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Abstract. With the advent of the OMG’s new Model Driven Architec-
ture (MDA), and the growing uptake of the UML, the concept of model-
driven development is receiving increasing attention. Many software or-
ganizations have identified the MDA as being of strategic importance to
their businesses and many UML-tool vendors now market their tools as
supporting model-driven development. However, most UML tools today
support only a very limited concept of model driven development—the
idea of first creating platform independent models and then mapping
them into executable code. In contrast, true model-driven development
implies that the development flow of a project is in some way “driven”
(i.e. guided) by models. Quality attributes of models (e.g., measures de-
rived from structural attributes) could be used in this regard, but al-
though many different types of measures have been proposed (e.g. cou-
pling, complexity, cohesion) they are not widely used in practice. This
chapter discusses the issues involved in supporting this more general
view of model driven development. It first presents some strategies for
deriving useful quality-related information from UML models and then
illustrates how this information can be use to optimize project effort and
develop high-quality components. We pay special attention to how qual-
ity modelling based on structural properties can be integrated into the
OMG’s Model Driven Architecture (MDA) initiative.

1 Introduction

Software organizations are attracted to Component-Based Development (CBD)
[16] because it offers the prospect of significant improvements in productivity. By
assembling new applications from pre-fabricated and pre-validated components,
rather than building them from scratch using traditional developing techniques,
organizations can achieve significant savings in cost and time. At present, how-
ever, industrial component-technologies such as COM+/.NET, EJB/J2EE and
CORBA only support components in the final implementation and deployment
stages of development, leaving analysis and design to be organized in tradi-
tional, non-component-oriented ways. This not only reduces the potential impact
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of component-based development, since the design phase of development is pre-
cisely where the most critical decisions about software architecture and reuse are
made, but also forces notions and metrics for component quality to be highly
implementation- and deployment oriented. A more abstract representation of
components is desirable because it would allow CBD issues to be considered
earlier in the development process and thus to cover a wider part of the software
lifecycle.

The software industry has in fact been moving towards more abstract repre-
sentations of software artifacts for some years, although not specifically in con-
nection with component-based development. Fuelled by the popularity of the
Unified Modelling Language (UML) [15], the Object Management Group has re-
cently adopted “Model Driven Architecture” (MDA) [g] as its unifying vision for
software engineering. Like component-based development, the aim of MDA is to
promote reuse. By separating the description of key application abstractions and
logic from the details of specific implementation platforms these key artifacts can
be made more stable over time and thus can deliver a greater return on invest-
ment. MDA therefore emphasizes the distinction between Platform Independent
Models (PIMs), which capture key application abstractions and logic in a plat-
form independent way, and Platform Specific Models (PSMs) which represent
the concrete mapping of these artifacts to specific implementation technologies.

Although CBD and MDA offer alternative strategies for reuse, they are in
fact complementary and can be used to reinforce each other. MDA addresses the
previously mentioned shortcoming of industrial component technologies, namely
their focus on the implementation/deployment phases of development, by pro-
viding a framework for a model-based (i.e. UML based) representation of compo-
nents. Several component-oriented development methods, such as Catalysis [9],
KobrA [1] and UML Components [6], now emphasize the modelling of logical
components in terms of UML diagrams in the early (analysis and design) phases
of development. CBD, in turn, addresses a major weakness of the MDA approach
— namely its lack of prescriptive support for the modelling process. Although
the theoretical advantages of model-driven development are generally accepted,
and many companies claim to be using the UML in their software engineering ac-
tivities, the state-of-the practice is still very primitive. For most companies and
tool-vendors model-driven development simply means creating platform indepen-
dent UML models and then mapping them (as automatically as possible) into
platform specific code. While this separation of concerns is valuable, however, it
falls far short of the full vision of model-driven development. In particular, there
is little attempt to use the information in models developed early in the lifecycle
to actually “drive” the development of later models or artifacts. “Model-based
development” would thus be a far more accurate term for the current state of
the practice rather than “model-driven development”.

Adopting a component-based strategy for organizing platform independent
models can help address this problem by facilitating the measurement and use
of concrete metrics to help move the development process forward. This chapter
elaborates on this opportunity by showing how metrics derived from component-
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oriented models created early in a development project can be used to “drive”
activities performed later in the project. The activities that we consider are those
associated with quality assurance, since these play a particularly important role
in the success of a project. In Section [2] we explain our model of components and
composition, and how they can be captured using the UML, while in Section Bwe
outline the motivation for quality assurance in software development projects and
explain the fundamental role that a quality model can play. Then, in Section @l
we describe in detail how structural properties such as coupling, complexity,
and size can be measured for UML artifacts, (i.e., how these quality measures
are defined), and give an example based on the component-description models
defined by the KobrA method [I]. SectionBluses the concepts defined in section F]
to show some examples of how information garnered from UML models can be
used for decision making in later parts of a project. Section [g describes some
future trends in component-based development. Finally, Section [ concludes.

2 UML-Based Component Modelling

The techniques explained in this chapter will work with any approach for the
UML-based modelling of components, but in this chapter we use the KobrA
method [I] as the underlying foundation. Within the KobrA method, all behavior-
rich abstractions, including entire systems, are viewed as components and are
modelled in the same basic way. Moreover, the assembling of components is re-
garded as creating a larger component at the next level of granularity. Thus,
a complete application architecture is viewed as a recursive structure in which
larger components are realized in terms of smaller components, which in turn
are composed of even smaller components, and so on.

The general set of models used to describe a single component is illustrated in
Fig. [l This shows that the models are organized into two groups, those making
up the specification of the component that describes its externally visible prop-
erties, and those making up the realization that describe how the component is
constructed from other objects and components (i.e. its design). The specifica-
tion consists of three models which present different, but interrelated, views of
the components properties: the structural model describes the data types that
the component manipulates and the external component types with which it
interacts, the functional model describes the semantic properties of the compo-
nent’s operations in terms of pre and post conditions, and the behavior model
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presents the abstract states and transitions exhibited by the component. The
realization also consist of three models which present different, but integrated
views of how the component is realized: the structural model, which elaborates
on the specification structural models to describe the architecture of the compo-
nent, the interaction model which shows how each of the component’s operations
is implemented in terms of interactions with other components, and the activ-
ity model, which shows the algorithms used to implement the operations. In all
cases, strict rules ensure that the various models are internally and externally
consistent with one another.

The concept of composition appears in the KobrA method in two basic
ways, both derived from the semantics of the UML. At run-time, component
instances (created from the abstract component types modelled in the way de-
scribed above) interact with one another through the traditional client-server
model. Client-server (or in KobrA, clientship) relationships are generally loosely
coupled, but it is also possible for clientship relationships to imply some form
of whole-part relationship. Aggregation is a loose form of the whole-part rela-
tionship, in which there is a general notation of the server being a part of the
client, but there is no concept of binding or related life-times. The stricter form
of whole-part relationship is composition, which as well as indicating that the
server is a part of the client also captures the idea that the server is private to
the client, and its lifetime is tied to that of the client.

As well as this form of composition, at development time there is also the
concept of structural whole-part relationships in which the definition of one
component forms a part of the definition of another. In the UML this is cap-
tured though the containment (or ownership) relationship between packages.
One package contains another package if all the elements within one package
are also contained in the other. Packages play the role of name-spaces in the
UML, so the nesting of packages serves as the basis for the hierarchical naming
of model elements.

Both UML notations of composition are adopted in the KobrA method. Each
logical component has an associated UML package, which contains the various
models (and model elements) that document the properties of the component
(Fig. ). The model elements in the specification of the component are viewed
as public members of the package, while those in the realization are viewed as
private. By nesting component packages inside one another, the overall structure
of a system can be represented as a tree-based hierarchy of components, each
modelled in the way illustrated in Fig.[l. The desired client-server structure of
the run-time instance of the components (including any run-time composition
or aggregation relationships) is documented explicitly within the components’
structural models.

3 Quality Assurance

Quality assurance (QA) encompasses the activities involved in maximizing the
quality of the software artifacts developed in a project based on the available
resources. In a quantitative sense, therefore, the goal of quality assurance is to
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ensure that certain desired quality attributes or properties are attained or ex-
ceeded. The ISO9126 standard for software product quality [T2] defines a set of
six quality attributes: functionality, reliability, usability, efficiency, maintainabil-
ity, and portability, each broken down into several sub-characteristics. These are
intended to cover all quality needs of all stakeholders in a software product. For
each quality attribute, specific QA techniques exist, e.g., inspections and testing
to ensure functionality and reliability, or change scenario analysis to assess the
maintainability of software design. The QA approach in this chapter is the mea-
surement of structural design properties, such as coupling or complexity, based
on a UML-oriented representation of components. UML design modelling is a
key technology in the MDA, and UML design models naturally lend themselves
to design measurement.

In the context of the ISO9126 product quality framework, structural proper-
ties are internal quality attributes. Internal attributes can be measured in terms
of the product itself. All necessary information to quantify these internal at-
tributes is available from the representation (requirements, design document,
source-code, etc.) of the product. Therefore, these attributes are measurable
during and immediately after the creation process. Internal quality attributes
describe no externally visible quality of a product, and thus have no inherent
meaning in themselves. In contrast, the six quality attributes (“-ilities”) men-
tioned above are external attributes. Such quality attributes have to be measured
with respect to the relationship between the product and its environment; mea-
suring these attributes directly requires additional information. For example,
maintainability can only be measured directly when the product actually under-
goes maintenance, in terms of time spent. Reliability can be measured in terms
of mean-time-to-failure (MTTF) of the operational product. External attributes
can only be measured directly some time after the product is created (i.e., post-
release, when the detection and removal of quality problems is time and cost
intensive).

An artifact’s internal attributes are assumed to have a causal impact on
its external attributes. For instance, systems with loosely coupled components
are expected to be more maintainable than highly coupled components, while
components with high structural complexity are more fault-prone than those
of low complexity. Making the link from internal attributes to their impact on
external attributes is the purpose of a quality model.

Measurement of structural properties is attractive because it is objective and
automatable, and thus fast to perform at low cost. Using a quality model, we
can identify areas in a design with potential quality problems, and make these
the focus of (more expensive) QA activities such as reviews and testing.

3.1 Quality Measures

A large number of measures have been defined in the literature to capture inter-
nal quality attributes such as size and coupling for OO systems [2]. Most of these
measures are based on plausible assumptions, but, in the light of the discussion
of the previous section, the two key questions are to determine whether
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— They are actually useful, significant indicators of any relevant, external qual-
ity attribute, and how they can be applied in practice
— They lead to cost-effective models in a specific application context.

These questions have not received sufficient attention in the current litera-
ture. All too often design measurement is treated not as a means to an end,
but as an end in itself. Answering the questions stated above requires a careful
analysis of real project data. Some 30 empirical studies have been performed
and reported in order to address the above-mentioned questions [2]. The results
of these studies can be summarized as follows:

— Most of the studies are concerned with the prediction of class fault-proneness
or development effort based on design measurement taken from source code.

— Data sets with fault or effort data at the class level are rare. As a con-
sequence, these data sets tend to be repeatedly used for various studies.
Instead, we find a large number of different studies using a small number
of data sets. These data sets often stem from small industrial projects or
academic environments (student labs).

— Only about half of the studies involve some attempt to build an accurate
prediction model for the quality to predicted. The remaining studies only
investigate the impact of individual measures on system quality, but not
their combined impact.

— From the studies that build quality prediction models, only half of these
studies investigate the prediction performance of the model in a relevant
application context. Those results, however, look promising. For instance, in
the context of fault-proneness prediction, prediction models that pinpoint
the location of 80% of post-release faults are possible. Such models can be
used to focus other quality assurance activities (inspections, testing).

4 Measurement of Structural Properties

The internal quality attributes of relevance in model-driven development are
structural properties of UML artifacts. The specific structural properties of in-
terest are coupling, complexity, and size. These are well understood, and as
shown by empirical studies are indicators of various external qualities in OO de-
sign [3, 41 5L [7, 10} [T4]. To support the definition of coupling, complexity, and size
measures we provide a “plan” for coupling, complexity, and size measurement.

4.1 Size Measurement

Size measures are counts of elements in UML diagrams and are good candidates
for developing cost estimation models for designing, implementing, inspecting,
and testing modelled entities. Such estimates are used as input for effort planning
purposes and the allocation of personnel. The definition of such measures requires
the resolution of three questions related to the overall measurement goal.
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Table 1. Building Blocks for Size Measures

Entity Constituent elements within

Component Subcomponents, Packages, Subsystems, Classes, Interfaces
Package Packages, Subsystems, Classes, Interfaces

Subsystem Packages, Subsystems, Classes, Interfaces, Operations
Class Classes, Operations, Attributes, States

Interface Operations

Object

Operation Parameters

Question 1: What entities are to have their size measured?

Question 2: What constituent elements contribute to the size of these entities?

Question 3: How is the size of the entity to be quantified in terms of its con-
stituent elements?

Ad Questions 1 and 2: Table [[summarizes the possible choices for the first
two decisions in the context of component-based development. The left col-
umn states the entities for which size is measured, the right column indicates
what elements make up each entity and contribute to its size.

Components and classes are likely to be the most useful entities. Investi-
gating size at a lower abstraction level requires an investigation of the external
quality properties at that level (e.g., accounting for development effort per op-
eration). However, this may be impractical. When defining size measures, it is
not recommended to count entities of different types within one measure, since
this would assume that the entities have equal impact on the quality. Therefore,
we suggest that entities be measured separately, and that separate measures be
used as building blocks for quality models as described in Section four.

Ad Question 3: For the quantification of entity-size there are two options. The
size of a “higher-level” entity can be measured in terms of (1) the number
of a certain type of countable element within it, or (2) the sum of the size
of certain countable elements. In general, the first option results in a more
coarse-grained measurement than the second option. The choice therefore
depends on the stability of the number of counted elements at the time
when the measurement is performed.

As an example, consider a KobrA class diagram for the realization of a
simple banking system of the form illustrated in Fig. 2l To measure the size of
the bank component the following steps are performed:

— Question 1: entity to measure — the components.
Question 2: constituent elements — component is constituted by a set of
classes.
Question 3: count the number of constituent elements.
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Fig. 2. Class Diagram for Bank

The resulting measure is simply the number of classes in the component.
Considering the component Bank depicted in Fig. [, the measure of this
component is 5, since it is composed by 5 classes (Converter, Teller, Bank,
Account and PersistentAccount).

— Question 1: entity to measure — the components
Question 2: constituent elements — classes of the component
Question 3: sum of the size of the constituent elements.

We need a size measure for classes, which we define in the following.
— Question 1: entity to measure — the classes
Question 2: constituent elements — the operations they contain
Question 3: count the number of constituent elements.

The resulting measure is the number of operations in the classes of the
component. In Fig. ] the size of the Bank component is 9 operations (only
operations for three classes have been identified at this stage).

Considered in isolation, these numbers give us little, if any, useful informa-
tion. However, when compared they can help allocate resources. For example,
measuring the size of all entities (e.g., components) in the banking system allows
us to make statements of the form “Bank” is twice as large as some other system
or component. Such information can be used as input for the allocation of per-
sonnel. If empirical data is available, size measures can also be used to predict
the effort for implementation and testing, thus supporting project planning and
management.
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4.2 Coupling Measurement

Coupling is the degree to which various entities are connected. These connections
cause dependencies between the entities that have an impact on various external
system quality attributes. Examples are maintainability (a modification of an
entity may require modifications to its connected entities), testability (a fault
in one entity may cause a failure in a completely different, connected entity),
and fault-proneness (dependencies usually define a client-server relationship in
which the client developer needs to know exactly how to use the service). Thus, a
common design principle is to minimize coupling. The definition of such measures
requires six questions to be answered:

Question 1: What entity is to have its coupling measured?

Question 2: By what mechanism is the entity coupled to other elements?
Question 3: Should multiple coupling connections between two elements (e.g.
multiple associations between two classes) be counted separately or not?

Question 4: What is the direction of coupling (import or export coupling)?

Question 5: Should direct and/or indirect connections be counted?

Question 6: Are there any special relationships that should exist between con-
nected entities?

For each question there are a number of options to choose from. These are de-
tailed in the following: The actual selection should be driven by the measurement
goal in mind and the design practices at hand.

Ad Question 1: the entities for which we may quantify coupling are the same
as for size measures (see column “Entity” in Table[)): components, packages,
subsystems, classes, interfaces, objects, or operations.

Ad Question 2: the possible types of links between a client and a server entit
(operation, class, component) are:

— Associations, e.g., between two classes. Aggregations and compositions
may be subsumed under “associations” or measured separately as unique
coupling mechanisms.

— UML Dependencies between any two elements.

— UML Abstractions (e.g., between interfaces and implementing classes).

— Operation invocation (object instance of class C sends message to object
instance of class D).

— Parameter type (operation of class C receives/returns parameter of type
class D).

— Attribute type (attribute of class C has attribute of type class D).

Ad Question 3: If there can be multiple coupling connections between a pair of
elements, we have to decide whether to count these connections individually,
or whether to just take into account the fact that there are connections

! Most, but not all connectors are directed and thus impose client and server roles on
the connected items. For undirected connectors, the connected items are just two
equal peers.
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between the element pair, regardless of their precise number. The answer
depends on the stability of the number of connections. If it is likely to change,
a precise count is not needed.

Ad Question 4: For directed connectors, it is possible to count import or ex-
port coupling. Import coupling analysis the entities in their role as clients
of other attributes, methods, or classes, while export coupling analysis the
entities in their role as servers. High import coupling indicates that an entity
strongly relies on other design elements to fulfill its job. Thus, import cou-
pling has to be considered together with the following external attributes: un-
derstandability, fault-proneness, and maintainability. High export coupling
states, that one entity is heavily used by others. Thus, it has to be considered
together with the following external attributes: criticality and testability.

Ad Question 5: A yes/no decision has to be made as to whether the coupling
measure should only count direct connections between elements or indirect
ones as well. Indirect connections can be relevant when estimating the effort
of run-time activities such as testing and debugging or the impact of modi-
fications (ripple effects). Direct connections are sufficient for the analysis of
understandability. To understand a component it is sufficient to know the
functionality of directly used services. In contrast, knowledge about their
implementation is not needed.

Ad Question 6: In some cases, we may only want to count coupling between
entities that have a special relationship. For example, only coupling be-
tween classes with an inheritance relationship may be counted; or coupling to
classes that are variation spots in a framework or product line architecture.

As an example of a coupling measure, we use the above schema to count
operation invocations for the classes of a component.

Q1: entity to measure — the classes

Q2: coupling mechanism — messages invoking operations

Q3: direction of coupling — import coupling (outgoing messages)

Q4: multiple connections — multiple invocations of the same operation are
counted individually

Q5: direct/indirect connections — count direct connections only

Q6: no special relationships between caller and callee.

Assuming the following collaboration diagrams for the withdraw() and de-
posit() operations of the Bank component (Fig.[J), the import coupling of class
Bank is 7 (2 x getAccount(), 2 x convertToEuro(), 1 x getBalance(), 1 x de-
posit(), 1 x withdraw()).

If we change the definition of the coupling measure to count export coupling
(Question 3), the resulting coupling values are 2 for classes Teller and Converter,
3 for PersistentAccount.
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Fig. 3. Collaboration Diagram for the withdraw() and deposit() operations

4.3 Complexity Measurement

Whereas coupling is concerned with how a design entity is connected to other
design entities, complexity measures are concerned with how connected the ele-
ments within a design entity are (e.g., associations between classes of a compo-
nent, or invocations between operations of a class). The higher the connectivity
of elements within the design entity, the higher its complexity. The questions to
be answered when defining complexity measures are therefore similar to those
for coupling measurement:

Question 1: What entity is to have its complexity measured?

Question 2: By what mechanism are the elements in the design entity con-
nected with each other?

Question 3: Should multiple connections between two elements be counted sep-
arately or not?

Question 4: Should direct and/or indirect connections be counted?

Question 5: Are there any special relationships that should exist between con-
nected entities?
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Ad Question 1: the entities for which we may quantify complexity are the
same as for size measures (see column “Entity” in Table [1): components,
packages, subsystems, classes, interfaces, objects, or operations.

Ad Question 2: The mechanisms by which elements in the design entity are
connected are the same as the coupling connectors in listed in Question
2 of Section In addition, transitions between states contribute to the
complexity of a class.

The options for the remaining questions are the same as for coupling mea-
surement as described in Section As an example of a complexity measure
for a component, we count the number of associations between classes of the
component:

Q1: Entity to measure — the component

Q2: Connection mechanism between design elements — associations between
classes of the component

Q3: multiple connections — multiple associations between the same two classes
are counted as one, not individually

Q4: direct/indirect connections — count direct connections only

Q5: no special relationships between associated classes.

Applying this measure to the class diagram for Bank (Fig.[d) we see that
there are 2 associations between classes of the component.

5 Example Quality Models

The previous Section identified several internal quality attributes that can be
measured directly from UML diagrams. However, these internal attributes are
of little direct value by themselves. In the following the use of different quality
models to assess various quality attributes is discussed. We show how such mod-
els can be used to identify potential risk areas in the system models and how
this information can be used to drive the inspection and testing activities.

5.1 Prediction Models

Prediction models try to estimate the future quality of a system from internal
quality attributes. This is achieved by exploring the relationships between in-
ternal and external attributes from past systems as well as by applying insights
into the system under development. In the following the construction and usage
of such a prediction model is described in the context of fault-proneness and
structural properties of a class. Fig.[4] depicts the steps involved in building the
quality model.

A measurement tool is applied to a set of previously created documents to
obtain the relevant structural properties. This results in a set of documents en-
riched with structural properties. In addition, fault data (e.g., from inspections)
has to be selected for these documents. Statistical analysis (e.g. classification
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Fig. 4. Building a Prediction Model

or regression analysis) is then used to explore the relationship between fault
data and structural properties. The result is a prediction model (i.e., a regres-
sion equation) that computes a predicted fault-proneness or predicted number of
faults. This model can be used to make predictions for new entities as depicted
in Fig.

For a new entity the measurement tool is reapplied to obtain data on struc-
tural properties. This is an automatable, cheap, and fast process. The resulting
data is fed into the prediction model, which uses the now known relationships
between coupling, complexity and faults to calculate, for instance, a predicted
fault-proneness for the document — that is, the probability that a fault will be
found in the document upon inspection.

The resulting output is useful for deciding what activities to perform in
the ensuing development process and what these activities should focus on. For
instance, if the predicted fault-proneness is below 25%, it is not necessary to
inspect the document but to proceed immediately to the next development ac-
tivity. However, if the predicted fault-proneness is above 25% an inspection can
be triggered. Thus, effort can be focused on the artifacts that are more likely
to contain faults. Prediction models for other system qualities (e.g., models to
predict implementation and test effort from size) can be built in the same way.

The advantage of prediction models is that they provide a mapping from
non-interpretable internal quality data to interpretable external qualities. The
result is an absolute, quantitative statement about the external quality of a
system, which can be understood by developers and expressed in the same units
in which the external quality is measured. However, a disadvantage is that the
data requirements are high, and that the building and use of such models requires
expertise in statistics.

2 The kind of prediction depends on the used regression analysis, which in turn depends
on the type of (fault) data collected.
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Industrial experience with prediction models for fault-proneness/effort pre-
diction in the context of OO system development (not limited to component
development) is encouraging [3, [4, [7} [10, [[4]. When predicting fault-proneness
for classes, the best models have consistently obtained a percentage of correct
classifications of about 80% and find more than 80% of faults (these figures as-
sume that classes predicted fault-prone are inspected, and all faults are found
during the inspection). Overall, the results suggest that design measurement-
based models for fault-proneness predictions of classes may be very effective
instruments for quality evaluation and control of components. From the results
presented in studies predicting development effort, we may conclude that there
is a reasonable chance that useful cost estimation models can be built during the
analysis and design of object-oriented systems. System effort predictions with
relative errors below 30% (an acceptable level of accuracy for cost estimation
models) seem realistic to achieve.

The empirical results also indicate that prediction models are highly context-
sensitive, affected by factors such as project size, development processes at hand,
and so forth. Therefore, prediction models need to be built and validated locally
in the development environment in which they are used. Also note that the
above results were achieved performing measurement on source code artifacts,
not UML design artifacts. A demonstration of these principles using UML design
measurement remains future work.

5.2 Quality Benchmarks

The idea of benchmarks is to compare structural properties of an entity with
properties of previous systems that are ‘known to be good’. To this end, mea-
surement values for selected size, coupling, and complexity measures are stored
in a database. If a new or modified component has to be evaluated, the same
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measurements are applied. Afterwards the distribution of each size, coupling,
and complexity measure is compared to the distribution of those stored in the
database.

As an example, Fig. [0 shows a (fictitious) distribution of the number of op-
erations invoked by the classes of a component. The vertical axis indicates, for
each value on the horizontal axis (number of invoked operations), the percentage
of classes in the component that have that particular value. In the example, the
distribution of the new component follows closely the distribution of the bench-
mark, except for values 7 and 8, which occur more frequently. Such deviations
pinpoint potential risk areas. The example also illustrates that the examination
of distributions provides more information than simply defining thresholds for
each measure. Although the number of invoked operations is not exceedingly
high (the benchmark suggests 10 as an upper value), there are more than an
average number of classes with 7/8 invoked operations. This may point to a
problem.

Unlike the prediction model approach, benchmarking does not require ex-
ternal quality data. No absolute statement about the quality of entities can be
made. A database of past ‘known to be good’ entities has to be acquired before
the approach can be used operationally. However, a quality benchmark can be
used to:

1. provide guidance for design decisions — a simple example, a quality bench-
mark for the size of class, object, or interaction diagram provides objective
criteria as to whether the diagram is too big.

2. define design exit criteria. For instance, deviations from the quality bench-
mark must either be justified, or the design reworked.

3. identify potential trouble spots in the system that should be the focus of
inspection and testing.

An industrial application of quality benchmarking in the context of large-
scale software acquisition (COTS, outsourced development) is reported in [13].
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Table 2. Example of a Simple Ranking Model

Component Rank Rank Rank Average
Measure 1| Measure 2| Measure 3 Rank
Component2 24 3.5 12 13.17
Component18 9 16 14 13
Component7 17 3.5 7 9.17

5.3 Simple Ranking Models

The ranking model approach uses selected structural property measurements to
select potentially critical areas in a design. Although it does not require the
measurement of external quality data, it is important that the measures are
indicators of specific qualities (see Section [B.1). The steps involved are as follows:

1. Apply design measurement to the system

2. Rank entities in decreasing order, independently for each measure, and assign
ranks. The entity with the lowest value is assigned rank 1, the entity with
the next lowest value is assigned rank 2, etc.

. For each entity, take the average rank of that entity for all measures.

4. Sort the entities in decreasing order of their average rank.

w

An example application is shown in Table[2l The first column indicates the
entity name, the next three columns the ranks for three selected measures, and
the last column the average of these ranks. Rows are sorted in decreasing order.
Entities at the top are potentially critical, because they display less desirable
structural properties. Thus, such entities should be selected first for inspections
or testing until the allocated resources are depleted.

The advantage of this approach is that it is immediately applicable — neither
external quality data nor a database of past ‘known to be good’ systems is
required. Unfortunately, there is no absolute statement about the quality of the
system. In addition, it is not possible to make statements about the quality
of individual entities in isolation since only relative rankings of entire sets of
entities are possible. Furthermore, the creation of such a ranking may result in
lost information since measures are not usually defined on an interval or even
ratio scale but are only used on an ordinal scale. In summary, this approach is
therefore less powerful than the others. To use this approach effectively it must
be ensured that the used measures are related to the external quality in mind.

6 Future Trends

The use of structural measures to help drive the allocation of resources in soft-
ware development projects will undoubtedly increase in the future. However,
further research is needed to improve the usefulness of measures derived from
early, analysis and design artifacts of the kind usually associated with platform
independent models.
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Most of the measurement activity reported to date is actually based on mea-
surement of source-code. Early analysis and design artifacts are, by definition,
not complete and only represent early models of the actual system to be devel-
oped. The use of predictive models based on early artifacts and their capability
to predict the quality of the final system still largely remains to be investigated.

One reason for the lack of empirical work carried out on design artifacts
to date is missing tool support to automatically collect design measures. While
there are many static analyzers for source-code of all programming languages,
tools to collect design measures from UML diagrams are scarce. Some commercial
UML modelling tools have measurement capabilities, though often limited to
size measures. SDMetricaEL a flexible tool using the XMI standard to read UML
designs and calculate user-specified design measures as outlined in Section H]
was released only recently.

Future research needs to focus on collecting large data sets involving large
numbers of systems from the same environment. In order to make the research on
quality prediction models of practical relevance, it is crucial that these models be
usable from project to project. Their applicability depends on their capability to
accurately and precisely predict quality attributes (e.g., class fault-proneness)
in new systems, based on the development experience accumulated from past
systems. Though some studies report the construction of such models, few report
their actual application in realistic settings. Our understanding has now reached
a sufficient level to enable such studies to be undertaken.

Cost-benefit analysis related to the use of quality prediction models are
scarce. Little is known about how the predictions made by statistical models
compare with those made by system experts in terms of correctness and com-
pleteness. Furthermore, there might be a way to combine expert opinion with
object-oriented design quality models to obtain more reliable statements about
system quality. Future empirical studies should also take this into account to
improve the case for the use of design-measurement-based quality prediction
models.

7 Summary and Conclusions

The model driven architecture (MDA) is a powerful approach for improving long-
term productivity by increasing the return on investment derived from software
development effort. Although its theoretical advantages are widely accepted,
however, the state-of-the practice is still very primitive. For most companies
and tool-vendors model-driven development simply means creating platform in-
dependent UML models and then mapping them (as automatically as possible)
into platform specific code. There is currently very little support for using plat-
form independent model created early in the software lifecycle to “drive” ensuing
development activities. Much of the potential benefits of model driven develop-
ment therefore remain to be realized.

3 SDMetrics — software design measurement tool for the UML, see
http://www.sdmetrics.com
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This chapter has pointed the way towards true model driven development by
briefly illustrating how the measurement of UML structural properties can help
drive the quality assurance activities in component-based development. Such
measures are objective, can be collected automatically and provide early feed-
back on the quality of entities (e.g., components). This feedback can help an
organization allocate quality assurance effort and thus “drive” part of the over-
all development process from model-derived data.
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