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Abstract. Learning context-free grammars is generally considered a
very hard task. This is even more the case when learning has to be
done from positive examples only. In this context one possibility is to
learn stochastic context-free grammars, by making the implicit assump-
tion that the distribution of the examples is given by such an object.
Nevertheless this is still a hard task for which no algorithm is known.
We use recent results to introduce a proper subclass of linear grammars,
called deterministic linear grammars, for which we prove that a small
canonical form can be found. This has been a successful condition for a
learning algorithm to be possible. We propose an algorithm for this class
of grammars and we prove that our algorithm works in polynomial time,
and structurally converges to the target in the paradigm of identification
in the limit with probability 1. Although this does not ensure that only a
polynomial size sample is necessary for learning to be possible, we argue
that the criterion means that no added (hidden) bias is present.

1 Introduction

Context-free grammars are known to have a superior modeling capacity than
regular grammars or finite state automata. Learning these grammars is also
harder but considered an important and challenging task. Yet without external
help such as a knowledge of the structure of the strings [Sak92] only clever but
limited heuristics have been proposed [LSO0NMW97].

When no positive examples exist, or when the actual problem is that of build-
ing a language model, stochastic context-free grammars have been proposed. In
a number of applications (computational biology [SBH94] and speech recog-
nition [WAQ02|] are just two typical examples), it is speculated that success will
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depend on being able to replace finite state models such as Hidden Markov Mod-
els by stochastic context-free grammars. Yet the problem of learning this type
of grammar from strings has rarely been addressed. The usual way of dealing
with the problem still consists in first learning a structure, and then estimating
the probabilities [Bak79].

In the more theoretical setting of learning from both examples and counter-
examples classes of grammars that are more general than the regular grammars,
but restricted to cases where both determinism and linearity apply have been
studied [dIHO02].

On the other hand, learning (deterministic) regular stochastic grammars has
received a lot of attention over the past 10 years. A well known algorithm for
this task is ALERGIA [CO94], which has been improved by different authors
[YLTO00ICO99], and applied to different tasks [WA02).

We synthesize in this paper both types of results and propose a novel class of
stochastic languages that we call stochastic deterministic linear languages. We
prove that each language of the class admits an equivalence relation of finite
index, thus leading to a canonical normal form. We propose an algorithm that
works in polynomial time with respect to the learning data. It can identify with
probability one any language in the class.

In section [2 the necessary definitions are given. We prove in section B] the
existence of a small normal form, and give in section l] a learning algorithm that
can learn grammars in normal form.

2 Definitions

2.1 Languages and Grammars

An alphabet X' is a finite nonempty set of symbols. X* denotes the set of all
finite strings over Y. A language L over X is a subset of X*. In the following,
unless stated otherwise, symbols are indicated by a,b, ¢, ..., strings by u, v, ...,
and the empty string by A. The length of a string u will be denoted |u.

Let u,v € X* u~ v = w such that v = uw (undefined if u is not a prefix of
v) and uv~! = w such that u = wv (undefined if v is not a suffix of u). Let L
be a language and u € X*, u 'L ={v:uv € L} and Lu~! = {v:vu € L}.

Let L be a language, the prefix set is Pref(L) = {« : zy € L}. The longest
common suffiz (les(L)) of L is the longest string u such that (Lu=!)u = L.

A context-free grammar G is a quadruple (X, V, R, S) where X is a finite
alphabet (of terminal symbols), V is a finite alphabet (of variables or non-
terminals), R C V x (X UV)* is a finite set of production rules, and S(€ V') is the
starting symbol. We will denote uTv — uwv when (T,w) € R. - is the reflexive
and transitive closure of —. If there exists uqg, ..., u; such that ug — -+ — ug
we will write uo = uy. We denote by Lo(T) the language {w € X* : T 5 w}.
Two grammars are equivalent if they generate the same language. A context-free
grammar G = (X, V| R, S) is linear if R CV x (X*VX* U X*).
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2.2 Stochastic Languages

A stochastic language L over X is defined by a probability density function over
X* giving the probability p(w|L) that the string w € X* appears in the language.
To be consistent, a necessary condition is that » .. p(z|L) = 1.

When convenient, we are going to represent a stochastic language as a set of
pairs: L = {(u, p(u|L)) : p(u|L) > 0}. Consequently (u,p,) € L = p(u|L) > 0.

Also to avoid unnecessary notations we will allow the empty set @) to be a
stochastic language (paired with an arbitrary function).

The probability of any subset X C X* is given by

p(X|L) = 3 p(ulL)

ueX

Let L be a stochastic language and u € X*,

Pref(L) = {u : (uwv,p) € L},
vu.p)

SE(L) = {u:( € L},
uL = {(uv,p) : (v,p) € L},
Lu = {(vu,p) : (v,p) € L},

u_lL {(

(

v, py) + (uv, p(uX*|L)p,) € L}
={(v,py) : (vu, pyp(X*u|L)) € L}.

Note that the expresions for u=!L and Lu~! are equivalent to {(v,p,) :
py = p(uwv|L)/p(uX*|L)} and {(v,py) : py = p(vu|L)/p(uX*|L)} respectively
but avoiding division by zero problems.

Of course, if u is a common prefix (v common suffix) of L then p(uX*|L) =
1 (p(X*ulL) = 1) and v 'L = {(v,p,) : (uv,p,) € L} (Lu=! = {(v,p,) :
(vu, py) € L}).

We denote the longest common suffix reduction of a stochastic language L
by L] = {(u,p) : z =1es(L), (uz,p) € L}, where les(L) = les{u : (u,p) € L}.

Note that if L is a stochastic language then Vu u='L, Lu~! and L | are also
stochastic languages.

A stochastic deterministic linear (SDL) grammar, G = (X, V, R, S, p) consists
X, V', S as for context-free grammars, a finite set R of derivation rules with either
of the structures X — aYw or X — A; such that X — aYw, X — aZv € R =
Y =Z Aw = v, and a real function p : R —]0, 1] giving the probability of each
derivation.

The probability p(S —*>w) that the grammar G generates the string w is
defined recursively as:

p(X 5 avw) = p(X = aYw)p(Y = v)

where Y is the only variable such that X —Yw € R (if such variable does not
exist, then p(X — aYw) = 0 is assumed). It can be shown that if
VA € VY p(A—a) = 1 and G does not contains useless symbols then G
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defines a stochastic deterministic linear language Lg through the probabilities
p(w|Le) = p(S = w).

Let X be a variable in the SDL grammar G = (X, V, R, S, p) then Lg(X) =
{(u,pu) : p(X = u) = pu}.

A non stochastic version of the above definition is studied in [dIHO02]: it
corresponds to a very general class of linear grammars that includes for instance
grammars for all regular languages, palindrome languages and {a™b™ : n € N}.
In the same paper a more general form of deterministic linear grammars was
proposed, equivalent to the form we use to support our grammars here. Extension
of these results to general deterministic linear grammars will not be done in this

paper.

3 A Canonical Form for Stochastic Deterministic Linear
Grammars

For a class of stochastic languages to be identifiable in the limit with probability
one a reasonable assumption is that there exists some small canonical form for
any language representable in the class. We prove in this section that such is
indeed the case for stochastic deterministic linear grammars.

The purpose of this section is to reach a computable normal form for SDL
grammars. For this we first define a normal form for these grammars (called
advanced as the longest common suffixes appear as soon as possible), and then
construct such a grammar from any deterministic linear language.

Definition 1 (Advanced form). A stochastic deterministic linear grammar
G = (X,V,R,S,p) is in advanced form if:

1. Y(T,aT'w) € Ryw = les(a ' Lg(T));

2. all non-terminal symbols are accessible: VT € V Ju,v € X* : S S uTv and
useful: VT € V, La(T) # 0;

3NT,T' €V, La(T)=La(T) =T =T

We build the canonical form from the language so as to ensure uniqueness:

Definition 2 (Common suffix-free language equivalence). Given a
stochastic language L we define recursively the common suffix-free languages
CSFL(:), and the associated equivalence relation as follows:

CSFL(\) =L

CSFr(xa) = (a=* CSF(x)) | r=py <= CSFr(r) = CSFL(y)

Proposition 1. The equivalence relation =1, has a finite index.

Proof. See the appendix.
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Definition 3 (A canonical grammar). Given any stochastic linear de-

terministic language L, the canonical grammar associated with L is G =
(X, V, R, Scsr, (n)»P) where:

V = {Scsr, (x) : CSFL(x) # 0}

R = {ScsF, (z) = aScsF, (za) les(a™ " CSF(2)) : CSFy (za) # 0}
U{Scsr, (@) =~ A: A€ CSFL(z)}

P(Scsr, () — aYw) = p(aX*w|CSF(x)) = p(aX*| CSFL(x))

p(Scsry(x) = A) = p(A| CSFL(2))

Proposition [1] allows this construction to terminate. The correctness of the
construction is a consequence of:

Proposition 2. Let L be a SDL language and let G, = (X, V, R, S,p) be its
associated canonical grammar. Then L = Lg, (S).

Proof. See the appendix.

Theorem 1. Given a SDL grammar G = (X,Vg,Rg,Sa,pa), let Gp =
(X,Va,,Ra,,Sa,,pa,,) be the canonical grammar that generates L = Lg(Sa),

1. G, is advanced
2. |VGL‘ < |Vg| + 1.

Proof. We prove that G is advanced by showing that conditions 1 to 4 of
definition [[l hold. The proof of the second part is a consequence of lemmal[d and
proposition 4} both results are given and proved in the appendix: they state that
the number of classes of C'SF, and thus the number of variables in the canonical
grammar, is bounded by the number of non-terminals in the original grammar.

4 Learning SDL Grammars

As SDL languages admit a small canonical form it will be sufficient to have an
algorithm that can identify a grammar in this type of canonical form.
We are going to divide the task of learning in two steps:

1. Identify the topology of the grammar, that is type A — aBwv rules, without
the probabilities.
2. Add the A — X type rules and assign the probabilities.

The second step can be done by counting the use of the different rules while
parsing a sample (maximum likelihood estimation); alternatively, as this does
not achieve identification, techniques based on Stern-Brocot trees can be used
in a similar way as in [dIHT00]. Hence we are going to concentrate on the first
step.

Definition 4. Let L be a SDL language, and < a length lexicographic order
relation over X*, the shortest prefix set of L is Sp;, = {x € Pref(L) : CSF(z) #
IhNy=rz=z<y}
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Note that, in a canonical grammar, we have a one-to-one relation between
strings in Sp and non-terminals of the grammar. We shall thus use the strings
in Sp as identifiers for the non terminal symbols. To describe the algorithm we
shall imagine that we have access to an unlimited oracle that knows language L
and to which we can address the following queries:

nextr(x) = {xa € Pref(L),a € X}
equivy(z,y) <= =Ly
right; (ra) = les(a=tCSFL (7))

Algorithm [I] visits the prefixes of the language L in length lexicographic
order, and constructs the canonical grammar corresponding to definition [Bl If
a prefix xa is visited and no previous equivalent non terminal has been found
(and placed in Sp), this prefix is added to Sp as a new non terminal and the
corresponding rule is added to the grammar. If there exists an equivalent non
terminal y in Sp then the corresponding rule is added but the strings for which x
is a prefix will not be visited (they will not be added to W). When the algorithm
finishes, Sp contains all the shortest prefixes of the language.

Algorithm []is clearly polynomial in the size of set W, provided the auxiliary
functions are polynomial.

A stochastic sample S of the stochastic language L is an infinite sequence of
strings generated according to the probability distribution p(w|L). We denote
with .S, the sequence of the n first strings (not necessarily different) in .S, which
will be used as input for the algorithm. The number of occurrences in S,, of
the string « will be denoted with ¢, (x), and for any subset X C X* ¢,(X) =
> zex Cn(z). Note that in the context of the algorithm, nextr (), right, (za)
and equivy (za,y) are only computed when = and y are in Sp;. Therefore the
size of W is bounded by the number of prefixes of S,,. In order to use algorithm
[[l with a sample S,, instead of an oracle with access to the whole language L

Algorithm 1 Computing G using functions next, right and equiv
Require: functions next, right and equiv, language L
Ensure: L(G) =L with G = (X,V, R, S))
Sp={\} V={S}
W = nextr(\)
while W # 0 do
za = ming W
W =W — {za}
if Jy € Sp: equiv, (za,y) then
add S, — aS, right; (za) to R
else
Sp=SpU{za}; V=V U{Ss}
W =W Unextr(za)
add Sy — aSg, right; (za) to R
end if
end while
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the 3 functions must be implemented as functions of S, (nextg, (-), rightg (-)
and equivg (-,-)) rather than L so that they give the same result as nextr(z),
right; (za) and equivy (za,y) when z,y € Sp;, and n tends to infinity.

In order to simplify notations we introduce:

Definition 5. Let L be a SDL language, then

taily (z) = {lcs(aclL) if e # A

N o=\ Vo : CSFy(z) # 0

A slightly different function tail that works over sequences is now introduced.
This function will be used to define a function right to work over sequences.

Definition 6. Let S,, be a finite sequence of strings, then

les(x™1S,) ifz# A\

Vx € Pref (S,
A if e =\ v € Pref(Sa)

tailg, (z) = {

Lemma 1. Let G, = (X,V,R,S,p) be the canonical grammar of a SDL lan-
guage L,V : CSF(z) # 0,

les(a™! CSF () = (taily, (za))(taily (z))
Proof. The proof is similar to lemma 4(1) of [dIHO02]
Definition 7.

nextg, () = {xa : Izay € S}

rightg (za) = tailg, (za) tailg, (z) '

It should be noticed that the above definition ensures that the functions
nextg, and rightg can be computed in time polynomial in the size of S,,. We now
prove that the above definition allows functions nexts, and rightg to converge
in the limit, to the intended functions nexty, and right; :

Lemma 2. Let L be a SDL language, for each sample S,, of L containing a set
D C{x: (z,p) € L} such that:

1. Vz € SppVa € X' : za € Pref(L) = Jzraw € D.
2. Vx € Spy Va € X : CSF(za) # 0 = tailp(za) = taily(za)

then Vz,y € Sp(L),

1. nextg, () = next(z)
2. rightg (ra) = right; (za)

Proof. Point 1 is clear by definition and point 2 is a consequence of lemma [I]

Lemma 3. With probability one, nexts, (r) = nextr(x) and rightg (za) =
right; (za) Vo € Sp(L) except for finitely many values of n.
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Proof. Given a SDL language, there exists (at least one) set D with non null
probability. Then with probability 1 any sufficiently large sample contains such
a set D. is unique for each SDL language. Then the above lemma yields the
result.

In order to evaluate the equivalence relation equiv(z,y) <= z =,y <=
CSF(z) = CSFL(y) we have to check if two stochastic languages are equivalent
from a finite sample S,,.

To do that, instead of comparing the probabilities of each string of the sample,
we are going to compare the probabilities of their prefixes. This strategy (also
used in ALERGIA [CO94] and RLIPS [COQ9]) allows to distinguish different
probabilities faster, as more information is always available about a prefix than
about a whole string. It is therefore easy to establish the equivalence between
the various definitions:

Proposition 3. Two stochastic languages L1 and Lo are equal iff
p(aX*|wtLy) = plaX*|lw ' Ly)Va € X, Yw € X*

Proof. Ly = Ly = Yw € X* : p(w|L1) = p(w|Ly) = w 'L =w 'Ly =
Vz C X% i p(zlw™tLy) = p(z|lw=tLy)

Conversely Ly # Ly = 3Jw € X* : p(w|Ly) # p(w|Lsz). Let w = az,
as plazll) = p(aS*L)p(xla~'L) then p(aZ*|Li)p(zla~'L1) # p(a*|Ly)
p(zla=1Ly).

Now we have 2 cases:

1. p(aX*|L1) # p(aX*|Lz) and the proposition is shown.
2. p(aX*|L1) = p(aX*|L2) then p(zla™'Ly) # p(zla™" La).

This can be applyed recursively unless w = .

In such case we have that Jw € X* : p(w|L1) # p(w|L2) A p(wX*|Ly) =
p(wX*|Ly). But since ) . p(x|L;) = 1, it follows that Ja € X such that
p(waX*|Ly) # p(waX*|Ly). Thus p(aX*|w=tL1) # p(aX*|w™1Ly).

As a consequence,
z=py <= p(a¥*|(zz)"'L) = p(aX*|(yz) ' L)Va € ¥,z € £*

If instead of the whole language we have a finite sample .S,, we are going to
estimate the probabilities counting the appearances of the strings and comparing
using a confidence range.

Definition 8. Let f/n be the obseved frequency of a Bernoulli variable of prob-
ability p. We denote by e,(n) a fuction such that p(|£ —pl<e(n)>1—a
(the Hoeffding bound is one of such functions).

Lemma 4. Let f1/ny and fa/ng two obseved frecuencies of a Bernoulli variable
of probability p. Then:

<f1 f2
p

ni n2

< €q(ny) + ea(nz)) > (1-a)?
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Proof. pl|2- — £2] < €a(n1)+ea(n2)) < p(|£= —pl+|£2 —p| < ca(m)+ea(nz)) <
P(1L = p| < €alni) A |22 = p| < ea(nz)) < (1—a)?

Definition 9.

equivg (z,y) <= Vz € X" : xz € Pref(S,) Ayz € Pref(S,),Va € ¥
cn(zzaX*)  cn(yzaX™)

cn(x2X*) cn(yzX*)

cnl(r2)  cn(yz)
cn(x2X*)  cn(yzX™*)

< ealcn(@zX™)) + ealen(yzX™)) A

< €alen(x2X7)) + ealcn(yzX™))

This does not correspond to an infinite number of tests but only to those for
which xz or yz is a prefix in S,,. Each of these tests returns the correct answer
with probability greater than (1 —a)?. Because the number of checks grows with
| Pref(L)| we will allow the parameter « to depend on n.

Theorem 2. Let the parameter «,, be such that Zzozo naow, s finite. Then, with
probability one, (x =g y) = equivg (x,y) except for finitely many values of n.

Proof. In order to compute equivg (x,y) a maximum of 2| Pref(S,)| tests are
made, each with a confidence above (1 — a;,)2. Let A, be the event that at
least one of the equivalence tests fails ((x =p y) # equivg (x,y) when using
Sy, as a sample. Then Pr(4,,) < 4a,| Pref(S,)|. According to the Borel-Cantelli
lemma [Fel68], if Y °  Pr(A4,) < oo then, with probability one, only finitely
many events A,, take place. As the expected size of Pref(.S,,) can not grow faster
than linearly with n, it is sufficient that Y | na, < co.

5 Discussion and Conclusion

We have described a type of stochastic grammars that correspond to a large class
of languages including regular languages, palindrome languages, linear LL(1)
languages and other typical linear languages such as {a™b"™,0 < n}. The existence
of a canonical form for any grammar in the class is proved, and an algorithm
that can learn stochastic deterministic linear grammars is given. This algorithm
works in polynomial time and can identify the structure and the probabilities
when these are rational (see [dIHT00] for details).

It is nevertheless easy to construct a grammar for which learning is practi-
cally doomed: with high probability, not enough examples will be available to
notice that some lethal merge should not take place. A counterexample can be
constructed by simulating parity functions with a grammar. So somehow the
paradigm we are using of polynomial identification in the limit with probability
one seems too weak. But on the other hand it is intriguing to notice that the
combination of the two criteria of polynomial runtime and identification in the
limit with probability one does not seem to result in a very strong condition: it is
for instance unclear if a non effective enumeration algorithm might also meet the
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required standards.It might even be the case that the entire class of context-free
grammars may be identifiable in the limit with probability one by polynomial
algorithms.

An open problem for which in our mind an answer would be of real help for
further research in the field is that of coming up with a new learning criterion
for polynomial distribution learning. This should in a certain may better match
the idea of polynomial identification with probability one.

References

[Bak79] J. K. Baker. Trainable grammars for speech recognition. In Speech Com-
munication Papers for the 97th Meeting of the Acoustical Soc. of America,
pages 547-550, 1979.

[CO94] R. Carrasco and J. Oncina. Learning stochastic regular grammars by means
of a state merging method. In Proceedings of ICGI’94, number 862 in LNAI,
pages 139-150. Springer Verlag, 1994.

[CO99] R. C. Carrasco and J. Oncina. Learning deterministic regular grammars
from stochastic samples in polynomial time. RAIRO (Theoretical Infor-
matics and Applications), 33(1):1-20, 1999.

[dIHO02] C. de la Higuera and J. Oncina. Learning deterministic linear languages. In
Proceedings of COLT 2002, number 2375 in LNAI, pages 185-200, Berlin,
Heidelberg, 2002. Springer-Verlag.

[dIHT00] C. de la Higuera and F. Thollard. Identication in the limit with probability
one of stochastic deterministic finite automata. In Proceedings of ICGI
2000, volume 1891 of LNAI pages 15-24. Springer-Verlag, 2000.

[Fel68] W. Feller. An Introduction to Probability Theory and Its Applications,
volume 1 and 2. John Wiley & Sons, Inc., New York, 3rd edition, 1968.

[LS00] P. Langley and S. Stromsten. Learning context-free grammars with a sim-
plicity bias. In Proceedings of ECML 2000, volume 1810 of LNCS, pages
220-228. Springer-Verlag, 2000.

[NMW97] C. Nevill-Manning and I. Witten. Identifying hierarchical structure in se-
quences: A linear-time algorithm. Journal of A. I.Research, 7:67-82, 1997.

[Sak92] Y. Sakakibara. Efficient learning of context-free grammars from positive
structural examples. Information and Computation, 97:23—-60, 1992.

[SBH'94] Y. Sakakibara, M. Brown, R. Hughley, I. Mian, K. Sjolander, R. Under-
wood, and D. Haussler. Stochastic context-free grammars for trna model-
ing. Nuclear Acids Res., 22:5112-5120, 1994.

[WAO02] Y. Wang and A. Acero. Evaluation of spoken language grammar learning
in the atis domain. In Proceedings of ICASSP, 2002.

[YLT00] M. Young-Lai and F. W. Tompa. Stochastic grammatical inference of text
database structure. Machine Learning, 40(2):111-137, 2000.

6 Appendix

Propositions from section Blaim at establishing that a small canonical form exists
for each SDL grammar. The following proofs follow the ideas from [dIHO02].
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6.1 Proof of Proposition[dl

In order to prove the propositions we have to establish more definitions.

To define another equivalence relation over X*, when given a stochastic de-
terministic linear grammar, we first associate in a unique way prefixes of strings
in the language with non-terminals:

Definition 10. Let G = (X,V,R,S,p) be a SDL grammar. With every string
x we associate the unique non terminal [x]g = T such that S = 2Tu; we extend
L¢ to be a total function by setting La([x]g) = 0 the non terminal T doen not
exists.

We use this definition to give another equivalence relation over X*, when
given a SDL grammar:

Definition 11. Let G = (X,V, R, S,p) be a SDL grammar. We define the as-
sociated common suffix-free languages CSFg(.), and associated equivalence re-
lation as follows:

CSFa(A) = La(S)

CSFq(za) = La([zale) | z =gy < CSFg(z) = CSFa(y)

= is clearly an equivalence relation, in which all strings x such that [x]q is
undefined are in a unique class. The following lemma establishes that =4 has
finite index, when G is a stochastic deterministic linear grammar:

Lemma 5. If [z]¢ = [y]g, x # X and y # X\ = x =¢ y. Hence if G contains n
non-terminals, =¢ has at most n + 2 classes.

The proof is straightforward. There can be at most two possible extra classes
corresponding to A (when it is alone in its class) and the undefined class

Lemma 6. Let G = (X,V,R,S,p) be a SDL grammar. If X = zYw then:
(a1 L(X) | = L(Y) )

Proof. Tt is enough to prove (a ™ 'L(X))| = L(Y)| if X - aYw € R, which is
clear by double inclusion.

Proposition 4. Let G = (X, V,R,S,p) be a SDL grammar, and denote L =
L (S). Yo € X*, either CSFL(z) = CSFg(z) or CSFL(z) =0

Proof. By induction on the length of x.

Base: z = )\, then CSF () = L = CSFg(z).

Suppose: the proposition is true for all strings of length up to &, so consider
string za of length k + 1. CSFy(za) = (a=! CSF(z)) ] (by definition ().
If CSF(z) = 0, CSFL(xza) = 0. If not (CSFL(z) = CSFg(x)) by induction
hypothesis, CSF(za) = (a=! CSFr(2))| = (a=* CSFg(z)) | and there are
two sub-cases:
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if 2 = A\ CSFg(7) = Lg([z]a), so CSFp(za) = (a ' La([z]c)) 4

if 7 £\ CSFa(r) = Lo(lala) |, so: CSFL(za) = (a  (Le(zle) ) | (by
definition M), =(a~ ! (La([z]c))) 4

In both cases follows: CSFy(xa) = (a 'Lg([z]g))d = Lg([zale)! (by

lemma [B)= CSF g (za).

Corollary 1 (proof of proposition ). Let G = (X, V, R, S, p) be a stochastic
deterministic linear grammar. So =p(s) has finite index.

Proof. A consequence of lemma[5 and proposition [k

6.2 Proof of Proposition [2]

To avoid extra notations, we will denote (as in definition [[0) by [z] the non-
terminal corresponding to x in the associated grammar (formally Scgp, (2) or
[#]ar)-

The proof that G generates L is established through the following more
general result (as the special case where x = \):

Proposition 5. Vz € X* L, ([x]) = CSFL(z).
Proof. We prove it by double inclusion.

Vr € X* CSFp(z) C Lg, ([z])

Proof by induction on the length of all strings in CSFf,(x).

Base case |w| = 0 = w = A. If (A\,p) € CSF(z), by construction of the
rules, [z] = A and p([z] = A) =p so (A, p) € Lg, ([x])-

Suppose now (induction hypothesis) that
Vo € X* Vw € XSF: (w,p) € CSFL(z) = (w,p) € Lg, ([z]).
Let w = auv such that |w| = k + 1, (auv,p) € CSFp(z) and let
v = les(a™! CSFp(x)). As CSFp(za) = (a=*CSFL(z)), then 3p, :
(u,py) € CSFL(za) and then p = p,p(aX*| CSF(z)). As by construc-
tion [z] — a[zalv and p([z] — alza)v) = p(aX*| CSFL(z)) and, by hy-
pothesis induction (Ju| < k) (u,py,) € Le([za)), then (auv,p) € La([z]).

Vz € X*, Lg, ([x]) C CSFL(z)

Proof by induction on the order (k) of the derivation
Vo € X*, Vk e N, YVw € X*, [x]im) = (w,p([x]iw) € CSFp(x).

Base case [m]#w This case is only possible if w = A. And, by construction,
such a rule is in the grammar because (A, p(A| CSFr(x)) € CSF(x)

Suppose now (induction hypothesis) that for any n < k :
Vo € 2% Yw € X% : [z]Dw = Ip : (w,p) € CSFL(x)
Take w € X* such that [x]k—ﬂmj, then [z] — a[za]v 5 w = awv with
[za] 5w, and p = p([x] = alza]v)p, where p, = p([za] LA u), by induc-
tion hypothesis we know that (u,p,) € CSFp(za) = (a=* CSFL(z)) ) =
{(t,pt) : (atv,pap:) € CSFr(z),pa = p(aX*|CSFr(z)),v =
les(a=* CSF(x))}. As by construction we know that p([z] — a[za]v) =
p(aX*| CSFL(x)) then (w,p) = (auv, p([z] = a[zalv)p,) € CSF(z).
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