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Abstract. Two class classifiers are used in many complex problems in
which the classification results could have serious consequences. In such
situations the cost for a wrong classification can be so high that can be
convenient to avoid a decision and reject the sample. This paper presents
a comparison between two different reject rules (the Chow’s and the
ROC rule). In particular, the experiments show that the Chow’s rule is
inappropriate when the estimates of the a posteriori probabilities are not
reliable.
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1 Introduction

Frequently, in two class classification problems, the cost for a wrong classification
could be so high that it should be convenient to introduce a reject option [1]. This
topic has been addressed by Chow in [2]. The rationale of the Chow’s approach
relies on the exact knowledge of the a posteriori probabilities for each sample
to be recognized. Under this hypothesis, the Chow’s rule is optimal because
minimizes the error rate for a given reject rate (or vice versa). For the two-class
classification cases in which the ideal setting assumed by the Chow’s rule is not
guaranteed and a real classifier must be used, an alternative method has been
proposed in [3] where the information provided about the classifier performances
by the empirical ROC curve is used to draw a reject rule which minimizes the
expected cost for the application at hand. In [4] a review of the reject rule based
on the empirical ROC and a comparison with the Chow’s rule is presented; in
the paper the authors claim to demonstrate the theoretical equivalence between
the two rules and suggest that the Chow’s reject rule should produce lower
classification costs than those obtained by means of the reject rule based on the
empirical ROC, even when real classifiers are employed.

A first comparison between the two approaches has been already proposed
in [5] with reference to Fisher LDA. The experiments presented show that the
empirical ROC reject rule works better than the Chow’s rule in the majority of
the cases considered.
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In this paper we aim to analyze more extensively the two rules and to compare,
by means of thorough experiments, their behavior in order to demonstrate that
the Chow’s rule is inappropriate when the the distributions of the two classes
are not perfectly known. In the next sections we resume the main features of
the two reject rules while in the last section the experiments performed on both
artificial and real data sets are reported.

2 Two Class Classification and the ROC Curve

2.1 The Ideal Case

In two class classification problems, the goal is to assign a pattern x coming
from an instance space X to one of two mutually exclusive classes that can be
generically called Positive (P) class and Negative (N ) class; in other words, X =
P ∪N and P ∩N = ∅ . Let us firstly consider a typical Decision Theory scenario
and suppose to have a complete knowledge of the distributions of the samples
within X, i.e. we know the a priori probabilities of the two classes (πP , πN ) and
the class conditional densities fP (x) = p (x |x ∈ P ) and fN (x) = p (x |x ∈ N ).

If
[

λNN λNP

λPN λPP

]
is the cost matrix defined for the problem at hand (where λAB

is the cost of assigning a pattern to the class B when it actually belongs to the
class A), the conditional risk associated to the classification of a given sample x
is minimized by a decision rule which assigns the sample x to the class P if

lr(x) =
fP (x)
fN (x)

>
(λNP − λNN )πN

(λPN − λPP )πP

where lr(x) is the likelihood ratio evaluated for the sample x. A way to assess
the quality of such rule as the costs and the a priori probabilities vary, is to
evaluate the performance obtained on each class by the rule lr(x) > t as the
threshold t is varied. For a given threshold value t, two appropriate performance
figures are given by the True Positive Rate TPR(t), i.e. the fraction of actually-
positive cases correctly classified and by the False Positive Rate FPR(t), given
by the fraction of actually-negative cases incorrectly classified as “positive”.
If we consider the class-conditional densities of the likelihood ratio ϕP (τ) =
p (lr (x) = τ |x ∈ P ) and ϕN (τ) = p (lr (x) = τ |x ∈ N ), TPR(t) and FPR(t)
are given by:

TPR (t) =
+∞∫
t

ϕP (τ) dτ FPR (t) =
+∞∫
t

ϕN (τ) dτ (1)

Taking into account the samples with likelihood ratio less than t, it is possible to
evaluate the True Negative Rate TNR(t) and the False Negative Rate FNR(t),
defined as:

TNR (t) =
t∫

−∞
ϕN (τ) dτ = 1 − FPR (t)

FNR (t) =
t∫

−∞
ϕP (τ) dτ = 1 − TPR (t)

(2)
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As it is possible to note from eq.(2), the four indices are not independent and
the pair (FPR(t), TPR(t)) is sufficient to completely characterize the perfor-
mance of the decision rule for a given threshold t. Most importantly, they are
independent of the a priori probability of the classes because they are sepa-
rately evaluated on the different classes. The Receiver Operating Characteristic
(ROC ) curve plots TPR(t) vs. FPR(t) by sweeping the threshold t into the
whole real axis, thus providing a description of the performance of the deci-
sion rule at different operating points. An important feature of the ROC curve
is that the slope of the curve at any point (FPR(t), TPR(t)) is equal to the
threshold required to achieve the FPR and TPR of that point [6]. Therefore,
the corresponding operating point on the ROC curve is the one where the curve
has gradient (λNP−λNN )πN

(λP N−λP P )πP
; such point can be easily found moving down from

above in the ROC plane a line with slope (λNP −λNN)πN

(λP N−λP P )πP
and selecting the point

in which the line touches the ROC curve [1]. The ROC generated by the de-
cision rule based on the likelihood ratio is the optimal ROC curve, i.e. the
curve which, for each FPR ∈ [0, 1], has the highest TPR among all possible
decision criteria employed for the classification problem at hand. This can be
proved if we recall the Neyman Pearson lemma which can be stated in this way:
if we consider the decision rule lr(x) > β with β chosen to give FPR = ε,
there is no other decision rule providing a TPR higher than TPR(β) with a
FPR � ε. The demonstration of the lemma can be found in [8,9]. The shape
of the optimal ROC curve depends on how the class-conditional densities are
separated: two perfectly distinguished densities produce an ROC curve that
passes through the upper left corner (where TPR = 1.0 and FPR = 0.0),
while the ROC curve generated by two overlapped densities is represented by
a 45◦ diagonal line from the lower left to the upper right corner. Qualitatively,
the closer the curve to the upper left corner, the more discriminable the two
classes.

2.2 The Empirical Approach

The ideal scenario of the Bayesian Decision Theory considered so far unfortu-
nately cannot be applied to the most part of real cases where we rarely have this
kind of complete knowledge about the probabilistic structure of the problem. As
a consequence, in real problems the optimal ROC is unknown since the actual
class conditional densities are not known. In this case, the decision is performed
by means of a trained classifier. Without loss of generality, let us assume that
the classifier provides, for each sample x, a value ω(x) in the range (−∞, +∞)
which can be assumed as a confidence degree that the sample belongs to one
of the two classes, e.g. the class P. The sample should be consequently assigned
to the class N if ω(x) → −∞ and to the class P if ω(x) → +∞. Also in this
case it is possible to plot an ROC curve by considering the outputs provided by
the trained classifier on a validation set V containing n+ positive samples and
n− negative samples V = {pi ∈ P, i = 1 . . . n+} ∪ {nj ∈ N, j = 1 . . . n−}. In this
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way, we obtain an empirical estimator of the optimal ROC curve by evaluating,
for each possible value of a threshold t in the range (−∞, +∞), the empirical
true and false positive rates as follows:

TPR (t) = 1
n+

n+∑
i=1

S (ω (pi) > t) FPR (t) = 1
n−

n−∑
j=1

S (ω (nj) > t)

where S(.) is a predicate which is 1 when the argument is true and 0 otherwise.
Let us call the obtained curve empirical ROC curve (see fig. 1) in order to
distinguish it from the ideal ROC.

There are some differences to be highlighted between the empirical and the
optimal ROC:

– once the two classes N and P have been specified through their conditional
densities fP (x) and fN (x), the ideal ROC is unique, while different classifiers
trained on the same problem have different empirical ROCs;

– for a continuous likelihood ratio, the ideal ROC is continuous and its slope in
a particular point equals the value of the threshold required to achieve TPR
and FPR of that point [1]; the empirical ROC is instead a discrete function
and the relation between slope and threshold does not hold. However it is
still possible to find the optimal operating point also on the empirical ROC
by moving down from above in the ROC plane a line with slope and selecting
the point in which the line touches the ROC curve. Provost and Fawcett [7]
have shown that the point is one of the vertices of the convex hull which
contains the empirical ROC curve (see fig. 2);

– the ideal ROC is the optimal ROC curve, i.e. the curve which, for each FPR
[0,1], has the highest TPR among all possible decision criteria employed
for the classification problem at hand. In other words, the ideal ROC curve
dominates every empirical ROC and consequently has the highest area under
the ROC curve (AUC) attainable.

3 Two-Class Classification with Reject

When dealing with cost sensitive applications which involve a reject option, the
possible outcomes of the decision rule include the reject and thus the cost matrix
changes accordingly (see tab. 1).

Table 1. Cost matrix for a two-class problem with reject

Predicted Class
N P R

True N λNN λNP λR

Class P λPN λPP λR
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(a) (b)

Fig. 1. (a) The densities of the confidence degree obtained by the classifier output on
real data and (b) the corresponding ROC curve

It is worth noting that λNN (cost for a True Negative) and λPP (cost for
a True Positive) are negative costs since related to benefits, while λNN (cost
for a False Negative) and λNP (cost for a False Positive) are positive costs.
λR weights the burden of managing the reject (e.g. by calling another, more
proficient classifier) and thus it is positive but smaller than the error costs.

3.1 The Ideal Case

Let us firstly suppose that we are working within a Bayesian scenario, i.e. we
know the a priori probabilities of the two classes (πP , πN ) and the class con-
ditional densities fP (x) and fN (x). In this ideal setting, the classification cost
is minimized by the Chow’s rule [2] which can be expressed in terms of the
likelihood ratio lr(x) as follows:

x → N if lr(x) <
πN

πP

λR − λNN

λPN − λR
= u1

x → P if lr(x) >
πN

πP

λNP − λR

λR − λPP
= u2 (3)

reject if u1 ≤ lr(x) ≤ u2

The rule can be also defined in terms of the a posteriori probability Pr (P |x).
If we recall that

Pr (P |x) =
πP fP (x)

πNfN (x) + πP fP (x)
=

πP lr(x)
πN + πP lr(x)
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Fig. 2. The ROC curve shown in fig. 1 and its convex hull. Three level lines with
the same slope are also shown: the line touching the ROC convex hull determines
the optimal operating point since it involves the minimum risk. The line above the
optimal line does not determine any feasible point, while the line below identifies only
suboptimal points.

the Chow’s rule can be written as:

x → N if Pr (P |x) <
λR − λNN

λPN − λNN
= t1 =

πP u1

πN + πP u1

x → P if Pr (P |x) >
λNP − λR

λNP − λPP
= t2 =

πP u2

πN + πP u2
(4)

reject if t1 ≤ Pr (P |x) ≤ t2

It is worth noting that in the ideal scenario, the slope of the ROC curve at any
point is equal to the threshold on the likelihood ratio which has generated that
point [6], and thus the points corresponding to the two thresholds u1 and u2 can
be easily identified on the ideal ROC.

3.2 The Empirical Approach

In real problems, however, the class conditional densities are not available and
thus the optimal decision rule in 3 or in 4 cannot be applied. In such cases, the
typical approach is to train a classifier ω (x) on a set of samples representative of
the classes to be discriminated and to use it to estimate the class of new samples.
Even though the Chow’s rule cannot be directly applied, a reject option can be
still defined on the empirical ROC, as it has been shown in [3]. The decision rule
is still based on two thresholds τ1 and τ2 applied on the output of the classifier
ω (x):
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x → N if ω (x) < τ1

x → P if ω (x) > τ2 (5)
reject if τ1 ≤ ω (x) ≤ τ2

As a consequence, the values of TPR and FPR change as:

TPR (τ2) = 1
n+

n+∑
i=1

S (ω (pi) > τ2) FPR (τ2) = 1
n−

n−∑
j=1

S (ω (nj) > τ2) (6)

It is worth noting that the condition described in eq.(2) is no more satisfied since
now there are two thresholds. In fact, the values of TNR and FNR are given
by:

FNR (τ1) = 1
n+

n+∑
i=1

S (ω (pi) < τ1)

TNR (τ1) = 1
n−

n−∑
j=1

S (ω (nj) < τ1)
(7)

Moreover, we have now a portion of samples rejected given by:

RP (τ1, τ2) = 1
n+

n+∑
i=1

S (τ1 � ω (pi) � τ2) = 1 − TPR (τ2) − FNR (τ1)

RN (τ1, τ2) = 1
n−

n−∑
j=1

S (τ1 � ω (nj) � τ2) = 1 − TNR (τ1) − FPR (τ2)
(8)

As a consequence, the classification cost obtained when imposing the threshold
τ1 and τ2 is given by:

C (τ1, τ2) = πP · λPN · FNR (τ1) + πN · λNN · TNR (τ1)+
πP · λPP · TPR (τ2) + πN · λNP · FPR (τ2)+
πP · λR · RP (τ1, τ2) + πN · λR · RN (τ1, τ2)

(9)

The values of the thresholds should be chosen in order to minimize C (τ1, τ2); to
this aim the classification cost can be written as:

C (τ1, τ2) = k2 (τ2) − k1 (τ1) + πP · λPN + πN · λNN (10)

where:
k1 (τ1) = πP · λ′

PN · TPR (τ1) + πN · λ′
NN · FPR (τ1)

k2 (τ2) = πP · λ′
PP · TPR (τ2) + πN · λ′

NP · FPR (τ2)

and
λ′

PP = λPP − λR λ′
PN = λPN − λR

λ′
NN = λNN − λR λ′

NP = λNP − λR

In this way, the optimization problem can be simplified and the optimal values
for thresholds τ1opt and τ2opt can be separately obtained by maximizing k1 (τ1)
and minimizing k2 (τ2):

τ1opt = argmax
τ

[πP · λ′
PN · TPR (τ1) + πN · λ′

NN · FPR (τ1)]

τ2opt = argmin
τ

[πP · λ′
PP · TPR (τ2) + πN · λ′

NP · FPR (τ2)]
(11)
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As described in [3], the optimal thresholds can be found by considering the
empirical ROC evaluated on a validation set; in particular, they correspond to
the points T1 and T2 of the empirical ROC touched by two lines with slopes:

m1 = −πN

πP

λNN − λR

λPN − λR
m2 = −πN

πP

λNP − λR

λPP − λR
(12)

and the thresholds are the values of the confidence degree which have generated
those points (see fig. 3).

It is worth noting that τ1opt must be less than τ2opt to achieve the reject
option, i.e. the slopes must be such that m1 < m2. If m1 � m2, the reject option
is not practicable and thus the best choice is to work at 0 reject. Taking into
account eq.(12), the condition for the reject option to be applicable is λNN−λR

λP N−λR
>

λNP−λR

λP P−λR
. This condition depends only on the cost values; however, there could

be situations in which the condition is verified but the geometry of the ROC
curve of the classifier at hand is such that the level curves corresponding to m1
and m2 touch the same point [3]. In other words, in spite of the costs which could
allow the reject, the characteristics of the classifier could make not applicable
the reject option.

Fig. 3. The ROC curve, the level curves and the optimal thresholds for a given cost
combination

3.3 Ideal and Empirical ROC Reject Rules. Are They Equivalent?

It is worth noting that, in the empirical ROC, the values of the thresholds are
not an immediate function of the slopes (like in the ideal case) but the relation
between the slopes (and the costs) and the threshold values is provided by the
geometry of the ROC curve and after all by the output of the classifier. As a
consequence, such values change when considering a different classifier.

The empirical rule reduces to the Chow’s rule when dealing with the ideal
ROC instead of an empirical ROC. In fact, in the ideal case, the lines with
slopes in eq. (12) identify two points in which the likelihood ratio has the same
value of the two slopes. In other words, u2 = m2, u1 = m1 and the reject rule in
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eq. (5) reduces to the reject rule in eq. (3). This means that the empirical rule
is certainly suboptimal with respect to the Chow’s rule, but this latter does not
work when the ideal setting assumptions (i.e. that the distributions of the two
classes are completely known) are not verified and a real dichotomizer should be
used instead of the optimal decision rule based on the likelihood ratio or on the
aposteriori probabilities.

However, on the basis of this observation, authors in [4] claim to demonstrate
the theoretical equivalence between the two rules and suggest that the adoption
of the ideal thresholds in eq.(3) (or thresholds derived from those in eq. (4)
if post probabilities are adopted in the decision rule instead of the likelihood
ratio) should produce lower classification costs than those obtained by means of
the reject rule based on the empirical ROC. This would mean that the reject
thresholds are independent of the classifier chosen or, in other words, that every
real classifier can be considered an effective estimator of the true likelihood ratio
or of the true post probabilities.

Such assumption does not hold at all for a large class of classification systems
such as margin based classifiers which do not provide an estimate of the post
probabilities. In these cases the Chow’s rule does not work, while the reject
rule based on the empirical ROC is still applicable (see, e.g., [10]). However,
such assumption seems to be excessive even for classification systems which
provide estimates of the likelihood ratio or of the post probabilities (e.g. Multi
Layer Perceptrons), since there are many elements (e.g. the limited size of the
training set, the learning parameters which are not univocal, etc.) which make
the estimate not very accurate.

In particular, the differences between the two rules should be higher and higher
in favor of the empirical ROC-based rule as the ideal setting assumption becomes
less verified. To experimentally prove such hypothesis, we have designed a set of
experiments using both synthetic data sets and real data sets. The synthetic data
sets are built by adding noise to the post probabilities generated from some cho-
sen distributions. The aim is to simulate in a controlled way a realistic situation,
i.e. a classification problem in which the post probabilities cannot be exactly
obtained since the distributions of the two classes are not completely known and
must be estimated by means of some method which inevitably provides a cer-
tain amount of error. For the real data sets, we train some well known classifiers
and we use the outputs of the classifiers as estimates of the post probabilities.
For each sample to be classified, the output is compared with the thresholds
provided by the two rules thus obtaining two decisions which can be compared.

In the next section we present the methodology adopted in the experiments
and the results obtained.

4 Experiments

4.1 Synthetic Data Set

To create an artificial problem, a gaussian model for the distribution of the
samples of the two classes has been adopted. In particular, we simulate the



56 C. Marrocco, M. Molinara, and F. Tortorella

output of a classifier ω as ω(x) = Pr(P |x) + ε(x) where Pr(P |x) is the a
posteriori probability of the class P given the input vector x and ε(x) is the error
associated to that sample. In our framework the distribution of the two classes
is supposed to be gaussian with known mean and covariance matrix Σ = I.

In particular, we generate the likelihood probabilities for the two classes P
and N :

fN (x) = (2π)−K/2 exp
(

−1
2

(x − μN )T (x − μN )
)

fP (x) = (2π)−K/2 exp
(

−1
2

(x − μP )T (x − μP )
)

(13)

and from the Bayes theorem we find the a posteriori probability Pr(P |x). Know-
ing the distribution of the samples it is possible to vary the vector of the mean
μ, so as to create different data sets according to a value M that measures
the distance between the means of the distributions of the two classes. In this
paper, we considered three cases of interest: M = 4.5, i.e. the two classes are
completely separated; M = 3, i.e. the two classes are partially overlapped and
M = 1.5, i.e. the two classes are quite completely overlapped. Then, the term
ε(x) that simulates the error committed by a classifier is modeled according to
two distributions: a gaussian distribution with zero mean and variance varying
among 0 and 1 with step 0.1 and an uniform distribution varying among 0 and
1 with step 0.1. For each value of M 1000 samples have been generated and the
distributions have been truncated so that each output ω is in the interval [0,1].

4.2 Real Data Set

Four data sets publicly available at the UCI Machine Learning Repository [11]
have been used in the following experiments; all of them have two output classes
and numerical input features. All the features were previously rescaled so as to
have zero mean and unit standard deviation. More details for each data sets are re-
ported in table 2. The employed classifiers are neural networks and Support Vector
Machines (SVM). In particular, four Multi Layer Perceptron (MLP) with a vari-
able number of units in the hidden layer between two and five have been trained
for 10000 epochs using the back propagation algorithm with a learning rate of 0.01
and four Radial Basis Function (RBF) have been built with a variable number of
units in the hidden layer between two and five. Then, four Support Vector Ma-
chine (SVM) with different kernels have been used;in particular, the kernels used
were linear, polynomial of degree 2, RBF with σ = 1 and sigmoidal with σ = 0.01.

Table 2. Data sets used in the experiments

Data Sets Features Samples % Major Class Train Set Valid. Set Test Set
Pima 8 768 65.1 538 115 115

German 24 1000 70.0 700 150 150
CMC 9 1473 57.3 1031 221 221
Heart 13 303 54.1 213 45 45
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4.3 Results

In the comparison of the two reject rules 12 runs of a multiple hold out procedure
have been performed to reduce the bias in the data. In each run, each data set
has been divided into three subsets: a training set used to train the classifiers, a
validation set to evaluate the thresholds of the empirical reject rule and a test set
to compare the two methods. In the experiments with artificial data we had only
the validation and the test set containing respectively the 23% and the 77% of
the whole data set. In the experiments with real data, the three subsets contain
respectively the 70%, the 15% and the 15% of the samples of the whole data set.
In this way, 12 different values of the required costs have been obtained.

Another possible cause of bias is given by the employed cost matrix. To achieve
a result independent of the particular cost values, we have used a matrix (called
cost model) in which each cell contains a distribution instead of a fixed value.
In this way, 1000 different cost matrices have been randomly generated on the
basis of the cost model adopted. In our experiments, an uniform distribution
over the interval [−10, 0] for λPP and λNN , over the interval [0, 50] for λNP and
λPN and over the interval [0, 30] for the reject cost λR.

(a) (b)

Fig. 4. Results obtained on artificial data sets: (a) M = 4.5 and additive Gaussian
noise, (b) M = 4.5 and additive uniform noise

(a) (b)

Fig. 5. Results obtained on artificial data sets: (a) M = 3 and additive Gaussian noise,
(b) M = 3 and additive uniform noise
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(a) (b)

Fig. 6. Results obtained on artificial data sets: (a) M = 1.5 and additive Gaussian
noise, (b) M = 1.5 and additive uniform noise

(a) (b)

Fig. 7. Results obtained on real data sets: (a) Pima, (b) German

a
(b)

Fig. 8. Results obtained on real data sets: (a) CMC, (b) Heart

The obtained results are shown in figs. 4-6 for the synthetic data and in
figs. 7-8 for the real data sets. In both cases we report the comparison in terms
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of mean cost (MC) intended as the average of the classification costs obtained on
the 12 runs of the hold out procedure and on the 1000 cost matrices employed
on the considered problem. To order the classifier performance in the artificial
case we refer to the added noise since we have a complete knowledge of the
post probabilities and in particular we refer to the variance for the Gaussian
distribution and to the width of the interval in the uniform distribution. However,
while in the synthetic model we know the effective distribution of the classes
and so it is possible to relate the obtained results to the noise added to the
true post probabilities, when dealing with the real data sets we cannot do the
same unless we have a measure of the accuracy with which the real classifier
estimates the true post probabilities. To this aim, the AUC can be seen as a
reliable estimate of the discriminating quality of the classifier [12]. Moreover,
since the ideal ROC curve represents the “upper bound” of any empirical ROC
curves (i.e. it is dominant with respect to any empirical ROC curve), we can
reasonably assume that the greater is the AUC, the closer is the empirical to the
ideal ROC curve and the better is the estimate of the true post probabilities. For
this reason, in the graphs the value 1-AUC is reported on x-axis to be consistent
with the previous figures. In each graph, beyond the scatter plot of the mean
costs values also the regression lines are reported to emphasize the trend of the
mean costs obtained by the two analyzed rules.

If we look at the behavior of the two rules on the synthetic data sets it is pos-
sible to note that the Chow reject rule outperforms the ROC rule only when the
added noise is low. On the contrary, when the noise becomes higher the empirical
ROC rule becomes better since the estimate of the post probabilities becomes
worse and worse. This behavior is more visible when the added noise follows an
uniform distribution (figs. 4-(b), 5-(b), 6-(b)) while a similar behavior is shown
if the added noise is gaussian (figs. 4-(a), 5-(a), 6-(a)) because it produces less
bias in the data.

The same behavior obtained on the artificial data is shown on the real data
sets (figs. 7, 8) where the improvement obtained with the ROC rule is very evi-
dent when AUC decreases, i.e. when the classifier is not able to estimate a reliable
post probability for the two classes and the ideal conditions are less verified.

5 Conclusions and Future Work

In this paper we have experimentally compared the Chow’s reject rule and the
ROC based reject rule presented in [3]. Despite what claimed in [4] we have
found that the Chow’s rule is inappropriate when the estimates of the a poste-
riori probabilities are not sufficiently accurate, while the ROC based reject rule
gives good results. One could argue that such result could be not surprising,
but we believe that the strong assertion about the robustness of the Chow’s rule
made in [4] is worth a critical analysis based on the evidence of specific exper-
iments besides theoretical arguments. Finally, the analysis begun in this paper
has pointed out the need of a further investigation to characterize the type of
situations when one rule has advantage over another.
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