspected that the angry act
was Fisher’s.
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In 1935, Egon Pearson was promoted to Professor and Neyman appointed
Reader in statistics at University College. Fisher opposed Neyman’s appoint-
ment. Neyman recalled to Reid (1982) that at about this time Fisher had
demanded that Neyman should lecture using only Statistical Methods for
Research Workers and that when Neyman refused said, ** ‘Well, if so, then from
now on | shall oppose you in all my capacities.” And he enumerated — member
of the Royal Society and so forth. There were quite a few. Then he left. Banged
the door” (Reid, 1982, p. 126).

Fisher withdrew his support for Neyman’s election to the International
Statistical Institute. It was this sort of intense personal animosity that led to
confusion, indeed despair, as onlookers attempted to grasp the developments in
statistics. The protagonists introduced ambivalence and contradiction as they
defended their positions. Debate and discussion, in any rational sense, never
took place. As if this was not enough, Neyman and Egon Pearson were
beginning to draw apart. Neyman certainly did not feel committed to University
College. Karl Pearson died in April 1936, and very shortly thereafter Egon
Pearson began work on a survey of his father’s contribution (E. S. Pearson,
1938a). Neyman was working on the development of a theory of estimation
using confidence intervals. In a move that seems utterly astonishing, Pearson,
who had inherited the editorship of Biometrika, after a certain amount of
equivocation, rejected the resulting paper. Pearson thought that the paper was
too long and too mathematical. It subsequently appeared in the Philosophical
Transactions of the Royal Society (Neyman, 1937). Joint work between the two
friends had almost ceased. Neyman visited the United States in 1937 and made
a very good impression. His visit to Berkeley resulted in his being offered a
post there in 1938, an offer that he accepted.

Neyman’s move to the University of California, the growth in the develop-
ment and applications of statistics at the State Agricultural College at Ames,
lowa, and the important influence of the University of Michigan, where Annals
of Mathematical Statistics, edited by Harry C. Carver, had been founded in
1930, moved the vanguard of mathematical statistics to America, where it has
remained. The tribulations of actual and devastating warfare were on Britain’s
horizon. There was no one left on the statistical battlefield who wanted to fight
with Fisher. He was disliked by many but his close collaborators, he was often
avoided, and he was misunderstood.

Fisher enjoyed a considerable reputation as a geneticist, carrying out experi-
ments and publishing work that had considerable impact. His study of natural
selection from a mathematical point of view led to a reconciliation of the
Mendelian and the biometric approaches to evolution. In 1943 he accepted the
post of Arthur Balfour Professor of Genetics at Cambridge University, an
appointment for which Egon Pearson must have given thanks. Not that Pearson



228 15. THE STATISTICAL HOTPOT

suffered too much from the lash of Fisher’s tongue, for Fisher regarded him as
a lightweight and, whenever he could, coldly ignored him.

Fisher was always willing to promote the application of his work to experi-
mentation in a wide variety of fields. He was unable to accept any criticism of
his view of its mathematical foundations. Perhaps the most unfortunate episode
took place at the end of Karl Pearson’s life. Taking as his reason an attack
Pearson (1936) had made, in a work published very shortly after his death, on
a paper written by an Indian statistician R. S. Koshal (1933), Fisher (1937)
undertook “to examine frankly the status of the Pearsonian methods™ (p. 303).
Nearly 20 years later, in an author’s note accompanying a republication of
“Professor Karl Pearson and the Method of Moments,” Fisher really exceeds
the bounds of academic propriety:

If peevish intolerance of free opinion in others is a sign of senility, it is one which
he had developed at an early age. Unscrupulous manipulation of factual material is
also a striking feature of the whole corpus of Pearsonian writings, and in this matter
some blame does seem to attach to Pearson’s contemporaries for not exposing his
arrogant pretensions. (Fisher, 1950, p. 29.302a in Bennett, 1971)

Of course Karl Pearson was guilty of the same sort of invective. Personal
criticism in the defense of their mathematical and statistical stances is a feature
of the style of both men. No academic writer expects to escape criticism —
indeed, lack of criticism generally indicates lack of interest — but these sort of
polemics can only damage the discipline. Ordinary, and even some extraordi-
nary, men and women run for cover. These conflicts may well be responsible
for the rather uncritical acceptance of the statistical tools that we use today, a
point that is discussed further.

FISHER versus NEYMAN AND PEARSON

In an author’s note preceding a republication of a 1939 paper, Fisher reiterates
his opposition to the Neyman-Pearson approach, referring specifically to the
Cambridge paper:

The principles brought to light {in the following paper] seem to the author essential
to the theory of tests of significance in general, and to have been most unwarrantably
ignored in at least one pretentious work on “Testing statistical hypotheses.” Practical
experimenters have not been seriously influenced by this work, but in mathematical
departments, at a time when these were beginning to appreciate the part they might
play as guides in the theoretical aspects of experimentation, its influence has been
somewhat retrograde. (Fisher, 1950, p. 35.173a in Bennett, 1971).

Fisher set out his objections to Neyman and Pearson’s views in 1955. Statistical
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Methods and Scientific Induction sets out to examine the differences in logic in
the two approaches. He acknowledges that Barnard had observed that:

Neyman, thinking that he was correcting and improving my own early work on tests
of significance, as a means to the “improvement of natural knowledge,” in fact
reinterpreted them in terms of that technological and commercial apparatus which is
known as an acceptance procedure. (Fisher, 1955, p. 69)

Fisher acknowledges the importance of acceptance procedures in industrial
settings, noting that whenever he travels by air he gives thanks for their
reliability. He objects, however, to the translation of this model to the physical
and biological sciences. Whereas in a factory the population that is the product
has an objective reality, such is not the case for the population from which the
psychologist’s or the biologist’s sample has been drawn. In the latter case, he
argues there is:

amultiplicity of populations to each of which we can legitimately regard our sample
as belonging; so that the phrase “repeated sampling from the same population” does
not enable us to determine which population is to be used to define the probability
level, for no one of them has objective reality, all being products of the statistician’s
imagination. (Fisher, 1955, p. 71)

Fisher maintains that significance testing in experimental science depends
only on the properties of the unique sample that has been observed and that this
sample should be compared only with other possibilities, that is to say, “to a
population of samples in all relevant respects like that observed, neither more
precise nor less precise, and which therefore we think it appropriate to select in
specifying the precision of the estimate” (Fisher, 1955, p. 72).

Fisher was never able to come to terms with the critical contribution of
Neyman and Pearson, namely, the notion of alternative hypotheses and errors
of the second kind. Once again his objections are rooted in what he considers to
be the adoption of the misleading quality control model. He says, “The phrase
‘Errors of the second kind,” although apparently only a harmless piece of
technical jargon, is useful as indicating the type of mental confusion in which
it was coined” (Fisher, 1955, p. 73).

Fisher agrees that the frequency of wrongly rejecting the null hypothesis can
be controlled but disagrees that any specification of the rate of errors of the
second kind is possible. Nor is such a specification necessary or helpful. The
crux of his argument rests on his objection to using hypothesis testing as a
decision process:

The fashion of speaking of a null hypothesis as “accepted when false,” whenever a
test of significance gives us no strong reason for rejecting it, and when in fact it is



230 15. THE STATISTICAL HOTPOT

in some way imperfect, shows real ignorance of the research worker’s attitude, by
suggesting that in such a case he has come to an irreversible decision. (Fisher, 1955,
p. 73)

What really should happen when the null hypothesis is accepted? The
researcher concludes that the deviation from truth of the working hypothesis is
not sufficient to warrant modification. Or, says Fisher, perhaps, that the devia-
tion being in the expected direction, to an extent confirms the researcher’s
suspicion, but the data available are not sufficient to demonstrate its reality. The
implication is clear. Experimental science is an ongoing process of evaluation
and re-evaluation of evidence. Every conclusion is a provisional conclusion:

Acceptance is irreversible, whether the evidence for it was strong or weak. It is the
result of applying mechanically rules laid down in advance; no thought is given to
the particular case, and the tester’s state of mind, or his capacity for learning, is
inoperative. (Fisher, 1955, pp. 73-74)

Finally, Fisher launches an attack, from the same basic position, on Ney-
man’s use of the term inductive behavior to replace the phrase inductive
reasoning. It is clear that Neyman was looking for a statistical system that
would provide rules. The 1933 paper shows that Neyman and Pearson believed
that they were on the same track as Fisher:

In dealing with the problem of statistical estimation, R. A. Fisher has shown how,
under certain conditions, what may be described as rules of behaviour can be
employed which will lead to resuits independent of those probabilities [here Neyman
is referring to probabilities a priori]; in this connection he has discussed the important
conception of what he terms fiducial limits. (Neyman & Pearson, 1933, p. 492,
emphasis added)

It appears that the users of statistical methods have implicitly accepted the
notion that the Neyman-Pearson approach was a natural, almost an inevitable,
progression from the work of Fisher. It is, however, little wonder, even leaving
the personalities and polemics aside, that Fisher objected to the mechanization
ofthe scientific endeavor. It was just not the way he looked at science. The 1955
paper almost goes out of its way to attack Abraham Wald’s (1950) book on
Statistical Decision Functions, objecting specifically to its characterization as a
book about experimental design. Neyman (1956) rebutted the criticisms of
Fisher and effectively restates his position, but it is apparent that the two are
really arguing at cross-purposes. Responding to Neyman’s rebuttal, Fisher
(1957) begins, “If Professor Neyman were in the habit of learning from others
he might profit from the quotation he gives from Yates” (Fisher, 1957, p. 179).

Of interest here is Fisher’s continuing determination to defend the concept
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of fiducial probability at all costs. He raises the concept again and again in his
writings on inference and never admits that it presents difficulties.

The expressions “fiducial probability” and “fiducial argument” are Fisher’s. No-
body knows just what they mean, because Fisher repudiated his most explicit, but
definitely faulty, definition and ultimately replaced it with only a few examples.
(Savage, 1976, p. 466)

The Bayesian argument lends itself to decision analysis. Fisher objected to
both. The fiducial argument has been characterized as an elliptical attempt to
arrive at Bayesian-type posterior probabilities without invoking the Bayesian-
type priors. What muddies the water was Fisher’s insistence that fiducial
probabilities are verifiable in the same way, for example, as the probabilities in
games of chance are verifiable. What makes the situation even more vexing is
that the perceived relationship between Neyman’s confidence intervals and
Fisher’s fiducial theory would make the latter easier to grasp. But Neyman’s
theory of estimation by confidence sets grows out of the same conceptual roots
as Neyman-Pearson hypothesis testing. No rational compromise was possible.

The null hypothesis (it has been noted that the term is Fisher’s and that it
was not used by Neyman and Pearson) is, in Fisherian terms, the hypothesis that
is tested and it implies a particular value (most often zero) for the population
parameter. When a statistical analysis produces a significant outcome, this is
taken to be evidence against the null hypothesis, evidence against the stated
value for the parameter, evidence against the assertion that nothing has hap-
pened, evidence against a conclusion that the experimental manipulation has
had no effect. The point is that a significant outcome does not appear to be
evidence for anything. The Neyman-Pearson position is that hypothesis testing
demands a research hypothesis for which we can find support. Suppose that the
statistical hypothesis states that in the population the correlation is zero, and
indeed it is; then an obtained sample value of +0.8, given a reasonable n, would
lead to a Type I error. If, on the other hand, the statistical hypothesis states that
the population value is +0.8, but again it is really zero, then an obtained value
of 0.8 will lead to a Type 1l error. It will immediately be argued that no one
would set the population parameter under the null hypothesis as +0.8 unless
there were evidence that it was of this order. However, this implies that
experimenters take into account other evidence than that immediately to hand.
No matter how formal the rules, it is plain that in real life the rules do not
inevitably guide behavior and decisions, or conclusions about outcomes. As
was noted earlier, my holding a winning lottery ticket that was drawn from a
million tickets — an extemely improbable event — does not necessarily lead to
my rejecting the hypothesis of chance.

There are, then, difficult problems in the assessment of the rules of statistical
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procedures. It is small wonder that they are not widely appreciated because the
founding fathers themselves were not clear on the issues, or at any rate in public,
and in their writings, they were not always clear on the issues. Some few
examples will suffice to illustrate the point.

In 1935 Karl Pearson asserted that “tests are used to ascertain whether a
reasonable graduation curve has been achieved, not to assert whether one or
another hypothesis is true or false” (K. Pearson, 1935, p. 296). All he is doing
here is arguing with Fisher. He himself used his own %’ test for hypothesis
testing (e.g., K. Pearson, 1909).

In his famous discussion of the “tea-tasting” investigation, Fisher discusses
the “sensitiveness” of an experiment. He notes that by increasing the size of the
experiment:

we can render it more sensitive, meaning by this that it will allow of the detection of
a lower degree of sensory discrimination, or, in other words, of a quantitatively
smaller departure from the null hypothesis. Since in every case the experiment is
capable of disproving, but never of proving this hypothesis, we may say that the
value of the experiment is increased whenever it permits the null hypothesis to be
more readily disproved.

The same result could be achieved by repeating the experiment, as originally
designed, upon a number of different occasions. (Fisher, 1935/1966, 8th ed., p. 22)

Here Fisher appears to be alluding to what Neyman and Pearson formalized
as the power of the test — a notion that he never would accept in their context.
He is also using the words “proved” and “disproved” rather loosely, and,
although he might be forgiven, the slip flies in the face of the routine statements
about the essentially probabilistic nature of statistical outcomes. Elsewhere
Fisher presents the view that each experiment is, as it were, self-contained in
the context of significance testing:

On the whole the ideas (a) that a test of significance must be regarded as one of a
series of similar tests applied to a succession of similar bodies of data, and (b) that
the purpose of the test is to discriminate or ““decide’ between two or more hypotheses,
have greatly obscured their understanding, when taken as contingent possibilities but
as elements essential to their logic. (Fisher, 1956/1973, 3rd ed., pp. 45-46)

To practicing researchers, the notion that tests are not used to “decide” is
incomprehensible. What else are they for? Fisher’s supporters would say that
what he means is that they are not used to decide finally and irreversibly, and
scientists would surely agree.

In his 1955 paper, where he objects to the Neyman-Pearson specification of
the two types of error and gives his views (mentioned earlier) of what the
researcher will conclude when a result fails to reach statistical significance,
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Fisher says:

These examples show how badly the word “error” is used in describing such a
situation. Moreover, it is a fallacy, so well known as to be a standard example, to
conclude from a test of significance that the null hypothesis is thereby established;
at most it may be said to be confirmed or strengthened. (Fisher, 1955, p. 73,
emphasis added)

It might be argued that a careful reading of Fisher’s voluminous works would
make his position clear, and that these quotations are selective. The point is
taken, but the point may also be made that it is hardly surprising that the later
interpretations of, and commentaries on, his influential contribution contain
difficulties and contradictions. Had the protagonists been more concerned with
rational debate rather than heated argument, statistics would have had a quite
different history.

PRACTICAL STATISTICS

A striking feature of the general statistics texts produced for courses in the
psychological sciences is the anonymity of the prescriptions that are described.
A startlingly high number of incoming graduate students in the author’s depart-
ment were unaware that the F ratio was named for a man called Fisher, but a
cursory glance through the indexes of introductory texts reveals why. Pearson’s
name is sometimes mentioned as a convenient label for a correlation coefficient,
distinguishing it from the rank-order method of Spearman. Neyman and Pearson
Jr. are hardly ever acknowledged. “Power” is treated with caution. Controversial
issues are never discussed.

Gigerenzer (1987) presents an interesting discussion of the situation: “The
confusion in the statistical texts presented to the poor frustrated students was
caused in part by the attempt to sell this hybrid as the sine qua non of scientific
inference” ( p. 20).

Gigerenzer’s thesis addresses what he sees as experimental psychology’s
fight against subjectivity. Probabilistic models and statistical methods provided
the discipline with a mechanical process that seemed to allow for objective
assessment independent of the experimenter. Parallel constructs of individual
differences as error and uncertainty as ignorance further promoted psychol-
ogy’s view of itself as an objective science,

It is Gigerenzer’s view that the illusion was more or less deliberately created
by the early textbooks and has been perpetuated. The general neglect of
alternative theories and methods of inference, anonymous presentation, the
silence on the controversies, and “institutionalization,” all conspired to provide
psychology with its need for objectivity. Gigerenzer makes telling and
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important points. But a more mundane explanation can be advanced.

Surely sacial scientists can be forgiven for not being mathematicians or
logicians, and those who took a peek at the literature of the 1920s and 1930s
must have been dismayed at the bitterness of the controversies. At the same
time, the methods were being popularized by such people as Snedecor ~ and
they seemed to be methods that worked. It is absolutely clear that psychologists
wanted to construct a research methodology that would be accepted by tradi-
tional science. The controversies were ignored because experimentalists in the
social sciences believed that they were sifting the methodological wheat from
the polemical chaff. The principals in the arguments were ignored because of
an eagerness to get on with the practical job, and in this they were supported by
the master, Fisher. Moreover, the textbook writers, interpreting Fisher, can be
forgiven for their lack of acknowledgment of the founding fathers — they were,
after all, following the master who rarely gave credit to anybody!

What is, perhaps, more contentious is the effect that all this has had on the
discipline. If it is to be admitted that the logical foundations of psychology’s
most widespread method of data assessment are shaky, what are we to make of
the “findings™ of experimental psychology? Is the whole edifice of data and
theory to be compared with the buildings in the towns of the “Wild West” —a
gaudy false front, and little of substance behind? This is an unreasonable
conclusion, and it is not a conclusion that is borne out by even a cursory
examination of the successful predictions of behavior and the confident appli-
cations of psychology, in areas stretching from market research to clinical
practice, that have a utility that is indisputable. The plain fact of the matter is
that psychology is using a set of tools that leaves much to be desired. Some
parts of the kit perhaps should be discarded; some of them, like blunt chisels,
will let us down and we might be injured. But they seem to have been doing a
job. Psychology is a success.

Now some would gqualify that success. An agonizing reappraisal of the
discipline by Sigmund Koch followed his struggles with his editorship of
Psychology: A Study of a Science (1959-1963). From his statement at the
beginning of that enterprise that psychology was a “disorderly matrix” to his
plea (1980) that 10 years after Miller’s urging in his Presidential Address to the
American Psychological Association (1969) that psychology should be “given
away” (in the sense of pressing for more social relevance), Koch thought that it
ought to be “taken back.” Although the drift of the criticism is inescapable, to
throw in the towel is, as it were, both unenlightening and unproductive.

There is no doubt that the disparate nature of its subject matter, and the
sometimes conflicting pronouncements issuing from the research journals, has
led to a fragmentation of the discipline, even to denials that it is, in fact, a
coherent discipline. However two themes are apparent and common to all
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branches of psychology. One is the classical statistical method used by the vast
majority of psychological researchers and the other is its history, and, more
particularly, its historic questions, the mind-body dichotomy, the mechanisms
of perception and cognition, the nature-nurture issue, the individual and society,
the mysteries of maturation and change, and more. This book is an attempt to
promote an interest in both statistics and history.
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