

Claudia Imhoff
Nicholas Galemmo
Jonathan G. Geiger

Mastering Data
Warehouse Design
Relational and Dimensional

Techniques

Vice President and Executive Publisher: Robert Ipsen
Publisher: Joe Wikert
Executive Editor: Robert M. Elliott
Developmental Editor: Emilie Herman
Editorial Manager: Kathryn Malm
Managing Editor: Pamela M. Hanley
Text Design & Composition: Wiley Composition Services

This book is printed on acid-free paper. ∞

Copyright © 2003 by Claudia Imhoff, Nicholas Galemmo, and Jonathan G. Geiger. All rights
reserved.

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rose-
wood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8700. Requests to the Pub-
lisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc.,
10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, E-mail:
permcoordinator@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their
best efforts in preparing this book, they make no representations or warranties with respect
to the accuracy or completeness of the contents of this book and specifically disclaim any
implied warranties of merchantability or fitness for a particular purpose. No warranty may
be created or extended by sales representatives or written sales materials. The advice and
strategies contained herein may not be suitable for your situation. You should consult with
a professional where appropriate. Neither the publisher nor author shall be liable for any
loss of profit or any other commercial damages, including but not limited to special, inci-
dental, consequential, or other damages.

For general information on our other products and services please contact our Customer
Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley Publishing logo and related trade dress are trademarks or
registered trademarks of Wiley Publishing, Inc., in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of
their respective owners. Wiley Publishing, Inc., is not associated with any product or ven-
dor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

ISBN: 0-471-32421-3

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

D E D I C AT I O N

iii

Claudia: For all their patience and understanding throughout the years, this
book is dedicated to David and Jessica Imhoff.

Nick: To my wife Sarah, and children Amanda and Nick Galemmo, for their
understanding over the many weekends I spent working on this book. Also to

my college professor, Julius Archibald at the State University of New York at
Plattsburgh for instilling in me the science and art of computing.

Jonathan: To my wife, Alma Joy, for her patience and understanding of the time
spent writing this book, and to my children, Avi and Shana, who are embarking

on their respective careers and of whom I am extremely proud.

C O N T E N TS

v

Acknowledgments xv

About the Authors xvii

Part One Concepts 1

Chapter 1 Introduction 3
Overview of Business Intelligence 3

BI Architecture 6

What Is a Data Warehouse? 9
Role and Purpose of the Data Warehouse 10
The Corporate Information Factory 11

Operational Systems 12
Data Acquisition 12
Data Warehouse 13
Operational Data Store 13
Data Delivery 14
Data Marts 14
Meta Data Management 15
Information Feedback 15
Information Workshop 15
Operations and Administration 16

The Multipurpose Nature of the Data Warehouse 16
Types of Data Marts Supported 17
Types of BI Technologies Supported 18

Characteristics of a Maintainable Data
Warehouse Environment 20

The Data Warehouse Data Model 22
Nonredundant 22
Stable 23
Consistent 23
Flexible in Terms of the Ultimate Data Usage 24
The Codd and Date Premise 24

Impact on Data Mart Creation 25
Summary 26

Chapter 2 Fundamental Relational Concepts 29
Why Do You Need a Data Model? 29
Relational Data-Modeling Objects 30

Subject 31
Entity 31
Element or Attribute 32
Relationships 34

Types of Data Models 35
Subject Area Model 37

Subject Area Model Benefits 38
Business Data Model 39

Business Data Model Benefits 39
System Model 43
Technology Model 43

Relational Data-Modeling Guidelines 45
Guidelines and Best Practices 45
Normalization 48

Normalization of the Relational Data Model 48
First Normal Form 49
Second Normal Form 50
Third Normal Form 51
Other Normalization Levels 52

Summary 52

Part Two Model Development 55

Chapter 3 Understanding the Business Model 57
Business Scenario 58
Subject Area Model 62

Considerations for Specific Industries 65
Retail Industry Considerations 65
Manufacturing Industry Considerations 66
Utility Industry Considerations 66
Property and Casualty Insurance Industry Considerations 66
Petroleum Industry Considerations 67
Health Industry Considerations 67

Subject Area Model Development Process 67
Closed Room Development 68
Development through Interviews 70
Development through Facilitated Sessions 72
Subject Area Model Benefits 78

Subject Area Model for Zenith Automobile Company 79

C o n t e n t svi

Business Data Model 82
Business Data Development Process 82

Identify Relevant Subject Areas 83
Identify Major Entities and Establish Identifiers 85
Define Relationships 90
Add Attributes 92
Confirm Model Structure 93
Confirm Model Content 94

Summary 95

Chapter 4 Developing the Model 97
Methodology 98

Step 1: Select the Data of Interest 99
Inputs 99
Selection Process 107

Step 2: Add Time to the Key 111
Capturing Historical Data 115
Capturing Historical Relationships 117
Dimensional Model Considerations 118

Step 3: Add Derived Data 119
Step 4: Determine Granularity Level 121
Step 5: Summarize Data 124

Summaries for Period of Time Data 125
Summaries for Snapshot Data 126
Vertical Summary 127

Step 6: Merge Entities 129
Step 7: Create Arrays 131
Step 8: Segregate Data 132

Summary 133

Chapter 5 Creating and Maintaining Keys 135
Business Scenario 136

Inconsistent Business Definition of Customer 136
Inconsistent System Definition of Customer 138
Inconsistent Customer Identifier among Systems 140
Inclusion of External Data 140

Data at a Customer Level 140
Data Grouped by Customer Characteristics 140

Customers Uniquely Identified Based on Role 141
Customer Hierarchy Not Depicted 142

Data Warehouse System Model 144
Inconsistent Business Definition of Customer 144
Inconsistent System Definition of Customer 144

Contents vii

Inconsistent Customer Identifier among Systems 145
Absorption of External Data 145
Customers Uniquely Identified Based on Role 145
Customer Hierarchy Not Depicted 146

Data Warehouse Technology Model 146
Key from the System of Record 147
Key from a Recognized Standard 149
Surrogate Key 149

Dimensional Data Mart Implications 151
Differences in a Dimensional Model 152
Maintaining Dimensional Conformance 153

Summary 155

Chapter 6 Modeling the Calendar 157
Calendars in Business 158

Calendar Types 158
The Fiscal Calendar 159
The 4-5-4 Fiscal Calendar 161
Thirteen-Month Fiscal Calendar 164

Other Fiscal Calendars 164
The Billing Cycle Calendar 164
The Factory Calendar 164

Calendar Elements 165
Day of the Week 165
Holidays 166
Holiday Season 167
Seasons 168

Calendar Time Span 169

Time and the Data Warehouse 169
The Nature of Time 169
Standardizing Time 170

Data Warehouse System Model 172
Date Keys 172

Case Study: Simple Fiscal Calendar 173
Analysis 174
A Simple Calendar Model 175

Extending the Date Table 175
Denormalizing the Calendar 177

Case Study: A Location Specific Calendar 180
Analysis 180
The GOSH Calendar Model 181
Delivering the Calendar 182

C o n t e n t sviii

Case Study: A Multilingual Calendar 184
Analysis 185
Storing Multiple Languages 185
Handling Different Date Presentation Formats 185

Database Localization 187
Query Tool Localization 187
Delivery Localization 187

Delivering Multiple Languages 188
Monolingual Reporting 188
Creating a Multilingual Data Mart 190

Case Study: Multiple Fiscal Calendars 190
Analysis 191
Expanding the Calendar 192

Case Study: Seasonal Calendars 193
Analysis 193
Seasonal Calendar Structures 194
Delivering Seasonal Data 194

Summary 195

Chapter 7 Modeling Hierarchies 197
Hierarchies in Business 197
The Nature of Hierarchies 198

Hierarchy Depth 199
Hierarchy Parentage 200
Hierarchy Texture 203

Balanced Hierarchies 203
Ragged Hierarchies 203

History 204
Summary of Hierarchy Types 204

Case Study: Retail Sales Hierarchy 206
Analysis of the Hierarchy 206
Implementing the Hierarchies 208

Flattened Tree Hierarchy Structures 208
Third Normal Form Flattened Tree Hierarchy 208

Case Study: Sales and Capacity Planning 210
Analysis 212
The Product Hierarchy 215

Storing the Product Hierarchy 215
Simplifying Complex Hierarchies 216
Bridging Levels 219
Updating the Bridge 221

Contents ix

The Customer Hierarchy 222
The Recursive Hierarchy Tree 223
Using Recursive Trees in the Data Mart 226
Maintaining History 228

Case Study: Retail Purchasing 231
Analysis 232
Implementing the Business Model 234

The Buyer Hierarchy 234
Implementing Buyer Responsibility 236
Delivering the Buyer Responsibility Relationship 238

Case Study: The Combination Pack 241
Analysis 241
Adding a Bill of Materials 244
Publishing the Data 245

Transforming Structures 245
Making a Recursive Tree 245
Flattening a Recursive Tree 246

Summary 248

Chapter 8 Modeling Transactions 249
Business Transactions 249

Business Use of the Data Warehouse 251
Average Lines per Transaction 252
Business Rules Concerning Changes 253

Application Interfaces 253
Snapshot Interfaces 254

Complete Snapshot Interface 254
Current Snapshot Interface 255

Delta Interfaces 256
Columnar Delta Interface 256
Row Delta Interface 256
Delta Snapshot Interface 257
Transaction Interface 257

Database Transaction Logs 257

Delivering Transaction Data 258
Case Study: Sales Order Snapshots 260

Transforming the Order 262
Technique 1: Complete Snapshot Capture 266
Technique 2: Change Snapshot Capture 268

Detecting Change 268
Method 1—Using Foreign Keys 269
Method 2—Using Associative Entities 272

Technique 3: Change Snapshot with Delta Capture 275
Load Processing 276

C o n t e n t sx

Case Study: Transaction Interface 278
Modeling the Transactions 279
Processing the Transactions 281

Simultaneous Delivery 281
Postload Delivery 282

Summary 283

Chapter 9 Data Warehouse Optimization 285
Optimizing the Development Process 285

Optimizing Design and Analysis 286
Optimizing Application Development 286

Selecting an ETL Tool 286

Optimizing the Database 288
Data Clustering 288
Table Partitioning 289

Reasons for Partitioning 290
Indexing Partitioned Tables 296

Enforcing Referential Integrity 299
Index-Organized Tables 301
Indexing Techniques 301

B-Tree Indexes 302
Bitmap Indexes 304

Conclusion 309

Optimizing the System Model 310
Vertical Partitioning 310

Vertical Partitioning for Performance 311
Vertical Partitioning of Change History 312
Vertical Partitioning of Large Columns 314

Denormalization 315
Subtype Clusters 316

Summary 317

Part Three Operation and Management 319

Chapter 10 Accommodating Business Change 321
The Changing Data Warehouse 321

Reasons for Change 322
Controlling Change 323
Implementing Change 325

Modeling for Business Change 326
Assuming the Worst Case 326
Imposing Relationship Generalization 327
Using Surrogate Keys 330

Contents xi

Implementing Business Change 332
Integrating Subject Areas 333

Standardizing Attributes 333
Inferring Roles and Integrating Entities 335

Adding Subject Areas 336

Summary 337

Chapter 11 Maintaining the Models 339
Governing Models and Their Evolution 339

Subject Area Model 340
Business Data Model 341
System Data Model 342
Technology Data Model 344
Synchronization Implications 344

Model Coordination 346
Subject Area and Business Data Models 346

Color-Coding 348
Subject Area Views 348
Including the Subject Area within the Entity Name 349

Business and System Data Models 351
System and Technology Data Models 353

Managing Multiple Modelers 355
Roles and Responsibilities 355

Subject Area Model 355
Business Data Model 356
System and Technology Data Model 356

Collision Management 357
Model Access 357
Modifications 357
Comparison 358
Incorporation 358

Summary 358

Chapter 12 Deploying the Relational Solution 359
Data Mart Chaos 360

Why Is It Bad? 362
Criteria for Being in-Architecture 366

Migrating from Data Mart Chaos 367
Conform the Dimensions 368
Create the Data Warehouse Data Model 371
Create the Data Warehouse 373

Convert by Subject Area 373
Convert One Data Mart at a Time 374

C o n t e n t sxii

Build New Data Marts Only “In-Architecture”—
Leave Old Marts Alone 377

Build the Architecture from One Data Mart 378

Choosing the Right Migration Path 380
Summary 381

Chapter 13 Comparison of Data Warehouse Methodologies 383
The Multidimensional Architecture 383
The Corporate Information Factory Architecture 387
Comparison of the CIF and MD Architectures 389

Scope 389
Perspective 391
Data Flow 391
Volatility 392
Flexibility 394
Complexity 394
Functionality 395
Ongoing Maintenance 395

Summary 396

Glossary 397
Recommended Reading 409
Index 411

Contents xiii

A C K N O W L E D G M E N TS

xv

A C K N O W L E D G M E N TS

We gratefully acknowledge the following individuals who directly or indirectly
contributed to this book:

Greg Backhus – Helzberg Diamonds

William Baker – Microsoft Corporation

John Crawford – Merrill Lynch

David Gleason – Intelligent Solutions, Inc.

William H. Inmon – Inmon Associates, Inc.

Dr. Ralph S. Kimball- Kimball Associates

Lisa Loftis – Intelligent Solutions, Inc.

Bob Lokken – ProClarity Corporation

Anthony Marino – L’Oreal Corporation

Joyce Norris-Montanari – Intelligent Solutions, Inc.

Laura Reeves – StarSoft, Inc.

Ron Powell – DM Review Magazine

Kim Stannick – Teradata Corporation

Barbara von Halle – Knowledge Partners, Inc.

John Zachman – Zachman International, Inc.

We would also like to thank our editors, Bob Elliott, Pamela Hanley, and
Emilie Herman, whose tireless prodding and assistance kept us honest and on
schedule.

xvii

A B O U T T H E A U T H O R S

Claudia Imhoff, Ph.D. is the president and founder of Intelligent Solutions
(www.IntelSols.com), a leading consultancy on CRM (Customer Relationship
Management) and business intelligence technologies and strategies. She is a
popular speaker and internationally recognized expert and serves as an advi-
sor to many corporations, universities, and leading technology companies on
these topics. She has coauthored five books and over 50 articles on these top-
ics. She can be reached at CImhoff@IntelSols.com.

Nicholas Galemmo was an information architect at Nestlé USA. Nicholas has 27
years’ experience as a practitioner and consultant involved in all aspects of
application systems design and development within the manufacturing, dis-
tribution, education, military, health care, and financial industries. He has
been actively involved in large-scale data warehousing and systems integra-
tion projects for the past 11 years. He has built numerous data warehouses,
using both dimensional and relational architectures. He has published many
articles and has presented at national conferences. This is his first book.
Mr. Galemmo is now an independent consultant and can be reached at
ngalemmo@yahoo.com.

Jonathan G. Geiger is executive vice president at Intelligent Solutions, Inc.
Jonathan has been involved in many Corporate Information Factory and cus-
tomer relationship management projects within the utility, telecommunica-
tions, manufacturing, education, chemical, financial, and retail industries. In
his 30 years as a practitioner and consultant, Jonathan has managed or per-
formed work in virtually every aspect of information management. He has
authored or coauthored over 30 articles and two other books, presents fre-
quently at national and international conferences, and teaches several public
seminars. Mr. Geiger can be reached at JGeiger@IntelSols.com.

Concepts

We have found that an understanding of why a particular approach is being pro-
moted helps us recognize its value and apply it. Therefore, we start this section
with an introduction to the Corporate Information Factory (CIF). This proven
and stable architecture includes two formal data stores for business intelli-
gence, each with a specific role in the BI environment.

The first data store is the data warehouse. The major role of the data ware-
house is to serve as a data repository that stores data from disparate sources,
making it accessible to another set of data stores – the data marts. As the col-
lection point, the most effective design approach for the data warehouse is
based on an entity-relationship data model and the normalization techniques
developed by Codd and Date in their seminal work throughout the 1970’s, 80’s
and 90’s for relational databases.

The major role of the data mart is to provide the business users with easy
access to quality, integrated information. There are several types of data marts,
and these are also described in Chapter 1. The most popular data mart is built
to support online analytical processing, and the most effective design
approach for it is the dimensional data model.

Continuing with the conceptual theme, we explain the importance of rela-
tional modeling techniques, introduce the different types of models that are
needed, and provide a process for building a relational data model in Chap-
ter 2. We also explain the relationship between the various data models used
in constructing a solid foundation for any enterprise—the business, system,
and technology data models—and how they share or inherit characteristics
from each other.

PA RTONE

Installing Custom Controls 3

Introduction

C H A P T E R 1

Welcome to the first book that thoroughly describes the data modeling tech-
niques used in constructing a multipurpose, stable, and sustainable data ware-
house used to support business intelligence (BI). This chapter introduces the
data warehouse by describing the objectives of BI and the data warehouse and
by explaining how these fit into the overall Corporate Information Factory
(CIF) architecture. It discusses the iterative nature of the data warehouse con-
struction and demonstrates the importance of the data warehouse data model
and the justification for the type of data model format suggested in this book.
We discuss why the format of the model should be based on relational design
techniques, illustrating the need to maximize nonredundancy, stability, and
maintainability. Another section of the chapter outlines the characteristics of a
maintainable data warehouse environment. The chapter ends with a discus-
sion of the impact of this modeling approach on the ultimate delivery of the
data marts. This chapter sets up the reader to understand the rationale behind
the ensuing chapters, which describe in detail how to create the data ware-
house data model.

Overview of Business Intelligence

BI, in the context of the data warehouse, is the ability of an enterprise to study
past behaviors and actions in order to understand where the organization has

3

been, determine its current situation, and predict or change what will happen
in the future. BI has been maturing for more than 20 years. Let’s briefly go over
the past decade of this fascinating and innovative history.

You’re probably familiar with the technology adoption curve. The first com-
panies to adopt the new technology are called innovators. The next category is
known as the early adopters, then there are members of the early majority,
members of the late majority, and finally the laggards. The curve is a tradi-
tional bell curve, with exponential growth in the beginning and a slowdown in
market growth occurring during the late majority period. When new technol-
ogy is introduced, it is usually hard to get, expensive, and imperfect. Over
time, its availability, cost, and features improve to the point where just about
anyone can benefit from ownership. Cell phones are a good example of this.
Once, only the innovators (doctors and lawyers?) carried them. The phones
were big, heavy, and expensive. The service was spotty at best, and you got
“dropped” a lot. Now, there are deals where you can obtain a cell phone for
about $60, the service providers throw in $25 of airtime, and there are no
monthly fees, and service is quite reliable.

Data warehousing is another good example of the adoption curve. In fact, if
you haven’t started your first data warehouse project, there has never been a
better time. Executives today expect, and often get, most of the good, timely
information they need to make informed decisions to lead their companies
into the next decade. But this wasn’t always the case.

Just a decade ago, these same executives sanctioned the development of exec-
utive information systems (EIS) to meet their needs. The concept behind EIS
initiatives was sound—to provide executives with easily accessible key per-
formance information in a timely manner. However, many of these systems
fell short of their objectives, largely because the underlying architecture could
not respond fast enough to the enterprise’s changing environment. Another
significant shortcoming of the early EIS days was the enormous effort required
to provide the executives with the data they desired. Data acquisition or the
extract, transform, and load (ETL) process is a complex set of activities whose
sole purpose is to attain the most accurate and integrated data possible and
make it accessible to the enterprise through the data warehouse or operational
data store (ODS).

The entire process began as a manually intensive set of activities. Hard-coded
“data suckers” were the only means of getting data out of the operational sys-
tems for access by business analysts. This is similar to the early days of tele-
phony, when operators on skates had to connect your phone with the one you
were calling by racing back and forth and manually plugging in the appropri-
ate cords.

C h a p t e r 14

Fortunately, we have come a long way from those days, and the data ware-
house industry has developed a plethora of tools and technologies to support
the data acquisition process. Now, progress has allowed most of this process to
be automated, as it has in today’s telephony world. Also, similar to telephony
advances, this process remains a difficult, if not temperamental and compli-
cated, one. No two companies will ever have the same data acquisition activi-
ties or even the same set of problems. Today, most major corporations with
significant data warehousing efforts rely heavily on their ETL tools for design,
construction, and maintenance of their BI environments.

Another major change during the last decade is the introduction of tools and
modeling techniques that bring the phrase “easy to use” to life. The dimen-
sional modeling concepts developed by Dr. Ralph Kimball and others are
largely responsible for the widespread use of multidimensional data marts to
support online analytical processing.

In addition to multidimensional analyses, other sophisticated technologies
have evolved to support data mining, statistical analysis, and exploration
needs. Now mature BI environments require much more than star schemas—
flat files, statistical subsets of unbiased data, normalized data structures, in
addition to star schemas, are all significant data requirements that must be
supported by your data warehouse.

Of course, we shouldn’t underestimate the impact of the Internet on data
warehousing. The Internet helped remove the mystique of the computer. Exec-
utives use the Internet in their daily lives and are no longer wary of touching
the keyboard. The end-user tool vendors recognized the impact of the Internet,
and most of them seized upon that realization: to design their interface such
that it replicated some of the look-and-feel features of the popular Internet
browsers and search engines. The sophistication—and simplicity—of these
tools has led to a widespread use of BI by business analysts and executives.

Another important event taking place in the last few years is the transformation
from technology chasing the business to the business demanding technology. In
the early days of BI, the information technology (IT) group recognized its value
and tried to sell its merits to the business community. In some unfortunate cases,
the IT folks set out to build a data warehouse with the hope that the business
community would use it. Today, the value of a sophisticated decision support
environment is widely recognized throughout the business. As an example, an
effective customer relationship management program could not exist without
strategic (data warehouse with associated marts) and a tactical (operational data
store and oper mart) decision-making capabilities. (See Figure 1.1)

Introduction 5

Figure 1.1 Strategic and tactical portions of a BI environment.

BI Architecture
One of the most significant developments during the last 10 years has been the
introduction of a widely accepted architecture to support all BI technological
demands. This architecture recognized that the EIS approach had several
major flaws, the most significant of which was that the EIS data structures
were often fed directly from source systems, resulting in a very complex data
acquisition environment that required significant human and computer
resources to maintain. The Corporate Information Factory (CIF) (see Figure
1.2), the architecture used in most decision support environments today,
addressed that deficiency by segregating data into five major databases (oper-
ational systems, data warehouse, operational data store, data marts, and oper
marts) and incorporating processes to effectively and efficiently move data
from the source systems to the business users.

Tactical BI
Components

Strategic BI
Components

Meta Data Management

Oper Mart

ERP

Internal

Legacy

Other

Operational
Systems

Operational
Data Store

Data
Delivery

Data
Acquisition

ERP

Internal

Legacy

Other

Exploration
Warehouse

Data Mining
Warehouse

OLAP Data
Mart

Operational
Systems

Data
Warehouse

Data
Delivery

Data
Acquisition

C h a p t e r 16

Figure 1.2 The Corporate Information Factory.

D
SI

D
SI

A
PI

A
PI

A
PI

A
PI

D
SI

D
SI

C
h

an
g

e
M

an
ag

em
en

t
Se

rv
ic

e
M

an
ag

em
en

t

W
o

rk
b

en
ch

Li
b

ra
ry

 &
 T

o
o

lb
o

x

D
at

a
A

cq
ui

si
ti

o
n

M
an

ag
em

en
t

Sy
st

em
s

M
an

ag
em

en
t

D
at

a
D

el
iv

er
y

D
at

a
A

cq
ui

si
ti

o
n

Ex
p

lo
ra

ti
o

n
W

ar
eh

o
us

e

D
at

a
M

in
in

g
W

ar
eh

o
us

e

O
LA

P
D

at
a

M
ar

t

O
p

er
 M

ar
t

Ex
te

rn
al

ER
P

In
te

rn
al

Le
g

ac
y

O
th

er

O
p

er
at

io
n

al
Sy

st
em

s

C
IF

 D
at

a
M

an
ag

em
en

t

M
et

a
D

at
a

M
an

ag
em

en
t

In
fo

rm
at

io
n

 F
ee

d
b

ac
k

In
fo

rm
at

io
n

 W
o

rk
sh

o
p

O
p

er
at

io
n

 &
A

d
m

in
is

tr
at

io
n

D
at

a
W

ar
eh

o
us

e

Tr
i

O
p

er
at

io
n

al
D

at
a

St
o

re

Introduction 7

These components were further separated into two major groupings of com-
ponents and processes:

■■ Getting data in consists of the processes and databases involved in acquir-
ing data from the operational systems, integrating it, cleaning it up, and
putting it into a database for easy usage. The components of the CIF that
are found in this function:

■■ The operational system databases (source systems) contain the data
used to run the day-to-day business of the company. These are still the
major source of data for the decision support environment.

■■ The data warehouse is a collection or repository of integrated, detailed,
historical data to support strategic decision-making.

■■ The operational data store is a collection of integrated, detailed, cur-
rent data to support tactical decision making.

■■ Data acquisition is a set of processes and programs that extracts data
for the data warehouse and operational data store from the operational
systems. The data acquisition programs perform the cleansing as well
as the integration of the data and transformation into an enterprise for-
mat. This enterprise format reflects an integrated set of enterprise busi-
ness rules that usually causes the data acquisition layer to be the most
complex component in the CIF. In addition to programs that transform
and clean up data, the data acquisition layer also includes audit and
control processes and programs to ensure the integrity of the data as it
enters the data warehouse or operational data store.

■■ Getting information out consists of the processes and databases involved in
delivering BI to the ultimate business consumer or analyst. The compo-
nents of the CIF that are found in this function:

■■ The data marts are derivatives from the data warehouse used to pro-
vide the business community with access to various types of strategic
analysis.

■■ The oper marts are derivatives of the ODS used to provide the busi-
ness community with dimensional access to current operational data.

■■ Data delivery is the process that moves data from the data warehouse
into data and oper marts. Like the data acquisition layer, it manipu-
lates the data as it moves it. In the case of data delivery, however, the
origin is the data warehouse or ODS, which already contains high-
quality, integrated data that conforms to the enterprise business rules.

The CIF didn’t just happen. In the beginning, it consisted of the data ware-
house and sets of lightly summarized and highly summarized data—initially

C h a p t e r 18

a collection of the historical data needed to support strategic decisions. Over
time, it spawned the operational data store with a focus on the tactical decision
support requirements as well. The lightly and highly summarized sets of data
evolved into what we now know are data marts.

Let’s look at the CIF in action. Customer Relationship Management (CRM) is a
highly popular initiative that needs the components for tactical information
(operational systems, operational data store, and oper marts) and for strategic
information (data warehouse and various types of data marts). Certainly this
technology is necessary for CRM, but CRM requires more than just the technol-
ogy—it also requires alignment of the business strategy, corporate culture and
organization, and customer information in addition to technology to provide
long-term value to both the customer and the organization. An architecture
such as that provided by the CIF fits very well within the CRM environment,
and each component has a specific design and function within this architecture.
We describe each component in more detail later in this chapter.

CRM is a popular application of the data warehouse and operational data
store but there are many other applications. For example, the enterprise
resource planning (ERP) vendors such as SAP, Oracle, and PeopleSoft have
embraced data warehousing and augmented their tool suites to provide the
needed capabilities. Many software vendors are now offering various plug-ins
containing generic analytical applications such as profitability or key perfor-
mance indicator (KPI) analyses. We will cover the components of the CIF in far
greater detail in the following sections of this chapter.

The evolution of data warehousing has been critical in helping companies bet-
ter serve their customers and improve their profitability. It took a combination
of technological changes and a sustainable architecture. The tools for building
this environment have certainly come a long way. They are quite sophisticated
and offer great benefit in the design, implementation, maintenance, and access
to critical corporate data. The CIF architecture capitalizes on these technology
and tool innovations. It creates an environment that segregates data into five
distinct stores, each of which has a key role in providing the business commu-
nity with the right information at the right time, in the right place, and in the
right form. So, if you’re a data warehousing late majority or even a laggard,
take heart. It was worth the wait.

What Is a Data Warehouse?

Before we get started with the actual description of the modeling techniques,
we need to make sure that all of us are on the same page in terms of what we
mean by a data warehouse, its role and purpose in BI, and the architectural
components that support its construction and usage.

Introduction 9

Role and Purpose of the Data Warehouse
As we see in the first section of this chapter, the overall BI architecture has
evolved considerably over the past decade. From simple reporting and EIS
systems to multidimensional analyses to statistical and data mining require-
ments to exploration capabilities, and now the introduction of customizable
analytical applications, these technologies are part of a robust and mature BI
environment. See Figure 1.3 for the general timeframe for each of these tech-
nological advances.

Given these important but significantly different technologies and data format
requirements, it should be obvious that a repository of quality, trusted data in
a flexible, reusable format must be the starting point to support and maintain
any BI environment. The data warehouse has been a part of the BI architecture
from the very beginning. Different methodologies and data warehouse gurus
have given this component various names such as:

A staging area. A variation on the data warehouse is the “back office” stag-
ing area where data from the operational systems is first brought together.
It is an informally designed and maintained grouping of data whose only
purpose is to feed multidimensional data marts.

The information warehouse. This was an early name for the data ware-
house used by IBM and other vendors. It was not as clearly defined as the
staging area and, in many cases, encompassed not only the repository of
historical data but also the various data marts in its definition.

Figure 1.3 Evolving BI technologies.

Multi-
Dimensional

Analysis
(OLAP)

Exploration

Queries,
Reports &

EIS

Early 2000's

Customizable
Analytical

Applications

Data
Mining

Multi-
Dimensional

Analysis
(OLAP)

Exploration

Queries,
Reports &

EIS

Late 1990's

Data
Mining

Multi-
Dimensional

Analysis
(OLAP)

Queries,
Reports &

EIS

Mid 1990's

Data
Mining

Multi-
Dimensional

Analysis
(OLAP)

Queries,
Reports &

EIS

Early 1990's

Le
ve

l o
f

So
p

h
is

ti
ca

ti
o

n

Queries,
Reports &

EIS

Mid 1980's

C h a p t e r 110

The data warehouse environment must align varying skill sets, functionality,
and technologies. Therefore it must be designed with two ideas in mind. First,
it must be at the proper level of grain, or detail, to satisfy all the data marts.
That is, it must contain the least common denominator of detailed data to sup-
ply aggregated, summarized marts as well as transaction-level exploration
and mining warehouses.

Second, its design must not compromise the ability to use the various tech-
nologies for the data marts. The design must accommodate multidimensional
marts as well as statistical, mining, and exploration warehouses. In addition, it
must accommodate the new analytical applications being offered and be pre-
pared to support any new technology coming down the pike. Thus the
schemas it must support consist of star schemas, flat files, statistical subsets of
normalized data, and whatever the future brings to BI. Given these goals, let’s
look at how the data warehouse fits into a comprehensive architecture sup-
porting this mature BI environment.

The Corporate Information Factory
The Corporate Information Factory (CIF) is a widely accepted conceptual
architecture that describes and categorizes the information stores used to oper-
ate and manage a successful and robust BI infrastructure. These information
stores support three high-level organizational processes:

■■ Business operations are concerned with the ongoing day-to-day operations
of the business. It is within this function that we find the operational
transaction-processing systems and external data. These systems help run
the business, and they are usually highly automated. The processes that
support this function are fairly static, and they change only in quantum
leaps. That is, the operational processes remain constant from day to day,
and only change through a conscious effort by the company.

■■ Business intelligence is concerned with the ongoing search for a better
understanding of the company, of its products, and of its customers.
Whereas business operations processes are static, business intelligence
includes processes that are constantly evolving, in addition to static
processes. These processes can change as business analysts and knowl-
edge workers explore the information available to them, using that infor-
mation to help them develop new products, measure customer retention,
evaluate potential new markets, and perform countless other tasks.
The business intelligence function supports the organization’s strategic
decision-making process.

Introduction 11

■■ Business management is the function in which the knowledge and new
insights developed in business intelligence are institutionalized and intro-
duced into the daily business operations throughout the enterprise. Busi-
ness management encompasses the tactical decisions that an organization
makes as it carries out its strategies.

Taken as a whole, the CIF can be used to identify all of the information man-
agement activities that an organization conducts. The operational systems
continue to be the backbone of the enterprise, running the day-to-day busi-
ness. The data warehouse collects the integrated, historical data supporting
customer analysis and segmentation, and the data marts provide the business
community with the capabilities to perform these analyses. The operational
data store and associated oper marts support the near-real-time capture of
integrated customer information and the management of actions to provide
personalized customer service.

Let’s examine each component of the CIF in a bit more detail.

Operational Systems

Operational systems are the ones supporting the day-to-day activities of the
enterprise. They are focused on processing transactions, ranging from order
entry to billing to human resources transactions. In a typical organization, the
operational systems use a wide variety of technologies and architectures, and
they may include some vendor-packaged systems in addition to in-house
custom-developed software. Operational systems are static by nature; they
change only in response to an intentional change in business policies or
processes, or for technical reasons, such as system maintenance or perfor-
mance tuning.

These operational systems are the source of most of the electronically main-
tained data within the CIF. Because these systems support time-sensitive real-
time transaction processing, they have usually been optimized for
performance and transaction throughput. Data in the operational systems
environment may be duplicated across several systems, and is often not syn-
chronized. These operational systems represent the first application of busi-
ness rules to an organization’s data, and the quality of data in the operational
systems has a direct impact on the quality of all other information used in the
organization.

Data Acquisition

Many companies are tempted to skip the crucial step of truly integrating their
data, choosing instead to deploy a series of uncoordinated, unintegrated data
marts. But without the single set of business rule transformations that the data

C h a p t e r 112

acquisition layer contains, these companies end up building isolated, user- or
department-specific data marts. These marts often cannot be combined to pro-
duce valid information, and cannot be shared across the enterprise. The net
effect of skipping a single, integrated data acquisition layer is to foster the
uncontrolled proliferation of silos of analytical data.

Data Warehouse

The universally accepted definition of a data warehouse developed by Bill
Inmon in the 1980s is “a subject-oriented, integrated, time variant and non-
volatile collection of data used in strategic decision making”1. The data ware-
house acts as the central point of data integration—the first step toward
turning data into information. Due to this enterprise focus, it serves the fol-
lowing purposes.

First, it delivers a common view of enterprise data, regardless of how it may
later be used by the consumers. Since it is the common view of data for the
business consumers, it supports the flexibility in how the data is later inter-
preted (analyzed). The data warehouse produces a stable source of historical
information that is constant, consistent, and reliable for any consumer.

Second, because the enterprise as a whole has an enormous need for historical
information, the data warehouse can grow to huge proportions (20 to 100 tera-
bytes or more!). The design is set up from the beginning to accommodate the
growth of this information in the most efficient manner using the enterprise’s
business rules for use throughout the enterprise.

Finally, the data warehouse is set up to supply data for any form of analytical
technology within the business community. That is, many data marts can be
created from the data contained in the data warehouse rather than each data
mart serving as its own producer and consumer of data.

Operational Data Store

The operational data store (ODS) is used for tactical decision making, whereas
the data warehouse supports strategic decisions. It has some characteristics
that are similar to those of the data warehouse but is dramatically different in
other aspects:

■■ It is subject oriented like a data warehouse.

■■ Its data is fully integrated like a data warehouse.

Introduction 13

1Building the Data Warehouse, Third Edition by W.H. Inmon, Wiley Publishing, Inc., 2001.

■■ Its data is current—or as current as technology will allow. This is a signifi-
cant difference from the historical nature of the data warehouse. The ODS
has minimal history and shows the state of the entity as close to real time
as feasible.

■■ Its data is volatile or updatable. This too is a significant departure from
the static data warehouse. The ODS is like a transaction-processing system
in that, when new data flows into the ODS, the fields affected are over-
written or updated with the new information. Other than an audit trail,
no history of the previous contents is retained.

■■ Its data is almost entirely detailed with a small amount of dynamic aggre-
gation or summarization. The ODS is most often designed to contain the
transaction-level data, that is, the lowest level of detail for the subject area.

The ODS is the source of near-real-time, accurate, integrated data about cus-
tomers, products, inventory, and so on. It is accessible from anywhere in the
corporation and is not application specific. There are four classes of ODS com-
monly used; each has distinct characteristics and usage, but the most signifi-
cant difference among them is the frequency of updating, ranging from daily
to almost real time (subminute latency). Unlike a data warehouse, in which
very little reporting is done against the warehouse itself (reporting is pushed
out to the data marts), business users frequently access an ODS directly.

Data Delivery

Data delivery is generally limited to operations such as aggregation of data,
filtering by specific dimensions or business requirements, reformatting data to
ease end-user access or to support specific BI access software tools, and finally
delivery or transmittal of data across the organization. The data delivery infra-
structure remains fairly static in a mature CIF environment; however, the data
requirements of the data marts evolve rapidly to keep pace with changing
business information needs. This means that the data delivery layer must be
flexible enough to keep pace with these demands.

Data Marts

Data marts are a subset of data warehouse data and are where most of the ana-
lytical activities in the BI environment take place. The data in each data mart is
usually tailored for a particular capability or function, such as product prof-
itability analysis, KPI analyses, customer demographic analyses, and so on.
Each specific data mart is not necessarily valid for other uses. All varieties of
data marts have universal and unique characteristics. The universal ones are
that they contain a subset of data warehouse data, they may be physically co-
located with the data warehouse or on their own separate platform, and they

C h a p t e r 114

range in size from a few megabytes to multiple gigabytes to terabytes! To max-
imize your data warehousing ROI, you need to embrace and implement data
warehouse architectures that enable this full spectrum of analysis.

Meta Data Management

Meta data management is the set of processes the collect, manage, and deploy
meta data throughout the CIF. The scope of meta data managed by these
processes includes three categories. Technical meta data describes the physical
structures in the CIF and the detailed processes that move and transform data
in the environment. Business meta data describes the data structures, data ele-
ments, business rules, and business usage of data in the CIF. Finally, Adminis-
trative meta data describes the operation of the CIF, including audit trails,
performance metrics, data quality metrics, and other statistical meta data.

Information Feedback

Information feedback is the sharing mechanism that allows intelligence and
knowledge gathered through the usage of the Corporate Information Factory
to be shared with other data stores, as appropriate. It is the use of information
feedback that identifies an organization as a true “learning organization.”
Examples of information feedback include:

■■ Pulling derived measures such as new budget targets from data marts and
feeding them back to the data warehouse where they will be stored for
historical analysis.

■■ Transmitting data that has been updated in an operational data store
(through the use of a Transactional Interface) to appropriate operational
systems, so that those data stores can reflect the new data.

■■ Feeding the results of analyses, such as a customer’s segment classification
and life time value score, back to the operational systems or ODS.

Information Workshop

The information workshop is the set of tools available to business users to help
them use the resources of the Corporate Information Factory. The information
workshop typically provides a way to organize and categorize the data and
other resources in the CIF, so that users can find and use those resources. This
is the mechanism that promotes the sharing and reuse of analysis across the
organization. In some companies, this concept is manifested as an intranet
portal, which organizes information resources and puts them at business
users’ fingertips. We classify the components of the information workshop as
the library, toolbox, and workbench.

Introduction 15

The library and toolbox usually represent the organization’s first attempts to
create an information workshop. The library component provides a directory
of the resources and data available in the CIF, organized in a way that makes
sense to business users. This directory is much like a library, in that there is a
standard taxonomy for categorizing and ordering information components.
This taxonomy is often based on organizational structures or high-level busi-
ness processes. The toolbox is the collection of reusable components (for exam-
ple, analytical reports) that business users can share, in order to leverage work
and analysis performed by others in the enterprise. Together, these two con-
cepts constitute a basic version of the information workshop capability.

More mature CIF organizations support the information workshop concept
through the use of integrated information workbenches. In the workbench,
meta data, data, and analysis tools are organized around business functions
and tasks. The workbench dispenses with the rigid taxonomy of the library
and toolbox, and replaces it with a task-oriented or workflow interface that
supports business users in their jobs.

Operations and Administration

Operation and administration include the crucial support and infrastructure
functions that are necessary for a growing, sustainable Corporate Information
Factory. In early CIF implementations, many companies did not recognize
how important these functions were, and they were often left out during CIF
planning and development. The operation and administration functions
include CIF Data Management, Systems Management, Data Acquisition Man-
agement, Service Management, and Change Management. Each of these func-
tions contains a set of procedures and policies for maintaining and enhancing
these critically important processes.

The Multipurpose Nature of the Data Warehouse

Hopefully by now, you have a good understanding of the role the data ware-
house plays in your BI environment. It not only serves as the integration point
for your operational data, it must also serve as the distribution point of this
data into the hands of the various business users. If the data warehouse is to
act as a stable and permanent repository of historical data for use in your
strategic BI applications, it should have the following characteristics:

It should be enterprise focused. The data warehouse should be the starting
point for all data marts and analytical applications; thus, it will be used by
multiple departments, maybe even multiple companies or subdivisions.

C h a p t e r 116

A difficult but mandatory part of any data warehouse design team’s activi-
ties must be the resolution of conflicting data elements and definitions. The
participation by the business community is also obligatory.

Its design should be as resilient to change as possible. Since the data
warehouse is used to store massive, detailed, strategic data over multiple
years, it is very undesirable to unload the data, redesign the database, and
then reload the data. To avoid this, you should think in terms of a process-
independent, application-independent, and BI technology-independent
data model. The goal is to create a data model that can easily accommodate
new data elements as they are discovered and needed without having to
redesign the existing data elements or data model.

It should be designed to load massive amounts of data in very short amounts
of time. The data warehouse database design must be created with a mini-
mum of redundancy or duplicated attributes or entities. Most databases
have bulk load utilities that include a range of features and functions that
can help optimize this process. These include parallelization options, load-
ing data by block, and native application program interfaces (APIs). They
may mean that you must turn off indexing, and they may require flat files.
However, it is important to note that a poorly or ineffectively designed data-
base cannot be overcome even with the best load utilities.

It should be designed for optimal data extraction processing by the data
delivery programs. Remember that the ultimate goal for the data ware-
house is to feed the plethora of data marts that are then used by the busi-
ness community. Therefore, the data warehouse must be well documented
so that data delivery teams can easily create their data delivery programs.
The quality of the data, its lineage, any calculations or derivations, and its
meaning should all be clearly documented.

Its data should be in a format that supports any and all possible BI analy-
ses in any and all technologies. It should contain the least common
denominator level of detailed data in a format that supports all manner of
BI technologies. And it must be designed without bias or any particular
department’s utilization only in mind.

Types of Data Marts Supported
Today, we have a plethora of technologies supporting different analytical
needs—Online Analytical Processing (OLAP), exploration, data mining and
statistical data marts, and now customizable analytical applications. The
unique characteristics come from the specificity of the technology supporting
each type of data mart:

Introduction 17

OLAP data mart. These data marts are designed to support generalized
multidimensional analysis, using OLAP software tools. The data mart is
designed using the star schema technique or proprietary “hypercube”
technology. The star schema or multidimensional database management
system (MD DBMS) is great for supporting multidimensional analysis in
data marts that have known, stable requirements, fairly predictable queries
with reasonable response times, and recurring reports. These analyses may
include sales analysis, product profitability analysis, human resources
headcount distribution tracking, or channel sales analysis.

Exploration warehouse. While most common data marts are designed to
support specific types of analysis and reporting, the exploration ware-
house is built to provide exploratory or true “ad hoc” navigation through
data. After the business explorers make a useful discovery, that analysis
may be formalized through the creation of another form of data mart (such
as an OLAP one), so that others may benefit from it over time. New tech-
nologies have greatly improved the ability to explore data and to create a
prototype quickly and efficiently. These include token, encoded vector, and
bitmap technologies.

Data-mining or statistical warehouse. The data-mining or statistical ware-
house is a specialized data mart designed to give researchers and analysts
the ability to delve into the known and unknown relationships of data and
events without having preconceived notions of those relationships. It is a
safe haven for people to perform queries and apply mining and statistical
algorithms to data, without having to worry about disabling the produc-
tion data warehouse or receiving biased data such as that contained in
multidimensional designs (in which only known, documented relation-
ships are constructed).

Customizable analytical applications. These new additions permit inex-
pensive and effective customization of generic applications. These
“canned” applications meet a high percentage of every company’s generic
needs yet can be customized for the remaining specific functionality. They
require that you think in terms of variety and customization through flexi-
bility and quick responsiveness.

Types of BI Technologies Supported
The reality is that database structures for data marts vary across a spectrum
from normalized to denormalized to flat files of transactions. The ideal situation

C h a p t e r 118

is to craft the data mart schemas after the requirements are established. Unfor-
tunately, the database structure/solution is often selected before the specific
business needs are known. Those of us in the data warehouse consulting busi-
ness have witnessed development teams debating star versus normalized
designs before even starting business analysis. For whatever reason, architects
and data modelers latch onto a particular design technique—perhaps through
comfort with a particular technique or ignorance of other techniques—and
force all data marts to have that one type of design. This is similar to the person
who is an expert with a hammer—everything he or she sees resembles a nail.

Our recommendation for data mart designs is that the schemas should be
based on the usage of the data and the type of information requested. There
are no absolutes, of course, but we feel that the best design to support all the
types of data marts will be one that does not preestablish or predetermine the
data relationships. An important caveat here is that the data warehouse that
feeds the marts will be required to support any and all forms of analysis—not
just multidimensional forms.

To determine the best database design for your business requirements and
ensuing data mart, we recommend that you develop a simple matrix that plots
the volatility of the data against a type of database design required, similar to
the one in Figure 1.4. Such a matrix allows designers, architects, and database
administrators (DBAs) to view where the overall requirements lie in terms of
the physical database drivers, that is, volatility, latency, multiple subject areas,
and so on, and the analytical vehicle that will supply the information (via the
scenarios that were developed), for example, repetitive delivery, ad hoc
reports, production reports, algorithmic analysis, and so on.

Figure 1.4 Business requirements—data mart design matrix.

Star Schema

De-normalized

Normalized

Repetitive

V
o

la
ti

lit
y

/
La

te
n

cy
 f

un
ct

io
n

Ad-hoc Algorithmic

Flat

Introduction 19

Characteristics of a Maintainable
Data Warehouse Environment

With this as a background, what does a solid, maintainable data warehouse
data model look like? What are the characteristics that should be considered
when designing any data warehouse, whether for a company just beginning
its BI initiative or for a company having a sophisticated set of technologies and
users, whether the company has only one BI access tool today or has a plethora
of BI technologies available?

The methodology for building a BI environment is iterative in nature. We are
fortunate today to have many excellent books devoted to describing this
methodology. (See the “Recommended Reading” section at the end of this
book.) In a nutshell, here are the steps:

1. First, select and document the business problem to be solved with a busi-
ness intelligence capability (data mart of some sort).

2. Gather as many of the requirements as you can. These will be further
refined in the next step.

3. Determine the appropriate end-user technology to support the solution
(OLAP, mining, exploration, analytical application, and so on).

4. Build a prototype of the data mart to test its functionality with the busi-
ness users, redesigning it as necessary.

5. Develop the data warehouse data model, based on the user requirements
and the business data model.

6. Map the data mart requirements to the data warehouse data model and
ultimately back to the operational systems, themselves.

7. Generate the code to perform the ETL and data delivery processes. Be
sure to include error detection and correction and audit trail procedures in
these processes.

8. Test the data warehouse and data mart creation processes. Measure the
data quality parameters and create the appropriate meta data for the
environment.

9. Upon acceptance, move the first iteration of the data warehouse and the
data mart into production, train the rest of the business community, and
start planning for the next iteration.

C h a p t e r 120

WARNING
Nowhere do we recommend that you build an entire data warehouse containing all
the strategic enterprise data you will ever need before building the first analytical
capability (data mart). Each successive business problem solved by another data
mart implementation will add the growing set of data serving as the foundation in
your data warehouse. Eventually, the amount of data that must be added to the data
warehouse to support a new data mart will be negligible because most of it will al-
ready be present in the data warehouse.

Since you will not know how large the data warehouse will ultimately be, nor
do you know all of the BI technologies that will eventually be brought to bear
upon strategic problems in your enterprise, you must make some educated
assumptions and plan accordingly. You can assume that the warehouse will
become one of the largest databases found in your enterprise. It is not unusual
for the data warehouse size to start out in the low gigabyte range and then
grow fairly rapidly to hundreds of gigabytes, terabytes, and some now predict
pedabytes. So, regardless of where you are in your BI life cycle—just starting
or several years into building the environment—the relational databases are
still the best choice for your database management system (DBMS). They have
the advantage of being very conducive to nonredundant, efficient database
design. In addition, their deployment for the data warehouse means you can
use all the sophisticated and useful characteristics of a relational DBMS:

■■ Access to the data by most any tool (data modeling, ETL, meta data, and
BI access). All use SQL on the relational database.

■■ Scalability in terms of the size of data being stored. The relational
databases are still superior in terms of storing massive amounts of data.

■■ Parallelism for efficient and extremely fast processing of data. The
relational databases excel at this function.

■■ Utilities such as bulk loaders, defragmentation, and reorganization
capabilities, performance monitors, backup and recovery functions, and
index wizards. Again, the relational databases are ideal for supporting a
repository of strategic data.

There may come a time when the proprietary multidimensional databases
(MOLAP) can effectively compete with their relational cousins, but that is not
the situation currently.

Introduction 21

The Data Warehouse Data Model

Given that we recommend a relational DBMS for your data warehouse, what
should the characteristics of the data model for that structure look like? Again,
let’s look at some assumptions before going into the characteristics of the model:

■■ The data warehouse is assumed to have an enterprise focus at its heart.
This means that the data contained in it does not have a bias toward one
department or one part of the enterprise over another. Therefore, the ulti-
mate BI capabilities may require further processing (for example, the use
of a data mart) to “customize” them for a specific group, but the starting
material (data) can be used by all.

■■ As a corollary to the above assumption, it is assumed that the data within
data warehouse does not violate any business rules established by the
enterprise. The data model for the data warehouse must demonstrate
adherence to these underlying rules through its form and documentation.

■■ The data warehouse must be loaded with new data as quickly and effi-
ciently as possible. Batch windows, if they exist at all, are becoming smaller
and smaller. The bulk of the work to get data into a data warehouse must
occur in the ETL process, leaving minimal time to load the data.

■■ The data warehouse must be set up from the beginning to support multi-
ple BI technologies—even if they are not known at the time of the first
data mart project. Biasing the data warehouse toward one technology,
such as multidimensional analyses, effectively eliminates the ability to sat-
isfy other needs such as mining and statistical analyses.

■■ The data warehouse must gracefully accommodate change in its data and
data structures. Given that we do not have all of the requirements or
known uses of the strategic data in the warehouse from the very begin-
ning, we can be assured that changes will happen as we build onto the
existing data warehouse foundation.

With these assumptions in mind, let’s look at the characteristics of the ideal
data warehouse data model.

Nonredundant
To accommodate the limited load cycles and the massive amount of data that
most data warehouses must have, the data model for the data warehouse
should contain a minimum amount of redundancy. Redundancy adds a
tremendous burden to the load utilities and to the designers who must worry
about ensuring that all redundant data elements and entities get the correct
data at the correct time. The more redundancy you introduce to your data

C h a p t e r 122

warehouse data model, the more complex you make the ultimate process of
“getting data in.”

This does not mean that redundancy is not ever found in the data warehouse.
In Chapter 4, we describe when and why some redundancy is introduced into
the data warehouse. The key though is that redundancy is controlled and man-
aged with forethought.

Stable
As mentioned earlier, we build the data warehouse in an iterative fashion,
which has the benefit of getting a data mart created quickly but runs the risk
of missing or misstating significant business rules or data elements. These
would be determined or highlighted as more and more data marts came
online. It is inevitable that change will happen to the data warehouse and its
data model.

It is well known that what changes most often in any enterprise are its
processes, applications, and technology. If we create a data model dependent
upon any of these three factors, we can be assured of a major overhaul when
one of the three changes. Therefore, as designers, we must use a data-modeling
technique that mitigates this problem as much as possible yet captures the all-
important business rules of the enterprise. The best data-modeling technique for
this mitigation is to create a process-, application-, and technology-independent
data model.

On the other hand, since change is inevitable, we must be prepared to accom-
modate newly discovered entities or attributes as new BI capabilities and data
marts are created. Again, the designer of the data warehouse must use a mod-
eling technique that can easily incorporate a new change without someone’s
having to redesign the existing elements and entities already implemented.
This model is called a system model, and will be described in Chapter 3 in
more detail.

Consistent
Perhaps the most essential characteristic of any data warehouse data model is
the consistency it brings to the business for its most important asset—its data.
The data models contain all the meta data (definitions, physical characteristics,
aliases, business rules, data owners and stewards, domains, roles, and so on)
that is critically important to the ultimate understanding of the business users
of what they are analyzing. The data model creation process must reconcile
outstanding issues, data discrepancies, and conflicts before any ETL process-
ing or data mapping can occur.

Introduction 23

Flexible in Terms of the Ultimate Data Usage
The single most important purpose for the data warehouse is to serve as a
solid, reliable, consistent foundation of data for any and all BI capabilities. It
should be clear by now that, regardless of what your first BI capability is, you
must be able to serve all business requirements regardless of their technolo-
gies. Therefore, the data warehouse data model must remain application and
technology independent, thus making it ideal to support any application or
technology.

On the other hand, the model must uphold the business rules established for
the organization, and that means that the data model must be more than sim-
ply flat files. Flat files, while a useful base to create star schemas, data mining,
and exploration subsets of data, do not enforce, or even document, any known
business rules. As the designer, you must go one step further and create a real
data model with the real business rules, domains, cardinalities, and optionali-
ties specified. Otherwise, subsequent usage of the data could be mishandled,
and violations in business rules could occur.

The Codd and Date Premise
Given all of the above characteristics of a good data warehouse data model, we
submit that the best data-modeling technique you can use is one based on the
original relational database design—the entity-relationship diagram (ERD)
developed by Chris Date and Ted Codd. The ERD is a proven and reliable
data-modeling approach with straightforward rules of construction. The nor-
malization rules discussed in Chapter 3 yield a stable, consistent data model
that upholds the policies and rules of engagement established by the enter-
prise, while lending a tremendous amount of flexibility in how the data is later
analyzed by the data marts. The resulting database is the most efficient in
terms of storage and data loading as well. It is, however, not perfect, as we will
see in the next section.

While we certainly feel that this approach is elegant in the extreme, more
importantly, this data-modeling technique upholds all of the features and
characteristics we specified for a sustainable, flexible, maintainable, and
understandable data warehouse environment.

The resultant data model for your data warehouse is translatable, using any
technology, into a database design that is:

Reliable across the business. It contains no contradictions in the way that
data elements or entities are named, related to each other, or documented.

Sharable across the enterprise. The data warehouse resulting from the
implementation of this data model can be accessed by multiple data deliv-
ery processes and users from anywhere in the enterprise

C h a p t e r 124

Flexible in the types of data marts it supports. The resulting database will
not bias your BI environment in one direction or another. All technological
opportunities will still be available to you and your enterprise.

Correct across the business. The data warehouse data model will provide
an accurate and faithful representation of the way information is used in
the business.

Adaptable to changes. The resulting database will be able to accommodate
new elements and entities, while maintaining the integrity of the imple-
mented ones.

Impact on Data Mart Creation

Now that we have described the characteristics of a solid data warehouse data
model and have recommended an ERD or normalized (in the sense of Date
and Codd) approach, let’s look at the ramifications that decision will have on
our overall BI environment.

The most common applications that use the data warehouse data are multidi-
mensional ones—at least today. The dimensions used in the star schemas cor-
relate roughly to the subject areas developed in the subject area model—order,
customer, product, market segment—and time. To answer the questions,
“How many orders for what products did we get in the Northeast section from
January to June this year?” would take a significant amount of effort if we
were to use the data warehouse as the source of data for that query. It would
require a rather large join across several big entities (Order, Order Line Item,
Product, Market Segment, with the restriction of the timeframe in the SQL
statement). This is not a pretty or particularly welcomed situation for the aver-
age business user who is distantly familiar with SQL.

So, what we can see about this situation is that data warehouse access will
have to be restricted and used by only those business users who are very
sophisticated in database design and SQL. If an enterprise has good explo-
ration and mining technology, it may choose to cut off all access to the data
warehouse, thus requiring all business users to access an OLAP mart, or explo-
ration or data mining warehouse instead.

Is this a problem? Not really. All BI environments must have “back room”
capabilities of one sort or another. It is in the back room that we perform the
difficult tasks of integration, data hygiene, error correction and detection,
transformation, and the audit and control mechanisms to ensure the quality of
the strategic data anyway. Therefore, all BI environments have this “closed off
to the public” section of their environment. We have simply taken it one step
further and said that this section should be formally modeled, created, and
maintained.

Introduction 25

In the data-mart-only world, the data delivery processes, described earlier,
must take on not only the burden of ensuring the proper delivery of the infor-
mation to the right mart at the right time but must also take on the entire set of
ETL tasks found in the data acquisition processing over and over again. Given
this situation, it should be obvious that the data delivery processes can be sim-
plified greatly if all they have to worry about is extracting the data they specif-
ically need from a consistent, quality source (the data warehouse), format it
into that required by the data mart technology (star schema, flat file, normal-
ized subset, and so on), and deliver the data to the data mart environment for
uploading.

As another benefit to constructing the data warehouse from a solid, ERD-based
data model, you get a very nice set of reusable data entities and elements. In a
data-mart-only environment, each mart must carry all the detailed data it
requires within its database. Unless the two data marts share common con-
formed dimensions, integrating the two may be difficult, or even impossible.
Imagine if a repository of detailed data existed that the data delivery processes
could extract from and the BI access tools could access, if they needed to, at any
time without having to replicate the data over and over! That is another signif-
icant benefit the data warehouse brings to your BI environment.

Summary

There are several BI methodologies and consultants who will tell you that you
do not need a data warehouse, that the combination of all the data marts
together creates the “data warehouse,” or at least a virtual one, or that really,
all the business really wants is just a standalone data mart. We find all of these
approaches to be seriously lacking in sustainability and sophistication. This
book takes a “best practices” approach to creating a data warehouse. The best
practices we use are a set of recommendations that tells designers what actions
they should take or avoid, thus maximizing the success of their overall efforts.
These recommendations are based on the years of experience in the field, par-
ticipation in many data warehouse projects, and the observation of many suc-
cessful and maintainable data warehouse environments. Clearly, no one
method is perfect, nor should one be followed blindly without thought being
given to the specific situation. You should understand what works best in your
environment and then apply these rules as you see fit, altering them as
changes and new situations arise.

In spite of this caveat, this book is filled with useful and valuable information,
guidelines, and hints. In the following chapters, we will describe the data
models needed in more detail, go over the construction of the data warehouse

C h a p t e r 126

data model step by step, and discuss deployment issues and problems you
may encounter along the way to creating a sustainable and maintainable busi-
ness intelligence environment. By the end of the book, you should be fully
qualified to begin constructing your BI environment armed with the best
design techniques possible for your data warehouse.

Introduction 27

Installing Custom Controls 29

Fundamental Relational Concepts

C H A P T E R 2

Every data-modeling technique has its own set of terms, definitions, and tech-
niques. This vernacular permits us to understand complex and difficult con-
cepts and to use them to design complex databases. This book applies
relational data-modeling techniques for developing the data warehouse data
model. To that end, this chapter introduces the terms and terminology of rela-
tional data modeling. It then continues with an overview of normalization
techniques and the rules for the different normalization levels (for example,
first, second, and third normal form) and the purpose for each. Sample data
models will be given, showing the progression of normalization. The chapter
ends with a discussion of normalization of the data model and the associated
benefits.

Before we get into the various types of data models we use in creating a data
warehouse, it is necessary to first understand why a data model is important
and the various types of data models you will create in developing your BI
environment.

Why Do You Need a Data Model?

A model is an abstraction or representation of a subject that looks or behaves
like all or part of the original. Examples include a concept car and a model of a

29

building. All models have a common set of objectives. They are designed to
help people envision how the parts fit together, help people understand how
to use or apply the final product, reduce the development risk, and ensure that
the people building the product and those requesting it have the same expec-
tations. Let’s look more closely at these benefits:

■■ A model reduces overall risk by ensuring that the requirements of the
final product will be satisfactorily met. By examining a “mock-up” of the
ultimate product, the intended users can make a reasonable determination
of whether the product will indeed fulfill their needs and objectives.

■■ A model helps the developers envision how the final product will inter-
face with other systems or functions. The level of effort needed to create
the interfaces and their feasibility can be reasonably estimated if a
detailed model is created. (In the case of a data warehouse, these inter-
faces include the data acquisition and the data delivery programs, where
and when to perform data cleansing, audits, data maintenance processes,
and so on.)

■■ A model helps all the people involved understand how to relate to the
ultimate product and how it will pertain to their work function. The
model also helps the developers understand the skills needed by the ulti-
mate audience and what training needs to occur to ensure proper usage of
the product.

■■ Finally a model ensures that the people building the product and those
requesting it have the same expectations about the ultimate outcome of
the effort. By examining the model, the potential for a missed opportunity
is greatly reduced, and the belief and trust by all parties that the ultimate
product will be satisfactory is greatly enhanced.

We feel that a model is so important, especially when undertaking a set of pro-
jects as complex as building a business intelligence (BI) environment, that we
recommend a project be halted or delayed until the justification for a solid set
of models is made, signed off on, and funded.

Relational Data-Modeling Objects

Now that we understand the need for a model, let’s turn our attention to a spe-
cific type of model—the data model. Before describing the various levels of
models, we need to come up with a common set of terms for use in describing
these models.

C h a p t e r 230

NOTE
This book is not intended to replace the many significant and authoritative books
written on generic data modeling; rather this section should only serve as a refresher
on some of the more significant terms we will use throughout the book. If more
detail is needed, please refer to the wealth of data-modeling books at your disposal
and listed in the “Recommended Reading” section in this book.

Subject
The first term to describe is a subject. You will see us refer to a subject-oriented
data warehouse and a subject area model. In both cases, the term subject refers
to a data subject or a major category of data relevant to the business. A subject
area is the subset of the enterprise’s data and consists of related entities and
relationships. Customers, Sales, and Products are examples of subject areas.

Entity
An entity is generally defined as a person, place, thing, concept, or event in
which the enterprise has both the interest and the capability to capture and
store information. An entity is unique within the data model. For the third nor-
mal form data model, there is one and only one entry representing that entity.
In entity-relationship diagrams (ERD) or logical data modeling in
the classical Codd and Date sense, there are four types of entities from which
to build logical or business data models and data warehouse models (see
Figure 2.1).

■■ A Primary or Fundamental Entity is defined as an entity that does not
depend on any other entity for its existence. Generally each subject area is
represented by a primary entity that has the same name (except that the
subject area name is pluralized and the entity name is singular), such as
Customer, Sale, and Product. These entities are a grouping of dependent
data occurring singularly.

■■ A Subtype Entity is a logical division or category of a parent (supertype)
entity. Examples of subtypes for the Customer entity are Retail Customer
and Wholesale Customer. The subtypes always inherit the characteristics,
or attributes and relationships, of the parent entity; that is, the Retail Cus-
tomer will inherit any attributes that describe the more generic parent
entity, Customer (for example, Customer ID, Customer Name), as well as
relationships such as “Customer acquires Product.”

■■ An Attributive or Characteristic Entity is an entity whose existence depends
on another entity. It is created to handle a group of data that could occur
multiple times for each instance of its parent entity. Customer Address is

Fundamental Relational Concepts 31

an attributive entity of Customer since each customer may have multiple
addresses.

■■ An Associative or Intersection Entity is an entity that is dependent upon two
or more entities for its existence, and that records data at the point of
intersection. Order is an associative entity. Its key is composed of the keys
of the two parent entities—Customer and Item—and a qualifier such as
Date. Attributes that could be retained include the Quantity of the Item
and Purchase Date.

With these four types of entities, we have all we will need in terms of compo-
nents to create the business and data warehouse data models. We describe
these models in the next section of this chapter and go through the steps to cre-
ate them in Chapters 3 and 4.

Element or Attribute
An element or attribute is the lowest level of information relating to any entity.
It models a specific piece of information or a property of a specific entity. Ele-
ments or attributes serve several purposes within an entity.

■■ A primary key serves to uniquely identify the entity and is used in the
physical database to locate a record for storage or access. Examples
include Customer ID for the Customer entity and Item ID for the Item
entity.

Figure 2.1 Sample data model.

Primary Entity

Customer ID
Customer Name
Customer Type
Customer VIP Status
Related Customer ID

Customer ID
No of Children
Homeowner Status

Customer

Sub Type Entities

Retail Customer

Commercial Customer

Customer ID
No of Employees
SIC

Customer ID
Address Type
Address
City
State
Postal Code
Country

Attributive Entity
Customer Address

Customer ID
Item ID

Purchase Date
Quantity

Associative Entity
Order

Customer ID
Item ID

Purchase Date
Quantity

Primary Entity
Item

C h a p t e r 232

NOTE
The key may be a single element or it may consist of multiple elements that are
combined, in which case it is called a concatenated key. Finally, primary keys may or
may not have meaning or intelligence. Care must be taken with intelligent primary
keys. For example, an Account Code that also depicts geographic area or department
is both confusing and erroneous in this data model. See the sidebar for further rules
for good keys.

■■ A foreign key is a key that exists because of a parent-child relationship
between a pair of entities. The foreign key in the child entity is the pri-
mary key in the parent entity and links the two entities together. For
example, the Customer ID of the Customer entity is also found in the
Order entity, relating the two.

■■ A nonkey element or attribute is not needed to uniquely identify the
entity but is used to further describe or characterize information about the
entity. Examples of nonkey elements or attributes are Customer Name,
Customer Type, Item Color, and Item Quantity.

Fundamental Relational Concepts 33

Characteristics of a Good Key

The following are characteristics of “well-behaved” keys—those keys that are
maintainable and sustainable over the lifetime of the operational system and
therefore, the data warehouse:

◆ The key is not null over the scope of integration. It is imperative that there
can never be a situation or event that could cause a null key.

◆ The key is unique over the scope of integration. It is also imperative that
there can never be a situation where duplicate keys could be generated.

◆ The key is unique by design not by circumstance. Key generation has been
carefully thought out and tested under all circumstances.

◆ The key is persistent over time. This is mandatory in the data warehouse
environment where data has a very long lifetime.

◆ The key is in a manageable format, that is, there is no undue overhead pro-
duced in the creation or maintenance of the key structures. It consists of
straightforward integers or character strings, no embedded symbols or odd
characters.

◆ The key should not contain embedded intelligence but rather is a generic
string. (It may be created based on some intelligence but, once created, the
intelligence embedded in the key is never used.)

Relationships
A relationship documents the business rule associating two entities together.
The relationship is used to describe how the two entities are naturally linked
to each other. Customer places Order and Order is for Items are examples of
relationships in Figure 2.1.

There are different characteristics of relationships used in documenting the
business rules of the enterprise:

■■ Cardinality denotes the maximum number of occurrences of one entity
that can be related to another entity. Usually these are expressed as “one”
or “many.” In Figure 2.1, a Customer has many addresses (Bill-to, Ship-to)
and every address belongs to one customer.

■■ Optionality or modality indicates whether an entity occurrence must partici-
pate in a relationship. This characteristic tells you the minimum number
(zero or optional) of occurrences in the relationship.

There are also different types of relationships:

■■ An identifying relationship is one in which the primary key of the parent
entity becomes a part of the primary key of the child entity.

■■ A nonidentifying relationship is one in which the primary key of the parent
entity becomes a nonkey attribute of the child entity. An example of this
type of relationship is a recursive relationship, that is, a situation in which
an entity is related to itself. Customers who are related to other customers
(for example, subsidiaries of corporations and families or households) are
examples of recursive relationships. These are used to denote an entity
occurrence that is related to another entity occurrence of the same entity.

See Figure 2.2 for more on these types of relationships. The components of a
relationship in a data model consist of a verb phrase denoting the business
rule (places, has, contains), the cardinality, and the modality or optionality of
the relationship.

C h a p t e r 234

Figure 2.2 Identifying and nonidentifying relationships.

Types of Data Models

A data model is an abstraction or representation of the data in a given environ-
ment. It is a collection and a subsequent verification and communication
method to fully document the data requirements used in the creation of accu-
rate, effective, and efficient physical databases. The data model consists of
entities, attributes, and relationships. Within the complete data model, appro-
priate meta data, such as definitions and physical characteristics, is defined for
each of these.

As we stated earlier, we feel that the data models you create for your BI envi-
ronment are critical to the overall success of your initiative as well as the long-
term maintenance and sustainability of the environment.

If the data model is so important, why isn’t it always developed? There are a
number of reasons for this:

■■ It’s not easy. Creating the data model takes significant effort from the IT
technical staff and business community. Data modelers must be either
hired or internal resources trained in the disciplines of data modeling.

■■ It requires discipline and tools. Once the techniques for data modeling
are learned, they must be applied with conformity and compliance. The
enterprise must create a set of documents detailing the standards it will
use in the creation of its data models. Examples of these are naming stan-
dards, conflict resolution procedures, data steward roles and responsibili-
ties (see Chapter 3 for more on this topic), and meta data capture and
maintenance procedures.

Identifying Relationship

Parent

Parent Nonkey Attribute

is the parent of

Parent Identifier

Child

Child Nonkey Attribute

Child Identifier
Parent Identifier (FK)

Non-identifying Relationship

Parent

Parent Nonkey Attribute

is the parent of

Parent Identifier

Child

Parent Identifier
Child Nonkey Attribute

Child Identifier

Fundamental Relational Concepts 35

■■ It requires significant business involvement. A company’s data model
must—repeat—must have business community involvement. We are,
after all, designing the critical component of the business community’s
ultimate competitive weapon. It is for them that we are creating this vast
wealth of information.

■■ It postpones the visible work. Data modeling does not create tangible
products that can be used by the business community. The models pro-
vide the technical staff creating the environment with information about
the business environment and some requirements. The old joke goes
something like this: “Start coding—I’ll go find out what they want.”

■■ It requires a broad view. The data model for the BI environment must
encompass the entire enterprise. It will be used to create the ultimate
decision-making components—the data marts—for all strategic analysis.
Therefore, it must have a multidepartment and multiprocess perspective.

■■ The benefits of a data model are often not realized with the first project.
The real productivity comes in its reuse and its enterprise perspective.

Having said all this, what is the impact of not developing a data model?

■■ It becomes very difficult to extract desired data. It is easy to implement
something that either misses the users’ expectations or only partially satis-
fies them.

■■ Significant effort is spent on interfaces that generally provide little or no
business value.

■■ The environment’s complexity increases significantly. When there is no
data model to serve as a roadmap, it becomes difficult, if not impossible,
to know what you already have in your data warehouse and what needs
to be added.

■■ It virtually guarantees lack of data integration because you cannot visual-
ize how things fit together. Data warehouse development will not be
effective and efficient, and may not even be feasible.

■■ One of the most significant drawbacks is that, without a data model, data
will not be effectively managed as an asset.

Now, having explained the need for data models, what are the types of data
models will you need for your data warehouse implementation? Figure 2.3
shows the types of data models we recommend and the interaction between
the models. The following sections describe the different data models neces-
sary for a complete, successful, and maintainable BI environment. It is impor-
tant to note the two-way arrows. The arrows pointing to the next lower level

C h a p t e r 236

of models indicate that the characteristics (basic entities, attributes, and rela-
tionships) are inherited from the upper model. This ensures that we are all
singing from the same sheet of music in terms of format, definition, and busi-
ness rules. The upward-pointing arrows indicate that changes constantly
occur as we implement these models into reality and that the changes must be
reflected or incorporated into the preceding models for them to remain viable.

Subject Area Model
Subject areas are major groupings of things1 of interest to the enterprise. These
things of interest are eventually depicted in entities. The typical enterprise has
between 15 and 20 subject areas. One of the beauties of a subject area model is
that it can be developed very quickly (typically within a few days). The initial
model serves as a blueprint for the business data model, and refinements in
the subject area model should be expected. One of the reasons that the subject
area model can be developed quickly is that there are some subjects that are
common to many organizations, and a company embarking on the develop-
ment of a subject area model can begin with these.

Figure 2.3 Data model types.

Subject Area Model

Business Data Model

Operational
System Model

Data Warehouse
System Model

Technology Models

Types of
Data Models

Fundamental Relational Concepts 37

1In this context, “things” refers to physical items, concepts, events, people, and places.

These subject areas conform to standards governing the subject area model:

■■ Subject area names are plural nouns.

■■ Definitions apply implicitly to the past, present, and future.

■■ Subject areas are at approximately the same level of abstraction.

■■ Definitions are structured so that the subject areas are mutually exclusive.

Subject Area Model Benefits

Regardless of how quickly the subject area model can be developed, the effort
should only be undertaken if there are benefits to be gained. Following are
some of the major benefits provided by the subject area model.

Guide the Business Data Model Development

The business data model is the detailed model used to guide the development
of the operational systems and the data warehouse. By doing so, it helps the
data warehouse accomplish one of its major generic objectives—data consis-
tency. Often, there are several people working on the business data model.
One application of the subject area model is to divide the workload by subject
area. In this manner, each person becomes an expert for a particular area such
as Customers, Products, and Sales. The modelers sometimes address business
functions, and hence each person’s work could involve multiple subject areas.
By establishing a primary person for each subject area, duplication of effort is
minimized and coordination is improved.

Even if the workload is not divided by person, the subject area model helps
ensure consistency and avoid redundancy. When a modeler identifies the need
for a new entity, the modeler determines the appropriate subject area based on
the definition. Before actually creating the new entity, the modeler need only
review the entities in that subject area (typically less than 30) rather than
reviewing the hundreds of entities that may exist in the full model. Armed
with that information, the modeler can either create the new entity or ensure
that the existing entity addresses the needs.

Guide Data Warehouse Project Selection

Companies often contemplate multiple data warehouse initiatives and strug-
gle with both grouping the requirements into projects and with establishing
the priorities. The subject area model provides a high-level approach for
grouping projects based on the data they encompass. This information should
be considered along with the business priority, technical difficulty, availability
of people, and so on in establishing the final project sequence. Chapter 3 will
cover this in more detail.

C h a p t e r 238

Guide Data Warehouse Development Projects

Subject matter experts often exist based on the data that is being addressed.
For example, someone in the chief financial officer’s organization would be
the expert for “Financials”; someone in the Human Resources Department
would be the expert for “Human Resources”; people from Sales, Marketing,
and Customer Service would provide the expertise for “Customers.” Under-
standing the subject areas being addressed helps the project team identify the
business representatives that need to be involved. Also, data master files (for
example, Customer Master File, Product Master File) tend to contain data
related to specific subjects.

Business Data Model
The business data model is another type of model. It is an abstraction or rep-
resentation of the data in a given business environment, and it provides the
benefits cited for any model. It helps people envision how the information in
the business relates to other information in the business (“how the parts fit
together”). Products that apply the business data model include operational
systems, data warehouse, and data mart databases, and the model provides
the meta data (or information about the data) for these databases to help peo-
ple understand how to use or apply the final product. The business data model
reduces the development risk by ensuring that all the systems implemented
correctly reflect the business environment. Finally, when it is used to guide
development efforts, it provides a basis to confirm the developers’ interpreta-
tion of the business information relationships to ensure that the key stake-
holders share a common set of expectations.

Business Data Model Benefits

The business data model provides a consistent and stable view of the business
information and business information relationships. It can be used as a basis
for recognizing, evaluating, and responding to business changes. Specific ben-
efits of the data model for data warehousing efforts follow.

Scope Definition

Every project should include a scope definition as one of its first steps, and
data warehouse projects are no exception. If a business data model already
exists, it can be used to convey the information that will be addressed by the
resultant data warehouse. A section of the scope document should be devoted
to listing the entities that will be included within the data warehouse; another
section should be devoted to listing the entities that someone could reasonably
expect to be included in the data warehouse but which have been excluded.

Fundamental Relational Concepts 39

The explicit statement of the entities that are included and excluded ensures
that there are no surprises with respect to the content of the data warehouse.

The list of entities is useful for identifying the needed subject matter experts
and for identifying the potential source systems that will be needed. Addition-
ally, this list can be used to help in estimating the project. A number of activi-
ties (for example, data warehouse model development, data transformation
logic) are dependent on the number of data elements. Using the data entities
(and attributes if available) as a starting point provides the project manager
with a basis for estimating the effort. For example, the formula for developing
the data warehouse model may consist of the number of entities and attrib-
utes2 multiplied by the number of hours for each. The result can then be
adjusted based on anticipated complexity, available documentation, an so on.
While the formula for the first data warehouse effort may be very rough, if
data is maintained on the actual effort, the formula can be refined, and the reli-
ability of the estimates can be improved in future implementations.

Integration Foundation

In designing any enterprise’s data model, the designer will immediately run
into situations where homonyms (entities or attributes that have the same
name but mean very different things) and synonyms (entities or attributes that
have different names but mean exactly the same thing) are encountered. In
Figure 2.4, the designer may see that the General Ledger and the Order Entry
systems both have an attribute called “Account Number.” Are these the same?
Probably not! One is used to denote the field used for various financial
accounts, and the other is used to denote the customer’s account with the orga-
nization. Similarly, in Figure 2.5, the Order Entry and Billing systems have
attributes called Account Number and Customer ID, respectively. Are these
the same? The answer is probably yes.

In the data model being created, the designer must identify those attributes
that are homonyms and ensure that they have distinctly different names. (If
the naming convention for attributes recommended in this chapter is used,
there will be no homonyms in the new models.) By the same token, an
attribute must be represented once and only once in the model so the designer
must reconcile the synonyms as well and represent each attribute by a single

C h a p t e r 240

2If the number of attributes is not known, an anticipated average number of attributes per entity
can be used.

name. Thus, the data model is used to manage redundant entities and attrib-
utes rendering the “universal” name for each instance, reducing the redun-
dancy in the environment. The data model is also very useful for clearing up
confusing and misleading names for entities and attributes in the homonym
situation as well. Ensuring that all entities and attributes have unique names
guarantees that the enterprise as a whole will not make erroneous assump-
tions, which lead to bad decisions, about the data.

Figure 2.4 Homonyms.

Figure 2.5 Synonyms.

Customer Tracking Subsystem:

Account_ID
Account_Name
Account_Balance
Account_Address
Account_Phone_Number
Account_Start_Date

Customer Billing Subsystem:

Customer_Number
Customer_Name
Customer_Address
Customer_Phone_Number
Customer_Credit_Rating
Customer_Bill_Date

Are These the Same?

Financial Accounting Subsystem:

 Account_ID
 Account_Name
 Account_Balance

Customer Tracking Subsystem:

 Account_ID
 Account_Name
 Account_Balance

Are These the Same?

Fundamental Relational Concepts 41

Multiple Project Coordination

A data warehouse program consists of multiple data warehouse implementa-
tion projects, and sometimes several of these are managed simultaneously.
When multiple teams are working on the data warehouse, the subject area
model can be used to initially identify where the projects overlap and gaps
that will remain following completion of the projects.

The business data model is then used to establish where the projects overlap to
fine-tune what data each project will use. Where the same entity is used by
more than one project, its design, definition, and implementation should be
assigned to only one team. Changes to that piece of data discovered by other
projects can be coordinated by that team.

The data model can also help to identify gaps in your systems where entities
and attributes are not addressed at all. Are all entities, attributes, and relation-
ships created somewhere? If not, you have a real problem in your systems. Are
they updated or used somewhere else within the systems? If so, do you have
the right interfaces between systems to handle the flow of created data? Finally,
are they deleted or disposed of somewhere in your systems? The creation of a
matrix based upon the crossing of your data model with your systems’
processes will give you a sound basis from which to answer these questions.

Dependency Identification

The data model helps to identify dependencies between various entities and
attributes. In this fashion, it can be used to help assess the impact of change.
When you change or create a process, you must be able to answer the question
of whether it will have any impact on sets of data used by other processes. The
data model can help ensure that dependent entities and attributes are consid-
ered in the design or implementation of new or changed systems.

Redundancy Management

The business data model strives to remove all redundancies. Entities, attrib-
utes, and relationships appear only once in this model unless they are used as
foreign keys into other entities. By creating this model, you can immediately
see overlaps and conflicts that must be resolved, as well as redundancies that
must be removed, before going forward. The normalization rules specified in
the “Relational Modeling Guidelines” section are designed to ensure a non-
redundant data model.

There are many reasons to introduce redundancy back into system and tech-
nology data models; the most common one is to improve the performance of
queries or requests for data. It is important to understand where and why any
redundancy is introduced, and it is through the data model that redundancy
can be controlled, thought out ahead of time, and examined for its impact on
the overall design.

C h a p t e r 242

Change Management

Data models also serve as your best way to document changes to entities,
attributes, and relationships. As systems are created, we may discover new
business rules in effect and the need for additional entities and attributes. As
these changes are documented in the technology and system data models (see
Figure 2.3), these changes must be enforced all the way back up the data model
chain—to the business data model and maybe even to the subject area diagram
itself. Without solid change control over all levels of the data models, it should
be clear that chaos will quickly take over and all the benefits of the data mod-
els will be lost.

System Model
The next level of data models in Figure 2.3 consists of the set of system mod-
els. A system model is a collection of the information being addressed by a spe-
cific system or function such as a billing system, data warehouse, or data mart.
The system model is an electronic representation of the information needed by
that system. It is independent of any specific technology or DBMS environ-
ment. For example, the billing system and data warehouse system models will
most likely not have every scrap of data of interest to the enterprise found in
them. Because the system model is developed from the business data model, it
must, by default, be consistent with that model. See Chapter 4 for more detail
on the construction of the data warehouse system model.

It is also important to note that there will be more than one system model. Each
system or database that we construct will have its own unique system model
denoting the specific data requirements for that system or the function it sup-
ports. Alternatively, there typically is only one system model per system. That
is, there is only one system model for the data warehouse, one for the billing
system, and so on. We may choose to physically implement many versions of
the system model (see the next section on technology model) but still have
only one system model from which to implement the actual system(s).

Technology Model
The last model to be developed is a technology model. This model is a collec-
tion of the specific information being addressed by a particular system and
implemented on a specific platform. Now, we must consider all of the technol-
ogy that is brought to bear on this database including:

Hardware. Your choice of platform means that you must consider the sizes
of the individual data files according to your platform technology and
notate these specifications in the technology model.

Fundamental Relational Concepts 43

Database management system (DBMS). The DBMS chosen for your data
warehouse will have a great impact upon the ultimate design of your
database. You must make the following determinations:

■■ Amount of denormalization. Some DBMS environments will per-
form better with minimal or no denormalization; others will require
significant denormalization to achieve good performance.

■■ Materialized views. Depending on the DBMS technology you use,
you may create materialized views or virtual data marts to speed up
query performance.

■■ Partitioning strategy. You should use partitioning to speed up the
loading of data into the data warehouse and delivery to the data
marts. You have two choices—either horizontal or vertical partitioning.
Chapter 5 discusses this topic in more detail.

■■ Indexing strategy. There are many choices, depending on the DBMS
you use. Bitmap, encoded vector, sparse, hashing, clustered, and join
indexes are some of the possibilities.

■■ Referential integrity. Bounded (the DBMS binds the referential
integrity for you—you can’t load a child until the parent is loaded) and
unbounded (you load the data in a staging area to programmatically
check for integrity and then load it into the data warehouse) are two
possibilities. You must make sure that time is one of the qualifiers.

■■ Data delivery technology. How you deliver the data from the data
warehouse into the various data marts will have an impact on the
design of the database. Considerations include whether the data is
delivered via a portal or through a managed query process.

■■ Security. Many times the data warehouse contains highly sensitive
data. You may choose to invoke security at the DBMS level by physi-
cally separating this data from the rest, or you can use views or stored
procedures to ensure security. If the data is extremely sensitive, you
may choose to use encryption techniques to secure the data.

The technology model must be consistent with the governing system model.
That is, it inherits its basic requirements from its system model. Likewise, any
changes in the fundamental entities, attributes, and relationships discovered
as the technology model is implemented must be reflected back up the chain
of models as shown in Figure 2.3 (upward arrows).

Just as there are many system models—one per system—there may be multi-
ple technology models for a single system model. For example, you may
choose to implement subsets of the enterprise data warehouse in physically
separate instances. You may choose to implement data by subject area—for
example, using a physically different instance for customer, product, and order.

C h a p t e r 244

Or you may choose to separate subsets of data by geographic area—one ware-
house for North America, another for Europe, and a third for Asia. Each of
these physical instances will have its own technology model that is based
upon the system model and modified according to the technology upon which
you implement.

Relational Data-Modeling Guidelines

Data modeling is a very abstract process, and not all IT professionals have the
qualifications to create a solid model. Data modelers require the ability to con-
ceptualize intangible notions about what the business requires to perform its
business and what its rules are in doing business. Also, data modeling is non-
deterministic—there is one right way to create a data model. There are many
wrong ways.

A common concern in data modeling is the amount of change that occurs. As
we learn more and more about the enterprise, this knowledge will be reflected
in changes to the existing data models. Data modelers must not see this aspect
as a threat but rather be prepared for change and embrace it as a good sign—
a sign that the model is, in fact, more insightful and that it more closely resem-
bles the enterprise as a whole.

Data modelers must adhere to a set of principles or rules in creating the vari-
ous data models. It is recommended that you establish these “ground rules”
before you start your modeling exercise to avoid confusion and emotional
arguments later on. Any deviation from these rules should be documented
and the reasons for the exception noted. Any mitigating or future actions that
reduce or eliminate the exception later on should be documented as well.

Finally, data modeling also requires judgment calls even when the reasons for
the judgment are not clear or cannot be documented. When faced with this sit-
uation, the data modeler should revisit the three guidelines described in the
next section. If adding or deleting something from the model improves its util-
ity or ability to be communicated, then it should be done.

It is the goal of this book to ensure that you have the strong foundation and
footing you need to deal with these issues before you begin your data ware-
house design. Let’s start with a set of guidelines garnered from the many years
of data modeling we have performed.

Guidelines and Best Practices
The goal of any data model is to completely and accurately reflect the data
requirements and business rules for handling that data so that the business can

Fundamental Relational Concepts 45

perform its functions effectively. To that end, we believe that there are three
guidelines that should be followed when designing your data models:

Communication tool. The data models should be used as a communication
tool between the business community and the IT staff and within the IT
staff. Data requirements must be well documented and understood by all
involved, must be business-oriented, and must consist of the appropriate
level of detail. The data model should be used to communicate the busi-
ness community’s view of the enterprise’s data to the technical people
implementing their systems. When developing these models, the objectives
must always be clarity and precision. When adding information to a data
model, the modeler should ask whether the addition adds to clarity or sub-
tracts from it.

Level of granularity. The data models should reflect the “lowest common
denominator” of information that the enterprise uses. Aggregated,
derived, or summarized data elements should be decomposed to their
basic parts, and unnecessary redundancy or duplication of data elements
should be removed. When we “denormalize” the model by adding back
aggregations, derivations, or summarization according to usage and per-
formance objectives, we know precisely what elements went into each of
these components. In other words, the data should be as detailed as neces-
sary to understand its nature and ultimate usage. While the ultimate tech-
nology model may have significant aggregations, summarizations, and
derivations in it, these will be connected back to the ultimate details
through the data modeling documentation.

Business orientation. It is paramount that the models represent the enter-
prise’s view of itself without physical constraints. We strive always to
model what the business wants to be rather than model what the business
is forced to be because of its existing systems, technologies, or databases.
Projects that are not grounded in what the business community wants are
usually doomed to fail. Generally, we miss the boat with our business com-
munity because we cut corners in the belief that we already know what the
results of analysis will be (the “if we build it, they will come” belief).

These guidelines should always be at the forefront of the modeler’s mind
when he or she commences the modeling process. Whenever questions or
judgment calls come into play, the modeler should fall back to these guidelines
to determine whether the resolution adds or detracts to the overall usability of
the models.

With these in mind, let’s look at some of the best practices in data modeling:

C h a p t e r 246

Business users’ involvement. It must be understood up front that the busi-
ness community must set aside time and resources to help create the vari-
ous data models; data modeling is not just a technical exercise for IT
people. If the business community cannot find the time, refuses to partici-
pate, or basically declares that IT should “divine” what data they need, it is
the wise project manager who pulls the plug on the project. Data modeling
in a business community vacuum is a waste of time, resources, and effort,
and is highly likely to fail. Furthermore, the sooner the business commu-
nity gets involved, the better. As a first step, you must identify who within
the business community should be involved. These people may or may not
be willing to participate. If they are openly resistant, you may need to per-
form some education, carry out actions to mitigate their fears, or seek
another resource. Typical participants are sponsoring executives, managers
with subject matter expertise, and business analysts.

Interviews and facilitated sessions. One of the most common ways to get a
lot of information in a short amount of time is to perform interviews and
use facilitated sessions. The interviews typically obtain information from
one or two people at a time. More depth information can be obtained from
these sessions. The facilitated sessions are usually for 5 to 10 attendees and
are used to get general direction and consensus, or even for educational
purposes. The documentation from these sessions is verified and added to
the bank of information that contributes to the data models.

Validation. The proposed data model is then verified by either immediate
feedback from the interviews or facilitated sessions, or by formal walk-
throughs. It may be that you focus on just the verification of the business
rules and constraints rather than the actual data model itself with some of
the business community members. With others though, you should verify
that the actual data model structures and relationships are appropriate.

Data model maintenance. Because change becomes a common feature in
any modeling effort, you should be prepared to handle these occurrences.
Change management should be formalized by documented procedures
that have check-in and check-out processes, formal requests for changes,
and processes to resolve conflicts.

Know when “enough is enough.” Perhaps the most important practice any
data modeler should learn is when to say the model is good enough.
Because we are designing an abstract, debatable structure, it is very easy
for the data modeler to find him- or herself in “analysis paralysis.” When
is the data model finished? Never! Therefore it is mandatory that the mod-
eler make the difficult determination that the model is sufficient to support
the needs of the function being implemented, knowing that changes will
happen and that he or she is prepared to handle them at a later date.

Fundamental Relational Concepts 47

Normalization
Normalization is a method for ensuring that the data model meets the objec-
tives of accuracy, consistency, simplicity, nonredundancy, and stability. It is a
physical database design technique that applies mathematical rules to the rela-
tional technology to identify and reduce insertion, update, or deletion anom-
alies. The mantra we use to get to third normal form is that all attributes must
depend on the key, the whole key, and nothing but the key—to put it simply.

Fundamentally this means that normalization is a way of ensuring that the
attributes are in the proper entity and that the design is efficient and effective
for a relational DBMS. We will walk through the steps to get to this data model
design in the next sections of this chapter. Normalization has these character-
istics as well:

■■ Verification of the structural correctness and consistency of the data model

■■ Independence from any physical constraints

■■ Minimization of storage space requirement by eliminating the storage of
data in multiple places

Finally, normalization:

■■ Removes data inconsistencies since data is stored only once, thus elimi-
nating the possibility of conflicting data

■■ Diminishes insertion, updating, and deletion anomalies because data is
stored only once

■■ Increases the data structure stability because attributes are positioned in
entities based on their intrinsic properties rather than on specific applica-
tion requirements

Normalization of the Relational Data Model

Normalization is very useful for the business data model because:

■■ It does not instruct any physical processing direction, thus making the
business model a good starting place for all applications and databases.

■■ It reduces aggregated, summarized, or derived elements to their basic
components, ensuring that no hidden processes are contained in the data
model.

■■ It prevents all duplicated or redundant occurrences of attributes and
entities.

C h a p t e r 248

The system and technology models inherit their characteristics from the busi-
ness data model and so start out as a fully normalized data model. However,
denormalized attributes will be designed into these data models for a variety
of reasons, as described in Chapters 3 and 4, and it is important to recognize
where and when the denormalization occurs and to document the reasons for
that denormalization. Uncontrolled redundancy or denormalization will result
in a chaotic and nonperforming database design.

Normalization should be undertaken during the business data model design.
However, it is important to note that you should not alter the business rules
just to follow strict normalization rules. That is, do not create objects just to sat-
isfy normalization.

First Normal Form
First normal form (1NF) takes the data model to the first step described in our
mantra—the attribute is dependent on the key. This requires two conditions—
that every entity have a primary key that uniquely identifies it and that the
entity contain no repeating or multivalued groups. Each attribute should be at
its lowest level of detail and have a unique meaning and name. 1NF is the
basis for all other normalization techniques. Figure 2.6 shows the conversion
of our model to 1NF.

Figure 2.6 First normal form.

Discipline Identifier
Course Identifier

Course

Discipline Name
Course Name
Course Description
Course Offering Number
Course Offering Period
Course Offering Professor Identifier
Course Offering Professor Name

Discipline Identifier
Course Identifier

Course

is offered as

First Normal Form

Discipline Name
Course Code
Course Name
Course Description

Course Identifier (FK)
Discipline Identifier (FK)
Course Offering Identifier

Course Offering

Course Offering
Course Offering Period
Course Offering Professor Identifier
Course Offering Professor Name

Fundamental Relational Concepts 49

In Figure 2.6, we see that the Course entity contains the attributes that deal
with a specific offering of the course rather than the generic course itself
(Course Offering, Period, Professor Identifier, and Professor Name). These
attributes are not dependent on the Course entity key for their existence, and
therefore should be put into their own entity (Course Offering).

Second Normal Form
Second normal form (2NF) takes the model to the next level of refinement
according to our mantra—the attributes must be dependent on the whole key.
To attain 2NF, the entity must be in 1NF and every nonprimary attribute must
be dependent on the entire primary key for its existence. 2NF further reduces
possible redundancy in the data model by removing attributes that are depen-
dent on part of the key and placing them in their own entity. Notice that Disci-
pline Name was only dependent on the Discipline Identifier. If this remains in
the model, then Discipline Identifier and Name must be repeated for every
course. By placing these in their own entity, they are stored only once. Figure
2.7 shows the conversion of our model to 2NF.

Figure 2.7 Second normal form.

Course Identifier

Course

is offered as

Second Normal Form

Course Code
Course Name
Course Description

Course Identifier (FK)
Course Offering Identifier

Course Offering

Course Offering
Course Offering Period
Course Offering Professor Identifier
Course Offering Professor Name

Discipline Identifier

Discipline

Discipline Name

Discipline Identifier
Course Identifier

Course

is offered as

Discipline Name
Course Code
Course Name
Course Description

Course Identifier (FK)
Discipline Identifier (FK)
Course Offering Identifier

Course Offering

Course Offering
Course Offering Period
Course Offering Professor Identifier
Course Offering Professor Name

C h a p t e r 250

Third Normal Form
Third normal form (3NF) takes the data model to the last level of improvement
referred to in our mantra—the attribute must be dependent on nothing but the
key. To attain 3NF, the entity must be in 2NF, and the nonkey fields must be
dependent on only the primary key, and not on any other attribute in the
entity, for their existence. This removes any transitive dependencies in which
the nonkey attributes depend on not only the primary key but also on other
nonkey attributes. Figure 2.8 shows the conversion of our model to 3NF.

In Figure 2.8, notice that Course Offering Professor and Course Offering Pro-
fessor Name are recurring attributes. Neither the Professor Name or the Pro-
fessor Identifier depend on the Course Offering. Therefore, we remove these
attributes from the Course Offering entity and place them in their own entity,
titled Professor. At this point, the data model is in 3NF in which all attributes
are dependent on the key, the whole key, and nothing but the key.

Your business data model should be presented in 3NF at a minimum. At
this point, it is ready for use in any of your technological implementations—
operational systems such as billing, order entry, or general ledger (G/L);
business intelligence such as the data warehouse and data marts; or any other
environment such as the operational data store.

Figure 2.8 Third normal form.

Course Identifier

Course

is offered as

Third Normal Form

Course Code
Course Name
Course Description

Course Identifier (FK)
Course Offering Identifier

Course Offering

Course Offering Professor Identifier (FK)
Course Offering
Course Offering Period

Discipline Identifier

Discipline

Discipline Name

Course Offering Professor Identifier

Professor

instructs
Course Offering Professor Name

Course Identifier

Course

is offered as

Course Code
Course Name
Course Description

Course Identifier (FK)
Course Offering Identifier

Course Offering

Course Offering
Course Offering Period
Course Offering Professor Identifier
Course Offering Professor Name

Discipline Identifier

Discipline

Discipline Name

Fundamental Relational Concepts 51

Other Normalization Levels
We usually stop with 3NF when we design the business model for organiza-
tions. However, you should be aware of other levels of normalization and their
benefits to determine if 3NF will be sufficient for your organization. There are
several good data-modeling books that discuss the merits of Boyce/Codd and
fourth and fifth normal forms. We will not discuss these further in this book.

WARNING
We caution you against overzealous usage of these normalization techniques. In
other words, don’t overnormalize your models. You should balance the consideration
of business meanings with structural consistency. You should always base your
model on business concepts first, then apply the normalization techniques to verify
the structural integrity and consistency.

Summary

We have discussed in this chapter the fact that data models are essential for
managing data as a corporate asset. Without the set of data models described
here, the business users and technical staff creating systems cannot develop a
comprehensive and precise representation of information structures, business
rules, and relationships among the data. This can only be accomplished when
the databases are designed with the concept of reusability, consistency, and
integration in mind and with rigorous of compliance to the modeling tech-
niques contained in this chapter.

We covered the need for various data models, starting with a subject area dia-
gram, and migrating to a business data model, the system, and the technology
models—each one defining a different level of abstraction and transformation—
ultimately leading to a coordinated and fully integrated database schema. We
see that the subject area diagram can be developed very quickly, usually
within a few days. The full business data model will take a bit longer and,
when fully developed, contains the business rules for the entire enterprise and
can be used by all applications, including the data warehouse. It is important
to note here that if your organization does not have either of these models, we
recommend that you create an enterprise-wide subject area diagram but focus
on only the subject area(s) needed for your data warehouse for the business
data model. You will continue to fill out the business and data warehouse data
models as new areas are needed in the data warehouse but should not get side-
tracked into trying to create the entire business data model before you gener-
ate your first data warehouse subject area. See Chapter 4 for more information
on this.

C h a p t e r 252

There are three important guidelines to follow in developing any of the mod-
els we discuss. These are to remember that the data model is a communication
tool, that it contains the lowest common denominator of detail, and that it
reflects a solid business orientation. When confronted with difficult decisions,
these three guidelines should rule the day.

We also learned in this chapter about normalization and its benefits for data-
base design. Our recommendation is to develop your business data model in
3NF. In 3NF, attributes are dependent:

1NF. On the key, accomplished by removing repeating groups

2NF. The whole key, accomplished by removing attributes dependent on
part of the key

3NF. Nothing but the key, accomplished by removing attributes dependent
on nonkey attributes

We warn against overzealous normalization and analysis paralysis. At the end
of the day, the key is to get a set of models that is fully integrated, consistent,
and reusable. These models produce stable and maintainable databases (or a
subset of them) quickly so that work can proceed on providing timely business
deliverables from the data warehouse.

Fundamental Relational Concepts 53

Model Development

The data warehouse should represent the enterprise perspective of the data, and
that perspective starts with the subject area and business data models. Using a
fictitious company, we provide a step-by-step process to develop these two
models in Chapter 3. Then using the business data model as the starting point,
Chapter 4 develops the data warehouse data model using eight sequential
transformation steps. The following four chapters delve into specific aspects of
the data warehouse data model and include case studies demonstrating the
principles. These case studies primarily use two company scenarios to develop
the business case. The first is the General Omnificent Shopping Haven (GOSH).
GOSH is a national department store chain with designs to expand interna-
tionally. The second is The Delicious Food Company (DFC). DFC is a large
consumer packaged goods manufacturer that produces a wide range of food
products, from powders and canned goods to dairy products, frozen dinners,
and ice cream.

The data warehouse integrates data from multiple sources and stores the inte-
grated form of that data for a long period of time. The keys that are used in
each source system may have uniquely identified records within each system,
but they may not be appropriate for the data warehouse. In Chapter 5, we
review the problems posed by key structures in the operational systems and
how these should be addressed in the data warehouse data model.

One of the distinguishing characteristics of the data warehouse is its historical
perspective. In Chapter 6, we explain the importance of modeling the calendar
in the data warehouse and different approaches for maintaining the historical
perspective in this data model. These approaches help us deal with the
unusual nature of the data warehouse, that is, it is used to capture snapshots
of the data over time.

Chapters 7 and 8 delve into modeling two types of data frequently stored in
the data warehouse – hierarchies and transactions. The design of the data
warehouse reflects a compromise. It recognizes both the structure of the source

PA RTTWO

PA RT T WO56

systems (typically relational) and the structure of the popular dimensional
data marts. The treatment of the hierarchies and transactions provides tech-
niques for striking the right balance.

We close this part of the book with a chapter on the steps needed to ensure that
the data warehouse performs well. In Chapter 9, we describe what is needed
to optimize the physical data warehouse schema.

Installing Custom Controls 57

Understanding the Business Model

C H A P T E R 3

A ll application systems, as well as the data warehouse, contain information
based on the data used by the company. The business data model represents
that data and is the foundation for all systems’ models, including the data
warehouse model. In Chapter 2, we described how a third normal form model
provides data consistency and restricts data redundancy. As we will present in
this chapter, the business model is a third normal form model. Since one of the
objectives of the data warehouse is to provide a consistent view of the facts
and figures for the enterprise, it is important to start with a model that meets
those criteria; therefore, the business model is used as the foundation for the
data warehouse model. Building the data warehouse model consists of trans-
forming the business data model using eight well-defined steps, and this is
covered in Chapter 4.

A fully developed business data model may contain hundreds of entities.
A subject area model, which defines the major groupings of information, is a
good way to manage these entities by providing a logical approach for group-
ing the entities. This chapter begins by describing the subject area model, with
particular emphasis on how it helps ensure consistency and manage redun-
dancy in the data warehouse model. We then outline the business data model,
its relationship to the subject area model, and the steps required to develop it.
A common complaint about the business data model is that it is esoteric and
of limited practical value. The section on the business data model dispels
these concerns and demonstrates that this model is a means of describing the

57

business in a shorthand notation (that is, rectangles and lines) that facilitates
the subsequent development of supporting application systems. It provides a
high-level description of the process for building the subject area model and
business data model. Complete books have been written on this subject alone,
and they should be consulted for additional information. We’ve included
some of our favorite books on this topic in the “Recommended Reading”
section of this book.

This is a “how to” book on data warehouse modeling. Throughout Parts Two
and Three of the book, the modeling concepts will be demonstrated using
practical scenarios. We use a business scenario to demonstrate the modeling
activities, and it is described at the beginning of this the chapter.

Business Scenario

We use a business scenario of an automobile manufacturer to develop the sub-
ject area model and business data model in this chapter and the data ware-
house data model in Chapter 4. Following the description of the business
scenario, we will dive into the subject area model.

Our automotive manufacturing firm is named Zenith Automobile Company
(ZAC). ZAC was founded in 1935, and manufactures two makes of auto-
mobile—Zeniths and the higher-end luxury Tuxedos. Each of these makes have
models that describe the type of car, and each model has three series available.
The models are described in Table 3.1, and the series are described in Table 3.2.

Table 3.1 Car Models

MODEL TARGET
MAKE NAME GROUP DESCRIPTION

Zenith Zipster The young The Zipster is a sporty,
at heart subcompact-class car with a
(and age) small price tag, excellent gas

mileage, and limited options.
This is the low-end offering in
the Zenith line of cars.

Zenith Zombie Older, retired The Zombie is a compact-
drivers with a sized, four-door automobile,
limited income noted for its economical upkeep

and good gas mileage.

Zenith Zoo Families with The Zoo is a four-door, mid-size
small children car. The car is moderately priced

and has good gas mileage.

C h a p t e r 358

Table 3.1 (continued)

MODEL TARGET
MAKE NAME GROUP DESCRIPTION

Zenith Zoom Sports car The Zoom is a moderately
enthusiast of expensive, big-engine
modest means performance car that offers
seeking quick response, agile handling,
excitement and fast acceleration.

Zenith Zeppelin Luxury minded The Zeppelin is the
individual top-of-the-line Zenith car

offering unsurpassed quality and
features. It is a four door, full-
sized model.

Tuxedo Topsail Young The Topsail is a mid-sized,
professionals two-door sedan equipped with a

full complement of luxury fea-
tures, including leather seats, an
eight-way power-adjustable seat,
a tilt steering wheel, and a high-
tech car alarm.

Tuxedo Tiara The truly The Tiara is a full-sized four-door
discriminating, sedan that is the top of the line
sophisticated Tuxedo automobile and is priced
driver accordingly. It has many of the

same features found in the Top-
sail but offers every conceivable
luxury, including seat and out-
side mirror heaters.

Tuxedo Thunderbolt Wealthy sports The Thunderbolt marks an
car enthusiasts acknowledged milestone in

sports cars. It combines all the
breathtaking performance of a
thoroughbred with the ease of
operation, comfort, and reliabil-
ity of a passenger car.

All of ZAC’s cars are sold through dealers throughout the United States. Deal-
ers are independent entities, but to retain their right to serve as ZAC dealers,
they are governed by ZAC’s rules. One of those rules requires them to submit
monthly financial statements. The dealers are located within sales areas, which
are grouped into sales territories, which are grouped into sales regions. Allo-
cations are made at the sales area level, and incentive programs are developed
by ZAC corporate.

Understanding the Business Model 59

Table 3.2 Car Series

SERIES
MAKE NAME ACRONYM DESCRIPTION

Zenith No Frills NF This is the base level containing no
upgrades. Base level consists of
vinyl seats, low-end carpeting,
smaller engines, manual transmis-
sions, and three paint colors.

Zenith Some Frills SF This is the next level and comes
with upgraded fabric for the interior
seats, moderately upgraded carpet,
automatic transmission, larger
engines, tinted windows, radio, five
paint colors including metallic col-
ors, and so on.

Zenith Executive Frills EF The cars in this series come with
leather interior, high-quality carpet,
automatic transmission, larger
engines, air conditioning, tinted
windows, cruise control, power
windows and locks, radio/tape
player, eight paint colors including
metallic colors, and so on. This
series is not available for the Zipster
or the Zombie.

Tuxedo Pricey Frills PF Cars in this series come with
leather interior, radio/tape deck, air
conditioning, optional automatic
transmission, cruise control, power
windows and door lock, and key-
less entry system.

Tuxedo Decadent Frills DF Cars in this series come with all the
features for the CF Series plus tinted
windows, antitheft car alarm, moon
roof, and radio/tape player/CD
player with eight speakers.

Tuxedo Truly Decadent TDF Cars in this series have all the
Frills features listed for the PF Series plus

power-operated moon roof,
advanced sound system and insula-
tion, automatic climate control sys-
tem, dual illuminated vanity mirrors,
and heated front seats.

Over the years, ZAC has developed a myriad of systems on mainframes, mini-
computers, and even PCs. It built and/or bought other automobile manufac-
turing facilities, which resulted in even more disparate systems and databases.

C h a p t e r 360

Currently, it has IBM 3090s, DEC VAXs, Tandems, Suns, and HPs, plus PCs
and Macintoshes. Their data is spread out in DB2, VSAM and Enscribe files,
Non-stop SQL, RDB, Oracle, Sybase, and Informix. End users have tools such
as Paradox, Rbase, Microsoft Access, and Lotus Notes. Needless to say, the
data is spread out in hundreds of disparate databases throughout the com-
pany, with many in inaccessible formats.

ZAC is just beginning an information engineering effort to reengineer its busi-
ness. The first project the reengineering effort highlighted as critical to the sur-
vival of the company is a data warehouse containing information about its
dealers’ car sales. The subject areas it has identified for this warehouse are
Automobiles and Dealers, with less emphasis on Incentive Programs and Sales
Organizations.

The impetus for the data warehouse is the fact that the data from these subject
areas is not easily obtained today, causing opportunities to be lost, money to be
wasted, and high-level executives to be uneasy about the direction and health
of their company and their automotive sales. Based on interviews with key
stakeholders, the ZAC decided to undertake development of a data ware-
house and a set of data marts that could answer the following questions:

■■ What is the monthly sales trend in terms of quantity and dollar amounts
sold of each make, model, series, and color (MMSC) for a specific dealer,
by each sales area, sales territory, and sales region, for each state and for
each metropolitan statistical area (MSA)?

■■ What is the pattern in the monthly quantity of inventory by MMSC for
each dealer, by each sales area, sales territory, sales region, and MSA?

■■ How does the monthly quantity and dollars of sold automobiles by
MMSC having a particular emissions type—by Dealer, Factory, Sales Area,
Sales Territory, and Sales Region—compare with the same time frame last
year and the year before?

■■ What is the trend in monthly actual sales (dollars and quantities) of
MMSC for each dealer, sales area, sales territory, and sales region com-
pared to their objectives? Users require this information both by monthly
totals and cumulative year to date (YTD).

■■ What is the history (two-year comparisons) of the monthly quantity of
units sold by MMSC and associated dollar amounts by retail versus
wholesale dealers?

■■ What are the monthly dollar sales and quantities by MMSC this year to
date as compared to the same time last year for each dealer?

■■ What is the monthly trend in sales dollars and quantities by MMSC for
particular types of incentive programs, by dealer, sales area, sales terri-
tory, sales region, and MSA?

Understanding the Business Model 61

■■ What is the monthly trend in the average time it takes a dealer to sell a
particular MMSC (called velocity and equal to the number of days from
when a dealer receives the car to the date it is sold) by sales area, sales ter-
ritory, sales region, and MSA?

■■ What was the monthly average selling price of an MMSC for each dealer,
sales area, sales territory, sales region, and MSA?

■■ How many days was a dealer placed on credit hold for this month only
and for the entire year? In addition, what was the total number of months
in the past two years that the dealer was put on credit hold?

■■ Compare monthly sales dollars and quantities from the last body style
(body style is make + model) to the current body style for each sales
region? Body styles change every four years.

Subject Area Model

A data warehouse is organized by subject area, so it is only natural that the
methodology for a data warehouse data model should begin with the subject
area model. The subject-orientation of the data warehouse distinguishes it
from a traditional application system. In the traditional operational system,
although the data model should begin with a subject area model, this step is
often omitted. Since the operational system is oriented toward specific busi-
ness functions and processes, its design needs to emphasize the efficiency with
which it can process the related transactions. Its model, therefore, is adjusted
to emphasize the transaction-processing capabilities, with the processes that
use it greatly influencing the data’s organization. With the data warehouse, the
subject orientation remains at the core of the physical database design. The
core business processes are depicted in the source operational systems and
with the data marts that people use to obtain data from the data warehouse,
but the core data warehouse design remains subject oriented.

As we indicated in Chapter 2, subject areas are major groupings of physical
items, concepts, people, places, and events of interest to the enterprise. We also
indicated that the subject area model can be developed very quickly. An orga-
nization developing its first subject area model can benefit from work per-
formed by others so that it doesn’t need to start from scratch. There are many
subject areas that are common across industries; virtually all organizations
have customers, suppliers, products, and facilities. These are candidates for
subject areas. A good point at which to start, as explained later in this chapter,
is a generic model, such as the one shown in Table 3.3.

C h a p t e r 362

Table 3.3 Common Subject Areas

SUBJECT
AREA DEFINITION EXAMPLES REMARKS

Business Conditions, external to •Regulation These are often not
Environment the company, which •Competition implemented in a

affect its business •License data warehouse.
activities

Communications Messages and the •Advertisement These often pertain
media used to transmit •Audience to marketing
the messages •Web Site activities, though

Content they can apply to
internal and other
communications.

Customers1 People and •Customer The definition
organizations who •Prospect provides for
acquire and/or use •Consumer capturing potential
the company’s customers
products (prospects) and for

distinguishing
between parties who
buy the product and
those who use it.

External Organizations, •Competitor The exclusion of
Organizations1 except Customers and •Partner Customers and

Suppliers, external to •Regulator Suppliers is
the company consistent with the

subject areas’ being
mutually exclusive.

Equipment Movable machinery, •Computer Software that is
devices, and tools and •Vehicle integral to
their integrated •Crane equipment is
components included within this

subject area; other
software is included
within the Informa-
tion subject area.

Facilities Real estate and •Real Estate Integrated
structures and their •Building components (for
integrated components •Mountain example, an alarm

system within a
building) are often
included as part of
the facility unless a
company is specifi-
cally interested in
those components.

(continued)

Understanding the Business Model 63

Table 3.3 (continued)

SUBJECT
AREA DEFINITION EXAMPLES REMARKS

Financials Information about •Money
money that is received, •Receivable
retained, expended, or •Payable
tracked by the company

Human Individuals who perform •Employee Includes prospective
Resources1 work for the company •Contractor (for example,

and the formal and •Position applicants) and
informal organizations former (for example,
to which they belong retirees) employees.

Some companies
prefer to establish
the organizational
structure within a
separate subject area.

Information Facts and information •Application This includes the
about facts and the System information about
mechanisms that •Database the company’s
manage them •Meta Data computing

environment, and
also includes
nonelectronic
information.

Locations Geographical points or •Geopolitical This can be
areas Boundary expanded to include

•Country electronic locations
•Address such as email

addresses and
phone numbers.

Materials Goods and services that •Chemical Sometimes, a
are used or consumed •Fuel product is used as a
by the company or that •Supply component of
are included in a piece another product.
of equipment, facility, or When this is the
product case, a relationship

between the rele-
vant entities will be
indicated in the busi-
ness data model.

Products Goods and related •Product Competitor items
services that the •Service that the company
company or its •Advice does not provide are
competitors provide often included to
or make available to facilitate monitoring
Customers these and to support

future decisions.

C h a p t e r 364

Table 3.3 (continued)

SUBJECT
AREA DEFINITION EXAMPLES REMARKS

Sales Transactions that shift •Sales Sales is actually an
the ownership or control Transaction associative subject
of a product from the •Sales area in that it is the
Company to a Customer Transaction intersection of the

Detail Customer, Store,
•Credit Memo Product, and so on.

Some companies
may choose to
include the entities
related to sales
within one of those
subject areas
instead.

Suppliers1 Legal entities that •Broker In the case of a
provide the company •Manufacturer contractor, the
with goods and •Supplier person doing the
services work is included in

Human Resources,
and the company
that provides that
person is included
in Suppliers.

1 Another approach is to create “Parties” as a subject area in lieu of Customers, External Organi-
zations, Human Resources, and Suppliers. While Parties may be a useful concept to avoid
duplication in a physical implementation, distinguishing among the major parties (for example,
Customers, External Organizations, Human Resources, and Suppliers) improves comprehen-
sion and usage of the subject area model.

As a further aid, we recommend that you consider characteristics specific to
your industry. The next section describes considerations for organizations in
specific industries embarking on development of a subject area model.

Considerations for Specific Industries
Each industry has characteristics that are common to companies within that
industry. By understanding these distinctions, the process of creating the sub-
ject area model can be further simplified. Some examples follow.

Retail Industry Considerations

Special considerations for building the subject area model in the retail indus-
try are:

Understanding the Business Model 65

■■ Within the retail industry, major emphasis is often placed on the sales
organization hierarchy. Companies in this industry would, therefore, tend
to separate the Human Resources subject area as described in Table 3.3
into two subject areas: Human Resources and Internal Organizations.

■■ While facilities are certainly of interest to retailers, one particular facility,
the Store, is often of major interest. As a result, stores are sometimes dis-
tinguished as a separate subject area.

■■ Retailers typically don’t create products and often refer to what they sell
as Items. This would replace the Products subject area, with the definition
adjusted accordingly.

Manufacturing Industry Considerations

Special considerations for building the subject area model in the manufactur-
ing industry are:

■■ Within the manufacturing industry, the manufacturing facilities are of
particular interest, so these are often distinguished within a separate
subject area.

■■ Waste is often produced as part of the manufacturing process, and there
are laws that govern the waste. Waste is sometimes isolated as a separate
subject area.

Utility Industry Considerations

Special considerations for building the subject area model in the utility indus-
try are:

■■ Within the utility industry, power-producing facilities (for example,
power plants) are of particular interest, and these may be distinguished
into separate subject areas.

■■ The electrical network or gas pipeline consists of both physical and logical
components. The physical components consist of the actual wires,
switches, pipes, valves, and so on; the logical components consist of the
load-carrying capacity, network topology, and so forth. These are some-
times split into two subject areas with Equipment addressing the physical
components and Networks addressing the logical components.

Property and Casualty Insurance Industry Considerations

Special considerations for building the subject area model in the property and
casualty insurance industry are:

C h a p t e r 366

■■ The property and casualty insurance industry typically deals with premi-
ums, policies, and claims. Each of these is usually treated as a separate
subject area.

■■ In the Financials subject area, these companies also need to deal with
reserves, and due to the importance of the reserves, they could be treated
in a separate subject area.

■■ The definition of customer needs to be adjusted to incorporate the concept
of the party that owns an insurance policy and the party that may benefit
from a claim. In some respects, this is similar to the concept of the cus-
tomer who buys a product and the consumer who uses it.

Petroleum Industry Considerations

A special consideration for building the subject area model in the petroleum
industry is that wells and refineries could be described as facilities, but due to
their significance within this industry, each deserves to be its own subject area.

Health Industry Considerations

Special considerations for building the subject area model in the health indus-
try are:

■■ There are several types of suppliers in the health industry, including the
healthcare facility, the physician, the pharmacist, and so on. Consideration
needs to be given to each of these to determine their positioning in the
subject area model.

■■ In some companies within the health industry, the only customer of inter-
est is the patient, and the Customers subject area would then be named
Patients.

Subject Area Model Development Process
As stated earlier in this chapter, the subject area model can be developed in a
matter of days. There are three major ways of developing the subject area model:

■■ Closed room

■■ Interviews

■■ Facilitated sessions

In each of the methods, you have the option of either starting from a clean slate
or using a generic model as the starting point. Both approaches are valid, and
the selection depends on the participants’ preferences and background. The

Understanding the Business Model 67

three major methods are summarized in Table 3.4. We recommend that the
third approach—the use of facilitated sessions—be used if feasible. We explain
why in the sections that follow.

Closed Room Development

Closed room development entails the modelers working on their own with little
or no involvement by business representatives. It is in keeping with a philoso-
phy that the modeling expertise is the most important skill needed in develop-
ing the subject area model. It further presumes that the modeler understands the
business. When this approach is used, the modeler develops the subject area
model based on his or her perceptions of the business. The process that the mod-
eler typically uses consists of trying to group the enterprise’s information into
15–20 major groupings, each of which would be a subject area. Once this is done,
the modeler would create a definition for each one and would ensure that all of
the definitions are mutually exclusive.

Table 3.4 Subject Area Model Development Options

METHOD DESCRIPTION ADVANTAGES DISADVANTAGES

Closed Data modeler(s) •Modelers •Modelers may not
Room develop the understand the possess sufficient

subject area process. business knowledge.
model in a •A model can be •The business has no
vacuum, based developed sense of ownership.
on information quickly.
they have, and
then submit it
for approval.

Interviews Key business •Each person has •Individual interviews take
representatives the opportunity more time.
are interviewed to contribute to •While business knowledge
individually, and the model. is obtained, consensus isn’t
the modelers use •Contributors built.
this information possess the
to create the business
model.The result knowledge.
is then submitted •Some business
for approval. ownership is

obtained.

C h a p t e r 368

Table 3.4 (continued)

METHOD DESCRIPTION ADVANTAGES DISADVANTAGES

Facilitated A facilitator •Contributors •Scheduling the required
Sessions leads a group possess the participants may be difficult.

of business business
representatives in knowledge.
the development •Business
of the subject area ownership
model. is generated.

•Consensus is
developed
through the
interaction.

This approach is generally not recommended. The modeler rarely, if ever, fully
understands the entire business sufficiently to create a durable subject area
model. There are some aspects of the model that are more art than science. For
example, the modeler needs to decide whether to keep Human Resources as a
single subject area or to create a Human Resources Subject Area for the
employees, contractors, applicants, and so on, and a separate Internal Organi-
zations Subject Area for the positions, organizational hierarchy, job classifica-
tions, and so on. Either approach is correct from a modeling perspective, as
long as the definitions reflect the scope of the subject area. The decision is often
based on people’s preferences and it is important that the modeler not be the
one to make this decision. When a model developed using this approach is
subsequently presented for review, the business representatives are prone to
treat this as another information technology exercise, thus making it difficult
to garner support for it.

There are circumstances under which this approach is necessary. If the mod-
eler cannot get sufficient business support to create the model, then the choice
becomes whether to use this approach or to have no model. When this situa-
tion exists, it is better to have a model that is likely to be close than to have no
model at all. The modeler should fully expect that adjustments will be needed
and should continuously try to gain constructive business criticism of the
model. While work on the subject area model can proceed with minimal busi-
ness support, if the business support is not forthcoming when work on the
business data model begins, serious consideration should be given to halting
the project.

Understanding the Business Model 69

Development through Interviews

Interviews provide an excellent means of obtaining information from individ-
ual business representatives. The first challenge in setting up the interviews is
determining who needs to participate. Since the subject area model represents
the entire enterprise, a good place to start is the organizational chart. The mod-
eler should interview people who represent the major departments in the
enterprise either by their current position or by virtue of their previous posi-
tions. A reasonable representation of the enterprise should be available by
interviewing 10–15 people. Each of these people should be asked to describe
the high-level workflow in his or her area. Using this information, the inter-
viewer should try to identify the major groupings of information of interest to
each person and the interactions among them. A sample interview is provided
in the “Interview with the Sales Executive” sidebar.

C h a p t e r 370

Interview with the Sales Executive

Following is the beginning of a sample interview:
Interviewer: Good morning, Jim (vice president of sales). I appreciate your

taking time from your busy schedule to speak with me this morning. (The inter-
viewer would then briefly explain the purpose of the interview and the impor-
tance of getting information from Jim’s perspective.)

Interviewer: Please describe the sales process to me at a high level.
Sales VP: Our customers come into our store and look around. They select

items that they would like and then place them in a cart. At the checkout counter,
the items they’ve selected are electronically scanned. The terminal alerts the
salesperson to promotional items, then the salesperson asks the customer about
his or her interest in these. The salesperson also tries to obtain the customer’s
phone number. If it is already in our database, the salesperson confirms the cus-
tomer’s name and address; if it is a new one, the salesperson tries to get the
customer’s name and address and enters them into our database. We’ve been
successful in obtaining information to identify about 70 percent of our customers.
The customer then leaves the store.

Interviewer: Based on our discussion, I’ve identified the following major
things of interest: customers, stores, salespeople, sales transactions, and items. Is
that correct?

Sales VP: We gain a lot of value from having the promotional information
available to our salespeople. I think that’s important, too.

One of the major products of the interview should be a set of subject areas and
definitions from that person’s perspective. The information obtained will help
create the subject area model and will also provide information for the busi-
ness data model. By delving further within this interview, we make better use
of the business representatives’ time. When we subsequently work on the
business data model, we can start with the information we obtained from
these interviews and then focus on confirmation and refinement.

TIP
Go to an interview prepared with a set of questions, but don’t expect to use them all.
The questions provide a good checklist for ensuring that key points are covered;
however, a good interviewer adjusts the interview to reflect the information being
provided and the way that it is provided.

Once the interviews are completed, the modeler needs to consolidate the infor-
mation. It is possible that the modeler will receive conflicting information, and
these conflicts need to be resolved. Sometimes, the resolution may be one of
using the most generalized case, but at other times, a discussion to clarify the
differences may be needed.

The resultant subject area model should be provided to each of the intervie-
wees for verification. Depending upon the person’s position and technical dis-
position, the verification may be conducted through a brief discussion rather
than through submission of the model for review.

Understanding the Business Model 71

Interviewer: Thanks, I missed that one. Let’s take a look at the relationships
among these things. The customer comes into the store—can customers buy the
items elsewhere?

Sales VP: Not at this time, but we’re considering establishing an electronic
commerce facility.

Interviewer: Are all the customers individual consumers, or are some consid-
ered representatives of organizations?

Sales VP: Our customers may be either consumers or representatives of
businesses.

Interviewer: Is there any difference in the treatment of the two types of
customers?

(Interview continues with the interviewer delving further into items based on
the answers received.)

Development through Facilitated Sessions

The approach that the authors have found to be the most effective and efficient
is the use of facilitated sessions. These sessions involve representatives of the
various business areas, just as the interviews do. The significant difference is
that the people are interacting with each other instead of providing individual
contributions. While it is sometimes difficult to get the people together, when
this is accomplished, the product is completed very quickly and reflects com-
promises with which the business representatives agree. The major steps in the
process are preparation, one or two facilitated sessions, work between the
facilitated sessions, and follow-on work. If the group is starting from a clean
slate, two facilitated sessions will be needed; if the group is using a starter
model, it may be possible to complete the effort in one session.

Preparation

Preparation consists of selecting and inviting the participants and making the
logistical arrangements. The preparation should be performed at least one to
two weeks before the session. One of the keys to a successful session is to
ensure that the participants understand the purpose, the process, and their
role. These should be described in the invitation letter.

First Facilitated Session

The agenda for the first session should include the following items:

Introductions. The participants introduce themselves, and the session
objectives are reviewed.

Education. Education is provided on the relevant concepts and on the
process.

Brainstorming. Brainstorming is used to develop a list of potential subject
areas.

Refinement. The list of potential subject areas is reviewed and refined to
arrive at the set of subject areas.

Conclusion. The session results are reviewed, and assignments for defini-
tion creation are made.

This agenda presumes that the group will be starting with a clean slate. If the
group starts with a generic or industry model, the following agenda would
apply:

C h a p t e r 372

Introductions. The participants introduce themselves, and the session
objectives are reviewed.

Education. Education is provided on the relevant concepts, on the process,
and on the starter model.

Review and refinement of subject areas. The subject areas in the starter
model are reviewed, and a set of subject areas is derived. Definitions for
those subject areas are then reviewed and refined.

Refinement. The list of potential subject areas is reviewed and refined to
arrive at the set of subject areas.

A critical part of the agenda for the first session is education. During the edu-
cational portion of the meeting, the facilitator explains what a subject area is,
how it should be identified and defined, and why the resultant model is bene-
ficial. The processes (for example, brainstorming) to be employed are also
described along with the rules for the facilitated session.

TIP
If some members of the group understand the concepts and others don’t, consider
having an educational session before the actual facilitated session. This provides the
attendees with a choice and does not force people who know the topic to attend
redundant education.

The remainder of this section presumes that the group is not beginning with a
starter model.

Following the educational session, the group engages in a brainstorming ses-
sion to identify potential subject areas. In a brainstorming session, all contri-
butions are recorded, without any discussion. It is, therefore, not uncommon
for people to identify reports, processes, functions, entities, attributes, organi-
zations, and so on, in addition to real subject areas. Figure 3.1 shows the poten-
tial result of such a brainstorming session for an automobile manufacturer
such as the Zenith Automobile Company. If you look closely at the flip charts,
you’ll see that most of the second sheet and part of the third sheet deviated
into too great a level of detail. When this happens, the facilitator should
remind the group of the definition of a subject area.

Understanding the Business Model 73

Figure 3.1 Result of brainstorming session.

The next step in the process is to examine the contributed items and exclude
items that are not potential subject areas. Each item is discussed and, if it does
not conform to the definition of a potential subject area, it is removed and pos-
sibly replaced by something that conveys the concept and could conform to
the definition of a subject area. When this process is over, there will be fewer
subject areas on the list, as shown in Figure 3.2. Some of the transformation
actions that took place follow:

■■ ITEMS and PRODUCTS were determined to be the same thing and
AUTOMOBILES was selected as the term to be used since all the products
and items were driven by the automobiles. Further, these were found to
encompass CARS, PAINT, LUXURY CAR, PARTS, PACKAGES, MOTORS,
USED CARS.

■■ CUSTOMER and CONSUMER were determined to be the same thing and
CUSTOMERS was selected as the term to be used. PROSPECTS was
absorbed into this area.

■■ VARIANCE REPORT and SALES ANALYSIS REPORT were determined
to be reports and eliminated.

POTENTIAL SUBJECT
AREAS - PAGE 1

• CUSTOMERS
• PRODUCTS
• CARS
• DEALERS
• WAREHOUSES
• DISTRIBUTION CTRS
• CONSUMER
• PAINT
• VARIANCE REPORT
• MARKETING
• DISPLAY CASE

POTENTIAL SUBJECT
AREAS - PAGE 2

• SALES ORDER
• CASH REGISTER
• SALES REGION
• DELIVERY TRUCK
• EMPLOYEES
• COMPETITORS
• REGULATORS
• GENERAL LEDGER
• CREDIT CARD
• LOAN
• PROMOTIONS

POTENTIAL SUBJECT
AREAS - PAGE 3

• ADVERTISEMENT
• CONTRACTOR
• WARRANTY
• SERVICE POLICY
• SALES TRANSACTIONS
• SUPPLIER
• MANUFACTURERS
• PARTS
• PACKAGES
• LOANER CARS
• SALES ANALYSIS RPT

POTENTIAL SUBJECT
AREAS - PAGE 4

• PROSPECTS
• ITEMS
• MOTORS
• USED CARS
• WASTE
• SUPPLIES
• DEALER

C h a p t e r 374

■■ MARKETING was determined to be a function and was eliminated.
During the discussion, ADVERTISEMENTS and PROMOTIONS were
added.

■■ CREDIT CARD and LOAN were grouped into PAYMENT METHODS.

■■ EMPLOYEES and CONTRACTOR were combined into HUMAN
RESOURCES.

■■ DEALERSHIPS and DEALERS were deemed to be the same, and
DEALERS was chosen as the subject area.

The resultant list should consist solely of data groupings, but some may be
more significant than others. Next, the group is asked to look at the list and try
to group items together. For example, WAREHOUSES, DISTRIBUTION CEN-
TERS, and FACTORIES are shown in Figure 3.2. WAREHOUSES and DISTRI-
BUTION CENTERS could be grouped into a potential subject area of
FACILITIES, with FACTORIES also established as a subject area. When this
process is over, the most likely candidates for the subject areas will have been
identified, as shown in Figure 3.3.

Figure 3.2 Result of refinement process.

POTENTIAL SUBJECT
AREAS - PAGE 1

• CUSTOMERS
• PRODUCTS
• CARS
• DEALERSHIPS
• WAREHOUSES
• DISTRIBUTION CTRS
• CONSUMER
• PAINT
• VARIANCE REPORT
• MARKETING
• DISPLAY CASE

POTENTIAL SUBJECT
AREAS - PAGE 2

• SALES ORDER
• CASH REGISTER
• SALES REGION
• DELIVERY TRUCK
• EMPLOYEES
• COMPETITORS
• FACTORY
• GENERAL LEDGER
• CREDIT CARD
• LOAN
• SHOWROOM

POTENTIAL SUBJECT
AREAS - PAGE 3

• LUXURY CAR
• CONTRACTOR
• WARRANTY
• SERVICE POLICY
• SALES TRANSACTION
• SUPPLIER
• MANUFACTURERS
• PARTS
• PACKAGES
• LOANER CARS
• SALES ANALYSIS RPT

POTENTIAL SUBJECT
AREAS - PAGE 4

• PROSPECTS
• ITEMS
• MOTORS
• USED CARS
• WASTE
• SUPPLIES
• DEALER
• ADVERTISEMENTS
• PROMOTIONS
• PAYMENT METHODS
• HUMAN RESOURCES

Understanding the Business Model 75

Figure 3.3 Result of reduction process.

This virtually completes the first facilitated session. In preparation for the next
session, each subject area should be assigned to two people. Each of these peo-
ple should draft a definition for the subject area and should identify at least three
entities that would be included within it. (Some people may be responsible for
more than one subject area.) The work should be completed shortly following
the meeting and submitted to the facilitator. The group should be advised that
on the intervening day, the facilitator uses this information and information
from subject area model templates (if available) to provide a starting point for
the second session.

Consolidation and Preparation for Second Facilitated Session

During the period (potentially as little as one day) between the two facilitated
sessions, the facilitator reviews the definitions and sample entities and uses
these to create the defined list of subject areas that will be used in the second
facilitated session. The facilitator should create a document that shows the
contributions provided, along with a recommendation. For example, for the
subject area of Customers, the following contributions could have been made:

Contribution 1. “Customers are people who buy or are considering buying
our items.” Sample entities are Customer, Wholesaler, and Prospect.

Contribution 2. “Customers are organizations that acquire our items for
their internal consumption.” Sample entities are Customer, Customer Sub-
sidiary, and Purchasing Agent.

POTENTIAL SUBJECT
AREAS - PAGE 4

• CUSTOMERS
• PRODUCTS
• CARS
• DEALERSHIPS
• WAREHOUSES
• DISTRIBUTION CTRS
• CONSUMER
• PAINT
• VARIANCE REPORT
• MARKETING
• DISPLAY CASE

POTENTIAL SUBJECT
AREAS - PAGE 3

• CUSTOMERS
• PRODUCTS
• CARS
• DEALERSHIPS
• WAREHOUSES
• DISTRIBUTION CTRS
• CONSUMER
• PAINT
• VARIANCE REPORT
• MARKETING
• DISPLAY CASE

POTENTIAL SUBJECT
AREAS - SUMMARY

• CUSTOMERS
• DEALERSHIPS
• FACILITIES
• SALES
• EQUIPMENT
• EXTERNAL ORGS
• FINANCIALS
• SUPPLIERS
• PRODUCTS
• INCENTIVE PROGRAMS
• HUMAN RESOURCES
• SALES ORGS

POTENTIAL SUBJECT
AREAS - PAGE 2

• CUSTOMERS
• PRODUCTS
• CARS
• DEALERSHIPS
• WAREHOUSES
• DISTRIBUTION CTRS
• CONSUMER
• PAINT
• VARIANCE REPORT
• MARKETING
• DISPLAY CASE

POTENTIAL SUBJECT
AREAS - PAGE 1

• CUSTOMERS
• PRODUCTS
• CARS
• DEALERSHIPS
• WAREHOUSES
• DISTRIBUTION CTRS
• CONSUMER
• PAINT
• VARIANCE REPORT
• MARKETING
• DISPLAY CASE

C h a p t e r 376

The subject area template information (previously shown in Table 3.3) pro-
vides a definition of Customers as “People and organizations who acquire
and/or use the company’s products,” and provides Customer, Prospect, and
Consumer as sample entities. Using this information, the facilitator could
include the information for CUSTOMERS shown in Table 3.5. Similar informa-
tion would be provided for each of the subject areas.

Second Facilitated Session

The agenda for the second session should include the following items:

Review. The results of the first session and the work performed since then
are reviewed.

Refinement. The subject areas and their definitions are reviewed and
refined.

Relationships. Major relationships between pairs of subject areas are
created.

Conclusion. The model is reviewed, unresolved issues are discussed, and
follow-up actions are defined.

Table 3.5 Potential Subject Area: CUSTOMER

POTENTIAL RECOMMENDED SAMPLE
DEFINITIONS DEFINITION ENTITIES COMMENTS

•Customers are People or •Consumer •Some customers lease
people who buy organizations •Customer our items, hence
or are considering who acquire the •Customer acquire is more
buying our Company’s items Purchasing appropriate than buy.
products. Agent •“Considering buying”
•Customers are •Prospect is left out since all
organizations definitions imply past,
that acquire our present, and future.
items for their •Customer Purchasing
internal Agent is not used since
consumption. this is part of Human

•People and Resources.
organizations
who acquire
and/or use the
company’s
products

Understanding the Business Model 77

The success of the second session is highly dependent on each of the partici-
pants completing his or her assignment on time and on the facilitator compiling
a document that reflects the input received and best practices. A limit should be
placed on the discussion time for each subject area. If the subject area is not
resolved by the end of the allotted time, the responsibility to complete the
remaining work should be assigned to a member of the team. Often, the
remaining work will consist of refining the wording (but not the meaning) of
the definition.

After all of the subject areas have been discussed, the major relationships
among the subject areas are identified and the resultant subject area diagram
is drawn. This step is the least critical one in the process because the subject
area relationships can be derived naturally from the business data model as it
is developed. A critical final step of the second facilitated session is the devel-
opment of the issues list and action plan.

Follow-on Work

The issues list and action plan are important products of the second facilitated
session, since they provide a means of ensuring that the follow-on work is
completed. The issues list contains questions that were raised during the ses-
sion that need to be resolved. Each item should include the name of the person
responsible and the due date. The action plan summarizes the remaining steps
for the subject area model. Often, the product of the session can be applied
immediately to support development of the business data model, with refine-
ments being completed over time based on their priority.

Subject Area Model Benefits

Regardless of how quickly the subject area model can be developed, the effort
should be undertaken only if there are benefits to be gained. Three major ben-
efits were cited in Chapter 2:

■■ The subject area model guides the business data model development.

■■ It influences data warehouse project selection.

■■ It guides data warehouse development projects.

The subject area model is a tool that helps the modeler organize his or her
work and helps multiple teams working on data warehouse projects recognize
areas of overlap. The sidebar shows how the subject area model can be used to
assist in data warehouse project definition and selection.

C h a p t e r 378

Subject Area Model for Zenith Automobile Company
A potential subject area model for the Zenith Automobile Company is pro-
vided in Figure 3.5. Only the subject areas needed to answer the business ques-
tions and Customers are shown.

Understanding the Business Model 79

Data Warehouse Project Definition and Selection

Figure 3.4 shows the primary subject areas that are needed to answer the busi-
ness questions for the Zenith Automobile Company.

Figure 3.4 Mapping requirements to subject areas.

Using the information in Figure 3.4, a logical implementation sequence would
be to develop the Automobiles, Dealers, and Sales Organizations subject areas
first since virtually all the questions are dependent on them. Factories or Incen-
tive Programs could be developed next, followed by the remaining one of those
two. For the business questions posed, no information about Customers and Sup-
pliers is needed.

Even if the business considered question 3 or 7 to be the most significant, they
should not be addressed first. The reason for this conclusion is that in order to
answer those questions, you still need information for the other three subject
areas.

This is an example of the iterative development approach whereby the data
warehouse is built in increments, with an eye toward the final deliverable.

QUESTION

1

AUTO-
MOBILES

CUSTOMERS DEALERS

SUBJECT AREA

FACTORIES INCENTIVE
PROGRAMS

SALES ORGS

2

3

4

5

6

7

8

9

10

11

Figure 3.5 Zenith Automobile Company partial subject area.

Definitions for each subject area follow:

■■ Automobiles are the vehicles and associated parts manufactured by Zenith
Automobile Company and sold through its dealers.

■■ Customers are the parties that acquire automobiles and associated parts
from Dealers.

■■ Dealers are agencies authorized to sell Zenith Automobile Company
automobiles and associated parts.

■■ Factories are the facilities in which Zenith Automobile Company manufac-
tures its automobiles and parts.

■■ Incentive Programs are financial considerations designed to foster the sale
of automobiles.

■■ Sales Organizations are the groupings of Dealers for which information is
of interest.

Figure 3.6 provides a potential subject area model for a retail company. This
model is provided as a reference point for some of the case studies used in
Chapters 5–8.

DEALERS

AUTOMOBILES

CUSTOMERS FACTORIES

INCENTIVE
PROGRAMS

SALES
ORGANIZATIONS

C h a p t e r 380

Figure 3.6 Retail subject area model starter.

Sample definitions for each of the subject areas follow.

■■ Communications are messages and the media used to transmit the
messages.

■■ Customers are people and organizations who acquire and/or use the
company’s items.

■■ Equipment is movable machinery, devices, and tools and their integrated
components.

■■ Human Resources are individuals who perform work for the company.

■■ Financials is information about money that is received, retained,
expended, or tracked by the company.

■■ Internal Organizations are formal and informal groups to which Human
Resources belong.

■■ Items are goods and services that the company or its competitors provide
or make available to Customers.

ITEMS CUSTOMERS

SALES

STORES

VENDORS FINANCIALS

OTHER
FACILITIES

LOCATIONS

EQUIPMENT INTERNAL ORGANIZATIONS

HUMAN
RESOURCES

COMMUNICATIONS

Understanding the Business Model 81

■■ Locations are geographic points and areas.

■■ Other Facilities are real estate and other structures and their integrated
components, except stores.

■■ Sales are transactions that shift the ownership or control of an item from
the Company to a Customer.

■■ Stores are places, including kiosks, at which Sales take place.

■■ Vendors are legal entities that manufacture or provide the company with
items.

Business Data Model

As we explained in Chapter 2, a model is an abstraction or representation of a
subject that looks or behaves like all or part of the original. The business data
model is one type of model, and it is an abstraction or representation of the
data in a given business environment. It helps people envision how the infor-
mation in the business relates to other information in the business (“how the
parts fit together”). Products that apply the business data model include appli-
cation systems, the data warehouse, and data mart databases. In addition, the
model provides the meta data (or information about the data) for these data-
bases to help people understand how to use or apply the final product. The
subject area model provides the foundation for the business data model, and
that model reduces the development risk by ensuring that the application sys-
tem correctly reflects the business environment.

Business Data Development Process
If a business data model does not exist, as is assumed in this section, then a
portion of it should be developed prior to embarking on the data warehouse
data model development. The process for developing the business data model
cannot be described without first defining the participants. In the ideal world,
the data stewards and the data modelers develop the business data model
jointly.

Most companies do not have formal data stewardship programs, and the busi-
ness community (and sometimes the information technology community)
may not see any value in developing the business data model. After all, it
delays producing the code! The benefits of the business data model were pre-
sented in Chapter 2, but in the absence of formal data stewards, the data mod-
eler needs to identify the key business representatives with the necessary
knowledge and the authority to make decisions concerning the data defini-
tions and relationships. These are often called “subject matter experts” or

C h a p t e r 382

SMEs (pronounced “smeeze”). Once these people are identified, the modeler
needs to obtain their commitment to participate in the modeling activities.
This is no small chore, and often compromises need to be made. For example,
the SMEs may be willing to answer questions and review progress, but may
not be willing to participate in the modeling sessions. After the modeler
understands the level of participation, he or she should evaluate the risk of the
reduced SME involvement to the accuracy and completeness of the model.
Then, the modeler should adjust his or her effort estimate and schedule if there
is a significant difference between the SMEs’ committed level of involvement
and the level that was assumed when the plan was created.

Development of a complete business data model can take 6 to 12 months, with
no tangible business deliverable being provided during that timeframe. While
this may be the theoretically correct approach, it is rarely a practical one. We
recommend using the following approach:

1. Identify the subject area(s) from which data is needed for the project
iteration.

2. Identify the entities of interest within the affected subject area(s) and
establish the identifiers.

3. Determine the relationships between pairs of entities.

4. Add attributes.

5. Confirm the model’s structure.

6. Confirm the model’s content.

The remainder of this section describes these six activities.

Identify Relevant Subject Areas

The subject areas with information needed to answer the questions posed in
the scenario described for are shown in Figure 3.5. These are: Automobiles,
Dealers, Factories, Incentive Programs, and Sales Organizations.

There are other subject areas in the subject area model, but these do not appear
to be needed for the first few iterations of the data warehouse. This first appli-
cation of the subject area model provides us with a quick way of limiting the
scope of our work. We could further reduce our scope if we want to address
only a few of the questions. For example, let’s assume that the first iteration
doesn’t answer questions 3 and 7.

To answer these questions, we don’t need any information from Factories and
Incentive Programs, nor do we need information about Customers for any of
the questions. Being able to exclude these subject areas is extremely important.

Understanding the Business Model 83

Customer data, for example, is one of the most difficult to obtain accurately. If
the business is initially interested in sales statistics, then information about the
specific customers can be excluded from the scope of the first iteration of the
model. This avoids the need to gain a common definition of “customer” and to
solve the integration issues that often exist with multiple customer files. (In the
automotive industry, information about Customers requires cooperation from
the Dealers.) It is important to remember that excluding a subject area has no
bearing on its importance—it only has a bearing on the urgency of defining the
business rules governing that area and hence the speed with which the next
business deliverable of the data warehouse can be created, as shown in Figure
3.7. Similarly, in developing the details for the other subject areas, the focus
should remain on the entities needed for the iteration being developed.

Figure 3.7 points out several benefits of using the subject areas to limit scope.
First, the project can be subdivided into independent iterations, each of which
is shorter than the full project. Second, the iterations can often overlap (if
resources are available) to further shorten the elapsed time for completing the
entire effort. For example, once the analysis and modeling are completed for
the first iteration, these steps can begin for the second iteration, while the
development for the first iteration proceeds. Some rework may be needed as
additional iterations are pursued, but this can often be avoided through rea-
sonable planning. The value of providing the business deliverables quicker is
usually worth the risk.

Figure 3.7 Schedule impact of subject area exclusion.

DATA WAREHOUSE PROJECT SCHEDULE-THREE ITERATIONS

ITERATION 1

BUSINESS DELIVERABLE

BUSINESS DELIVERABLE

BUSINESS DELIVERABLE

DATA WAREHOUSE PROJECT SCHEDULE-SINGLE LARGER PROJECT

ITERATION 1

BUSINESS DELIVERABLE

ITERATION 2

ITERATION 1

C h a p t e r 384

Identify Major Entities and Establish Identifiers

An entity is a person, place, thing, event, or concept of interest to a company
and for which the company has the capability and willingness to capture infor-
mation. Entities can often be uncovered by listening to a user describe the busi-
ness, by reviewing descriptive documents for an area, and by interviewing
subject matter experts. We concluded that information from three subject
areas—Automobiles, Dealers, and Sales Organizations—is needed to address
the first three questions. Let’s examine Sales.

Potential entities should be developed through a brainstorming session, inter-
views, or analysis. The initial list should not be expected to be complete. As the
model is developed, entities will be added to the list and some items initially
inserted in the list may be eliminated, particularly for the first iteration of the
data warehouse. Each of the entities needs to be defined, but before spending
too much time on an entity, the modeler should quickly determine whether or
not the entity is within the scope of the data warehouse iteration being pur-
sued. The reason for this screening is obvious—defining an entity takes time
and may involve a significant amount of discussion if there is any controversy.
By waiting until an entity is needed, not only is time better spent, but the SMEs
are also more inclined to work on the definition since they understand the
importance of doing so.

Eventually, the model will be transformed into a physical database with each
table in that database requiring a key to uniquely identify each instance. We
therefore should designate an identifier for each entity that we will be model-
ing. Since this is a business model, we need not be concerned with the physi-
cal characteristics of the identifier; therefore, we can simply create a primary
key attribute of “[Entity Name] Identifier” or “[Entity Name] Code” for
each entity. The difference between Identifier and Code is described in the
“Entity- and Attribute-Modeling Conventions” sidebar, which shows the
entity-modeling conventions we’ve adopted. Most modeling tools generate
foreign keys when the relationships dictate the need and, by including the
identifier, our model will include the cascaded foreign keys. The “Entity- and
Attribute-Modeling Conventions” sidebar summarizes the conventions we
used to name and define entities and attributes. Table 3.6 presents the results
of this activity for the entities of interest for the business questions that need to
be answered.

Understanding the Business Model 85

C h a p t e r 386

Entity- and Attribute-Modeling Conventions

The rules for naming and defining entities and attributes should be established
within each enterprise. Entities and attributes represent business-oriented views,
and the naming conventions are not limited by physical constraints. Some of the
conventions to consider are as follows.

Entity naming conventions include:

◆ Each entity should have a unique name.

◆ The entity name should be in title case (that is, all words except for
prepositions and conjunctions are capitalized).

◆ Entity names should be composed of business-oriented terms:

■ Use full, unabbreviated words.

■ Use spaces between words.

■ Use singular nouns.

■ Avoid articles, prepositions, and conjunctions.

◆ The length of the name is not limited. (A good entity name would be Bill to
Customer; a poor one would be BTC or Bill-to-Cust.)

Attribute naming conventions include:

◆ Attribute names should contain one or more prime words, zero or more
modifiers, and one class word.

■ The prime word describes the item. It is often the same as the name of
the entity within which the attribute belongs.

■ The qualifier is a further description of the item

■ The class word (for example, amount, name) is a description of the type
of item.

◆ Each attribute should have a unique name within an entity. If the same
attribute, except for the prime word (for example, expiration date, status)
is used in several entities, it should always have the same definition.

◆ The attribute name should be in title case.

◆ Each attribute name should be composed of business-oriented terms:

■ Use full, unabbreviated words. The length of the name is not limited.

■ Use spaces between words.

■ Use singular nouns.

■ Avoid articles, prepositions, and conjunctions such as “the” and “and.”

Understanding the Business Model 87

Table 3.6 Entity Definitions.

ENTITY DEFINITION SUBJECT AREA

Allocated The Allocated Automobile is one that has Automobiles
Automobile been assigned and paid for by a specific

Dealer. It now becomes part of the Dealer’s
inventory and the Dealer assumes
responsibility for the car and its ultimate
sale to a Customer.

Automobile The Automobile is the specific product Automobiles
produced by ZAC. There are two lines of
automobiles: Zeniths and Tuxedos. Each
line has several models to choose from,
and each model has three series containing
different features.

Automobile Automobile Status indicates the automobile’s Automobiles
Status stage within the product life cycle. Statuses

are manufactured, in inventory, at the Dealer,
sold to a Customer.

Color The Color is the coloration that is used for Automobiles
the exterior of an Automobile.

Customer A Customer is a person or business entity Customers
that acquires an Automobile.

Dealer The Dealer is an independent business that Dealers
chooses to sell ZAC cars. The Dealer must
purchase the cars and then sell them to its
customers. ZAC supports the dealers by
running national ads, supplying sales brochures,
providing sales incentive programs, and so on.
The Dealer must, in turn, supply ZAC with its
financial statements and agree to abide by
ZAC’s quality guidelines and service standards.

(continued)

Entity and attribute definition conventions include:

◆ Definitions should use consistent formats.

◆ Definitions should be self-sufficient.

◆ Definitions should be clear and concise.

◆ Definitions should not be recursive. A word should not be used to define
itself.

◆ Definitions should be business-oriented.

◆ Definitions should be mutually exclusive.

◆ Definitions should be independent of physical system constraints.

Table 3.6 (continued)

ENTITY DEFINITION SUBJECT AREA

Dealer The Dealer Financial Statement is the required Dealers
Financial statement of financial information that the
Statement Dealer must supply to ZAC. This is ZAC’s

method of verifying the sales that the Dealer
claims to have made. This is especially
important for Incentive Program Sales where
the Dealer receives an incentive for each sale.

Dealer The Dealer Objective is the Dealer’s estimate Dealers
Objective of the quantity of cars by MMSC that it will

sell during the month. These figures are
used to calculate the allocations of cars to
Dealers by ZAC.

Dealer on If a Dealer does not pay for its allocated cars Dealers
Credit Hold on time, it is placed on Credit Hold until such

payment is received. While on Credit Hold,
the Dealer cannot receive any more of its
allocated cars.

Emission The Emission Type indicates the type of emissions Automobiles
Type equipment in the Automobile. Different states

require different emissions equipment installed
in the automobiles sold in their area—some are
more stringent than others. The cost of the
Automobile varies according to the complexity
of the emissions equipment.

Factory The Factory is the plant manufacturing the Factories
Automobile. This is sometimes referred to as
the Source. Zenith automobiles are built in
Asheville, NC; Cortez, CO; and Southington, CT.
Tuxedo automobiles are made in Greenville, SC;
Newark, OH; and Bremen, IN.

Incentive The Incentive Program is offered by ZAC to its Incentive
Program Dealers. The Program provides some form of Programs

rebate or reduction in an automobile’s price so
that the Dealer may offer this reduced price to
the Customer, thus enhancing the Customer’s
purchase desire.

Incentive The Dealer may choose to participate in ZAC’s Incentive
Program Incentive Program. If it does, it can offer the Programs
Participant incentives to its customers in order to enhance

their purchasing desire.

Incentive The Incentive Program Term is a term or Incentive
Program condition under which the reduced price Programs
Term offered is valid.

Make The Make is the company manufacturing the Automobiles
Automobile, for example, Zenith or Tuxedo.

C h a p t e r 388

Table 3.6 (continued)

ENTITY DEFINITION SUBJECT AREA

Metropolitan The Metropolitan Statistical Area is assigned Dealers
Statistical by the Federal Government and is based on
Area statistically significant population groupings.

Model The Model is the type of Automobile manufactured Automobiles
and sold. Examples are the Zenith Zipster, Zenith
Zoo, Tuxedo Tiara, and Tuxedo Thunderbolt.

MSA Zipcode A listing of Zipcode within an MSA. Dealers

Option The Option is a feature added to a specific Automobiles
Automobile to enhance the car.

Option The Option Package is the grouping of Options Automobiles
Package that are added to a specific Automobile. This

is a convenient way of identifying a standard
grouping of options.

Sales Area The Sales Area is the lowest level of ZAC’s Sales
sales force. The area is usually a large city, Organizations
a group of smaller cities, or a geographic area.

Sales The Sales Manager is the employee responsible Employees
Manager for managing the sales area. (This is a subtype

of Employee.)

Sales Region The Sales Region is responsible for several Sales Sales
Territories. It is the highest level in the Sales Organizations
Organization.

Sales The Sales Territory is responsible for several Sales
Territory Sales Areas. Organizations

Series The Series indicates the set of features that come Automobiles
with the Make and Model. For example, the Zenith
Models come in the following series: NF (no frills),
SF (some frills), MF (max frills). The Tuxedo Models
come with these series: CF (costly frills), PF (pricey
frills), DF (decadent frills), and TDF (truly decadent
frills).

Sold A Sold Automobile is now the property of the Automobiles
Automobile Customer purchasing it. The ownership transfers

to the Customer or to the Customer’s loaning
institution.

Unallocated The Unallocated Automobile is considered part of Automobiles
Automobile ZAC’s inventory. It becomes assigned to a Dealer

when it is allocated.

Warehouse The Warehouse is the company-owned facility at Facilities
which manufactured automobiles are stored prior
to allocation and shipment to dealers.

Understanding the Business Model 89

In the business model, we can provide an attribute for the description (and
avoid having a reference entity for translating the code into the description).
The code is needed only when we migrate to the data warehouse, where it is
used either to ensure that only valid codes are used (domain constraints can
also accomplish this) or to reduce the storage requirements. We create code—
description entities—when we build the data warehouse model.

Define Relationships

A modeling tool is essential for developing and maintaining all data models.
Some of the common tools on the market follow. There are advantages and dis-
advantages to each of the tools, but every one of them performs at least the
basic modeling functions. The differences among the tools change with each
release and hence are not described in this book.

Common data modeling tools include

■■ ERwin by Computer Associates

■■ ER Studio by Embarcadero

■■ Oracle Designer by Oracle

■■ Silverrun by Magna Solutions

■■ System Architect by Popkin

■■ Visio by Microsoft

■■ Warehouse Designer by Sybase

The relationships diagrammatically portray the business rules. Following is a
partial set of business rules that need to be reflected in the business data model.

■■ An automobile is classified by make, model, series, and color.

■■ An automobile is manufactured in a factory.

■■ An option package contains one or more options, each of which may be
included in several option packages.

■■ An automobile contains zero, one, or more option packages.

■■ An automobile is allocated to a dealer.

■■ An automobile is sold by a dealer.

These rules would be uncovered through discussions with appropriate subject
matter experts. The next step in the process is to define the relationships
between pairs of entities. Figure 3.8 shows the entities needed in the model to
support these questions.

C h a p t e r 390

Figure 3.8 Entity-relationship diagram—entities.

An examination of the business data model reveals that the entities are
grouped by subject area. This organization of the business data model is very
helpful as more and more entities are added to the model.

D
ea

le
r

Fi
na

nc
ia

l S
ta

te
m

en
t

D
ea

le
r

O
bj

ec
tiv

e

M
et

ro
p

ol
ita

n
St

at
is

tic
al

 A
re

a

In
ce

nt
iv

e
Pr

og
ra

m
 P

ar
tic

ip
an

t
In

ce
nt

iv
e

Pr
og

ra
m

 T
er

m

D
ea

le
r

on
 C

re
di

t
H

ol
d

A
llo

ca
te

d
A

ut
om

ob
ile

So
ld

 A
ut

om
ob

ile

Sa
le

s
A

re
a

Sa
le

s
Re

gi
on

Sa
le

s
Te

rr
ito

ry
Sa

le
s

M
an

ag
er

D
ea

le
r

M
SA

 Z
ip

co
de

In
ce

nt
iv

e
Pr

og
ra

m

W
ar

eh
ou

se
C

us
to

m
erO

p
tio

n

O
p

tio
n

Pa
ck

ag
e

Fa
ct

or
y

C
ol

or

Se
rie

s

M
od

el

M
ak

e

U
na

llo
ca

te
d

A
ut

om
ob

ile

A
ut

om
ob

ile
 S

ta
tu

s

A
ut

o
m

o
b

ile
s

D
ea

le
rs

Fa
ct

o
ri

es

C
us

to
m

er
s

In
ce

n
ti

ve
Pr

o
g

ra
m

s

Sa
le

s
O

rg
s

A
ut

om
ob

ile

Em
is

si
on

 T
yp

e

Understanding the Business Model 91

TIP
Another source of information for the business data model is the database of an exist-
ing system. While this is a source, the modeler needs to recognize that the physical
database used by a system reflects technical constraints and other (frequently undocu-
mented) assumptions made by the person who designed it as well as erroneous or
outdated business rules. It should, therefore, not be considered to be the business
model, but it certainly can be used as input to the model. Any differences discovered
in using a database from an existing system should be documented. These will be
used when the transformation rules are developed.

Add Attributes

An attribute is a fact or discrete piece of information pertaining to an entity.
One such attribute has already been included in the diagram—the identifier.
At this point, additional attributes needed to answer the business questions of
interest are added. For example, the questions involving the Store requested
information on the store’s age. Based on that requirement, the store inception
date should be added as an attribute.

TIP
In the business model, information that changes with time should be tied to calendar
dates whenever possible. For example, instead of store age, the date the store was
opened or last renovated should be shown. In the data warehouse model, we have
options on whether to store just the date of birth or both the date of birth and the
age. If we’re doing analysis based on a range of ages, we may choose to store the
age range in the mart. (If we choose this option, we will need to include logic for
updating the age range unless the mart is rebuilt with each load cycle.)

The difficulty with a data warehouse data model is anticipating the attributes
that business users will eventually want. Since the business data model is being
built primarily to support the warehouse, that problem manifests itself at this
point. Part of the reason for the difficulty is that the business users truly do not
know everything they need. They will discover some of their needs as they use
the environment. Some sources to consider in identifying the potential elements
are existing reports, queries, and source system databases. This area is discussed
more thoroughly in Chapter 4 as part of the first step of creating the data ware-
house data model.

The “Entity- and Attribute-Modeling Conventions” sidebar summarizes the con-
ventions we used to name and define attributes. Figure 3.9 shows the expanded
model, with the attributes included. As was the case with the entities, we should
expect additions, deletions, and changes as the model continues to evolve.

C h a p t e r 392

Figure 3.9 Entity-relationship diagram—entities and attributes.

The model in Figure 3.9 reflects attributes that, from a business perspective,
appear to fit within the designated entities for the Automobiles Subject Area.
(Some entities from other subject areas are included in the diagram to provide
a more complete picture.)

Confirm Model Structure

The business data model should be presented in what is known as “third normal
form.” The third normal form was described in Chapter 2. By way of summary,
in the third normal form, each attribute is dependent on the key of the entity in
which it appears, on the whole key, and on nothing but the key.

M
ak

e

A
ut

om
ob

ile
A

ut
om

ob
ile

 S
ta

tu
s

Fa
ct

or
y

O
p

tio
n

Pa
ck

ag
e

O
p

tio
n

U
na

llo
ca

te
d

A
ut

om
ob

ile
A

llo
ca

te
d

A
ut

om
ob

ile

D
ea

le
r

C
us

to
m

er
W

ar
eh

ou
se

So
ld

 A
ut

om
ob

ileEm
is

si
on

 T
yp

e

M
od

el

Se
rie

s

C
ol

or

M
ak

e
ID

M
ak

e
N

am
e

M
od

el
 ID

M
od

el
 N

am
e

Se
rie

s
ID

Se
rie

s
N

am
e

C
ol

or
 ID

C
ol

or
 N

am
e

VI
N

 (
Fx

)

VI
N

M
ak

e
ID

 (
Fx

)
M

od
el

 ID
 (

Fx
)

Se
rie

s
ID

 (
Fx

)
C

ol
or

 ID
 (

Fx
)

M
od

el
 Y

ea
r

Tr
an

sm
is

si
on

 In
di

ca
to

r
Em

is
si

on
 T

yp
e

ID
 (

Fx
)

M
an

uf
ac

tu
re

r
D

at
e

Fa
ct

or
y

ID
 (

Fx
)

Su
gg

es
te

d
Re

ta
il

Pr
ic

e
A

m
ou

nt
W

ho
le

sa
le

 P
ric

e
A

m
ou

nt
O

p
tio

n
Pa

ck
ag

e
ID

 (
Fx

)

VI
N

 (
Fx

)
C

us
to

m
er

 ID
 (

Fx
)

D
ea

le
r

ID
 (

Fx
)

In
ce

nt
iv

e
Pr

og
ra

m
 ID

 (
Fx

)
Sa

le
 D

at
e

A
ct

ua
l S

el
lin

g
Pr

ic
e

A
m

ou
nt

VI
N

 (
Fx

)
A

ut
om

ob
ile

 S
ta

tu
s

D
at

e
A

ut
om

ob
ile

 S
ta

tu
s

C
od

e

Fa
ct

or
y

ID

O
p

tio
n

Pa
ck

ag
e

ID
O

p
tio

n
Re

ta
il

Pr
ic

e
A

m
ou

nt

Fa
ct

or
y

N
am

e

O
p

tio
n

ID
O

p
tio

n
Pa

ck
ag

e
ID

 (
Fx

)
O

p
tio

n
Ty

p
e

O
p

tio
n

D
es

cr
ip

tio
n

VI
N

 (
Fx

)
W

ar
eh

ou
se

 ID
 (

Fx
)

W
ar

eh
ou

se
 R

ec
ei

ve
d

D
at

e

Em
is

si
on

 T
yp

e
D

es
cr

ip
tio

n
Em

is
si

on
 T

yp
e

ID

D
ea

le
r

ID

C
us

to
m

er
 ID

W
ar

eh
ou

se
 ID

U
SA

 ID
 (

Fx
)

Z
ip

 C
od

e
(F

x)
D

ea
le

r
N

am
e

D
ea

le
r

St
re

et
 A

dd
re

ss
D

ea
le

r
C

ity
D

ea
le

r
St

at
e

D
ea

le
r

Z
ip

 C
od

e
D

ea
le

r
O

w
ne

r
N

am
e

D
ea

le
r

Se
rv

ic
e

M
an

ag
er

 N
am

e
Es

ta
bl

is
hm

en
t

D
at

e
Sa

le
s

A
re

a
ID

 (
Fx

)
C

re
di

t
H

ol
d

In
di

ca
to

r
W

ho
le

sa
le

 R
et

ai
l S

al
e

In
di

ca
to

r

A
llo

ca
tio

n
D

at
e

D
ea

le
r

Re
ce

ip
t

D
at

e
D

ea
le

r
ID

 (
Fx

)

Understanding the Business Model 93

Remember that the business model does not need to provide good perfor-
mance. It is never implemented. It is the basis of subsequent models that may
be used for a data warehouse, an operational system, or data marts. For that
usage, the third normal form provides the greatest degree of flexibility and sta-
bility and ensures the greatest degree of consistency.

TIP
A purist view of the business data model is that it is a third normal form model
that is concerned only with the logical (and not physical) view. Several of the data-
modeling tools store information about the physical characteristics of the table for
each entity and about the physical characteristics of the column for each attribute.
The theoretician would address these only when the model is applied for an applica-
tion such as the data warehouse.

A more practical approach is to include some information pertaining to the physical
model in the business model. The reason for this is that several applications will use
the business model, and they start by copying the relevant section of the model. If
more than one application needs the same entity, then each is forced to establish the
physical characteristics such as datatype for the resultant table and its columns. This
creates duplicate effort and introduces a potential for inconsistency. A better approach
is to create some of this information within the business model in the modeling tool.

The use of domain definitions is another technique that experienced modelers use
to minimize work and provide flexibility. The domain feature of the modeling tool
can be used to define valid values, data types, nullability, and so on. One application
of domains is to establish one for each unique combination of these, then instead of
defining each of the physical characteristics of a column, it is merely assigned to a
domain. In addition to reducing the workload, this provides the flexibility to accomo-
date future changes.

Confirm Model Content

The last, and possibly most important, step in developing the business data
model is to verify its content. This is accomplished through a discussion with
business representatives. The techniques used vary. In meeting with the busi-
ness users, the modeler must remember that the model is a means to an end. It
is a technique for describing the business in a way that facilitates the develop-
ment of systems and data warehouses. Some business representatives may be
both willing and able to review the actual model. With others, the modeler
may need to ask questions in plain English that verify the business rules and
definitions. For example, the modeler may need to conduct an interview in
which he or she confirms the relationships by asking the business representa-
tive if each of the business rules that the relationships represents is valid.

C h a p t e r 394

Summary

The subject area model is inherent in the foundation of the data warehouse,
since the warehouse itself is “subject oriented.” The subject area model pro-
vides a good way of organizing the business data model. The subject area
model identifies the 15–25 major groupings of significance to the company,
with each one mutually exclusive of the others. The subject area model can be
created in a few days, using facilitated sessions. The first of two facilitated ses-
sions includes education on the relevant concepts, brainstorming a list of
potential subject areas, and refinement of the list. Preliminary definitions are
developed prior to the second meeting, at which the results of the first session
and the work performed since then are reviewed, the subject areas and their
definitions are reviewed and refined, major relationships are added to the
model, and the model is reviewed. Unresolved issues and follow-up actions
may also be identified.

This business data model is the foundation of everything that follows. Signifi-
cant errors can have a cascading effect, so it is very important to verify both the
structure and the content of the model. The business data model describes the
information of importance to an enterprise and how pieces of information are
related to each other. It is completely independent of any organizational, func-
tional, or technological considerations. It therefore provides a solid foundation
for designing the database for any application system, including a data ware-
house. A complete business data model is complex and can easily require a
year to complete. Instead of developing a complete business data model, the
data warehouse modeler should create only those portions of the model that
are needed to support the business questions being asked.

Within the scope of the business questions being asked, the business data
model is developed by identifying the subject areas from which data is
needed, identifying and defining the major entities, establishing the relation-
ships between pairs of entities, adding attributes, conforming to the third nor-
mal form, and confirming the content of the model.

Understanding the Business Model 95

Installing Custom Controls 97

Developing the Model

C H A P T E R 4

The data warehouse is a subject-oriented, integrated, time-variant, nonvolatile
collection of data to support strategic analysis.1 The major factors affecting the
design of the data warehouse reflect its primary mission, which is to serve as a
collection point for the needed data stored in various operational systems and
as a distribution point for sending this data to the data marts. The major fac-
tors affecting the content of the data warehouse are the information needs of
the people who will use the resultant data marts and the organization of the
data in the source systems. Unlike the source systems that are built to support
business processes, the data warehouse model needs to reflect the business
relationships of the information, independent of the business processes and
organization.

As explained earlier in the book, the relational model, based on a third-normal
form model that depicts the business relationships, best meets the needs for
storage of data in the data warehouse. The third normal form model, in its pure
form, however, is not the best structure for the data warehouse. Using the third
normal form model for the data warehouse is analogous to selecting any screw-
driver for the job. Just as the screwdriver should be based on the size of the
screw being driven, the third normal form model needs to be adjusted to meet
the data warehouse needs. The business scenario used to develop the data
warehouse data model is the Zenith Automobile Company that we introduced

97

1 See Building the Data Warehouse, 2nd Edition, by W. H. Inmon, Wiley Publishing, Inc., 2000.

in Chapter 3. Using that scenario, we begin this chapter by explaining an eight-
step methodology for transforming the third normal form model into the data
warehouse model.

This chapter details the process of building a data warehouse model using
entity-relationship modeling techniques. The process starts with the business
data model and applies eight steps to arrive at a model that is optimized to
meet the objectives of the data warehouse. The specific information require-
ments will be identified, and these will be used as the basis for developing the
data warehouse model. Some of the issues to be addressed include selecting
the data elements of interest, handling historical requirements, ensuring data
consistency, and creating merged tables that can facilitate data delivery to the
data marts. Some additional changes to improve the performance of the model
are then provided.

Methodology

The data warehouse system data model is developed by applying an eight-
step transformation process to the business data model. The eight steps are:

1. Select the data of interest.

2. Add time to the key.

3. Add derived data.

4. Determine granularity level.

5. Summarize data.

6. Merge entities.

7. Create arrays.

8. Segregate data.

The eight steps can be grouped into two categories. The first four steps deal
primarily with business-related issues. Data elements are selected based on
the business requirements for the project, time is added to the key to accom-
modate the historical perspective, derived data is created for consistency, and
the level of granularity is determined to ensure that data exists to address the
business needs. Once these steps are completed, the data warehouse should be
capable of meeting the business objectives, though we can still do much to
improve its performance in data delivery.

C h a p t e r 498

The second set of steps deals primarily with the performance issues. Sum-
maries are created to improve the data delivery process performance, entities
are merged to reduce the need to join data that is commonly used together,
arrays are created to facilitate creation of data marts that need cross-tab
analysis, and data is segregated based on stability (to reduce the number of
rows added to the data warehouse) and usage (to reduce the need to join data
to satisfy queries. These steps help organize the data to meet performance
objectives in loading data into the data warehouse, minimizing storage
requirements, and delivering the data to the data marts.

Once these basic steps are completed, additional tuning activities such as fur-
ther denormalization and partitioning may also be applied.

Step 1: Select the Data of Interest
The first step in developing the data warehouse is to select the data of interest.
There are two major reasons for making this the first step. First, it places the
purpose and business objectives of the data warehouse project in the fore-
ground. All decisions made concerning the data warehouse model consider
the business purpose and objectives. Second, this step confines the scope of the
data warehouse model to just that needed in the project. Since this step is
designed to serve as a funnel and eliminate consideration of data elements that
are not needed in the data warehouse, it only makes sense to perform it before
additional work is performed on those elements.

Inputs

The business data model is only one of the inputs for Step 1. Other inputs
include the project scope document, information requirements, prototypes,
existing reports and queries, and the system or physical models of the systems
expected to be sources to the data warehouse. The modeler needs to recognize
that despite best intentions, not all of the information requirements can be
defined in advance.

One of the advantages using a relational model for the data warehouse and of
segregating the data warehouse from the data marts is that this facilitates
incorporation of subsequently discovered information requirements without
having a deleterious effect on the data marts already in production. The data
warehouse model, and hence in the physical data warehouse, will evolve as
additional needs are discovered. Since the business community is not directly
accessing the data, changes in the data warehouse can be made without affect-
ing users who do not need the changed data, as shown in Figure 4.1.

Developing the Model 99

Figure 4.1 Benefit of data segregation.

D
W

 in
iti

al
ly

 b
ui

lt
to

 fe
ed

 d
at

a
m

ar
t

D
W

 s
ub

se
qu

en
tly

m
od

ifi
ed

 to
 m

ee
t

ad
di

tio
na

l n
ee

ds

D
at

a
m

ar
t o

f u
se

rs
in

te
re

st
ed

 in
 m

on
th

ly
 s

al
es

an
d

ob
je

ct
iv

es
 tr

ac
ki

ng
re

m
ai

ns
 u

nc
ha

ng
ed

R
ep

la
ce

m
en

t
d

at
a

d
el

iv
er

y
p

ro
g

ra
m

s

In
it

ia
l d

at
a

d
el

iv
er

y
p

ro
g

ra
m

s

M
ak

e
ID

D
im

 A
ut

o
M

ak
e

M
ak

e
N

am
e

M
on

th
 Y

ea
r

D
im

 D
at

e

Fi
sc

al
 Y

ea
r

C
al

en
da

r
Ye

ar
M

on
th

 N
am

e

VI
N

A
ut

om
ob

ile

So
ld

 A
ut

om
ob

ile

M
ak

e
ID

 (
FK

)
M

od
el

 ID
 (

FK
)

Se
rie

s
ID

 (
FK

)
C

ol
or

 ID
 (

FK
)

M
od

el
 Y

ea
r

Tr
an

sm
is

si
on

 In
di

ca
to

r
Em

is
si

on
 T

yp
e

ID
 (

FK
)

M
an

uf
ac

tu
re

 D
at

e
Fa

ct
or

y
ID

 (
FK

)
Su

gg
es

te
d

Re
ta

il
Pr

ic
e

A
m

ou
nt

W
ho

le
sa

le
 P

ric
e

A
m

ou
nt

O
p

tio
n

Pa
ck

ag
e

ID
 (

FK
)

VI
N

A
ut

om
ob

ile

M
ak

e
ID

 (
FK

)
M

od
el

 ID
 (

FK
)

Se
rie

s
ID

 (
FK

)
C

ol
or

 ID
 (

FK
)

M
od

el
 Y

ea
r

Tr
an

sm
is

si
on

 In
di

ca
to

r
Em

is
si

on
 T

yp
e

ID
 (

FK
)

M
an

uf
ac

tu
re

 D
at

e
Fa

ct
or

y
ID

 (
FK

)
Su

gg
es

te
d

Re
ta

il
Pr

ic
e

A
m

ou
nt

W
ho

le
sa

le
 P

ric
e

A
m

ou
nt

O
p

tio
n

Pa
ck

ag
e

ID
 (

FK
)

D
ea

le
r

U
SA

 ID
 (

FK
)

Z
ip

 C
od

e
(F

K)
D

ea
le

r
N

am
e

D
ea

le
r

St
re

et
 A

dd
re

ss
D

ea
le

r
C

ity
D

ea
le

r
St

at
e

D
ea

le
r

O
w

ne
r

N
am

e
D

ea
le

r
Se

rv
ic

e
M

an
ag

er
 N

am
e

Es
ta

bl
is

hm
en

t
D

at
e

Sa
le

s
A

re
a

ID
 (

FK
)

C
re

di
t

H
ol

d
In

di
ca

to
r

W
ho

le
sa

le
 R

et
ai

l S
al

e
In

di
ca

to
r

D
ea

le
r

ID

Em
is

si
on

 T
yp

e
ID

Em
is

si
on

 T
yp

e

Em
is

si
on

 T
yp

e
D

es
cr

ip
tio

n

O
p

tio
n

Pa
ck

ag
e

ID

O
p

tio
n

Pa
ck

ag
e

O
p

tio
n

Re
ta

il
Pr

ic
e

A
m

ou
nt

W
ar

eh
ou

se
 ID

W
ar

eh
ou

se

Fa
ct

or
y

ID

Fa
ct

or
y

Fa
ct

or
y

N
am

e

C
us

to
m

er
 ID

 (
FK

)
D

ea
le

r
ID

 (
FK

)
In

ce
nt

iv
e

Pr
og

ra
m

 ID
 (

FK
)

Sa
le

 D
at

e
A

ct
ua

l S
el

lin
g

Pr
ic

e
A

m
ou

nt

VI
N

 (
FK

)

D
ea

le
r

O
bj

ec
tiv

e
O

bj
ec

tiv
e

M
on

th
D

ea
le

r
ID

 (
FK

)
Em

is
si

on
 T

yp
e

ID
 (

FK
)

C
ol

or
 ID

 (
FK

)
Se

rie
s

ID
 (

FK
)

M
ak

e
ID

 (
FK

)
M

od
el

 ID
 (

FK
)

To
ta

l P
ro

p
os

ed
 S

el
lin

g
Q

ua
nt

ity
To

ta
l P

ro
p

os
ed

 S
el

lin
g

A
m

ou
nt

A
ut

om
ob

ile
 S

ta
tu

s
VI

N
 (

FK
)

A
ut

om
ob

ile
 S

ta
tu

s
D

at
e

A
ut

om
ob

ile
 S

ta
tu

s
C

od
e

O
p

tio
n

O
p

tio
n

ID
O

p
tio

n
Pa

ck
ag

e
ID

 (
FK

)
O

p
tio

n
Ty

p
e

O
p

tio
n

D
es

cr
ip

tio
n

U
na

llo
ca

te
d

A
ut

om
ob

ile
VI

N
 (

FK
)

W
ar

eh
ou

se
 ID

 (
FK

)
W

ar
eh

ou
se

 R
ec

ei
ve

d
D

at
e

A
llo

ca
te

d
A

ut
om

ob
ile

VI
N

 (
FK

)

A
llo

ca
tio

n
D

at
e

D
ea

le
r

Re
ce

ip
t

D
at

e
D

ea
le

r
ID

 (
FK

)

So
ld

 A
ut

om
ob

ile
VI

N
 (

FK
)

C
us

to
m

er
 ID

 (
FK

)
D

ea
le

r
ID

 (
FK

)
In

ce
nt

iv
e

Pr
og

ra
m

 ID
 (

FK
)

Sa
le

 D
at

e
A

ct
ua

l S
el

lin
g

Pr
ic

e
A

m
ou

nt

D
ea

le
r

O
bj

ec
tiv

e
O

bj
ec

tiv
e

M
on

th
D

ea
le

r
ID

 (
FK

)
Em

is
si

on
 T

yp
e

ID
 (

FK
)

C
ol

or
 ID

 (
FK

)
Se

rie
s

ID
 (

FK
)

M
ak

e
ID

 (
FK

)
M

od
el

 ID
 (

FK
)

To
ta

l P
ro

p
os

ed
 S

el
lin

g
Q

ua
nt

ity
To

ta
l P

ro
p

os
ed

 S
el

lin
g

A
m

ou
nt

M
on

th
 Y

ea
r

(F
K)

D
ea

le
r

ID
 (

FK
)

M
ak

e
ID

 (
FK

)
M

od
el

 ID
 (

FK
)

Fa
ct

 M
on

th
ly

 A
ut

o
Sa

le
s

A
ut

o
Sa

le
s

Q
ua

nt
ity

A
ut

o
Sa

le
s

A
m

ou
nt

O
bj

ec
tiv

e
Sa

le
s

Q
ua

nt
ity

O
bj

ec
tiv

e
Sa

le
s

A
m

ou
nt

D
ea

le
r

ID
D

im
 A

ut
o

D
ea

le
r

D
ea

le
r

In
fo

rm
at

io
n

D
ea

le
r

D
ea

le
r

ID

U
SA

 ID
 (

FK
)

Z
ip

 C
od

e
(F

K)
D

ea
le

r
N

am
e

D
ea

le
r

St
re

et
 A

dd
re

ss
D

ea
le

r
C

ity
D

ea
le

r
St

at
e

D
ea

le
r

O
w

ne
r

N
am

e
D

ea
le

r
Se

rv
ic

e
M

an
ag

er
 N

am
e

Es
ta

bl
is

hm
en

t
D

at
e

Sa
le

s
A

re
a

ID
 (

FK
)

C
re

di
t

H
ol

d
In

di
ca

to
r

W
ho

le
sa

le
 R

et
ai

l S
al

e
In

di
ca

to
r

M
od

el
 ID

D
im

 A
ut

o
M

od
el

M
od

el
 N

am
e

C h a p t e r 4100

Business Data Model

A fully developed business data model provides an ideal inventory of the
available data elements. The fully developed business data model usually con-
tains hundreds, and possibly thousands, of data elements. The development
team needs to quickly cull the elements to only those that must be included in
this iteration of the data warehouse. When a business data model does not
exist and the development team creates the business data model for the scope
of the project, virtually all of the elements in that model are included in the
data warehouse model. Since only the data elements considered necessary for
the project were included in the business data model, the scope containment
was performed by restricting the elements included in the business data
model.

Figure 4.2 depicts the business data model for the Zenith Automobile Com-
pany at the entity level.

Scope Document

The scope document sets the expectations for this iteration of the data ware-
house. In addition to other information, it includes a section that identifies the
data to be included, and may also include a section that delineates the data
that is excluded from the iteration. In a way, this is a precursor to Step 1 in that
the only data that needs to be considered in the model transformation is that
data that could be considered to be within scope based on the level of detail
contained in the scope document. The 11 business questions for the Zenith
Automobile Company provide the needed information to scope the content of
the data warehouse. Figure 4.3 shows how the scope document can quickly be
used to narrow the entities that are addressed by the project.

Information Requirements

Information requirements constitute the third set of inputs. There are several
sources for the information requirements. Since the data warehouse should be
aligned with the ultimate business goals, a review of available corporate plan-
ning documents and the annual report may prove useful. Facilitated sessions
and interviews with business executives, analysts, and end users provide a
major source of information requirements. These sessions are designed to get
the business community to identify the specific business questions to be
answered and the data elements that are needed to answer those questions.
The data analyst should avoid asking the business person, “What do you want
in the data warehouse?” Virtually all business users have a common answer to
this question—everything!

Developing the Model 101

Figure 4.2 ZAC business data model.

D
ea

le
r

Fi
na

nc
ia

l S
ta

te
m

en
t

D
ea

le
r

O
bj

ec
tiv

e

M
et

ro
p

ol
ita

n
St

at
is

tic
al

 A
re

a

In
ce

nt
iv

e
Pr

og
ra

m
 P

ar
tic

ip
an

t
In

ce
nt

iv
e

Pr
og

ra
m

 T
er

m

D
ea

le
r

on
 C

re
di

t
H

ol
d

A
llo

ca
te

d
A

ut
om

ob
ile

So
ld

 A
ut

om
ob

ile

Sa
le

s
A

re
a

Sa
le

s
Re

gi
on

Sa
le

s
Te

rr
ito

ry
Sa

le
s

M
an

ag
er

D
ea

le
r

M
SA

 Z
ip

co
de

In
ce

nt
iv

e
Pr

og
ra

m

W
ar

eh
ou

se
C

us
to

m
erO

p
tio

n

O
p

tio
n

Pa
ck

ag
e

Fa
ct

or
y

C
ol

or

Se
rie

s

M
od

el

M
ak

e

U
na

llo
ca

te
d

A
ut

om
ob

ile

A
ut

om
ob

ile
 S

ta
tu

s

A
ut

om
ob

ile

Em
is

si
on

 T
yp

e

C h a p t e r 4102

Figure 4.3 Reducing the entities to be considered.

Instead, the interview should focus on the business questions to be answered,
how the data will be used, and on the specific data elements needed to answer
those questions. These data-gathering meetings provide a starting point of
people’s perceptions concerning the data that will need to be available. The
resultant information gets combined with information requirements gathered
from other sources. In working with the business analysts and users requiring
dimensional analysis, it is often useful to depict both the data warehouse con-
tent and the data marts that will be generated. The business representatives
may find it easier to visualize their needs and to think out of the box by look-
ing at the data navigation possibilities portrayed by the star schema. (The data
mart model need not be refined at this point unless it is used to generate a
prototype.)

The attribute-level section of the business data model for the Automobiles sub-
ject area is shown in Figure 4.4. Table 4.1 lists the attributes available within
this subject area and the decision concerning their inclusion or exclusion in the
data warehouse. The decision in Table 4.1 is based solely on the known busi-
ness questions. In the section dealing with selection criteria, we identify addi-
tional factors that should be considered in making the decision. (Some entities
from other subject areas are included in the diagram to help visualize the links
to those subject areas. These are excluded from Table 4.1.)

Incentive Program ParticipantSales Area

Sales Territory

Dealer on Credit Hold

Emission Type Sold Automobile

Sales Manager

Unallocated Automobile

Customer

Dealer Financial Statement

Warehouse

Option Package

Automobile Status

Sales Region

Automobile

Factory Series

Model Make

Color

Dealer Objective MSA

Allocated Automobile Incentive Program

Entities
in

Scope

Developing the Model 103

Figure 4.4 Automobiles subject area.

Table 4.1 Attribute Exclusion

ENTITY ATTRIBUTE DECISION RATIONALE

Automobile VIN Retain Needed as a key and to estab-
lish relationships

Automobile Model Year Retain Needed to answer one or
more questions

Automobile Transmission Omit Not needed to answer any
Indicator question

Automobile Manufacture Omit Not needed to answer any
Date question

M
ak

e

A
ut

om
ob

ile
A

ut
om

ob
ile

 S
ta

tu
s

Fa
ct

or
y

O
p

tio
n

Pa
ck

ag
e

O
p

tio
n

U
na

llo
ca

te
d

A
ut

om
ob

ile
A

llo
ca

te
d

A
ut

om
ob

ile

D
ea

le
r

C
us

to
m

er
W

ar
eh

ou
se

So
ld

 A
ut

om
ob

ileEm
is

si
on

 T
yp

e

M
od

el

Se
rie

s

C
ol

or

M
ak

e
ID

M
ak

e
N

am
e

M
od

el
 ID

M
od

el
 N

am
e

Se
rie

s
ID

Se
rie

s
N

am
e

C
ol

or
 ID

C
ol

or
 N

am
e

VI
N

 (
Fx

)

VI
N

M
ak

e
ID

 (
Fx

)
M

od
el

 ID
 (

Fx
)

Se
rie

s
ID

 (
Fx

)
C

ol
or

 ID
 (

Fx
)

M
od

el
 Y

ea
r

Tr
an

sm
is

si
on

 In
di

ca
to

r
Em

is
si

on
 T

yp
e

ID
 (

Fx
)

M
an

uf
ac

tu
re

r
D

at
e

Fa
ct

or
y

ID
 (

Fx
)

Su
gg

es
te

d
Re

ta
il

Pr
ic

e
A

m
ou

nt
W

ho
le

sa
le

 P
ric

e
A

m
ou

nt
O

p
tio

n
Pa

ck
ag

e
ID

 (
Fx

)

VI
N

 (
Fx

)
C

us
to

m
er

 ID
 (

Fx
)

D
ea

le
r

ID
 (

Fx
)

In
ce

nt
iv

e
Pr

og
ra

m
 ID

 (
Fx

)
Sa

le
 D

at
e

A
ct

ua
l S

el
lin

g
Pr

ic
e

A
m

ou
nt

VI
N

 (
Fx

)
A

ut
om

ob
ile

 S
ta

tu
s

D
at

e
A

ut
om

ob
ile

 S
ta

tu
s

C
od

e

Fa
ct

or
y

ID

O
p

tio
n

Pa
ck

ag
e

ID
O

p
tio

n
Re

ta
il

Pr
ic

e
A

m
ou

nt

Fa
ct

or
y

N
am

e

O
p

tio
n

ID
O

p
tio

n
Pa

ck
ag

e
ID

 (
Fx

)
O

p
tio

n
Ty

p
e

O
p

tio
n

D
es

cr
ip

tio
n

VI
N

 (
Fx

)
W

ar
eh

ou
se

 ID
 (

Fx
)

W
ar

eh
ou

se
 R

ec
ei

ve
d

D
at

e

Em
is

si
on

 T
yp

e
D

es
cr

ip
tio

n
Em

is
si

on
 T

yp
e

ID

D
ea

le
r

ID

C
us

to
m

er
 ID

W
ar

eh
ou

se
 ID

U
SA

 ID
 (

Fx
)

Z
ip

 C
od

e
(F

x)
D

ea
le

r
N

am
e

D
ea

le
r

St
re

et
 A

dd
re

ss
D

ea
le

r
C

ity
D

ea
le

r
St

at
e

D
ea

le
r

Z
ip

 C
od

e
D

ea
le

r
O

w
ne

r
N

am
e

D
ea

le
r

Se
rv

ic
e

M
an

ag
er

 N
am

e
Es

ta
bl

is
hm

en
t

D
at

e
Sa

le
s

A
re

a
ID

 (
Fx

)
C

re
di

t
H

ol
d

In
di

ca
to

r
W

ho
le

sa
le

 R
et

ai
l S

al
e

In
di

ca
to

r

A
llo

ca
tio

n
D

at
e

D
ea

le
r

Re
ce

ip
t

D
at

e
D

ea
le

r
ID

 (
Fx

)

C h a p t e r 4104

Developing the Model 105

Table 4.1 (continued)

ENTITY ATTRIBUTE DECISION RATIONALE

Automobile Suggested Retail Omit Not needed to answer any
Price Amount question

Automobile Wholesale Price Omit Not needed to answer any
Amount question

Make Make ID Retain Needed as a key and to estab-
lish relationships

Make Make Name Retain Needed to provide descriptive
label

Model Model ID Retain Needed as a key and to estab-
lish relationships

Model Model Name Retain Needed to provide descriptive
label

Series Series ID Retain Needed as a key and to estab-
lish relationships

Series Series Name Retain Needed to provide descriptive
label

Color Color ID Retain Needed as a key and to estab-
lish relationships

Color Color Name Retain Needed to provide descriptive
label

Automobile Automobile Omit Not needed to answer
Status Status Date any question

Automobile Automobile Omit Not needed to answer
Status Status Code any question

Option Option Omit Not needed to answer
Package Package ID any question

Option Option Retail Omit Not needed to answer
Package Price Amount any question

Option Option ID Omit Not needed to answer any
question

Option Option Type Omit Not needed to answer any
question

Option Option Omit Not needed to answer any
Description question

Emission Type Emission Retain Needed as a key and to
Type ID establish relationships

Emission Type Emission Type Retain Needed to provide descriptive
Description label

(continued)

Table 4.1 (continued)

ENTITY ATTRIBUTE DECISION RATIONALE

Allocated Allocation Date Omit Not needed to answer any
Automobile question

Allocated Dealer Receipt Retain Needed as a key and to
Automobile Date key and establish relationships

to establish
relationships

Sold Sale Date key Retain Needed as a key and to
Automobile and to establish establish relationships

relationships

Sold Actual Selling
Automobile Price key and

to establish
relationships

Unallocated Warehouse Omit Not needed to answer any
Automobile Received Date question

Existing Reports and Queries

Existing reports and queries provide another source of information require-
ments, but these need to be used carefully. Just because a report is regularly pro-
duced and distributed does not mean that anyone uses it. Some reports were
created to meet a specific need that no longer exists, but no one bothered to
delete the report from the production schedule. Similarly, even if a report is
used, it may contain some data that is not used. Data may be unused either
because it was included “just in case,” but was never actually needed, or because
it was needed when the report was created, but circumstances changed. So,
even though an existing report contains extraneous data, its users may have
deemed to be more expedient to leave the data in rather than try to justify the
programming changes needed to generate a more streamlined report.

Prototype

Possibly the most effective way to identify the required data elements is by cre-
ating a prototype of the ultimate product. In the section dealing with
information requirements, we indicated that a star schema may be drawn to
help users visualize how they will receive the data. The prototype consists of
deploying this design with actual data so that the users can verify its adequacy.
A properly developed and managed prototype helps business users visualize
the end result and enables them to better articulate the information needs.

The prototype exercise consists of more than just providing the user with
access to the mart and waiting for a reaction. A properly managed prototype

C h a p t e r 4106

exercise requires constant interaction between the data warehouse designer
and the user and the incorporation of appropriate revisions to the design
based on the feedback. Another critical aspect of a well-managed prototype is
knowing when to stop. Remember, the objective of the prototype is to refine
the requirements—not to provide an early production deliverable.

Source Data

Information about the anticipated data warehouse sources also provides useful
information for selecting the data elements. The source system data structures
provide information about how the data is physically stored within the systems
used for day-to-day operation. These provide a checklist, and if a user has not
requested data elements that are stored with other data elements of interest,
the data analyst should consider asking additional questions to ensure that the
additional elements are not needed. Once the elements that are needed are
determined, the elements to be included can be selected. The next section
introduces additional considerations that have an impact on this decision.

Selection Process

The selection of the data elements for actual inclusion is not a simple process.
Consider the first business question: “What is the monthly sales trend in quan-
tity and dollar amounts sold for each Make, Model, Series, and Color (MMSC)
for a specific dealer, by each Sales Area, Sales Territory, and Sales Region,
for each state and for each Metropolitan Statistical Area (MSA)?” The ques-
tion requests “sales trends,” which implies that some information from the
sales transaction, summarized on a monthly basis, is needed. Having 50–100
data elements about a sales transaction is not uncommon, and if the only
information the user wanted was sales quantity and sales amount, there could
be a significant amount of excess data in the data warehouse. Data elements in
the operational system basically fall into three groupings. One group (for exam-
ple, date, sales quantity, sales amount) consists of elements that are definitely
needed, a second group (for example, record update date and time,) consists of
data elements that are definitely not needed, and a third group (for example,
time of sale, special discounts, promotional allowances, sales tax amount)
consists of elements that might be needed. It is the third group that requires
the most attention. The question that should be asked about each element is,
“Is it reasonable to expect that this element is needed for strategic analysis?”

For many data elements, there is no definitive answer to this question. Three
major considerations are the use of the data for calculating a derived element,
the classification of the data as transactional or reference, and the structure of
the source data.

Developing the Model 107

Use of Data Element for a Derived Field

Often, users require a derived field, such as net sales amount, but do not
require each of the elements that was used to calculate the derived field.2 As a
general rule, we recommend that any element that is used in calculating a
derived field be included in the data warehouse. (It need not be included in
any data mart.) There are two major reasons for including the element. First,
the algorithm used to calculate the needed element may change, and by retain-
ing the individual components, the derived field can be recalculated for both
current views and historical views if needed. Second, business users often drill
down to the data used to calculate a needed field when they are analyzing
results, particularly if the value of the derived element is unexpected. Even
though this need is not identified initially, we should anticipate it.

Classification of Data as Transactional or Reference

Within the data warehouse, we are often interested in transactions reflect
activity over a period of time, sometimes spanning several years. We need to
recognize that users often can’t anticipate all of the data that they need from
these transactions, and we’re then faced with deciding whether or not to bring
additional elements into the data warehouse. As a general rule, with transac-
tional data, if we are in doubt, we should bring it in. There are three major rea-
sons for this, all of which deal with what it would take to retrieve the data
should we later discover we need it:

■■ The transaction may be purged from the source system. The data ware-
house retains history beyond what is retained in the operational system. If
the need for the data element is discovered after the data is purged from
the source system, it can never be recovered.

■■ The transactions occur over time. If the need for the data element is
discovered months or years after the initial construction of the data ware-
house, recovery of the data will require navigation through all the trans-
actions that transpired during the intervening time. This can be a very
significant effort, and complications may be introduced due to changes
in reference data and the resultant complexities involved in ensuring
referential integrity.

■■ Transactional data integration is generally simple. Unlike reference data,
such as customer data that may be gathered from multiple sources, individ-
ual transactions originate at only one place. Integration of transactional data
entails adding transactions from multiple files and not merging of informa-
tion within each transaction. This characteristic results in a simpler process,
and hence the impact on the development project is minimized.

C h a p t e r 4108

2 The creation of derived fields is explained in Step 3 of the data warehouse data model
development process.

The major disadvantage of bringing in the questionable elements is the vol-
ume of data. If there are millions of transactions and dozens of questionable
fields, the data warehouse tables will grow unnecessarily. An approach that
some companies use is “triage,” in which all of the transactions from the
source system are extracted and retained in an archived, offline, file. With this
approach, when an element subsequently needs to be recovered, we have a
more readily accessible source. Figure 4.5 shows how this approach can be
pursued.

Reference data is different. Often, even if we later discover that we need a data
element that we did not initially obtain, we find that the need to recover his-
tory is limited. For example, if we later discover that we need the date a deal-
ership was established, we can simply start extracting it from the current
record. Therefore, with reference data, if you are in doubt about including an
element, we recommend leaning towards excluding it. (The triage approach
can also be pursued with reference data if desired.)

Source Data Structure

The structure of the source data is another factor that should be considered. If
most of the columns from a source table are required, then serious considera-
tion should be given to including all of the elements. That approach simplifies
the extraction, transformation, and load process. Mitigating factors to adding
an element include perceptions concerning agreement on its definition and the
quality of the actual data. (If there is significant disagreement on the definition
or if the data quality is inadequate, then the analysis time and subsequent data
acquisition process development are lengthened.) If only a few of the columns
from a source table are needed, the tendency should be to exclude the remain-
ing columns.

Keep in mind that the source data structure was designed based on opera-
tional needs, and tables often contain denormalized data. For example, the
sales transaction in the operational system could contain the item description
and the customer name. This data should not be obtained from the transaction
table—it should be obtained from the reference table—unless the operational
system provides users with the ability to override the standard reference data.

The first step in creating the data warehouse model is complex, and it requires
extensive business user involvement. The tendency of some data warehouse
teams is to skip this step and just include all columns from any table that is
used to provide data. Reasons for skipping this step include a perception that
it will be easier to simply bring in all the data. That temptation should be
avoided due to the development, load, storage, and performance impacts:

Developing the Model 109

Figure 4.5 Archiving questionable data.

Ex
tr

ac
tio

n

(E
xt

ra
ct

 a
ll

el
em

en
ts

 in
se

le
ct

ed
 r

ec
or

ds
)

Te
m

p
or

ar
y

Ta
bl

e

(A
ll

el
em

en
ts

 in
se

le
ct

ed
 r

ec
or

ds
)

So
ur

ce
Tr

an
sa

ct
io

n
on

 F
ile

Te
m

p
or

ar
y

Ta
bl

e
(D

at
a

to
 b

e
lo

ad
ed

 in
to

th
e

D
W

)

D
at

a
W

ar
eh

ou
se

SO
U

R
C

E
SY

ST
EM

 E
N

V
IR

O
N

M
EN

T

C
le

an
si

ng
,

Se
le

ct
io

n,
 C

ha
ng

e
D

at
a

C
ap

tu
re

A
rc

hi
ve

 D
at

a
Lo

ad
 d

at
a

in
to

da
ta

 w
ar

eh
ou

se

A
rc

hi
ve

d
(C

om
p

le
te

)
So

ur
ce

D
at

a

Ex
tr

ac
tio

n

(E
xt

ra
ct

 a
ll

el
em

en
ts

 in
se

le
ct

ed
 r

ec
or

ds
)

Te
m

p
or

ar
y

Ta
bl

e

(A
ll

el
em

en
ts

 in
se

le
ct

ed
 r

ec
or

ds
)

So
ur

ce
Tr

an
sa

ct
io

n
Fi

le

ST
A

G
IN

G
 A

R
EA

O
FF

-L
IN

E
ST

O
R

A
G

E
D

A
TA

 W
A

R
EH

O
U

SE

C h a p t e r 4110

Development impact. Each data element included in the data warehouse
model must be understood. It must be defined. Its quality must be ascer-
tained, and appropriate cleansing logic needs to be developed. If there are
multiple potential sources, integration rules need to be established and
subsequently coded. If it is a simple item (for example, sales tax amount),
then these steps may be fairly simple. If it is a complex or controversial
item, these steps may require extensive discussions and compromises. If
it is unlikely that the element will ever be needed, then the development
team should not waste its time.

Load impact. Each data element needs to be loaded into the data ware-
house. Sometimes the processing window is tight and the inclusion of the
additional elements adds to the required processing time.

Storage impact. Each data element is stored in the data warehouse and, to
make matters worse, its history is stored. The stored data requires addi-
tional disk space and also adds to the backup and recovery processing
times.

Performance impact. Inclusion of the additional data elements widens the
rows of the tables and, if the elements are textual, the rows may be sub-
stantially widened. The increased table size could have a substantial
impact on the performance of some load processing as well as the delivery
of the data to the data marts.

With the completion of the first step, the basic scope of the data warehouse
data model for this iteration is established, and the model should contain all
the elements needed to support the business questions being asked.

TIP
The data modeler needs to always keep in mind the objectives and scope of the data
warehouse and user these to guide all actions. The first step is one of the most criti-
cal in that regard since it has a significant impact on the data warehouse project’s
duration and the eventual data warehouse operating cost and performance.

Step 2: Add Time to the Key
The business data model is a “point-in-time” model. That is, the model por-
trays the business at the present. The data warehouse data model, on the other
hand, is an “over-time” model. An “over-time” model portrays an enterprise
with a historical perspective. Since the data warehouse is time variant (that is,
it has a historical perspective or a series of snapshots), this is the type of model
that is appropriate for the data warehouse. The historical perspective is
another reason for the use of an E-R model for the data warehouse. In an E-R
model, the historical perspective is achieved for each entity of interest by

Developing the Model 111

merely adding time to the key of the entity. The model responds well to this
addition, and since its objective is not ease of use by an end user, we need not
concern ourselves with the potential complexity of queries. We gain an advan-
tage in that we can easily create a dimension with the most recent view of a
hierarchy or one with the historical view, based on the user’s needs.

With a dimensional model, several entities may be compressed into one to rep-
resent a hierarchy. When we add the time aspect to the key of this dimension,
we create a “slowly changing dimension,” and a new row is created whenever
any data for any of the levels of the hierarchy changes. Since a compound key
for each dimensional is not advisable due to the impact on the length of the
key of the fact table, a surrogate key is then used to gain a unique identifier for
each row. While this can correctly represent the data, when we force a slowly
changing dimension unnecessarily, we needlessly complicate queries for the
users who require only the current view of the hierarchy. Remember, the pri-
mary objective of the data mart design and of the dimensional model is to
make access easier for the end user.

The second step in developing the data warehouse data model adds the time
component (for example, date and possibly time) to the key of each entity to
provide the historical perspective, as shown in Figure 4.6. (For our data ware-
house, we chose to take monthly snapshots, and hence the key is “Month Year.”)

As the second step in the transformation process, it also reshapes the model. In
addition to requiring a time component in the key of each entity, the inclusion
of history also changes some relationships from one-to-many to many-to-
many, as shown in Figure 4.7. On the left side of Figure 4.7, we depict the busi-
ness rule that at a point in time a Sales Territory has many Sales Areas, and that
a Sales Area belongs to a single Sales Territory. In the data warehouse, we add
the time component for each of these two entities, as shown in the right side of
Figure 4.7. We may go through a period of time in which there are no changes
to these two entities, but during which a Sales Area is transferred from one
Sales Territory to another. The resultant many-to-many relationship is resolved
with an associative entity that contains the effective date as part of its key.
(Other ways of handling this situation are explained later in this section.)

Figure 4.6 Adding the time component to the key.

Dealer Name
Dealer City
Dealer State
Dealer Zip Code
Credit Hold Indicator
Wholesale Retail Sale Indicator
Credit Hold Days

Dealer ID

Dealer

Dealer Name
Dealer City
Dealer State
Dealer Zip Code
Credit Hold Indicator
Wholesale Retail Sale Indicator
Credit Hold Days

Dealer ID
Month Year

DW Dealer

C h a p t e r 4112

Figure 4.7 Relationship transformation.

Some entities may have attributes that can never change. While the theory dic-
tates that the time component should be added to the key of every entity, if the
data can never change, there can’t be any history, and hence there is an excep-
tion to the rule. In Figure 4.8, we have the entity for Automobile. Within this
entity, the only attributes of interest are the VIN, the identifiers for the Make,

Sa
le

s
Te

rr
ito

ry
 ID

Sa
le

s
Te

rr
ito

ry

Sa
le

s
Te

rr
ito

ry
 N

am
e

Sa
le

s
A

re
a

ID
Sa

le
s

Te
rr

ito
ry

 ID
 (

FK
)

Sa
le

s
A

re
a

Sa
le

s
A

re
a

N
am

e

Sa
le

s
Te

rr
ito

ry
 ID

M
on

th
 Y

ea
r

Sa
le

s
Te

rr
ito

ry

Sa
le

s
Te

rr
ito

ry
 N

am
e

Sa
le

s
Te

rr
ito

ry
 ID

M
on

th
 Y

ea
r

Sa
le

s
Te

rr
ito

ry

Sa
le

s
Te

rr
ito

ry
 N

am
e

Sa
le

s
Te

rr
ito

ry
 ID

 (
FK

)
Sa

le
s

Te
rr

ito
ry

 M
on

th
 Y

ea
r

(F
K)

Sa
le

s
A

re
a

ID
 (

FK
)

Sa
le

s
A

re
a

M
on

th
 Y

ea
r

(F
K)

Ef
fe

ct
iv

e
D

at
e

Sa
le

s
Te

rr
ito

ry
 A

re
a

Sa
le

s
A

re
a

ID
M

on
th

 Y
ea

r

Sa
le

s
A

re
a

Sa
le

s
A

re
a

N
am

e

Sa
le

s
A

re
a

ID
M

on
th

 Y
ea

r

Sa
le

s
A

re
a

Sa
le

s
A

re
a

N
am

e

Developing the Model 113

Model, Series, Color, Emission Type, and Factory. Once a vehicle is manufac-
tured, none of these can change from a business perspective. Hence, within the
data warehouse, the only way that the data would change is if there were a
data entry problem. If we are to retain a history of all views of the automobile,
then the time component needs to be in the key; otherwise, it is unnecessary.

The time component of the entities can take one of two forms. For data that is
a snapshot (for example, number of customers or inventory level), the addition
to the key is a point in time, such as a date. For data that pertains to a span of
time (for example, number of new customers or number of items received into
inventory), the addition to the key is a period of time. The distinction is very
important and is sometimes overlooked. As Figure 4.8 shows, some of the data
in the table on the left is for a point in time and some is for a period of time. The
date shown in the key (February, for example) actually has two meanings, and
therefore violates basic data-modeling rules. For some of the data, it means a
particular date in February and, for other data, it means the full month of Feb-
ruary. In the data warehouse, two entities would be created, as shown on the
right of Figure 4.8. Meta data is needed to explain the specific meaning, and
additional care must be taken to ensure that even within each of the two resul-
tant entities, the definition of the date is consistent. For example, it would be
inappropriate to use February to mean a fiscal month for some data and a cal-
endar month for other data within the same entity.

One of the practical challenges facing the data warehouse team is capturing
each historical occurrence of interest and the associated date or time of the
occurrence. When the source system does not capture the date or time of a
change, it limits our ability to capture each occurrence of history in the data
warehouse. If the source system product file has no date, the best that the
data warehouse can do is reflect an effective date equivalent to the date that
data was extracted from the system. If a more precise date is needed, then an
extraction process that could normally have been executed monthly may need
to be executed on a daily or weekly basis. For some data, even a daily extrac-
tion won’t be sufficient.

If multiple changes can be made during a single day and each change must be
captured, then a log file may need to be used or modifications may be needed
in the source system. When this occurs, the data warehouse team should
ensure that the business community understands the cost of capturing the
data and that the business value is sufficient. The team must further ensure
that the model definitions accurately reflect the nature of the history. If the
source system needs to be changed, then a separate project should be initiated;
the data warehouse team should not absorb that effort into its project.

C h a p t e r 4114

Figure 4.8 Forms of the time component.

Capturing Historical Data

Adding a time component to the key enables a distinct record to be created
each time a new snapshot is taken and each time data for a new period is cap-
tured. Inclusion of this time component has a significant design implication.
Since the entity may be the parent in some one-to-many relationships, the gen-
erated foreign key would now include the time component. This has a number
of nasty results, as shown in the first situation in Figure 4.9. It generates a new
occurrence for every child, even if no data in the child entity changed. This
happens because there is a change in the content of the time component of the
foreign key. This condition is compounded if an entity is the child of several
parent entities. Each of the parents generates a foreign key with its governing
time period. This happens regardless of whether or not the change in the par-
ent creates any change in the child.

There are five potential approaches that can be chosen, as shown in Figure 4.9:

■■ Generate the dual foreign key, as previously described.

■■ Generate a serial key in the parent entity for each occurrence and store the
identifier and time component as a nonkey attribute within the entity.
This scenario reduces the number of attributes generated as foreign keys
but still generates a new instance of the child each time there is a change
in a parent entity.

■■ Programmatically enforce referential integrity rather than using the DBMS
to enforce it, and only enforce referential integrity for the identifier. This
approach requires additional programming effort to ensure referential
integrity. (In the figure, the date is made into a nonkey attribute.)

Logical Data Model Data Warehouse Data Model
DW Dealer

Effective Date

DW Dealer Sales
Dealer_ID
Month_Year

Dealer Sales Volume
Dealer Order Count
Dealer Sales Margin

Effective Period

Dealer_ID

Dealer_Name
Dealer_Description
Dealer_Street_Address
Dealer_City
Dealer_State
Dealer_ Zipcode
Dealer_Owner_Name
Dealer_Service_Manager
Establishment_Date
Sales_Area_ID
Credit_Hold_Indicator
Wholesale/Retail_Indicator

Dealer

Dealer_ID
From Snapshot Date

To Snapshot Date
Dealer_Name
Dealer_Description
Dealer_City
Dealer_State
Wholesale/Retail_Indicator
Sales_Area_ID

Developing the Model 115

Figure 4.9 Approaches for reflecting historical perspective.

Sa
le

s
Re

gi
on

Sa
le

s
Re

gi
on

 ID
Sa

le
s

Re
gi

on
 M

on
th

 Y
ea

r
Sa

le
s

Re
gi

on
 N

am
e

Sa
le

s
Re

gi
on

 R
an

k
Sa

le
s

Re
gi

on
 S

q
ua

re
 M

ile
s

Sa
le

s
Te

rr
ito

ry
Sa

le
s

Te
rr

ito
ry

 ID
Sa

le
s

Te
rr

ito
ry

 M
on

th
 Y

ea
r

Sa
le

s
Re

gi
on

 ID
 (

FK
)

Sa
le

s
Re

gi
on

 M
on

th
 Y

ea
r

(F
K)

Sa
le

s
Te

rr
ito

ry
 N

am
e

Sa
le

s
Te

rr
ito

ry
 R

an
k

Sa
le

s
Te

rr
ito

ry
 S

q
ua

re
 M

ile
s

Sa
le

s
A

re
a

Sa
le

s
A

re
a

ID
Sa

le
s

A
re

a
M

on
th

 Y
ea

r
Sa

le
s

Te
rr

ito
ry

 ID
 (

FK
)

Sa
le

s
Te

rr
ito

ry
 M

on
th

 Y
ea

r
(F

K)
Sa

le
s

A
re

a
N

am
e

Sa
le

s
A

re
a

Ra
nk

Sa
le

s
A

re
a

Sq
ua

re
 M

ile
s

Sa
le

s
Re

gi
on

Sa
le

s
Re

gi
on

 ID
Sa

le
s

Re
gi

on
 N

am
e

Sa
le

s
Re

gi
on

 M
on

th
 Y

ea
r

Sa
le

s
Re

gi
on

 R
an

k
Sa

le
s

Re
gi

on
 S

q
ua

re
 M

ile
s

Sa
le

s
Te

rr
ito

ry
Sa

le
s

Te
rr

ito
ry

 ID
Sa

le
s

Re
gi

on
 ID

 (
FK

)
Sa

le
s

Te
rr

ito
ry

 N
am

e
Sa

le
s

Te
rr

ito
ry

 M
on

th
 Y

ea
r

Sa
le

s
Te

rr
ito

ry
 R

an
k

Sa
le

s
Te

rr
ito

ry
 S

q
ua

re
 M

ile
s

Sa
le

s
A

re
a

Sa
le

s
A

re
a

ID
Sa

le
s

Te
rr

ito
ry

 ID
 (

FK
)

Sa
le

s
A

re
a

N
am

e
Sa

le
s

A
re

a
M

on
th

 Y
ea

r
Sa

le
s

A
re

a
Ra

nk
Sa

le
s

A
re

a
Sq

ua
re

 M
ile

s

Sa
le

s
Re

gi
on

Sa
le

s
Re

gi
on

 ID
Sa

le
s

Re
gi

on
 N

am
e

Sa
le

s
Re

gi
on

 M
on

th
 Y

ea
r

Sa
le

s
Re

gi
on

 R
an

k
Sa

le
s

Re
gi

on
 S

q
ua

re
 M

ile
s

Sa
le

s
Re

gi
on

 H
is

to
ry

Sa
le

s
Re

gi
on

 M
on

th
 Y

ea
r

Sa
le

s
Re

gi
on

 ID
 (

FK
)

Sa
le

s
Re

gi
on

 N
am

e
Sa

le
s

Re
gi

on
 R

an
k

Sa
le

s
Re

gi
on

 S
q

ua
re

 M
ile

s

Sa
le

s
Te

rr
ito

ry
 H

is
to

ry
Sa

le
s

Te
rr

ito
ry

 M
on

th
 Y

ea
r

Sa
le

s
Te

rr
ito

ry
 ID

 (
FK

)
Sa

le
s

Te
rr

ito
ry

 N
am

e
Sa

le
s

Te
rr

ito
ry

 R
an

k
Sa

le
s

Te
rr

ito
ry

 S
q

ua
re

 M
ile

s

Sa
le

s
A

re
a

H
is

to
ry

Sa
le

s
A

re
a

M
on

th
 Y

ea
r

Sa
le

s
A

re
a

ID
 (

FK
)

Sa
le

s
A

re
a

N
am

e
Sa

le
s

A
re

a
Ra

nk
Sa

le
s

A
re

a
Sq

ua
re

 M
ile

s

Sa
le

s
Te

rr
ito

ry
Sa

le
s

Te
rr

ito
ry

 ID
Sa

le
s

Re
gi

on
 ID

 (
FK

)
Sa

le
s

Te
rr

ito
ry

 N
am

e
Sa

le
s

Te
rr

ito
ry

 M
on

th
 Y

ea
r

Sa
le

s
Te

rr
ito

ry
 R

an
k

Sa
le

s
Te

rr
ito

ry
 S

q
ua

re
 M

ile
s

Sa
le

s
A

re
a

Sa
le

s
A

re
a

ID
Sa

le
s

Te
rr

ito
ry

 ID
 (

FK
)

Sa
le

s
A

re
a

N
am

e
Sa

le
s

A
re

a
M

on
th

 Y
ea

r
Sa

le
s

A
re

a
Ra

nk
Sa

le
s

A
re

a
Sq

ua
re

 M
ile

s

Sa
le

s
Re

gi
on

Sa
le

s
Re

gi
on

 ID
Sa

le
s

Re
gi

on
 N

am
e

Sa
le

s
Re

gi
on

 M
on

th
 Y

ea
r

Sa
le

s
Re

gi
on

 H
is

to
ry

Sa
le

s
Re

gi
on

 M
on

th
 Y

ea
r

Sa
le

s
Re

gi
on

 ID
 (

FK
)

Sa
le

s
Re

gi
on

 R
an

k
Sa

le
s

Re
gi

on
 S

q
ua

re
 M

ile
s

Sa
le

s
Te

rr
ito

ry
 H

is
to

ry
Sa

le
s

Te
rr

ito
ry

 M
on

th
 Y

ea
r

Sa
le

s
Te

rr
ito

ry
 ID

 (
FK

)
Sa

le
s

Te
rr

ito
ry

 R
an

k
Sa

le
s

Te
rr

ito
ry

 S
q

ua
re

 M
ile

s

Sa
le

s
A

re
a

H
is

to
ry

Sa
le

s
A

re
a

M
on

th
 Y

ea
r

Sa
le

s
A

re
a

ID
 (

FK
)

Sa
le

s
A

re
a

Ra
nk

Sa
le

s
A

re
a

Sq
ua

re
 M

ile
s

Sa
le

s
Te

rr
ito

ry
Sa

le
s

Te
rr

ito
ry

 ID
Sa

le
s

Re
gi

on
 ID

 (
FK

)
Sa

le
s

Te
rr

ito
ry

 N
am

e
Sa

le
s

Te
rr

ito
ry

 M
on

th
 Y

ea
r

Sa
le

s
A

re
a

Sa
le

s
A

re
a

ID
Sa

le
s

Te
rr

ito
ry

 ID
 (

FK
)

Sa
le

s
A

re
a

N
am

e
Sa

le
s

A
re

a
M

on
th

 Y
ea

r

Sa
le

s
Re

gi
on

Sa
le

s
Re

gi
on

 K
ey

Sa
le

s
Re

gi
on

 N
am

e
Sa

le
s

Re
gi

on
 ID

Sa
le

s
Re

gi
on

 M
on

th
 Y

ea
r

Sa
le

s
Re

gi
on

 R
an

k
Sa

le
s

Re
gi

on
 S

q
ua

re
 M

ile
s

Sa
le

s
Te

rr
ito

ry
Sa

le
s

Te
rr

ito
ry

 K
ey

Sa
le

s
Re

gi
on

 K
ey

 (
FK

)
Sa

le
s

Te
rr

ito
ry

 N
am

e
Sa

le
s

Te
rr

ito
ry

 ID
Sa

le
s

Te
rr

ito
ry

 M
on

th
 Y

ea
r

Sa
le

s
Te

rr
ito

ry
 R

an
k

Sa
le

s
Te

rr
ito

ry
 S

q
ua

re
 M

ile
s

Sa
le

s
A

re
a

Su
rr

o
g

at
e

ke
y

D
ua

l c
as

ca
d

ed
fo

re
ig

n
 k

ey
Pr

o
g

ra
m

m
at

ic
re

fe
re

n
ti

al
in

te
g

ri
ty

en
fo

rc
em

en
t

Se
p

ar
at

e
h

is
to

ry
 e

n
ti

ty
Se

g
re

g
at

ed
d

yn
am

ic
 d

at
a

Sa
le

s
A

re
a

Ke
y

Sa
le

s
Te

rr
ito

ry
 K

ey
 (

FK
)

Sa
le

s
A

re
a

N
am

e
Sa

le
s

A
re

a
ID

Sa
le

s
A

re
a

M
on

th
 Y

ea
r

Sa
le

s
A

re
a

Ra
nk

Sa
le

s
A

re
a

Sq
ua

re
 M

ile
s

C h a p t e r 4116

■■ Segregate the data into an entity that contains the history and another
entity that only contains the current data. The relationships would only
emanate from the table with the current data, and hence would not
include the time component. The referential integrity for the historical
data would be programmatically enforced by virtue of records being cre-
ated as copies of records in the current data entity.

■■ Maintain the base entity with only data elements that can never change,
and create an attributive entity with the attributes that could change over
time. This approach enables the key of the base entity to consist solely of
the identifier, and since the attributive entity has no children, the date
component of the key does not cascade. (In the figure, the presumption is
that the name never changes, but that the rank and square miles do.)

Any of these approaches is viable, and the modeler may choose different
approaches within the same data warehouse. The volatility of the data would
be a major consideration, with a tendency to use the fourth or fifth option as
the data volatility increases. The third approach is the easiest from a data-
modeling perspective; it does require programmatic enforcement of referential
integrity. We recommend using the third or fourth approach as your default
choice. Another consideration is whether or not the entity is part of a hierar-
chy, and that is explained further in the next section.

Capturing Historical Relationships

Relationships also change over time. The result of these changes is the creation
of a many-to-many relationship. Within a third normal form model, pre-
dictable hierarchies are represented by a series of entities with successive one-
to-many relationships, as shown on the left in Figure 4.9. In that figure, a Sales
Region contains one or more Sales Territories, and each Sales Territory con-
tains one or more Sales Areas. While this may be true at a particular point in
time, the historical perspective requires the model to handle situations in
which a Sales Area may be moved from one Sales Territory to another and a
Sales Territory may be moved from one Sales Region to another. This condition
can be handled in one of two ways.

One way is to insert an associative entity to resolve the many-to-many rela-
tionship. This approach is useful if the historical information about the indi-
vidual entities is handled by the fourth approach described in the previous
section, and the fourth scenario described in Figure 4.9 is expanded to include
the associative entities on the right portion of Figure 4.7. The left portion of
Figure 4.9 shows a different method. In this case, the cascading of the date
from the parent entity to the child entity may be done either to reflect a change
in the data of the parent or to reflect a change in the relationship. In other

Developing the Model 117

words, when a Sales Area is reassigned to a different Sales Territory, a new
record is generated for the Sales Area, with the only change being the time
component of the foreign key generated by the relationship.

The approach to be taken for capturing historical relationships is dependent
on two primary factors. One factor is the number of levels in the hierarchies.
As the number of hierarchies increases, preference should be given to using
the associative entity since a change in the highest level of the hierarchy gen-
erates a new entity for each subservient level. The second factor is the relative
stability of the entity data versus the relationship data. If the entity data (for
example, Sales Area description) is more stable than the relationship (for
example, Sales Territory to which the Sales Area is assigned), then preference
should be given to using the associative entity since few changes in the base
entities would be needed. If the relationship data is more stable, then prefer-
ence should be given to cascading the foreign key since the instances of cas-
cading keys are minimized.

Dimensional Model Considerations

In the E-R model, each occurrence of history of interest can be captured and
readily related to the business item of interest. In a dimensional model, the
handling of history depends on whether it relates to the transaction (with key
information stored in the fact table) or the reference data (stored in the
dimension table). Changes to reference data were discussed earlier; any
change of interest to the data of or relationship within a hierarchy covered by
a dimension table requires another entry and creates a slowly changing
dimension.

For transaction data, the impact differs depending upon how the data is
stored. If the data is stored in a transaction table with a key of transaction iden-
tifier, the dimensional model and E-R model are equivalent. The transaction
table conforms to rules for E-R modeling since it has a key that uniquely iden-
tifies the transaction. A second component of the key can be added to indicate
the date of the view of the transaction. In a dimensional model, when data is
stored this way, we need to go through another step of creating a fact table
prior to making the data accessible to the user. If the data is already stored in a
fact table, the complexity depends on whether or not any of the keys change.
If we are merely changing the order quantity, none of the keys change, and
hence we can provide a second (or, if the business rules dictate) a replacement
row. If we are substituting a different item for delivery, then the key to the fact
table actually changes since it includes a reference to the item being ordered.
Handling this type of change is more complex in a dimensional model. When
the E-R model is built first, we can use it to generate the appropriate dimen-
sional model in the data mart based on each user group’s need for data.

C h a p t e r 4118

Step 3: Add Derived Data
The third step in developing the data warehouse model is to add derived data.
Derived data is data that results from performing a mathematical operation on
one or more other data elements. Derived data is incorporated into the data
warehouse model for two major reasons—to ensure consistency, and to
improve data delivery performance. The reason that this step is third is the
business impact—to ensure consistency; performance benefits are secondary.
(If not for the business impact, this would be one of the performance related
steps.) One of the common objectives of a data warehouse is to provide data in
a way so that everyone has the same facts—and the same understanding of
those facts. A field such as “net sales amount” can have any number of mean-
ings. Items that may be included or excluded in the definition include special
discounts, employee discounts, and sales tax. If a sales representative is held
accountable for meeting a sales goal, it is extremely important that everyone
understands what is included and excluded in the calculation.

Another example of a derived field is data that is in the date entity. Many busi-
nesses, such as manufacturers and retailers, for example, are very concerned
with the Christmas shopping season. While it ends on the same date (Decem-
ber 24) each year, the beginning of the season varies since it starts on the Fri-
day after Thanksgiving. A derived field of “Christmas Season Indicator”
included in the date table ensures that every sale can quickly be classified as
being in or out of that season, and that year-to-year comparisons can be made
simply without needing to look up the specific dates for the season start each
year.

The number of days in the month is another field that could have multiple
meanings and this number is often used as a divisor in calculations. The most
obvious question is whether or not to include Saturdays and Sundays. Simi-
larly, inclusion or exclusion of holidays is also an option. Exclusion of holidays
presents yet another question—which holidays are excluded? Further, if the
company is global, is the inclusion of a holiday dependent on the country? It
may turn out that several derived data elements are needed.

In the Zenith Automobile Company example, we are interested in the number
of days that a dealer is placed on “credit hold.” If a Dealer goes on credit hold
on December 20, 2002 and is removed from credit hold on January 6, 2003, the
number of days can vary between 0 and 18, depending on the criteria for
including or excluding days, as shown in Figure 4.10. The considerations
include:

■■ Is the first day excluded?

■■ Is the last day excluded?

■■ Are Saturdays excluded?

Developing the Model 119

■■ Are Sundays excluded?

■■ Are holidays excluded? If so, what are the holidays?

■■ Are factory shutdown days excluded? If so, what are they?

By adding an attribute of Credit Days Quantity to the Dealer entity (which also
has the month as part of its key), everyone will be using the same definition.

When it comes to derived data, the complexity lies in the business definition or
calculation much more so than in the technical solution. The business repre-
sentatives must agree on the derivation, and this may require extensive dis-
cussions, particularly if people require more customized calculations. In an
article written in ComputerWorld in October 1997, Tom Davenport observed
that, as the importance of a term increases, the number of opinions on its
meaning increases and, to compound the problem, those opinions will be
more strongly held. The third step of creating the data warehouse model
resolves those definitional differences for derived data by explicitly stating the
calculation. If the formula for a derived attribute is controversial, the modeler
may choose to put a placeholder in the model (that is, create the attribute) and
address the formula as a non-critical-path activity since the definition of the
attribute is unlikely to have a significant impact on the structure of the model.
There may be an impact on the datatype, since the precision of the value may
be in question, but that is addressed in the technology model.

Figure 4.10 Derived data—number of days.

DECEMBER 2002

S M T W T F S

1 2 3 4 5 6 7

29 30 31

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

JANUARY 2003

S M T W T F S

1 2 3 4

5 6 7

29 30 31

8 9 10 11

12 13 14 15 16 17 18

19 20 21 22 23 24 25

26 27 28

C h a p t e r 4120

Creating a derived field does not usually save disk space since each of the
components used in the calculation may still be stored, as noted in Step 1.
Using derived data improves data delivery performance at the expense of load
performance. When a derived field used in multiple data marts, calculating it
during the load process reduces the burden on the data delivery process. Since
most end-user access to data is done at the data mart level, another approach
is to either calculate it during the data delivery process that builds the data
marts or to calculate it in the end-user tool. If the derived field is needed to
ensure consistency, preference should be given to storing it in the data ware-
house. There are two major reasons for this. First, if the data is needed in sev-
eral data marts, the derivation calculation is only performed once. The second
reason is of great significance if end users can build their own data marts. By
including the derived data in the data warehouse, even when construction of
the marts is distributed, all users retain the same definitions and derivation
algorithms.

Step 4: Determine Granularity Level
The fourth step in developing the data warehouse model is to adjust the gran-
ularity, or level of detail, of the data warehouse. The granularity level is signif-
icant from a business, technical, and project perspective. From a business
perspective, it dictates the potential capability and flexibility of the data ware-
house, regardless of the initially deployed functions. Without a subsequent
change to the granularity level, the warehouse will never be able to answer
questions that require details below the adopted level. From a technical per-
spective, it is one of the major determinants of the data warehouse size and
hence has a significant impact on its operating cost and performance. From a
project perspective, the granularity level affects the amount of work that the
project team will need to perform to create the data warehouse since as the
granularity level gets into greater and greater levels of detail, the project team
needs to deal with more data attributes and their relationships. Additionally,
if the granularity level increases sufficiently, a relatively small data ware-
house may become extremely large, and this requires additional technical
considerations.

Some people have a tendency to establish the level of granularity based on the
questions being asked. If this is done for a retail store for which the business
users only requested information on hourly sales, then we would be collecting
and summarizing data for each hour. We would never, however, be in a
position to answer questions concerning individual sales transactions, and
would not be able to perform shopping basket analysis to determine what
products sell with other products. On the other hand, if we choose to capture
data at the sales transaction level, we would have significantly more data in
the warehouse.

Developing the Model 121

There are several factors that affect the level of granularity of data in the
warehouse:

Current business need. The primary determining factor should be the busi-
ness need. At a minimum, the level of granularity must be sufficient to pro-
vide answers to each and every business question being addressed within
the scope of the data warehouse iteration. Providing a greater level of
granularity adds to the cost of the warehouse and the development project
and, if the business does not need the details, the increased costs add no
business value.

Anticipated business need. The future business needs should also be con-
sidered. A common scenario is for the initial data warehouse implementa-
tion to focus on monthly data, with an intention to eventually obtain daily
data. If only monthly data is captured, the company may never be able to
obtain the daily granularity that is subsequently requested. Therefore, if
the interview process reveals a need for daily data at some point in the
future, it should be considered in the data warehouse design. The key
word in the previous sentence is “considered” —before including the extra
detail, the business representatives should be consulted to ensure that they
perceive a future business value. As we described in Step 1, an alternate
approach is to build the data warehouse for the data we know we need,
but to build and extract data to accommodate future requirements.

Extended business need. Within any industry, there are many data ware-
houses already in production. Another determining factor for the level of
granularity is to get information about the level of granularity that is typi-
cal for your industry. For example, in the retail industry, while there are a
lot of questions that can be answered with data accumulated at an hourly
interval, retailers often maintain data at the transactional level for other
analyses. However, just because others in the industry capture a particular
granularity level does not mean that it should be captured but the modeler
and business representative should consider this in making the decision.

Data mining need. While the business people may not ask questions that
require a display of detailed data, some data mining requests require sig-
nificant details. For example, if the business would like to know which
products sell with other products, analysis of individual transactions is
needed.

Derived data need. Derived data uses other data elements in the calcula-
tion. Unless there is a substantial increase in cost and development time,
the chosen granularity level should accommodate storing all of the ele-
ments used to derive other data elements.

C h a p t e r 4122

Operational system granularity. Another factor that affects the granularity
of the data stored in the warehouse is the level of detail available in the
operational source systems. Simply put, if the source system doesn’t have
it, the data warehouse can’t get it. This seems rather obvious, but there are
intricacies that need to be considered. For example, when there are multi-
ple source systems for the same data, it’s possible that the level of granu-
larity among these systems varies. One system may contain each transaction,
while another may only contain monthly results. The data warehouse team
needs to determine whether to pull data at the lowest common level so
that all the data merges well together, or to pull data from each system
based on its available granularity so that the most data is available. If we
only pull data at the lowest common denominator level, then we would
only receive monthly data and would lose the details that are available
within other systems. If we load data from each source based on its granu-
larity level, then care must be taken in using the data. Since the end users
are not directly accessing the data warehouse, they are shielded from some
of the differences by the way that the data marts are designed and loaded
for them. The meta data provided with the data marts needs to explicitly
explain the data that is included or excluded. This is another advantage of
segregating the functionality of the data warehouse and the data marts.

Data acquisition performance. The level of granularity may (or may not)
significantly impact the data acquisition performance. Even if the data
warehouse granularity is summarized to a weekly level, the extract process
may still need to include the individual transactions since that’s the way
the data is stored in the source systems, and it may be easier to obtain data
in that manner. During the data acquisition process, the appropriate granu-
larity would be created for the data warehouse. If there is a significant dif-
ference in the data volume, the load process is impacted by the level of
granularity, since that determines what needs to be brought into the data
warehouse.

Storage cost. The level of granularity has a significant impact on cost. If a
retailer has 1,000 stores and the average store has 1,500 sales transactions per
day, each of which involves 10 items, a transaction-detail-level data ware-
house would store 15,000,000 rows per day. If an average of 1,000 different
products were sold in a store each day, a data warehouse that has a granu-
larity level of store, product and day would have 1,000,000 rows per day.

Administration. The inclusion of additional detail in the data warehouse
impacts the data warehouse administration activities as well. The produc-
tion data warehouse needs to be periodically backed up and, if there is
more detail, the backup routines require more time. Further, if the detailed

Developing the Model 123

data is only needed for 13 months, after which data could be at a higher
level of granularity, then the archival process needs to deal with periodi-
cally purging some of the data from the data warehouse so that the data is
not retained online.

This fourth step needs to be performed in conjunction with the first step—
selecting the data of interest. That first step becomes increasingly important
when a greater (that is, more detailed) granularity level is needed. For a retail
company with 1,000,000 transactions per day, each attribute that is retained is
multiplied by that number and the ramifications of retaining the extraneous
data elements become severe.

The fourth step is the last step that is a requirement to ensure that the data
warehouse meets the business needs. The remaining steps are all important
but, even if they are not performed, the data warehouse should be able to meet
the business needs. These next steps are all designed to either reduce the cost
or improve the performance of the overall data warehouse environment.

TIP
If the data warehouse is relatively small, the data warehouse developers should con-
sider moving forward with creation of the first data mart after completing only the
first four steps. While the data delivery process performance may not be optimal,
enough of the data warehouse will have been created to deliver the needed busi-
ness information, and the users can gain experience while the performance-related
improvements are being developed. Based on the data delivery process perfor-
mance, the appropriate steps from the last four could then be pursued.

Step 5: Summarize Data
The fifth step in developing the data warehouse model is to create summa-
rized data. The creation of the summarized data may not save disk space—it’s
possible that the details that are used to create the summaries will continue to
be maintained. It will, however, improve the performance of the data delivery
process. The most common summarization criterion is time since data in the
warehouse typically represents either a point in time (for example, the number
of items in inventory at the end of the day) or a period of time (for example, the
quantity of an item sold during a day). Some of the benefits that summarized
data provides include reductions in the online storage requirements (details
may be stored in alternate storage devices), standardization of analysis, and
improved data delivery performance. The five types of summaries are simple

C h a p t e r 4124

cumulations, rolling summaries, simple direct files, continuous files, and ver-
tical summaries.

Summaries for Period of Time Data

Simple cumulations and rolling summaries apply to data that pertains to a
period of time. Simple cumulations represent the summation of data over one
of its attributes, such as time. For example, a daily sales summary provides a
summary of all sales for the day across the common ways that people access it.
If people often need to have sales quantity and amounts by day, salesperson,
store, and product, the summary table in Figure 4.11 could be provided to ease
the burden of processing on the data delivery process.

A rolling summary provides sales information for a consistent period of time.
For example, a rolling weekly summary provides the sales information for the
previous week, with the 7-day period varying in its end date, as shown in Fig-
ure 4.12.

Figure 4.11 Simple cumulation.

Date QuantityProduct Sales $

Jan 2 A 6 $3.00
Jan 2 B 7 $7.00
Jan 2 A 8 $4.00
Jan 2 B 4 $4.00

Jan 3 A 7 $3.50
Jan 3 A 4 $2.00

Jan 3 A 8 $4.00
Jan 3 B 5 $5.00
Jan 4 A 8 $4.00
Jan 4 A 9 $4.50
Jan 4 A 8 $4.00
Jan 7 B 8 $8.00
Jan 7 B 9 $9.00
Jan 8 A 8 $4.00
Jan 8 A 8 $4.00
Jan 8 B 9 $9.00

Sales Transactions

Jan 9 A 6 $3.00
Jan 9 B 7 $7.00
Jan 9 A 8 $4.00
Jan 10 B 4 $4.00

Jan 10 A 7 $3.50
Jan 10 A 4 $2.00

Jan 10 A 8 $4.00
Jan 11 B 5 $5.00
Jan 11 A 8 $4.00
Jan 11 A 9 $4.50
Jan 14 A 8 $4.00
Jan 14 B 8 $8.00
Jan 14 B 9 $9.00
Jan 14 A 8 $4.00
Jan 14 A 8 $4.00
Jan 14 A 9 $4.50

Date QuantityProduct Sales $

Jan 2 A 14 $7.00
Jan 2 B 11 $11.00

Jan 3 B 5 $5.00
Jan 3 A 19 $9.50

Jan 4 A 27 $13.50
Jan 7 B 17 $17.00
Jan 8 A 16 $8.00
Jan 8 B 9 $9.00

Daily Sales

Jan 9 A 14 $7.00
Jan 9 B 7 $7.00
Jan 10 A 19 $9.50
Jan 10 B 4 $4.00
Jan 11 A 17 $8.50
Jan 11 B 5 $5.00
Jan 14 A 33 $16.50
Jan 14 B 17 $17.00

Developing the Model 125

Figure 4.12 Rolling summary.

Summaries for Snapshot Data

The simple direct summary and continuous summary apply to snapshot data
or data that is episodic, or pertains to a point in time. The simple direct file,
shown on the top-right of Figure 4.13, provides the value of the data of inter-
est at regular time intervals. The continuous file, shown on the bottom-right of
Figure 4.13, generates a new record only when a value changes. Factors to con-
sider for selecting between these two types of summaries are the data volatil-
ity and the usage pattern. For data that is destined to eventually migrate to a
data mart that provides monthly information, the continuous file is a good
candidate if the data is relatively stable. With the continuous file, there will be
fewer records generated, but the data delivery algorithm will need to deter-
mine the month based on the effective (and possibly expiration) date. With the
simple direct file, a new record is generated for each instance each and every
month. For stable data, this creates extraneous records. If the data mart needs
only a current view of the data in the dimension, then the continuous sum-
mary facilitates the data delivery process since the most current occurrence is
used, and if the data is not very volatile and only the updated records are
transferred, less data is delivered. If a slowly changing dimension is used with
the periodicity of the direct summary, then the delivery process merely pulls
the data for the period during each load cycle.

Date QuantityProduct Sales $

Jan 2 A 14 $7.00
Jan 2 B 11 $11.00

Jan 3 B 5 $5.00
Jan 3 A 19 $9.50

Jan 4 A 27 $13.50
Jan 7 B 17 $17.00
Jan 8 A 16 $8.00
Jan 8 B 9 $9.00

Daily Sales

Jan 9 A 14 $7.00
Jan 9 B 7 $7.00
Jan 10 A 19 $9.50

Jan 10 B 4 $4.00
Jan 11 A 17 $8.50
Jan 11 B 5 $5.00
Jan 14 A 33 $16.50
Jan 14 B 17 $17.00

Start
Date QuantityProduct Sales $

Jan 1 Jan 7 A 60 $30.00
Jan 1 Jan 7 B 33 $33.00

Jan 2 Jan 8 B 42 $42.00
Jan 2 Jan 8 A 76 $38.00

Jan 3 Jan 9 A 76 $38.00
Jan 3 Jan 9 B 42 $42.00
Jan 4 Jan 10 A 76 $38.00
Jan 4 Jan 10 B 37 $37.00

Rolling Seven-Day Summary

Jan 5 Jan 11 A 66 $33.00
Jan 5 Jan 11 B 42 $42.00
Jan 6 Jan 12 A 66 $33.00
Jan 6 Jan 12 B 42 $42.00
Jan 7 Jan 13 A 66 $33.00
Jan 7 Jan 13 B 42 $42.00
Jan 8 Jan 14 A 99 $49.50
Jan 8 Jan 14 B 42 $42.00

End
Date

C h a p t e r 4126

Figure 4.13 Snapshot data summaries.

Vertical Summary

The last type of summarization—vertical summary—applies to both point in
time and period of time data. For a dealer, point in time data would pertain to
the inventory at the end of the month or the total number of customers, while
period of time data applies to the sales during the month or the customers
added during the month. In an E-R model, it would be a mistake to com-
bine these into a single entity. If “month” is used as the key for the vertical
summary and all of these elements are included in the entity, month has two
meanings—a day in the month, and the entire month. If we separate the data
into two tables, then the key for each table has only a single definition within
its context.

Even though point-in-time and period-of-time data should not be mixed in a
single vertical summary entity in the data warehouse, it is permissible to com-
bine the data into a single fact table in the data mart. The data mart is built to
provide ease of use and, since users often create calculations that combine the
two types of data, (for example, sales revenue per customer for the month), it
is appropriate to place them together. In Figure 4.14, we combined sales infor-
mation with inventory information into a single fact table. The meta data
should clarify that, within the fact table, month is used to represent either the
entire period for activity data such as sales, and the last day of the period (for
example) for the snapshot information such as inventory level.

Customer Name Address

Brown, Murphy 99 Starstruck Lane

January Customer Address

Monster, Cookie 12 Muppet Rd.

Leary, Timothy 100 High St.

Customer Name Address

Monster, Cookie 12 Muppet Rd.

Leary, Timothy 100 High St.

Picard, Jean-Luc 2001 Celestial Way

Brown, Murphy 92 Quayle Circle

Alden, John 42 Pocahontas St.

February Customer Address

Customer Name Address Date

Monster, Cookie 12 Muppet Rd.

Leary, Timothy 100 High St.

Picard, Jean-Luc 2001 Celestial Way

Brown, Murphy 92 Quayle Circle

Alden, John 42 Pocahontas St.

Customer Address: Continuous Summary

Brown, Murphy 99 Starstruck Lane

Feb-Pres

Jan-Jan

Feb-Pres

Jan-Pres

Jan-Pres

Jan-Pres

Month Customer Name Address

Jan Brown, Murphy 99 Starstruck Lane

Customer Address: Simple Direct Summary

Jan Monster, Cookie 12 Muppet Rd.

Jan Leary, Timothy 100 High St.

Jan Picard, Jean-Luc 2001 Celestial Way

Feb Monster, Cookie 12 Muppet Rd.

Feb Leary, Timothy 100 High St.

Feb Picard, Jean-Luc 2001 Celestial Way

Feb Brown, Murphy 92 Quayle Circle

Feb Alden, John 42 Pocahontas St.

Operational System Snapshot

Picard, Jean-Luc 2001 Celestial Way

Developing the Model 127

Figure 4.14 Combining vertical summaries in data mart.

Data summaries are not always useful and care must be taken to ensure that
the summaries do not provide misleading results. Executives often view sales
data for the month by different parameters, such as sales region and product
line. Data that is summarized with month, sales region identifier, and product
line identifier as the key is only useful if the executives want to view data as it
existed during that month. When executives want to view data over time to
monitor trends, this form of summarization does not provide useful results if
dealers frequently move from one sales region to another and if products are
frequently reclassified. Instead, the summary table in the data warehouse

D
im

 M
M

SC
M

ak
e

ID
M

od
el

 ID
Se

rie
s

ID
C

ol
or

 ID

M
ak

e
N

am
e

M
od

el
 N

am
e

Se
rie

s
N

am
e

C
ol

or
 N

am
e

M
on

th
 Y

ea
r

D
ea

le
r

D
ea

le
r

ID

D
ea

le
r

N
am

e
D

ea
le

r
St

re
et

A
dd

re
ss

D
ea

le
r

C
ity

D
ea

le
r

St
at

e
C

re
di

t
H

ol
d

In
di

ca
to

r
W

ho
le

sa
le

 R
et

ai
l S

al
e

In
di

ca
to

r

D
im

 D
at

e
M

on
th

 Y
ea

r

Fi
sc

al
 Y

ea
r

C
al

en
da

r
Ye

ar
M

on
th

 N
am

e

Fa
ct

 M
on

th
ly

 A
ut

o
Sa

le
s

M
ak

e
ID

 (
FK

)
M

od
el

 ID
 (

FK
)

Se
rie

s
ID

 (
FK

)
C

ol
or

 ID
 (

FK
)

M
on

th
 Y

ea
r

(F
K)

D
ea

le
r

ID
 (

FK
)

A
ut

o
Sa

le
s

Q
ua

nt
ity

A
ut

o
Sa

le
s

A
m

ou
nt

O
bj

ec
tiv

e
Sa

le
s

Q
ua

nt
ity

O
bj

ec
tiv

e
Sa

le
s

A
m

ou
nt

C
re

di
t

H
ol

d
D

ay
s

In
ve

nt
or

y
Q

ua
nt

ity
In

ve
nt

or
y

Va
lu

e
A

m
ou

nt

C h a p t e r 4128

should be based on the month, dealer identifier, and product identifier, which
is the stable set of identifiers for the data. The hierarchies are maintained
through relationships and not built into the reference data tables. During the
data delivery process, the data could be migrated using either the historical
hierarchical structure through a slowly changing dimension or the existing
hierarchical structure by taking the current view of the hierarchy.

Recasting data is a process for relating historical data to a changed hierarchical
structure. We are often asked whether or not data should be recast in the data
warehouse. The answer is no! There should never be a need to recast the data
in the warehouse. The transaction is related to the lowest level of the hierarchy,
and the hierarchical relationships are maintained independently of the trans-
action. Hence, the data can be delivered to the data mart using the current (or
historical) view of the hierarchy without making any change in the data ware-
house’s content. The recasting is done to help people look at data—the history
itself does not change.

A last comment on data summaries is a reminder that summarization is a
process. Like all other processes, it uses an algorithm and that algorithm must
be documented within the meta data.

Step 6: Merge Entities
The sixth step in developing the data warehouse model is to merge entities by
combining two or more entities into one. The original entities may still be
retained. Merging the entities improves the data delivery process performance
by reducing the number of joins, and also enhances consistency. Merging enti-
ties is a form of denormalizing data and, in its ultimate form, it entails the cre-
ation of conformed dimensions for subsequent use in the data marts, as
described later in this section.

The following criteria should exist before deciding to merge entities: The enti-
ties share a common key, data from the merged entities is often used together,
and the insertion pattern is similar. The first condition is a prerequisite—if the
data cannot be tied to the same key, it cannot be merged into a common entity
since in an E-R model, all data within an entity depends on the key. The third
condition addresses the load performance and storage. When the data is
merged into a single entity, any time there is a change in any attribute, a new
row is generated. If the insertion pattern for two sets of data is such that they
are rarely updated at the same time, additional rows will be created. The sec-
ond condition is the reason that data is merged in the first place—by having
data that is used together in the same entity, a join is avoided during the deliv-
ery of data to the data mart. Our basis for determining data that is used
together in building the data marts is information we gather from the business
community concerning its anticipated use.

Developing the Model 129

Within the data warehouse, it is important to note that the base entities are
often preserved even if the data is merged into another table. The base entities
preserve business rules that could be lost if only a merged entity is retained.
For example, a product may have multiple hierarchies and, due to data deliv-
ery considerations, these may be merged into a single entity. Each of the hier-
archies, however, is based on a particular set of business rules, and these rules
are lost if the base entities are not retained.

Conformed dimensions are a special type of merged entities, as shown in Fig-
ure 4.15. In Figure 4.15, we chose not to bring the keys of the Territory and
Region into the conformed dimension since the business user doesn’t use
these. The data marts often use a star schema design and, within this design,
the dimension tables frequently contain hierarchies. If a particular dimension
is needed by more than one data mart, then creating a version of it within the
data warehouse facilitates delivery of data to the marts. Each mart needing the
data can merely copy the conformed dimension table from the data ware-
house. The merged entity within the data warehouse resembles a slowly
changing dimension. This characteristic can be hidden from the data mart if
only a current view is needed in a specific mart, thereby making access easier
for the business community.

Figure 4.15 Conformed dimension.

Sales Region
Sales Region ID

Sales Region Name

Sales Territory
Sales Territory ID
Sales Region ID (FK)
Sales Territory Name

Dim Sales Area
Sales Area ID
Month Year
Sales Area Name
Sales Territory Name
Sales Region Name

Sales Area
Sales Area ID
Sales Territory ID (FK)
Sales Area Name

C h a p t e r 4130

Step 7: Create Arrays
The seventh step in developing the data warehouse model is to create arrays.
This step is rarely used but, when needed, it can significantly improve popu-
lation of the data marts. Within the traditional business data model, repeating
groups are represented by an attributive entity. For example, for accounts
receivable information, if information is captured in each of five groupings
(for example, current, 1–30 days past due, 31–60 days past due, 61–90 days
past due, and over 90 days past due), this is an attributive entity. This could
also be represented as an array, as shown in the right part of that figure. Since
the objective of the data warehouse that the array is satisfying is to improve
data delivery, this approach only makes sense if the data mart contains an
array. In addition to the above example, another instance occurs when the
business people want to look at data for the current week and data for each of
the preceding 4 weeks in their analysis. Figure 4.16 shows a summary table
with the week’s sales for each store and item on the left and the array on the
right.The arrays are useful if all of the following conditions exist:

■■ The number of occurrences is relatively small. In the example cited above,
there are five occurrences. Creating an array for sales at each of 50 regions
would be inappropriate.

■■ The occurrences are frequently used together. In the example, when
accounts receivable analysis is performed, people often look at the
amount in each of the five categories together.

■■ The number of occurrences is predictable. In the example, there are
always exactly five occurrences.

Figure 4.16 Arrays.

Week End Date

Week

Product Identifier

Product Week End Date (FK)
Product Identifier (FK)
Store Identifier (FK)

Sales Quantity
Sales Amount

Weekly Sales Summary

Store Identifier

Store

Week End Date

Week

Product Identifier

Product
Week End Date (FK)
Product Identifier (FK)
Store Identifier (FK)

Current Week Sales Quantity
Current Week Sales Amount
1 Week Ago Sales Quantity
1 Week Ago Sales Amount
2 Weeks Ago Sales Quantity
2 Weeks Ago Sales Amount
3 Weeks Ago Sales Quantity
3 Weeks Ago Sales Amount

Weekly Sales Summary

Store Identifier

Store

Developing the Model 131

■■ The pattern of insertion and deletion is stable. In the example, all of the
data is updated at the same time. Having an array of quarterly sales data
would be inappropriate since the data for each of the quarters is inserted
at a different time. In keeping with the data warehouse philosophy of
inserting rows for data changes, there would actually be four rows by the
end of the year, with null values in several of the rows for data that did
not exist when the row was created.

Step 8: Segregate Data
The eighth step in developing the data warehouse model is to segregate data
based on stability and usage. The operational systems and business data mod-
els do not generally maintain historical views of data, but the data warehouse
does. This means that each time any attribute in an entity changes in value, a
new row is generated. If different data elements change at different intervals,
rows will be generated even if only one element changes, because all updates
to the data warehouse are through row insertions.

This last transformation step recognizes that data in the operational environ-
ment changes at different times, and therefore groups data into sets based on
insertion patterns. If taken to the extreme, a separate entity would be created
for each piece of data. That approach will maximize the efficiency of the data
acquisition process and result in some disk space savings. The first sentence of
this section indicated that the segregation is based on two aspects—stability
(or volatility) and usage. The second factor—usage—considers how the data is
retrieved (that is, how it is delivered to the data mart) from the data ware-
house. If data that is commonly used together is placed in separate tables, the
data delivery process that accesses the data generates a join among the tables
that contain the required elements, and this places a performance penalty on
data retrieval. Therefore, in this last transformation step, the modeler needs to
consider both the way data is received and the way it is subsequently deliv-
ered to data marts.

TIP
The preceding steps define a methodology for creating the data warehouse data
model. Like all methodologies, there are occasions under which it is appropriate to
bend the rules. When this is being contemplated, the data modeler needs to care-
fully consider the risks and then take the appropriate action. For example, the sec-
ond step entails adding a component of time to the key of every entity. Based on the
business requirements, it may be more appropriate to fully refresh certain tables if
referential integrity can be met.

C h a p t e r 4132

Summary

The application of entity relationship modeling techniques to the data ware-
house provides the modeler with the ability to appropriately reflect the busi-
ness rules, while incorporating the role of the data warehouse as a collection
point for strategic data and the distribution point for data destined directly or
indirectly (that is, through data marts) to the business users. The methodology
for creating the data warehouse model consists of two sets of steps, as shown
in Table 4.2. The first four steps focus on ensuring that the data warehouse
model meets the business needs, while the second set of steps focuses on bal-
ancing factors that affect data warehouse performance.

Table 4.2 Eight Transformation Steps

STEP ACTION OBJECTIVE ACTION

1 Select data of Contain scope, reduce Determine data elements
interest load time, reduce to be included in the model

storage requirements and consider archiving
other data that might be
needed in the future

2 Add time to Accommodate history Add time component to
the key key and resolve resultant

changes in the relation-
ships due to conversion of
the model from a “point-in-
time” model to an “over-
time” model

3 Add derived Ensure business con- Calculate and store ele-
data sistency and improve ments that are commonly

data delivery process used or that require consis-
performance tent algorithms

4 Adjust granularity Ensure that the data Determine the desired level
warehouse has the of detail, balancing the
right level of detail business needs and the

performance and cost
implications

5 Summarize Facilitate data delivery Summarize based on use of
the data in the data marts

6 Merge Improve data delivery Merge data that is fre-
performance quently used together into

a single table if it depends
on the same key and has a
common insertion pattern

(continued)

Developing the Model 133

Table 4.2 (continued)

STEP ACTION OBJECTIVE ACTION

7 Create arrays Improve data delivery Create arrays in lieu of
performance attributive entities if the

appropriate conditions
are met

8 Segregate Balance data acquisi- Determine insertion pat-
tion and data delivery terns and segregate data
performance by split- accordingly if the query
ting entities performance will not sig-

nificantly degrade

This chapter described the creation of the data warehouse model. The next
chapter delves into the key structure and the changes that may be needed to
keys inherited from the source systems to ensure that the key in the data ware-
house is persistent over time and unique regardless of the source of the data.

C h a p t e r 4134

Installing Custom Controls 135

Creating and Maintaining Keys

C H A P T E R 5

The data warehouse contains information, gathered from disparate systems,
that needs to be retained for a long period of time. These conditions complicate
the task of creating and maintaining a unique key in the data warehouse. First,
the key created in the data warehouse needs to be capable of being mapped to
each and every one of the source systems with the relevant data, and second,
the key must be unique and stable over time.

This chapter begins with a description of the business environment that creates
the challenges to key creation, using “customer” as an example, and then
describes how the challenge is resolved in the business data model. While the
business data model is not actually implemented, the data warehouse technol-
ogy data model (which is based on the business model) is, and it benefits from
the integration achieved in the business data model. The modelers must also
begin considering the integration implications of the key to ensure that each cus-
tomer’s key remains unique over the span of integration. Three options for
establishing and maintaining a unique key in the data warehouse are presented
along with the examples and the advantages and disadvantages of each. In
general, the surrogate key is the ideal choice within the data warehouse.

We close this chapter with a discussion of the data delivery and data mart
implications. The decision on the key structure to be used needs to consider
the delivery of data to the data mart, the user access to the data in the marts,
and the potential support of drill-through capabilities.

135

Business Scenario

Companies endeavoring to implement customer relationship programs have
recognized that they need to have a complete view of each of their customers.
When they attempt to obtain that view, they encounter many difficulties,
including:

■■ The definition of customer is inconsistent among business units.

■■ The definition of customer is inconsistent among the operational systems.

■■ The customer’s identifier in each of the company’s systems is different.

■■ The customer’s identifier in the data file bought from an outside party
differs from any identifier used in the company’s systems.

■■ The sold-to customer, bill-to customer, and ship-to customer are separately
stored.

■■ The customer’s subsidiaries are not linked to the parent customer.

Each of these situations exists because the company does not have a process in
place that uniquely identifies its customers from a business or systems per-
spective. The data warehouse and operational data store are designed to pro-
vide an enterprise view of the data, and hence the process for building these
components of the Corporate Information Factory needs to address these
problems. Each of these situations affects the key structure within the Corpo-
rate Information Factory and the processes we must follow to ensure that each
customer is uniquely identified. Let’s tackle these situations one at a time so
that we understand their impact on the data model. We start with the business
data model implications because it represents the business view, and informa-
tion from it is replicated in the other models, including the data warehouse
model. Hence, from a Corporate Information Factory perspective, if we don’t
tackle it at the business model level, we still end up addressing the issue for
the data warehouse model.

Inconsistent Business Definition of Customer
In most companies, business units adopt definitions for terms that best meet
their purposes. This leads to confusion and complicates our ability to uniquely
identify each customer. Table 5.1 provides definitions for customer that differ-
ent business units may have.

C h a p t e r 5136

Table 5.1 Business Definition for Customer

BUSINESS UNIT POTENTIAL DEFINITION IMPLICATION

Marketing Any party that might or does buy Includes prospects
our product

Customer Service A party that owns our product and Includes only cus-
has an existing service agreement tomers that we need

to support

Sales Any party that buys our product This is typically the
sold-to or bill-to cus-
tomer; it excludes the
ship-to customer

Commercial Sales A company that buys our product Restricted to commer-
cial sales

Manufacturing Companies that buy directly from us Excludes retail sales
and restricted to com-
mercial sales

In the business data model, we need to create an entity for “customer,” and
that entity can have one, and only one, definition. To create the data model,
either we need to get each unit to modify its definition so that it fits with the
enterprise definition or we need to recognize that we are really dealing with
more than one entity. A good technique is to conduct a facilitated session with
representatives of each of the units to identify the types of customers that are
significant and the definitions for each. The results of such a session could
yield a comprehensive definition of customer that includes parties that might
buy our product as well as those who do buy the product. Each of the types of
customers would be subtypes of “Customer,” as shown in Figure 5.1.

Figure 5.1 Enterprise perspective of customer.

A Customer is any party that buys
or might buy our Product.

Customer

A Consumer is a party that has
acquired our Product.

A Prospect is any party that might buy
our Product.

ConsumerProspect

Creating and Maintaining Keys 137

As we will see subsequently in this chapter, resolving this issue in the business
data model makes building the data warehouse data model easier.

Inconsistent System Definition of Customer
Operational systems are often built to support specific processes or to meet indi-
vidual business unit needs. Traditionally, many have been product-focused (and
not customer-focused), and this magnifies the problem with respect to consis-
tent customer definitions. When the business definitions differ, these differences
often find their way into the operational systems. It is, therefore, not uncommon
to have a situation such as the one depicted in Figure 5.2.

These types of differences in the operational system definitions do not impact
the business data model since that model is independent of any computer
applications and already reflects the consolidation of the business definitions
causing this problem.

There is another set of operational system definition differences that is more
subtle. These are the definitions that are implicit because of the way data is
processed by the system in contrast to the explicit definition that is docu-
mented. The attributes and relationships in Figure 5.2 imply that a Customer
must be an individual, despite the definition for customer that states that it
may be “any party.” Furthermore, since the Customer (and not the Consumer)
is linked to a sale, this relationship is inherited by the Prospect, thus violating
the business definition of a prospect.

These differences exist for a number of reasons. First and foremost, they exist
because the operational system was developed without the use of a governing
business model. Any operational system that applies sound data management
techniques and applies a business model to its design will be consistent with
the business data model. Second, differences could exist because of special cir-
cumstances that need to be handled. For example, the system changed to meet
a business need, but the definitions were not updated to reflect the changes.
The third reason this situation could exist is that a programmer did not fully
understand the overall system design and chose an approach for a system
change that was inappropriate. When this situation exists, there may be down-
stream implications as well when other applications try to use the data.

Typically, these differences are uncovered during the source system analysis
performed in the development of the data warehouse. The sidebar provides
information about conducting source system analysis. It is important to under-
stand the way the operational systems actually work, as these often depict the
real business definitions and business rules since the company uses the systems
to perform its operational activities. If the differences in the operational systems

C h a p t e r 5138

violate the business rules found in the business model, then the business model
needs to be reviewed and potentially changed. If the differences only affect
data-processing activities, then these need to be considered in building the data
warehouse data model and the transformation maps.

Figure 5.2 Operational system definitions.

Em
p

lo
ye

e
Id

en
tif

ie
r

Em
p

lo
ye

e
N

am
e

Em
p

lo
ye

e
C

ity
 Id

en
tif

ie
r

C
ity

 N
am

e

C
ity

M
ar

ke
tin

g
 C

am
p

ai
g

n
Id

en
tif

ie
r

M
ar

ke
tin

g
 C

am
p

ai
g

n

Sa
le

s
Te

rr
ito

ry

Sa
le

s
Te

rr
ito

ry
 Id

en
tif

ie
r

Sa
le

s
A

re
a

Id
en

tif
ie

r
Sa

le
s

Te
rr

ito
ry

 N
am

e
Sa

le
s

Te
rr

ito
ry

 D
es

cr
ip

tio
n

C
us

to
m

er

C
us

to
m

er
 Id

en
tif

ie
r

C
us

to
m

er
 N

am
e

C
us

to
m

er
 S

oc
ia

l S
ec

ur
ity

 N
um

b
er

C
us

to
m

er
 D

at
e

of
 B

irt
h

Fi
sc

al
 Y

ea
r

Fi
sc

al
 Y

ea
r

Id
en

tif
ie

r

Fi
sc

al
 Y

ea
r

St
ar

t
D

at
e

Fi
sc

al
 Y

ea
r

En
d

 D
at

e
Fi

sc
al

 Y
ea

r
N

um
b

er

Sa
le

s
A

re
a

Sa
le

s
A

re
a

Id
en

tif
ie

r

Sa
le

s
Re

g
io

n
Id

en
tif

ie
r

(F
K

)
Sa

le
s

A
re

a
N

am
e

Sa
le

s
A

re
a

D
es

cr
ip

tio
n

St
or

e

Sa
le

s
A

re
a

Id
en

tif
ie

r

St
at

e
Id

en
tif

ie
r

(F
K

)
C

ity
 Id

en
tif

ie
r

(F
K

)
St

or
e

M
an

ag
er

 Id
en

tif
ie

r
(F

K
)

Sa
le

s
Te

rr
ito

ry
 Id

en
tif

ie
r

(F
K

)
St

or
e

N
um

b
er

St
or

e
N

am
e

St
or

e
Po

st
al

 C
od

e
St

or
e

In
ce

p
tio

n
D

at
e

St
or

e
St

at
us

St
or

e
Ty

p
e

St
or

e
Sq

ua
re

 F
ee

t
St

or
e

Le
ve

ls
 Q

ua
nt

ity
Sa

le

Sa
le

 Id
en

tif
ie

r

C
us

to
m

er
 Id

en
tif

ie
r

(F
K

)
W

ee
k

Id
en

tif
ie

r
(F

K
)

St
or

e
Id

en
tif

ie
r

(F
K

)
Sa

le
 T

yp
e

Sa
le

 S
ta

tu
s

Sa
le

 R
ea

so
n

W
ee

k

Pr
os

p
ec

t

W
ee

k
Id

en
tif

ie
r

Fi
sc

al
 M

on
th

 Id
en

tif
ie

r
(F

K
)

W
ee

k
St

ar
t

D
at

e
W

ee
k

En
d

 D
at

e
W

ee
k

w
ith

 in
 M

on
th

 N
um

b
er

W
ee

k
w

ith
 in

 Y
ea

r
N

um
b

er

Fi
sc

al
 M

on
th

Fi
sc

al
 M

on
th

 Id
en

tif
ie

r

Fi
sc

al
 Y

ea
r

Id
en

tif
ie

r
(F

K
)

Fi
sc

al
 M

on
th

 N
am

e
Fi

sc
al

 M
on

th
 S

ta
rt

 D
at

e
Fi

sc
al

 M
on

th
 E

nd
 D

at
e

Fi
sc

al
 M

on
th

 N
um

b
er

Sa
le

s
Re

g
io

n

Sa
le

s
Re

g
io

n
Id

en
tif

ie
r

Sa
le

s
Re

g
io

n
N

am
e

Sa
le

s
Re

g
io

n
D

es
cr

ip
tio

n

St
at

e

St
at

e
Id

en
tif

ie
r

St
at

e
N

am
e

St
at

e
A

b
b

re
vi

at
io

n

M
ar

ke
tin

g
 C

am
p

ai
g

n
Id

en
tif

ie
r

(F
K

)

C
on

su
m

er

C
us

to
m

er
 Id

en
tif

ie
r

(F
K

)
C

us
to

m
er

 Id
en

tif
ie

r
(F

K
)

Sa
le

 L
in

e

Sa
le

 L
in

e
Id

en
tif

ie
r

Sa
le

 Id
en

tif
ie

r
(F

K
)

Sa
le

 T
ax

Sa
le

 L
in

e
Id

en
tif

ie
r

(F
K

)
Sa

le
 Id

en
tif

ie
r

(F
K

)

Sa
le

 T
ax

 A
m

ou
nt

Sa
le

 T
ax

 T
yp

e

Sa
le

 P
ay

m
en

t

Sa
le

 L
in

e
Id

en
tif

ie
r

(F
K

)
Sa

le
 Id

en
tif

ie
r

(F
K

)

Sa
le

 P
ay

m
en

t
Ty

p
e

Sa
le

 P
ay

m
en

t
A

m
ou

nt

Sa
le

 It
em

Sa
le

 L
in

e
Id

en
tif

ie
r

(F
K

)
Sa

le
 Id

en
tif

ie
r

(F
K

)

M
ar

ke
tin

g
 C

am
p

ai
g

n
Id

en
tif

ie
r

(F
K

)
It

em
 Id

en
tif

ie
r

(F
K

)
Sa

le
 It

em
 Q

ua
nt

ity
Sa

le
 It

em
 P

ric
e

Sa
le

 It
em

 D
is

co
un

t
Sa

le
 It

em
 A

m
ou

nt
Re

fe
re

nc
e

Sa
le

 L
in

e
Id

en
tif

ie
r

(F
K

)
Re

fe
re

nc
e

Sa
le

 Id
en

tif
ie

r
(F

K
)

Creating and Maintaining Keys 139

Since one of the roles of the data warehouse is to store historical data from dis-
parate systems, the data warehouse data model needs to consider the defini-
tions in the source systems, and we will address the data warehouse design
implications in the next major section.

Inconsistent Customer Identifier among Systems
Inconsistent customer identifiers among systems often prevent a company from
recognizing that information about the same customer is stored in multiple
places. This is not a business data modeling issue—it is a data integration issue
that affects the data warehouse data model, and is addressed in that section.

Inclusion of External Data
Companies often need to import external data. Examples include credit-rating
information used to assess the risk of providing a customer with credit, and
demographic information to be used in planning marketing campaigns. Exter-
nal data needs to be treated the same as any other operational information,
and it should be reflected in the business data model. There are two basic types
of external data relating to customers: (1) data that is at a customer level, and
(2) data that is grouped by a set of characteristics of the customers.

Data at a Customer Level

Integrating external data collected at the customer level is similar to integrating
data from any internal operational source. The problem is still one of merging
customer information that is identified inconsistently across the source systems.
In the case of external data, we’re also faced with another challenge—the data
we receive may pertain to more than just our customers (for example, it may
apply to all buyers of a particular type of product), and not all of our customers
are included (for example, it may include sales in only one of our regions). If the
data applies to more than just our customers, then the definition of the customer
in the business model needs to reflect the definition of the data in the external
file unless we can apply a filter to include only our customers.

Data Grouped by Customer Characteristics

External data is sometimes collected based on customer characteristics rather
than individual customers. For example, we may receive information based on
the age, income level, marital status, postal code, and residence type of cus-
tomers. A common approach for handling this is to create a Customer Segment
entity that is related to the Customer, as shown in Figure 5.3.

C h a p t e r 5140

Figure 5.3 Customer segment.

Each customer is assigned to a Customer Segment based on the values for that
customer in each of the characteristics used to identify the customer segment.
In our example, we may segment customers of a particular income level and
age bracket. Many marketing campaigns target customer segments rather than
specific prospects. Once the segment is identified, then it can also be used to
identify a target group for a marketing campaign. (In the model, an associative
entity is used to resolve the many-to-many relationship that exists between
Marketing Campaign and Customer Segment.)

Customers Uniquely Identified Based on Role
Sometimes, customers in the source system are uniquely identified based on
their role. For example, the information about one customer who is both a
ship-to customer and a bill-to customer may be retained in two tables, with the
customer identifiers in these tables being different, as shown on the left side of
Figure 5.4.

When the tables are structured in that manner, with the identifier for the Ship-to
Customer and Bill-to Customer being independently assigned, it is difficult, and
potentially impossible, to recognize instances in which the Ship-to Customer
and Bill-to Customer are either the same Customer or are related to a common
Parent Customer. If the enterprise is interested in having information about
these relationships, the business data model (and subsequently the data ware-
house data model) needs to contain the information about the relationship. This

Customer

Customer Identifier

Customer Name
Customer Social Security Number
Customer Date of Birth

Prospect

Marketing Campaign Identifier (FK)

Consumer

Customer Identifier (FK)Customer Identifier (FK)

Customer Segment

Customer Segment Identifier

Customer Income Level
Customer Age Group
Customer Residence Type
Customer Marital Status

Marketing Campaign Identifier

Marketing Campaign

Sale

Sale Identifier

Customer Identifier (FK)
Week Identifier (FK)
Store Identifier (FK)
Sale Type
Sale Status
Sale Reason

Marketing Campaign Target Group

Customer Segment Identifier (FK)
Marketing Campaign Identifier (FK)

Creating and Maintaining Keys 141

is typically handled by establishing each role as a subtype of the master entity.
Once that is done, we reset the identifiers to be independent of the role. This
results in the relationship shown on the right side of Figure 5.4, in which the
Customer has two relationships to the sale, and the foreign key generated by
each indicates the type of relationship.

Customer Hierarchy Not Depicted
Information about customers is not restricted to the company that is directly
involved in the sale. It is often important to recognize how customers are
related to each other so that, if several customers are subsidiaries of one corpo-
ration, we have a good understanding of the value of the whole corporation.
There are services, such as Dunn & Bradstreet (D&B), that provide this type of
information. Wholly owned subsidiaries are relatively simple to handle since
these can be represented by a one-to-many relationship, as shown on the left
side of Figure 5.5. (The relationship should be nonidentifying to provide flexi-
bility for mergers and acquisitions.) Partially owned subsidiaries are more dif-
ficult. In this case, the model needs to handle a many-to-many relationship,
which is resolved with the associative entity on the right side of Figure 5.5.
More significantly, the modeler needs to consider the downstream impact and
capture the associated business rules. Essentially, decisions need to be made
concerning the parent company that gets credit for a sale and the portion of that
sale allocated to that company.

Figure 5.4 Role-based identifiers.

Bill to Customer Identifier

Bill to Customer

Ship to Customer Identifier

Ship to Customer

Customer Identifier

Customer

Sale

Sale Identifier

Ship to Customer Identifier (FK)
Week Identifier
Store Identifier
Sale Type
Sale Status
Sale Reason
Bill to Customer Identifier (FK)

Sale

Sale Identifier

Ship to Customer Identifier (FK)
Bill to Customer Identifier (FK)
Week Identifier
Store Identifier
Sale Type
Sale Status
Sale Reason

C h a p t e r 5142

Figure 5.5 Customer hierarchy.

Figure 5.6 Multilevel hierarchy options.

Customer Identifier

Customer Type

Customer

Customer

Customer Identifier

Parent Customer Identifier (FK)
Customer Level

Parent Customer

Customer Identifier (FK)

Bill to Customer

Parent Customer Identifier (FK)

Customer Identifier (FK)

Ship to Customer

Bill to Customer Identifier (FK)

Customer Identifier (FK)

Customer Identifier

Customer Parent

Customer Identifier

Customer Parent

Customer Identifier

Customer

Customer

Customer Parent Identifier

Customer Identifier (FK)

Customer Ownership Share

Customer Subsidiary Identifier (FK)
Customer Parent Identifier (FK)

Customer Ownership Share Percent

Creating and Maintaining Keys 143

Figure 5.5 handles the simplistic case—when the hierarchy consists of only two
levels. Often, the hierarchy consists of more levels. The way this is handled is
dependent on the predictability of the levels. If the number of levels is pre-
dictable and constant, then the business model can either depict each level or
present the hierarchy in the form of a recursive relationship, as shown in Figure
5.6. If the number of levels is not predictable or constant, then the only solution
is a recursive relationship. When a recursive relationship is used in the business
model, the hierarchy will eventually need to be clarified to create the physical
schema. If the model shows multiple distinct levels, then each of these needs to
be defined, and the definitions of the various levels need to differ from each
other. A complete discussion of hierarchies is covered in Chapter 7.

Data Warehouse System Model

In the day-to-day running of the company, information is typically viewed in
terms of the individual sales transaction life cycle, and the lack of integrated
customer information does not prevent making the sale, invoicing the cus-
tomer, or collecting the payment. When the company tries to consolidate all
the sales for each of its customers, the lack of integrated customer information
becomes a problem. In the data warehouse, we expect to be able to see all of the
sales transactions for each customer, so we need to tackle the problem head on.
We therefore need to deal with the definitional differences, the lack of unique
keys, and the other situations previously described.

Inconsistent Business Definition of Customer
The inconsistent business definition of Customer was resolved during the cre-
ation of the business data model. When we build the data warehouse model, we
need to select the data elements of interest (Step 1 of the transformation process).
If our business questions only deal with sales, and not potential sales, using the
entities described in Figure 5.1, we would ignore data for prospects and only
consider the data related to “Consumer.” Similarly, in selecting the attributes for
the Consumer, we would choose the ones needed to address the business ques-
tions being addressed, as explained in Chapter 4 (Step 1 of the transformation
process).

Inconsistent System Definition of Customer
The data warehouse system model needs to provide a practical target environ-
ment for data that is in the operational systems. When the definition of the cus-
tomer differs among systems, then the data warehouse system model needs to

C h a p t e r 5144

be structured so that it can receive all of the legitimate definitions, while main-
taining an enterprise perspective of the data. Since the warehouse is oriented
to the enterprise perspective, the model typically is not affected because of the
definitional differences among the systems unless they reflect previously
undocumented business rules. In that case, the business model incorporates
the business rules, and the data warehouse model inherits them. Often, the
system differences are handled in the transformation logic and in the staging
area. For example, if the one operational system considers a customer to
include prospects and another system does not, then in the transformation
logic, we could apply appropriate rules to segregate the consumers and
prospects in the data warehouse.

Inconsistent Customer Identifier among Systems
Inconsistent customer identifiers among systems cause most of the key inte-
gration problems. Inconsistent customer identifiers among systems mean that
the key structure differs from system to system, and therefore, collecting data
for a customer from multiple systems is a challenge. A similar problem exists
if a system either reuses keys or cannot guarantee that the same customer
exists only once in the data file. In the data warehouse model, we simply iden-
tify the key as “Customer Identifier.” In the data warehouse technology
model, which transforms into the physical schema, we need to determine how
the key is structured. Three options are described in the section dealing with
that model, which follows. When the customer identifiers among the systems
vary, most data warehouse modelers lean towards creating a surrogate key.

Absorption of External Data
When the external data is at the customer level, then the data warehouse
model issues are the same as those discussed in the previous section for the
business data model. For external data based on a set of characteristics of
the customer, the business data model includes a single entity representing the
Customer Segment. Each of the attributes in that entity represents a character-
istic, and a discrete set of values exists for each of these. Within the data ware-
house, these discrete values are typically stored in individual code entities, as
shown in Figure 5.7.

Customers Uniquely Identified Based on Role
The business data model resolved this issue by providing information about
the relationship. This resolution is transferred directly to the data warehouse
model.

Creating and Maintaining Keys 145

Figure 5.7 Segment characteristics.

Customer Hierarchy Not Depicted
The business data model resolved this issue by including the hierarchy (if
the number of levels is predictable or consistent) or by deploying a recursive
relationship. The business model is concerned with a complete picture of the
hierarchy. Often, for decision support, we are only interested in specific layers
of the customer hierarchy. For example, even if we depict four layers in the
business data model, the data warehouse model may only need to depict the
top and bottom layer. Hence, the data warehouse model is more likely to have
an exploded structure than a recursive structure.

Data Warehouse Technology Model

The data warehouse technology model, which is used to generate the physical
schema, needs to consider the structure of the key. We have three basic options
to consider:

■■ Use the key from existing system(s)

■■ Use the key from a recognized standard

■■ Create a surrogate key

Residence Type Code

Residence Type Description

Residence Type

Marital Status Code

Marital Status Description

Marital Status
Income Level

Income Level Code

Income Level Description
Minimum Income Amount
Maximum Income Amount

Age Group

Age Group Code

Age Group Description
Minimum Age Years
Maximum Age Years

Customer Segment

Customer Segment Identifier

Marital Status Code (FK)
Residence Type Code (FK)
Age Group Code (FK)
Income Level Code (FK)

C h a p t e r 5146

Key from the System of Record
In the simplest situation, we can actually use the key from an existing system.
For this to be practical, the system must have a key structure that can accom-
modate data that is derived from other sources. This happens when there is
one recognized primary source of record for the data, such as an ERP system.
Some of the needed characteristics of that file follow.

That file should include every customer of interest to the company. There
may be other files with information about customers, but each customer
should at least exist in this file. It is important that we not be faced with cre-
ating a customer key in the data warehouse using that file’s key structure,
and hence we do not run the risk of the system creating the identical key at
another time for a different customer.

Each customer can exist only once in the file. The business rules for the
systems that add customers to this file must be such that they prevent a
data entry person from inadvertently duplicating a customer within the
file. If a customer can exist twice within the file, the key of at least one of
these customers will need to change when we integrate the data.

The key cannot be reused. Some operational systems recycle keys. When this
occurs, the same key can be used to identify different customers. The data
warehouse stores historical information, and if the key is reused, the data
warehouse will erroneously append the information to the customer that
no longer exists in the source system instead of adding a new customer.

The key is not very long. While the length of the key is not necessarily a
problem in the data warehouse, it does present a problem in the data mart.
The delivery of data to the marts and the support of drill-through capabili-
ties are enhanced if the warehouse and the mart share a common key struc-
ture. In dimensional data marts, the key of the fact table is a concatenation
of the keys of the primary dimension tables. If the keys of the dimension
tables are long, the key of the fact table becomes very long.

The key will not change. If you are leaning toward using the operational
system’s key in the data warehouse, you need to consider the lifespan of
the operational system as compared to the lifespan of the data warehouse.
If the company is even considering changing its operational system soft-
ware, it is reasonable to expect that, at some time in the future, you may be
faced with a reassignment of keys. While changing keys is a normal exer-
cise when converting systems, it is a far more difficult and complex task in
a data warehouse because of its historical nature. It is a task best avoided.

Creating and Maintaining Keys 147

For reference data such as customer, product, or location, it is very rare for a
file to exhibit all of these characteristics, and companies often find themselves
choosing one of the other options. The requirements for transaction files (for
example, sales, invoices) are slightly different. A company that has grown
through acquisition may have multiple sales order systems, each of which cre-
ates a nonreusable key for the sales order that is unique within that system.
This is consistent with the second and third conditions above, but not with the
first. An option to consider in the data warehouse is using a compound key
that includes a source system identifier. However, if you expect to be loading
data from multiple independent systems as a matter of course, you should
consider using surrogate keys to avoid potential problems as new systems and
interfaces are encountered.

C h a p t e r 5148

Dealing with Multiple Instances

It is not unusual to encounter cases where there are multiple instances of the
same entity. This manifests itself in the database in such situations as the same
customer appearing more than once under different customer numbers. While it
is great to say on paper that such situations should be resolved and a single cus-
tomer instance placed in the data warehouse, the reality is, to do so can involve
enormous conflict and pain within an organization. Aside from the difficulty in
actually trying to find and identify such duplicates, there may often be heated
political battles among business areas and IT support groups as to whose prob-
lem it really is. Resolving these issues often involves process and system changes
in the operational environment, something business areas may be unwilling to
do, particularly if the problem only came up as a result of this “data warehouse
thing” the company is building. After all, things have been running fine as they
are. Why should they change?

From a data warehouse point of view, we know that as long as the keys are
different, these will always be different customers. And, from a technical stand-
point, this does not present a problem as far as loading and processing the data.
However, it can have implications in the business analysis that results from such
a situation. As a customer has different physical instances in the database, each
instance may have differing attributes values, be assigned to different hierarchy
structures, and have other data anomalies. It would be impossible to obtain a
true picture of that customer.

A business case would need to be made to correct this situation. Action will
depend on how the business perceives the value of a single, proper view of a
customer and the costs involved in attaining and maintaining such a view. Doing
so involves more than cross-referencing customer keys. Changes are required in
the operational systems and processes to prevent such occurrences from happen-
ing in the future.

Key from a Recognized Standard
There are nationally and internationally recognized code and abbreviation
standards. Examples of these include country codes and currency codes.
Regardless of whether or not any of the systems in the company adopts these
standards, the data warehouse can use the standard codes as the key to its
code tables. The staging area would include a transformation table to translate
the code used by the source system to that used in the data warehouse.

This option presumes there is a direct correlation between internal and the
industry standard coding system. When such a correlation does not exist, the
translation may introduce ambiguity and loss of information. In addition, it is
common for end users to demand to see the operational system codes in the
data warehouse. These are the codes they are most familiar with. If code reas-
signment does occur, you would most probably retain the original value for
query and reporting purposes. This can be accomplished by providing attrib-
utes for both the internal and standard codes in the entity.

Surrogate Key
By far the most popular option is a surrogate key. A surrogate key is a substi-
tute key. It is usually an arbitrary numeric value assigned by the load process
or the database system. The advantage of the surrogate key is that it can be
structured so that it is always unique throughout the span of integration for
the data warehouse. When using surrogate primary keys, the term “natural
key” is used to refer to the original source system key. The natural key serves
as the alternate key for the entity. All foreign key references to that entity are
through the surrogate key.

Surrogate keys fit all the requirements of a perfect key. They are unique, unam-
biguous, and never change. In addition, surrogate keys provide a number of
advantages in the physical database:

The surrogate key is small. Surrogate keys are usually arbitrary sequentially
assigned integers. Databases that support binary data types can store such
numbers in 4 bytes. This compactness reduces overall database size and,
more importantly, results in smaller, more efficient indexes.

A surrogate key eliminates compound keys. The primary key for a table is
always a single column. Joins and maintenance of indexes for single column
keys are generally more efficient than compound keys.

Surrogate keys share the same physical data characteristics. The fact that
all surrogate keys are the same data type comes in handy when a foreign
key reference is role based or nonspecific. This will be discussed in greater
detail in subsequent chapters.

Creating and Maintaining Keys 149

A surrogate key is stable. Its value and format will never change. This is a
big advantage when you must interface multiple independent systems or
when the source system is changed. The business key is reduced to alternate
key status and only resides in the reference table. Only the surrogate key is
propagated to other tables as a foreign key. If you have a new interface that
requires some change to the physical attributes or contents of the business
key, you only need to change the reference table that holds the value. The
foreign key references remain unchanged.

The assignment process ensures referential integrity. When setting the
value of a foreign key, the process must find the surrogate key value by
locating the target row in the target table using the natural key.

C h a p t e r 5150

Assigning Surrogate Keys

If you are using surrogate keys as the primary keys of your reference tables, your
load processes into the data warehouse must implement logic to assign these
keys as well as locate surrogate key values for use as the foreign key.

When used as a primary key, the table should have the primary key column as
well as an alternate, business key. The latter, called the natural key, serves as the
row identifier from the business point of view. The natural key is usually the pri-
mary key from the source system. It may also include a source system identifier
column to qualify business key values where the data is sourced from multiple
systems and there is a danger of duplicate key values.

The actual surrogate key value is always numeric. It is an arbitrary unique
value carried on each row. Some database systems provide data types that auto-
matically generate unique numeric values in a column. Other database systems
provide sequence counters that can be used to perform the same function. Also,
almost every ETL tool provides sequence generators for this purpose as well.

As you will see later in this book, there is some advantage to controlling the
generation of these surrogate key values. In fact, you may wish to use a single
number sequence to generate surrogate keys for all tables that need them. As
such, database features that automatically generate keys for a table is a less
desirable feature since it is unable to create key values that are mutually exclu-
sive across tables. The lack of mutually exclusive values complicates the delivery
of table unions to data marts, a technique commonly used to support hierarchical
reporting in a dimensional model.

We recommend that surrogate key sequences be generated in the ETL process
and that a few sequences be used as possible to allow for mutually exclusive val-
ues across reference tables that may need to be unioned when delivered to a
data mart. In fact, most data warehouse applications can function with a single
surrogate key sequence. We do not recommend applying surrogate key assign-
ment to transactional data tables. In a dimensional mart, the transactional data is

Dimensional Data Mart Implications

In general, it is most desirable to maintain the same key in the data warehouse
and the data marts. The data delivery process is simplified, since it does not
need to generate keys; drill-through is simplified since the key used in the data
mart is used to drill through to the data warehouse. However, it is not always
possible to maintain the same key structure because of the different techniques

Creating and Maintaining Keys 151

delivered to fact tables that do not have surrogate primary keys. The primary key
to a fact table is always a combination of one or more of its foreign keys. Within
the data warehouse, a transaction table’s primary key would consist of a combi-
nation of surrogate foreign keys and source system values, such as line numbers.

The process of assigning surrogate foreign keys will ensure referential integrity
within the data warehouse. This can be used to your advantage to speed data
loading by disabling redundant foreign key reference checking by the database
system. The basic process to assign a surrogate foreign key to incoming data is to
locate the row in the referenced table using the natural key value and selecting
the primary surrogate key. This value is then used to substitute the business key
in the incoming data.

If the lookup cannot find a row using the business key, you have a problem
with referential integrity. There are two techniques to handle this problem. One
technique is to reject the incoming data row and produce an exception report.
The other technique is to create a new row in the reference table using the busi-
ness key from the incoming data as the natural key. The new surrogate key value
would be used as the foreign key for the incoming data, which is then processed
and loaded into the data warehouse. The reference table row generated in this
manner would be identified as one being generated to resolve an error so the
transaction data can appear in an exception report.

Both techniques have their merits and which to use will depend on your busi-
ness requirements and policies. If a common problem is that data feeds some-
times go out of sync, and reference data comes in after the transaction data, then
the latter technique has significant advantages. It allows the transaction to flow
into the data warehouse and, at the same time, reserves a place for the reference
data once it arrives. When the reference data is loaded, it would find a row
already in place. It could then update that row with the missing data.

The act of performing the surrogate key lookup should not have a significant
impact on your data load process times. If you are using an ETL tool, almost all tools
provide a means to preload such cross-references into memory. If you do not use an
ETL tool, a database technique to use is to create a compound index of the natural
key and the surrogate key, then tune the database to cache this index in memory.
This would result in very fast lookup response from the database.

used to create the models. An entity is not equivalent to a dimension. The rules
of entity relationship modeling and normalization are vastly different from the
rules of dimensional modeling. When both are performed correctly, the same
modeling task can result in widely different schemas. The disparity can be so
great that one is unrecognizable by the other, yet both would be capable of pro-
viding the same information.

Differences in a Dimensional Model
In Chapter 2, we reviewed the basic concepts of relational modeling. An entity
typically represents an identifiable business object, such as a Customer, Ware-
house, Product, or Order. An entity contains attributes that describe the entity
and establish its primary key. Attributive entities provide additional detail about
a primary entity, such as Order Line and Warehouse Inventory. The structure of
these entities, their relationships and their attributes closely resemble their actual
structure in the business. In a dimensional model, this is not the case. A basic
dimensional model is made up of two classes of objects: dimensions and facts. A
fact contains measures and dimension foreign keys. A measure is usually a
numeric value and represents the magnitude of an action that has occurred in the
business. For example, in the case of a Sales Fact Table, the measures would rep-
resent items such as quantity sold and the value of the sale. The dimension for-
eign keys associated with the measures define the context of the measures by
referencing the appropriate dimension rows. A dimension is a collection of attrib-
utes. Note that the term attribute as used in dimensional modeling only refers to
columns in a dimension table, whereas in relational modeling the term attribute
is more generic. In relational modeling terms, both dimensional attributes and
measures would be considered attributes. While it is common to have dimen-
sions that represent business objects, it is not always the case. For example, a typ-
ical dimensional model may not contain dimensions for transactional entities
such as an Order. Instead, there may be a number of dimensions that contain
attributes that describe various aspects of an Order, such as Payment Terms,
Shipping Method, and so forth. The foreign keys in the order fact table would
provide the association between these dimensions so that through these relation-
ships you have a complete picture of the order.

Figure 5.8 shows an example of this disparity. On the left side is a typical nor-
malized representation of a sales order. There is an Order entity to describe
information about the order document and an Order Line entity to describe
information about the order line. Both entities contain attributes to describe the
order and its status. On the right side is an Order Status dimension. This dimen-
sion describes unique combinations of status code values encountered on an
order and its lines. It includes attributes that appear in both the Order and Order
Line entities in the entity model. When the sales order fact row is loaded, its for-
eign key is set to reference the appropriate combination of status codes in the
Order Status dimension.

C h a p t e r 5152

Figure 5.8 Differences between entity-relation and dimensional models.

The whole point of the dimensional design is to simplify and speed queries. For
example, let’s say that the user is performing an analysis based on a specific
order reason against a database that contains 5 million orders. In a relational
model, the query would need to locate the orders with that order reason, then
join to the order lines. If there were 1 million orders with that specific reason, the
database system will need to do a lot of work to find all the lines. On the other
hand, the Order Status dimension would only contain unique combinations of
status codes. Attributes in such dimensions are usually chosen based on the
level of correlation between the values, so that a typical dimension like this may
only contain 100 or 200 rows, of which only 25 may contain the reason code of
interest. The database is only required to look up 25 foreign keys in the fact table
to locate all the order fact rows.

Maintaining Dimensional Conformance
One challenge in fielding dimensional models from a purely relational data
warehouse is to provide a consistent foreign key reference between fact tables
and dimensions. There are two sides to this challenge: First, it is usually desir-
able to update existing data marts rather than performing a complete refresh.
Therefore, foreign keys provided in a delivery must be consistent with the exist-
ing dimensional keys in the target data mart. Second, the dimensional keys used
in one data mart should be consistent with the same dimension used in other
data marts. This latter requirement is known as dimensional conformance. This
simply means that the value of a foreign key in one fact table means the same
thing as the same value of the same foreign key in another fact table. Maintain-
ing conformance allows you to create joins across fact tables, allowing for unan-
ticipated data analysis without the need to field additional data marts.

To achieve dimensional conformance you must maintain the dimension tables
within the data warehouse itself, in addition to the base relational representa-
tion. (See Step 6 in Chapter 4.) In cases where the Customer entity is the same

Order

order identifier

order type
order status
order reason
...

Order Status Dimension

order status identifier

order type
order type description
order status
order status description
order reason
order reason description
line hold status
line hold status description
line reject reason
line reject reason description

Order Line

order identifier (FK)
order line identifier (FK)

hold status
reject reason
...

Creating and Maintaining Keys 153

as the Customer dimension, this is easy to do. Simply use the surrogate key of
the Customer entity or store the dimensional surrogate key as an attribute in
the Customer entity. In the case of minidimensions, such as the one shown in
Figure 5.8, or any other dimension that has no direct entity relationship, you
will need to maintain the dimension table within the data warehouse.

While dimensional maintenance can be performed as part of the delivery
process, it is more useful to do this work up front during the load process. Assign-
ing and storing dimensional foreign keys in your transactional data during the
load allows you to use those keys to support detailed drill-through from the data
marts. This allows you to field smaller summarized data marts and use the data
warehouse to supply highly detailed information on an as-needed basis. It also
has the advantage of focusing dimensional key assignment on new or changed
data, doing the assignment only once and simplifying the delivery processes by
having the foreign keys readily available in the tables being extracted. This
approach is not without risk. First, it can slow down the loading process. Second,
as new dimensions created, you would be required to rework the schema and
load processes to maintain the dimension and store the new dimensional foreign
keys. However, even if you do not plan to permit drill-through into the data
warehouse, we believe that addressing dimensional key assignment during the
loading process streamlines the delivery process and ensures key consistency
across data marts. This is a long-term benefit that outweighs the additional com-
plexity in the loading process.

Table 5.2 Physical Key Structures

OPTION ADVANTAGES DISADVANTAGES APPLICABILITY

Source System Familiarity If the key is long, it Single, recognized
Key may generate perfor- source that con-

mance problems tains some data for
downstream. each instance

Recognized Recognized Structure to accom- Applies for a few
Standard Key standard exists. modate integration code tables

Surrogate Key Can be generated May cause additional Applicable for virtu-
by DBMS. joins for retrieval of ally any situation

the business key except date and sit-
uations for which
users generally use
the data’s key for
retrieval

C h a p t e r 5154

Summary

The data warehouse key structure needs to be viewed at two levels: a business
perspective and a technical perspective. From a business perspective, the key is
an identifier that distinguishes each instantiation of an entity. To achieve this
purpose, the modeler needs to pay careful attention to the definition of the
equivalent entity (or table) in each business area and in each contributing sys-
tem. It is only through such analysis that the business and data warehouse
models can establish entity structures and their respective identifiers to provide
the enterprise perspective.

From a technical perspective, the key needs to be unique over the span of inte-
gration and time addressed by the data warehouse. The key should not be
used for anything other than establishing a unique record and relating it to
other records. Using the value of the key or a portion of it to mean something
should always be avoided. Several options exist, such as using the key from
the source system, using an accepted standard, and using a surrogate key.
Table 5.2 summarizes the three options and provides recommendations for
when each best fits.

Creating and Maintaining Keys 155

Installing Custom Controls 157

Modeling the Calendar

C H A P T E R 6

This chapter examines the role of dates in the data warehouse. It explains why
it is important to maintain calendar information and not rely on database-
supplied functions to interpret dates. The calendar is probably the most
important, yet least appreciated, component of a data warehouse. It serves as
the central point of reference for integrating and analyzing business events
based on the date. The calendar provides important historical perspective for
the data warehouse. While the date functions within a database support some
analyses, most businesses use more than one calendar in their operations. In
addition to the Gregorian calendar, we often see references to a fiscal calendar,
a planning calendar, and other specialized calendars that may be unique based
on the analyses being performed.

In this chapter, we will examine the types of calendars used in business, and
the implications that these have on the data warehouse. These case studies will
explore the following types of calendars:

■■ Simple fiscal calendar

■■ Location-specific calendar

■■ Multilingual-calendar

■■ Multiple-fiscal calendars

■■ Seasonal calendars

157

We start with a description of the different types of calendars and incorporate
these into the business data model, which is the basis of the data warehouse
(as well as system and technology) models. Using case studies, we then
describe how the data warehouse data model needs to be developed for each
scenario. Recognizing that data warehouse design decisions affect the delivery
of data to the data marts, we then provide information on the data mart design
implications for each of the case studies.

Calendars in Business

Businesses use a variety of calendars. The purpose of a calendar is to relate dates
for a particular application. In business, in addition to the standard (Gregorian)
calendar, there’s a fiscal calendar that is used for accounting and financial man-
agement purposes. In addition, some companies have other calendars based on
business needs. These include billing-cycle calendars, factory calendars, and
others.

Each of these calendars serves a specific purpose and needs to be referenced in
a specific business context to be meaningful. The data warehouse must sup-
port each of the appropriate calendars and ensure that when data is presented
for analysis, it is done within the context of the correct calendar. In this section,
we will examine the business calendars from three perspectives: the types of
calendars, the critical elements within these calendars, and the implications for
conglomerates and companies that operate globally or in many locations.

Calendar Types
The Gregorian calendar is generally accepted as the basis for establishing
dates for business activities. Within some countries, other calendars are used,
and we will describe how to handle these in the section dealing with compa-
nies that have a global presence. Within the context of this book, we will use
the Gregorian calendar as the foundation for all of the other calendars being
discussed. Figure 6.1 shows how we would model the Gregorian calendar in
the business model.

Figure 6.1 is fairly simplistic. Each date is composed of a year, a month, and a
day within the month, each through a foreign key relationship. In addition,
each date can be related to one of the seven days of the week.

C h a p t e r 6158

Figure 6.1 Calendar in the business model.

The Fiscal Calendar

The fiscal calendar is the clock that drives financial reporting and accounting
practices within the business. This calendar is made up of a fiscal year that
contains four fiscal quarters, each of which contain three fiscal months, which
are sometimes called fiscal periods. The fiscal months each contain individual
dates, and some fiscal calendars group these into fiscal weeks.

As Figure 6.2 shows, the first quarter in the fiscal calendar does not necessarily
correspond to the first quarter in the Gregorian calendar. Further, the calendar
date of July 3 may actually fall in the fiscal month of June if the fiscal month of
July begins on July 3. The date is the element that is shared between the Gre-
gorian and fiscal calendar, as shown in Figure 6.3, which adds the fiscal calen-
dar to the business data model.

The start and end of the fiscal calendar is up to the individual company. Many
companies choose to use January 1 as the start date and December 31 as the
end date. A company that has significant activity during a particular period
may choose to end its year shortly after that period. For example, a retailer
may choose to use January 31 as the end of its fiscal year to reflect post Christ-
mas sales, and a university may choose to use August 31 as the end of its fiscal
year to correspond to the end of its academic year.

Year Identifier

Year Number

Year

Date

Date

Day Identifier (FK)
Month Identifier (FK)
Year Identifier (FK)
Day Sequence Number

Day

Day Identifier

Day Name
Day Short Name
Day Workday Indicator

Month

Month Identifier

Month Name
Month Short Name

Modeling the Calendar 159

Figure 6.2 Fiscal calendar.

Fi
sc

al
 Y

ea
r

Fi
rs

t
Q

ua
rt

er

Se
co

nd
 Q

ua
rt

er

Th
ird

 Q
ua

rt
er

Fo
ur

th
 Q

ua
rt

er

Ju
ly

A
ug

us
t

Se
p

te
m

be
r

1 2 3 4

… 31

C h a p t e r 6160

Figure 6.3 Fiscal calendar in the business data model.

The 4-5-4 Fiscal Calendar

In the retail industry, sales comparisons are often made on a week-to-week
basis. When weekly results are rolled up to months, these comparisons lose
some meaning because the weeks would need to be split. Retail companies
have solved this problem by adopting a “4-5-4 calendar” for fiscal analysis and
reporting. With a potential exception of the year end, this calendar establishes
all of its periods based on 7-day periods ending on a particular day of the week,
such as Friday. Each quarter contains 13 weeks, and these are allocated to the
3 months within the quarter, with the first month containing 4 weeks, the sec-
ond month containing 5 weeks, and the third month containing 4 weeks.

The 4-5-4 fiscal calendar is very well suited for analyses performed by week or
by quarter; it is not well suited for comparing one month to another since a
third of the months are 25 percent longer than the other months. When
monthly analyses are performed, they need to compensate for the differing
length of the months.

Fiscal Quarter

Fiscal Quarter Identifier

Fiscal Quarter Name
Fiscal Quarter Short Name
Fiscal Quarter Sequence Number

Date

Date

Fiscal Year Identifier (FK)
Fiscal Month Identifier (FK)
Day Identifier (FK)
Month Identifier (FK)
Year Identifier (FK)
Day Sequence Number

Year Identifier

Year Number

Year
Day

Day Identifier

Day Name
Day Short Name
Day Workday Indicator

Month

Month Identifier

Month Name
Month Short Name

Fiscal Year

Fiscal Year Identifier

Fiscal Year Name
Fiscal Year Short Name
Fiscal Year Start Date
Fiscal Year End Date

Fiscal Month

Fiscal Month Identifier

Fiscal Quarter Identifier (FK)
Fiscal Month Name
Fiscal Month Short Name
Fiscal Month Sequence Number

Fiscal Calendar Period

Fiscal Month Identifier (FK)
Fiscal Year Identifier (FK)

Fiscal Calendar Period Start Date
Fiscal Calendar Period End Date

Modeling the Calendar 161

NOTE
The day of the week a company chooses for ending its fiscal week is sometimes
related to its marketing campaigns. Food stores, for example, have promotions that
span from Thursday to Wednesday. These often correspond to their fiscal week,
which ends on Wednesday.

Four quarters, each consisting of 13 weeks, consume 364 days, and a calendar
year contains 365 or 366 days. Options typically employed to address this prob-
lem are to anchor the first and last day of the fiscal year and to float these dates.

Most companies using the 4-5-4 fiscal calendar anchor their fiscal year within
the Gregorian calendar using, for example, January 1 as the first day and
December 31 as the last day. Within this calendar, there will be 52 weeks in the
year, though the first and last weeks of the year are either short or long,
depending on the day of the week on which the year starts.

NOTE
A 4-5-4 fiscal calendar contains two weeks (the first and last) that differ in length from
other weeks. Analyses that compare weekly results must consider these differences.

A modified version of a 4-5-4 fiscal calendar entails a week-centric approach.
This method identifies one day of the week as the last day of the week, and
does not make any adjustments for the end of the year. The month in which
that day falls determines the fiscal month to which the week is assigned. For
example, if Friday is the last day of the week, and August 2 falls on a Friday,
then the week of July 27 through August 2 would be considered to be the first
week of the August fiscal month. This method eliminates the calendar shift
problem of a strict 4-5-4 calendar, but the number of weeks in a year as well as
in any fiscal month can vary from year to year.

In the modified version of the 4-5-4 fiscal calendar, the number of weeks in
each month is not predictable since the month with 5 weeks is not always the
second month of the quarter. Similarly, some years will have 52 weeks, while
others will have 53 weeks. If the accuracy of year-to-year comparisons needs
to be better than 98 percent, then this discrepancy must be taken into account.
For strategic analyses that can tolerate a small margin of error, the difference
could be ignored.

Figure 6.4 incorporates the fiscal week into the fiscal calendar. The model
includes separate relationships between the date to the fiscal week and the date
to the fiscal month. Companies using the 4-5-4 calendar often relate sales rev-
enues to the fiscal week, and other financial data such as depreciation and other
expenses to the fiscal month. By maintaining the separate relationships, data
can be related in the appropriate manner based on the specific data element.

C h a p t e r 6162

With data-modeling tools that support it, the relationship should be shown as
an “exclusive or” relationship, meaning that one of the two relationships
applies to each data instance.

Figure 6.4 Week-centric fiscal calendar.

Ye
ar

 Id
en

tif
ie

r

Ye
ar

 N
um

b
er

Ye
ar

Fi
sc

al
 Q

ua
rt

er

Fi
sc

al
 Q

ua
rt

er
 Id

en
tif

ie
r

Fi
sc

al
 Q

ua
rt

er
 N

am
e

Fi
sc

al
 Q

ua
rt

er
 S

ho
rt

 N
am

e
Fi

sc
al

 Q
ua

rt
er

 S
eq

ue
nc

e
N

um
b

er

D
ay D
ay

 Id
en

tif
ie

r

D
ay

 N
am

e
D

ay
 S

ho
rt

 N
am

e
D

ay
 W

or
kd

ay
 In

d
ic

at
or

Fi
sc

al
 W

ee
k

Fi
sc

al
 W

ee
k

Id
en

tif
ie

r

Fi
sc

al
 M

on
th

 Id
en

tif
ie

r
(F

K
)

Fi
sc

al
 Y

ea
r

Id
en

tif
ie

r
(F

K
)

Fi
sc

al
 W

ee
k

St
ar

t
D

at
e

Fi
sc

al
 W

ee
k

En
d

 D
at

e
Fi

sc
al

 W
ee

k
Se

q
ue

nc
e

N
um

b
er

D
at

e

D
at

e

Fi
sc

al
 Y

ea
r

Id
en

tif
ie

r
(F

K
)

Fi
sc

al
 M

on
th

 Id
en

tif
ie

r
(F

K
)

Fi
sc

al
 W

ee
k

Id
en

tif
ie

r
(F

K
)

D
ay

 Id
en

tif
ie

r
(F

K
)

M
on

th
 Id

en
tif

ie
r

(F
K

)
Ye

ar
 Id

en
tif

ie
r

(F
K

)
D

ay
 S

eq
ue

nc
e

N
um

b
er

Fi
sc

al
 Y

ea
r

Fi
sc

al
 Y

ea
r

Id
en

tif
ie

r

Fi
sc

al
 Y

ea
r

N
am

e
Fi

sc
al

 Y
ea

r
Sh

or
t

N
am

e
Fi

sc
al

 Y
ea

r
St

ar
t

D
at

e
Fi

sc
al

 Y
ea

r
En

d
 D

at
e

M
on

th

M
on

th
 Id

en
tif

ie
r

M
on

th
 N

am
e

M
on

th
 S

ho
rt

 N
am

e

Fi
sc

al
 C

al
en

d
ar

 P
er

io
d

Fi
sc

al
 M

on
th

 Id
en

tif
ie

r
(F

K
)

Fi
sc

al
 Y

ea
r

Id
en

tif
ie

r
(F

K
)

Fi
sc

al
 C

al
en

d
ar

 P
er

io
d

 S
ta

rt
 D

at
e

Fi
sc

al
 C

al
en

d
ar

 P
er

io
d

 E
nd

 D
at

e

Fi
sc

al
 M

on
th

Fi
sc

al
 M

on
th

 Id
en

tif
ie

r

Fi
sc

al
 Q

ua
rt

er
 Id

en
tif

ie
r

(F
K

)
Fi

sc
al

 M
on

th
 N

am
e

Fi
sc

al
 M

on
th

 S
ho

rt
 N

am
e

Fi
sc

al
 M

on
th

 S
eq

ue
nc

e
N

um
b

er

Modeling the Calendar 163

Thirteen-Month Fiscal Calendar

Another week-centric calendar is the 13-month fiscal calendar. This calendar
divides the fiscal year into 13 months, each consisting of 4 weeks. This struc-
ture facilitates month-to-month comparisons, since all months consist of
exactly 4 weeks, but does not accommodate quarterly reporting. Due to the
prevalence of quarterly financial reporting requirements, this type of calendar
is rarely used.

Other Fiscal Calendars
There are other fiscal calendars that are unique to a particular business. All of
the calendars define a fiscal year, and most define fiscal quarters and fiscal
months. Regardless of the structure of the fiscal calendar, the data warehouse
must support structures that provide both a fiscal and a traditional (for exam-
ple, Gregorian) calendar view of the business’s data.

The Billing Cycle Calendar

Many companies, such as utilities and credit card companies, have events that
are tied to a billing cycle. For example, in an utility company, the meter may be
read 2 days prior to billing, the payment may be due 14 days after billing,
charges may be subject to interest payments 30 days after billing, and the
account may go into the arrears 60 days after billing. The formula, in terms of
the number of days (be they business days or calendar days), is constant.
Given a billing date, the businessperson can readily anticipate when certain
events take place. Further, in these businesses, there is a typical payment pat-
tern that is based on the billing date. Given a billing date and the amount being
billed, financial planners can make cash flow projections using information
stored in the data warehouse.

The Factory Calendar

A factory calendar is a specialized calendar and was initially developed to
schedule and plan production in a factory. Factory calendars are typically
based on workdays and shifts. Each day in a factory calendar represents a day
of production. Nonproduction days are excluded. In the past, the calendar was
organized by “cycles” of anywhere from 100 to 1000 days. These cycles were
used in production scheduling and planning to ease calculation of future
dates. For example, if a production shop floor routing requires materials to be
sent off-site for specialized work and the turn-around time is 15 working days,
material that enters that production step on day 183 will be expected back on
the floor on day 198. Modern computer systems have eliminated the need to

C h a p t e r 6164

maintain calendars on these terms, allowing the user to see April 18, 2002
instead of day 198, and yet internally, such systems continue to count days
based on working and nonworking days. By their very nature, factory calen-
dars are localized. That is, each production facility may have its own factory
calendar to reflect the workdays and shifts within that facility.

Whether you are developing your data warehouse for a manufacturer or not,
the idea of tracking workdays has wide applicability when performing analy-
sis for a variety of businesses. The concept of the factory calendar has been
expanded in modern usage to provide a calendar for consistently measuring
the number of workdays between two events, such as the beginning and end
of a promotional period, and for facilitating data access for an equal number of
workdays regardless of the elapsed calendar days. The premise behind the fac-
tory calendar was to homogenize the timeline so that day calculations could be
done using simple arithmetic. This homogeneity is also important when per-
forming year-over-year and month-over-month analysis. If you have a sales
force that works Monday through Friday and you need to compare this
month’s performance to date against last month’s, it makes sense to count the
same number of selling days in each month; otherwise, the comparison can be
skewed depending on where the weekend falls in relation to the start of the
month. This concept will be discussed at length in the next section.

Calendar Elements
An effective calendar entity can significantly improve people’s ability to per-
form analysis over time. There are three fundamental concepts that facilitate
the analysis:

■■ The day of the week, particularly in Retail businesses

■■ Accounting for nonworking days to provide meaningful comparative
analysis and elapsed-time calculations

■■ Defining time periods of interest, such as holiday seasons, for analysis

Day of the Week

The day of the week is probably the most commonly recognized special day
for performing date-oriented analyses. Often the day of the week is used to
distinguish between workdays and nonworkdays. A workday indicator in the
Day of the Week entity in Figure 6.1 shows whether it is a regularly scheduled
workday, and this can be used to facilitate analysis.

A company’s revenue cycle is also sometimes dependent on the day of the week.
Some retailers have a heavier daily sales volume during weekend days, while

Modeling the Calendar 165

other retailers may have a lower volume during the weekend, particularly if
they have shorter hours. Sales on Mondays may be consistently higher than
sales on other days for some companies. The relationship between the Day of the
Week and the Date in Figure 6.1 facilitates analysis based on the day of the week.

NOTE
Some sales cycles are also dependent on the day of the month. For example,
commercial sales may be higher at the beginning of the month than at the end of
the month. Inclusion of a day sequence number in the Date entity in Figure 6.1 can
help analysts who need to use that information.

Holidays

Holidays impact two areas: your organization’s business practices and your cus-
tomers’ ability to do business with you. In the first case, holidays (or more gener-
ically, nonworkdays) are established by internal business policies and impact
company holiday schedules, store hours, plant closings, and other events. Within
the Date entity in Figure 6.1, we’ve included a workday indicator within the Day
of the Week entity and a Holiday Indicator within the Date entity. With this infor-
mation, analysis based on workdays is facilitated. In addition, the use of a Work-
day Sequence Number helps in comparing results during the first 10 workdays
of two months. As Figure 6.5 shows, in June 2006, the 10th workday occurs on the
14th, while the 10th workday in July 2006 will not occur until the 17th.

WARNING
Analysts should be careful with the criteria used to perform month-to-month analy-
sis. For example, in companies that are heavily oriented toward commercial sales or
sales through distribution channels, it may be very appropriate to make comparisons
based on the number of business days in the month since these are the days in
which purchasing agents typically make buying decisions. In companies that are ori-
ented toward retail sales, it would be more appropriate to make comparisons based
on the number of days that the stores are open.

Figure 6.5 Workday comparisons.

July 2006June 2006
S SS M T TW FSM T TW F

1 12 3
4 5 6 7 8 4 5 6 7 89 10 2 3
11 12 13 14 15 11 12 13 14 1516 17 9 10

16 1718 19 20 21 22 18 19 20 21 2223 24
23 2425 26 27 28 29 25 26 27 28 29
30 31

30

C h a p t e r 6166

The effect that holidays have on your customers is a much different matter.
The greatest impact is seen in the retail business, in which holidays and other
events can have a significant impact on comparative statistics. For example, it
makes no sense to directly compare January sales against December sales if 25
percent (or more) of your sales for the year occur in the weeks leading up to
Christmas. External calendars influence businesses in many different ways.
Children’s clothing and tourism have cycles influenced by the school calendar.
Candy sales are influenced by events such as Easter and Halloween. Firework
sales are influenced by special events such as Independence Day and New
Year’s Day. When performing analyses of sales that are influenced by such
events, it is important for the data warehouse to provide the means to apply
the necessary context to the data as the data migrates to the marts. Without
such context, direct comparison of the numbers can be misleading, which may
lead to bad decisions.

These are predictable business sales cycles. Hence information about these can
be included in the business data model and cascaded to the data warehouse
model. Attributes can be included (as shown in Figure 6.5) in the Date entity to
indicate special periods to which the date belongs. If there are a small number
of such periods, then each could be accommodated by a separate attribute; if
the number of periods is large, then the periods could be classified into logical
groupings and the attributes could indicate the group(s) to which the date
belongs.

Holiday Season

The holiday season, which begins on the day following Thanksgiving and
ends on Christmas Day (December 25), is of special interest in retailing. An
indicator for this season is very useful since the beginning date varies each
year. With an indicator, an analyst comparing Holiday Season sales for 3 years
can simply select dates based on the value of the indicator.

The holiday season impact cascades beyond just sales during the holiday
season since companies need to ensure that the products are available at that
time. To prepare for the large sales volume, there are preceding periods that
affect product planning and production. Sometimes it is meaningful to track
these as well. For example, large inventory levels following the peak-selling
season are not healthy, but it is very appropriate (and in fact essential) to have
high inventory levels immediately preceding the peak selling season. One way
of handling this is to include a derived field that represents the number of days
before the peak selling season. The analyst can use that information to qualify
analysis of data for the inventory levels, production schedules, and so on.

Modeling the Calendar 167

Company holiday information is easily obtained from the Human Resources
Department within your organization. The challenge is that such information
may not be readily available from an existing application. You may find that
the only source for a list of nonworking days is from memos and other such
documents. In such cases, it would become necessary to implement a data
entry application to collect and maintain this data for the warehouse. From a
technical standpoint, it is a very simple, low-volume application. However,
finding a department to support this data may be difficult. Usually, the holi-
day schedule is published by the Human Resources Department so it would
be the most likely candidate to maintain this information in the application. In
most cases, initial warehouse implementations often do not support the
Human Resources Department, and the Human Resources Department is typ-
ically out of the loop when discussing warehouse requirements. So, it is com-
mon that, when asked, the Human Resources Department may decline to
assume that responsibility. Do not be surprised if the responsibility for main-
taining this data within the data warehouse falls on the data warehouse sup-
port staff.

Seasons

In addition to holidays and other events, seasons play an important role in
influencing business activity. In the context of this discussion, it is best to look
at a season is its most generic form. A season is defined as any time period of
significance. What this means depends on what is significant to your business.
If you are in sporting goods, then the baseball season is significant. If you man-
ufacture watercraft, then summer is important. Carried to a logical conclusion,
a seasonal calendar can be used in a data warehouse to provide context to any
date or range of dates. Figures 6.15 and 6.16, later in this chapter, show an
example of a seasonal calendar model.

The advantage of a seasonal calendar is that it formalizes a process that allows
the end user to surround any period of time with a special context. It recog-
nizes the fact that the impact on business is not the event itself, but rather the
days, weeks, or months preceding or following that event. It also facilitates
year-to-year analysis based on seasons that are important to the business, sim-
ilar to the holiday season previously described. The concept of the season
acknowledges the fact that, as a data warehouse designer, you cannot antici-
pate every conceivable avenue of analysis. A seasonal calendar structure puts
that control in the hands of the end user. Creating a seasonal calendar will be
discussed later in this chapter.

C h a p t e r 6168

Calendar Time Span
A major application of the calendar is to provide a time context to business
activity. At a minimum, the calendar should cover the historical and current
activity time period maintained in the warehouse. From a practical standpoint,
it should cover the planning horizon (for example, the future time span for
which a forecast or quota that is used in strategic analysis may be created),
which is often several years into the future.

Some industries, such as banking, may require much longer timeframes in
their calendar to cover maturity dates of bonds, mortgages, and other financial
instruments. As you will see later in this section, there is a lot of information
about a date that a calendar entity can include. It may not be possible to gather
all the necessary information for dates 10, 20, or 30 years into the future. This
should not be of great concern. There is no requirement that all columns for all
dates be populated immediately. If the data is not available, then a null condi-
tion or a value indicating that the data is not available may be used. When this
is done, the metadata should explain the meaning of the field content.

Time and the Data Warehouse

Time can be an important aspect of analysis, depending on your business. In
retail, identifying busy and slow parts of the day can aid in better work sched-
uling. In logistics, analysis of delay patterns at pickup and delivery points can
help improve scheduling and resource utilization. This section will examine
the use of time in the data warehouse.

The Nature of Time
A common mistake in data warehouse design is to treat date and time together.
This is understandable because it is common for people and the business to

Modeling the Calendar 169

Dealing with Missing Information

The data warehouse will have a column for each data element, including a col-
umn for dates into the future, and the data to populate this column may not ini-
tially be available. Therefore, these columns may be null at first (if your database
standards permit this). When the data becomes available, a new row is added to
the data warehouse with values in these columns. From a purely theoretical point
of view, the old row is also retained. To simplify the structure of the data ware-
house, companies sometimes choose not to keep history of that nature, in which
case the previous row containing data for that date is deleted.

consider them as one and the same. This natural tendency can result in very
undesirable effects in the data warehouse.

If we develop the business model (such as the one shown in Figure 6.3) with
the understanding that the Date attribute represents a specific Gregorian date,
then all other entities that refer to the Date entity have a foreign key that rep-
resents a specific Gregorian date. An attribute that represents both the date
and time cannot be used as a foreign key since it represents a point in time
rather than a date. To avoid this conflict, the model should represent date and
time of day as separate attributes. Doing so will help clarify the model and
avoid potential implementation issues.

Standardizing Time
An aspect of time is that it is different from place to place. While it is 3:33 P.M.
on June 2 in New York, it is 1:03 A.M. on June 3 in Calcutta. When you are
designing the data warehouse, you will need to take into account which time
is important for the business: a common standard time, the local time, or both.
A traditional retail chain is most likely interested in the local time because it
represents time from the customer’s perspective. Whereas a telecommunica-
tions company needs both, local time to analyze customer patterns and rates,
and a common standard time to analyze network traffic.

If there is a requirement for a common standard time, you must store the local
time and date as well as the standard time and date in the data warehouse. There
are some basic reasons for this. If you only stored one date and time, it would be
very difficult to reliably calculate the other, particularly in historical analysis.
Around the world, the recording of time has more to do with politics than it does
with science. It is up to government authorities in each country to decide what
time they will keep and how they will keep it. At the time of this writing, there
are 37 different standard time zones. This number increases if you take into
account those that observe daylight savings time and those who don’t.

C h a p t e r 6170

Storing Time

Receiving time values from different systems can be problematic as each system
may provide time at different levels of precision. Two decisions you need to
arrive for the data warehouse is what degree of precision is useful and how will
the time value be stored. The level of precision will depend on your business. In
most cases, hour and minute are sufficient. However, some industries—such as
telecommunications and banking—require more precise values.

In addition, the observation dates will vary from country to country. The job
would be easier if it were a national decision, but it is not. In the United States
for example, it is up to the States and Tribal Nations, not the Federal govern-
ment, to establish time rules. For example, Arizona does not observe daylight
savings time, whereas the Navajo Indian Reservation in Arizona does observe

Modeling the Calendar 171

When storing time, there are three approaches. One method is to store time as
you would expect to display it, for example, as a four-digit number where the
first two digits are the hour and the last two digits are the minute. A second
method is to express the time as the number of minutes or seconds since the
beginning of the day. The first method is useful when displaying time, while the
second is more useful for calculating elapsed time. Both methods are useful for
sorting. Both methods need to be supplemented with functions to accommodate
their particular shortcoming.

A third approach is to store a discrete time value using one of the other two
methods and to store a full date/time value in the databases native format. This
is redundant, as you would be storing a discrete date, discrete time, and a contin-
uous timestamp. The latter value will allow you to use native database functions
to manipulate and measure time, while the discrete values provide useful keys
for analysis. This approach provides the greatest flexibility and utility.

Of course, there is another class of date/time attributes that is used internally
for audit and control purposes. The values of these attributes would never be
used for business analysis and would not be made available to the user commu-
nity at large. These values should be stored as timestamps in the native database
format. No effort should be made to store them as discrete date and time values
as such values are only useful for business analysis.

If your source is Web-based transactions, it is fairly easy to do. Web transmis-
sions are time stamped with the local time as well as Zulu (UMT or Greenwich
Mean Time) time. Otherwise, you need to check your source systems to determine
what time is collected. If a standard time is not recorded, it may be worthwhile
investigating modifications to the transactional system to collect this information.

If all else fails, there are services that can provide worldwide time zone infor-
mation on a subscription basis. The data will typically contain ISO country and
region coding, the offset from Zulu time, and the dates that daylight savings time
is observed. These services will provide periodic updates, so you do not need to
worry about regulatory changes. The challenge will be to associate your locations
with the ISO country and regional-coding standard. Also, it is not certain that the
ISO codes will be specific enough to differentiate between sections of states.
Therefore, initial use of such data may require some analysis and manual effort
to assign the ISO codes to your locations in order to correlate them with the time
zone data. A search for “time” at www.google.com will locate such services as
well as a wealth of information about time zones.

daylight savings time. In other cases, time zones go through States, following
a river, mountain crest, or keeping true to the longitude. To avoid getting
bogged down in legislative and geographic minutia, it is better to capture both
times at the time of the transaction.

Data Warehouse System Model

The previous section described the business characteristics of the calendar,
including the various types, elements, and time spans. In this section, we
describe the impact on both the system and technology representations of the
data warehouse. Before getting into the case studies, we introduce the concept
of keys as they apply to the calendar. This material expands on the material
provided in Chapter 5.

As you will see throughout the remainder of this chapter, the use of entity-
relationship modeling concepts for the data warehouse provides the designer
with significant flexibility. Properly structured, we preserve the primary mis-
sion of the warehouse as a focal point for collecting data and for subsequently
distributing it to the data marts.

Date Keys
Within the data warehouse, data is related to the calendar by foreign keys to
the calendar entity’s primary key. Transaction dates—such as enrollment date,
order date, or invoice date—would be associated to the calendar in this man-
ner. Other dates, such as birth dates, that have no relationship to business
activity, are usually stored as dates with no relationship to the calendar.

As discussed in Chapter 4, the date is one of the few attributes that has a
known, reliable set of unique values. We can also assume that, at least in our
lifetime, there will not be a change in the calendar system so there is no danger
that management will decide to renumber the dates. A date has all the trap-
pings of a perfect key. Whether or not to use a surrogate key for the calendar
table will depend on your particular preferences and policies. One could have
a policy that all keys for all tables should contain surrogate keys. That is fine
because it certainly removes any question as to the nature of a table’s primary
key. The other issues to consider are why you may want a surrogate key for the
calendar and how you plan to deal with bad dates. The surrogate key section
in Chapter 5 discusses different strategies to deal with erroneous reference
data. Review that discussion before you decide.

The entity will also have multiple alternate natural key attributes depending on
how dates are represented in the source systems. One attribute may be the date
in the native database format; unless you are using a surrogate primary key, this
attribute would serve as the primary key. Additional attributes could contain the

C h a p t e r 6172

dates stored in the format used by incoming data feeds. For example, if one of the
data sources contains dates stored as an eight-character CCYYMMDD field, you
should include an attribute in the date entity with the date in that format to ease
interfacing the external system with the data warehouse. By storing the date in
these different formats, your data warehouse load interfaces can locate the appro-
priate date row without having to use date format conversion functions. This
avoids potential problems should the date being received be an invalid one. If
you store a single natural key, usually a date in the database’s native format, you
will be faced with developing code to validate and cleanse the date prior to using
it to lookup the primary key. Failure to do this properly will cause an exception
from the database system during the load. Such an exception will cause the load
process to abort and require some late-night troubleshooting and delays in pub-
lishing the warehouse data. As the data warehouse grows and new system inter-
faces are encountered, it is not unusual to discover new date formats. Adding
new attributes to the entity easily accommodates these new formats.

Case Study: Simple Fiscal Calendar

Our consumer packaged goods company, Delicious Foods Company (DFC), is
implementing its data warehouse in phases over many years. The initial
phases will concentrate on sales, revenue, and customer fulfillment. All sales
and revenue reporting is tied to the fiscal calendar. The company uses a mod-
ified 4-5-4 calendar, where the fiscal year always begins on January 1 and ends
on December 31.

The company has the following business rules for its calendar:

■■ The fiscal year begins January 1.

■■ The fiscal year ends December 31.

■■ There are always 52 fiscal weeks in the year.

■■ The week begins on Monday and ends on Sunday.

■■ If the year begins on a Monday, Tuesday, or Wednesday, the first week
of the year ends on the first Sunday of the year, otherwise it ends on the
second Sunday of the year.

■■ The last week of the year is week 52 and always ends on December 31.

■■ Each quarter has 3 fiscal months consisting of 4 weeks, 5 weeks, and
4 weeks (4-5-4), respectively.

■■ Workdays are Monday through Friday, except holidays. Activity on Satur-
day or Sunday is treated as the same workday as the preceding Friday
unless that Saturday and/or Sunday is in a different fiscal year, that is, the
Friday in question fell on December 30 or December 31. Activity on a holi-
day is counted in the preceding business day.

Modeling the Calendar 173

Figure 6.6 Fiscal calendar data feed.

The company would like the calendar to support both fiscal and Gregorian cal-
endars. It should support reporting by day, month, and year as well as fiscal
week, fiscal month, fiscal quarter, and fiscal year. Year-to-date versus last-year-
to-date and fiscal-month-to-date versus last-year-fiscal-month-to-date com-
parisons must use the working day of the fiscal month as the point of
comparison. For example, if the current date is the 15th workday of the fiscal
month, then last year’s numbers must be those for the period through the 15th
workday of last year’s fiscal month. However, if the current date is the last day
of the fiscal month, the comparison should include all days of last year’s fiscal
month regardless of the number of workdays. The company has a standard
holiday list that is produced annually by the Human Resources Department.
Days on this list are considered nonworkdays.

The company’s operational system can provide a data feed that defines a fiscal
year by providing 12 records containing the calendar date for the end of each
fiscal month. Figure 6.6 shows an example of a typical data feed that defines
the fiscal calendar for 2002. The incoming data contains four fields, the year,
month, and day (which specifies the last day of the fiscal month), and the fis-
cal month number.

Based on the business models discussed earlier, this section discusses how the
technical model is implemented within the data warehouse.

Analysis
It is not unusual for an operational system to provide insignificant data sur-
rounding fiscal calendars. The concern on the operational side is to ensure that
transactions are posted to the proper fiscal month. It is not concerned with

 1
 2
 3
 4
 5
 6
 7
 9
 9

10
12
12

27
24
31
28
26
30
28
 1
29
27
 1
31

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

2002
2002
2002
2002
2002
2002
2002
2002
2002
2002
2002
2002

Year Month Day Period_ID

C h a p t e r 6174

workdays or other aspects of the date. Fortunately, most calendar information
can be generated algorithmically, with no other input than the date itself. With
the exception of the holiday list from Human Resources, the entire calendar
can be generated without additional data feeds.

The Human Resources Department’s holiday list may be published as a
memo. This means that someone’s annual task will be to enter the dates into
the data warehouse for processing. This duty almost always falls on the data
warehouse team to perform. To avoid potential errors, a process should be in
place to collect the new dates in a file or a staging table. A report of these dates
can be generated and sent to a designated business user for validation. After
validation, the list of dates can then be applied to the data warehouse.

At DFC, the next year’s holiday schedule is published in November. Since the
calendar data is generated years in advance to accommodate orders with
future delivery dates and sales planning data, this data may be much too late
to incorporate into next year’s calendar. Therefore, the holiday load process
will need to adjust workdays in the calendar.

A Simple Calendar Model
This case has very basic requirements for the calendar. Figure 6.4 shows the
basic business model to support these requirements. What follows is a discus-
sion of the technical model in the data warehouse. In the sections that follow,
we will examine a number of techniques to provide additional functionality to
support the load and delivery processes.

Extending the Date Table

The Date table contains one row per day for the time span appropriate to your
needs. Usually, this time span is all the previous years of transactional data
retained in the warehouse plus at least 2 years into the future to support planning
and budgets. The physical model has been extended to include columns repre-
senting the date in a number of different formats. These columns serve as natural
or reference keys to the table. The sample model in Figure 6.7 shows three
examples of this. The Date column represents the date in the native database for-
mat. The Date CYMD column contains the date as a string in CCYYMMDD
format, while Date YYDDD is an integer column with the date stored in Julian
format. Your table may contain more or less than this, depending on the number
of different formats in which you receive in your data interfaces.

Modeling the Calendar 175

Figure 6.7 Extended date table.

The remainder of the physical model follows the business models shown in Fig-
ure 6.3. However, the model, while complete, presents a number of challenges
when it becomes necessary to deliver data to the data marts and other external
systems. The business requires that there be a number of derived values, such as
number of workdays in the fiscal period, same day last year, and so forth. While
the model will allow for this, such derivations can require significant processing,
slowing down the delivery process. Since our objective is to provide this data in
an efficient manner, further refinement of the physical model is necessary.

Chapter 4 discusses the process involved in refining the model. The calendar
data is one area where this process can be applied to its fullest to achieve sig-
nificant processing efficiencies. The reason for that is we are dealing with a
small, stable data set. There is very little cost to fully denormalize this data set,
yet doing so will greatly reduce the cost of using it. We will discuss this next.

M
o

n
th

M
on

th
 Id

en
tif

ie
r

M
on

th
 N

am
e

M
on

th
 S

ho
rt

 N
am

e

Y
ea

r

Ye
ar

 Id
en

tif
ie

r

Ye
ar

 N
um

be
r

Fi
sc

al
 Y

ea
r

Fi
sc

al
 Y

ea
r

Id
en

tif
ie

r

Fi
sc

al
 Y

ea
r

N
am

e
Fi

sc
al

 Y
ea

r
Sh

or
t

N
am

e
Fi

sc
al

 Y
ea

r
St

ar
t

D
at

e
Fi

sc
al

 Y
ea

r
En

d
D

at
e

Fi
sc

al
 C

al
en

d
ar

 P
er

io
d

Fi
sc

al
 M

on
th

 Id
en

tif
ie

r
(F

K)
Fi

sc
al

 Y
ea

r
Id

en
tif

ie
r

(F
K)

Fi
sc

al
 C

al
en

da
r

Pe
rio

d
St

ar
t

D
at

e
Fi

sc
al

 C
al

en
da

r
Pe

rio
d

En
d

D
at

e

D
at

e

D
at

e

D
at

e
C

YM
D

 V
al

ue
D

at
e

YY
D

D
D

 V
al

ue

D
ay

 S
eq

ue
nc

e
N

um
be

r

Fi
sc

al
 Y

ea
r

Id
en

tif
ie

r
(F

K)
Fi

sc
al

 M
on

th
 Id

en
tif

ie
r

(F
K)

D
ay

 Id
en

tif
ie

r
(F

K)
M

on
th

 Id
en

tif
ie

r
(F

K)
Ye

ar
 Id

en
tif

ie
r

(F
K)

Fi
sc

al
 Q

u
ar

te
r

Fi
sc

al
 Q

ua
rt

er
 Id

en
tif

ie
r

Fi
sc

al
 Q

ua
rt

er
 N

am
e

Fi
sc

al
 Q

ua
rt

er
 S

ho
rt

 N
am

e
Fi

sc
al

 Q
ua

rt
er

 S
eq

ue
nc

e
N

um
be

r

Fi
sc

al
 M

o
n

th

Fi
sc

al
 M

on
th

 Id
en

tif
ie

r

Fi
sc

al
 M

on
th

 N
am

e
Fi

sc
al

 M
on

th
 S

ho
rt

 N
am

e
Fi

sc
al

 M
on

th
 S

eq
ue

nc
e

N
um

be
r

D
ay D
ay

 Id
en

tif
ie

r

D
ay

 N
am

e
D

ay
 S

ho
rt

 N
am

e
D

ay
 W

or
kd

ay
 In

di
ca

to
r

C h a p t e r 6176

Denormalizing the Calendar

The basic calendar is delivered to the data marts as a single denormalized
table. Figure 6.8 shows an example of the Calendar dimension as it may
appear in a data mart. As is typical with dimension tables, there is a significant
amount of data redundancy and derived values. The purpose of which is to
improve query performance and ensure consistency of derived values across
queries. The same need exists within the data warehouse to support the deliv-
ery of calendar information. If delivery was based solely on the instantiation of
the normalized business model, calculation of some of the derivations from
normalized tables will require significant processing. Furthermore, each deliv-
ery process would have to derive the values itself, unnecessarily extending the
development and testing process.

Figure 6.8 Denormalized calendar table.

Calendar

Date

Day Identifier
Day Name
Day Short Name
Day Workday Indicator
Month Identifier
Month Name
Month Short Name
Year Identifier
Year Number
Fiscal Month Identifier
Fiscal Month Start Date
Fiscal Month End Date
Fiscal Month Name
Fiscal Month Short Name
Fiscal Month Sequence Number
Fiscal Quarter Identifier
Fiscal Quarter Name
Fiscal Quarter Short Name
Fiscal Quarter Sequence Number
Fiscal Week Identifier
Fiscal Week Start Date
Fiscal Week End Date
Fiscal Week Sequence Number
Fiscal Year Identifier
Fiscal Year Name
Fiscal Year Short Name
Fiscal Year Start Date
Fiscal Year End Date
Workday Indicator
Workday of Week
Workday of Month
Workday of Fiscal Month
Workday of Year
Workday of Fiscal Year
Workday Count
Workdays in Week
Workdays in Month
Workdays in Fiscal Month
Workdays in Year
Workdays in Fiscal Year
Last Day of Month Indicator
Last Day of Fiscal Month Indicator
Last Day of Year Indicator
Last Day of Fiscal Year Indicator

Same Day Last Fiscal Year Date (FK)
Same Day Last Fiscal Month Date (FK)

Modeling the Calendar 177

Due to the processing required to derive some of the data values, we recommend
that you implement the denormalized calendar structure in the data warehouse.
These tables would exist in addition to the normalized tables outlined in the busi-
ness model. While redundant, the denormalized structures are solely dependent
on an internal delivery process to generate the tables after updates are applied to
the normalized tables. Creating the tables in this manner will not introduce data
inconsistencies that may sometimes occur where redundant data exists. Also,
since calendars are very small tables, data storage should not be an issue.

The denormalized tables should then be used as the source of calendar data for
all delivery processes. In the case of delivery to dimensional data marts, the
tables can be moved en masse without the need for modification. When deliv-
ering information to other environments, such as flat file extracts, you should
join to the denormalized tables to retrieve the necessary data.

Table 6.1 explains the derived columns in the denormalized Calendar table.
You may add or exclude columns to suit your business requirements. The pri-
mary objective of these columns is to eliminate or reduce the logic necessary
during data delivery. Columns such as Last Day of Month Indicator are good
examples of that. Providing such attributes allows the delivery process to be
unfettered by business rules, workdays, and leap years.

C h a p t e r 6178

Ensuring Key Conformance

When generating denormalized tables in the data warehouse to support the data
delivery process, it is important that the primary key value remain consistent
after repeated updates or regenerations of this data.

Alternate Date Formats

Your Date table should contain additional columns for alternate date formats,
such as the Julian date, YYMMDD text date, and so forth. At minimum, there
should be one column for each date format you expect to receive in your external
data feeds. These columns should be populated as part of the table creation
process.

Creating alternate indexes on these columns allows the ETL process to locate
the proper date row and primary key value using the native format received in
the data feed. This combines both date format conversion and date validation
into a single step, simplifying the ETL process and error-trapping procedures.

Modeling the Calendar 179

Table 6.1 Calendar Table Derived Columns

CALENDAR COLUMN DESCRIPTION

Workday Indicator This is a true/false value, indicating if the day is a workday.

Workday of Week This is the number of the workday in the week, with the
first workday in the week being 1; the second, 2; and
so on.

Workday of Month, This is the number of the workday in the month or fiscal
Workday of Fiscal Month month. This value is typically used for month-over-month

or year-over-year comparisons. To compare a month-to-
date total for this day to a month-to-date total from last
year, you would include all days in last year’s month
where the Workday of Month is less than or equal to this
date’s number of workdays.

Workday of Year, This is the number of workdays in the year or fiscal year.
Workday of Fiscal Year This is useful when performing year-to-date comparisons

of actuals and projections. This value divided into the
total number of workdays in the year will give you the
percentage of the year completed.

Workday Count This is a running count of workdays, in chronological
order, from the beginning of the calendar. This value is
used to determine the number of workdays between
any two dates.

Workdays in... This is the number of workdays in the current week,
month, fiscal month, year, and fiscal year. This value can
be used to calculate percentage of completion for the
time period and for printing the expected duration in a
report (that is, day 8 of 25).

Last Day of A true/false value set to true for the last day of the
Month Indicator month. Business rules should determine how this gets

set. For example, if the month ends on a Sunday, it may
be that Friday, Saturday, and Sunday are considered the
“last day” if both Saturday and Sunday are nonworkdays.

(continued)

Within dimensional data marts, the fact tables store the key value as a foreign
key to the dimension table. If the regeneration process reassigns primary key val-
ues, these foreign key references are not longer value when the denormalized
data is used to update the mart’s dimension table. This destroys the referential
integrity of the data and would require reloading the fact data with the proper
foreign keys. Such a situation should be avoided.

C h a p t e r 6180

Table 6.1 (continued)

CALENDAR COLUMN DESCRIPTION

Last Day of Fiscal Month A true/false value set to true for the last day of the fiscal
Indicator, Last Day of month, year, and fiscal year. Again, your business rules
Year Indicator, Last Day would determine how this flag is set.
of Fiscal Year Indicator

Same Day Last Fiscal These are recursive foreign keys pointing to rows for the
Month Date, Same same day in the last fiscal period and the same day in
Day Last Fiscal Year Date the last fiscal year, respectively. These keys would take

into account any business rules to determine what day it
really is. For example, it may be the same calendar day
or the same workday. You can add other such keys as
necessary to support data analysis requirements.

Case Study: A Location Specific Calendar

Our food store chain, General Omnificent Shopping Haven (GOSH), uses a
week-centric 4-5-4 calendar as their fiscal calendar. The chain also maintains
different working schedules for each store, each distribution center, and the
corporate offices. When performing store analysis, it is not only interested in
the days of operation, but the hours as well. These schedules can vary widely
from store to store due to local regulations, the season, and market conditions.
The operational system maintains this data as a series of schedules with each
store being assigned a schedule for a specified time period. Changes may
occur to the schedule as well as the schedule assignment for the store being
changed. The distribution centers are maintained in the same manner as the
stores. The corporate office holiday schedule comes from a memo sent by
Human Resources.

The company would like the analysis of comparative store sales to take into
account days and hours of operation. They also wish to profile sales by time of
day and day of the week. The time of day of a sale is captured by the check-out
system in both local and Zulu (GMT) time.

Analysis
This case differs from the previous case on two basic points: The fiscal calendar
is different, the workday calendar varies by location, and hours of operation are
part of the analysis requirements.

The model must accommodate the operation schedules and the assignment
of those schedules to the locations (stores and distribution centers). Another
consideration is maintaining a history of schedules so that past and future
dates can be associated with the correct hours of operation. The operational
system maintains a set of schedules. Schedules are assigned to locations
bounded by effective and expiration dates. Those who maintain the schedules
may effect a change in two different ways. They may alter the schedule, which
affects all locations assigned to that schedule, or they may reassign a location
to a different schedule. In both cases, changes have an effective date range
associated with them. Typically, these dates are in the future.

The GOSH Calendar Model
The simple model shown in Figure 6.4 assumed a single fiscal calendar with a
single set of nonworkdays applicable to the entire enterprise. However, in this
case, this simple model is not sufficient. We will use the simple calendar model
as a foundation to handle corporate needs and expand the model to support
the location dependent schedules. All entities and attributes in the simple
model remain in this model.

Figure 6.9 shows the additional entities required to support the location-
specific schedules. The Schedule table contains the definition of each schedule.
The Location Schedule entity defines the relationship between location and
schedule. It has effective and expiration date attributes to record changes to
the assignments.

Figure 6.9 Location-specific schedules.

Location

Location Identifier

store attributes...

Schedule

Schedule Identifier

Schedule Description

Schedule Detail

Schedule Identifier (FK)
Day Identifier (FK)

Open Time
Close Time
Store Closed Indicator

Location Schedule

Effective Date

Location Identifier (FK)
Schedule Identifier (FK)

Expiration Date

Location Holiday

Location Identifier (FK)
Date (FK)

Modeling the Calendar 181

Delivering the Calendar
As discussed in the previous case study, it makes sense to store a denormal-
ized physical model derived from the business model. So, in addition to the
physical instantiation of the normalized business model, an internal delivery
process should also create denormalized versions of the data within the data
warehouse. In this case, where you have both a standard corporate calendar
and local variations, it would be most efficient to produce two sets of tables.
The first would be the corporate calendar that supports fiscal reporting, and
the other would be location-specific work schedule using both the date and
location as the primary key.

The new location-specific table is a copy of the basic calendar schema with
additional attributes for the operating hours for the store. The content is
adjusted according to the work schedule at the location. Many of the attrib-
utes, such as fiscal month are redundant, but this is not a significant issue due
to the small size of these tables. The redundancy avoids the need for an addi-
tional join if certain attributes are needed when delivering location-specific
data. If you are dealing with a very large number of locations, you may wish
to remove the fiscal-calendar-related columns from the Location Calendar
table. When delivering the data to the data marts, you have the option of deliv-
ering a single table, created by reintroducing the redundancy by joining the
Calendar and Location Calendar tables, or to deliver two separate dimension
tables. Figure 6.10 shows the structure of the denormalized tables.

As you can see, the Location Calendar table would have a compound primary
key of location and date. This is not desirable in a dimensional data mart. Such
a dimension would perform better in the data mart if there were a single sim-
ple primary key. In such cases it is best to create and store a surrogate primary
key within the denormalized data warehouse table and use the location and
date as an alternate key to support the data delivery process. Note that Figure
6.10 has been abbreviated to show the pertinent differences from the basic
denormalized calendar shown in Figure 6.8. The content of these tables may
vary depending on your business requirements. You may implement all
columns in both tables or you may consider splitting the columns, placing
common columns in the Calendar table and location-specific columns in the
Location Calendar table. The latter is worth considering if you have a very
large number of locations.

However, using a surrogate key in the Location Calendar table complicates the
process of generating the table. As discussed in the previous case study, these
denormalized tables are regenerated whenever updates are applied to the nor-
malized calendar data. If these denormalized tables are delivered as dimen-
sion tables to data marts, it is important to maintain the same primary key
values between generations of these tables. If the key values change, the new

C h a p t e r 6182

Figure 6.10 Denormalized location calendar tables.

keys would not be compatible with foreign keys contained in the mart’s fact-
tables, forcing you to completely reload the data marts each time the denor-
malized table is regenerated. While it is possible to reload, it is better to
implement a process that maintains the key value. Such a process is not diffi-
cult to implement. Rather than rebuild the Location Calendar table, update
existing rows and add new rows when necessary. The update will retain the
same primary key value, ensuring historical integrity in the data marts.

C
al

en
d

ar

D
at

e

D
ay

 Id
en

tif
ie

r
..o

th
er

 a
tt

rib
ut

es
...

Sa
m

e
D

ay
 L

as
t

Fi
sc

al
 Y

ea
r

D
at

e
(F

K)
Sa

m
e

D
ay

 L
as

t
Fi

sc
al

 M
on

th
 D

at
e

(F
K)

Lo
ca

ti
o

n
 C

al
en

d
ar

Lo
ca

tio
n

C
al

en
da

r
Su

rr
og

at
e

Ke
y

Fi
sc

al
 M

on
th

 S
ur

ro
ga

te
 K

ey

D
ay

 Id
en

tif
ie

r
...

 o
th

er
 a

tt
rib

ut
es

...

Lo
ca

tio
n

Id
en

tif
ie

r
(F

K)
D

at
e

(F
K)

Sa
m

e
D

ay
 L

as
t

Fi
sc

al
 M

on
th

 D
at

e
(F

K)

Sa
m

e
D

ay
 L

as
t

Fi
sc

al
 Y

ea
r

D
at

e
(F

K)

Lo
ca

ti
o

n

Lo
ca

tio
n

Id
en

tif
ie

r

st
or

e
at

tr
ib

ut
es

...

Modeling the Calendar 183

Another consideration for the data marts is the fact that the Calendar and
Location Calendar dimensions shown in Figure 6.10 are semantically different.
If your data mart is to contain both location-specific detail and a summary by
date, the location-specific fact table should have foreign keys to both the Cal-
endar and Location Calendar dimensions. This will allow for dimensional con-
formance with the date summary fact table, which would contain a foreign key
to the Calendar dimension and not the Location Calendar dimension. If you
have split columns across the two dimension tables, then you must always
deliver both dimensions to location-specific data marts and provide foreign
keys to both in the fact tables.

Case Study: A Multilingual Calendar

With the advent of GOSH’s expansion into Canada, management would like
to add the ability to produce reports in French. Since the company also has
future plans to expand into other countries, it is reasonable to assume that
support for other languages will be required as well.

C h a p t e r 6184

Calendar Redundancy

Throughout this chapter, we recommend that you create both normalized and
denormalized versions of the calendar structure in the data warehouse. We
believe this is an expedient way to provide both simplified updating and efficient
delivery of calendar data.

Depending on your business, you may be required to support complex calen-
dar structures. Maintaining normalized calendar tables provides a simple means
to apply changes that may have significant side effects on the derived calendar
data. For example, changing a day from a workday to a nonworkday will alter the
running workday counts for all days following that day. In the normalized version
you do not store derived workday counts, so the update is a matter of changing
an indicator on a single row.

A process to generate the denormalized calendar structures is required to
deliver the calendar in a form usable by the data marts and other external sys-
tems. Since this process can be resource intensive due to the derivations
required, it makes sense to store the results of the process in the data ware-
house. In this way, the process is only run when the calendar changes, not every
time you need to deliver the calendar.

Calendar delivery is sourced from the generated denormalized structures. This
provides a direct means to pull the derived data without any additional calcula-
tions. This ensures data consistency across deliveries and significantly simplifies
the delivery process. This approach provides a simpler, more consistent process
at the cost of maintaining a few additional small tables.

Analysis
There is a bit more to this request hidden below the surface when discussing a
calendar. In addition to being able to support descriptive text in multiple lan-
guages, the manner in which dates are presented varies around the world.
While MM/DD/YYYY is common in the United States, DD-MM-YYYY and
YYYY-MM-DD are used elsewhere. Furthermore, the same language, in par-
ticular English, may be different in different parts of the world. Canada uses
British English spellings, such as colour, instead of color.

Your business may decide that such differences are not important. However, in
this example, we will assume that they are. In such cases, each variation is treated
as a different language. Such treatment doesn’t materially affect the model, but
rather affects the level of maintenance required to support the languages.

Storing Multiple Languages
It is clear with GOSH’s expansion plans that providing support for only one
other language would be shortsighted as well as counterproductive. From a
design-and-processing perspective, it is actually easier to handle an unlimited
number of languages than a fixed number of languages. If the requirement is
for only one or two other languages, one is tempted to simply add columns.
For example, the row contains one column for English text, one column for
French text, and one column for Spanish text. This horizontal arrangement is
not very flexible and requires the user or query tool to consciously select a
particular text.

Ideally, a multilingual implementation should be transparent to the end user.
When logged in, the user should see text in his or her language of choice with-
out any special action on the user’s part. This is best accomplished by storing
the texts vertically by placing different language versions in different rows.
This is accomplished by adding a language code to the key of each of the text
tables. Figure 6.11 shows the modified schema.

Handling Different Date Presentation Formats
As the scope of the data warehouse expands internationally, it is necessary to
accommodate different date and number formats for each country. Ideally, the
task of maintaining these formats should be handled in the data marts rather
than the data warehouse. The first two approaches, database and query tool
localization, rely on functionality of those software components to handle data
presentation. The third approach, delivery localization, handles presentation
formats in the data warehouse delivery process. There are a number of differ-
ent approaches that can accomplish this.

Modeling the Calendar 185

Figure 6.11 A multilingual calendar.

Fi
sc

al
 Y

ea
r

T
ex

t

La
ng

ua
ge

 Id
en

tif
ie

r
Fi

sc
al

 Y
ea

r
Id

en
tif

ie
r

(F
K)

Fi
sc

al
 Y

ea
r

N
am

e
Fi

sc
al

 Y
ea

r
Sh

or
t

N
am

e

Fi
sc

al
 C

al
en

d
ar

 P
er

io
d

Fi
sc

al
 Y

ea
r

Id
en

tif
ie

r
(F

K)
Fi

sc
al

 M
on

th
 Id

en
tif

ie
r

(F
K)

Fi
sc

al
 C

al
en

da
r

Pe
rio

d
St

ar
t

D
at

e
Fi

sc
al

 C
al

en
da

r
Pe

rio
d

En
d

D
at

e

D
at

e

D
at

e

D
ay

 S
eq

ue
nc

e
N

um
be

r
Fi

sc
al

 W
ee

k
Id

en
tif

ie
r

(F
K)

Fi
sc

al
 Y

ea
r

Id
en

tif
ie

r
(F

K)
Fi

sc
al

 M
on

th
 Id

en
tif

ie
r

(F
K)

Fi
sc

al
 Q

u
ar

te
r

T
ex

t

La
ng

ua
ge

 Id
en

tif
ie

r
Fi

sc
al

 Q
ua

rt
er

 Id
en

tif
ie

r
(F

K)

Fi
sc

al
 Q

ua
rt

er
 N

am
e

Fi
sc

al
 Q

ua
rt

er
 S

ho
rt

 N
am

e

Fi
sc

al
 W

ee
k

Fi
sc

al
 W

ee
k

Id
en

tif
ie

r

Fi
sc

al
 W

ee
k

St
ar

t
D

at
e

Fi
sc

al
 W

ee
k

En
d

D
at

e
Fi

sc
al

 W
ee

k
Se

q
ue

nc
e

N
um

be
r

Fi
sc

al
 Y

ea
r

Id
en

tif
ie

r
(F

K)
Fi

sc
al

 M
on

th
 Id

en
tif

ie
r

(F
K)

Fi
sc

al
 Y

ea
r

Fi
sc

al
 Y

ea
r

Id
en

tif
ie

r

Fi
sc

al
 Y

ea
r

St
ar

t
D

at
e

Fi
sc

al
 Y

ea
r

En
d

D
at

e

ER
R

O
R

:
St

ri
n

g
 n

o
t

fo
u

n
d

 i
n

 f
il

e

Fi
sc

al
 Q

ua
rt

er
 Id

en
tif

ie
r

Fi
sc

al
 Q

ua
rt

er
 S

eq
ue

nc
e

N
um

be
r

D
at

e
T

ex
t

La
ng

ua
ge

 Id
en

tif
ie

r
D

at
e

(F
K)

D
ay

 Id
en

tif
ie

r
(F

K)
M

on
th

 Id
en

tif
ie

r
(F

K)
Ye

ar
 Id

en
tif

ie
r

(F
K)

D
ay D
ay

 Id
en

tif
ie

r
La

ng
ua

ge
 Id

en
tif

ie
r

D
ay

 N
am

e
D

ay
 S

ho
rt

 N
am

e
D

ay
 W

or
kd

ay
 In

di
ca

to
r

M
o

n
th

M
on

th
 Id

en
tif

ie
r

La
ng

ua
ge

 Id
en

tif
ie

r

M
on

th
 N

am
e

M
on

th
 S

ho
rt

 N
am

e

Y
ea

r

Ye
ar

 Id
en

tif
ie

r
La

ng
ua

ge
 Id

en
tif

ie
r

Ye
ar

 N
um

be
r

Fi
sc

al
 M

o
n

th

Fi
sc

al
 M

on
th

 Id
en

tif
ie

r

La
ng

ua
ge

 Id
en

tif
ie

r
Fi

sc
al

 M
on

th
 S

eq
ue

nc
e

N
um

be
r

Fi
sc

al
 Q

ua
rt

er
 Id

en
tif

ie
r

(F
K)

Fi
sc

al
 M

o
n

th
 T

ex
t

La
ng

ua
ge

 Id
en

tif
ie

r
Fi

sc
al

 M
on

th
 Id

en
tif

ie
r

(F
K)

Fi
sc

al
 M

on
th

 N
am

e
Fi

sc
al

 M
on

th
 S

ho
rt

 N
am

e

C h a p t e r 6186

Database Localization

If the plan is to publish separate data marts for each target country, and that
each of these marts would reside in its own database, you can rely on the data-
base’s own localization parameters. These parameters allow you to specify
how the database should return date and numeric values. All databases sup-
port these parameters in some form, and this is the most practical method to
implement localization. This approach would not require any special actions
when publishing data to the data marts.

Query Tool Localization

Many query tools support similar localization parameters. The query tool
retrieves the value from the database, then transforms the values to the pre-
sentation format you have defined for the target audience. This approach is
necessary if you plan to support different target audiences though the same
data mart database. Again, this approach does not require any special actions
when delivering data to the data marts.

Delivery Localization

In this approach, you publish the date as a text column for display purposes.
This circumvents any action by either the database or the query tool to format
the date. This requires that the data warehouse contain definitions of the dif-
ferent date formats appropriate for the target audience. It has the advantage of
providing central control as to how dates are presented, but it does so at the
expense of adding additional complexity to the publication process. Further-
more, this approach cannot control how numeric values are displayed,
because it is not practical to publish and store numeric values in text columns.
This option is one of last resort, to be used only if the first two options are not
available.

Every database has a function to covert a date column to a text string. These
functions usually have two parameters, one being the date column to convert
and the other being a format string or code number. Your data delivery process
must then either be hard-coded with the appropriate formatting information
or be able to accept a parameter to define the desired format. The former
approach requires separate publication processes for each target audience.
This can lead to excessive development and maintenance effort. The latter is
more flexible and can be integrated with the ability to publish in different lan-
guages. In the latter case, you can support the process by creating a table,
keyed by language code, which contains the appropriate date formatting para-
meters. When you publish the data, the language code parameter passed to the
process would also be used to control the date format.

Modeling the Calendar 187

Delivering Multiple Languages
When delivering different languages to dimensional data marts, it is solely an
issue of delivering dimensional data. All descriptive text attributes reside in
dimension tables, not fact tables, in a properly designed star schema. There-
fore, language is not an issue when delivering transactional data. This section
examines the issues in delivering the calendar dimension. This approach is
applicable to any dimension table that must support multiple languages.
When supporting multiple languages, it is inevitable you will be faced with
the challenge of delivery data in the user’s language of choice as well as deliv-
ering multilingual data. We will examine each approach.

Monolingual Reporting

Delivering language-specific data does not mean delivering only one lan-
guage, but rather that the delivered data structure only supports one language
per user. The data warehouse should support a multilingual version of the
denormalized table structure, as shown in Figure 6.7. To accommodate multi-
ple languages, the primary key should be changed to include the Language
Identifier. When delivering a language-specific version to a data mart, the Lan-
guage Identifier column would be stripped from the primary key, providing a
conforming date key across all data marts.

C h a p t e r 6188

Eliminating Compound Primary Keys

When delivering data to dimensional data marts, it is desirable to eliminate pri-
mary keys that consist of multiple columns, otherwise known as compound keys.
Use of compound keys can degrade data mart performance, particularly when
bitmap indexes are used in the fact tables. If dimensional delivery is supported
by a denormalized table in the data warehouse, the compound primary key can
be substituted with a single column surrogate primary key. The compound key
columns would then be used to define an alternate key that would be used to
maintain the data and in the delivery process to associate the table with other
data warehouse tables.

Defining and storing the surrogate primary key in the data warehouse allows
the surrogate key value to remain consistent across delivery processes. Keeping a
stable primary key value is critical to maintaining conformance across the data
marts and ensuring referential integrity with historical fact data.

Modeling the Calendar 189

Combining Languages

To provide the ability to report in two or more languages within the same query,
you need to publish the data with multiple languages in the same row. As shown
in Figure 6.12, our calendar schema is expanded to hold both English and French
descriptions.

Figure 6.12 A multilingual calendar dimension.

Publishing information in this manner allows the user to select both languages
at the same time, allowing the user to produce bilingual reports. This approach
can be extended to handle additional languages; however, it would be unusual to
require more than three for this type of situation.

(continued)

Calendar

Date

Day Identifier
Day Name English
Day Name French
Day Short Name English
Day Short Name French
Day Workday Indicator
Month Identifier
Month Name English
Month Name French
Month Short Name English
Month Short Name French
Year Identifier
Year Number
Fiscal Month Identifier
Fiscal Month Start Date
Fiscal Month End Date
Fiscal Month Name English
Fiscal Month Name French
Fiscal Month Short Name English
Fiscal Month Short Name French
Fiscal Month Sequence Number
Fiscal Quarter Identifier
Fiscal Quarter Name English
Fiscal Quarter Name French
Fiscal Quarter Short Name English
Fiscal Quarter Short Name French
Fiscal Quarter Sequence Number
Fiscal Week Identifier
Fiscal Week Start Date
Fiscal Week End Date
Fiscal Week Sequence Number
Fiscal Year Identifier
Fiscal Year Name English
Fiscal Year Name French
Fiscal Year Short Name English
Fiscal Year Short Name French
Fiscal Year Start Date
Fiscal Year End Date
Workday Indicator
Workday of Week
Workday of Month
Workday of Fiscal Month
Workday of Year
Workday of Fiscal Year
Workday Count
Workdays in Week
Workdays in Month
Workdays in Fiscal Month
Workdays in Year
Workdays in Fiscal Year
Last Day of Month Indicator
Last Day of Fiscal Month Indicator
Last Day of Year Indicator
Last Day of Fiscal Year Indicator

Same Day Last Fiscal Year Date (FK)
Same Day Last Fiscal Month Date (FK)

C h a p t e r 6190

Creating a Multilingual Data Mart

If the mart needs to support different languages for different users, some data-
base systems (such as Oracle) provide tricks to easily create transparent multi-
lingual environments. In Oracle, a single database instance can support
multiple schemas. It also allows you to create synonyms in one schema to
reference a table in another schema.

As an example, let’s say you need to create a data mart that must support both
English and French users. Within Oracle you would create three schemas:

■■ One to hold non-language-sensitive data, such as fact tables

■■ One to hold English language dimension tables

■■ One to hold French language dimension tables

The dimension tables in both the English and French schemas would use the
same table and column names and the same primary key values so they
appear to be the same to the query tools. The language-sensitive schemas
would also contain synonyms pointing to the fact and other tables in the com-
mon schema. The data delivery process would simply create two versions of
the dimension tables, one in each language. User accounts would be estab-
lished with either the English schema or the French schema as the default
schema, based on the user’s language preference. When the user logged into
the database, the user would be presented with dimensional data in the lan-
guage of choice.

Case Study: Multiple Fiscal Calendars

The Delicious Food Company (DFC) just announced the acquisition of a large
ice cream manufacturer, Ice Cream Enterprises (ICE). It has announced plans to
move the existing ice cream business over to ICE and operate ICE as a sub-
sidiary. In subsequent meetings with management, it stated a new requirement
to consolidate the revenue data of ICE into the current revenue reports.

Combining Languages (continued)

We do not recommend that such tables be stored within the data warehouse,
but rather that they be generated in the delivery process. Attempting to store
different language combinations in the data warehouse can become an excessive
maintenance burden. The simple join required to create combinations in the
delivery process is not significant and does not justify such denormalization
efforts to eliminate the join.

Figure 6.13 Supporting multiple fiscal calendars.

Consolidation would occur with data summarized by fiscal month. ICE oper-
ates under a calendar-based fiscal calendar with the fiscal year beginning July 1.
Sales booked in a fiscal month by ICE will be reported in the DFC fiscal month
designated by Accounting.

The data warehouse must support both calendars and will collect data from
both corporations.

Analysis
DFC management has stated that the numbers will be consolidated by fiscal
month. This is significant because DFC fiscal months, which operate on a 4-5-4

Fi
sc

al
 Y

ea
r

Fi
sc

al
 Y

ea
r

Id
en

tif
ie

r
C

or
p

or
at

io
n

Id
en

tif
ie

r
(F

K)

Fi
sc

al
 Y

ea
r

N
am

e
Fi

sc
al

 Y
ea

r
Sh

or
t

N
am

e
Fi

sc
al

 Y
ea

r
St

ar
t

D
at

e
Fi

sc
al

 Y
ea

r
En

d
D

at
e

Fi
sc

al
 M

o
n

th

Fi
sc

al
 M

on
th

 Id
en

tif
ie

r
C

or
p

or
at

io
n

Id
en

tif
ie

r
(F

K)

Fi
sc

al
 M

on
th

 N
am

e
Fi

sc
al

 M
on

th
 S

ho
rt

 N
am

e
Fi

sc
al

 M
on

th
 S

eq
ue

nc
e

N
um

be
r

Fi
sc

al
 Q

ua
rt

er
 Id

en
tif

ie
r

(F
K)

D
ay D
ay

 Id
en

tif
ie

r

D
ay

 N
am

e
D

ay
 S

ho
rt

 N
am

e
D

ay
 W

or
kd

ay
 In

di
ca

to
r

M
o

n
th

M
on

th
 Id

en
tif

ie
r

M
on

th
 N

am
e

M
on

th
 S

ho
rt

 N
am

e

Y
ea

r

Ye
ar

 Id
en

tif
ie

r

Ye
ar

 N
um

be
r

D
at

e

D
at

e

D
ay

 S
eq

ue
nc

e
N

um
be

r

D
ay

 Id
en

tif
ie

r
(F

K)
M

on
th

 Id
en

tif
ie

r
(F

K)
Ye

ar
 Id

en
tif

ie
r

(F
K)

Fi
sc

al
 Q

u
ar

te
r

Fi
sc

al
 Q

ua
rt

er
 Id

en
tif

ie
r

C
or

p
or

at
io

n
Id

en
tif

ie
r

(F
K)

Fi
sc

al
 Q

ua
rt

er
 N

am
e

Fi
sc

al
 Q

ua
rt

er
 S

ho
rt

 N
am

e
Fi

sc
al

 Q
ua

rt
er

 S
eq

ue
nc

e
N

um
be

r

C
o

rp
o

ra
ti

o
n

C
or

p
or

at
io

n
Id

en
tif

ie
r

C
or

p
or

at
io

n
N

am
e

Fi
sc

al
 D

at
e

C
or

p
or

at
io

n
Id

en
tif

ie
r

(F
K)

D
at

e
(F

K)

Fi
sc

al
 M

on
th

 Id
en

tif
ie

r
(F

K)
Fi

sc
al

 Y
ea

r
Id

en
tif

ie
r

(F
K)

Fi
sc

al
 W

ee
k

Id
en

tif
ie

r
(F

K)

Fi
sc

al
 C

al
en

d
ar

 P
er

io
d

Fi
sc

al
 M

on
th

 Id
en

tif
ie

r
(F

K)
Fi

sc
al

 Y
ea

r
Id

en
tif

ie
r

(F
K)

C
or

p
or

at
io

n
Id

en
tif

ie
r

(F
K)

Fi
sc

al
 C

al
en

da
r

Pe
rio

d
St

ar
t

D
at

e
Fi

sc
al

 C
al

en
da

r
Pe

rio
d

En
d

D
at

e

C
on

so
lid

at
io

n
Fi

sc
al

 M
on

th
 Id

en
tif

ie
r

(F
K)

C
on

so
lid

at
io

n
Fi

sc
al

 Y
ea

r
Id

en
tif

ie
r

(F
K)

C
on

so
lid

at
io

n
C

or
p

or
at

io
n

Id
en

tif
ie

r
(F

K)

Fi
sc

al
 W

ee
k

Fi
sc

al
 W

ee
k

Id
en

tif
ie

r
C

or
p

or
at

io
n

Id
en

tif
ie

r
(F

K)

Fi
sc

al
 W

ee
k

St
ar

t
D

at
e

Fi
sc

al
 W

ee
k

En
d

D
at

e
Fi

sc
al

 W
ee

k
Se

q
ue

nc
e

N
um

be
r

Fi
sc

al
 M

on
th

 Id
en

tif
ie

r
(F

K)
Fi

sc
al

 Y
ea

r
Id

en
tif

ie
r

(F
K)

Modeling the Calendar 191

calendar, do not directly correlate with ICE’s calendar, which uses calendar
months as its fiscal month. Another consideration is that fiscal years do not
match as well. DFC’s year runs from January to December, while ICE’s year
runs from July to June. The Accounting department will determine the
relationship between the two.

Use of fiscal months in this way is not unusual in consolidations. Consolidations
based on transaction date are very difficult to reconcile since a transaction
reported under one fiscal calendar can fall into one of two or three different fis-
cal months under another fiscal calendar. Consolidating summarized data
makes it much easier to directly compare financial reports.

Expanding the Calendar
The basic change to the calendar business model, such as the one in Figure 6.4,
is to create a Fiscal Date entity and add a Corporation Identifier to the related fis-
cal entities. The Fiscal Date entity assumes the relationships to the other fiscal
entities, while the Date entity retains the Gregorian calendar relationships. The
association between corporate fiscal periods is handled by a recursive relation-
ship in the Fiscal Calendar Period entity. Figure 6.13 shows the revised model.

The revised structure is basically multiple independent calendars. As before,
you are best served by creating denormalized tables to support the data deliv-
ery process. Figure 6.14 shows how this table would appear. In this example,
surrogate keys are in the Calendar table. Date and Corporation Identifier serve
as the alternate key. By using a surrogate key, you can use the table and key
structure in data marts that support all the corporations. Each fact would be
linked to the appropriate dimension row for the corporation involved. Even if
your current requirements do not call for deliveries to multicorporate data
marts, it is better to design for it up front. If you do not, and the requirement
does become a reality, you will be faced with the time-consuming task
of reloading data marts in order to maintain key conformance. Note that

Figure 6.14 Denormalized multiple calendar table.

Calendar

Date Identifier

Date
Corporation Identifier

Day Identifier
... other attributes ...

Same Day Last Fiscal Year Date (FK)
Same Day Last Fiscal Month Date (FK)

C h a p t e r 6192

Figure 6.14 has been abbreviated to show the pertinent differences from the
basic denormalized calendar shown in Figure 6.8. This Calendar would con-
tain the same additional attributes shown in Figure 6.8.

Case Study: Seasonal Calendars

GOSH stores would like to plan and analyze sales more effectively. To do so, they
wish to be able to report sales by season. Management wishes to have the ability
to define any season it wishes as a period of contiguous days. The managers also
wish to define seasons as they apply to any level of their store hierarchy. In other
words, they wish to be able to vary a season’s definition by store or region or have
common seasons for all stores.

A season may repeat year over year. A repetition of a season is considered a
different instance of the same season. In other words, an analysis of Christmas
season would require obtaining data across specified years, all of which iden-
tified as belonging to the same season.

There is no existing mechanism in the current data warehouse design or else-
where to create and maintain these definitions. Management desires that one
be developed.

Analysis
Starting with the last point first, it is not uncommon to encounter situations where
the data warehouse is asked to support data that is not available anywhere else. It
is important to understand that sometimes a data warehouse effort goes beyond
data collection and publication and into areas of data creation and maintenance.
When such a situation occurs, it is to best to deal with it as a separate application
effort. A common approach is to build an application to create and maintain the
data separate from the data warehouse, then to treat this data as any other data
source being collected into the data warehouse. This is more effort than creating an
application that updates the data warehouse tables directly, but provides better
control over the introduction of updated information into the data warehouse.

The seasonal calendar definition itself includes the following aspects:

■■ A season may be defined for a store or a collection of stores based on an
existing store hierarchy.

■■ A season is a contiguous range of dates.

■■ The same season may be defined differently for different stores.

■■ A season may reoccur over time. Each repetition is considered a separate
instance of the same season. GOSH will use the year the season starts to
identify the particular instance.

Modeling the Calendar 193

Seasonal Calendar Structures
Figure 6.15 shows the entities that will support seasonal calendars. There are
four entities:

■■ Season defines the names and other descriptive information about each
season.

■■ Season Schedule holds the dates for the season.

■■ Season Stores is an associative entity to handle the many-to-many relation-
ship between seasonal schedules and stores.

■■ The Store entity defines information about the stores.

The tolerance for many-to-many relationships between seasons and dates will
depend upon their meaning to the business and how they are used. Certainly
one could expand the season definitions to include product groupings or other
criteria. Knowing sales of women’s clothing during baseball season may not
be a useful statistic, so such a relationship can be eliminated by further quali-
fying season definitions by product categories. However, this will probably
not eliminate the many-to-many relationship and would limit avenues of
analysis. Presuming that certain relationships do not exist prevents the dis-
covery that correlations may, in fact, exist.

Delivering Seasonal Data
Seasonal data needs to be treated independently of the calendar information
discussed earlier in this section. This is because any single day may belong to
more than one season. Figure 6.16 shows an associative entity, Season Store
Date, which should be created to support the delivery process. This entity
enumerates the relationships and aids in handling the many-to-many joins
that may result with overlapping seasons. Because of the many-to-many rela-
tionship that may occur, different delivery strategies are required depending
on the delivery target.

If the target is a dimensional data mart, all that is probably necessary is to
deliver a season dimension table and the association table as is. It would be up
to the user to interpret the results of seasonal analysis with the understanding
that sums across seasons are inaccurate due to the many-to-many relationship.

Figure 6.15 Seasonal structures.

Season

Season Identifier

Season Name

Season Schedule

Season Effective Date
Season Identifier (FK)

Season Expiration Date

Season Stores

Season Identifier (FK)
Store Identifier (FK)
Season Effective Date (FK)

Store

Store Identifier

C h a p t e r 6194

Figure 6.16 Season associations.

If the target is a flat file to an external system or analysis tool, the approach will
depend on the business requirement. If the delivery is for a specific season, the
many-to-many relationship is eliminated. If not, either the repetition of some
data, such as sales, is tolerated or the process must perform some sort of alloca-
tion or priority assignment. If allocations or a priority assignment is required,
and the delivery is performed frequently, it may make sense to create addi-
tional association tables to support these requirements. A process to generate
such a table would include an allocation factor or limit the content of the asso-
ciation table to only contain one season association per day based on some busi-
ness rule that determines its selection. Such a table can be generated when
business requirements dictate and used by multiple delivery processes.

Summary

In this chapter, we examined various forms that calendar data can take in your
data warehouse. We also introduced the concept of predelivery staging within
the data warehouse by creating denormalized tables with precalculated
derived values. This technique can significantly reduce the effort necessary to
deliver information to external databases and systems. It is particularly useful
for calendar data because of the complexity of the derivations and the stability
of the data.

We also discussed when surrogate keys are mandatory to eliminate compound
primary keys in a delivered dimensional table. These keys should be defined in
the denormalized delivery staging table, and the update process for that table
should be such that the surrogate key values are stable over time. A stable sur-
rogate is critical to ensure referential integrity in the dimensional data marts.

Another important point is treating date and time of day as separate attributes
in your system model, and subsequently, as separate columns in the technical
model. Doing so does not diminish the information they represent, but does
improve the utility of the attributes. Separating them changes an attribute that
represents continuous values to two, each of which represents a quantifiable

Season Store Date

Date (FK)
Store Identifier (FK)
Season Identifier (FK)

Modeling the Calendar 195

number of discrete values. This improves their usefulness as primary keys.
Furthermore, the separation makes your model more explicit, clearly identify-
ing where date or time of day appear. This helps avoid confusion during
model review and data warehouse development.

C h a p t e r 6196

Installing Custom Controls 197

Modeling Hierarchies

C H A P T E R 7

The term “drill down” refers to the act of traversing a hierarchy from higher lev-
els of aggregation to lower levels of detail. Hierarchies are an integral part of any
business and a fundamental aspect of data warehousing. Proper collection and
publication of hierarchical information and its integration with transactional
data is paramount to a successful implementation.

In this chapter, we will look at the use of hierarchies in business and how to
effectively model them in the data warehouse. First, we will take a look at the
use of hierarchies in business and the different ways they can be represented
in the business data model. The transition to the data warehouse model will be
examined next. We will then examine the physical deployment options for the
data warehouse, including the implications for the derivative data marts,
using specific business cases.

Hierarchies in Business

As previously mentioned, hierarchies are integral parts of any business. They
are used to define the chain of command, to organize material, products, and
customers, and to perform planning, budgeting, and analysis. Without hierar-
chies, management reports would be overburdened in a morass of detail,
making it difficult, if not impossible, to identify where the problems and
opportunities lie. We truly would not be able to “see the forest for the trees.”

197

Hierarchies are, for the most part, a natural outgrowth of the business process.
As a business expands, it is natural to subdivide and arrange spans of control
so that resources can be effectively managed and applied to the tasks at hand.
For example, sales territories are defined and clustered under managers who,
in turn, report to regional directors; products are grouped into product families,
and customer ownership structures are also maintained.

An item may have multiple hierarchies. A product, for example, may have one
hierarchy that is based on its physical characteristics and another that is based
on its usage characteristics. In addition, there are relationships that appear to
be hierarchical from a business perspective, but are not hierarchies in a third
normal form model. A sales subgroup may have responsibility for a product,
and that sales group may be part of a larger sales group. From a business per-
spective, this appears to be another hierarchy for product. From a modeling
perspective, it is important to recognize that we have a sales responsibility
hierarchy, which at its lowest level has a relationship to a product.

It is also common to see other hierarchies combined to perform analysis or
generate reports. A commissioned sales force, for example, would have a sales
hierarchy reflecting the personnel structure. In addition, the products may be
divided into categories reflecting their commission rates. Finally, a third hier-
archy may reflect commission multipliers based on volume or dollars sold. All
three structures are combined to calculate and report commissions. From a
business point of view, this may simply be referred to as the “commission
structure” and viewed as a monolithic hierarchy. From a data warehouse mod-
eling perspective, it is actually a combination of normal relationships and hier-
archies, and it is up to the data warehouse modeler to detect and dissect such
organizations to effectively implement their structures. Within derivative data
marts, the relationships and hierarchies may be combined to facilitate business
analysis.

Through multiple case studies, this chapter will examine the use of hierarchies
in business. Each will present an analysis of the business terminology and its
technical implications. Based on this analysis, one or more models will be pro-
vided to address the business requirements. But first, let us take a look at the
nomenclature surrounding the various forms of hierarchy structures.

The Nature of Hierarchies

Related entities in a data warehouse often exhibit a “parent-child” relationship.
In this type of relationship, one parent may have multiple children, and a child
can belong to no more than one parent. For example, a person may be assigned to
one department, and a department may have many people assigned to it. In this
type of “parent-child” relationship, the parent and child do not necessarily have
anything in common other than the fact that they are related.

C h a p t e r 7198

Figure 7.1 Simple hierarchy.

A hierarchy, sometimes called a tree, is a special type of a “parent-child” rela-
tionship. In a hierarchy, a child represents a lower level of detail, or granular-
ity, of the parent. This creates a sense of ownership or control that the superior
entity (parent) has over the inferior one (child). This section examines the char-
acteristics of hierarchies you will encounter. In general, all hierarchies will fall
into one of the categories outlined here.

Another bit of terminology worth mentioning is the set of names for various
parts of a hierarchy. Each member in a hierarchy is called a “node.” The top-
most node in a hierarchy is called the “root node.” and each of the bottommost
nodes is a “leaf node.” A “parent node” is a node that has children, and a
“child node” is a node that has a parent. A parent (except a root node) may also
be a child, and a child (except a leaf node) may also be a parent. Figure 7.1
shows such a hierarchy. This type of tree structure diagram is commonly called
an inverted tree because the root is at the top and leafs are at the bottom. Tree
structures and other methods are discussed later in this chapter.

Hierarchy Depth
The depth of a hierarchy refers to the number of generations or levels; that is,
parent entities with children, those child entities with children, and so on. The
maximum number of levels is the depth of the hierarchy. Figure 7.1 shows an
example of a three-level hierarchy.

When it comes to depth, hierarchies fall into two categories: hierarchies of
known depth and hierarchies of unknown depth. Most common to business
are those of known depth. Sales hierarchies, organizational hierarchies, and
product hierarchies are all typically of a known depth. In such hierarchies, the
levels of the hierarchy usually have names, such as Region, District, Territory,
and Area. The known depth refers to the number of levels between a root node
and the leaf nodes. In the simplest (and fortunately most common) case, each
level of the hierarchy must be traversed.

West

Nevada Arizona

North Phoenix

Reno

South

L.A.

Central

Bay Area

Las Vegas

Level 1 (Region)

Level 2
(District)

Level 3
(Sub-District)

Root/Parent node

Parent/Child node

Leaf/Child node

California

Modeling Hierarchies 199

A common example of a hierarchy of unknown depth is a bill of materials. This
is a list of raw materials and subassemblies necessary to manufacture an item. At
the top of the hierarchy is the finished item, for argument’s sake a Boeing 777 air-
craft. The next level down may be the major assemblies, such as the airframe,
avionics, and cabin. It is reasonable to expect that the complete hierarchy for
such a complex machine may exceed 40 to 50 levels deep, and, more than likely,
these levels change as refinements in design and options are included or
excluded from the manufacture. A major differentiator of this type of hierarchy
is that each level does not have a unique description. For example, there may be
several nested levels of assemblies and subassemblies, as shown in Figure 7.2.

Hierarchy Parentage
Most hierarchies used in business reporting are simple hierarchies. In a simple
hierarchy, every child has one and only one parent. This is desirable for report-
ing because each child will be counted once in an aggregation. If the child had
multiple parents, the same data would be seen under each parent. An example
of a hierarchy in which a child can have multiple parents is a company that is
partially owned by two companies.

C h a p t e r 7200

Hierarchies and Business Users

The word “hierarchy” means different things to different people. It is up to the ana-
lyst to discern what the business users mean when they call something a hierarchy.
From a technical standpoint, a hierarchy refers to a strict parent-child relationship,
where a child has one and only one parent. While a business user will certainly
refer to such relationships as hierarchies or organizations, the business use of the
term is far broader. The business user may, in fact, be referring to a collection of
independent attributes that have been arranged in some order of precedence.

It is possible to transform a hierarchy into a collection of independent attrib-
utes and independent attributes into a hierarchy. This chapter will present some
techniques to accomplish this. What you choose to do should be based on a solid
understanding of what you are dealing with and what the business requirements
demand.

Figure 7.2 Bill of materials.

77
7

A
irc

ra
ft

A
irf

ra
m

e

77
7A

1
D

es
cr

ip
tio

n
It

em
Q

ty

77
A

FA
1

D
es

cr
ip

tio
n

It
em

Q
ty

Le
ft

 W
in

g
7L

W
1

D
es

cr
ip

tio
n

It
em

Q
ty

La
nd

 G
ea

r A
sm

7W
LG

1
D

es
cr

ip
tio

n
It

em
Q

ty

In
te

rio
r

Ki
t

7A
C

A
B

1
St

nd
 A

vi
on

ic
s

7A
VK

1
1

Ri
gh

t
W

in
g

7R
W

1
N

os
e

Se
ct

io
n

7N
S

1
Fo

rw
ar

d
C

ab
in

7F
C

1
Re

ar
 C

ab
in

7R
C

1
Ta

il
A

ss
em

bl
y

7T
S

1

Ri
ve

t
Ki

t
(W

in
g)

7W
RV

1
Ti

p
 L

ig
ht

 (
R)

7R
TL

1
Ti

p
 L

ig
ht

 (
L)

7L
TL

1

Ri
ve

t
–

93
8-

29
3

RV
05

86
D

es
cr

ip
tio

n
It

em
Q

ty

Ri
ve

t
–

38
30

2-
3

RV
06

25
4

Ri
ve

t
–

83
92

-3
48

RV
08

73
A

lig
nm

en
t

to
ol

RT
29

1
Le

ns
 K

it
(R

)
7R

LK
1

Le
ns

 K
it

(L
)

7L
LK

1
Bu

lb
s

20
0W

7B
L5

2

Modeling Hierarchies 201

Our bill of materials is another example of a complex hierarchy. Each child
node, representing a subassembly or part, may be used in many different
assemblies, represented by the parent node. When a complex hierarchy is used
in this type of application, including data about the child under many parents
is a desirable trait.

Such complex hierarchies limit your options to represent them in the model.
As we will discuss later in this chapter, such hierarchies are stored as recursive
tree structures. While a basic recursive tree comprises parent-child relation-
ships, the entity must be expanded to include attributes describing the child’s
contribution to the parent. These attributes usually contain percentages, so
that if a child belongs to two or more parents you can use the percentages to
allocate portions of a child’s total to each parent. The difficulty and complex-
ity involved in creating these allocation percentages will depend on your busi-
ness and the availability of such information from your source systems. In the
consumer packaged goods business, many different products may be pack-
aged together into a single unit (a variety pack, for example). The business
would want the revenue, cost, weight, and other measures allocated back to
the respective profit centers based on the sale of the variety pack. Often, a sim-
ple unit count, as provided by a bill of materials, is not sufficient to perform
such allocations. It may require three or more allocation factors, depending on
the nature of the product. If such information is not available from the source
system, you will be called upon to calculate these factors based on business
rules. Such calculations should be performed when the hierarchy is loaded
and the results stored in the data warehouse for use in future deliveries.

C h a p t e r 7202

Allocation Factors

In this chapter, we discuss the use of factors to perform data allocations. A factor
is a numeric value with which you multiply another value to obtain an allocated
value. Factors are stored as fractional values. For example, 50 percent would be
stored as 0.5.

When factors are used in a hierarchy to allocate contribution, the factors are
multiplied as you traverse up the hierarchical relationship. For example, if A is
the parent of B and B is the parent of C, and B contributes 50 percent of its rev-
enue to A and C contributes 30 percent of its revenue to B, we can calculate C’s
revenue contribution to A by multiplying the two factors: 0.5 * 0.3 = 0.15. From
this we know that C contributes 15 percent of its revenue to A.

When creating the physical schema, be sure you allocate sufficient decimal pre-
cision to factor columns to allow for multiplication of many fractional values.

Once the allocation factors are calculated and stored in the recursive tree
structure, you can then apply the denormalization and flattening techniques
described in this chapter. The flattened structure will contain a single set of
allocation factors, calculated by multiplying, rather than summing, the factors
from each level in the hierarchy.

Hierarchy Texture
A hierarchy’s texture is another distinguishing characteristic. When discussing
texture, a hierarchy is described as being balanced or ragged. An alternate
term used for texture is sparsity; however, this term more accurately describes
ragged hierarchies with a fixed number of levels where there are missing
nodes at some levels. Not all ragged hierarchies will contain missing nodes. In
this section, we will describe each form.

Balanced Hierarchies

Balanced hierarchies are full through all levels. By full, we mean that all leaves
exist at the lowest level in the hierarchy, and every parent is one level removed
from the child. For example, if you have a sales hierarchy made up of regions,
districts, territories, and customers, then every region will have one or more
districts, every district will have one or more territories, and every territory
will have one or more customers.

Balanced hierarchies, also referred to as smooth hierarchies, are always of a
known, fixed depth. Because of this, there are a number of different methods
that can be used to represent balanced hierarchies in the data warehouse. The
variety of choices available allows you to select the most effective structure for
the business use at hand.

Ragged Hierarchies

Ragged hierarchies are hierarchies of varying depth. Take, for example, a sales
hierarchy that divides the sales force and customers into regions, districts, and
territories. Imagine that you also have one big customer that accounts for a siz-
able percentage of your business. So much so, in fact, that this customer has a
sales group dedicated to it and the customer is treated as its own region. This
customer would be the child of a region, with no relationship to a district or
territory. In addition, since the business deals with both large and small cus-
tomers, some of the large ones are handled at the district level. Since this hier-
archy has a fixed number of levels, it may also be described as a sparse
hierarchy because, in some cases, intermediate levels are missing.

Modeling Hierarchies 203

Such a hierarchy would be considered a ragged hierarchy because the depth—
the number of levels from the root to a leaf—is not the same. While the cus-
tomer is always at the leaf level, the very large customers may appear one level
down from the top of the hierarchy, while smaller customers may be at three
or four levels from the top.

History
The historical nature of the data warehouse adds another consideration when
it comes to hierarchies. Within a hierarchy, there are two aspects that may
change over time. There may be changes in the entity itself, such as when
information about a sales region changes, or there may be changes in the hier-
archical relationships, such as when a sales district is assigned to a different
sales region. The treatment in the data warehouse is affected by the relative
frequency of the two types of historical changes. In Figure 7.3, we show the
hierarchy with no history (point-in-time view), the hierarchy with either entity
changes or relationship changes, and a merged table that could be created in
addition to the base entity structures (as described in Step 6 in Chapter 4). The
merged table becomes a conforming (slowly changing) dimension of the sales
hierarchy, and it can be used to create either a slowly changing dimension or a
current view dimension in a derivative data mart.

Summary of Hierarchy Types
We’ve described several types of hierarchies, and the data warehouse model
must be capable of handling each and every one of these. The hierarchy types
are:

■■ Balanced tree structure, in which the hierarchy has a consistent number of
levels, each of which can be named, with each child having one parent at
the level immediately above it.

■■ Variable depth tree structure, such as a bill of materials, in which the
number of levels is inconsistent and in which each level cannot be named.

■■ Ragged tree structure, in which the hierarchy has a maximum number of
levels, each of which can be named, with each child having a parent at a
level not necessarily immediately above it.

■■ Complex tree structure, in which a child may have multiple parents.

■■ Multiple tree structures for the same leaf node.

We will now deal with each of these situations through case studies.

C h a p t e r 7204

Figure 7.3 Hierarchy history.

Sa
le

s
D

is
tr

ic
t

PO
IN

T-
IN

-T
IM

E
V

IE
W

V
IE

W
 O

F
C

H
A

N
G

ES
 W

IT
H

IN
 E

N
TI

TY
V

IE
W

 O
F

R
EL

A
TI

O
N

SH
IP

 C
H

A
N

G
ES

SU
M

M
A

RY
 V

IE
W

Sa
le

s
D

is
tr

ic
t

Id
en

tif
ie

r

Sa
le

s
Re

gi
on

 Id
en

tif
ie

r
(F

K)
Sa

le
s

D
is

tr
ic

t
N

am
e

Sa
le

s
D

is
tr

ic
t

Sa
le

s
D

is
tr

ic
t

Id
en

tif
ie

r

Sa
le

s
D

is
tr

ic
t

N
am

e

Sa
le

s
H

ie
ra

rc
hy

Sa
le

s
D

is
tr

ic
t

Id
en

tif
ie

r
Ef

fe
ct

iv
e

D
at

e

Sa
le

s
D

is
tr

ic
t

N
am

e
Sa

le
s

Re
gi

on
 Id

en
tif

ie
r

Sa
le

s
Re

gi
on

 N
am

e
Sa

le
s

Te
rr

ito
ry

 Id
en

tif
ie

r
Sa

le
s

Te
rr

ito
ry

 N
am

e

Sa
le

s
Re

gi
on

 t
o

D
is

tr
ic

t

Sa
le

s
D

is
tr

ic
t

Id
en

tif
ie

r
(F

K)
Sa

le
s

Re
gi

on
 Id

en
tif

ie
r

(F
K)

Ef
fe

ct
iv

e
D

at
e

Ex
p

ira
tio

n
D

at
e

Sa
le

s
Te

rr
ito

ry
 t

o
Re

gi
on

Sa
le

s
Re

gi
on

 Id
en

tif
ie

r
(F

K)
Sa

le
s

Te
rr

ito
ry

 Id
en

tif
ie

r
(F

K)
Ef

fe
ct

iv
e

D
at

e

Ex
p

ira
tio

n
D

at
e

Sa
le

s
Re

gi
on

Sa
le

s
Re

gi
on

 Id
en

tif
ie

r

Sa
le

s
Re

gi
on

 N
am

e

Sa
le

s
Te

rr
ito

ry

Sa
le

s
Te

rr
ito

ry
 Id

en
tif

ie
r

Sa
le

s
Te

rr
ito

ry
 N

am
e

Sa
le

s
D

is
tr

ic
t

Sa
le

s
D

is
tr

ic
t

Id
en

tif
ie

r
Sa

le
s

D
is

tr
ic

t
Ef

fe
ct

iv
e

D
at

e

Sa
le

s
Re

gi
on

 E
ffe

ct
iv

e
D

at
e

(F
K)

Sa
le

s
Re

gi
on

 Id
en

tif
ie

r
(F

K)
Sa

le
s

D
is

tr
ic

t
N

am
e

Sa
le

s
Re

gi
on

Sa
le

s
Re

gi
on

 Id
en

tif
ie

r
Sa

le
s

Re
gi

on
 E

ffe
ct

iv
e

D
at

e

Sa
le

s
Te

rr
ito

ry
 E

ffe
ct

iv
e

D
at

e
(F

K)
Sa

le
s

Te
rr

ito
ry

 Id
en

tif
ie

r
(F

K)
Sa

le
s

Re
gi

on
 N

am
e

Sa
le

s
Te

rr
ito

ry

Sa
le

s
Te

rr
ito

ry
 Id

en
tif

ie
r

Sa
le

s
Te

rr
ito

ry
 E

ffe
ct

iv
e

D
at

e

Sa
le

s
Te

rr
ito

ry
 N

am
e

Sa
le

s
Re

gi
on

Sa
le

s
Re

gi
on

 Id
en

tif
ie

r

Sa
le

s
Te

rr
ito

ry
 Id

en
tif

ie
r

(F
K)

Sa
le

s
Re

gi
on

 N
am

e

Sa
le

s
Te

rr
ito

ry

Sa
le

s
Te

rr
ito

ry
 Id

en
tif

ie
r

Sa
le

s
Te

rr
ito

ry
 N

am
e

Modeling Hierarchies 205

Case Study: Retail Sales Hierarchy

Our retail chain operates stores around the country. The sales management
organization has the country divided into four regions. Each region is further
divided into districts, with a district manager overseeing a number of stores.
Departments subdivide each store, which represent a collection of similar
products, such as women’s clothing, children’s clothing, sporting goods, and
so forth. The products assigned to a department are the same for every store.
Because the sizes of the stores vary, not all stores have all departments.

The store hierarchy, regions, and districts, remains fairly stable. The organiza-
tion is reviewed once a year to determine if regions and districts should be cre-
ated or consolidated. Such changes always occur after the close of a fiscal
quarter and are effective immediately. Other changes involve the opening or
closing of stores, which can occur at any time. The design should also take into
consideration management’s plans to expand internationally. This may intro-
duce a new level to the hierarchy at some time in the future.

Sales reports will be generated using the current hierarchy at the time of the
sale. However, during the annual review, management would like to review
proposed changes using the current active hierarchy and the planned future
hierarchy.

Analysis of the Hierarchy
Figure 7.4 depicts the hierarchy as depicted by the business. At first glance, it
appears it is a six-level hierarchy, consisting of corporation, region, district,
store, department, and product. However, when this structure is defined in
the business model shown in Figure 7.5, the true nature of the relationships
becomes readily apparent.

The business model requires an associative entity, Store Department, to
resolve the many-to-many relationship between stores and departments. The
existence of this entity makes it clear that we are not dealing with a single hier-
archy, but rather with two independent hierarchies. The first is the relationship
between product and department, and the second, the store-district-region-
corporation hierarchy. This associative entity is not part of the hierarchies. It is
reasonable to expect that transactional data will reference a product and a
store. The transaction itself is sufficient to associate the two hierarchies. How-
ever, the associative entity is useful to support analysis or data delivery func-
tions that do not involve transactional data. For example, the data warehouse
may need to deliver a list of all stores and their departments.

C h a p t e r 7206

Figure 7.4 Sales hierarchy.

G
O

SH

W
es

t
M

id
-W

es
t

Ea
st

So
ut

h

N
ew

 E
ng

la
nd

Tr
i-S

ta
te

M
id

-S
ta

te
s

01
2

Pa
ra

m
us

41
7

N
ew

 H
av

en
13

5
Pl

at
ts

bu
rg

h
02

5
Q

ue
en

s

W
om

en
's

C
lo

th
in

g
M

en
's

C
lo

th
in

g
C

hi
ld

re
n'

s
C

lo
th

in
g

Sp
or

tin
g

G
oo

ds
H

ob
bi

es

98
29

30
92

-3
 G

ol
f B

al
ls

 W
hi

te

98
25

47
92

-3
 G

ol
f B

al
ls

 Y
el

lo
w

98
29

93
22

-1
2

 G
ol

f B
al

ls
 W

hi
te

W
om

en
's

C
lo

th
in

g
M

en
's

C
lo

th
in

g
C

hi
ld

re
n'

s
C

lo
th

in
g

Sp
or

tin
g

G
oo

ds

98
29

30
92

 –
3

G
ol

f B
al

ls
 W

hi
te

98
25

47
92

 –
3

G
ol

f B
al

ls
 Y

el
lo

w

98
29

93
22

 –
12

 G
ol

f B
al

ls
 W

hi
te

Modeling Hierarchies 207

Figure 7.5 Sales hierarchy business model.

Implementing the Hierarchies
There are two basic physical data structures that may be used to implement a
hierarchy: a recursive tree structure or a nonrecursive tree structure, also
known as a flattened tree structure. A recursive tree data structure must be
used for hierarchies of unknown depth, because that is the only structure
capable of properly representing such a hierarchy. However, since this case
deals with a hierarchy of known depth, there is more latitude. The flattened
tree data structure is simpler to implement and much easier to query, making
it the preferred structure for a data warehouse. We will use a flattened struc-
ture for this case. Recursive tree data structures will be presented later in this
chapter.

Flattened Tree Hierarchy Structures

A flattened (tree) hierarchy is a simple structure that arranges the hierarchical
elements horizontally, in different columns, rather than rows. This type of
structure can only be used with hierarchies of known depth. A flattened hier-
archy is modeled as a chain of normalized nested tables (3NF), as shown in
Figure 7.6.

Third Normal Form Flattened Tree Hierarchy

Figure 7.6 shows the stores and product hierarchies as a series of normalized
hierarchical tables related to the sale. This follows the business model depicted
in Figure 7.5. The diagram includes the sales transaction entity as a point of
reference to show how the hierarchies would be applied. The sales transaction
would contain foreign keys referencing the product sold and the store where

Product

Product Identifier

Department Identifier (FK)

Department

Department Identifier

Store

Store Identifier

District Identifier (FK)

District

District Identifier

Region Identifier (FK)

Region

Region Identifier

Corporation Identifier (FK)

Store_Department

Store Identifier (FK)
Department Identifier (FK)

Corporation

Corporation Identifier

C h a p t e r 7208

Figure 7.6 A 3NF flattened tree hierarchy.

the sale took place. The product entity has a foreign key to the department it is
assigned to. The store has a foreign key to the assigned district, which, in turn,
has a foreign key to its assigned region.

This type of structure is very easy to query using common SQL implementa-
tions. Each level of the hierarchy is directly accessible as columns, allowing the
data to be sorted using attributes of the hierarchy entities. Also, the foreign key
chain enforces strict traversal of the hierarchy.

There are also a number of limitations to this structure. A change to the hierar-
chy structure, such as the addition or removal of a level, will require both a
change to the data and a change to the database schema. Because of the strict
relationships enforced by the foreign key chain, inclusion of new hierarchy
levels will force users to modify all standard reports that use the hierarchy.
This structure cannot support a ragged hierarchy very well since the structure
requires an entity at each level. To support a ragged structure, you would need
to create empty entity rows specific to the particular branch of the tree so the
path from leaf to root is correct. This can become a real challenge to maintain.

Figure 7.7 shows the effect of adding a new level, Country, to the hierarchy. A
new entity is created and is placed between region and corporation in the for-
eign key chain. The corporation foreign key is removed from the region entity
and replaced with a country foreign key. The country entity is linked to the
corporation through the corporation foreign key.

Figure 7.7 Altering a 3NF flattened tree hierarchy.

Store
Paramus

District
New England

Queens
Plattsburgh
New Haven

012
025
135
417

Tri-State
Mid-States

Region
East

South
Mid-West

Corporation
GOSH

West

Country
United States

Canada
Mexico

New entity

Foreign key changed
and reassigned

Old foreign key
from Region

Department
Product

98293092
98254792
98299322

3 Golf Balls White
3 Golf Balls Yellow
12 Golf Balls White

Sporting Goods
Women’s Clothing

Men’s Clothing
Children’s Clothing

Hobbies

Sale
025 98254792

Store
Paramus

District
New England

Queens
Plattsburgh
New Haven

012
025
135
417

Tri-State
Mid-States

Region
East

South
Mid-West

Corporation
GOSH

West

Modeling Hierarchies 209

Due to the complexities that hierarchy changes present, a flattened structure
such as this is not optimal for the data warehouse if you expect such changes
to occur frequently enough to become an issue in your environment. A recur-
sive tree structure, described later in this chapter, is much more flexible and
adaptable to such changes. If you are able, you should implement a recursive
tree structure in the data warehouse and deliver flattened structures to the
data marts.

Case Study: Sales and Capacity Planning

Our packaged goods manufacturer produces a sales plan annually. This plan
is reviewed and adjusted quarterly based on changes in market demands and
requirements. The sales plan is used to plan production, warehouse capacity,
and transportation requirements. The sales plan is based on three entities: the
product, the customer, and time. In the operational system, the customer entity
is subdivided by type. There are ship-to customers that represent delivery
locations, sold-to customers that represent buyers, planning customers, and so
forth. Monthly sales volumes are projected at various levels in the customer
and product hierarchies. The company operates a number of distribution cen-
ters to support distribution channels based on product storage requirements
(frozen, refrigerated, and ambient). Their customers are retail chains that have
a number of delivery locations (ship-to customers), with each location specific
to a distribution channel. In other words, the customer may have multiple
locations to receive frozen goods and other locations to receive refrigerated
and ambient goods. Each of these customer ship-to locations is assigned to a
distribution channel and preferred distribution center that service it.

At the lowest level of the product hierarchy is the Stock Keeping Unit (SKU).
This represents a specific variation of a standard product. These variations are
simply packaging differences to accommodate special seasons and promo-
tions, such as contests. The standard product and its variations each have a
unique internal SKU, or material ID, but share a common retail Universal
Product Code (UPC). In addition, there is commonality among standard prod-
ucts as well. The same chocolate bar may be produced in four different sizes.
Each size is a different standard product, with a different UPC. The planners
do most planning by product group, a collection of all sizes and variants of the
same basic product, in order to project future revenues and promotion
expenses. For certain products, they will also plan at the standard product
level. No planning is performed at the SKU level; however, each SKU is
assigned to a distribution channel based on its storage requirements. Figure
7.8 shows the product hierarchy.

C h a p t e r 7210

Figure 7.8 Packaged goods product hierarchy.

Fr
oz

en
 F

oo
ds

Ic
e

C
re

am
Sn

ac
ks

La
zy

 G
uy

Li
ke

-a
-C

he
f

Ba
da

-B
in

ge
G

oo
d

G
ol

ly
M

s
D

ol
ly

C
ru

nc
hi

es
M

un
ch

ie
s

En
tr

ee
A

p
p

et
iz

er
s

Si
de

s
En

tr
ee

A
p

p
et

iz
er

s
Si

de
s

Fl
av

or
N

ut
s

Fl
av

or
D

ie
t

N
ut

s

Fr
ie

d
C

hi
ck

en

M
ea

t
Lo

af

D
iv

is
io

n

Br
an

d

Pr
od

uc
t

G
ro

up

St
an

da
rd

Pr
od

uc
t

SK
U

00
92

08
19

8
–

24
 P

c
Le

gs
 &

 T
hi

gh
s

00
92

02
02

8
–

Ju
m

bo
 P

ar
ty

 P
ac

k
00

92
03

29
3

–
48

 P
c

Bu
ffa

lo
 W

in
gs

01
03

17
29

8
–

12
8

ox
 H

un
ka

-L
oa

f
01

03
18

41
8

–
64

 o
x

M
in

i H
un

ka
-L

oa
f

01
03

10
59

8
–

12
8

ox
 H

un
ka

 -
Lo

af
 w

 C
he

es
e

(…
)

(…
)

Modeling Hierarchies 211

Figure 7.9 Packaged goods customer hierarchy.

The lowest level of the customer’s distribution hierarchy is the ship-to-
customer location. These are grouped under sold-to customers, which represent
the customer’s purchasing representatives. These are further grouped into
planning customers, which is the lowest level at which sales plans are esti-
mated. Figure 7.9 shows the full hierarchy. Capacity planning is handled by
another system, which allocates to plants and distribution centers the sales
plan based upon previous sales history.

The planners wish to use the data warehouse to support various levels of
analysis. They wish to monitor the plan against actual sales in order to adjust
both the sales and capacity plans to reflect recent experience. So that the com-
parisons are meaningful, the reports must reflect the hierarchies that were in
effect at the time the plan was published. Both the product and customer are
simple hierarchies. Each child has only one parent.

Analysis
There are a number of aspects to consider concerning how the hierarchies are to
be used in this application. First, and most important, there is a need to com-
pare values that are provided at different levels in the hierarchies: a sale, which
is collected at the transaction level and is specific to a SKU, sold-to customer,
and ship-to address; and the sales plan which is specified at a higher level in
both the product and customer hierarchies. Second, the data warehouse will
most likely be called on to provide sales history to the capacity-planning sys-
tem. The feed would be required to tie the detailed history to the higher-level

B&Q Markets

B&Q NthEact B&Q Central B&Q SthEast

B&Q NE
Frozen

B&Q NE
Juice

B&Q NE
Pet

Allegheny Frz

Customer HQ

Planning
Group

Sold-To

Ship-To Bronx Frz

Freeport Frz

Hartford Frz

Allegheny Amb

Bronx Amb

Freeport Amb

Hartford Amb

Allegheny Frz

Bronx Frz

Freeport Frz

Hartford Frz

Allegheny Amb

Bronx Amb

Freeport Amb

Hartford Amb

C h a p t e r 7212

hierarchy entities where the planning has taken place. It may even be necessary
to calculate the allocation percentages. Third, while planning is done at an
intersection of the customer and product hierarchies, different user groups
require the numbers to be reported using one side of the hierarchy tree. In the
case study, the sales group is interested in reporting based on the customer
sales hierarchy. It can be presumed that other groups have similar requirements
using other hierarchies.

Because sales and the sales plan exist at different levels of detail, there are two
options available for reporting sales against the sales plan. Either summarize
the lower level data (sales) to the higher-level data (the sales plan) or allocate the
sales plan to the sales data level. The business managers feel that allocating
the sales plan to such a low level of detail is of no real value. Instead, there is a
need to summarize the detailed sales data to match the level of the sales plan.
The simple aggregation of the sales data to the sales plan should occur as part
of the delivery process using the hierarchy to drive the aggregation. If, how-
ever, the decision is to allocate the sales plan to a lower level, you may wish to
consider storing the allocations within the data warehouse. This decision
would be based on the complexity of the allocation, the amount of data
involved, how frequently the allocation needs to be performed, and the num-
ber of data marts or other applications requiring this allocation. If the alloca-
tion results are used frequently but are relatively stable, you may reduce
delivery effort by storing the allocation results in the data warehouse. If the
sales plan or the basis for allocations change almost as often as the need to
delivery it, there would be little benefit to store the results. Instead, handle the
allocation in the delivery process.

Further examination of the hierarchy provided by the business shows that the
ship-to customer may be a child of more than one sold-to customer. The reason
for this is simple. The sold-to customer represents a buyer within the cus-
tomer’s organization, while a ship-to customer is a physical location that
receives the goods. In our example of B&Q Markets, buyers are organized by
types of products that are shipped to many of the same locations, which are
B&Q Market’s distribution centers. With additional investigation, it is found
that this sold-to/ship-to relationship is primarily for operational control and
not necessary for analysis. In fact, when an order is processed, both the buyer
(sold-to customer) and shipping destination (ship-to customer) are recorded in
the system. Both will be received in the transactional data feed. From this, we
determine that the ship-to customer is not needed in the hierarchy to analyze
sales. However, there is a desire to produce customer lists without transac-
tional data using the full hierarchy. Later, we will show how to use different
parts of the hierarchy for different classes of queries. Another issue is the men-
tion of the preferred distribution center assigned to each ship-to customer
address. It is often the case that from a business point of view, users may think
of this as being part of the “hierarchy.” This is natural and should be expected.

Modeling Hierarchies 213

However, it is up to you as the modeler to not confuse your design. The
assigned distribution center is an independent attribute of the ship-to cus-
tomer as these are assigned based on the geographic location of the delivery
point regardless of the customer hierarchy structure. It is important to identify
such cases and avoid attempts to include such attributes in a hierarchical
structure.

Later discussions with the operational system support staff revealed the prod-
uct hierarchy is maintained as a flattened structure, while the customer hierar-
chy is a recursive tree structure. In the next sections, we will discuss the most
effective way to store these hierarchies. Another challenge we will examine is
creating a data structure that will bridge data stored at different levels of sum-
marization. In this case, tying detail sales data to the sales plan.

Figure 7.10 shows the complete business model representation of these enti-
ties. In the remainder of this section, we will examine how this model is imple-
mented and used within the data warehouse. We will first look at the product
hierarchy data feed and the processing issues it presents.

Figure 7.10 Sales and planning business model.

Sold To Customer

Sold To Customer Identifier

Planning Group Identifier (FK)

Product

Product Identifier

Standard Product Identifier (FK)

Ship Sold Customer

Sold To Customer Identifier (FK)
Ship To Customer Identifier (FK)

Distribution Center

Distribution Center Identifier

Standard Product

Standard Product Identifier

Product Group Identifier (FK)

Product Group

Product Group Identifier

Brand Identifier (FK)

Brand

Brand Identifier

Division Identifier (FK)

Division

Division Identifier

Customer HQ

Customer HQ Identifier

Planning Group

Planning Group Identifier

Customer HQ Identifier (FK)

Ship To Customer

Ship To Customer Identifier

Preferred Distribution Center Identifier (FK)

C h a p t e r 7214

The Product Hierarchy
In this section, we will look at the issues involved in receiving a flattened (non-
recursive) denormalized hierarchy from the operational system. Denormal-
ized flat hierarchy structures, represented as a series of columns or a single
column, do not inherently enforce any business rules that may exist. If the data
is physically stored in this manner in the source system, it would be up to the
source system’s application logic or manual effort by those maintaining the
data to enforce whatever hierarchy rules that exist. This can lead to incorrect
data that can materially effect how the data warehouse should receive and
store the data.

Storing the Product Hierarchy

The product hierarchy is received from the source system as a single column.
The column’s value contains formatted text where portions of the text repre-
sent different parts of the hierarchy. For this example, the division is stored in
positions 1 to 2, the brand in positions 3 to 5, the product group in positions
6 to 9, and the standard product code in positions 10 to 14.

Receiving hierarchies in this manner from packaged software products is not
unusual. Like the data warehouse, application software developers have the
option to represent hierarchies as recursive trees or flattened structures. Those
that implement them as flattened structures run into a problem with hierarchy
depth. They wish to build flexibility into the application by allowing the end
users the ability to define their own hierarchy, but how do you do that if the
hierarchy must be of known depth to fit into the flat structure? Do you define
a schema with some large number of columns, say 10, to allow a user to spec-
ify up to 10 levels in the hierarchy? What if the user needs 11? What if he or she
only uses three? How does the application deal with the other columns?

A common solution is to simply provide one large text column. The user
would then define the hierarchy levels and assign positions in this text field to
hold the code value for each element of the hierarchy. This allows the end user
to define as many levels as necessary, with the only restriction being the com-
bined width of the code values. This is a good, workable solution for an appli-
cation system, but a bad design for a data warehouse.

As a function of the extract, transform, and load process in the data ware-
house, the column must be interpreted to derive meaning from it. This inter-
pretation should be performed up front in the data load process to create a
structure like the one shown in Figure 7.11. This, of course, fixes the structure
to known entities and a known depth. By breaking the column into its compo-
nents and defining entities for each component, you clarify the model and sim-
plify the use of the data.

Modeling Hierarchies 215

Figure 7.11 Transforming the flattened hierarchy column.

The resulting structure is in 2NF. This differs from the 3NF structure discussed
earlier by the fact that the 2NF structure does not enforce true hierarchical rela-
tionships. In fact, each attribute in the hierarchy is independent of the others.
In the sample data, product group codes are shared across brands. Since the
model does not enforce relationships between the entities, there is no guaran-
tee that a child has one and only one parent. Without this guarantee, we can-
not generate the types of reports required by the business. We need to perform
additional transformations of the data to convert the complex hierarchy into a
simple hierarchy and store it in 3NF.

Simplifying Complex Hierarchies

In this example, we have seen that the danger of receiving a denormalized flat-
tened hierarchy is there may be no guarantee that this is not a complex hierar-
chy. A complex hierarchy is one where a child may have multiple parents. As
the product hierarchy in Figure 7.8 shows, common product groups are shared
among different brands. For example, both Lazy Guy and Like-A-Chef brands
have an Entrée product group. But, it is also true that leaves of this hierarchy,
the products themselves, have unique SKUs and that the SKUs that are Lazy
Guy entrees are mutually exclusive of SKUs that are Like-A-Chef entrees. So,
what we have is an identity crisis, where two different product groups share
the same identifier.

Division
Frozen Foods

Ice Cream
Snacks

Beverage

01
02
05
18

Brand
Lazy Guy
Bada-Binge
Like-a-Chef
Crunchies

035
152
160
215

Ms Dolly237
Munchies348

Product Group
Entree

Side Orders
Appetizers
Flavored

ENTR
SIDE
APPT
FLAV

With NutsNUTS
Diet/Low FatDIET

CookiesCOKI

Standard Product
Fried Chicken

Meat Loaf
Dumplings
Potatoes

02319
02323
03401
04392

Chocolate IC10024
Vanilla IC10025

Chocolate Swirl10032
01 160 SIDE 04392 ……

01160SIDE04392 ……

Incoming hierarchy data

Transformation Process

C h a p t e r 7216

Retaining Ancestry

To avoid a complex hierarchy in this example, the Lazy Guy Entrée product
group must have a different business key than the Like-A-Chef Entrée product
group. Where such a key does not exist, it becomes the responsibility of the
data warehouse process to create such a key. The easiest technique to do this is
to prefix the code with the codes of its parents. This becomes the business key.
As Figure 7.12 shows, each child becomes framed within the context of its
ancestry. Conceptually, this makes the children dependent (as opposed to
independent) entities.

As the figure shows, this is only necessary for the hierarchy entities. It is rea-
sonable to expect that the SKU is unique and unambiguous. It is not necessary
to create a new key for the SKU.

Here are some tips for use when building the 3NF tables:

■■ Use a surrogate key as the primary key. This will reduce the size of the
key, particularly in foreign key references. Use the concatenated business
key as an alternate key.

■■ Retain the original code value if they have business meaning and are
unique within a source system. This is necessary to update attributes since
the source system would provide such data using this value. Create an
inversion index on this column, because duplicate values will exist.
Updates should modify all rows with that value.

Interface Issues

A complex hierarchy raises specific issues that must be supported in the data
feeds received by the data warehouse. The business case stated that most plan-
ning occurs by product group. Yet, if the code ENTR represents the Entrée
product group, then the question becomes, “Which brand’s product group?”
Retaining ancestry in the key, as described in the previous section, will resolve
the ambiguity in the data warehouse. However, the data feed for the sales plan
must also provide the same ancestry data so that it properly identifies the
proper product group.

Without the necessary ancestry information, it is not possible to properly associate
the sale plan with sales. If, as is the case here, the planning system is separate from
the operational system, you will need to verify that such information is available.
How such information is provided will depend on the environment and may
require some transformation before is can be loaded into the data warehouse. The
simplest is to receive a clean concatenated key that matches the ancestry business
key described earlier. Or, you may receive a SKU for one of the products in the
group. In such a case, you would use the hierarchy keys defined for that SKU.
Regardless of how it is received, it is critical that data feeds, which provide infor-
mation related to a hierarchy, unambiguously reference that hierarchy.

Modeling Hierarchies 217

Figure 7.12 Adding ancestry to the business key.

D
iv

is
io

n
Fr

oz
en

 F
oo

ds
Ic

e
C

re
am

Sn
ac

ks
Be

ve
ra

ge

01 02 05 18

Br
an

d
La

zy
 G

uy

Ba
da

-B
in

ge
Li

ke
-a

-C
he

f
C

ru
nc

hi
es

01
03

5
02

15
2

01
16

0
05

21
5

M
s

D
ol

ly
02

23
7

M
un

ch
ie

s
05

34
8

Pr
od

uc
t

G
ro

up
En

tr
ee

Si
de

 O
rd

er
s

A
p

p
et

iz
er

s

Fl
av

or
ed

01
03

5E
N

TR
01

03
5S

ID
E

01
03

5A
PP

T

02
23

7F
LA

V
W

ith
 N

ut
s

02
23

7N
U

TS
D

ie
t/

Lo
w

 F
at

02
23

7D
IE

T

En
tr

ee
Si

de
 O

rd
er

s
A

p
p

et
iz

er
s

01
16

0E
N

TR
01

16
0S

ID
E

01
16

0A
PP

T
Fl

av
or

ed
02

15
2F

LA
V

W
ith

 N
ut

s
02

15
2N

U
TS

St
an

da
rd

 P
ro

du
ct

Fr
ie

d
C

hi
ck

en
M

ea
t

Lo
af

D
um

p
lin

gs

01
03

5E
N

TR
02

31
9

01
03

5E
N

TR
02

32
3

01
03

5S
ID

E0
34

01
Po

ta
to

es
01

03
5S

ID
E0

43
92

Fr
ie

d
C

hi
ck

en
M

ea
t

Lo
af

Po
ta

to
es

01
16

0E
N

TR
02

31
9

01
16

0E
N

TR
02

32
3

01
16

0E
N

TR
04

39
2

SK
U

00
92

08
19

8
00

92
02

02
8

00
92

03
29

3
01

03
17

29
8

… … … …
01

03
18

41
8

…
01

03
10

59
8

…

C h a p t e r 7218

Bridging Levels

An aspect of the reporting requirements is to summarize detailed sales data to
the same level as the sales plan numbers. A table that matches the detail level
keys with the hierarchy level keys can best handle this. Figure 7.13 shows an
example. In this example, there is a sales plan for the Side Dish product group
of the Like-A-Chef brand. Sales, recorded at the SKU level, contain many rows
for many different cookie SKUs. The bridge table contains rows with pairs of
keys. The column on the left contains the product group key, and the column
on the right contains the SKU key. A query that joins the sales plan to actual
sales through this bridge will naturally roll up actual sales to the same level of
detail as the plan. This allows such summarization to occur on the fly using
simple SQL, without the need to perform a recursive transversal of a hierarchy
tree. This structure would be created in the data warehouse to aid in the deliv-
ery of combined sales and sales plan data. In this situation, building such a
structure is optional. The existing relationships between Product Group, Stan-
dard Product, and Product (SKU), as depicted in the business model (see Fig-
ure 7.10), are sufficient to resolve the relationship. The advantage of this
structure is that it reduces the join path required to associate the data. This
may significantly reduce the time to deliver such information to the marts and
other external applications.

However, one of the issues we face is that sales plan is not always by product
group. In fact, a plan may be created at any level in the product hierarchy. How
can a bridge be constructed so that detailed sales data can roll to the sales plan,
regardless of the level of the plan? A more generic solution is in order, and the
solution lies in addressing two problems: keys and tables.

The issue with keys is that you have a number of different entities: product
group, brand, SKU, which all have different key formats and content. Also,
because of the way the hierarchy structure is received from the source system,
there is no guarantee that a business key value is unique across each entity.
There is nothing, other than internal business rules, to stop a business key for
a brand from being the same as a business key for a product group. In the
bridge, we want one column for the parent key, and we want that key value to
be unique. The solution here is to use surrogate keys. With a surrogate, all keys
will have the same format, and the data warehouse load process can control
the value assignment, ensuring uniqueness.

Modeling Hierarchies 219

Figure 7.13 Bridging a hierarchy.

Pr
od

uc
t

G
ro

up
En

tr
ee

Si
de

 O
rd

er
s

A
p

p
et

iz
er

s

Fl
av

or
ed

01
03

5E
N

TR
01

03
5S

ID
E

01
03

5A
PP

T

02
23

7F
LA

V
W

ith
 N

ut
s

02
23

7N
U

TS
D

ie
t/

Lo
w

 F
at

02
23

7D
IE

T

En
tr

ee
Si

de
 O

rd
er

s
A

p
p

et
iz

er
s

01
16

0E
N

TR
01

16
0S

ID
E

01
16

0A
PP

T
Fl

av
or

ed
02

15
2F

LA
V

W
ith

 N
ut

s
02

15
2N

U
TS

Pr
od

uc
ts

01
23

08
19

8
01

23
02

02
8

01
23

03
29

3
01

23
17

29
8

LA
C

 C
re

am
ed

 C
or

n
LA

C
 B

ro
cc

ol
i w

 C
he

es
e

LA
C

 A
u

G
ra

tin
 P

ot
at

oe
s

LA
C

 M
as

he
d

Po
ta

to
es

01
23

18
41

8
LA

C
 P

ot
at

oe
s

an
d

SP
A

M
01

23
10

59
8

LA
C

 S
PA

M
, S

PA
M

 &
 S

PA
M

Sa
le

s
Pl

an
06

/2
00

2
01

16
0S

ID
E

15
,0

00
 C

S
$5

17
,0

00

01
23

08
19

8
01

23
02

02
8

01
23

03
29

3
01

23
17

29
8

01
23

18
41

8
01

23
10

59
8

01
16

0S
ID

E
01

16
0S

ID
E

01
16

0S
ID

E
01

16
0S

ID
E

01
16

0S
ID

E
01

16
0S

ID
E

Pr
od

uc
t

G
ro

up
 B

rid
ge

Sa
le

s
06

/0
1/

20
02

10
0

C
S

$3
50

0
01

23
17

29
8

06
/0

1/
20

02
50

 C
S

$1
82

5
01

23
03

29
3

06
/0

2/
20

02
12

5
C

S
$5

03
0

01
23

17
29

8
06

/0
2/

20
02

85
 C

S
$2

45
0

01
23

10
59

8
06

/0
2/

20
02

32
9

C
S

$1
02

00
01

23
03

29
3

06
/0

3/
20

02
43

 C
S

$2
07

01
23

10
59

8

C h a p t e r 7220

Tables are another matter. The notion that each entity must have its own table
makes implementing the bridge and rolled-up reports impractical. The sales
plan table would require a foreign key to each entity’s table that may be the
level of the plan. One would presume in such a structure that only one of the
keys would be populated, say the foreign key to the brand entity if the plan is
at the brand level, and the other keys would be null. If the bridge mimicked
this structure, a large union query would be necessary to pull and combine
plan and sales data one level at a time. The solution is to fold the hierarchical
entities into the same table as the products. The hierarchy and the SKUs would
share the same surrogate primary key, ensuring uniqueness. The table’s busi-
ness key would be expanded to include a row type code to identify SKU ver-
sus product group versus brand, so that rows can be identified, and business
key values need only be unique within row type.

When entities are combined in this manner, it is important to identify those
attributes that are common across entity types. Certainly, the primary key, the
row type, and the business key are all attributes that apply to all rows. In addi-
tion, at least one descriptive text column should be used in common so that any
query can retrieve a description of the business key regardless of the row type.

With these two issues resolved, building the bridge structure is simply a matter
of creating bridge row pairs for every possible parent of a SKU. In the case, of the
product hierarchy, each SKU will require five rows in this table, one for each level
in the hierarchy representing the division-SKU, brand-SKU, product group-SKU,
standard product-SKU and SKU-SKU relationships. The latter, often referred to
as an identity relationship, covers situations where a plan is done at the SKU
level, allowing a SKU-level plan to join with SKU-level sales data.

Figure 7.14 shows how this may appear in the data warehouse. Notice that the
sales plan contains a single surrogate foreign key reference to the Product table.
Since Product contains all the hierarchy elements, this one key is sufficient
regardless of the level of the plan.

Updating the Bridge

In addition to the parent-child foreign keys, the bridge should also contain
effective and expiration dates to maintain historical perspective of the relation-
ship. In addition, a Boolean (yes/no) column should be provided to simplify
isolating the most current relationship. This provides a value that can be
indexed to rapidly access the current version of a relationship. It also may con-
tain a level ID that represents the level of the parent. This value is not necessary
when using the bridge in a query, but it does assist in updating the bridge. This
level ID can be the level number, or better yet, a type code that identifies the
parent entity. The latter is preferable for updating because this code will remain
consistent even if the hierarchy structure, and the number of levels, changes.

Modeling Hierarchies 221

Figure 7.14 A generic bridge structure.

Updates to the bridge need to be applied from the perspective of the child key.
This is because in a simple hierarchy, the child has a single ancestral line, mak-
ing it a consistent key for locating parents that need to be changed. Looking at
it another way, assume that there is a row in the bridge with parent, A, and
child, X. A change in the hierarchy assigns child X to parent B. Unless you
know the pervious parent, you would not be able to locate the A-X relation-
ship, unless you located it using the child key. So, locating the current rela-
tionship for child X will find the A-X relationship.

Update the A-X row by setting the current indicator column to false and the
expiration date to the effective date of the new relationship. Note that the pri-
mary key for this table needs to be the parent key, child key, and the effective
date because it is possible that over time the same parent-child relationship
may have been superseded then reinstated, resulting in multiple rows for the
same parent-child relationship. Including the effective date will ensure a
unique key. The next step would be to insert a new row for the B-X relation-
ship, setting the current flag to true, the effective date to the appropriate date,
and the expiration date to some large value, such as December 31, 9999.

The Customer Hierarchy
The customer hierarchy is received from the source system as a recursive tree
data structure. The customer entities are received in a single feed with role

Entree
Side Orders
Appetizers

01035ENTR
01035SIDE
01035APPT

Entree
Side Orders
Appetizers

01160ENTR
01160SIDE
01160APPT

Flavored02152FLAV

110
111
112
113
114
115
116

PG
PG
PG
PG
PG
PG
PG

Products (with Hierarchy Entities)

012308198
012302028
012303293
012317298

LAC Creamed Corn
LAC Broccoli w Cheese
LAC Au Gratin Potatoes
LAC Mashed Potatoes

121
122
123
124

012318418 LAC Potatoes and SPAM 125
012310598 LAC SPAM, SPAM & SPAM 126

Product
Hierarchy

Bridge

100
106
114
120
124
100

Frozen Foods
Ice Cream
Snacks
Beverage

01
02
05
18

Lazy Guy
Bada-Binge
Like-a-Chef
Crunchies

01035
02152
01160
05215

Ms Dolly02237
Munchies05348

104
105
106
107
108
109

BR
BR
BR
BR
BR
BR

100
101
102
103

Fried Chicken01035ENTR02319SP 117
Fried Chicken
Meat Loaf
Potatoes

01160ENTR02319
01160ENTR02323

SP
SP

118
119
12001160ENTR04392SP

PR
PR
PR
PR
PR
PR

DV
DV
DV
DV

124
124
124
124
124
126
126
126
126
126

106
113
119
126

Row type Business key Surrogate primary key

Parent Child

C h a p t e r 7222

Figure 7.15 A simple tree data structure.

identifiers that identify Customer HQ, Planning Group, Sold-To, and Ship-To
roles. Let’s first take a look at the tree data structure and then examine how it
is best implemented in the data warehouse.

The Recursive Hierarchy Tree

A recursive tree data structure is the most elegant and flexible data structure
for storing a hierarchy. Any type of hierarchy can be stored in a recursive tree.
What is more, the method to traverse the hierarchy is the same regardless of its
type. But, in spite of its universal applicability, a recursive tree structure has
some drawbacks when used in a data warehouse.

In its simplest form, a recursive tree data structure is a table with two columns:
a parent foreign key and a child foreign key. This defines the basic parent-child
relationship common to all hierarchies. Figure 7.15 shows an example of a sim-
ple recursive tree structure for the customer hierarchy shown in Figure 7.10.

The data table on the left shows how these foreign keys would be stored in the
recursive tree structure. Root nodes, the topmost entities in the hierarchy, are
identified by their null parent foreign key values. This is a common convention
as the root node, by definition, is a node with no parent. The leaf nodes, which
are nodes with no children, are represented by null child foreign key values.

To report the hierarchy structure from a recursive tree, the query must traverse
the tree using a recursive algorithm. A recursive algorithm is a coded routine
that calls itself. To understand what this means, imagine the hierarchy tree as
a lot of trees. If you removed the top level of a hierarchy diagram, you would
be left with a number of smaller, independent hierarchy diagrams. Repeated
trimming of the top level creates more, smaller hierarchies, until you finally

Allegheny Frz
Bronx Frz
Freeport Frz
Hartford Frz
Allegheny Amb
Bronx Amb
Freeport Amb
Hartford Amb

B&Q NE Juice
B&Q NE Pet
B&Q NE Frozen
B&Q Sth East
B&Q Central
B&Q Nth East
B&Q MarketsHQ

PG

PG
PG

SO
SO
SO

Customers
1002

SH

SH
SH

SH
SH

SH
SH
SH

1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016

1002
1002

1003

1006
1007
1008

1003
1004
1005
1006
1007
1008

1002

1002

1003
1003

Hierarchy Tree

Root Node

Leaf Nodes

Traversal Path

Parent Child

Modeling Hierarchies 223

have only a collection of leaves. The recursive process operates in a similar
manner. It starts at the root of the tree and traverses the tree. It does this by
going to the first child and traversing that child’s tree, and so on. It continues
going down levels until it hits a leaf. It then returns to the immediate parent
and goes to the next child for that parent and traverses that child’s tree. When
all the children are exhausted, it returns to the immediate parent and goes to
its next child. Below is an example of such a routine. As you can see, the actual
pseudocode is much smaller than the paragraph needed to describe it.

Traverse_Tree (node)

If node is null then return.

Output node.

For each node.child {Traverse_Tree (child)}

/*For each child, traverse the child’s tree. The act of a routine call-

ing itself is called recursion.*/

return.

Some database systems, such as Oracle, provide a SQL extension that performs
a recursive tree traversal within a SELECT statement. Alternately, some OLAP
tools do recognize and work with hierarchies stored as recursive tree struc-
tures. Such a tool would be able to query directly from the structure without
modification. But these solutions may present limitations or performance
issues. A generic solution that works with any database or tool is to publish the
hierarchy to the marts by exploding the tree. This technique will be addressed
later in this chapter.

As mentioned earlier, a recursive tree structure is basically a pair of foreign key
references. One key points to the parent entity, and the other points to the child
entity. For this to work, both the parent and child entities must reside in the
same table. If this were not the case, both the table structure and the queries to
support it would be a mess. Using the customer hierarchy as an example, Fig-
ure 7.16 illustrates the situation. In the example, there are separate tables for
each entity: Customer HQ, Planning Group, Sold-To Customer, and Ship-To
Customer. Since any row in the tree may reference any one of the tables, eight
foreign keys are required, one parent key and one child key to each table. Each
relationship is optional because only one parent and one child key is popu-
lated on each row. This is a bad structure that is almost impossible to query.
Furthermore, the number of foreign keys increases proportionally to the depth
of the tree, making it impossible to represent a tree of unknown depth, some-
thing a properly implemented recursive tree structure is very capable of doing.

The solution to this problem is the same as that we discussed for the bridge
earlier in this chapter—that is, to store the hierarchical elements in the same
table as the lowest-level elements. In this case, all would be folded into a sin-
gle customer table. This would require the addition of a row type column as

C h a p t e r 7224

Figure 7.16 A tree with separate entities.

part of the natural key for both row identification and to avoid possible dupli-
cate keys, should a planning group or HQ code be the same. In fact, you will
probably find that if your operational system uses a recursive tree structure to
represent a hierarchy, the data structures in the system have already taken this
into account and store all the hierarchy elements in the same table.

The challenge with a recursive tree structure is the maintenance of the hierarchi-
cal elements. It is possible that the same entity may appear in multiple hierar-
chies. For example, a manufacturer may have manufacturing divisions
appearing in a product cost hierarchy and sales divisions appearing in a cus-
tomer revenue hierarchy. In addition, financial hierarchies that include all divi-
sions may exist. In the approach described, the hierarchy entities would coexist
in the same table as the detailed entities. In this case, divisions would appear in
the product table to support the product cost hierarchy, the customer table to
support the customer revenue hierarchy, and the accounts table for the financial
hierarchy. There are two approaches to deal with this situation. One approach is
to create a table for the entity, such as a Division table, then use an insert/update
trigger on the table to propagate the transaction to all tables where the same data
resides. In this case, the operational interface would only maintain the single
table. The other approach is to update each table individually with the same
information. The trigger approach has the advantage of encapsulating all
updates into a single transaction, but it does “hide” the replication from the load
process. In either case, you do not need to be concerned with the hierarchies
themselves. You are simply replicating information about the division to tables
that need to contain it. You would always replicate all divisions to all tables. It
does not matter what role a particular division plays, because the hierarchy

Allegheny Frz
Bronx Frz
Freeport Frz
Hartford Frz
Allegheny Amb
Bronx Amb
Freeport Amb
Hartford Amb

B&Q NE Juice
B&Q NE Pet
B&Q NE Frozen

B&Q Sth East
B&Q Central
B&Q Nth East

B&Q Markets
Customer Headquarter

1002

1003
1004
1005

1006
1007
1008

1009
1010
1011
1012
1013
1014
1015
1016

1006
1007
1008

1002

Hierarchy Tree

Customer Planning Group

Sold-To Customer

Ship-To Customer
1003
1003
1003

1002
1002

1002

1003
1004
1005

1006
1007
1008

SO HQPGHQ PG SO
Parent Key Child Key

SHSH

Modeling Hierarchies 225

structures would only reference those divisions necessary for its purpose. While
you may be concerned that this approach causes data replication, the reality is
that such situations are fairly uncommon and do not involve a lot of data. Both
approaches will work and can be easy to implement. The choice is a matter of
style and fitting the solution into your system environment.

Using Recursive Trees in the Data Mart

Unless your OLAP or reporting tool can work directly with recursive tree struc-
tures, it is often not feasible to deliver such recursive structures to a mart. This
section will examine the issues with recursive structures as they apply to
reporting, and present methods to deliver such data to the data marts.

Sorting from a Recursive Tree

There are a number of shortcomings that make a recursive tree structure
unsuitable for a data mart. One shortcoming of the basic recursive tree struc-
ture is that there is no sense of sequence. Traversing the tree is simply a matter
of moving from parent to child to parent, and so on. Each query to retrieve a
parent’s children returns them is no particular order, resulting in report
sequences that may vary from run to run. SQL extensions to traverse these
structures are not much help, since they return a single set of a fixed number
of columns. For example, the Oracle extension returns the parent, child, and
level number. This information, by itself, is not sufficient to sort the data
beyond the visit sequence returned by the query. To sort the data, you have
two basic options: a recursive sort or building a sort key. In a recursive sort, the
process would sort a parent’s children before moving down to the child and
sorting the child’s children. To build a sort key, you create a single string with
a concatenation of sort values that follow the traversal path from the root to
the leaf. The resulting string would appear similar to a directory path and file-
name. Sorting on this string would produce a properly sequenced report. Pre-
suming that the desired sort is by description, Figure 7.17 shows how that
result set would look based on the customer hierarchy tree shown in Figure
7.15. Neither is possible without somebody writing code outside of SQL (or
your database vendor providing such functionality).

Figure 7.17 A sorted hierarchy.

B&Q NE Juice
B&Q NE Pet

B&Q NE Frozen

B&Q Sth East

B&Q Central
B&Q Nth East

B&Q MarketsHQ

PG

PG

PG

SO

SO
SO

Sorted Customer Hierarchy

1002

1003
1004

1005

1006

1007
1008

Key Type Description Sort Key
B&Q Markets

B&Q Markets/B&Q Nth East
B&Q Markets/B&Q Central

B&Q Markets/B&Q Sth East

B&Q Markets/B&Q Nth East/B&Q NE Frozen

B&Q Markets/B&Q Nth East/B&Q NE Pet
B&Q Markets/B&Q Nth East/B&Q NE Juice

C h a p t e r 7226

Figure 7.18 The exploded customer hierarchy.

Another challenge is determining which children belong to which parents (or
parents to children) from anywhere in the hierarchy. In a recursive structure, it
requires recursive code to travel up and down the tree to identify these rela-
tionships. Identifying a relationship between any two levels is very difficult to
do in a SQL-based environment unless you can eliminate the recursive nature
of the tree structure. An exploded tree structure will do just that.

Exploding the Hierarchy

A technique to deliver recursive hierarchy data to a data mart is to “explode”
the recursive tree structure. Exploding is the act of traversing the recursive
structure and generating a new structure that contains every possible relation-
ship across all levels of the tree. The result is a nonrecursive table of relationship
pairs. This table would also contain attributes that describe the relationship’s
position in the hierarchy. Figure 7.18 shows an explosion of the customer hier-
archy shown in Figure 7.15.

Exploding the tree eliminates the need for recursive queries, as there are no
longer self-joins to the hierarchy. Table 7.1 describes the attributes of an exploded
hierarchy entity. When delivered in this form to a data mart, hierarchical reports
can be generated using simple, single pass SQL queries. The additional attributes
allow a query to isolate the portion of the hierarchy of interest. The result is a flex-
ible structure that has other uses besides hierarchical reporting.

Table 7.1 Exploded Hierarchy Attributes

COLUMN USAGE

Parent Foreign key to the superior entity.

Child Foreign key to the inferior entity.

(continued)

Allegheny Frz
Bronx Frz
Freeport Frz
Hartford Frz
Allegheny Amb
Bronx Amb
Freeport Amb
Hartford Amb

B&Q NE Juice
B&Q NE Pet
B&Q NE Frozen
B&Q Sth East
B&Q Central
B&Q Nth East
B&Q MarketsHQ

PG

PG
PG

SO
SO
SO

Customers
1002

SH

SH
SH

SH
SH

SH
SH
SH

1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016

1002
1002

1003

1006
1007
1008

1003
1004
1005

1006
1007
1008

1002

1003
1003

1006
1007
1008

Exploded Customer Hierarchy
Parent Child

1
1
1

2
2
2

3
3
3

Level

1
1
1

1
1
1

0
0
0

Distance

N
N
N

Y
Y
Y

Y
Y
Y

Bottom

3
2
7

4
6
5

4
6
5

Seq

1002 1006
1007
1008

1002
1002

1
1
1

2
2
2

Y
Y
Y

4
6
5

1002 1002 1 0 N 1

1003 1003 2 0 N 3

1004 1004 2 0 N 2
1005 1005 2 0 N 7

…

Eff Dt
…

Exp Dt

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

Modeling Hierarchies 227

Table 7.1 (continued)

COLUMN USAGE

Level The level of the parent entity in the hierarchy. A value of 1
indicates a top, or root, node. In reporting this value can be
used to indent descriptions.

Distance The number of levels between the parent and child entity. A
value of 1 indicates an immediate descendant. A value of
zero indicates an identity row. The parent and child foreign
keys contain the same value.

Bottom A true/false value. If true, the child entity is a leaf. It is at the
bottom of the hierarchy.

Sequence A value used to sort the result set to produce a properly
sequences hierarchical report.

Eff Dt Effective date of the relationship.

Exp Dt Expiration date of the relationship.

With the exception of additional attributes, this structure is almost identical to
the bridge structure discussed earlier in this chapter. The difference is it
includes child references at all levels, whereas the previous bridge only stored
the lowest level child. Both of these tables are, in fact, bridge tables. The bridge
table discussed previously could just as easily have contained rows for all rela-
tionship pairs as this table does. The difference is simply a matter of the
requirements for the application. When the application uses are unknown or
subject to change, storing a full picture, as shown in Figure 7.18, will cover any
situation at the expense of a larger table. Even though the table is larger than
the recursive tree, it is not that much larger to make its use prohibitive; in fact,
it remains a fairly compact structure that provides a lot of utility.

The additional attributes in this table provide a means to represent the hierar-
chical nature of the data in reports. Values, such as level and distance from par-
ent are derived in the process of traversing and exploding the tree. The
sequence number can be generated if you perform a sorted traversal. Sorting
the parent’s children in the desired sequence before exploding the child’s tree
does this. If you are maintaining history, the effective and expiration dates of
each relationship is also derived during explosion.

Maintaining History

Introducing time sensitivity into a recursive tree structure complicates updates
and traversal of both the recursive tree and the exploded tree structures. We
will examine the issues and propose techniques to deal with them.

C h a p t e r 7228

Figure 7.19 A tree and its data.

Updating the Recursive Tree

The nature of a recursive tree structure is such that for any point in time, every
parent-child relationship is unique. The primary key for such a table is the
combination of the parent and child foreign keys. If the structure is to be date
sensitive, then effective date becomes part of the primary key. Maintaining
these dates can be a challenge in a typical data warehouse environment.

More often than not, the source operational system only maintains a current
view of any hierarchy. Aggravating the situation is the fact that there is seldom
a record of any changes that are applied. As a result, feeds into the data ware-
house are typically point-in-time snapshots of the current hierarchy structure.
It is up to the load process to determine what has changed so that history can
be recorded properly.

Fortunately, such differences can be detected using a basic sort/merge tech-
nique. Create a current snapshot of the tree in the data warehouse, representing
the last known state of the tree, sorted by the parent key and the child key. Sort
the incoming data into the same sequence. Where the keys on the incoming file
match the snapshot, there is no change. If the key exists in the incoming file and
not in the snapshot, it is a new relationship. If the key exists in the snapshot but
not in the incoming file, it is an expired relationship. You can also accomplish the
same results performing direct lookups on the existing table. However, in order
to detect obsolete relationships you must query using the child key, returning its
parent. If the returned parent is different from the parent in the new snapshot,
the old parent relationship is deactivated and replaced by the new parent rela-
tionship. The choice of update technique will depend on the size of the hierarchy
structure. The sort/merge technique tends to provide better performance for

Parent Child Eff Date Exp Date

A B 1/1/1900 1/1/9999
B E 1/1/1900 1/1/9999
B F 1/1/1900 1/1/9999
A C 1/1/1900 1/1/9999
C G 1/1/1900 1/1/9999
C H 1/1/1900 1/1/9999
C I 1/1/1900 1/1/9999
A D 1/1/1900 1/1/9999
D J 1/1/1900 1/1/9999
D K 1/1/1900 1/1/9999

A 1/1/1900 1/1/9999

E 1/1/1900 1/1/9999
F 1/1/1900 1/1/9999
G 1/1/1900 1/1/9999
H 1/1/1900 1/1/9999
I 1/1/1900 1/1/9999
J 1/1/1900 1/1/9999
K 1/1/1900 1/1/9999

Root node

Leaf nodes

A

B

E F G H I J K

C D

Modeling Hierarchies 229

large hierarchies. Figure 7.19 shows a recursive tree and its data. Figure 7.20
shows the tree after a structural change and the data in the updated table.

Exploding a Time-Sensitive Tree

Notice in Figure 7.20, when node C was moved from its original parent A to its
new parent Y, the dates for the A-C relationship and the Y-C relationship reflect
the time of the change. However, the dates for children of node C did not
change because those relationships did not change. But, when the tree structure
is exploded, the table will contain relationships between node A and C’s chil-
dren as well as node Y and C’s children. The dates for the A-G and Y-G rela-
tionships must take into account the dates for the A-C and Y-C relationships. As
the tree is exploded to lower levels, the children must assume the time period
that represents the intersection of the parent’s effective dates and the child’s
effective dates. Figure 7.21 shows how the relationships would appear in the
explosion table before and after the change.

The effective period of the relationships between node A and nodes C, G, H,
and I changed to reflect the movement of node C as a child of node Y. How-
ever, notice that the relationships between node C and its children, nodes G, H,
and I, have not changed. This demonstrates how compact an exploded hierar-
chy can be. There is no need for portions of the explosion to inherit changes
that do not directly affect them.

An important point to consider when doing such an explosion is that you can-
not use the dates in a join to aid in exploding the tree. You must perform a tra-
ditional traversal, using the child key to self-join to the parent key to traverse
down a level. Children of this parent may only be eliminated if the child
node’s effective period falls out of the derived time period of the parent. Deriv-
ing time periods, checking ranges, and halting further transversal requires that
such a process be implemented using a 3GL or ETL tool rather than SQL.

Figure 7.20 Effect of change to the tree structure.

Parent Child Eff Date Exp Date

A B 1/1/1900 1/1/9999
B E 1/1/1900 1/1/9999
B F 1/1/1900 1/1/9999
A C 1/1/1900 1/1/2003
C G 1/1/1900 1/1/9999
C H 1/1/1900 1/1/9999
C I 1/1/1900 1/1/9999
A D 1/1/1900 1/1/9999
D J 1/1/1900 1/1/9999
D K 1/1/1900 1/1/9999

X A 1/1/2003 1/1/9999
X Y 1/1/2003 1/1/9999
Y C 1/1/2003 1/1/9999

A 1/1/1900 1/1/2003

X 1/1/2003 1/1/9999

Updated

New
rows

Leaf nodes were omitted from table data.

B D C

E F J K G H I

A Y

X

C h a p t e r 7230

Figure 7.21 Changing a time-sensitive exploded tree.

This is not an issue if all that is required is a point-in-time snapshot of an
exploded tree. In this case, it is a simple matter of restricting the self-join on
rows whose effective period encompasses the desired date. So, when publish-
ing the exploded structure to a data mart, you should target the output to suit
the requirements. While it is certainly advantageous to provide a complete his-
tory of a hierarchy, it is rare the business has any use for it in typical data mart
applications. What is more common is to provide the current structure and a
previous structure, usually defined as the structure on a specific date, such as
the end of last year. This can be handled by simply delivering two snapshot
tables to the mart. The previous structure table would only need to be refreshed
when the target date changed. These snapshot structures need only carry an as-
of date to reflect the point in time the snapshot was created. It is well worth
mentioning that the delivered snapshot would use the same surrogate key val-
ues as those stored in the source historical tree structure. Each data mart receiv-
ing such a snapshot would also receive the same referenced (dimensional) data.

Case Study: Retail Purchasing

The purchasing organization of our retailer, GOSH, is responsible for the
timely purchase and supply of goods to the retail outlets. The company uses a
number of avenues to accomplish this. The core organization is their internal
buyers. The buyers are responsible for determining demand and stocking lev-
els of goods in the store. They determine this by sales projections and by feed-
back from the stores. Each buyer is responsible for a particular group of
products wholly contained within a department. Depending on the nature of
the goods, there may be multiple buyers and different organizations within a
department. For example, in sporting goods, buyers are organized by supplier.

1/1/9999
1/1/9999
1/1/9999

Exploded Tree (Before)
Parent Child

A C

Eff Dt Exp Dt

1/1/1900

…

A G 1/1/1900
A H 1/1/1900

1/1/9999
1/1/9999
1/1/9999

C G
C H
C I

1/1/1900
1/1/1900
1/1/1900

1/1/9999
1/1/9999
1/1/9999

1/1/2003
1/1/2003

1/1/2003

Exploded Tree (After)
Parent Child

A C

Eff Dt Exp Dt

1/1/1900 1/1/2003

…

A G 1/1/1900 1/1/2003
A H 1/1/1900 1/1/2003

Y C
Y G
Y H

1/1/9999
1/1/9999
1/1/9999

C G
C H
C I

1/1/1900
1/1/1900
1/1/1900

1/1/9999A I 1/1/1900 A I 1/1/1900 1/1/2003

1/1/99991/1/2003Y I

Modeling Hierarchies 231

In women’s clothing, buyers specialize in particular types of clothes (shoes,
coats, dresses, and so on).

Figure 7.22 shows the organizational chart of the purchasing group. The high-
est level, Purchasing Area, represents a general category of goods structured to
moderate the number of departmental mangers reporting to purchasing area
managers. Within a department, there may be group managers that report to
the department manager depending on the overall size of the department.
Below the department manager, or group manager, are the buyers who are
responsible for purchasing the goods. In some cases, there are subgroup man-
agers in areas with many products and high purchasing activity. In general,
buyers are responsible for particular SKUs; however, large departments may
assign regional buyers that are responsible for the same SKU’s in different
stores. In these situations, the Purchasing Department manager establishes the
store assignments. These assignments do not relate to the store hierarchy
defined by the Sales Department. In such situations, there is also a designated
primary buyer who is responsible for actually purchasing the SKU from the
supplier. Purchasing requests for the SKU from the other buyers are consoli-
dated through the primary buyer. The primary buyer is always one of the
regional buyers responsible for that SKU.

The purchasing organization is fluid. There are frequent changes to buyer
assignments within a department. Buyers also move between subgroups,
groups, departments, and purchasing areas. Buyers are interested in seeing the
sales plan and sales history based on the current hierarchy. Management is
also interested in examining a buyer’s performance based on SKU responsibil-
ities over time.

Analysis
The purchasing organization represents a ragged hierarchy. In this case, buy-
ers may belong to a department, a group, or a subgroup, meaning that the
depth of the hierarchy will vary depending on the department. In addition, the
leaves of the hierarchy are dependent on two entities, the product (SKU) and
the store. For consistency, it should be presumed that the buyer assignments
are always based on SKU and store. It is simply that, in some cases, a buyer is
responsible for all stores. Notice how terminology is different from that of the
store hierarchy. A “department” from a store’s point of view is roughly equiv-
alent to a “purchasing area,” whereas a “department” in the purchasing orga-
nization has no equivalent in a store. This is a common situation in any large
organization. It is important that terminology be qualified so there is no con-
fusion. These entities should have distinct names in the data warehouse, such
as “store department” and “purchasing department.”

C h a p t e r 7232

Figure 7.22 GOSH purchasing organization.

G
O

SH
 P

ur
ch

as
in

g

…
Sp

or
tin

g
G

oo
ds

W
om

en
's

C
lo

th
es

G
oo

d
Sp

or
t

M
fg

A
ny

 S
p

or
t

M
fg

G
ol

fC
lu

b
C

o.

Te
nn

is
Fo

ot
ba

ll

Ba
se

ba
ll

H
oc

ke
y

G
ol

f

Ba
se

ba
ll

Fo
ot

ba
ll

C
oa

ts
Sh

oe
s

D
re

ss
es

G
ow

ns

C
as

ua
l

Fo
rm

al

Se
as

on
al

Pe
tit

e

St
an

da
rd

Pl
us

W
ar

m
 C

lim
at

e
A

re
as

C
ol

d
C

lim
at

e
A

re
as

Pe
tit

e

St
an

da
rd

Pl
us

Pe
tit

e

St
an

da
rd

Pl
us

Pu
rc

h
as

in
g

 A
re

as

D
ep

ar
tm

en
ts

G
ro

up
s

Su
b

-G
ro

up
s

Jo
e

Bu
ye

r
Tr

i S
ta

te
 B

uy
er

Ja
ne

 D
oe

N
ew

 E
ng

la
nd

 B
uy

er

SK
U

Pr
im

19
28

34
00

1
B1

19
27

32
19

8
B2

28
73

41
93

9
B2

39
87

19
84

3
B1

SK
U

19
28

34
00

1
19

27
32

19
8

28
73

41
93

9
39

87
19

84
3

Pr
im B1 B2 B2 B1

Pr
im

ar
y

bu
ye

r
as

si
gn

m
en

ts

Ja
n

D
ea

ux
Bu

ye
r

Modeling Hierarchies 233

Because this is a ragged hierarchy, it is best represented in the data warehouse
using a recursive tree structure. This allows for a varying hierarchy depth
without affecting reporting functionality. Another advantage of the recursive
tree structure is that levels can be added or removed without having an impact
on existing queries. Such changes are effected by the content of the data struc-
ture rather than by the data structure itself. The hierarchy can change without
a change to the model or schema. It is well suited for this type of organization.
Figure 7.23 shows the business model.

The primary buyer is an independent relationship and is not a part of the pur-
chasing hierarchy. It is based purely on SKU as the business rule is that a SKU
has only one primary buyer. The buyer’s product responsibility may or may
not depend on the store. This requires two associative entities, Buyer Respon-
sibility to address non-store-specific relationships, and Buyer Store Responsi-
bility to address store-specific relationships.

There are four options as to how the associative entities in this model are phys-
ically implemented. These will be discussed in the next section.

Implementing the Business Model
Figure 7.24 shows an example of the physical structures that implements
the business model. The structure has been simplified; the host of columns
one would normally see in a real implementation are removed for clarity. The
data shown in this figure will be used as the basis for further discussion of this
hierarchy.

The Buyer Hierarchy

As the business case outlined, the depth of the hierarchy can vary depending
on the department. Some departments are further subdivided, while others
are not. The fact that a leaf, the buyer, may appear at different levels in the hier-
archy makes the hierarchy a ragged one. The recursive tree structure will han-
dle this without any adjustment to its treatment described in the previous
section. In fact, the recursive tree structure is inherently insensitive to the exis-
tence or nonexistence of levels in the hierarchy tree. As you can see in figure
7.24, buyer key 1017, Joe Buyer, belongs to the Any Sport Golf group (key =
1011), while buyer key 1019, Jan Deaux, belongs to a subgroup, Women’s
Dresses Warm – Petite (key = 1015). These two relationships are enforced by
the parent/child key values 1011/1017 and 1015/1019, respectively in the
Buyer Hierarchy table. There is no special logic or indicators necessary to
accommodate different types of relationships.

C h a p t e r 7234

Figure 7.23 The purchasing business model.

Pu
rc

h
as

in
g

 O
rg

an
iz

at
io

n

Ty
p

e
Id

en
ti

fi
er

Pu
rc

ha
si

ng
 O

rg
an

iz
at

io
n

Id
en

tif
ie

r

Pr
o

d
uc

t

Pr
od

uc
t

Id
en

tif
ie

r

Pr
im

ar
y

Bu
ye

r
Id

en
tif

ie
r

(F
K)

St
o

re

St
or

e
Id

en
tif

ie
r

Pu
rc

h
as

in
g

 A
re

a

Pu
rc

ha
si

ng
 A

re
a

Id
en

tif
ie

r
(F

K)

Pu
rc

h
as

in
g

 D
ep

ar
tm

en
t

Pu
rc

ha
si

ng
 D

ep
ar

tm
en

t
Id

en
tif

ie
r

(F
K)

Pu
rc

h
as

in
g

 H
ie

ra
rc

h
y

Pa
re

nt
 P

ur
ch

as
in

g
O

rg
an

iz
at

io
n

Id
en

tif
ie

r
(F

K)
C

hi
ld

 P
ur

ch
as

in
g

O
rg

an
iz

at
io

n
Id

en
tif

ie
r

(F
K)

Pu
rc

h
as

in
g

 G
ro

up

Pu
rc

ha
si

ng
 G

ro
up

 Id
en

tif
ie

r
(F

K)

Pu
rc

h
as

in
g

 S
ub

 G
ro

up

Pu
rc

ha
si

ng
 S

ub
 G

ro
up

 Id
en

tif
ie

r
(F

K)

B
uy

er

Bu
ye

r
Id

en
tif

ie
r

(F
K)

B
uy

er
 S

to
re

 R
es

p
o

n
si

b
ili

ty

Bu
ye

r
Id

en
tif

ie
r

(F
K)

Pr
od

uc
t

Id
en

tif
ie

r
(F

K)
St

or
e

Id
en

tif
ie

r
(F

K)

B
uy

er
 R

es
p

o
n

si
b

ili
ty

Bu
ye

r
Id

en
tif

ie
r

(F
K)

Pr
od

uc
t

Id
en

tif
ie

r
(F

K)

Modeling Hierarchies 235

The maintenance issues with this structure are the same as discussed in the
previous case study. The basic table structure is still a relationship between
parent and child nodes. At any point in time, each combination of parent and
child keys will be unique. Change detection is accomplished by examining the
structure from the child key’s point of view, looking for children with different
parents, rather than parents with different children. (See “Maintaining His-
tory,” earlier in this chapter.) This hierarchy is best delivered to the data marts
as an exploded tree structure as discussed in the previous case study. Delivery
to other systems may require flattening the hierarchy into a 2NF structure.
This is doable since the hierarchy has a maximum depth. Field values for miss-
ing hierarchy levels in the output file may need to be left blank or set to a pre-
defined value as necessary for the target system.

Implementing Buyer Responsibility

In this section, we will examine the buyer responsibility and how it should be
implemented in the model and physical database.

C h a p t e r 7236

Flattening a Ragged Hierarchy

The delivery process may require converting a ragged hierarchy stored in a recur-
sive tree structure into a flat 2NF representation. This is doable provided the hier-
archy is of known depth. A flat 2NF structure is simply a row that contains one or
more columns for each level of the hierarchy. There is one row per leaf.

The challenge when generating such a structure is to be aware that, because
the structure is ragged, levels may be skipped. It is up to the process to recognize
when a level is skipped and to populate the output with a value appropriate to
the target system.

You can detect the level by joining to the referenced table via the foreign keys
in the hierarchy tree. Type code columns in the referenced table should be avail-
able to allow you to populate the proper column in the delivered output.

When dealing with a ragged hierarchy of unknown depth, the only viable solu-
tion to creating such a structure is to deliver the hierarchy path as a single delim-
ited text value. The generated string would have an appearance similar to a file
path specification. Using the hierarchy in Figure 7.22 as an example, the string
“‘GOSH Purchasing’,’Womens Clothes’,’Shoes’,’Formal’” would describe the formal
shoes group in the women’s shoes department. If your target system can receive
such a flattened hierarchy as an unknown number of columns, one trick is to use
the file’s column delimiter (such as a comma) as the delimiter in the string. When
written to a text file, the single string will have the appearance of multiple
columns to the application that reads it as a comma-delimited file.

Figure 7.24 Purchasing tables.

The Primary Buyer

In our business case, a relationship exists between buyers and products at two
levels: The primary buyer, who does the actual purchasing, and the secondary
buyers, who are responsible for determining purchasing requirements. There
is always a one-to-one relationship between a SKU and the primary buyer.
Since the primary buyer is wholly dependent on the SKU, the Product entity
carries the foreign key to the primary buyer, as shown in Figure 7.23.

The Secondary Buyer

The secondary buyer relationships are represented by two associative entities
in the business model shown in Figure 7.23. The Buyer Responsibility entity
represents relationships based on buyer and product, while the Buyer Store
Responsibility entity represents relationships that are based on buyer, product,
and store. The sum of these two entities represents all buyer responsibility
relationships.

Upon examining the model, you may notice that the relationship between
Buyer, Buyer Responsibility, and Product appears to be the same one-to-many
relationship as the Primary Buyer relationship between Buyer and Product.
Based on the case study, it is the same relationship because the primary buyer
is the responsible buyer when the relationship is not store specific. However, it
only remains true if historical relationships are not being maintained. If you
add effective and expiration dates to the Buyer Responsibility entity, it
becomes a many-to-many relationship. When keeping history, you need to
allow for the fact that organizational changes may move a product’s buyer

Women's Dresses
Good Sport - Baseball
Any Sport Golf
Any Sport Hockey
Women's Dresses Warm
Women's Dresses Cold
WDW - Petite
WDW - Standard

Women's Shoes
Women's Coats
GolfClub Co.
Any Sport Mfg
Good Sport Mfg
Women's Clothes
Sporting GoodsPA

PA

DP
DP

DP
DP
DP

Buyer

1002

SG

DP
GR

GR
GR

GR
GR
SG

1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016

DescriptionTypeKey

Joe BuyerBY1017
Jane Doe BY1018

Store

Paramus
Queens

Plattsburgh
New Haven

012
025
135
417

SKU
192834001
192732198
287341939
398719843

Buyer
1017
1018
1018
1017

Product

6102
6103
6104
6105

Key

28
35
36
37

Key NameID

1002

1002

1003
1004
1005

1003
1004
1005
1006
1007
1008

1002

1002

1003
1003

1009
1010
1011

Buyer Hierarchy
Parent Child

1005 1012
1009 1013
1009 1014
1013 1015
1013 1016
1011 1017
1011 1018

1017
1018

Buyer
1017
1017
1017

28

35

36

37

Store
6102
6103
6104
6105

Product
Buyer Responsibility

28
28
28

6102
6103
6104
6105
6102
6103
6104
6105
6102
6103
6104
6105

35
35
35
36

36
36

37
37
37

1017
1017
1017
1017
1017
1017
1017
1017
1017

1017
1017
1017

1017

Jan DeauxBY1019

1019

1015 1019

Modeling Hierarchies 237

responsibility from being store nonspecific to being store specific, while at the
same time the primary buyer will remain the same. Since primary buyer and
responsible buyer are two different roles in the business, the model should not
make assumptions in an attempt to combine the two.

For the physical implementation, Figure 7.24 shows a single Buyer Responsi-
bility table consisting of foreign keys for buyer, product, and store. This is the
result of combining the two associative entities into a single table. There are
pros and cons to this approach. One problem in doing this is that non-store-
specific buyer-product relationships must contain rows for every store. This
creates a larger table that is more difficult to maintain. This is offset by the fact
that the rows themselves are not very large.

Combining the two simplifies delivery of data that uses these relationships. If
the tables were separate, delivery would require union queries to combine the
two result sets. For non-store-specific relationships, the store information
would be missing. This may not be tolerated by downstream systems, requir-
ing an unrestricted join to store to create rows with store information. It is also
reasonable to assume that all stores do not carry all products. Therefore imple-
menting a delivery query that creates store information may produce results
that are inconsistent with other such queries due to the need to apply business
rules. These rules would have already been taken into account in the combined
structure.

An alternate solution is to create and maintain both tables corresponding to
the entities in the business model, and then use an internal delivery process to
create a full, separate table, as shown in Figure 7.24. This is a viable solution if
there are time constraints in your update process and the process to generate
the combined table can be executed at a less critical time. This isolates the logic
to build a combined table to a single process, easing maintenance. It also per-
forms the process once, so it does not need to be repeated for multiple deliver-
ies of the data.

Delivering the Buyer Responsibility Relationship

From the standpoint of the data warehouse, the buyer relationship table is a
simple, effective solution that is compact and easy to maintain. From a data
mart point of view, it is a very difficult structure to query. The primary problem
is that the store relationship is optional. If a query needs to associate sales with
the buyer hierarchy, it must first isolate the buyer using the product, store, and
date recorded for the sale. To allow for buyers that are not store specific, you
must perform an outer join from the sale to the buyer/product relationship

C h a p t e r 7238

table. This can lead to undesirable side effects in the result sets produced by
such queries.

Exporting the Relationship

In general, when designing data marts your goal is to create structures that are
easy to query and perform well. You should avoid situations that require outer
joins as much as possible. In fact, if the marts are designed using dimensional
models, outer joins should be unnecessary. To eliminate the need to perform
outer joins, the data mart will require the use of store as a foreign key in the
buyer/product relationship table. This means that every row has both a prod-
uct and store key value specified. To accomplish this, the process that exports
data to the data mart should generate rows for each store when the original
row has no store specified.

Expanding the data to include all stores will significantly increase the number
of rows being passed to the data marts. The increase is directly proportional to
the number of stores. The actual volume passed to the data mart can be con-
trolled by only passing changes since the last export. On the data mart end,
such a structure will have a large number of rows, but the rows themselves
would be small. This may be a manageable situation if the data mart only
requires a current snapshot of the relationship.

You can use such a structure to maintain historical relationships as well, how-
ever, if reassignments occur frequently, the table could explode in size, making
it burdensome to update as well as query. Alternately, you can store only the
current and previous buyer in this table. The primary key of such a table
would be the store and product IDs, meaning that it would have the same
number of rows as the current snapshot table. The difference is that when the
row is updated, the current buyer ID is moved the previous buyer column
before the current buyer column is overwritten with a new value. Figure 7.25
shows how this would be accomplished.

This technique is identical to type 3 slowly changing dimensions described by
Dr. Kimball1. But, in this case, it is applied to a bridge table rather than a
dimension table. One business issue you would need to resolve would be how
to deal with new rows. Do you populate both the current and previous buyers
with the assigned buyer or do you set the previous buyer to a null or
“unknown” value? Both ways have valid arguments, and your choice will
depend on how the business wishes to see their reports.

Modeling Hierarchies 239

1 The Data Warehouse Toolkit, Second Edition. Ralph Kimball, Margy Ross, Wiley & Sons (2002)

Figure 7.25 Maintaining current and previous references.

Delivering the Buyer

If the relationship table is too unwieldy for your data mart application, an alter-
native is to simply include the buyer’s foreign key with the sales data that is
being exported to the data mart. The export process would use whatever logic is
necessary to locate and assign the buyer, removing that burden from the data
mart queries. Aside from aiding query performance in the data marts, the stor-
age requirements are significantly reduced. An incremental load to the data mart
in this manner will store the responsible buyer at the time of the sale. Queries of
past sales would not reflect new changes to the relationship structure.

If the requirement of the data mart is to reflect the current buyer structure for all
sales in the timeframe of the mart, you will need to refresh all the sales data in the
data mart with the most current buyer assignment. In this case, you also have the
option of including the point in time buyer foreign key, allowing the data to be
viewed using either the current buyer or the buyer at the time of the sale.

Refreshing a data mart may not be as onerous a task as it may first appear.
How practical it is depends on factors such as the timeframe covered by the
mart, the frequency of change in the buyer/product relationship, your pro-
cessing window and how current the business needs such a relationship. It
may be that the business only needs to see the data restructured on a weekly
or monthly basis. In such cases, current sales updates to the data mart can be
performed incrementally using current buyer assignments.

BuyerStore Product
Buyer Responsibility

610335 1017
Prev Buy

Assign buyer 1018 to store 35 and Product 6103

BuyerStore Product
Buyer Responsibility

610335 1017
Prev Buy

1017

Move the current buyer into the previous buyer column

BuyerStore Product
Buyer Responsibility

610335 1018
Prev Buy

1017

Store the new buyer assignment

C h a p t e r 7240

Case Study: The Combination Pack

The marketing group for the Lazy Guy brand has developed a new line of
“meals-in-a-box.” One package will contain a full meal, including appetizer and
dessert, ready for the microwave. The package will contain one appetizer, one
entrée, two side dishes and a Bada-Binge ice cream dessert. The company is very
excited about the idea and is anxious to go forward as quickly as possible.

From a sales and inventory standpoint, each meal-in-a-box is a single SKU that
is assembled by placing existing products into a box. It is sold at retail as a
single consumer unit with its own UPC code.

When the idea was presented to the sales and manufacturing divisions, issues
began to arise. The brand manager for Bada-Binge wanted assurances that the
brand would receive the revenue for the ice cream sold in the package.
Accounting wanted assurances that costs would be charged to the appropriate
brands and divisions. Manufacturing pointed out that the package and labeling
of the component items would be different than the normal retail product.
These component products will be assigned a different SKU to distinguish
them from the normal product. They will never be sold as individual products.
The Logistics group requires a weight and size breakdown so that storage and
transportation costs can be properly charged to the correct brand. And the Lazy
Guy brand manager requires that revenue be distributed across the product
groups (appetizer, entrée, and side dishes).

The marketing group and sales have countered that significant effort will be
expended to launch and promote the new product. They need to see all the
sales and revenue associated with it to gauge their efforts. They propose a new
product group under the Lazy Guy brand to report these products.

After extensive discussion, the business agreed that everybody should get
what he or she wanted. Sales of the meal-in-a-box product will be reported
both as a single unit and as its components. A new product group “meal-in-a-
box” will be added to the Lazy Guy brand. All meal-in-a-box SKUs will be
assigned to that product group. The operational system will provide a new
feed containing a single level bill of materials for each meal-in-a-box SKU. This
bill of materials will only contain the SKUs of the finished goods placed in the
box. Reporting would use the hierarchy assigned to the component SKUs
when reporting revenue at the component level. Reports that include compo-
nent level SKUs will be referred to as “exploded” sales reports.

Analysis
Initial analysis of this situation is you have a single complex ragged hierarchy
as shown in Figure 7.26. This hierarchy expands the existing product hierarchy

Modeling Hierarchies 241

(Figure 7.8) to include a new level, component, as well as an additional prod-
uct group. Products at the component level have many parents, the product
group it belongs to and the many meal-in-a-box SKUs it may be used in.

The business has decided that there will be two classes of reports from this
hierarchy. “Actual” sales, which report the SKUs sold and “exploded” sales
that report actual sales for unassembled products and component sales for
assembled products, such as the meal-in-a-box. Actual sales reports can con-
tinue to function as they have before. The meal-in-a-box SKUs are simply new
products being sold. Exploded reports require a different approach. If the
product has components, it must first go down the hierarchy to its children
(the components) before it can roll up to higher levels in the hierarchy. This
type of hierarchy traversal would require custom query code to implement
and would be very difficult, if not impossible, to implement using an off-the-
shelf query tool.

The solution requires the problem be broken into smaller pieces. First, you must
recognize that the hierarchy stored in the data warehouse and the hierarchy
stored in the data mart are there for different reasons. The data warehouse
structures should be designed to best collect and maintain the information,
while the data mart structures are there to facilitate queries. Second, the grand
total of an actual report will equal the grand total of an exploded report that
looks at the same sales. In other words, from a reporting standpoint, the actual
hierarchy and the exploded hierarchy are mutually exclusive. They are simply
two different ways to look at the same thing and would never be used in com-
bination. Third, since they are never reported together, there is no requirement
to combine both structures in the data warehouse.

After breaking the problem down, it becomes apparent that the basic product
hierarchy remains the same. There are some new SKUs representing the com-
ponent items and new products as well as a new product group. This is all nor-
mal activity that any hierarchy structure should be able to deal with on a
day-to-day basis. What has changed is that the sales data for some SKUs must
be allocated to different SKUs (the components) in order to produce the
exploded sales reports. We will now examine the additional elements needs in
the warehouse and discuss the process required to provide exploded sales
data in the data marts.

C h a p t e r 7242

Figure 7.26 The expanded product hierarchy.

Fr
oz

en
 F

oo
ds

Ic
e

C
re

am

La
zy

 G
uy

Li
ke

-a
-C

he
f

Ba
da

-B
in

ge
G

oo
d

G
ol

ly
M

s
D

ol
ly

En
tr

ee
A

p
p

et
iz

er
s

Si
de

s
En

tr
ee

A
p

p
et

iz
er

s
Si

de
s

Fl
av

or
N

ut
s

Fl
av

or
D

ie
t

N
ut

s

C
or

n

D
iv

is
io

n

Br
an

d

Pr
od

uc
t

G
ro

up

St
an

da
rd

Pr
od

uc
t

SK
U

M
ea

ls

In
 a

 B
ox

Fr
ie

d
C

hi
ck

en

37
83

29
9

Fr
ie

d
C

hi
ck

en

Va
ni

lla

93
48

43
48

 V
an

ill
a

M
in

t

23
87

20
78

1
C

re
am

ed
 C

or
n

Po
ta

to

33
87

28
7

M
as

he
d

Po
ta

to

Modeling Hierarchies 243

Adding a Bill of Materials
To address the allocation of a product sale to its components, we need to know
what the components are and how the business wishes to account for each
component’s contribution to the sale. In this case, this information can be
stored in a simplified bill-of-materials structure.

A normal bill of materials is maintained in a recursive tree structure. This
allows for ragged hierarchies of unknown depth, a common attribute of a bill
of materials. However, in this case we have a two-level hierarchy: the retail
product and its components. In a recursive tree structure there are rows to
identify roots (null parent keys) and leaves (null child keys). In a two-level
hierarchy, all parent nodes are roots and all child nodes are leaves, there is no
need to provide special identification to determine if you are at the top or bot-
tom of the hierarchy. With root and leaf identity rows removed, there is no
need for recursion since the entire hierarchy can be stored as one list of rela-
tionships. In fact, the structure needed is a bridge table rather than a recursive
tree. Figure 7.27 shows this structure.

Since this table is needed to allocate revenue to the component SKUs, the
bridge structure should include additional columns to store allocation factors.
It will be up to the business to determine how these factors are to be calculated
as well as how many factors will be required. An invoice has a lot of different
components that are of interest to different areas of the company. Revenue, the
number of greatest interest, would certainly be allocated in some manner. An
allocation method may be to calculate a ratio of the standard price of each item
against the total standard price of all items. If one item’s price contributes 40
percent of the total, then its revenue allocation factor would be set to 0.40. You
may also require factors to allocate costs, such as shipping charges, which may
be based on the weights of each item. Of course, a quantity factor is necessary
to translate the number of units sold to the corresponding number of units of
the component item. With the exception of the quantity factor, the sum of each
allocation factor should total to 1, representing 100 percent of the item. These
allocation factors should be precalculated and stored in the bridge structure.
The business may also require that these factors be recalculated periodically.
To allow for this the structure should include effective and expiration dates.

Figure 7.27 Implementing the bill of materials.

Products

93484348
3783299

Vanilla Mint – MIAB 3oz
MIAB Fried Chicken

897
8129

3387287 Mashed Potato – MIAB 6oz12099
238720781 Creamed Corn – MIAB 4oz30289

PR
PR
PR
PR

SKU DescriptionKey Type
8978129

12099
30289

Child

8129

Parent

8129
0.200
0.170
0.100

% Revenue

398429900 Fried Chicken – MIAB 3pc80232 PR
802328129 0.430

294729047 Calamari App – MIAB90098 PR
900988129 0.100

Bill of Materials

1
1
1
1

Qty

1

C h a p t e r 7244

Publishing the Data
When publishing this information to the data marts, it is better to avoid the
need to explode the sales data in the data mart. This adds additional calcula-
tion burden on the mart that can adversely impact query performance. If a
data mart is to provide exploded numbers, the data should be exploded as part
of the publication process of the data mart. If the mart requires both, two sim-
ple true/false flags can be added to the row to support both types of queries.
One flag would be set to true if the row is to be included in an actual sales
report, and another flag would be set true if the row is to be included in an
exploded sales report.

Those SKUs that do not have components would be stored as a single row with
both flags set true. The meal-in-a-box SKUs will have rows with the actual sales
flag set to true and the exploded sales flag set to false. The exploded compo-
nents of the meal-in-a-box SKUs would have their actual sales flag set to false
and the exploded sales flag set to true. Since the product hierarchy is based on
SKU, the one hierarchy can be applied to either type of report, because the
SKUs are different and the allocated values are precalculated.

Transforming Structures

In the previous discussions, you saw that there is a lot of inherent flexibility in
using recursive tree structures for hierarchies. Changes to the hierarchy do not
require changes to the data structure, it is compact, and it is easy to record
changes and easy to maintain historical perspective. However, the downside is
query complexity, requiring recursive code to use the structure makes the
recursive tree less suitable for the data marts From a data mart standpoint, flat
hierarchy structures and bridges provide support for the needed reporting
functionality without the need for special logic or recursive queries. Since it is
advantageous to use a recursive structure in the data warehouse and advanta-
geous to use flattened structures in the data marts, the data warehouse should
be positioned to transform these structures when necessary.

In this section, we will examine additional techniques to transform hierarchi-
cal structures.

Making a Recursive Tree
If data is received from the source system as a flattened hierarchy, you may wish
to consider storing the data in a recursive tree structure. Previously in this chapter,
we showed how a 2NF flat structure can be transformed into a 3NF flat structure
by appending ancestry to each business key (see Figure 7.12). Now that the data
and keys are in 3NF, you can further transform it into a recursive tree structure.

Modeling Hierarchies 245

Figure 7.28 shows the transformations that need to occur. The first step is to fold
the hierarchy elements into a single entity table. This step is necessary so that the
tree’s foreign keys reference a single table. Figure 7.14 shows the products and
hierarchy table with surrogate keys assigned. Once surrogate keys have been
established, you build the tree by creating a series of unique parent-child rela-
tionship rows. There are a number of ways to do this, depending on the data
feed you receive and the tools available to you to implement the ETL processes.

If you start with a 3NF flat hierarchy, such as the product hierarchy shown in
Figure 7.12, the process should generate a row for every hierarchical entity as
a child. For example, for every row in the Product Group table, create a row
using the Product Group key as the child key and the Brand foreign key on the
Product Group row as the parent key. Next, create root node rows using the
root entity, Division. Create one row for each Division using the Division key
as the child key and a null value for the parent key. The null indicates no par-
ent, which defines a root node. The use of null may cause side effects, depend-
ing on the database system being used. Other conventions are to set the
foreign key value to zero or –1 to indicate a null reference. Since the 3NF data
coming in uses the business, or natural key, it is necessary to perform a lookup
against the folded entity table to obtain the proper surrogate key.

When the hierarchy elements are folded into a single table, be sure to include a
type identification column to distinguish between each entity. This code should
be part of the natural key to this table, ensuring uniqueness between each entity
type. The folded table itself should have a surrogate primary key to avoid the
need for compound joins between the tree’s foreign key and this table.

Flattening a Recursive Tree
While a recursive tree is preferred for the data warehouse, nonrecursive struc-
tures are better suited for the data marts. Earlier in this chapter we discussed
generating a bridge table containing an explosion of the recursive tree to elim-
inate the need for recursion in queries. A bridge structure has the advantage of
being compact, but the disadvantage of requiring additional joins to retrieve
attributes relating to the entities.

When it comes to hierarchies, it is common that the only attribute a hierarchi-
cal element has is a description. When this is the case, it may be advantageous
to deliver the hierarchy to the data mart as a flattened 1NF or 2NF structure.
Figure 7.29 shows an example of this. The levels are spread horizontally across
a row. Each leaf entity has a foreign key pointing to its hierarchy row. This type
of flattening works best with balanced hierarchies; however, it can accommo-
date ragged hierarchies by leaving missing levels null. It is not, however, a
useful technique for hierarchies of unknown depth.

C h a p t e r 7246

Figure 7.28 Transforming a 3NF flat hierarchy.

D
iv

is
io

n
Fr

oz
en

 F
oo

ds
Ic

e
C

re
am

Sn
ac

ks
Be

ve
ra

ge

01 02 05 18

Br
an

d
La

zy
 G

uy

Ba
da

-B
in

ge
Li

ke
-a

-C
he

f
C

ru
nc

hi
es

01
03

5
02

15
2

01
16

0
05

21
5

M
s

D
ol

ly
02

23
7

M
un

ch
ie

s
05

34
8

Pr
od

uc
t

G
ro

up
En

tr
ee

Si
de

 O
rd

er
s

A
p

p
et

iz
er

s

Fl
av

or
ed

01
03

5E
N

TR
01

03
5S

ID
E

01
03

5A
PP

T

02
23

7F
LA

V
W

ith
 N

ut
s

02
23

7N
U

TS
D

ie
t/

Lo
w

 F
at

02
23

7D
IE

T

En
tr

ee
Si

de
 O

rd
er

s
A

p
p

et
iz

er
s

01
16

0E
N

TR
01

16
0S

ID
E

01
16

0A
PP

T
Fl

av
or

ed
02

15
2F

LA
V

W
ith

 N
ut

s
02

15
2N

U
TS

St
an

da
rd

 P
ro

du
ct

Fr
ie

d
C

hi
ck

en
M

ea
t

Lo
af

D
um

p
lin

gs

01
03

5E
N

TR
02

31
9

01
03

5E
N

TR
02

32
3

01
03

5S
ID

E0
34

01
Po

ta
to

es
01

03
5S

ID
E0

43
92

Fr
ie

d
C

hi
ck

en
M

ea
t

Lo
af

Po
ta

to
es

01
16

0E
N

TR
02

31
9

01
16

0E
N

TR
02

32
3

01
16

0E
N

TR
04

39
2

SK
U

00
92

08
19

8
00

92
02

02
8

00
92

03
29

3
01

03
17

29
8

… … … …
01

03
18

41
8

…
01

03
10

59
8

…

11
0

11
7

01

10
0

10
0

11
7

Pa
re

nt
C

hi
ld

C
on

ve
rt

 n
at

ur
al

 k
ey

 t
o

th
e

su
rr

og
at

e
ke

y

C
re

at
e

a
ro

ot
 e

nt
ry

 w
ith

 a
 n

ul
l p

ar
en

t

01
03

5E
N

TR

11
0

C
re

at
e

pa
re

nt
/c

hi
ld

pa
irs

in
 t

he
 m

id
dl

e
le

ve
ls

01
03

5E
N

TR
02

31
9

00
92

02
02

8

21
48

21
48

11
7

21
48

C
re

at
e

le
af

 n
od

es
 w

ith
 n

ul
l c

hi
ld

 p
oi

nt
er

s

Modeling Hierarchies 247

Figure 7.29 A flattened recursive tree.

This example uses the product hierarchy shown in Figure 7.12. Notice when
flattening the structure in this manner, we can revert to the original business
key. The fact that all parts of the hierarchy exist on the same row provides con-
text for the codes, eliminating any ambiguity. The structure only contains hier-
archical elements and not SKUs. The SKU contains a foreign key that points to
its hierarchy. This reduces the redundancy inherent in such a structure.

Summary

Within the data warehouse, the most useful structure for hierarchies is the
recursive tree. It can be used to store any type of hierarchy. It also is very tol-
erant of change, requiring only data updates rather than structural schema
changes. It has the disadvantage of not being fully supported in most SQL
dialects, requiring external code to manipulate the structure.

Bridge structures (associative entities) can be created to provide a nonrecursive
representation of the tree. These structures can be used by any SQL dialect and
are the only suitable nonrecursive structure for hierarchies of unknown depth.
Bridges are also useful to aggregate detailed numbers to compare to numbers
specified at higher levels in the hierarchy. This type of functionality is commonly
needed in applications that compare budget numbers with actual numbers.

Flattened, nonrecursive structures represent the hierarchy as a collection of
independent attributes. These may be used to store hierarchies in the data
warehouse, but they are best used in data marts. Flat structures are easy and
efficient to query. However, they may only be used where the maximum hier-
archy depth is fixed. They are also better suited for balanced rather than
ragged hierarchies; however, they may be used in both cases.

Hierarchies are usually delivered to external systems or data marts in a nonre-
cursive form. This is primarily due to the nature of the target system. Analysis
of your OLAP tools and other software will drive the presentation require-
ments for hierarchies to these other systems.

EntreeENTR

SKU
009208198
009202028
009203293
010317298

…
…
…
…

010318418 …
010310598 …

Entree

Side Orders

ENTR

SIDE

Frozen Foods01 Lazy Guy 035

Frozen Foods01 Lazy Guy 035

Fried Chicken
Meat Loaf
Dumplings

02319
02323
03401

Potatoes04392

EntreeENTRFrozen Foods01 Lazy Guy 035

Side OrdersSIDEFrozen Foods01 Lazy Guy 035
Fried Chicken
Meat Loaf
Potatoes

02319
02323
04392

EntreeENTR
EntreeENTR

Frozen Foods01 Like-a-Chef160
Frozen Foods01 Like-a-Chef160
Frozen Foods01 Like-a-Chef160

Group DescPrd GrpDiv DesciptionDiv Brand Desc Brand Std Prd DescStd Prd
Flattened Product Hierarchy

C h a p t e r 7248

Installing Custom Controls 249

Modeling Transactions

C H A P T E R 8

This chapter examines the nature of business transactions, such as sales and pur-
chases, and how to model and store them effectively within the data warehouse.
We will first examine business transactions themselves. We will look at how
such transactions occur and the use of this information within a data warehouse.
Next, we will discuss the types of interfaces that deliver transaction data to the
data warehouse. We will examine and classify the different forms such data
interfaces take and the impact those forms have on the load process. We then
discuss the delivery process from the data warehouse to the data marts and
other analytic applications. We outline the advantages of storing the transac-
tional data in a manner suitable for the delivery process. Finally, the case studies
present specific examples to address the most common transaction interface
types.

Business Transactions

Business transactions entail the activities or events of interest within the com-
pany. For a company such as GOSH, one of the most significant transactions is
the sales transaction. In its simplest form, a transaction is a single activity, such
as the delivery of an item to a customer in exchange for payment, as shown in
Figure 8.1.

249

Figure 8.1 Simple sales transaction.

This sales transaction is a one-time event, and once transacted, does not change.
If all transactions were like this, the warehouse design would be simplified. The
transactions are often more complex because of a number of factors:

■■ Payment could have been made using a company credit card, and the
business is interested in tracking information about the sale until the
payment is actually received.

■■ The customer could return part or all of the purchase, and the return
transaction needs to be related to the sale transaction.

■■ The customer paid for part of the purchase in cash and part with a credit
card.

■■ The customer purchased a large number of items that need to be delivered
over time. The transaction remains open until delivery is complete.

■■ The customer could log onto the company’s Web site and order the item,
so the transaction actually begins with the order.

Customer

Customer Identifier

Customer Name
Customer Social Security Number
Customer Date of Birth

Sale

Sale Identifier

Previous Sale Identifier
Customer Identifier (FK)
Week Identifier (FK)
Sale Status
Store Identifier (FK)
Sale Payment Type
Sale Payment Amount

Week

Week Identifier

Fiscal Month Identifier
Week Start Date
Week End Date
Week within Month Number
Week within Year Number

Item

Item Identifier

Item Name
Item UPC
Item SKU
Item Type

Sale Line

Sale Identifier (FK)
Sale Line Identifier

Item Identifier (FK)
Sale Item Order Quantity
Sale Item Sold Quantity
Sale ItemShip Quantity
Sale Item Receive Quantity
Sale Item Price
Sale Item Amount
Sale Item Status

Store

Store Identifier

State Identifier
City Identifier
Store Manager Identifier
Sales Territory Identifier
Store Number
Store Name
Store Postal Code
Store Inception Date
Store Status
Store Type
Store Square Feet
Store Levels Quantity

C h a p t e r 8250

Furthermore, the complexity of the data warehouse is compounded when his-
tory is tracked. We will examine these complexities in the first case study, which
addresses sales data received in a snapshot interface.

Business Use of the Data Warehouse
The anticipated business use of the data warehouse is a major driver of its
design. In Chapter 4, we described the first four steps of the data warehouse
system modeling effort as being driven by the business needs. Let’s see how
they apply to the transactions.

The first step is to select the data elements of interest. In the case of the transac-
tional data, this step is pursued in two parts. First, we must determine which
states of the order are of interest to us. A data warehouse that is built for sales
analysis may only be interested in completed sales, and hence may not require
information from open orders. A data warehouse that is built to provide infor-
mation for forecasting or logistics, on the other hand, may require open order
information. Once we decide upon the states of interest, we must then examine
each data element to determine the elements that are of interest. Since we’re
dealing with transactional data, we should be conservative, and if we are in
doubt, we should generally bring the element into the data warehouse. The rea-
son for this is that subsequent retrieval of the data may be difficult, perhaps
impossible.

The second step is to ensure that we maintain the historical perspective. If we’re
only interested in closed sales, and a transaction can never change after it is
closed, then there is no need for an additional time variant component of the
key since a closed transaction can have only one occurrence. If, however, we’re
tracking open orders, we know that the information can change, as shown in
Figure 8.2. In this case, we need to maintain a date, identifying when the change
occurred, that provides us with the snapshot of the order or of the order line.

Figure 8.2 Open order over time.

Customer

Order Identifier
Order Smapshot Date

Order Date
Customer Identifier (FK)
Order Status

Order Line

Order Identifier (FK)
Order Line Identifier
Order Snapshot Date (FK)

Item Identifier (FK)
Order Quantity
Order Unit Price
Order Line Status

Customer

Customer Identifier

Customer Name
Customer Social Security Number
Customer Date of Birth

Item

Item Identifier

Item Name
Item UPC
Item SKU
Item Type

Modeling Transactions 251

In the case studies that follow, we will expand on the importance of historical
perspective and what it means to the business. An important decision in your
design process is how you wish to represent change. Is it simply enough to cap-
ture the new state of a transaction, or is it more important to capture the magni-
tude of the change? For example, if you need to answer the question, “What
were my orders for the week?” what is the correct answer? It may be a simple
sum of new orders received during the week, but what if a customer changed an
older order during that week? Is the increase or decrease to the older order also
considered an order for that week? If you need to include such changes, it can-
not be easily calculated unless you store the magnitude of the change in the data
warehouse. By storing the magnitude—or difference—of change rather than the
current value at the time of the change, you can easily provide differences over
time as well as re-create a current value snapshot for any point in time. If you
only store current value snapshots, you must subtract one snapshot from the
other to derive the difference. This is very difficult to do in SQL. Based on the
most likely business needs, we recommend storing differences, possibly in addi-
tion to current value snapshots in the data warehouse. The case studies at the
end of this chapter offer some techniques for doing this.

The third step is to add derived data. Each sales detail line may have a quan-
tity of an item and a price for that item. The extended cost represents the prod-
uct of the two. Discounts may be applied to a sale, and sometimes, they are
apportioned among the various items sold. If the business rule for “net sales
amount” is that it is the revenue derived from selling the item after consider-
ing discounts, and excluding taxes, then a derived field could be included in
the data warehouse.

The fourth step is to ensure that we capture the appropriate level of granularity.
This is the point at which we decide whether or not to actually store the transac-
tion in the data warehouse. Storing each transaction is expensive, and it is worth
doing only if transactional level information is needed for analysis. If the analy-
sis only requires data that is summarized (daily sales of each item at each store),
then the transaction-level data need not be brought into the data warehouse.

Average Lines per Transaction
The sixth data model transformation step deals with merging data in tables. This
step comes into play with transactional data if the average number of lines per
transaction is relatively low. Some companies may have only one or two lines
per transaction. In such situations, denormalizing the header-line relationship
and combining the data into a single table may enhance performance. Other
companies have many lines for a typical transaction; when this happens, it is
often more advantageous to maintain separate header and detail tables.

C h a p t e r 8252

Business Rules Concerning Changes
The business rules concerning changes affect the data warehouse design. The
eighth data warehouse modeling step segregates data based on volatility. Let’s
assume that the company permits a customer to designate a different delivery
point for each line in an order. Once a line is created, however, the item and its
delivery point cannot be changed. (To change a delivery point, the customer
must cancel the line and enter a new line.) In this example, for a line detail, the
item and delivery point information is stable, and the only volatile informa-
tion is the quantity. Hence, if the quantity ordered changes often until the
order is finalized, the modeler should consider splitting the line detail.

Application Interfaces

In this section, we will examine the ways that transactional data is received
into the data warehouse from external applications. How the data is presented
to the data warehouse has an impact on how the data is processed to achieve
the desired information model. Those processing requirements may also affect
the model itself. The effects of the interface and process on the model are dis-
cussed in detail in the case studies that follow. But first, let us define the types
of application interfaces typically encountered.

We divide the act of moving data into three parts: the interface, the load, and
the data warehouse. The interface refers to all aspects of extracting data from a
source system and delivering it to the data warehouse load process. It encom-
passes the data, its format, and the process that delivers it. Of concern in this
discussion is the form of the data received. The mechanics of extracting infor-
mation from the application system or delivering it to the load process is of
secondary concern and not discussed in this chapter. The load refers to the
processes that transform and load the data received from the interface into the

Modeling Transactions 253

Granularity

With the decreasing cost for storing data and the increasing use of data-mining
techniques, it is not uncommon to find the data warehouse capturing detailed
transactional data even when its use is not eminent. We recommend that all
business information in the transaction be captured in some form. This data can
be stored within the data warehouse or archived in compressed flat files and
stored off-line for future use.

While the former is preferable, since it provides ready access to the data, the
latter is a practical consideration particularly if the quantity of data is high and its
potential use is low.

data warehouse. Finally, the data warehouse refers to both the model and
physical instantiation of the database.

There at two general categories of application interfaces: snapshots and delta
interfaces. A snapshot interface presents the data as it exists at the time of
extraction, while a delta interface contains changes to the data since the last
time data was extracted. Within each of these very broad categories are a vari-
ety of subtle variations. There is also another method of data capture, the data-
base transaction log, which provides an additional mechanism outside the
business application to obtain change data. This will be discussed separately at
the end of this section.

Also note in this discussion that we will not distinguish between standard
application interfaces and custom interfaces. It is not uncommon, even with
packaged applications, to enhance the application to produce purpose-built
interfaces for the data warehouse. These interfaces still fall into one of these
general categories, and once created, require the same processing a similar
package interface would require. This does not mean that such efforts to build
custom interfaces are not effective. On the contrary, often proper interfaces do
not exist or those provided are unsuitable and would require extensive pro-
cessing to produce usable data for the data warehouse. In this chapter, as we
discuss each interface, we will look at the processing challenges each one
entails. Sometimes, altering the interface can significantly reduce the overall
time and effort to bring data into the data warehouse. As you will see in the
case studies, delta (change driven) interfaces are better suited for delivering
transactional information.

Snapshot Interfaces
A snapshot interface provides a picture of what the data looks like at the time
it was extracted. It provides no information about what occurred in the system
between the time of the last snapshot and the new one. Snapshots are com-
monly used for reference data, such as code description tables, and may also
be used for larger datasets, such as customer or product data. They are also
used to extract complex structures, such as recursive hierarchy trees, and for
infrequent interfaces, such as a monthly inventory extract.

Complete Snapshot Interface

A complete snapshot interface is simply an extraction of everything that exists
in a table or tables within the application database, sometimes without any
discrimination as to the currency or validity of the data. This is a snapshot in
its purest form.

C h a p t e r 8254

In some cases, such as code description tables or other simple structures that
do not require historical perspective, it may be appropriate to load such data
en masse. However, this is usually not the case, and a process with a little more
finesse is called for. There are a number of issues the load process may need to
consider when processing such an interface:

Deletions. If something is deleted in the application, how will it appear in
the snapshot? Some applications set a flag indicating that the item was
deleted, whereas others physically remove the row from the table. In the
latter case, the load process will need to determine what is missing in the
snapshot.

Changes. Does the interface include a change timestamp? Without it, you
do not know which items in the interface have changed since the last time
you received it. If such knowledge is necessary for subsequent processing,
you will need to implement change detection logic in your load process.

Currency. Are records in the extract current or does the data extract include
obsolete or future data? Is there sufficient information in the data to deter-
mine its state? Should such records be processed and if not, what percent-
age of the data falls into this category? Sometimes an interface can be
significantly reduced in size by altering the application delivering the data
to eliminate such items.

Current Snapshot Interface

This type of interface delivers data that represents the current active state of
the data. Obsolete and deleted items do not appear in the current snapshot
interface. This is often done to reduce the volume of data delivered or where
obsolete data is not available from the application system.

The main difference between this and a complete snapshot is how you interpret
data missing from the interface. For example, if you are receiving a current snap-
shot of customer data, by definition you would not receive customers who are
no longer active. You would not receive information on when or why the
account was closed. All you would know is the account is not “current” based
on its absence from the data extract. Whereas in a complete snapshot, it means
the data has been physically removed from the application system’s database.
One could then derive what that means to the data warehouse based on the rules
imposed in the application system. Most application systems would not permit
physical deletion of a customer unless the customer was entered in error or is
inactive and has not transacted business for some period of time. Over that time,
the warehouse would have received any changes in status that lead up to the
eventual deletion. If such information is important to the data warehouse, a cur-
rent snapshot interface is not an appropriate way to deliver it. You may need to
use to a complete snapshot or, preferably, a delta interface.

Modeling Transactions 255

Delta Interfaces
Delta interfaces get their name from the triangular Greek symbol that is used
in mathematics to mean change in. Thus, a delta interface is one that provides
changes to existing data. Transactional data is almost always delivered in
some form of delta interface. In all cases, a delta interface is aware of the last
time data was extracted. The extract will always contain what has changed
since the last extract or the impact of that change.

Columnar Delta Interface

The columnar delta interface, also referred to as a change log, is the most
detailed and voluminous of delta interfaces. Such an interface contains one
row per column changed. The row would contain the primary key of the data
that was updated, the name of the column that was changed, a timestamp for
when the change occurred, and the before and after values for the column.

From the standpoint of knowing what has changed, this is by far the perfect
interface. However, from a processing point of view, it is often too much of a
good thing. If all you are interested in is a few columns, then dealing with
such an interface can be practical. However, even when dealing with as few
as 20 columns or so, developing a process can become tedious and time-
consuming. Dealing with issues such as column name differences between the
application and the warehouse, repetitive updating of the same row, or retain-
ing unchanged values when creating a time variant image all add to the com-
plexity of the process.

Row Delta Interface

A row delta interface is similar to the columnar delta interface, except that
instead of one row per column, it contains a single row for all columns. In this
type of interface, the row is populated with the primary key and any attribute
values that have changed. Attributes that did not change would be null or con-
tain some predefined value indicating no change. An alternate form is a trans-
actional orientation, where the interface would contain the entire transaction
document structure with only changed values being populated.

This type of interface presents processing challenges similar to those of the
columnar delta interface. The data warehouse load process would be required
to examine each column to determine its status and act accordingly. This type
of processing is difficult to do with almost all commercially available ETL tools
on the market.

C h a p t e r 8256

Delta Snapshot Interface

The delta snapshot is a commonly used interface for reference data, such as a
customer master list. The basic delta snapshot would contain a row or transac-
tion that changed since the last extraction. It would contain the current state of
all attributes without information about what, in particular, had changed.

This is the easiest of the delta interfaces to process in most cases. Since it con-
tains both changed and unchanged attributes, creating time-variant snapshots
does not require retrieval of the previous version of the row. It also does not
require the process to examine each column to determine change, but rather,
only those columns where such an examination is necessary. And, when such
examination is necessary, there are a number of techniques discussed later in
this chapter that allow it to occur efficiently with minimal development effort.

Transaction Interface

A transaction interface is special form of delta snapshot interface. A transaction
interface is made up of three parts: an action that is to be performed, data that
identifies the subject, and data that defines the magnitude of the change. A trans-
action interface is always complete and received once. This latter characteristic
differentiates it from a delta snapshot. In a delta snapshot, the same instance
may be received repeatedly over time as it is updated. Instances in a transaction
interface are never updated.

The term should not be confused with a business transaction. While the
characteristics are basically the same, the term as it is used here describes the
interaction between systems. You may have an interface that provides busi-
ness transactions, but such an interface may be in the form of a delta snapshot
or a transaction interface. The ways that each interface is processed are signif-
icantly different.

Database Transaction Logs
Database transaction logs are another form of delta interface. They are discussed
separately because the delta capture occurs outside the control of the application
system. These transaction logs are maintained by the database system itself at
the physical database structure level to provide restart and recovery capabilities.

The content of these logs will vary depending on the database system being
used. They may take the form of any of the three delta structures discussed
earlier. In row snapshot logs, it may contain row images before and after the
update, depending on how the database logging options are set.

Modeling Transactions 257

There are three main challenges when working with database logs. The first is
reading the log itself. These logs use proprietary formats and the database sys-
tem may not have an API that allows direct access to these structures. Even if
they did, the coding effort can be significant. Often it is necessary to use third-
party interfaces to access the transaction logs.

The second challenge is applying a business context to the content of the logs.
The database doesn’t know about the application or business logic behind an
update. A database restoration does not need to interpret the data, but rather
simply get the database back to the way it was prior to the failure. On the other
hand, to load a data warehouse you need to apply this data in a manner that
makes business sense. You are not simply replicating the operational system,
but interpreting and transforming the data. To do this from a database log
requires in-depth knowledge of the application system and its data structures.

The third challenge is dealing with software changes in both the application
system and the database system. A new release of the database software may
significantly change the format of the transaction logs. Even more difficult to
deal with are updates to the application software. The vendor may implement
back-end changes that they do not even mention in their release notes because
the changes do not outwardly affect the way the system functions. However,
the changes may have affected the schema or data content, which in turn
affects the content of the database logs.

Such logs can be an effective means to obtain change data. However, proceed
with caution and only if other avenues are not available to you.

Delivering Transaction Data

The primary purpose of the data warehouse is to serve as a central data repos-
itory from which data is delivered to external applications. Those applications
may be data marts, data-mining systems, operational systems, or just about
any other system. In general, these other systems expect to receive data in one
of two ways: a point-in-time snapshot or changes since the last delivery. Point-
in-time snapshots come in two flavors: a current snapshot (the point in time is
now) or the state of the data at a specified time in the past. The delivery may
also be further qualified, for example, by limiting it to transactions processed
during a specified period.

Since most of the work for a data warehouse is to deliver snapshots or changes,
it makes sense that the data structures used to store the data be optimized to do
just that. This means that the data warehouse load process should perform the
work necessary to transform the data so it is in a form suitable for delivery. In the

C h a p t e r 8258

case studies in this chapter, we will provide different techniques and models to
transform and store the data. No one process will be optimal for every avenue
of delivery. However, depending on your timeframe and budget, you may wish
to combine techniques to produce a comprehensive solution. Be careful not to
overdesign the warehouse. If your deliveries require current snapshots or
changes and only rarely do you require a snapshot for a point in time in the past,
then it makes sense to optimize the system for the first two requirements and
take a processing hit when you need to address the third.

Modeling Transactions 259

Updating Fact Tables

Fact tables in a data mart may be maintained in three ways: a complete refresh,
updating rows, or inserting changes. In a complete refresh, the entire fact table is
cleared and reloaded with new data. This type of process requires delivery of cur-
rent information from the data warehouse, which is transformed and summarized
before loading into the data mart. This technique is commonly used for smaller,
highly summarized, snapshot-type fact tables.

Updating a fact table also requires delivery of current information that is trans-
formed to conform to the grain of the fact table. The load process then updates
or inserts rows as required with the new information. This technique minimizes
the growth of the fact table at the cost of an inefficient load process. This is a
particularly cumbersome method if fact table uses bitmap indexes for its foreign
keys and your database system does not update in place. Some database sys-
tems, such as Oracle, update rows by deleting the old ones and inserting new
rows. The physical movement of a row to another location in the tablespace
forces an update of all the indexes. While b-tree indexes are fairly well behaved
during updates, bitmap indexes are not. During updating, bitmap structures can
become fragmented and grow in size. This fragmentation reduces the efficiency
of the index, causing an increase in query time. A DBA is required to monitor the
indexes and rebuild them periodically to maintain optimal response times.

The third technique is to simply append the differences to the fact table. This
requires the data warehouse to deliver the changes in values since the last deliv-
ery. This data is then transformed to match the granularity of the fact table, and
then appended to the table. This approach works best when the measures are
fully additive, but may also be suitable for semiadditive measures as well. This
method is, by far, the fastest way to get the data into the data mart. Row inser-
tion can be performed using the database’s bulk load utility, which can typically
load very large numbers of rows in a short period of time. Some databases allow
you to disable index maintenance during the load, making the load even faster. If
you are using bitmap indexes, you should load with index maintenance disabled,
then rebuild the indexes after the load. The result is fast load times and optimal
indexes to support queries.

Case Study: Sales Order Snapshots

In this case study, we examine how to model and process a snapshot data
extract. We discuss typical transformations that occur prior to loading the data
into the data warehouse. We also examine three different techniques for cap-
turing and storing historical information.

Our packaged goods manufacturer receives sales orders for processing and
fulfillment. When received by the company, an order goes through a number
of administrative steps before it is approved and released for shipment. On
average, an order will remain open for 7 to 10 business days before it is
shipped. Its actual lifespan will depend on the size, available inventory, and
delivery schedule requested by the customer. During that time, changes to the
content or status of the order can occur.

The order is received by the data warehouse in a delta snapshot interface. An
order appears in the extract anytime something in the order changes. The order
when received is a complete picture of the order at that point in time. An order
transaction is made up of a number of parts:

■■ The order header contains customer related information about the order.
It identifies the sold-to, ship-to, and bill-to customers, shipping address,
the customer’s PO information, and other characteristics about the order.
While such an arrangement violates normalization rules, transaction data
extracts are often received in a denormalized form. We will discuss this
further in the next section.

■■ A child of the order header is one or more pricing segments. A pricing seg-
ment contains a pricing code, an amount, a quantity, and accounting infor-
mation. Pricing segments at this level represent charges or credits applied
to the total order. For example, shipping charges would appear here.

■■ Another child of the order header is one or more order lines. An order line
contains a product ID (SKU), order quantity, confirmed quantity, unit
price, unit of measure, weight, volume, status code, and requested deliv-
ery date as well as other characteristics.

■■ A child of the order line is one or more line-pricing segments. These are in
the same format as the order header-pricing segments, but contain data
pertaining to the line. A segment exists for the base price as well as dis-
counts or surcharges that make up the final price. The quantity in a pricing
segment may be different than the quantity on the order line because some
discounts or surcharges may be limited to a fixed maximum quantity or a
portion of the order quantity. The sum of all line-pricing segments and all
order header-pricing segments will equal the total order value.

C h a p t e r 8260

■■ Another child of the order lines is one or more schedule lines. A schedule
line contains a planned shipping date and a quantity. The schedule will
contain sufficient lines to meet the order quantity. However, based on
business rules, the confirmed quantity of the order line is derived from
the delivery schedule the customer is willing to accept. Therefore, only the
earliest schedule lines that sum to the confirmed quantity represent the
actual shipping schedule. The shipping schedule is used for reporting
future expected revenue.

Figure 8.3 shows the transaction structure as it is received in the interface. Dur-
ing the life of the order, it is possible that some portions of the order will be
deleted in the operational system. The operational system will not provide any
explicit indication that lines, schedule, or pricing information has been deleted.
The data will simply be missing in the new snapshot. The process must be able
to detect and act on such deletions.

Figure 8.3 Order transaction structure.

Order Line Pricing

Order Line Pricing Line Identifier

Order Identifier (FK)
Order Line Identifier (FK)

Pricing Code
Value
Quantity
Rate
other attributes...

Order Header

Order Identifier

Sold-To Customer Identifier
Bill-To Customer Identifier
Ship-To Customer Identifier
Order Date
Order Status
Customer PO Number
Delivery Address
other attributes...

Order Header Pricing

Order Header Pricing Line Identifier
Order Identifier (FK)

Pricing Code
Value
Quantity
Rate
other attributes...

Order Line

Order Line Identifier
Order Identifier (FK)

Item Identifier
Item Unit of Measure
Order Quantity
Confirmed Quantity
Order Unit Price
Order Line Status
Item Volume
Item Weight
Requested Delivery Date
other attributes...

Order Line Schedule

Order Line Schedule Line Identifier

Order Identifier (FK)
Order Line Identifier (FK)

Planned Shipping Date
Planned Shipping Quantity
Planned Shipping Location
other attributes...

Modeling Transactions 261

Transforming the Order
The order data extracted from the operational system is not purposely built for
populating the data warehouse. It is used for a number of different purposes,
providing order information to other operational systems. Thus, the data
extract contains superfluous information. In addition, some of the data is not
well suited for use in a data warehouse but could be used to derive more use-
ful data. Figure 8.4 shows the business model of how the order appears in the
data warehouse. Its content is based on the business rules for the organization.

This is not the final model. As you will see in subsequent sections of this case
study, the final model varies depending on how you decide to collect order
history. The model in Figure 8.4 represents an order at a moment in time. It is
used in this discussion to identify the attributes that are maintained in the data
warehouse.

C h a p t e r 8262

Unit Price and Other Characteristics1

When delivering data to a data mart, it is important that numeric values that are
used to measure the business be delivered so that they are fully additive. When
dealing with sales data, it is often the case that the sales line contains a unit price
along with a quantity. However, unit price is not particularly useful as a quantita-
tive measure of the business. It cannot be summed or averaged on its own.
Instead, what is needed is the extended price of the line, which can be calculated
by multiplying price by quantity. This value is fully additive and may serve as a
business measure. Unit price, on the other hand, is a characteristic of the sale. It
most certainly useful in analysis, but in the role as a dimensional attribute rather
than a measure.

Depending on your business, you may choose not to store unit price, but rather
derive it from the extended value when necessary for analysis. In the retail busi-
ness, this is not an issue since the unit price is always expressed in the selling
unit. This is not the case with a packaged goods manufacturer, which may sell
the same product in a variety of units (cases, pallets, and so on). In this case, any
analysis of unit price needs to take into account the unit being sold. This analysis
is simplified when the quantity and value are stored. The unit dependent value,
sales quantity, would be converted and stored expressed in a standard unit, such
as the base or inventory unit. Either the sales quantity or standardized quantity
can simply be divided into the value to derive the unit price.

1 The term “characteristic” is being used to refer to dimensional attributes as used in dimen-
sional modeling. This is to avoid confusion with the relational modeling use of attribute, which
has a more generic meaning.

A number of attributes are eliminated from the data model because they are
redundant with information maintained elsewhere. Item weight and volume
were removed from Order Line because those attributes are available from the
Item UOM entity. The Delivery Address is removed from the Order Header
because that information is carried by the Ship-To Customer role in the Cus-
tomer entity. This presumes that the ship-to address cannot be overridden,
which is the case in this instance. If such an address can be changed during order
entry, you would need to retain that information with the order. As mentioned
earlier, the data being received in such interfaces are often in a denormalized
form. This normalization process should be a part of any interface analysis. Its
purpose is not necessarily to change the content of the interface, but to identify
what form the data warehouse model will take. Properly done, it can signifi-
cantly reduce data storage requirements as well as improve the usability of the
data warehouse.

Figure 8.4 Order business model.

Order Line Pricing

Order Line Pricing Line Identifier

Order Identifier (FK)
Order Line Identifier (FK)

Pricing Code
Value
Quantity
Rate
other attributes...
Load Log Identifier (FK)

Order Header

Order Identifier

Order Date
Order Status
Customer PO Number
other attributes...

Sold-To Customer Identifier (FK)
Bill-To Customer Identifier (FK)
Ship-To Customer Identifier (FK)

Load Log Identifier (FK)

Customer

Customer Identifier

Customer Name
other attributes...

Order Header Pricing

Order Header Pricing Line Identifier
Order Identifier (FK)

Pricing Code
Value
Quantity
Rate
other attributes...
Load Log Identifier (FK)

Order Line

Order Line Identifier
Order Identifier (FK)

Order Quantity
Order Extended Price
Order Line Value
Confirmed Quantity
Order Line Status
Requested Delivery Date
other attributes...

Item Identifier (FK)
Item Unit of Measure (FK)

Load Log Identifier (FK)

Item

Item Identifier

Item Name
Item SKU
Item Type
other attributes...

Order Line Schedule

Order Line Schedule Line Identifier

Order Identifier (FK)
Order Line Identifier (FK)

Planned Shipping Date
Planned Shipping Quantity
Planned Shipping Location
other attributes...
Load Log Identifier (FK)

Load Log

Load Log Identifier

Process Name
Process Status
Process Start Time
Process End Time
other attributes...

Item UOM

Item Unit of Measure
Item Identifier (FK)

Base Unit Factor
UPC Code
EAN Code
Weight
Weight Unit of Measure
Volume
Volume Unit of Measure
other attributes...

Modeling Transactions 263

C h a p t e r 8264

Units of Measure in Manufacturing and Distribution

As retail customers, we usually deal with one unit of measure, the each. Whether
we buy a gallon of milk, a six-pack of beer or a jumbo bag of potato chips, it is
still one item, an each. Manufacturing and distribution, on the other hand, have
to deal with a multitude of units of the same item. The most common are the
each, or consumer unit; the case; and the pallet, although there are many others,
such as carton, barrel, layer, and so forth. When orders are received, the quantity
may be expressed in a number of different ways. Customers may order cases,
pallets, or eaches, of the same item. Within inventory, an item is tracked by its
SKU. The SKU number not only identifies the item, but also identifies the unit of
measure used to inventory the item. This inventory unit of measure is often
referred to as the base unit of measure.

In such situations, the data warehouse needs to provide mechanisms to
accommodate different units of measure for the same item. Any quantity being
stored needs to be tagged with the unit of measure the quantity is expressed in.
It is not enough to simply convert everything into the base unit of measure for a
number of reasons. First, any such conversion creates a derived value. Changes in
the conversion factor will affect the derivation. You should always store such
quantities as they were entered to avoid discrepancies later. Second, you will be
required to present those quantities in different units of measure, depending on
the audience. Therefore, you cannot avoid unit conversions at query time.

For a particular item and unit of measure, the source system will often provide
characteristics such as conversion factors, weight, dimensions, and volume. A chal-
lenge you will face is how to maintain those characteristics. To understand how the
data warehouse should maintain the conversion factors and other physical charac-
teristics, it is important to understand the SKU and its implications in inventory
management. The SKU represents the physical unit maintained and counted in
inventory. Everything relating to the content and physical characteristics of an item
is tied to the SKU. If there is any change to the item, such as making it bigger or
smaller, standard inventory practice requires that the changed item be assigned a
new SKU identifier. Therefore, any changes to the physical information relating to
the SKU can be considered corrections to erroneous data and not a new version of
the truth. So, in general, this will not require maintaining a time-variant structure
since you would want error corrections to be applied to historical data as well.

This approach, however, only applies to units of measure that are the base unit
or smaller. Larger units of measure can have physical changes that do not affect
inventory and do not require a new SKU. For example, an item is inventoried by
the case. The SKU represents a case of the product. A pallet of the product is
made up of 40 cases, made up of five layers with eight cases on a layer. Over
time it has been discovered that there were a number of instances where cases

Another type of transformation creates new attributes to improve the usability
of the information. For example, the data extract provides the Item Unit Price.
This attribute is transformed into Item Extended Price by multiplying the unit
price by the ordered quantity. The extended price is a more useful value for
most applications since it can be summed and averaged directly, without
further manipulation in a delivery query. In fact, because of the additional util-
ity the value provides and since no information is lost, it is common to replace
the unit value with the extended value in the model. Also, since the unit price
is often available in an item price table, its inclusion in the sales transaction
information provides little additional value. Another transformation is the cal-
culation of Order Line Value. In this case, it is the sum of the values received in
Order Line Pricing for that line. There may be other calculations as well. There
may be business rules to estimate the Gross and Net Proceeds of Sale from the
Order Line Pricing information. Such calculations should take place during
the load process and be placed into the data warehouse so they are readily
available for delivery.

By performing such transformations up front in the load process, you elimi-
nate the need to perform these calculations later when delivering data to the
data marts or other external applications. This eliminates duplication of effort
when enforcing these business rules and the possibility of different results due
to misinterpretation of the rules or errors in the implementation of the delivery
process transformation logic. Making the effort to calculate and store these
derivations up front goes a long way toward simplifying data delivery and
ensuring consistency across multiple uses of the data.

The data warehouse is required to record the change history for the order lines
and pricing segments. In the remainder of this case study, we will present
three techniques to maintain the current transaction state, detect deletions, and

Modeling Transactions 265

on the bottom layer were being crushed due to the weight above them. It is
decided to reconfigure the pallet to four layers, each holding 32 cases. This
changes the weight, dimensions, volume, and conversion factors of the pallet but
does not affect the SKU itself. The change does not affect how inventory is
counted, so no new SKU is created. However the old and new pallets have signifi-
cance in historical reporting, so it is necessary to retain time-variant information
so that pallet counts, order weights, and volumes can be properly calculated.

This necessitates a hybrid approach when applying changes to unit of measure
data. Updates to base units and smaller units are applied in place without history,
while updates to units larger than the base unit should be maintained as time-
based variants.

maintain a historical change log. We will evaluate each technique for its ability
to accomplish these tasks as well as its utility for delivering data to down-
stream systems and data marts.

Technique 1: Complete Snapshot Capture
The model in Figure 8.2 shows an example of structures to support complete
snapshot capture. In such a situation, a full image of the transaction Stock
Keeping Unit (in this case, an order Stock Keeping Unit) is maintained for each
point in time the order is received in the data warehouse. The Order Snapshot
Date is part of the primary key and identifies the point in time that image is
valid. Figure 8.5 shows the complete model as it applies to this case study.

Figure 8.5 Complete snapshot history.

Order Line Schedule

Order Identifier (FK)

Planned Shipping Date

other attributes...
Load Log Identifier (FK)

Order Line Pricing

Order Line Pricing Line Identifier

Order Identifier (FK)
Order Line Identifier (FK)

Order Snapshot Date (FK)

Pricing Code
Value
Quantity
Rate
other attributes...
Load Log Identifier (FK)

Order Header

Order Identifier
Order Snapshot Date

Order Date
Order Status
Customer PO Number
Delivery Address
other attributes...

Sold-To Customer Identifier (FK)
Bill-To Customer Identifier (FK)
Ship-To Customer Identifier (FK)

Load Log Identifier (FK)

Customer

Customer Identifier

Customer Name
other attributes...

Order Header Pricing

Order Header Pricing Line Identifier
Order Identifier (FK)

Order Snapshot Date (FK)

Pricing Code
Value
Quantity
Rate
other attributes...
Load Log Identifier (FK)

Order Line

Order Line Identifier
Order Identifier (FK)

Order Snapshot Date (FK)

Order Quantity
Order Unit Price
Order Line Status
Order Value
other attributes...

Item Identifier (FK)

Load Log Identifier (FK)

Item

Item Identifier

Item Name
Item UPC
Item SKU
Item Type
other attributes...

Order Line Schedule

Order Line Schedule Line Identifier

Order Identifier (FK)
Order Line Identifier (FK)

Order Snapshot Date (FK)

Planned Shipping Date
Planned Shipping Quantity
Planned Shipping Location
other attributes...
Load Log Identifier (FK)

Load Log

Load Log Identifier

Process Name
Process Status
Process Start Time
Process End Time
other attributes...

C h a p t e r 8266

This approach is deceptively simple. Processing the data extract is a matter of
inserting new rows with the addition of applying a snapshot date. However,
collecting data in this manner has a number of drawbacks.

The first drawback concerns the fact that the tables themselves can become
huge. Let’s say the order quantity on one line of a 100-line order was changed.
In this structure, we would store a complete image of this changed order. If
order changes occur regularly over a period of time, the data volume would be
many times larger than is warranted. A second drawback is that it is extremely
difficult to determine the nature of the change. SQL is a very poor tool to look
for differences between rows. How do you find out that the difference between
the two versions of the order is that the quantity on order line 38 is 5 higher
than the previous version? How do you find all changes on all orders
processed in the last 5 days? The data as it exists provides no easy way to
determine the magnitude or direction of change, which is critical information
for business intelligence applications. A third drawback is that obtaining the
current state of an order requires a complex SQL query. You need to embed a
correlated subquery in the WHERE clause to obtain the maximum snapshot
date for that order. Here is an example of such a query:

SELECT...

FROM ORDER_HEADER, ORDER_LINE

WHERE ORDER_HEADER.ORDER_SNAPSHOT_DATE = (SELECT

MAX(ORDER_SNAPSHOT_DATE) FROM ORDER_HEADER h WHERE h.ORDER_IDENTIFIER =

ORDER_HEADER.ORDER_IDENTIFIER)...

Modeling Transactions 267

Implementing a Load Log

One table that is crucial to any data warehouse implementation is the Load
Log table as shown in Figure 8.5. This table is invaluable for auditing and
troubleshooting data warehouse loads.

The table contains one row for every load process run against the data ware-
house. When a load process starts, it should create a new Load Log row with a
new unique Load Log Identifier. Every row touched by the load process should be
tagged with that Load Log Identifier as a foreign key on that row.

The Load Log table itself should contain whatever columns you deem as useful.
It should include process start and end timestamps, completion status, names, row
counts, control totals, and other information that the load process can provide.

Because every row in the data warehouse is tagged with the load number that
inserted or updated it, you can easily isolate a specific load or process when
problems occur. It provides the ability to reverse or correct a problem when a
process aborts after database commits have already occurred. In addition, the
Load Log data can be used to generate end-of-day status reports.

(continued)

Technique 2: Change Snapshot Capture
Storing complete copies of the order every time it changes takes up a lot of space
and is inefficient. Rather than store a complete snapshot of the transaction each
time it has changed, why not just store those rows where a change has occurred?
In this section, we examine two methods to accomplish this. In the first method
we look at the most obvious approach, expanding the foreign key relationship,
and show why this can become unworkable. The second method discussed uses
associative entities to resolve the many-to-many relationships that result from
this technique. But first, since this technique is predicated on detecting a change
to a row, let us examine how we can detect change easily.

Detecting Change

When processing the data extract, the contents of the new data is compared to the
most current data loaded from the previous extract. If the data is different, a new
row is inserted with the new data and the current snapshot date. But how can we
tell that the data is different? The interface in this case study simply sends the
entire order without any indication as to which portion of the order changed. You
can always compare column-for-column between the new data and the contents
of the table, but to do so involves laborious coding that does not produce a very
efficient load process. A simpler, more-efficient method is to use a cyclical redun-
dancy checksum (CRC) code (see sidebar “Using CRCs for Change Detection”).

A new attribute, CRC Value, is added to each entity. This contains the CRC
value calculated for the data on the row. Comparing this value with a new
CRC value calculated for the incoming data allows you to determine if the
data on the row has changed without requiring a column-by-column compar-
ison. However, using a CRC value presents a very remote risk of missing an
update due to a false positive result. A false positive occurs when the old and
new CRC values match but the actual data is different. Using a 32-bit CRC
value, the risk of a false positive is about 1 in 4 billion. If this level of error can-
not be tolerated, then a column-by-column comparison is necessary.

C h a p t e r 8268

Implementing a Load Log (continued)

Using this technique, the burden to determine the magnitude of change falls
on the delivery process. Since SQL alone is inadequate to do this, it would require
implementation of a complex transformation process to extract, massage, and
deliver the data. It is far simpler to capture change as the data is received into
the data warehouse, performing the transformation once, reducing the effort and
time required in delivery. As you will see in the other techniques discussed in this
section, the impact on the load process can be minimized.

Method 1—Using Foreign Keys

Figure 8.6 shows a model using typical one-to-many relationships. Although it
is not obvious at first glance, this model is significantly different from that
shown in Figure 8.5.

Modeling Transactions 269

Using CRCs for Change Detection

Cyclical redundancy checksum (CRC) algorithms are methods used to represent
the content of a data stream as a single numeric value. They are used in digital
networks to validate the transmission of data. When data is sent, the transmitter
calculates a CRC value based on the data it sent. This value is appended to the
end of the data stream. The receiver uses the same algorithm to calculate its own
CRC value on the data it receives. The receiver then compares its CRC value with
the value received from the sender. If the values are different, the data received
was different than the data sent, so the receiver signals an error and requests
retransmission. CRC calculations are sensitive to the content and position of the
bytes, so any change will likely result in a different CRC value.

This same technique is useful for identifying data changes in data warehouse
applications. In this case, the data stream is the collection of bytes that represent
the row or record to be processed. As part of the data transformation process
during the load, the record to be processed is passed to a CRC calculation func-
tion. The CRC is then passed along with the rest of the data. If the row is to be
inserted into the database, the CRC is also stored in a column in the table. If the
row is to be updated, the row is first read to retrieve the old CRC. If the old CRC is
different than the new CRC, the data has changed and the update process can
proceed. If the old and new CRC values are the same, the data has not changed
and no update is necessary.

CRC algorithms come in two flavors, 16-bit and 32-bit algorithms. This indi-
cates the size of the number being returned. A 16-bit number is capable of hold-
ing 65,536 different values, while a 32-bit number can store 4,294,967,296 values.
For data warehousing applications, you should always use a 32-bit algorithm to
reduce the risk of false positive results.

A false positive occurs when the CRC algorithm returns the same value even
though the data is different. When you use a 16-bit algorithm, the odds of this
occurring is 1 in 65,536. While this can be tolerated in some network applica-
tions, it is too high a risk for a data warehouse.

Many ETL tools provide a CRC calculation function. Also, descriptions and
code for CRC algorithms can be found on the Web. Perform a search on “CRC
algorithm” for additional information.

Figure 8.6 Change snapshot history.

In this model, each table has its own snapshot date as part of the primary key.
Since these dates are independent of the other snapshot dates, the one-to-
many relationship and foreign key inference can be misleading. For example,
what if the order header changes but the order lines do not? Figure 8.7 shows
an example of this problem.

On March 2, 2003, order #10023 is added to the data warehouse. The order con-
tains four lines. The order header and order lines are added with the snapshot
dates set to March 2. On March 5, a change is made to the order header. A
new order header row is added and the snapshot date for that row is set to
March 5, 2003. Since there was no change to the order lines, there were no new
rows added to the Order Line Table.

Order Line Pricing

Order Line Pricing Line Identifier
Order Line Pricing Snapshot Date

Order Identifier (FK)
Order Snapshot Date (FK)
Order Line Identifier (FK)
Order Line Snapshot Date (FK)

CRC Value
Pricing Code
Value
Quantity
Rate
other attributes...
Load Log Identifier

Order Header

Order Identifier
Order Snapshot Date

CRC Value

Order Date
Order Status
Customer PO Number
other attributes...
Load Log Identifier

Sold-To Customer Identifier (FK)
Bill-To Customer Identifier (FK)
Ship-To Customer Identifier (FK)

Customer

Customer Identifier

Customer Name
other attributes...

Order Header Pricing

Order Header Pricing Line Identifier
Order Header Pricing Snapshot Date

Order Identifier (FK)
Order Snapshot Date (FK)

CRC Value
Pricing Code
Value
Quantity
Rate
other attributes...
Load Log Identifier

Order Line

Order Line Identifier
Order Line Snapshot Date

Order Identifier (FK)
Order Snapshot Date (FK)

CRC Value
Order Quantity
Order Extended Price
Order Line Value
Confirmed Quantity
Order Line Status
Requested Delivery Date
other attributes...
Load Log Identifier

Item Identifier (FK)
Item Unit of Measure (FK)

Item

Item Identifier

Item Name
Item SKU
Item Type
other attributes...

Order Line Schedule

Order Line Schedule Line Identifier
Order Line Schedule Snapshot Date

Order Identifier (FK)
Order Snapshot Date (FK)
Order Line Identifier (FK)
Order Line Snapshot Date (FK)

CRC Value
Planned Shipping Date
Planned Shipping Quantity
Planned Shipping Location
other attributes...
Load Log Identifier

Item UOM

Item Unit of Measure
Item Identifier (FK)

Base Unit Factor
UPC Code
EAN Code
Weight
Weight Unit of Measure
Volume
Volume Unit of Measure
other attributes...

C h a p t e r 8270

Figure 8.7 Change snapshot example.

O
rd

er
 ID

Sn
ap

sh
ot

 D
at

e
..o

rd
er

 d
at

a…

10
02

3
A

BC
D

E
03

/0
2/

20
03

10
02

3
FG

H
U

J
03

/0
5/

20
03

O
rd

er
 H

ea
de

r
O

rd
er

 L
in

e

O
rd

er
 ID

Sn
ap

sh
ot

 D
at

e

10
02

3
03

/0
2/

20
03

10
02

3
03

/0
2/

20
03

10
02

3
03

/0
2/

20
03

10
02

3
03

/0
2/

20
03

Li
ne

00
4

00
3

00
2

00
1

Li
ne

 S
na

p
 D

at
e

03
/0

2/
20

03

03
/0

2/
20

03

03
/0

2/
20

03

03
/0

2/
20

03

O
rd

er
 L

in
e

Sc
he

du
le

O
rd

er
 ID

Sn
ap

sh
ot

 D
at

e

10
02

3
03

/0
2/

20
03

10
02

3
03

/0
2/

20
03

O
rd

 L
in

e

00
3

00
3

Li
ne

 S
na

p
 D

at
e

03
/0

2/
20

03

03
/0

2/
20

03

Li
ne

00
2

00
1

Sc
h

 S
na

p
 D

at
e

03
/0

2/
20

03

03
/0

2/
20

03

10
02

3
03

/0
5/

20
03

00
3

03
/0

2/
20

03
00

2
03

/0
5/

20
03

Modeling Transactions 271

Each order line can rightly be associated with both versions of the order
header resulting in a many-to-many relationship that is not obvious in the
model. What’s more, how do you know by looking at the data on the order
line? At this point, you may be thinking that you can add a “most current
order header snapshot date” column to the order line. This will certainly allow
you to identify all the possible order headers the line can be associated with.
But that is not the only problem.

Carrying the scenario a bit further, let’s also say that there was a change to
order schedule line 002 for order line 003. The original schedule lines are in the
table with snapshot dates of March 2, 2003. These reference the March 2 ver-
sions of the order header and order line. The new row, reflecting the schedule
change also references the March 2 version of the order line, but references the
March 5 version of the order header. There is a problem here. How do we
relate the new schedule line to the order line when we do not have an order
line that references the March 5 version of the header?

The short answer to this is that whenever a parent entity changes, such as the
order header, you must store snapshots of all its child entities, such as the
order line and order schedule line. If you are forced to do that, and it is com-
mon that the order header changes frequently, this model will not result in the
kind of space savings or process efficiencies that make the effort worthwhile.
A more reasonable approach is to accept that maintaining only changes will
result in many-to-many relationships between the different entities. The best
way to deal with many-to-many relationships is through associative entities.
This brings us to method 2.

Method 2—Using Associative Entities

As the discussion with the first method demonstrated, storing only changes
results in many-to-many relationships between each entity. These many-to-
many relationships must be handled with associative entities. Figure 8.8
shows such a model. One significant change to the model is the use of surro-
gate keys for each entity. Since the primary motivation for storing only
changed rows is to save space, it follows that surrogate keys are appropriate to
reduce the size of the association tables and their indexes. In the model, the
associative entities between the Order Header and Order Line and Order Line
Pricing are what you would normally expect. However, the other two, Order
Line Line Pricing and Order Line Line Schedule, contain the Order Header
key as well. This is because, as we discussed in the update example shown in
Figure 8.7, changes occur independently of any parent-child relationships in
the data. The associative entity must maintain the proper context for each ver-
sion of a row.

C h a p t e r 8272

Figure 8.8 Change snapshot with associative entities.

The process to load this structure must process each transaction from the top,
starting with the Order Header. The process needs to keep track of the key of the
most current version of the superior entities as well as know if the entity was
changed. If a superior entity was changed, rows need to be added to the asso-
ciative entities for every instance of each inferior entity regardless of a change to
that entity. If the superior entity did not change, a new associative entity row is
necessary only when the inferior entity changes. Figure 8.9 shows the associa-
tive entity version of the update scenario shown in Figure 8.7. As you can see,
the associative entities clearly record all the proper states of the transaction.

O
rd

er
 L

in
e

P
ri

ci
n

g

O
rd

er
 L

in
e

Pr
ic

in
g

Ke
y

O
rd

er
 Id

en
tif

ie
r

O
rd

er
 L

in
e

Id
en

tif
ie

r
O

rd
er

 L
in

e
Pr

ic
in

g
Li

ne
 Id

en
tif

ie
r

O
rd

er
 L

in
e

Pr
ic

in
g

Sn
ap

sh
ot

 D
at

e
C

RC
 V

al
ue

Pr
ic

in
g

C
od

e
Va

lu
e

Q
ua

nt
ity

Ra
te

ot
he

r
at

tr
ib

ut
es

...
Lo

ad
 L

og
 Id

en
tif

ie
r

O
rd

er
 L

in
e

Li
n

e
Sc

h
ed

u
le

O
rd

er
 K

ey
 (

FK
)

O
rd

er
 L

in
e

Ke
y

(F
K)

O
rd

er
 L

in
e

Sc
he

du
le

 K
ey

 (
FK

)

O
rd

er
 L

in
e

Li
n

e
P

ri
ci

n
g

O
rd

er
 K

ey
 (

FK
)

O
rd

er
 L

in
e

Ke
y

(F
K)

O
rd

er
 L

in
e

Pr
ic

in
g

Ke
y

(F
K)

O
rd

er
 H

ea
d

er
 L

in
e

O
rd

er
 K

ey
 (

FK
)

O
rd

er
 L

in
e

Ke
y

(F
K)

O
rd

er
 H

ea
d

er
 H

ea
d

er
 P

ri
ci

n
g

O
rd

er
 K

ey
 (

FK
)

O
rd

er
 H

ea
de

r
Pr

ic
in

g
Ke

y
(F

K)

O
rd

er
 H

ea
d

er

O
rd

er
 K

ey

O
rd

er
 Id

en
tif

ie
r

O
rd

er
 S

na
p

sh
ot

 D
at

e
C

RC
 V

al
ue

So
ld

-T
o

C
us

to
m

er
 Id

en
tif

ie
r

Bi
ll-

To
 C

us
to

m
er

 Id
en

tif
ie

r
Sh

ip
-T

o
C

us
to

m
er

 Id
en

tif
ie

r
O

rd
er

 D
at

e
O

rd
er

 S
ta

tu
s

C
us

to
m

er
 P

O
 N

um
be

r
ot

he
r

at
tr

ib
ut

es
...

Lo
ad

 L
og

 Id
en

tif
ie

r

O
rd

er
 H

ea
d

er
 P

ri
ci

n
g

O
rd

er
 H

ea
de

r
Pr

ic
in

g
Ke

y

O
rd

er
 Id

en
tif

ie
r

O
rd

er
 H

ea
de

r
Pr

ic
in

g
Li

ne
 Id

en
tif

ie
r

O
rd

er
 H

ea
de

r
Pr

ic
in

g
Sn

ap
sh

ot
 D

at
e

C
RC

 V
al

ue
Pr

ic
in

g
C

od
e

Va
lu

e
Q

ua
nt

ity
Ra

te
ot

he
r

at
tr

ib
ut

es
...

Lo
ad

 L
og

 Id
en

tif
ie

r

O
rd

er
 L

in
e

O
rd

er
 L

in
e

Ke
y

O
rd

er
 Id

en
tif

ie
r

O
rd

er
 L

in
e

Id
en

tif
ie

r
O

rd
er

 L
in

e
Sn

ap
sh

ot
 D

at
e

C
RC

 V
al

ue
It

em
 Id

en
tif

ie
r

It
em

 Id
en

tif
ie

r
It

em
 U

ni
t

of
 M

ea
su

re
O

rd
er

 Q
ua

nt
ity

O
rd

er
 E

xt
en

de
d

Pr
ic

e
O

rd
er

 L
in

e
Va

lu
e

C
on

fir
m

ed
 Q

ua
nt

ity
O

rd
er

 L
in

e
St

at
us

Re
q

ue
st

ed
 D

el
iv

er
y

D
at

e
ot

he
r

at
tr

ib
ut

es
...

Lo
ad

 L
og

 Id
en

tif
ie

r

O
rd

er
 L

in
e

Sc
h

ed
u

le

O
rd

er
 L

in
e

Sc
he

du
le

 K
ey

O
rd

er
 Id

en
tif

ie
r

O
rd

er
 L

in
e

Id
en

tif
ie

r
O

rd
er

 L
in

e
Sc

he
du

le
 L

in
e

Id
en

tif
ie

r
O

rd
er

 L
in

e
Sc

he
du

le
 S

na
p

sh
ot

 D
at

e
C

RC
 V

al
ue

Pl
an

ne
d

Sh
ip

p
in

g
D

at
e

Pl
an

ne
d

Sh
ip

p
in

g
Q

ua
nt

ity
Pl

an
ne

d
Sh

ip
p

in
g

Lo
ca

tio
n

ot
he

r
at

tr
ib

ut
es

...
Lo

ad
 L

og
 Id

en
tif

ie
r

Modeling Transactions 273

Figure 8.9 Change snapshot example using associative entities.

The first method discussed is unworkable for a number of reasons; the most
basic being that there isn’t enough information to resolve the true relationship

O
rd

er
 ID

Sn
ap

sh
ot

 D
at

e
..o

rd
er

 d
at

a…

10
02

3
A

BC
D

E
03

/0
2/

20
03

10
02

3
FG

H
U

J
03

/0
5/

20
03

O
rd

er
 H

ea
de

r
O

rd
er

 L
in

e

O
rd

er
 ID

10
02

3

10
02

3

10
02

3

10
02

3

Li
ne

00
4

00
3

00
2

00
1

Li
ne

 S
na

p
 D

at
e

03
/0

2/
20

03

03
/0

2/
20

03

03
/0

2/
20

03

03
/0

2/
20

03

O
rd

er
 L

in
e

Sc
he

du
le

O
rd

er
 ID

10
02

3

10
02

3

O
rd

 L
in

e

00
3

00
3

Li
ne

00
2

00
1

Sc
h

 S
na

p
 D

at
e

03
/0

2/
20

03

03
/0

2/
20

03

10
02

3
00

3
00

2
03

/0
5/

20
03

51
80

Ke
y

76
82

10
91

1

Ke
y

10
91

2

82
31

2

Ke
y

82
31

3

10
91

3

10
91

4

89
05

210
91

1

O
rd

er
 H

ea
de

r
Li

ne

10
91

2

10
91

3

10
91

4

10
91

1

10
91

2

10
91

3

10
91

4

51
80

76
82

51
80

51
80

51
80

76
82

76
82

76
82

10
91

3

O
rd

er
 L

in
e

Li
ne

 S
ch

ed
ul

e

10
91

3

10
91

3

10
91

3

51
80

76
82

51
80

76
82

82
31

2

82
31

3

89
05

2

82
31

2

C h a p t e r 8274

between the tables. Using associative entities resolves this problem and pro-
duces the same results as in the first technique, but with a significant saving in
storage space if updates are frequent and if updates typically affect a small
portion of the entire transaction. However, it still presents the same issues as
the previous method. Its does not provide information about the magnitude or
direction of the change.

The next technique expands on this model to show how it can be enhanced to
collect information about the nature of the change.

Technique 3: Change Snapshot with Delta Capture
In this section, we expand on the previous technique to address a shortcoming
of the model, its inability to easily provide information of the magnitude or
direction of change. When discussing the nature of change in a business trans-
action, it is necessary to separate the attributes in the model into two general
categories. The first category is measurable attributes, or those attributes that
are used to measure the magnitude of a business event. In the case of sales
orders, attributes such as quantity, value, and price are measurable attributes.
The other category is characteristic attributes. Characteristic attributes are
those that describe the state or context of the measurable attributes. To capture
the nature of change, the model must represent the different states of the order
as well as the amount of change, the deltas, of the measurable attributes.

Figure 8.10 shows the model. It is an expansion of the associative entity model
shown in Figure 8.8. Four new delta entities have been added to collect the
changes to the measurable attributes as well as some new attributes in the
existing entities to ease the load process.

The Delta entities only contain measurable attributes. They are used to collect
the difference between the previous and current values for the given context.
For example, the Order Line Delta entity collects changes to quantity, extended
price, value, and confirmed quantity. The Order Line entity continues to main-
tain these attributes as well; however, in the case of Order Line, these attrib-
utes represent the current value, not the change. This changes the purpose of
the snapshot entities, such as Order Line, from the previous technique. In this
model, the delta entities have taken the role of tracking changes to measurable
attributes. The snapshot entities are now only required to track changes to the
characteristic attributes. Measurable attributes in the snapshot entities contain
the last-known value for that context. New instances are not created in the
snapshot entities if there is only a change in the measurable attributes. A new
attribute, Current Indicator, is added to Order Line. This aids in identifying the
most current version of the order line. It is a Boolean attribute whose value is
true for the most current version of a line. Note that this attribute could also be
used in the previous example to ease load processing and row selection.

Modeling Transactions 275

Figure 8.10 Associative entity model with delta capture.

Load Processing
When loading a database using this model, there are a number of techniques
that simplify the coding and processing against this model. First is the use of the
CRC Value column. In this model, snapshot tables such as Order Line are used
to track changes in the characteristic columns only. This is different from the pre-
vious technique where the Order Line table is used to track changes in all
columns. The delta tables, such as Order Line Delta, are tracking changes to
measures. Therefore, for this approach, the CRC value should only be calculated
using the characteristic columns. If the CRC value changes, you have identified
a change in state, not in measurable value. This event causes the creation of a
new row in the Order Line table. If the CRC value does not change, you perform
an update in place, changing only the measurable value columns.

O
rd

er
 H

ea
d

er

O
rd

er
 K

ey

O
rd

er
 Id

en
tif

ie
r

O
rd

er
 S

na
p

sh
ot

 D
at

e
C

RC
 V

al
ue

So
ld

-T
o

C
us

to
m

er
 Id

en
tif

ie
r

Bi
ll-

To
 C

us
to

m
er

 Id
en

tif
ie

r
Sh

ip
-T

o
C

us
to

m
er

 Id
en

tif
ie

r
O

rd
er

 D
at

e
O

rd
er

 S
ta

tu
s

C
us

to
m

er
 P

O
 N

um
b

er
ot

he
r

at
tr

ib
ut

es
...

Lo
ad

 L
og

 Id
en

tif
ie

r

O
rd

er
 L

in
e

O
rd

er
 L

in
e

K
ey

O
rd

er
 Id

en
tif

ie
r

O
rd

er
 L

in
e

Id
en

tif
ie

r
O

rd
er

 L
in

e
Sn

ap
sh

ot
 D

at
e

C
ur

re
nt

 In
d

ic
at

or
C

RC
 V

al
ue

It
em

 Id
en

tif
ie

r
It

em
 Id

en
tif

ie
r

It
em

 U
ni

t
of

 M
ea

su
re

O
rd

er
 Q

ua
nt

ity
O

rd
er

 E
xt

en
d

ed
 P

ric
e

O
rd

er
 L

in
e

V
al

ue
C

on
fir

m
ed

 Q
ua

nt
ity

O
rd

er
 L

in
e

St
at

us
Re

q
ue

st
ed

 D
el

iv
er

y
D

at
e

ot
he

r
at

tr
ib

ut
es

...
Lo

ad
 L

og
 Id

en
tif

ie
r

O
rd

er
 H

ea
d

er
 P

ric
in

g

O
rd

er
 H

ea
d

er
 P

ric
in

g
 K

ey

O
rd

er
 Id

en
tif

ie
r

O
rd

er
 H

ea
d

er
 P

ric
in

g
 L

in
e

Id
en

tif
ie

r
O

rd
er

 H
ea

d
er

 P
ric

in
g

 S
na

p
sh

ot
 D

at
e

C
ur

re
nt

 In
d

ic
at

or
C

RC
 V

al
ue

Pr
ic

in
g

 C
od

e
V

al
ue

Q
ua

nt
ity

Ra
te

ot
he

r
at

tr
ib

ut
es

...
Lo

ad
 L

og
 Id

en
tif

ie
r

O
rd

er
 L

in
e

Sc
he

d
ul

e
D

el
ta

O
rd

er
 L

in
e

Sc
he

d
ul

e
K

ey
 (

FK
)

Sn
ap

sh
ot

 D
at

e

Pl
an

ne
d

 S
hi

p
p

in
g

 Q
ua

nt
ity

Lo
ad

 L
og

 Id
en

tif
ie

r

O
rd

er
 H

ea
d

er
 P

ric
in

g
 D

el
ta

O
rd

er
 H

ea
d

er
 P

ric
in

g
 K

ey
 (

FK
)

Sn
ap

sh
ot

 D
at

e

V
al

ue
Q

ua
nt

ity
Ra

te
Lo

ad
 L

og
 Id

en
tif

ie
r

O
rd

er
 L

in
e

Pr
ic

in
g

 D
el

ta

O
rd

er
 L

in
e

Pr
ic

in
g

 K
ey

 (
FK

)
Sn

ap
sh

ot
 D

at
e

V
al

ue
Q

ua
nt

ity
Ra

te
Lo

ad
 L

og
 Id

en
tif

ie
r

O
rd

er
 L

in
e

D
el

ta

O
rd

er
 L

in
e

K
ey

 (
FK

)
Sn

ap
sh

ot
 D

at
e

O
rd

er
 Q

ua
nt

ity
O

rd
er

 E
xt

en
d

ed
 P

ric
e

O
rd

er
 L

in
e

V
al

ue
C

on
fir

m
ed

 Q
ua

nt
ity

Lo
ad

 L
og

 Id
en

tif
ie

r

O
rd

er
 H

ea
d

er
 H

ea
d

er
 P

ric
in

g

O
rd

er
 K

ey
 (

FK
)

O
rd

er
 H

ea
d

er
 P

ric
in

g
 K

ey
 (

FK
)

O
rd

er
 H

ea
d

er
 L

in
e

O
rd

er
 K

ey
 (

FK
)

O
rd

er
 L

in
e

K
ey

 (
FK

)

O
rd

er
 H

ea
d

er
 H

ea
d

er
 P

ric
in

g

O
rd

er
 K

ey
 (

FK
)

O
rd

er
 L

in
e

K
ey

 (
FK

)
O

rd
er

 L
in

e
Pr

ic
in

g
 K

ey
 (

FK
)

O
rd

er
 L

in
e

Li
ne

 S
ch

ed
ul

e

O
rd

er
 K

ey
 (

FK
)

O
rd

er
 L

in
e

K
ey

 (
FK

)
O

rd
er

 L
in

e
Sc

he
d

ul
e

K
ey

 (
FK

)

O
rd

er
 L

in
e

Pr
ic

in
g

O
rd

er
 L

in
e

Pr
ic

in
g

 K
ey

O
rd

er
 Id

en
tif

ie
r

O
rd

er
 L

in
e

Id
en

tif
ie

r
O

rd
er

 L
in

e
Pr

ic
in

g
 L

in
e

Id
en

tif
ie

r
O

rd
er

 L
in

e
Pr

ic
in

g
 S

na
p

sh
ot

 D
at

e
C

ur
re

nt
 In

d
ic

at
or

C
RC

 V
al

ue
Pr

ic
in

g
 C

od
e

V
al

ue
Q

ua
nt

ity
Ra

te
ot

he
r

at
tr

ib
ut

es
...

Lo
ad

 L
og

 Id
en

tif
ie

r

O
rd

er
 L

in
e

Sc
he

d
ul

e

O
rd

er
 L

in
e

Sc
he

d
ul

e
K

ey

O
rd

er
 Id

en
tif

ie
r

O
rd

er
 L

in
e

Id
en

tif
ie

r
O

rd
er

 L
in

e
Sc

he
d

ul
e

Li
ne

 Id
en

tif
ie

r
O

rd
er

 L
in

e
Sc

he
d

ul
e

Sn
ap

sh
ot

 D
at

e
C

ur
re

nt
 In

d
ic

at
or

C
RC

 V
al

ue
Pl

an
ne

d
 S

hi
p

p
in

g
 D

at
e

Pl
an

ne
d

 S
hi

p
p

in
g

 Q
ua

nt
ity

Pl
an

ne
d

 S
hi

p
p

in
g

 L
oc

at
io

n
ot

he
r

at
tr

ib
ut

es
...

Lo
ad

 L
og

 Id
en

tif
ie

r

C h a p t e r 8276

The second technique is the use of the Current Indicator. When you are pro-
cessing a row, such as Order Line, locate the current version using the business
key (Order Identifier and Order Line Identifier) and a Current Indicator value
of true. If, after comparing CRC values, the current row will be superseded,
update the old row, setting the Current Indicator value to false. The supersed-
ing row is inserted with the Current Indicator set to true.

The third technique is the use of database triggers on the snapshot tables to
update the delta tables. Based on the previous two techniques, there are only
three possible update actions that can be implemented against the snapshot
tables: inserting a new row, updating measurable columns on the current row,
or setting the Current Indicator column to false. When a new row is inserted in
the snapshot table, the trigger also inserts a row in the delta table, using the
new values from the measurable columns. When the measurable columns are
being updated, the trigger examines the old and new values to determine if
there has been a change. If there has been a change, it calculates the difference
by subtracting the old value from the new value and storing the differences as
a new row in the delta table. If the Current Indicator is being changed from
true to false, the trigger inserts a new row in the delta table with the values set
to the negative of the values in the snapshot table row. This action effectively
marks the point in time from which this particular state is no longer applica-
ble. By storing the negatives of the value in the delta table, the sum of the
deltas for that row become zero. We still, however, retain the last known value
in the snapshot row.

What you wind up with in the delta tables is a set of differences that can
be summed, showing the changes that the measurable values underwent during
the life of the snapshot. You can calculate a value for any point in time by sum-
ming these differences up to the point of interest. And, with the use of the asso-
ciative entities, these values are framed within the proper characteristic context.

With the data stored within the data warehouse in this manner, you can easily
provide incremental deliveries to the data marts. When you need to deliver

Modeling Transactions 277

Database Triggers

Database triggers are processes written in SQL that are executed by the database
system when specific events occur. These events are tied to update actions
against a table. Triggers may be executed whenever a row in a table is inserted,
updated, or deleted. Within a trigger, the programmer has the ability to access
both the old and new values for a column. These values can be examined and
manipulated, new values may be derived, and actions against other tables in the
database may be affected.

changes to a data mart since the last delivery, you use the current time and the
last delivery time to qualify your query against the Snapshot Date column in
the delta table. You then use the foreign key to join through to the other tables
to obtain the desired characteristics. Depending on your requirements, you
can reduce the size of the output by summing on the characteristics. It is typi-
cal with this type of delivery extract to limit the output to the content of one
delta table. It is difficult, and not particularly useful, to combine measurable
values from different levels of detail, such as order lines and order line sched-
ules, in the same output.

This technique addresses the two key delivery needs of a data warehouse.
Using the Current Indicator, it is easy to produce a current snapshot of the
data, and, using the delta tables, it is easy to deliver changes since the last
delivery. This structure is less than optimal for producing a point-in-time
snapshot for some time in the past. This is so because the snapshot tables con-
tain the last-known measurable values for a given state, not a history of mea-
surable values. To obtain measurable values for a point in time, it is necessary
to sum the delta rows associated with the snapshot row.

An interesting aspect of this is that, by recording the magnitude and direction
of change, this model provides more information than the other models, yet it
may actually require less storage space. There are fewer rows in the snapshot
tables and the associative entities because new snapshot rows are only created
when the characteristics change, not the measurable values. The delta rows are
greater in number, but most likely much smaller than the snapshot rows. If
your environment sees more changes to measurable values than changes to
characteristics, you may experience some storage economy. Even if this is not
the case, any increase in storage over the previous technique is not propor-
tionally significant. If one of your primary delivery challenges is to perform
incremental updates to the data marts, this structure provides a natural, effi-
cient means to accomplish that.

Case Study: Transaction Interface

GOSH stores receive all retail sales transaction data through its cash register
system. The system records the time of sale, the store, the UPC code if the item,
the price and quantity purchased, and the customer’s account number if the
customer used an affinity card. The data also includes sales taxes collected;
coupons used; a transaction total; a method of payment, including credit card
or checking account number; and the amount of change given. In addition to
sales transactions, returns and credits are also handled through the cash regis-
ter system. The clerk can specify the nature of the return and disposition of the
item when entering the credit.

C h a p t e r 8278

In addition to tracking sales, the company wishes to monitor return rates on
items. Items with high rates of return would be flagged for investigation and
possibly removed from the stores. They are also interested in tracking cus-
tomer purchase habits through the affinity cards. Affinity cards are credit
cards issued by a bank under GOSH’s name. These are different from private-
label cards, such as those offered by major department stores. With a private-
label card, the store is granting credit and assumes the risk. The issuing bank
assumes the credit risk with affinity cards. From this arrangement, GOSH
receives information about the customer, which they use in marketing efforts.
Based on the customer’s interests, they offer promotions and incentives to
encourage additional sales.

Information is transmitted from the stores at 15-minute intervals. Data volumes
vary significantly, depending on the time of day and the season. A large store
can produce, at peak times, 10,000 detail lines per hour. During the heaviest
times of the year, this peak rate can be sustained for 6 to 7 hours, with a total of
100,000 lines being produced during a 14-hour day. Since the sizes of the stores
vary, daily volume can reach as many as 12 million lines a day across 250 stores.
Overall volume averages around 800,000 lines per day over a typical year.
There are 363 selling days in the year, with all stores closed on Christmas and
Mother’s Day.

Modeling the Transactions
Figure 8.11 shows the business model for the sales transactions. In it we cap-
ture information about the sale as well as any returns and coupons used.
Return and coupon information is carried in separate sales lines, with optional
foreign key references back to the sale line that was being returned or for
which the coupon was used. GOSH was able to tie a return back to the original
sale line by printing the sale identifier as a bar code on every receipt. When the
item is returned, the receipt is scanned and the original sale identifier is sent
with the return transaction. The coupon line reference is generated by the cash
register system and transmitted with the transaction. However, this relation-
ship is optional since sometimes returns are made without a receipt, and
coupons are not always for a specific product purchase.

There are accommodations we may wish to make in the physical model. We
may not wish to instantiate the Return Line and Coupon Line entities as tables,
but instead incorporate those columns in the Sale Line table. Depending on
how your database system stores null values, there may be no cost in terms of
space utilization to do this. Logically, there is no difference in using the model
since the return sale and coupon sale foreign key references are optional to
begin with. They would continue to be optional if those columns were moved
into the Sale Line table. The advantage of combining the tables is that it would
speed the load process and simplify maintenance.

Modeling Transactions 279

Figure 8.11 Retail sales business model.

Another point worth mentioning in the model is the collection of prices and val-
ues in the sale line. Hopefully, all these attributes are received in the data feed
and are not derived. The cash register system has facilities to calculate value and
tax. Often these calculations are complex, but even simple calculations may be
subject to interpretation. For example, if an item is priced at 8 for $1.00 and the
customer buys 7, how much is the customer charged? The answer will depend

Sale Type

Customer

Customer Identifier

Customer Name
other attributes...

Store

Store Identifier

State Identifier
City Identifier
Store Manager Identifier
Sales Territory Identifier
Store Number
Store Name
Tax District
other attributes...

Date

Date Identifier

Date
Fiscal Week Identifier
Fiscal Month Identifier
Fiscal Year Identifier
other attributes...

Sale

Sale Identifier

Sale Type
Sale Payment Type
Sale Payment Amount
Credit Card Number
Check Number
Authorization Code
Cashier Identifier
Cash Register Number
other attributes...

Customer Identifier (FK)
Store Identifier (FK)
Date Identifier (FK)

Item

Item Identifier

Item Name
Item SKU
Item Type
other attributes...

Promotion

Promotion Identifier

Promotion Type
Promotion Description
Discount Rate
Discount Amount
other attributes...

Coupon

Coupon Identifier

Coupon Type
Manufacturer Identifier
Clearinghouse Identifier
Coupon Value
Coupon Rate
other attributes...

Sale Line

Sale Line Number
Sale Identifier (FK)

Sale Type
Sale Time Of Day
Sale Quantity
Sale Price Quantity
Sale Tag Price
Sale Final Price
Sale Final Value
Sale Taxable Value

Sales Tax Amount
other attributes...

Item Identifier (FK)
Promotion Identifier (FK)

Sales Tax Identifier (FK)

Coupon Line

Sale Identifier (FK)
Sale Line Number (FK)

Coupon Value

Item Sold Sale Identifier (FK)
Item Sold Sale Line Number (FK)
Coupon Identifier (FK)

Sales Tax

Sales Tax Identifier

State Identifier
Taxing Authority
Sales Tax Rate
other attributes...

Return Line

Sale Identifier (FK)
Sale Line Number (FK)

Return Reason

Item Sold Sale Identifier (FK)
Item Sold Sale Line Number (FK)

Item Sold Line

Sale Identifier (FK)
Sale Line Number (FK)

C h a p t e r 8280

on how you round $0.875. Is the rounding method the same in the cash register
system as it is in the database? Do you want to take that chance? In situations
like this, it is simpler and more accurate to take the numbers the data extract
gives you and not attempt to eliminate or derive data.

Processing the Transactions
The nice thing about transaction interfaces is that the content is precisely what
the data warehouse needs. Every transaction represents new information that is
additive to prior information. Transactions are not repeated or changed. So,
aside from data validation and transformations, there isn’t much to do besides
insert the data into the data warehouse. The only real issue to address is how
the data is delivered to the data marts. There are two general schools of though
on this topic. One method is to prepare the data for delivery in the same process
that prepares the data for the data warehouse, then load the data and deliver it
simultaneously. The other method is to load the data warehouse and deliver the
data using data warehouse queries after the load. We will discuss each method.

Simultaneous Delivery

Figure 8.12 shows the process architecture for simultaneous delivery. In this
scenario, the data is transformed in the ETL process for loading into the data
warehouse as well as staging for delivery of the data to the data marts or other
external systems. The staging area may be nothing more than a flat file that is
bulk loaded into the data mart databases.

The advantage of this method is that it shortens the time necessary to get the
data into the data marts. There is no need to wait until the data has been
loaded into the data warehouse before it can be loaded into the data marts. If
you have a long data warehouse load process, or the processing window is so
small, you may wish to consider this approach.

However, the time saving does not come without a cost. There is a disadvantage
that the data warehouse and the data marts may get out of sync because of tech-
nical problems, such as hardware failures. Since no process would exist to move
the data from the data warehouse to the data marts, recovery from such a situa-
tion would require processes involving the staging area. It would also require
some mechanism to validate the recovery based on reconciliation with the data
warehouse. So, to address these issues, you would wind up having to develop
additional processes, including one to pull the data from the data warehouse,
should there be a disaster or some other critical situation. You would also require
putting an ongoing audit in place to detect when synchronization problems
occur. We recommend against using this technique except in very rare instances.

Modeling Transactions 281

Figure 8.12 Simultaneous load and delivery architecture.

Postload Delivery

Figure 8.13 shows an example of a postload delivery process. After the data
has been transformed and loaded into the data warehouse, other processes
extract and deliver the data to the target data marts or external systems.

The disadvantage of this approach is the delay between receiving the data and
making it available to the data marts. Such a disadvantage may be small or
nonexistent if sufficient time exists in your process schedule. Among the
advantages are that it is easier to control the process and ensure synchroniza-
tion. The data warehouse becomes the sole source of data, assuring that all
downstream systems are receiving the same information. Another advantage
is it reduces development time. In the other method, it is necessary to develop
redundant fail-safe processes to use the data warehouse for disaster recovery
as well as put an audit mechanism in place to ensure synchronization. With
this method, you need only develop a single process to deliver data from the
data warehouse to the marts. The time frame of the delivery process can be a
parameter or control table driven so that disaster recovery can be serviced
through the same process. We recommend this approach unless time con-
straints absolutely require simultaneous delivery.

A transaction interface is one of the simplest interfaces to process. Transactions
are received once, are fully additive, and they are not updated. Each transac-
tion defines its own scope as well as the direction and magnitude of change. It
is an ideal data extract for both the data warehouse and data marts. So ideal, in
fact, that one is tempted to send the extract to both the data warehouse and the
data marts at the same time. We recommend that you resist this temptation
and perform all data deliveries from the data warehouse. You should consider

Transaction
Data

ETL
Process

Data
Warehouse

Data Mart
Staging

Area

Data Mart

Data Mart

Data Mart

C h a p t e r 8282

Figure 8.13 Postload delivery architecture.

simultaneous delivery only in cases where delivery time is critical. If you do,
you should also invest in the proper process infrastructure to provide fallback
delivery processes as well as suitable audits to ensure data consistency with
the data warehouse.

Summary

There are numerous means of receiving transactional information into the data
warehouse, far too many to discuss in any detail within this chapter. One of the
points you should take away from this discussion is the importance of record-
ing the magnitude and direction of change inferred in a transaction. This is an
inherent nature found in some extracts while in others, considerable effort must
be made to derive this information. It is that change that drives a considerable
portion of business analysis. Deriving and quantifying change within the data
warehouse goes a long way to supporting and simplifying that analysis.

Transaction
Data

ETL
Process

Data
Warehouse

Data Mart

Data Mart

Data Mart

Modeling Transactions 283

Installing Custom Controls 285

Data Warehouse Optimization

C H A P T E R 9

Optimization is a broad topic that envelops the entire data warehouse environ-
ment from source system data acquisition to final delivery to the information
consumer. A data warehousing program within an organization not only
needs to provide a query environment that is fast and responsive, but must
also itself be fast and responsive in addressing the needs of its user commu-
nity. To that end, we will not only examine aspects of creating an efficient
physical database (the technology model), but also examine means to improve
the development process and system models as well.

We begin with a look at the data warehouse design and development. Next,
we discuss physical database techniques to improve the load and publication
of data into the data warehouse and to the marts. We will also briefly examine
physical database techniques for the data marts. Finally, we will discuss
changes to the entity structures in the system model that can effect optimiza-
tion of the physical model.

Optimizing the Development Process

The development process includes design and analysis as well as coding the
load and publication applications. This section discusses both areas.

285

Optimizing Design and Analysis
The modeling methodology is at the core of the Corporate Information Factory.
We strongly believe that following this methodology will significantly reduce
the risk of rework, greatly improve overall understanding of the data ware-
house content, and contribute to the overall success of the implementation. A
model, after all, is nothing more than boxes and lines on paper. The effort to cor-
rect and change the model is significantly less than modifying processes and
schemas developed from a faulty model. A small effort up front to get the
model right goes a long way toward shortening the development process and
improving the overall development experience.

Chapter 4 touches on the modeling methodology, but you might refer to Bill
Inmon’s Building the Data Warehouse, Third Edition (Wiley, 2002) for the com-
plete data warehouse development methodology, including deliverables and
explanations of why each step is needed.

Optimizing Application Development
If you are reading this book, it is safe to assume that you intend to create an
enterprise data warehouse. If you follow the methodology, the effort must be
viewed as a long-term program with many short-term projects incrementally
expanding the overall scope of the data warehouse. This implies a commit-
ment of manpower over the life of the program to develop, implement, and
support the applications to load and deliver the data warehouse.

Labor costs are the most significant expense any organization will encounter in
a data warehouse project. Using those resources effectively can reduce cost and
development time. To that end, for a program of this size, you should give very
serious consideration to the purchase and use of an extract, transform, and load
(ETL) tool. A good ETL tool provides a development environment specifically
designed to perform the types of tasks necessary to load and deliver data ware-
houses. Use of such a tool can dramatically decrease the application develop-
ment effort over traditional coding methods using languages such as COBOL,
C, Java, or SQL. Reductions in labor effort and development time of 60 percent
or more are common, with 80 percent reductions in effort attainable with those
experienced with the tool.

Selecting an ETL Tool

There are a number of excellent ETL products on the market today. You can
find an extensive list of major and minor ETL vendors at http://www.
dwinfocenter.org. When selecting such a tool, here are some points you should
consider in your evaluation.

C h a p t e r 9286

Data access. Where is your source data, and what database systems are used?
Can the tool connect to and read these sources? How will such connections
affect your operational system? How does the tool handle transfer of data
across your network?

Throughput. Does the tool support memory caching for code and key
lookups? Is the data streamed between transformations? Can the transfor-
mations execute asynchronously across multiple processors? Does the tool
support parallel streams for very high data volumes?

Extensibility. Do the transformations provided with the tool perform most
of the tasks you require? Can you easily code and implement custom trans-
formation logic not covered in the tool? Is the custom logic reusable?

Real-time data acquisition. Do you require real-time or near-real-time data
collection? Does the tool support it? Does the tool need to interface with
messaging software?

Meta data. When you develop an ETL process, you are defining the data
sources, transformations (that is, business rules), and targets for the data.
There is a wealth of valuable information embedded in these processes.
What facilities does the tool provide to publish the meta data for use in a
meta data repository, OLAP access tools, or other forms of documentation?

The tool’s development environment. Does the GUI work for your develop-
ers? How well does it integrate the various aspects of development? How
does it support reuse of existing processes or modules? Does it support
access control, versioning, and releases? Does it support a tiered implemen-
tation environment (that is, development, QA, and production)? Does the
tool provide debug and test facilities?

Your environment. What are your expected volumes and how do you han-
dle bulk data transfer across your network? Do you permit data streaming
between applications across the network or must the data be extracted
locally, compressed and then moved to the target system? If the ETL tool
requires custom transformations to be written outside the tool using an
API and a language such as C, do you have the staff to do such work
within your control, or does it require resources outside your control?
What is the project impact of using outside resources? Does the tool
require its own server, or can it coexist on the data warehouse server? The
latter is preferable as it reduces network impact.

Proof of concept. Is the chosen vendor willing to perform a proof of concept
exercise? If you have no prior experience with the chosen tool, or even if you
do, it is a good idea to engage in a proof of concept exercise prior to final
purchase. The vendor will rightly insist that such an exercise be well defined

Data Warehouse Optimization 287

and close ended. It will be up to you to develop a small scenario that encap-
sulates issues of most concern to you. It should be well documented with
clear definition of the data source, the transformations, and the target struc-
tures. The scenario should include a clear statement of the expected out-
comes and definition of a successful conclusion.

The vendor. As with any other software purchase, you should evaluate the
vendor itself. You should consider training, after sales support, commitment
to product improvement, and the stability of the company.

Optimizing the Database

This section looks at techniques to optimize the physical database implemen-
tation without impacting the logical data model. There are a number of logical
data model changes that are possible to optimize database performance. These
changes will be discussed in the next section “Optimizing the System Model.”

Since this book does not cover any specific database system in particular, the
strategies and techniques discussed here are necessarily generic in their
description and approach. Each database system product varies in its features
and implementation approach. Some techniques may not produce the optimal
results or may require some adjustment to suit the particular product. We
believe what is outlined here to be generally applicable across all systems;
however, you should consult with your database administrator for specific
details and benefits for your environment.

We first examine techniques to optimize the data warehouse physical schema.
The techniques examine options to arrange data and indexes within the data-
base and their applicability to the data warehouse environment. Next, we
examine processing techniques to improve load and publication performance.

Data Clustering
Data clustering is a technique where related rows from different tables are
placed within the same disk block so that, optimally, the system retrieves all
the data in a single disk read. Figure 9.1 shows an example of an invoice trans-
action made up of an invoice header and invoice line table. The invoice num-
ber relates the two tables. The database system attempts to place the invoice
line rows in the same physical data block as the invoice header row with the
same invoice ID.

C h a p t e r 9288

Figure 9.1 Data clustering.

When all goes well, a query that accesses a specific invoice and its lines can do
so very quickly. To be effective, it requires that the data to be inserted is pre-
sented to the database in a single transaction. If not, the data block may fill
with headers, leaving no room for the lines. This may cause the database to
create extension blocks or split blocks impacting the insert process or defeating
the query benefit of co-location. This technique also requires careful tuning
based on the size and number of invoice header and line rows. Getting it
wrong may result in too many reads or allocation of too much space.

This technique is geared toward random access of specific related rows.
Within a data warehouse it may be useful for structures that require real-time
data update, much in the same manner as a transactional system. The down-
side is that this technique hampers bulk data access because the data density is
lower, with a table’s rows spread over more disk real estate than what would
be expected in a nonclustered table. A table scan, in particular, performs
poorly with this structure.

Table Partitioning
Table partitioning, sometimes referred to as horizontal partitioning, is a tech-
nique to break a single table’s data into multiple independent subtables based
on values in one or more columns in the row. For example, a table may have a
transaction date column used to partition the data by year. Transactions with
dates in 2001 would be placed in a physically separate structure than transac-
tions with dates in 2002. Another form of partitioning, vertical partitioning is a
technique where the columns in a table are split into multiple tables. This type
of partitioning directly affects the model and how data is accessed, whereas
horizontal partitioning is transparent to the applications. We discuss vertical
partitioning in the section on model optimization.

1002930 ...1
1002930 ...2
1002930 ...3

1003038 ...1
1003038 ...2
1003038 ...3
1003038 ...4
1003038 ...5

Invoice Header Rows
1002930 ..data..2

ID ...Line

1002930 ...

1003038 ...

Invoice Header Rows

Disk Block

ID ..data..

Data Warehouse Optimization 289

Database systems implement horizontal partitioning in different ways. These
implementations can be categorized as either physical partitioning or logical
partitioning. In a physical horizontal partition implementation, you define a
single table that then contains a series of partition specifications. The partition
specification first identifies the value, either a single column or an expression
using multiple columns that is used to identify the partition. This is followed
by a list of partitions with their physical attributes and the range of values that
apply to that partition. When a row is inserted into the table, the database sys-
tem calculates the partition value and identifies the partition to place the row.
The actions are transparent to the application. Figure 9.2 shows an example of
this approach.

In a logical horizontal partition implementation, you define individual tables for
each “partition” you wish to create. You then create a view, using a SELECT . . .
UNION statement to combine these tables into a single view. Figure 9.3 shows a
data model implementing this approach to horizontal partitioning. In some
implementations you cannot insert or update against the view. Instead, your
application must determine the appropriate subtable to update. Enhanced
forms of this method allow you to update against the view, and the database sys-
tem would use WHERE clauses within the SELECT...UNION statement to deter-
mine which table is updated. This approach has an advantage in that the
individual tables do not need to have the same columns. Such discrepancies can
be handled within the SELECT...UNION statement.

These are two distinctly different approaches to horizontal partitioning. In the
first approach, the partitions are defined in the physical schema and are fully
transparent to the logical model and applications that access the database. In
the second approach, you are required to define tables and a view to consoli-
date the tables. All tables are visible to applications. It is questionable how well
the database system can take advantage of such a partitioning arrangement;
therefore, further discussion in this section presumes a physical horizontal
partition implementation.

Reasons for Partitioning

There are two basic reasons for partitioning tables: improve the manageability
of large tables and improve query response through parallel queries of large
data sets. These two motivations can result in conflicting partition designs. It
is important to understand your primary motivation when developing parti-
tioning strategies.

Manageability is the most common reason for partitioning, particularly for
enterprise data warehouses in a Corporate Information Factory framework.

C h a p t e r 9290

The reason is simple; the primary purpose of the enterprise data warehouse is
to serve as a data store. It is the data marts, using dimensional models, that
serve as the primary query platform. Therefore, the partitioning strategy
should be targeted to improve the data storage function.

Figure 9.2 Physical partitioning.

O
rd

er
 L

in
e

O
rd

er
 Id

en
tif

ie
r

O
rd

er
 S

na
p

sh
ot

 D
at

e
O

rd
er

 L
in

e
Id

en
tif

ie
r

O
rd

er
 L

in
e

Sn
ap

sh
ot

 D
at

e

It
em

 U
ni

t
of

 M
ea

su
re

C
RC

 V
al

ue
O

rd
er

 Q
ua

nt
ity

O
rd

er
 E

xt
en

de
d

Pr
ic

e
O

rd
er

 L
in

e
Va

lu
e

C
on

fir
m

ed
 Q

ua
nt

ity
O

rd
er

 L
in

e
St

at
us

Re
q

ue
st

ed
 D

el
iv

er
y

D
at

e
ot

he
r

at
tr

ib
ut

es
...

M
od

el
 R

ep
re

se
nt

at
io

n
Ph

ys
ic

al
 R

ep
re

se
nt

at
io

n

O
rd

er
 S

na
p

sh
ot

 D
at

e
<

Fe
b-

1-
20

03
O

rd
er

 S
na

p
sh

ot
 D

at
e

<
M

ar
-1

-2
00

3
O

rd
er

 S
na

p
sh

ot
 D

at
e

<
A

p
r-

1-
20

03
O

rd
er

 S
na

p
sh

ot
 D

at
e

<
M

ay
-1

-2
00

3

M
on

th
ly

 P
ar

tit
io

ns
 b

y
O

rd
er

 S
na

p
sh

ot
 D

at
e

…
…

Data Warehouse Optimization 291

Figure 9.3 Logical partitioning.

This is not to say that query performance is not important. It is just that in
this environment, it is difficult to apply partitioning strategies to obtain better
performance. We see why this is so in the section “Vertical Partitioning for
Performance.”

O
rd

er
 L

in
e

Ja
n

 2
0
0
3

O
rd

er
 Id

en
tif

ie
r

O
rd

er
 S

na
p

sh
ot

 D
at

e
O

rd
er

 L
in

e
Id

en
tif

ie
r

O
rd

er
 L

in
e

Sn
ap

sh
ot

 D
at

e

It
em

 U
ni

t
of

 M
ea

su
re

C
RC

 V
al

ue
O

rd
er

 Q
ua

nt
ity

O
rd

er
 E

xt
en

de
d

Pr
ic

e
O

rd
er

 L
in

e
Va

lu
e

C
on

fir
m

ed
 Q

ua
nt

ity
O

rd
er

 L
in

e
St

at
us

Re
q

ue
st

ed
 D

el
iv

er
y

D
at

e
ot

he
r

at
tr

ib
ut

es
...

O
rd

er
 L

in
e

Fe
b

 2
0
0
3

O
rd

er
 Id

en
tif

ie
r

O
rd

er
 S

na
p

sh
ot

 D
at

e
O

rd
er

 L
in

e
Id

en
tif

ie
r

O
rd

er
 L

in
e

Sn
ap

sh
ot

 D
at

e

It
em

 U
ni

t
of

 M
ea

su
re

C
RC

 V
al

ue
O

rd
er

 Q
ua

nt
ity

O
rd

er
 E

xt
en

de
d

Pr
ic

e
O

rd
er

 L
in

e
Va

lu
e

C
on

fir
m

ed
 Q

ua
nt

ity
O

rd
er

 L
in

e
St

at
us

Re
q

ue
st

ed
 D

el
iv

er
y

D
at

e
ot

he
r

at
tr

ib
ut

es
...

O
rd

er
 L

in
e

A
p

r
2
0
0
3

O
rd

er
 Id

en
tif

ie
r

O
rd

er
 S

na
p

sh
ot

 D
at

e
O

rd
er

 L
in

e
Id

en
tif

ie
r

O
rd

er
 L

in
e

Sn
ap

sh
ot

 D
at

e

It
em

 U
ni

t
of

 M
ea

su
re

C
RC

 V
al

ue
O

rd
er

 Q
ua

nt
ity

O
rd

er
 E

xt
en

de
d

Pr
ic

e
O

rd
er

 L
in

e
Va

lu
e

C
on

fir
m

ed
 Q

ua
nt

ity
O

rd
er

 L
in

e
St

at
us

Re
q

ue
st

ed
 D

el
iv

er
y

D
at

e
ot

he
r

at
tr

ib
ut

es
...

O
rd

er
 L

in
e

M
ar

 2
0
0
3

O
rd

er
 Id

en
tif

ie
r

O
rd

er
 S

na
p

sh
ot

 D
at

e
O

rd
er

 L
in

e
Id

en
tif

ie
r

O
rd

er
 L

in
e

Sn
ap

sh
ot

 D
at

e

It
em

 U
ni

t
of

 M
ea

su
re

C
RC

 V
al

ue
O

rd
er

 Q
ua

nt
ity

O
rd

er
 E

xt
en

de
d

Pr
ic

e
O

rd
er

 L
in

e
Va

lu
e

C
on

fir
m

ed
 Q

ua
nt

ity
O

rd
er

 L
in

e
St

at
us

Re
q

ue
st

ed
 D

el
iv

er
y

D
at

e
ot

he
r

at
tr

ib
ut

es
...

O
rd

er
 L

in
e

V
ie

w

O
rd

er
 Id

en
tif

ie
r

O
rd

er
 S

na
p

sh
ot

 D
at

e
O

rd
er

 L
in

e
Id

en
tif

ie
r

O
rd

er
 L

in
e

Sn
ap

sh
ot

 D
at

e

It
em

 U
ni

t
of

 M
ea

su
re

C
RC

 V
al

ue
O

rd
er

 Q
ua

nt
ity

O
rd

er
 E

xt
en

de
d

Pr
ic

e
O

rd
er

 L
in

e
Va

lu
e

C
on

fir
m

ed
 Q

ua
nt

ity
O

rd
er

 L
in

e
St

at
us

Re
q

ue
st

ed
 D

el
iv

er
y

D
at

e
ot

he
r

at
tr

ib
ut

es
...

…
…

U
ni

on
 V

ie
w

M
on

th
ly

 O
rd

er
 L

in
e

Ta
bl

es

C h a p t e r 9292

Partitioning for Manageability

Partitioning is at its greatest advantage when dealing with very large tables
(many millions of rows) that contain a distinguishing characteristic that is
commonly used as a predicate when accessing the table. If a date, such as
transaction date, is used as that predicate (the table is partitioned by that date),
then partitioning can also serve to ease backup and maintenance tasks.

Dates are the most commonly used partitioning parameter. Partitioning a trans-
action table by date range (months, years, etc.) has a number of advantages:

■■ The most active partitions are easily identified. This allows you to locate
the active partitions on high-availability devices. Older data can be
located on slower or non-redundant storage systems to reduce costs.

■■ Incremental backups need only copy active partitions. Normal updates to
the database will only occur in one or two partitions because such
updates usually affect current data. An incremental backup need only
copy those partitions that have changed. Without partitioning, the entire
table is backed up even though only a small portion changed.

■■ Archival can be accomplished by simply moving entire partitions after the
archive backup. Date-based partitions allow you to retire data after
archival by simply taking the partition off-line. You do not need to explic-
itly delete the rows.

■■ The sizes of the partitions are predictable. You can use historical volumes
and trends to predict storage requirements for future partitions. If you
used other partitioning criteria, such as ranges of customer numbers, you
run the risk of some partitions growing much faster than others because
some customers engage in more activity than others. With dates you can
predict the high activity periods and adjust your allocations. Also, old
partitions become stable and do not grow unless you load old, historical
information.

In general, when partitioning by date, you should choose a time period that
results in partitions of a size you are willing to work with and of a number that
is not a burden to manage. This depends on your data volumes and the time
span covered by the enterprise data warehouse. The most commonly used
date partitioning ranges are year or month. The time it takes to backup and
restore individual partitions, and the number of devices available to you to
distribute the partitions across, should be the primary driver in determining
the appropriate partitioning time span.

Data Warehouse Optimization 293

From a query perspective, this type of partitioning strategy is neutral. It doesn’t
really help or hinder query performance very much. If a query selects a specific,
short time span then the database would access only those partitions that fall in
the time span. If the query spans multiple partitions, and the database and hard-
ware support it, the database can access each partition in parallel to gather the
result set. However, if the query does not specify a date or uses a very long time
span, then the query must examine many partitions, hindering overall perfor-
mance. A global index, discussed in a later section, can mitigate this.

Partitioning for Performance

Query performance is not a key issue for the data warehouse. The primary
purpose of the data warehouse is to retain data and deliver data to external

C h a p t e r 9294

Implementing a Tiered Storage Strategy

Data warehouse managers are often at conflict between the user demands to
maintain many years of historical data and the costs of doing so. As data ages,
its value to the company tends to decline as well as its frequency of access. Yet,
more often than not, the old data is stored on the same high-performance, high-
availability hardware as the current data.

Date-based table partitioning can provide a means to resolve this conflict. By
classifying the transactional data as current, old, and archive you can place the
data partitions on appropriate devices. Current partitions would be those that are
either frequently updated or frequently accessed. These would reside on the high-
performance, high-availability hardware. Old partitions, those that are not updated
and are accessed occasionally can be placed on traditional non-RAID disk devices.
Device reliability is less of an issue with this type of data. Since the data is no
longer updated, restoring data lost due to disk failure is a simple process.

Data that reaches the archive stage should be moved off the partition into flat
files or separate tables and placed on optical or tape media for access. The old par-
tition can then be dropped. It is important to do this because of the potential for
future schema changes. If the archive data remains as a partition, schema changes
to the table will affect the archived partitions as well. This can cause maintenance
problems, particularly if the archive data is stored on read-only media.

Enforcing this structure is well within the control of the data warehouse
manager. Quality controls in the development of the loading processes and the
delivery processes can ensure that access is focused on the correct partitions. For
loading, it is a matter of validating dates and generating exceptions for updates
to noncurrent data. For delivery processes, policies should require that all queries
to partitioned tables include predicates based on the partitioning date column.

systems. While there may be time constraints on the delivery process, we have
outlined other techniques to address this within the data model and loading
process. We do not recommend partitioning strategies solely for query perfor-
mance improvement because such strategies are often at odds with those to
improve maintainability. We believe that improving the maintainability of the
data warehouse is far more valuable to an organization.

But why do performance and maintenance requirements conflict? It is because
query performance is gained by creating an environment where queries can
operate against a table using multiple parallel subprocesses. It is a basic
divide-and-conquer approach. Rather than have a single query execute
against a table with 10 million rows, you can get the results faster if you have
10 queries executing in parallel against 10 smaller tables of 1 million rows
each. Presuming, of course, that your database supports parallel queries, you
have a multiprocessor server, and your disk channel bandwidth can handle
the volume. To accomplish query performance improvements, you must
arrange your partitions in such a way that encourages parallel access to the
data.

You may be thinking that, if you create partitions by month, you can achieve
maintainability and query performance improvements at the same time. Well,
yes—provided your delivery queries span multiple months. However, if most
of your delivery processes provide incremental data spanning a day or two,
those queries will not execute in parallel because all the data is in a single par-
tition. In general, this is acceptable for most data warehouse implementations.
Those times when you need to pull a lot of data this action benefits from par-
titioning that was designed to improve maintainability—precisely why you
should go no further.

We mean that you should not alter your partitioning strategy to improve the
incremental queries. To do this, you need to implement a partitioning strategy
that always results in parallel queries against partitions that have a high likeli-
hood of containing the data you are looking for. One way to do this is to use a
technique called hashing. A simple hash method is to use the remainder of
some numeric value to decide which partition to place the data. Let’s say you
divide a table into seven partitions and use the transaction number to decide
in which partition to place the data. The partitioning algorithm would take the
remainder of the transaction number divided by 7 and use that value, a num-
ber ranging from 0 to 6, to select one of the seven partitions.

Using this approach, the data is spread evenly across all seven partitions. Any
query for this table would execute seven parallel queries to get the data. Any
query pulling even moderate amounts of data would run significantly faster
than a single serial query. However, because the data is spread evenly across

Data Warehouse Optimization 295

the partitions, you lose any maintainability advantages. When the table is
updated, all partitions are affected. Incremental backups would always copy
the entire table, and archiving becomes more difficult. You also cannot use the
age of the data to manage data storage and disk utilization. We believe that
this can be a useful technique for the data marts, but not something you would
want to do in the data warehouse.

Indexing Partitioned Tables

When discussing partitioned tables, there are two general types of indexes:
global indexes and local indexes. A global index is a structure that indexes all
rows, regardless of the partition. A local index is a structure that indexes only
rows in a specific partition. Your database may support both types or just one
of the two. In most cases, where both types are available, you can use a mix of
types for different indexes.

In the enterprise data warehouse, local partition indexes (shown in Figure 9.4)
are the better choice. These indexes only span the data in the partition, resulting
in smaller indexes. These smaller indexes are faster to maintain, rebuild, and
query. This improves the performance of the data-loading functions as well as
the data delivery functions. In the latter case, most data delivery queries are
very time specific. Such queries can easily locate the appropriate time-based
partitions and use the smaller indexes for data selection. Also, since the older
partitions are stabilized, their indexes can be rebuilt once updates are no longer
expected. This provides optimal performance for a long period of time.

Global indexes, shown in Figure 9.5, are a large burden on the loading process.
If your data volumes are large, it is most likely you use the databases bulk
data-loading facilities whenever possible. The fastest loading mechanisms
allow you to bypass index maintenance during the loading, requiring you to
rebuild the index after the loading is complete. Global indexes can become so
large that rebuilding them may take hours. This would preclude using many
of the fast loading options available through bulk loading. Without using bulk
loads, the sheer size of a global index spanning many years of transaction data
has a significant negative impact on the load times.

Global indexes also hamper your ability to move or remove partitions. You
may have a policy in place to move data over two years old to less expensive
nonredundant disk subsystems. So, periodically, you move old partitions to
another device. Most database systems require you to rebuild any global
indexes when a partition is moved or removed. Such a process may add many
hours to the procedure, increasing the downtime of the data warehouse.

C h a p t e r 9296

Figure 9.4 Local partition index.

Global indexes also affect your ability to take advantage of parallel queries. If
global indexes exist and the database optimizer decides to use one of them, it
cannot execute the query in parallel because there is only one index structure.

O
rd

er
 S

na
p

sh
ot

 D
at

e
<

Fe
b-

1-
20

03
O

rd
er

 S
na

p
sh

ot
 D

at
e

<
M

ar
-1

-2
00

3
O

rd
er

 S
na

p
sh

ot
 D

at
e

<
A

p
r-

1-
20

03
O

rd
er

 S
na

p
sh

ot
 D

at
e

<
M

ay
-1

-2
00

3

In
de

x
In

de
x

In
de

x
In

de
x

Data Warehouse Optimization 297

Figure 9.5 Global partition index.

O
rd

er
 S

na
p

sh
ot

 D
at

e
<

Fe
b-

1-
20

03
O

rd
er

 S
na

p
sh

ot
 D

at
e

<
M

ar
-1

-2
00

3
O

rd
er

 S
na

p
sh

ot
 D

at
e

<
A

p
r-

1-
20

03
O

rd
er

 S
na

p
sh

ot
 D

at
e

<
M

ay
-1

-2
00

3

…
…G
lo

ba
l I

nd
ex

C h a p t e r 9298

This recommendation also holds true for data marts. If you have data marts
that are partitioned, local indexes will usually perform better than global ones.
But, there is a catch. Database systems that give you a choice do not permit the
use of local indexes to support the primary key. The reasoning is simple: the
database is unable to ensure enforcement of a primary key constraint if it must
use multiple independent index structures. This dilemma leads us to a more
controversial area, enforcing referential integrity.

Enforcing Referential Integrity
Today’s relational databases support a host of features to ensure referential
integrity throughout the database. These features often degrade the perfor-
mance of processes that load large amounts of data into the data warehouse.
This is a problem unique to data warehousing, where it is not unusual to have
very large tables containing transactional data spanning many years. The
overhead involved in enforcing key constraints grows as the sizes of the tables
grow. We do not have the luxury of purging old data to maintain trim, efficient
tables, as one does in an OLTP environment.

There is no argument that the ability to enforce referential integrity constraints
within the database system is a very useful and practical feature. However, if
you are faced with large tables, large data loads, and a short processing win-
dow, these features may be your downfall. We suggest that you examine the
alternative of enforcing referential integrity in the loading process, rather than
in the database.

You should examine your existing or planned loading processes, looking at the
data validation they are already performing. Chances are, those processes are
already checking foreign key values, looking for existing rows using the pri-
mary key, and doing other data validation checks. More often than not, these
checks are redundant to the integrity checks in the database. Why perform
them twice? A well-developed loading process can be equally adept at assur-
ing referential integrity as database constraints. Removing those constraints
opens a number of options to efficiently load large amounts of data into the
data warehouse. These options can significantly reduce load times.

Why is this controversial? Those trained to design databases for OLTP systems
insist that database-enforced referential integrity is the only way to go. We
must agree that, for an OLTP system, they are absolutely correct. But, a data
warehouse is different. In an OLTP environment, updates occur through mul-
tiple asynchronous transactions. It is critical that referential integrity checks
occur within the bounds of the transaction being executed; otherwise, a check
that was valid at one moment may no longer be valid the next moment due to
changes made by another concurrent transaction. Timing is everything in this

Data Warehouse Optimization 299

environment, and the only way to ensure proper checks is to handle them at
the database level. A data warehouse, on the other hand, uses batch processes
that load data in a controlled, serial manner. You have control over the
sequencing and dependencies inherent in these processes. You can arrange the
processes so that reference data is loaded first, followed by transactional data.
You can use the process schedule to eliminate potential integrity conflicts.

Even in a real-time data warehouse environment, you have greater control
over the flow and application of transactions than you do in an OLTP environ-
ment. You can establish priorities and queues to deal with the transactions in a
manner more suitable for processing. Data-warehousing processes have a
great deal more latitude because they are not constrained by the human inter-
faces inherent in an OLTP system.

If load times are a problem, we recommend that you consider removing some
constraints from the data warehouse database. This includes primary key con-
straints, foreign key constraints, and unique index constraints. Examine your
loading processes to see where redundancies exist and where elimination of
the constraints will benefit load times. Investigate adding logic to your process
to enforce a constraint that is causing performance problems in the database.
For example, defining a unique primary key index on a large partitioned table
requires use of a global index. Removing the primary key constraint allows
use of local indexes instead.

C h a p t e r 9300

Keys and Physical Schema

The notion of a key in a relational model is purely a logical concept. A primary
key classifies one or more attributes as the unique identifier for instances of the
entity. This manifests itself in the physical schema as a constraint, a rule that is
enforced by the database engine. This constraint basically states that the combi-
nation of values stored in the collection of columns must be unique for the table.
The database system often generates an index on these columns to assist it in
enforcing the constraint. Such an index is often required and is usually referred
to as the primary key index.

However, the tie between a key and an index is a marriage of convenience.
There is no relationship between keys and indexes in relational modeling. Keys
can exist without indexes and indexes can exist without keys. A key is a logical
concept, while an index is a physical structure to aid in locating rows in a table.

The point of all this is that you do not need to create constraints, such as a pri-
mary key constraint, in the physical database to have an index or enforce primary
key rules. Such a rule can be enforced externally and be aided by an index struc-
ture of your choosing. Doing so does not violate the basic concepts of relational
modeling.

Index-Organized Tables
If possible, defining index-organized, also called index-clustered, tables can
aid database performance. An index-organized table is one where the index
and table data are maintained in the same structure. Normally, separate struc-
tures are used, with the table data residing in one data structure and one or
more indexes residing in their own structures with pointers to the appropriate
row in the table structure. Figure 9.6 shows an index-organized table structure.

The advantage of an index-organized structure is the database does not have
to perform the extra step of reading the table data when the index entry is
found. In an index-organized structure, the data is already there since it is part
of the index structure.

A disadvantage of an index-organized structure is the table must only have
one index, based on the primary key. You cannot define alternate indexes or
inversion indexes for index-organized tables. This limits its usefulness to sim-
ple tables, such as code description tables, that do not require alternate access
paths. Yet, even with this limitation, it is a useful technique, particularly when
the data delivery processes include code descriptions and other reference data
in its output.

Indexing Techniques
There are two basic indexing techniques that the data warehouse designer
should use: binary tree (b-tree) indexing and bitmap indexing. B-tree indexing
is used extensively in OLTP database design and is the best choice where
query paths are known and controlled. Bitmap indexes, on the other hand,
perform best in ad hoc query environments and are the index of choice for
dimensional data marts. We will examine both techniques and discuss their
applicability in different situations.

Figure 9.6 Index-organized table.

Table
Index Key ..data..

8920 …
…4802

6392
3928
2908
9273
1782
2813

…
…
…

…
…

Data Warehouse Optimization 301

Note that different database systems provide a variety of indexing structures
beyond the two mentioned here. Structures such as hash indexes or join
indexes present other opportunities to improve performance in specific cir-
cumstances. We have limited the discussion to b-tree and bitmap structures as
they are the most distinct in their capabilities and use.

B-Tree Indexes

Binary tree (b-tree) indexes use a recursive tree structure to store the index
value and pointers to other index nodes and, in the case of a leaf node, a
pointer to the data row. It is called a binary tree because each node visit
requires a binary decision: Is the value on the index node less than the value I
am looking for or is it larger? This test is used to choose one of two paths, pro-
vided by the “left” node and “right” node pointers, to traverse the next node.
Eventually, the path leads to a leaf node that matches or does not match the
value being searched for. If it does not match, the value is not found. If it does
match, the database uses the leaf node pointer to retrieve the data row.

Figure 9.7 shows this basic structure. The diagram and the description repre-
sent a simplified generic structure. In reality, database systems use much more
complex structures based on these principles. These structures are proprietary
and have features to improve performance within the vendor’s specific data-
base environment. But, in general, they all function in a similar manner.

B-Tree Index Types

There are two general types of b-tree indexes: simple indexes and compound
indexes. A simple index is an index based on a single column. A compound
index is an index based on two or more columns. When designing a com-
pound index, the column sequence is very important. The positions of
columns in the index definition have the same significance as the positions of
letters in an alphabetized list. The first column, as for the first letter, is the most
significant and is required to make effective use of the index. If the first column
is not used as a predicate in the query, the index is not usable. It is the same sit-
uation as trying to find a name in the phone book when you only know the
second, third, and fourth letters of the name. The only way to effectively find
all possible names is to search sequentially through the entire phone book.

So, should you avoid compound indexes? Well, no, not really. B-tree indexes
cannot be used in combination with each other. If you had a table with a sim-
ple b-tree index on date and another simple b-tree index on customer number
and you queried for a specific customer on a specific date, the database would
have to choose which index to use. It cannot use both. This choice would be

C h a p t e r 9302

performed by the database’s optimizer, and as a result it would either look at
all rows for the specific date and scan for customer or look at all rows for the
customer and scan for date. If, on the other hand, you defined a compound
b-tree index using date and customer, it would use that index to locate the
rows directly. The compound index would perform much better than either of
the two simple indexes.

Figure 9.7 Simplified b-tree index structure.

C
ar

s
ID

Ty
p

e
C

ol
or

..o
th

er
..

1D
G

S9
02

Se
da

n
W

hi
te

…
1H

U
E0

39
Se

da
n

Si
lv

er
2U

U
E3

84
C

ou
p

e
Re

d
2Z

U
D

92
3

C
ou

p
e

W
hi

te
3A

BD
03

8
3K

ES
73

4
3I

EK
29

9
3J

SU
82

3
3L

O
P9

29
3L

M
N

34
7

3S
D

F2
93

Se
da

n

Se
da

n
Se

da
n

Se
da

n

W
hi

te

W
hi

te

Re
d

Re
d

C
ou

p
e

C
ou

p
e

C
ou

p
e

Si
lv

er

Si
lv

er
Si

lv
er

… … … … … … … … … …

C
ar

s.
ID

 B
-t

re
e

In
de

x
(U

ni
q

ue
)

ID
Pa

re
nt

1D
G

S9
02

1H
U

E0
39

2U
U

E3
84

2Z
U

D
92

3
3A

BD
03

8
3K

ES
73

4
3I

EK
29

9
3J

SU
82

3
3L

O
P9

29
3L

M
N

34
7

3S
D

F2
93

Ro
w

2
1

3
2

7
3

5
4

3
5

10
6

ro
ot

7
6

8
11

9
7

10
10

11

< 1 2 4 8 3 6 9

> 5 10 11

=

Data Warehouse Optimization 303

B-Tree Index Advantages

B-tree indexes work best in a controlled environment. That is to say, you are
able to anticipate how the tables will be accessed for both updates and queries.
This is certainly attainable in the enterprise data warehouse as both the update
and delivery processes are controlled by the data warehouse development
team. Careful design of the indexes provides optimal performance with mini-
mal overhead.

B-tree indexes are low maintenance indexes. Database vendors have gone to
great lengths to optimize their index structures and algorithms to maintain
balanced index trees at all times. This means that frequent updating of tables
does not significantly degrade index performance. However, it is still a good
idea to rebuild the indexes periodically as part of a normal maintenance cycle.

B-Tree Index Disadvantages

As mentioned earlier, b-tree indexes cannot be used in combination with each
other. This means that you must create sufficient indexes to support the antic-
ipated accesses to the table. This does not necessarily mean that you need to
create a lot of indexes. For example, if you have a table that is queried by date
and by customer and date, you need only create a single compound index
using date and customer in that order to support both.

The significance of column order in a compound index is another disadvan-
tage. You may be required to create multiple compound indexes or accept that
some queries will require sequential scans after exhausting the usefulness of
an existing index. Which way you go depends on the indexes you have and the
nature of the data. If the existing index results in a scan of a few dozen rows for
a particular query, it probably isn’t worth the overhead to create a new index
structure to overcome the scan. Keep in mind, the more index structures you
create, the slower the update process becomes.

B-tree indexes tend to be large. In addition to the columns that make up the
index, an index row also contains 16 to 24 additional bytes of pointer and other
internal data used by the database system. Also, you need to add as much as 40
percent to the size as overhead to cover nonleaf nodes and dead space. Refer to
your database system’s documentation for its method of estimating index sizes.

Bitmap Indexes

Bitmap indexes are almost never seen in OLTP type databases, but are the dar-
lings of dimensional data marts. Bitmap indexes are best used in environments
whose primary purpose is to support ad hoc queries. These indexes, however,
are high-maintenance structures that do not handle updating very well. Let’s
examine the bitmap structure to see why.

C h a p t e r 9304

Bitmap Structure

Figure 9.8 shows a bitmap index on a table containing information about cars.
The index shown is for the Color column of the table. For this example, there
are only three colors: red, white, and silver. A bitmap index structure contains
a series of bit vectors. There is one vector for each unique value in the column.
Each vector contains one bit for each row in the table. In the example, there are
three vectors for each of the three possible colors. The red vector will contain a
zero for the row if the color in that row is not red. If the color in the row is red,
the bit in the red vector will be set to 1.

If we were to query the table for red cars, the database would use the red color
vector to locate the rows by finding all the 1 bits. This type of search is fairly
fast, but it is not significantly different from, and possibly slower than, a b-tree
index on the color column. The advantage of a bitmap index is that it can be
used in combination with other bitmap indexes. Let’s expand the example to
include a bitmap index on the type of car. Figure 9.9 includes the new index. In
this case, there are two car types: sedans and coupes.

Now, the user enters a query to select all cars that are coupes and are not white.
With bitmap indexes, the database is able to resolve the query using the
bitmap vectors and Boolean operations. It does not need to touch the data until
it has isolated the rows it needs. Figure 9.10 shows how the database resolves
the query. First, it takes the white vector and performs a Not operation. It takes
that result and performs an And operation with the coupe vector. The result is
a vector that identifies all rows containing red and silver coupes. Boolean
operations against bit vectors are very fast operations for any computer. A
database system can perform this selection much faster than if you had created
a b-tree index on car type and color.

Figure 9.8 A car color bitmap index.

Cars Color Bit Map Index
ID Type Color ..other..

1DGS902 Sedan White …
1HUE039 Sedan Silver
2UUE384 Coupe Red
2ZUD923 Coupe White
3ABD038
3KES734
3IEK299
3JSU823
3LOP929
3LMN347
3SDF293

Sedan

Sedan
Sedan

Sedan

White

White

Red

Red

Coupe

Coupe
Coupe

Silver

Silver
Silver

…
…
…
…
…
…
…
…
…
…

WhiteRedSilver
0

1

0
0 0

0

0

1
1

10

0

0 0
0 0
00

0

1
1

1
1

1
1

0
0 0
0 0

0
0

1

Data Warehouse Optimization 305

Figure 9.9 Adding a car type bitmap index.

Since a query can use multiple bitmap indexes, you do not need to anticipate the
combination of columns that will be used in a query. Instead, you simply create
bitmap indexes on most, if not all, the columns in the table. All bitmap indexes
are simple, single-column indexes. You do not create, and most database sys-
tems will not allow you to create, compound bitmap indexes. Doing so does not
make much sense, since using more than one column only increases the cardi-
nality (the number of possible values) of the index, which leads to greater index
sparsity. A separate bitmap index on each column is a more effective approach.

C
ar

s
C

ol
or

 B
it

M
ap

 In
de

x
ID

Ty
p

e
C

ol
or

..o
th

er
..

1D
G

S9
02

Se
da

n
W

hi
te

…
1H

U
E0

39
Se

da
n

Si
lv

er
2U

U
E3

84
C

ou
p

e
Re

d
2Z

U
D

92
3

C
ou

p
e

W
hi

te
3A

BD
03

8
3K

ES
73

4
3I

EK
29

9
3J

SU
82

3
3L

O
P9

29
3L

M
N

34
7

3S
D

F2
93

Se
da

n

Se
da

n
Se

da
n

Se
da

n

W
hi

te

W
hi

te

Re
d

Re
d

C
ou

p
e

C
ou

p
e

C
ou

p
e

Si
lv

er

Si
lv

er
Si

lv
er

… … … … … … … … … …

W
hi

te
Re

d
Si

lv
er 0

1

0 0
0 01

1
1

0

0

0
0 0

0
0

0 0

1
1

1
1

1 1

0
0

0
0

0
0

0
0

1

Ty
p

e
Bi

t
M

ap
 In

de
x

C
ou

p
e

Se
da

n
1

0 0
1

1
0

0

0
1 0 1

0 11

0
1 0 0

0 1
 1

1

C h a p t e r 9306

Figure 9.10 Query evaluation using bitmap indexes.

C
ar

s
C

ol
or

ID
Ty

pe
C

ol
or

..o
th

er
..

1D
G

S9
02

Se
da

n
W

hi
te

…
1H

U
E0

39
Se

da
n

Si
lv

er
2
U

U
E3

8
4

C
o

u
p

e
R

ed
2Z

U
D

92
3

C
ou

pe
W

hi
te

3A
BD

03
8

3K
ES

73
4

3I
EK

29
9

3J
SU

82
3

3
LO

P
9
2
9

3
LM

N
3
4
7

3S
D

F2
93

Se
da

n

Se
da

n
Se

da
n

Se
da

n

W
hi

te

W
hi

te

Re
d

R
ed

C
ou

pe

C
o

u
p

e
C

o
u

p
e

Si
lv

er

Si
lv

er
Si

lv
er

… … … … … … … … … …

W
hi

te

10 01 01 1 0 0 0 0

Ty
pe

C

ou
pe

0 0 1 01 0 1 0 0 1 1
01 10 10 0 1 1 1 1N
ot

W
hi

te
0 0 1 00 0 0 0 0 1 1

N
o

t
A

n
d

R
es

u
lt

Data Warehouse Optimization 307

Cardinality and Bitmap Size

Older texts not directly related to data warehousing warn about creating
bitmap indexes on columns with high cardinality, that is to say, columns with
a large number of possible values. Sometimes they will even give a number,
say 100 values, as the upper limit for bitmap indexes. These warnings are
related to two issues with bitmaps, their size and their maintenance overhead.
In this section, we discuss bitmap index size.

The length of a bitmap vector is directly related to the size of the table. The vec-
tor needs 1 bit to represent the row. A byte can store 8 bits. If the table contains
8 million rows, a bitmap vector will require 1 million bytes to store all the bits.
If the column being indexed has a very high cardinality with 1000 different
possible values, then the size of the index, with 1000 vectors, would be 1 bil-
lion bytes. One could then imagine that such a table with indexes on a dozen
columns could have bitmap indexes that are many times bigger than the table
itself. At least it would appear that way on paper.

In reality, these vectors are very sparse. With 1,000 possible values, a vector
representing one value contains far more 0 bits than 1 bits. Knowing this, the
database systems that implement bitmap indexes use data compression tech-
niques to significantly reduce the size of these vectors. Data compression can
have a dramatic effect on the actual space used to store these indexes. In actual
use, a bitmap index on a 1-million-row table and a column with 30,000 differ-
ent values only requires 4 MB to store the index. A comparable b-tree index
requires 20 MB or more, depending on the size of the column and the overhead
imposed by the database system. Compression also has a dramatic effect on
the speed of these indexes. Since the compressed indexes are so small, evalua-
tion of the indexes on even very large tables can occur entirely in memory.

Cardinality and Bitmap Maintenance

The biggest downside to bitmap indexes is that they require constant mainte-
nance to remain compact and efficient. When a column value changes, the
database must update two bitmap vectors. For the old value, it must change
the 1 bit to a 0 bit. To do this it locates the vector segment of the bit, decom-
presses the segment, changes the bit, and compresses the segment. Chances
are that the size of the segment has changed, so the system must place the seg-
ment in a new location on disk and link it back to the rest of the vector. This
process is repeated for the new value. If the new value does not have a vector,
a new vector is created. This new vector will contain bits for every row in the
table, although initially it will be very small due to compression.

The repeated changes and creations of new vectors severely fragments the
bitmap vectors. As the vectors are split into smaller and smaller segments, the
compression efficiency decreases. Size increases can be dramatic, with indexes

C h a p t e r 9308

growing to 10 or 20 times normal size after updating 5 percent of a table. Fur-
thermore, the database must piece together the segments, which are now spread
across different areas of the disk in order to examine a vector. These two prob-
lems, increase in size and fragmentation, work in concert to slow down such
indexes. High-cardinality indexes make the problem worse because each vector
is initially very small due to its sparsity. Any change to a vector causes it to split
and fragment. The only way to resolve the problem is to rebuild the index after
each data load. Fortunately, this is not a big problem in a data warehouse envi-
ronment. Most database systems can perform this operation quickly.

Where to Use Bitmap Indexes

Without question, bitmap indexes should be used extensively in dimensional
data marts. Each fact table foreign key and some number of the dimensional
attributes should be indexed in this manner. In fact, you should avoid using
b-tree indexes in combination with bitmap indexes in data marts. The reason
for this is to prevent the database optimizer from making a choice. If you use
bitmaps exclusively, queries perform in a consistent, predictable manner. If
you introduce b-tree indexes as well, you invariably run into situations where,
for whatever reason, the optimizer makes the wrong choice and the query runs
for a long period of time.

Use of bitmap indexes in the data warehouse depends on two factors: the use of
the table and the means used to update the table. In general, bitmap indexes are
not used because of the update overhead and the fact that table access is known
and controlled. However, bitmap indexes may be useful for staging, or delivery
preparation, tables. If these tables are exposed for end-user or application access,
bitmaps may provide better performance and utility than b-tree indexes.

Conclusion
We have presented a variety of techniques to organize the data in the physical
database structure to optimize performance and data management. Data clus-
tering and index-organized tables can reduce the I/O necessary to retrieve
data, provided the access to the data is known and predictable. Each technique
has a significant downside if access to the data occurs in an unintended man-
ner. Fortunately, the loading and delivery processes are controlled by the data
warehouse development team. Thus, access to the data warehouse is known
and predictable. With this knowledge, you should be able to apply the most
appropriate technique when necessary.

Table partitioning is primarily used in a data warehouse to improve the man-
ageability of large tables. If the partitions are based on dates, they help reduce
the size of incremental backups and simplify the archival process. Date-based
partitions can also be used to implement a tiered storage strategy that can

Data Warehouse Optimization 309

significantly reduce overall disk storage costs. Date-based partitions can also
provide performance improvements for queries that cover a large time span,
allowing for parallel access to multiple partitions. We also reviewed partition-
ing strategies designed specifically for performance enhancement by forcing
parallel access to partitioned data. Such strategies are best applied to data mart
tables, where query performance is of primary concern.

We also examined indexing techniques and structures. For partitioned tables,
local indexes provide the best combination of performance and manageability.
We looked at the two most common index structures, b-tree and bitmap indexes.
B-tree indexes are better suited for the data warehouse due to the frequency of
updating and controlled query environment. Bitmap indexes, on the other hand,
are the best choice for ad hoc query environments supported by the data marts.

Optimizing the System Model

The title for this section is in some ways an oxymoron. The system model itself
is purely a logical representation, while it is the technology model that repre-
sents the physical database implementation. How does one optimize a model
that is never queried? What we address in this section are changes that can
improve data storage utilization and performance, which affect the entity
structure itself. The types of changes discussed here do not occur “under the
hood,” that is, just to the physical model, but also propagate back to the system
model and require changes to the processes that load and deliver data in the
data warehouse. Because of the side effects of such changes, these techniques
are best applied during initial database design. Making such changes after the
fact to an existing data warehouse may involve a significant amount of work.

Vertical Partitioning
Vertical partitioning is a technique in which a table with a large number of
columns is split into two or more tables, each with an exclusive subset of the
nonkey columns. There are a number of reasons to perform such partitioning:

Performance. A smaller row takes less space. Updates and queries perform
better because the database is able to buffer more rows at a time.

Change history. Some values change more frequently than others. By sepa-
rating high-change-frequency and low-change-frequency columns, the
storage requirements are reduced.

Large text. If the row contains large free-form text columns, you can gain
significant storage and performance efficiencies by placing the large text
columns in their own tables.

C h a p t e r 9310

We now examine each of these reasons and how they can be addressed using
vertical partitioning.

Vertical Partitioning for Performance

The basic premise here is that a smaller row performs better than a larger row.
There is simply less data for the database to handle, allowing it to buffer more
rows and reduce the amount of physical I/O. But to achieve such efficiencies
you must be able to identify those columns that are most frequently delivered
exclusive of the other columns in the table. Let’s examine a business scenario
where vertical partitioning in this manner would prove to be a useful endeavor.

During the development of the data warehouse, it was discovered that
planned service level agreements would not be met. The problem had to do
with the large volume of order lines being processed and the need to deliver
order line data to data marts in a timely manner. Analysis of the situation
determined that the data marts most important to the company and most vul-
nerable to service level failure only required a small number of columns from
the order line table. A decision was made to create vertical partitions of the
Order Line table. Figure 9.11 shows the resulting model.

The original Order Line table contained all the columns in the Order Line 1
and Order Line 2 tables. In the physical implementation, only the Order Line 1
and Order Line 2 tables are created. The Order Line 1 table contains the data
needed by the critical data marts. To expedite delivery to the critical marts, the
update process was split so the Order Line 1 table update occurs first. Updates
to the Order Line 2 table occur later in the process schedule, removed from the
critical path.

Notice that some columns appear in both tables. Of course, the primary key
columns must be repeated, but there is no reason other columns should not be
repeated if doing so helps achieve process efficiencies. It may be that there are
some delivery processes that can function faster by avoiding a join if the Order
Line 2 table contains some values from Order Line 1. The level of redundancy
depends on the needs of your application.

Because the Order Line 1 table’s row size is smaller than a combined row,
updates to this table run faster. So do data delivery processes against this table.
However, the combined updating time for both parts of the table is longer than
if it was a single table. Data delivery processes also take more time, since there
is now a need to perform a join, which was not necessary for a single table. But,
this additional cost is acceptable if the solution enables delivery of the critical
data marts within the planned service level agreements.

Data Warehouse Optimization 311

Figure 9.11 Vertical partitioning.

Vertical partitioning to improve performance is a drastic solution to a very spe-
cific problem. We recommend performance testing within your database envi-
ronment to see if such a solution is of benefit to you. It is easier to quantify a
vertical partitioning approach used to control change history tracking. This is
discussed in the next section.

Vertical Partitioning of Change History

Given any table, there are most likely some columns that are updated more fre-
quently than others. The most likely candidates for this approach are tables
that meet the following criteria:

Order Line 1

Order Identifier (FK)
Order Line Identifier (FK)

Profit Center Identifier
Ship From Plant Identifier
Product Identifier
Unit Of Measure Identifier
Order Quantity
Confirmed Quantity
Scheduled Delivery Date
Planned Ship Date
Net Value
Gross Value
Standard Cost Value
Reject Reason
Substitution Indicator
Ship To Customer Identifier
Sold To Customer Identifier
Update Date

Substituted Order Line Identifier (FK)

Order Line 2

Order Identifier (FK)
Order Line Identifier (FK)

Product Identifier
Item Category
Product Batch Identifier
Creation Date
Pricing Date
Requested Delivery Date
Net Price
Price Quantity
Price Units
Pricing Unit of Measure
Gross Weight
Net Weight
Weight Unit of Measure
Delivery Group
Delivery Route
Shipping Point
Terms Days 1
Terms Percent 1
Terms Days 2
Terms Percent 2
Terms Days 3
Scheduled Delivery Time
Material Category 1
Material Category 2
Material Category 3
Material Category 4
Material Category 5
Customer Category 1
Customer Category 2
Customer Category 3
Customer Category 4
Customer Category 5
Ship To Address Line 1
Ship To Address Line 2
Ship To Address Line 3
Ship To Address City
Ship To Address State
Ship To Address Postal Code
Bill To Customer Identifier
Update Date

Order Line

Order Identifier
Order Line Identifier

C h a p t e r 9312

■■ You are maintaining a change history.

■■ Rows are updated frequently.

■■ Some columns are updated much more frequently than others.

■■ The table is large.

By keeping a change history we mean creating a new row whenever something
in the current row has changed. If the row instance has a fairly long lifespan
that accumulates many changes over time, you may be able to reduce the stor-
age requirements by partitioning columns in the table based on the updating
frequency. To do this, the columns in the table should be divided into at least
three categories: never updated, seldom updated, and frequently updated. In
general, those columns in the seldom updated category should have at least
one-fifth the likelihood of being updated over the columns in the frequently
updated category.

Categorizing the columns is best done using hard numbers derived from the
past processing history. However, this is often not possible, so it becomes a
matter of understanding the data mart applications and the business to deter-
mine where data should be placed. The objective is to reduce the space require-
ments for the change history by generating fewer and smaller rows. Also,
other than columns such as update date or the natural key, no column should
be repeated across these tables.

However, this approach does introduce some technical challenges. What was
logically a single row is now broken into two or more tables with different
updating frequencies. Chapter 8 covered a similar situation as it applied to
transaction change capture. Both problems are logically similar and result in
many-to-many relationships between the tables. This requires that you define
associative tables between the partition tables to track the relationships
between different versions of the partitioned rows. In this case, a single associ-
ation table would suffice. Figure 9.12 shows a model depicting frequency-based
partitioning of the Order Line table.

Notice that the partitioned tables have been assigned surrogate keys, and the
Order Line table acts as the association table. The column Current Indicator is
used to quickly locate the most current version of the line. The actual separa-
tion of columns in this manner depends on the specific application and busi-
ness rules. The danger with using this approach is that changes in the
application or business rules may drastically change the nature of the updates.
Such changes may neutralize any storage savings attained using this
approach. Furthermore, changing the classification of a column by moving it
to another table is very difficult to do once data has been loaded and a history
has been established.

Data Warehouse Optimization 313

Figure 9.12 Update-frequency-based partitioning.

If storage space is at a premium, further economies can be gained by subdi-
viding the frequency groupings by context. For example, it may make sense to
split Order Line Seldom further by placing the ship to address columns into a
separate table. Careful analysis of the updating patterns can determine if this
is desirable.

Vertical Partitioning of Large Columns

Significant improvements in performance and space utilization can be achieved
by separating large columns from the primary table. By large columns we mean
free-form text fields over 100 bytes in size or large binary objects. This can
include such things as comments, documents, maps, engineering drawings,

Order Line Frequent

Order Line Frequent Key

Unit Of Measure Identifier
Product Batch Identifier
Confirmed Quantity
Scheduled Delivery Date
Delivery Group
Update Date

Order Line Never

Order Line Never Key

Profit Center Identifier
Product Identifier
Item Category
Creation Date
Weight Unit of Measure
Substitution Indicator
Substituted Order Line Identifier
Material Category 1
Material Category 2
Material Category 3
Material Category 4
Material Category 5
Customer Category 1
Customer Category 2
Customer Category 3
Customer Category 4
Customer Category 5
Ship To Customer Identifier
Sold To Customer Identifier
Bill To Customer Identifier

Order Line

Order Identifier
Order Line Identifier
Update Date

Current Indicator

Order Line Never Key (FK)
Order Line Seldom Key (FK)
Order Line Frequent Key (FK)

Order Line Seldom

Order Line Seldom Key

Ship From Plant Identifier
Ordered Quantity
Pricing Date
Requested Delivery Date
Planned Ship Date
Net Price
Price Quantity
Price Units
Pricing Unit of Measure
Net Value
Gross Value
Standard Cost Value
Gross Weight
Net Weight
Reject Reason
Delivery Route
Shipping Point
Terms Days 1
Terms Percent 1
Terms Days 2
Terms Percent 2
Terms Days 3
Scheduled Delivery Time
Ship To Address Line 1
Ship To Address Line 2
Ship To Address Line 3
Ship To Address City
Ship To Address State
Ship To Address Postal Code
Update Date

C h a p t e r 9314

photos, audio tracks, or other media. The basic idea is to move such columns
out of the way so their bulk does not impede update or query performance.

The technique is simple. Create one or more additional tables to hold these
fields, and place foreign keys in the primary table to reference the rows. How-
ever, before you apply this technique, you should investigate how your data-
base stores large columns. Depending on the datatype you use, your database
system may actually separate the data for you. In many cases, columns
defined as BLOBs (binary large objects) or CLOBs (character large objects) are
already handled as separate structures internally by the database system. Any
effort spent to vertically partition such data only results in an overengineered
solution. Large character columns using CHAR or VARCHAR datatypes, on
the other hand, are usually stored in the same data structure as the rest of the
row’s columns. If these columns are seldom used in deliveries, you can
improve delivery performance by moving those columns into another table
structure.

Denormalization
Whereas vertical partitioning is a technique in which a table’s columns are
subdivided into additional tables, denormalization is a technique that adds
redundant columns to tables. These seemingly opposite approaches are used
to achieve processing efficiencies. In the case of denormalization, the goal is to
reduce the number of joins necessary in delivery queries.

Denormalization refers to the act of reducing the normalized form of a model.
Given a model in 3NF, denormalizing the model produces a model in 2NF or
1NF. As stated before in this book, a model is in 3NF if the entity’s attributes
are wholly dependent on the primary key. If you start with a correct 3NF
model and move an attribute from an Order Header entity whose primary key
is the Order Identifier and place it into the Order Line entity whose primary
key is the Order Identifier and Order Line Identifier, you have denormalized
the model from 3NF to 2NF. The attribute that was moved is now dependent
on part of the primary key, not the whole primary key.

When properly implemented in the physical model, a denormalized model can
improve data delivery performance provided that it actually eliminates joins
from the query. But such performance gains can come at a significant cost to the
updating process. If a denormalized column is updated, that update usually
spans many rows. This can become a significant burden on the updating
process. Therefore, it is important that you compare the updating and storage
costs with the expected benefits to determine if denormalization is appropriate.

Data Warehouse Optimization 315

Subtype Clusters
Figure 9.13 shows an example of a subtype cluster. Using banking as an exam-
ple, it is common to model an Account entity in this manner because of
the attribute disparity between different types of accounts. Yet, it may not be
optimal to implement the physical model in this manner. If the model were
physically implemented as depicted, delivery queries would need to query
each account type separately or perform outer joins to each subtype table and
evaluate the results based on the account type. This is because the content of
each of the subtype tables is mutually exclusive. An account of a particular
type will only have a row in one of the subtype tables.

There are two alternative physical implementations within a data warehouse.
The first is to implement a single table with all attributes and another is to
implement only the subtype tables, with each table storing the supertype
attributes. Let’s examine each approach.

The first method is to simply define one table with all the columns. Having one
table simplifies the delivery process since it does not require outer joins or
forced type selection. This is a workable solution if your database system
stores its rows as variable length records. If data is stored in this manner, you
do not experience significant storage overhead for the null values associated
with the columns for the other account types. Whereas, if the database stores
rows as fixed length records, then space is allocated for all columns regardless
of content. In this case, such an approach significantly increases the space
requirements for the table. If you take this approach, do not attempt to consol-
idate different columns from different subtypes in order to reduce the number
of columns. The only time when this is permissible is when the columns rep-
resent the same data. Attempting to store different data in the same column is
a bad practice that goes against fundamental data modeling tenants.

The other method is to create the subtype tables only. In this case, the columns
from the supertype table (Account) are added to each subtype table. This
approach eliminates the join between the supertype and subtype tables, but
requires a delivery process to perform a UNION query if more than one type
of account is needed. This approach does not introduce any extraneous
columns into the tables. Thus, this approach is more space efficient than the
previous approach in databases that store fixed-length rows. It may also be
more efficient for data delivery processes if those processes are subtype spe-
cific. The number of rows in a subtype table is only a portion of the entire
population. Type-specific processes run faster because they deal with smaller
tables than in the single-table method.

C h a p t e r 9316

Figure 9.13 Subtype cluster model.

Summary

This chapter reviewed many techniques that can improve the performance of
your data warehouse and its implementation. We made recommendations for
altering or refining the system and technology data models. While we believe

A
cc

o
u

n
t T

yp
e

A
cc

o
u

n
t

A
cc

ou
nt

 Id
en

tif
ie

r

A
cc

ou
nt

 O
w

ne
r

Id
en

tif
ie

r
A

cc
ou

nt
 T

yp
e

A
cc

ou
nt

 C
re

at
io

n
D

at
e

A
cc

ou
nt

 B
al

an
ce

...
 o

th
er

 a
tt

rib
ut

es
 ..

.

C
h

ec
k
in

g
 A

cc
o

u
n

t

A
cc

ou
nt

 Id
en

tif
ie

r
(F

K)

Se
rv

ic
e

Fe
e

A
m

ou
nt

M
in

im
um

 B
al

an
ce

 R
eq

ui
re

m
en

t
...

 o
th

er
 a

tt
rib

ut
es

 ..
.

Sa
vi

n
g

 A
cc

o
u

n
t

A
cc

ou
nt

 Id
en

tif
ie

r
(F

K)

Ra
te

 M
et

ho
d

Pa
ss

bo
ok

 T
yp

e
..

ot
he

r
at

tr
ib

ut
es

...

C
er

ti
fi

ca
te

 A
cc

o
u

n
t

A
cc

ou
nt

 Id
en

tif
ie

r
(F

K)

C
er

tif
ic

at
e

Te
rm

M
at

ur
ity

 D
at

e
In

te
re

st
 R

at
e

C
om

p
ou

nd
 M

et
ho

d
Ro

llo
ve

r
M

et
ho

d
...

 o
th

er
 a

tt
rib

ut
es

 ..
.

Se
cu

re
d

 L
o

an
 A

cc
o

u
n

t

A
cc

ou
nt

 Id
en

tif
ie

r
(F

K)

Se
cu

rit
y

Ty
p

e
C

ol
la

te
ra

l V
al

ue
Lo

an
 T

er
m

Lo
an

 M
at

ur
ity

 D
at

e
Pa

ym
en

t
M

et
ho

d
Pa

ym
en

t
Fr

eq
ue

nc
y

...
 o

th
er

 a
tt

rib
ut

es
 ..

.

Data Warehouse Optimization 317

these recommendations are valid, we also warn that due diligence is in order.
As mentioned earlier, every vendor’s database system has different imple-
mentation approaches and features that may invalidate or enforce our recom-
mendations. Other factors, such as your specific hardware environment, also
play into the level of improvement or degradation such changes will impose.
Unfortunately, other than placing the entire database in memory, there is no
magic bullet that always ensures optimal performance.

If this is your first time at implementing a data warehouse, we recommend
that, short of implementing table partitioning, you do not make assumptions
about database performance issues in your design. Instead, spend some time
to test scenarios or address performance problems as they occur in the devel-
opment and testing phases. In most cases, such problems can be resolved with
minor adjustments to the loading process or physical schema. Doing so avoids
the risk of overengineering a solution to problems that may not exist.

C h a p t e r 9318

Operation and
Management

Once the data warehouse and its supporting models are developed, they need to
be maintained and easily enhanced. This last part of the book deals with the
activities that ensure that the data warehouse will continue to provide busi-
ness value and appropriate service level expectations. These chapters also pro-
vide information about deployment options for companies that do not start
with a clean slate, a common situation in most organizations.

In Chapter 10, we describe how the data warehouse model evolves in a chang-
ing business environment, and in Chapter 11, we explain how to maintain the
different data models that support the BI environment.

Chapter 12 deals with deployment options. We recognize that most companies
start out with some isolated data marts and a variety of disparate decision sup-
port systems. This chapter provides several options to bring order out of that
chaos.

The last chapter compares the two leading philosophies about the design of a
BI environment—the relational modeling approach presented in this book as
the Corporate Information Factory and the multidimensional approach pro-
moted by Dr. Ralph Kimball. After the two approaches are discussed, differ-
ences are explained in terms of their perspectives, data flow, implementation
speed and cost, volatility, flexibility, functionality, and ongoing maintenance.

PA RTTHREE

Installing Custom Controls 321

Accommodating Business Change

C H A P T E R 10

Building an infrastructure to support the ongoing operation and future expan-
sion of a data warehouse can significantly reduce the effort and resources
required to keep the warehouse running smoothly. This chapter looks at the
challenges faced by a data warehouse support group and presents modeling
techniques to accommodate future change.

This chapter will first look at how change affects the data warehouse. We will
look at why changes occur, the importance of controlling the impact of those
changes, and how to field changes to the data warehouse. In the next section,
we will examine how you can build flexibility in your data warehouse model
so that it is more adaptable to future changes. Finally, we will look at two com-
mon and challenging business changes that affect a data warehouse: the inte-
gration of similar but disparate source systems and expanding the scope of the
data warehouse.

The Changing Data Warehouse

The Greek philosopher, Heraclitus, said, “Change alone is unchanging.” Even
though change is inevitable, there is a natural tendency among most people to
resist change. This resistance often leads to tension and friction between indi-
viduals and departments within the organization. And, although we do not like

321

to admit it, IT organizations are commonly perceived as being resistant to
change. Whether this perception is deserved or not, the data warehouse organi-
zation must overcome this perception and embrace change. After all, one of the
significant values of a data warehouse is the ability it provides for the business
to evaluate the effect of a change in their business. If the data warehouse is
unable to change with the business, its value will diminish to the point were the
data warehouse becomes irrelevant. How you, your team, and your company
deal with change has a profound effect on the success of the data warehouse.

In this section, we examine data warehouse change at a high level. We look at
why changes occur and their effect on the company and the data warehouse
team. Later in this chapter, we dig deeper into the technical issues and tech-
niques to create an environment that is adaptable to minimize the effect of
future changes.

Reasons for Change
There are countless reasons for changes to be made to the data warehouse.
While the requests for change all come from within the company, occasionally
these changes are due to events occurring outside the company. Let us exam-
ine the sources of change:

Extracompany changes. These are changes outside the direct control of the
company. Changes in government regulations, consumer preference, or
world events, or changes by the competition can affect the data warehouse.
For example, the government may introduce a new use tax structure that
would require the collection of additional demographic information about
customers.

Intracompany changes. These are changes introduced within the company.
We can most certainly expect that there will be requests to expand the scope
of the data warehouse. In fact, a long list of requests to add new information
is a badge of honor for a data warehouse implementation. It means the com-
pany is using what is there and wants more. Other changes can come about
due to new business rules and policies, operational system changes, reorga-
nizations, acquisitions, or entries into new lines of business or markets.

Intradepartmental changes. These are changes introduced within the IT
organization. These types of changes most often deal with the technical
infrastructure. Hardware changes, or changes in software or software ver-
sions, are the most common. Often these changes are transparent to the
business community at large, so the business users usually perceive them
as noncritical.

C h a p t e r 10322

Intrateam changes. These are changes introduced within the data warehouse
team. Bug fixes, process reengineering, and database optimizations are the
most common. These often occur after experience is gained from monitoring
usage patterns and the team’s desire to meet service level agreements.

A final source of change worth mentioning is personnel changes. Personnel
changes within the team are primarily project management issues that do not
have a material effect on the content of the data warehouse. However, personnel
changes within the company, particularly at the executive and upper manage-
ment levels, may have a profound effect on the scope and direction of the data
warehouse.

Controlling Change
While it is important to embrace change, it is equally important to control it.
Staff, time, and money are all limited resources, so mechanisms need to be in
place to properly manage and apply changes to the data warehouse.

There are many fine books on project management that address the issues of
resource planning, prioritization, and managing expectations. We recommend
the data warehouse scope and priorities be directed by a steering committee
composed of upper management. This takes the data warehouse organization
itself out of the political hot seat where they are responsible for determining
whose requests are next in line for implementation. Such a committee, how-
ever, should not be responsible for determining schedules and load. These
should be the result of negotiations with the requesting group and the data
warehouse team. Also, a portion of available resources should be reserved to
handle intradepartmental and intrateam changes as the need arises. Allocating
only 5 to 6 hours of an 8-hour day for project work provides a reserve that
allows the data warehouse team to address critical issues that are not exter-
nally perceived as important as well as to provide resources to projects that are
falling behind schedule.

Another aspect of the data warehouse is data stewardship. Specific personnel
within the company should be designated as the stewards of specific data
within the data warehouse. The stewards of the data would be given overall
responsibility for the content, definition, and access to the data. The responsi-
bilities of the data steward include:

■■ Establish data element definitions, specifying valid values where applica-
ble, and notifying the data warehouse team whenever there is a change in
the defined use of the data.

Accommodating Business Change 323

■■ Resolve data quality issues, including defining any transformations.

■■ Establish integration standards, such as a common coding system.

■■ Control access to the data. The data steward should be able to define
where and how the data should be used and by whom. This permission
can range from a blanket “everybody for anything” to requiring a review
and approval by the data steward for requests for certain data elements.

■■ Approve use of the data. The data steward should review new data
requests to validate how the data is to be used. This is different from con-
trolling access. This responsibility ensures that the data requestor under-
stands the data elements and is applying them in a manner consistent
with their defined use.

■■ Participate in user acceptance testing. The data steward should always be
“in the loop” on any development projects involving his or her data. The
data steward should be given the opportunity to participate in a manner
he or she chooses.

Within the technical environment, the data warehouse environment should be
treated the same as any other production system. Sufficient change control and
quality assurance procedures should be in place. If you have a source code
management and versioning system, it should be integrated into your devel-
opment environment. At a minimum, the creation of development and quality
assurance database instances is required to support changes once the data
warehouse goes into production. Figure 10.1 shows the minimal data ware-
house landscape to properly support a production environment.

Figure 10.1 Production data warehouse landscape.

Development Quality
Assurance

Production

Process rework Data refresh

Accepted changesCompleted
changes

Initial coding and testing
of proposed changes
The development
environment is usually
very unstable.

User acceptance testing
of development changes.
This may also be used
for end-user training.

C h a p t e r 10324

Implementing Change
The data warehouse environment cuts a wide swath though the entire com-
pany. While operational applications are usually departmentally focused, the
data warehouse is the only application with an enterprise-wide scope. Because
of this, any change to the data warehouse has the potential of affecting every-
one in the company. Furthermore, if this is a new data warehouse implementa-
tion, you must also deal with an understandable skepticism with the numbers
among the user community. With this in mind, the communication of planned
changes to the user community and the involvement of those users in the vali-
dation and approval of changes are critical to maintain confidence and stability
for the data warehouse.

A change requestor initiates changes. It is the responsibility of the change
requestor to describe, in business terms, what the nature of the change is, how
it will be used, and what the expected value to the business. The change
requestor should also participate in requirements gathering, analysis, discus-
sions with other user groups, and other activities pertinent to the requested
change. The change requestor should also participate in testing and evaluating
the change as discussed later in this section.

As shown in Figure 10.1, the development instance would be used by devel-
opers to code and test changes. After review, those changes should be
migrated to the quality assurance instance for system and user acceptance test-
ing. At this point, end users should be involved to evaluate and reconcile any
changes to determine if they meet the end users’ requirements and that they
function correctly. After it has cleared this step, the changes should be applied
to the production system.

Proper user acceptance testing prior to production release is critical. It creates
a partnership between the data warehouse group, the data steward, and the
change requestor. As a result of this partnership, these groups assume respon-
sibility for the accuracy of the data and can then assist in mitigating issues that
may arise. It is also worthwhile to emphasize at this point the importance of
proper communication between the data warehouse group and the user
groups. It is important that the requirement of active participation by the user
community in the evaluation, testing, and reconciliation of changes be estab-
lished up front, approved by the steering committee, and presented to the user
groups. They need to know what is expected of them so that they can assign
resources and roles to properly support the data warehouse effort.

The data warehouse team should not assume the sole responsibility for imple-
menting change. To be successful, the need for change should come from the
organization. A steering committee from the user community should establish

Accommodating Business Change 325

scope and priorities. The data steward and change requestor should be actively
involved in the analysis and testing phases of the project. Fostering a collabora-
tive environment increases interest and support for the data warehouse
throughout the organization.

Modeling for Business Change

Being a skeptic is an asset for a data warehouse modeler. During the analysis
phase, the business users freely use the terms “never” and “always” when dis-
cussing data content and relationships. Such statements should not be taken at
face value. Usually, what they are saying is “seldom” and “most of the time.”
In building the data model, you should evaluate the effect of this subtle change
in interpretation and determine an appropriate course of action. The other
aspect of anticipating change in the data model is to understand the business
itself and the company’s history. If the company regularly acquires or divests
parts of its business, then it is reasonable to expect that behavior to continue. It
is an important concern when developing the model.

In this section, we look at how to address anticipated and unknown changes in
the data model. By doing so, you wind up with a more “bullet-proof” design,
one capable of accepting whatever is thrown at it. This is accomplished by tak-
ing a more generic, as opposed to specific, view of the business. A paradox to
this approach, which often confuses project managers, is that a generic, gener-
alist approach to design often involves the same development effort as a more
traditional specific design. Furthermore, it allows the data warehouse to grace-
fully handle exceptions to the business rules. These exceptions can provide
invaluable information about and insight into the business processes. Rather
than having the information rejected or the load process abort in the middle
of the night, this information can be stored, identified, and reported to the
business.

Assuming the Worst Case
When you are told that a particular scenario “never” or “always” occurs, you
must approach your model as if the statement were not true. In your analysis,
you need to weigh the cost and effect of this assumption and the overall viabil-
ity of the data warehouse. Sometimes, it doesn’t really matter if the statement is
true or false, so there is no need to make accommodations in the model. In other
cases, even one occurrence of something that would “never” happen can cause
significant data issues.

C h a p t e r 10326

For example, in an actual implementation sourced from a major ERP system,
there was a business rule in place that order lines could not be deleted once an
order was accepted. If the customer wished to change the order, the clerk was
required to place a reject code on the line to logically remove the line from the
order. This rule implied that as order changes were received into the data ware-
house, the extract file would always contain all lines for that order. However, in
this particular case, there was a back-end substitution process that modified the
order after it was entered. In this instance, customers ordered generic items that
were replaced with SKUs representing the actual product in different packaging.
For example, the product might be in a “10% more free” package, or a package
with a contest promotion, and so forth. The back-end process looked at available
inventory and selected one or more of these package-specific SKUs to fulfill the
order. These substitutions appeared as new lines in the order. This substitution
process ran when the order was first entered, when it was changed, as well as
the day prior to shipping. Each time the process ran, the substitution might
occur based on available inventory. If it had originally chosen two SKUs as sub-
stitutions and later found enough inventory so that it only needed one SKU, the
second SKU’s line would be physically deleted from the order.

The end result was that these deleted lines went undetected in the load
process. They remained in the data warehouse as unshipped lines and were
reflected as unfulfilled demand in reports. The problem was soon discovered
and corrected, but not without some damage to the credibility of the numbers
provided by the data warehouse. Problems like this can be avoided by per-
forming a worse case analysis of the business rule.

Relaxing the enforcement of business rules does not mean that data quality
issues should be ignored. To the contrary, while you need to take business
rules into account when designing the model, it is not the purpose of the data
warehouse to enforce those rules. The purpose of the data warehouse is to
accurately reflect what occurred in the business. Should transactions occur
that violate a rule, it is the role of the warehouse to accept the data and to pro-
vide a means to report the data as required by the business.

Imposing Relationship Generalization
The subject area and business data models serve their purpose to organize and
explain how components and transactions within the business relate to each
other. Because such models are not specific to data warehousing, they often
ignore the realities of historical perspective. This is understandable because
such issues are peculiar to data warehousing, and incorporating potential his-
torical relationships into the business data model would overcomplicate the
model and would not accurately reflect how the business operates.

Accommodating Business Change 327

Figure 10.2 Document line relationships.

For example, a typical manufacturer receives orders, creates shipments, and
invoices the customer. In this case, the business policy is to not create a back
order when insufficient inventory exists, and every shipped line appears as a
line on the invoice. Figure 10.2 shows how this would appear in the business
data model.

This model does not account for events that occur during the course of business.
Shipment documents may be cancelled and recreated, invoices may be reversed
and reinvoiced, or shipment lines may be consolidated at the distribution center.
Operationally, this model holds up because canceled or deleted documents “dis-
appear” from the business. Shipment line consolidation occurs when the same
SKU appears more than once in a shipping order. The distribution center staff
simply combines the quantities and overship one of the lines. The other lines for
the same SKU are not shipped, and therefore, are not invoiced.

Canceled documents, reversals, and consolidations must be maintained in the
data warehouse so that these cases can be properly reported. What appear to
be simple one-to-one relationships can become many-to-many relationships in
the data warehouse. For example, a shipment line may have many invoice
lines because of reversals and reinvoicing. Where line consolidations occur at
the distribution center, the data warehouse is required to infer a relationship to
those unshipped lines to properly report the order information that led to the
invoice. Without such relationships, it becomes difficult to determine what
really happened over the course of time.

In situations like this, you need to incorporate associative entities into the sys-
tem model. Figure 10.3 shows an example of how this can be modeled. One of
the challenges in applying associative entities in a case like this is controlling
their use in a SQL query. Uncontrolled, such a structure could distort result sets
being delivered with repeated rows. Adding some attributes, set during the load
process, to the associative entity can help control how result sets are generated.

The Current Indicator attribute can be used to control the view being delivered.
As documents are canceled or reversed and regenerated, this indicator would
be used to identify the most recent relationship. For example, if a shipment
document were canceled prior to actual shipment, the relationships for the can-
celed document would be set to not current. When a new shipment document
was created to fulfill the order, the new relationships would be set as current.
This technique allows you to maintain the old and new relationships and easily
distinguish between the two. The Inferred Indicator attribute can be included
to identify those relationships that were inferred by the data warehouse load

Order Line Shipment Line Invoice Line

C h a p t e r 10328

process to support information requirements. For example, an invoice line may
have an explicit reference back to a shipment line. The shipment line will have
a reference back to an order line. Based on this, you can infer a relationship
between the billing line and an order line. Deliveries exporting an operational
view of the data would generally include only current relationships. However,
a special-purpose data mart used to analyze the business process would be
interested in all relationships.

Figure 10.3 A generalized relationship.

O
rd

er
 L

in
e

O
rd

er
 Id

en
tif

ie
r

O
rd

er
 L

in
e

Id
en

tif
ie

r

Sh
ip

m
en

t
Li

n
e

Sh
ip

m
en

t
Id

en
tif

ie
r

Sh
ip

m
en

t
Li

ne
 Id

en
tif

ie
r

In
vo

ic
e

Li
n

e

In
vo

ic
e

Id
en

tif
ie

r
In

vo
ic

e
Li

ne
 Id

en
tif

ie
r

Sh
ip

m
en

t
In

vo
ic

e
Li

n
e

Sh
ip

m
en

t
Id

en
tif

ie
r

(F
K)

Sh
ip

m
en

t
Li

ne
 Id

en
tif

ie
r

(F
K)

In
vo

ic
e

Id
en

tif
ie

r
(F

K)
In

vo
ic

e
Li

ne
 Id

en
tif

ie
r

(F
K)

C
ur

re
nt

 In
di

ca
to

r
In

fe
rr

ed
 In

di
ca

to
r

O
rd

er
 S

h
ip

m
en

t
Li

n
e

O
rd

er
 Id

en
tif

ie
r

(F
K)

O
rd

er
 L

in
e

Id
en

tif
ie

r
(F

K)
Sh

ip
m

en
t

Id
en

tif
ie

r
(F

K)
Sh

ip
m

en
t

Li
ne

 Id
en

tif
ie

r
(F

K)

C
ur

re
nt

 In
di

ca
to

r
In

fe
rr

ed
 In

di
ca

to
r

O
rd

er
 I

n
vo

ic
e

Li
n

e

O
rd

er
 Id

en
tif

ie
r

(F
K)

O
rd

er
 L

in
e

Id
en

tif
ie

r
(F

K)
In

vo
ic

e
Id

en
tif

ie
r

(F
K)

In
vo

ic
e

Li
ne

 Id
en

tif
ie

r
(F

K)

C
ur

re
nt

 In
di

ca
to

r
In

fe
rr

ed
 In

di
ca

to
r

Accommodating Business Change 329

By generalizing the relationship, we have also enabled the data warehouse to
accommodate business changes without significantly affecting the model. For
example, should the company decide to permit back orders, the generalized
structure will support it. The nice thing about using associative entities is that
they work equally well regardless of the nature of the relationship. This same
structure will support one-to-one and one-to-many relationships without any
problems. Using them even to represent simple relationships, leaves you in a
position to support changes in the relationship as well as capture situations
where the stated relationship rules have been violated.

The latter point is very important. It is not up to the data warehouse to enforce
data relationships. That is up to the operational systems. In some cases, partic-
ularly when standard packages are used in the operational environment, the
systems are unable to enforce all business rules. The duty of the data warehouse
is to reflect what exists in the business. By generalizing those relationships, it
allows the data warehouse to adapt to changing situations, including those that
are unforeseen or not permitted. The downside is that the technique does
increase the complexity of the model; therefore, it should be used only where
justified.

Using Surrogate Keys
We have touched on surrogate keys a number of times in this book. However,
their use is so critical in creating a flexible, adaptable environment, they are
worth mentioning again. Why do we have keys? From a relational modeling
point of view, they identify an instance of an entity. We all have names, account
numbers, and other identifiers for things (entity instances) that exist in a sys-
tem somewhere, so it is natural to think that our name or account number
would serve as a key. From a human interface and operational system stand-
point this makes sense, but does it make sense for a data warehouse?

As change is inevitable, it is also inevitable that, over time, natural key values
will change. Anything can happen: Someone changes his or her name, compa-
nies merge and combine their accounts, or companies reorganize. Natural key
identifiers are fragile and are often broken. So, it is inevitable that over the
lifespan of the data warehouse, many natural keys will change. Surrogate keys
isolate the data warehouse from these changes. It allows it to maintain refer-
ential integrity over time regardless of what occurs in the operational systems.

By separating the real world from the data warehouse’s need to join tables, you
have protected the data warehouse and its content from the ambiguity and
changes the real world represents. Surrogate keys are simple, arbitrary unique
numbers assigned to a row as the primary key. A row would also contain the
necessary natural key attributes that identify the row to the outside world. Dur-
ing the load process, you use the natural key values to locate the row and use
the surrogate primary key as the foreign key in the data you are loading.

C h a p t e r 10330

When natural keys are changed, it is simply a matter of updating the columns in
the table that contains those values. There is no need to change or reassign the
primary key. The data warehouse keys remain stable. Foreign keys continue to
reference the same row. All that changed was how we, or the operational system,
reference that instance.

NOTE
Some operational systems use surrogate keys in their database schema. The data
warehouse should treat these like any business key and use its own surrogate key
generator. This is critical in order to maintain isolation from the operational system.
If you attempt to use the surrogate keys provided by the operational system, you have
essentially placed control of referential integrity in the hands of the operational sys-
tem vendor. As we discussed earlier in this chapter, if you use business keys—such as
customer number—instead of surrogate keys, the data warehouse is significantly
impacted by business decisions that may change the keys. It is worse if you use sur-
rogate keys provided by an operational system because you are now vulnerable to
design decisions made by the vendor, which are out of your control. Any decision to
upgrade software versions, change vendors, or other actions that affect that opera-
tional system may have a severe and destructive impact on the data warehouse.

Accommodating Business Change 331

Changing Keys

Business keys change a lot more often than we in IT care to admit. Every now and
then you receive a notice in the mail from your bank, credit card company, or cable
TV supplier telling you that your account number has changed. These changes are
usually due to a change in the application system or a business merger. If you
have been on the systems end of such changes, you can appreciate how difficult a
change this can be. An enormous effort is spent ensuring that the new numbers
have been assigned properly, accounts remain in balance and integrity is main-
tained. This is tedious, detailed work that often requires repeated reexamination.

This problem is magnified many times over in a data warehouse because the
data covers a much longer time span. Questions come up about what to do with
inactive accounts, how to address downtime while the tables are rekeyed, and
how to ensure that the results will be correct. Furthermore, resources are often
strained during such efforts, with priority being given to cleaning up current
accounts and with little interest being paid to historical data. Often the data
warehouse team is left (or forced) to work out a strategy to perform a partial,
phased key conversion. These and other issues are mitigated or completely elimi-
nated with surrogate keys.

This stability is critical in a data warehouse because it often stores data span-
ning many years and possibly decades. If you are faced with a situation where
20,000 SKUs are renumbered and you have a data warehouse with 100 million
rows referencing those SKUs you will be faced with a very risky endeavor if
you used the SKU as the key. How would you recover if the cross-reference
data you received mistakenly translated two old SKU numbers to a single new
SKU number? After the change is applied, how would you know which trans-
actions referred to which SKUs? Sure, you can add a column to the table to
store the old SKU, but do you really want to be mass-updating 100 million
rows? If you used surrogate keys, all you would need to do is update the SKUs
on 20,000 product rows. Primary and foreign keys would not change, and ref-
erential integrity would be ensured. The database would remain stable, and
natural key changes would be reduced to simple updates.

It is important to mention that not every table requires a surrogate key. Transac-
tion tables will not gain particular advantage since the transaction identifier
does not require the same time stability as a customer identifier. Also, most
tables in a normalized database structure are simple code description tables.
Such tables are of less concern than the core business entity tables, such as Cus-
tomer and Product. These core entities often translate directly to dimensions in
the delivered data marts. Maintaining surrogate keys on these entities in the
data warehouse will ensure key conformance across the data marts. This is less
of an issue with code tables because the codes and their descriptions are often
assimilated into existing dimensions or combined with other code values into a
junk1 dimension. Those tables that are important enough to stand alone as a
dimension in a data mart should be considered as candidates for a surrogate key.

In this section, we looked at considerations that should be made in the initial
design to allow for unknown or unexpected occurrences in the business.
Adding a healthy dose of skepticism to an end user’s use of the terms
“always” and “never” can avoid potential data warehouse problems that do
not manifest themselves in the operational systems. Judicious use of relation-
ship generalization can improve the flexibility of the model and allow for an
orderly detection and reporting of unusual or unexpected relationships.
Finally, the use of surrogate keys for some entities enhances the stability of the
database and protects it from the changing nature of business keys.

Implementing Business Change

In this section, we examine two common change scenarios and describe a
course of action to adjust the data warehouse to deal with the change. In the
first scenario, we will discuss how to deal with the inclusion of a new disparate

C h a p t e r 10332

1 The term junk refers to a dimension that contains a collection of left over attributes. See The
Data Warehouse Toolkit, Second Edition (Kimball et al, Wiley, pp 117-119).

data source for an existing subject area. In the second, we look at the impact the
addition of new subject areas has on an existing data warehouse.

Integrating Subject Areas
This topic could have been given a number of different titles: “Dealing with
Mergers and Acquisitions,” “Integrating Legacy Data,” or “Attaining a Com-
mon Enterprise View.” They all represent different scenarios involving the
same basic problem: You have multiple, independent application systems that
do the same thing. The data warehouse is called upon to accept and integrate
data from these systems.

Problems arise when you try to consolidate subject areas. Using Customers as
an example, it is common for independent systems to have independent iden-
tifiers and attributes for their customers. From an enterprise perspective,
though, it is necessary to view activities of a customer across these different
systems regardless of how the customer is identified in those systems. The first
step to a solution is to assess the situation and resolve the following business
questions:

■■ What is a customer?

■■ What roles can a customer assume (Sold-to, Ship-to, Bill-to, Payer, Retail,
Wholesale, and so on)?

■■ What do we need to know about the customer?

■■ How do we identify the same customer across systems?

The answers to these questions are driven by the needs of the business. From
a data warehouse point of view, they present three technical challenges:
standardizing attributes, inferring roles, and integrating entities. We examine
how the model can be developed to address these challenges. While these
model changes can be retrofitted into an existing warehouse, we recommend
that, if you are developing a new data warehouse and foresee the need to per-
form such integration in the near future, you consider incorporating some of
these modeling elements now to reduce the work in the future.

Standardizing Attributes

Standardizing attributes is a very basic problem germane to any system inte-
gration. Every system has codes and descriptions that provide information
about the customer. It is necessary to standardize these codes to a common
coding system if the data is to be integrated across application systems. Creat-
ing standards can be a difficult, politically charged task.

Accommodating Business Change 333

Often, coding systems are incompatible due to a different focus or level of
detail embedded in the codes. For example, two divisions of a company are
running the same sales order software, both maintain an Order Reason
attribute. One division uses the code to track how the customer intends to use
the purchase, while the other division uses the code to determine why the cus-
tomer ordered from them. In the former case, the division is selling industrial
equipment, while in the latter case they are selling consumer goods. Because
they have different purposes—one represents intended use, while the other
determines marketing effectiveness—they must be modeled as separate attrib-
utes in the data warehouse.

Problems arise when the purpose is the same but the coding is different. Using
the same two divisions, both maintain a Return Reason code. The industrial
equipment division maintains a long list of specific codes that identify known
and potential problems with the equipment that may cause a return, while the
consumer goods division contains codes relating to consumer preference, such
as Wrong Color or Wrong Size. There are two avenues to address this problem.
If the business wishes to analyze why goods are being returned across divi-
sions, it is necessary for the coding to conform to a common system.

In this particular case, one would not expect any agreement between the two
divisions on a common coding system. However, it is likely that agreement
could be reached on common category groupings for these codes. The data
warehouse load should derive this category based on the agreed-on business
rule. The data warehouse should also store the original code and description
to support divisional analysis. However, since there is a good chance that the
same code values may be used for different purposes, the entity that stores
these descriptions should include a division or source system attribute as part
of its key to ensure uniqueness.

Alternately, you can store the original values in different attributes; however,
this can become a problem if there are a lot of divisions with different coding
systems for the same code. The database table will quickly become cluttered
with columns for each version of the code, as well as innumerable reference
tables for each coding scheme. When it is possible to reach agreement on a
common coding system, it is a good idea to also store the original code, but not
necessarily the original description. The original code would not be supplied
in deliveries to external marts or systems, but rather it would be stored to
allow for future changes to the transformation rules that were the result of the
common code agreement. It is not unusual for such rules to change after the
business has had time to use the new coding system. The data warehouse
should be prepared to reassign codes based on rule changes. This is not possi-
ble unless you have the original code value.

C h a p t e r 10334

The other side to this is a situation in which it is not possible to reach agree-
ment. Unfortunately, this situation is probably more common than we would
like. The only option you really have in this situation is to create separate
attributes for each interpretation. You should then clearly document the source
and meaning of these attributes, as well as when they should be used. You
must also decide how to set attributes that do not apply in a particular case.
You can either leave them null or set them to a default value. That choice
would depend on your database system and internal policies. This situation
clearly complicates the delivery process and presentation of such attributes in
the data marts. End users must be made aware of the differences between the
attributes and why an attribute may not have a value in some circumstances.

Inferring Roles and Integrating Entities

If you are in a situation where you need to integrate data from two different
order entry systems, it is not unlikely that each would have a completely dif-
ferent way to handle customer roles. In one case, you may have a system that
has a single customer identifier, and other information, such as shipping
address, billing address, and so forth adjunct to the order being processed. In
the other case, the system may have explicit unique customer identifiers for
each role, such as a sold-to customer, bill-to customer, payer customer, and
ship-to customer. If in both cases you are taking about the same customer, inte-
gration can be a challenge.

The first decision you face is which roles should be represented in the data
warehouse. From a modeling standpoint, you should treat each role as a new
instance of Customer. This offers you the greatest flexibility should new roles
present themselves in the future. It also allows flexibility with the existing inter-
faces. In the second system mentioned, reference data for the role is explicitly
created, whereas in the first system it is not. You may encounter variances in the
role data for the first system in the transactions you receive. For example, a
ship-to address may change. In such cases, it becomes a simple matter of creat-
ing a new Customer instance to hold the new address information.

The foreign key in the transaction determines the actual role a Customer plays.
Where a role does not exist in a particular interface, a business rule should be
established to determine which customer instance assumes that role. If later
you need to add to the roles because of a new interface, you can apply a simi-
lar inference rule to update historical data.

This leads to a discussion on how to key the reference data. From a business
view, you would require a source system identifier, the source system’s entity
(customer) identifier, and possibly a role identifier, to accommodate the first

Accommodating Business Change 335

system mentioned. In the data warehouse, using this as a primary key for the
Customer entity presents a lot of problems. First, you need to allow for con-
solidation of common customers. Incorporation of one system’s identifier over
another can make this very difficult. Second, new consolidations may occur
after the fact, after the users have seen the integrated data and discover addi-
tional commonality. Third, it is a compound key that adds complexity to SQL
queries and can degrade performance.

The best approach is to assign a surrogate primary key and create two associa-
tive entities, one to cross-reference the source system keys to the primary key
and the other to map entity consolidations. The first cross-reference would be
used during reference data updates and transaction loads to locate the surrogate
key of the Customer entity. The transaction entities would use the surrogate key
as the foreign key. This structure would also be used in data delivery to obtain
one or more natural keys for presentation to end users.

The second cross-reference would be used to map foreign keys to the Cus-
tomer entity. As customer consolidations are identified, this structure would
be updated to remap existing foreign keys to the proper Customer instance.
This second cross-reference allows you to perform this reassignment without
having to update the foreign key values in the transaction tables. This avoids a
risky and tedious update, and provides an easy way to reverse a consolidation
should an error be discovered later.

Adding Subject Areas
Addition of new subject areas is a natural extension of any data warehouse
effort. It is rare that a company would fund a data warehouse effort that did
not provide benefit in a short period of time. This requires an iterative
approach to design and implementation that limits the subject areas imple-
mented in each phase. This development approach dictates that each subject
area be developed independently. It is the addition of transactional data into
the data warehouse that ties the subject areas together.

Challenges arise when the subject areas implemented are incomplete for the
transactions being stored. For example, the initial phase of a project calls for
implementing sales data and the scope is limited to Customer, Product, and
Financial, such as profit centers, subject areas. Later, it is decided that the Pur-
chasing Organization needs to be added and the buyers need to be tied to sales
to evaluate their performance.

The basic changes necessary are to model the purchasing subject area, add for-
eign keys to the sales data, and modify the sales data load process. None of this
is particularly difficult. The challenge is what to do with the historical sales

C h a p t e r 10336

data. This is a business decision. On one hand, the business may decide to only
perform analysis on data moving forward, in which case there is nothing to
worry about. On the other hand, they may decide to retroactively assign buy-
ers for some period of time in the past. Technically, this is not difficult to do.
It is simply the implementation of some business rule, based on product and
time, to update the newly added buyer foreign key in the sales data. How
successful this is depends on the quality of the historical data from the Pur-
chasing area and the completeness of the business rule. Some analysis should
be done to see if the effort is worthwhile. At issue is not the effort necessary to
update the data, but rather whether the results are useful to the business or
whether inaccuracies create misinformation that can be detrimental to the data
warehouse.

In this section, we examined issues with the integration and addition of subject
areas in the data warehouse. You need to be careful in the design of the data
warehouse to provide avenues to perform such changes if it is reasonable to
expect that such changes will occur. At the same time, you also need to be care-
ful not to overengineer a solution that adds unnecessary complexity, increases
development time, or addresses problems that may never occur. We recom-
mend that if integration is not an issue now, but may be in the future, you use
surrogate keys in the subject areas for the most important entities. This posi-
tions the database to accept new structures and business keys to accommodate
such integration when the need arises.

Summary

In this chapter, we examined the causes and impact of change on the data ware-
house. We looked at how you can minimize the impact of change in the model
by using surrogate keys, generalizing relationships, and relaxing a strict inter-
pretation of business rules. We also discussed some of the integration challenges
faced when business changes result in additional sources of similar data.

Unless you are omniscient, you will not be able to anticipate and prepare for all
future changes. We do not believe that such preparation is desirable or practical;
after all, your goal is to produce a working system, not spend a lifetime design-
ing one. However, you can achieve an environment that is change-friendly.
Spending a little time up front to establish an adaptable approach can go a long
way toward reducing the effort and disruption that future changes can bring.

Accommodating Business Change 337

Installing Custom Controls 339

Maintaining the Models

C H A P T E R 11

As we all know, a viable data warehouse must evolve over time to meet con-
stantly changing business needs. This evolution requires changes to the data
warehouse data models, and one of the challenges facing the data warehouse
team is managing the data warehouse model and keeping it synchronized
with the business data model, the physical schema, and the multiple data mart
models. This task is critical for ensuring that the enterprise view is maintained,
yet the tool support for this effort is limited.

After explaining the challenges, this chapter describes pragmatic approaches
for managing the multiple models. Special attention is given to expanding the
governing business and data warehouse models to encompass other areas so
that the data warehouse continues to provide the enterprise view. We then also
delve into the challenges created by having multiple people maintaining the
data models.

Governing Models and Their Evolution

To put the model maintenance problems in perspective, we begin by review-
ing the four types of models (see Figure 11.1) that were first introduced in
Chapter 2 and then describe the factors that create changes to these models.

339

Figure 11.1 Data model types.

Subject Area Model
The subject area model depicts the major groupings of people, places, things,
events, and concepts of interest, or subject areas, to the enterprise. This model

Su
b

je
ct

 A
re

a
M

o
d

el

B
u

si
n

es
s

D
at

a
M

o
d

el

Sy
st

em
 D

at
a

M
o

d
el

s

T
ec

h
n

o
lo

g
y

D
at

a
M

o
d

el
s

C h a p t e r 11340

provides the blueprint for each of the succeeding models. Each entity within the
business data model (which is the next level model) is assigned to one, and only
one, of the subject areas depicted in the subject area model. The subject area
model’s subject areas have mutually exclusive definitions for each of the areas.

There are three major causes for this model to be changed or augmented:

Lack of completeness. The data warehouse is built iteratively, and most
often, the supporting models are only developed to the extent required to
support the piece of the data warehouse being developed at the time. It is
possible that the subject area model was only partially developed and that
additional subjects will need to be added when they are included in the
data warehouse.

Major business change. The subject area model contains the major subjects
of interest to the enterprise. At this level, there are rarely business changes
that affect this model. One exception occurs when the company enters into
a new business line, either through acquisition, merger, or expansion. For
example, if a retailer decides to issue credit cards, it may choose to estab-
lish a subject area for Accounts separate from the Customers subject area.

Refinement of the business data model. The third major cause for a change
to the subject area model is refinement. Unlike the lack of completeness,
which entails adding subject areas, this change is created as a result of the
feedback (upward arrow in Figure 11.1) from changes to the business data
model. This happens when a new entity that doesn’t appear to fit cleanly
into any of the predefined subject areas is added to the business data model.
At that point, the subject area model needs to be revised, with the revision
potentially consisting merely of a definition update.

Whenever a new subject area is added or changed, its definition needs to be
reviewed in the context of the existing subject areas. If the new area is found to
overlap with an existing subject area, then the existing area’s definition should
be adjusted, and some of the entities assigned to it may need to be moved to
the new area.

Business Data Model
The business data model is an abstraction or representation of the data in the
given enterprise that helps people envision how information in the business
relates to other information in the business—how the parts fit together. This
model is not based on any organizational responsibilities, business processes, or
system restrictions. It is based solely on the business rules that govern the way
different entities are related to each other. The causes of change to this model are
conceptually similar to the causes of changes to the subject area model:

Maintaining the Models 341

Lack of completeness. The data warehouse is built iteratively, and unless a
business data model already exists, it will typically be developed only to
the extent required to support the portion of the data warehouse being
developed. As new data warehouse iterations are undertaken, the business
data model should be expanded to encompass those areas. In the ideal envi-
ronment, the business data model is the foundation for all development
activities, including new operational systems’ development, and therefore, it
will need to be expanded whenever there is any new systems development
effort that addresses areas not previously encompassed by the model.

Business change. The business data model portrays the entities of interest
and the business rules or relationships governing them. Whenever one of
these changes, the business data model should be updated to reflect the
change. Examples of business changes that could affect the model include:

■■ A change in purchasing policy from one in which an item may be pur-
chased from many vendors to one in which an item may be purchased
from only one vendor. When each vendor could be providing multiple
items, this changes the relationship between vendor and item from a
many-to-many relationship (which requires an associative entity) to a
one-to-many relationship.

■■ A retailer may move into the electronic marketplace. When this hap-
pens, the concept of a store as the physical place at which purchases
are made changes and the business data model must be adjusted
accordingly.

■■ A financial institution may shift from dealing with the account holder
as a single customer to a posture of recognizing each of the owners of
the account as distinct customers. This, too, generates several changes
in the business data model.

Refinement of a system data model. The third major cause for a change to
the business data model is refinement. Figure 11.1 shows a feedback
(upward) arrow from the system data model to the business data model.
This feedback recognizes that there may be changes that are initiated at the
system model level. This can occur when a programmer is making changes
to a database based on a requested system change without consulting the
business data model first. The impact on the business data model needs to
be assessed and appropriate changes to that model, if any, should be made.

System Data Model
The third level of data models, or the system data model in Figure 11.1,
describes the relationships among entities as they are reflected in a particular
“system.” In this context, “system” may mean an application system, an ERP
(or other) package, a data warehouse, or a data mart. This model represents

C h a p t e r 11342

the electronic representation of the data in that system independent of the spe-
cific technology and database management system (DBMS). This model exists
for each system, and while the change may be triggered by something outside
the domain of a system, the only reason this model would change is if there is
a need to change something in the system.

Examples of changes to our system of interest, the data warehouse, include:

Addition of new data elements. The data warehouse should be built to
include the elements that are needed to support the business intelligence
requirements. Step 1 of the methodology for creating this model, described
in Chapter 4, consists of selecting the data elements of interest. Over time,
additional elements will be needed, and these must be added to the system
data model for the warehouse. As indicated in the description of the busi-
ness data model, when new data elements are added to the system model,
feedback to the business data model is needed, and if those elements are
assessed as being needed in that model, they must be added. Not all data
element additions affect the business data model, though. The creation of
derived data (Step 3 in Chapter 4) and summarized data (Step 5 in Chapter
4) don’t require additions to the business data model as long as they are
based on elements in that model and do not change the underlying rela-
tionships. (If they are not based on elements in the business model, those
elements need to be added to the business data model.)

Granularity change. The data warehouse granularity is dictated in Step 4 of
the process described in Chapter 4. Even though the business data model
may show detailed sales transaction information, a data warehouse that is
built with a granularity of daily sales summaries does not include the
details. If the company subsequently decides that it needs to perform shop-
ping basket analysis and needs to include transaction-level data in the
warehouse, the data warehouse system model needs to be enhanced to
accommodate the new granularity level.

Physical schema adjustments. Changes in the physical schema represented
by the technology data model could also have an impact. These changes are
often incorporated to improve performance and may consist of denormaliz-
ing some data to reduce the join activity needed to deliver data to the data
marts. The feedback mechanism from the physical schema (technology
model) to the system model, shown in Figure 11.1, dictates that the changes
are reflected in that model. The base data elements should all be in the busi-
ness data model, but copies of elements made to accomplish denormaliza-
tion should not be represented in the business data model. That model is a
pure 3NF model. If an element is added to a table to improve performance
and does not actually depend on the key of that table, it cannot be included
in a pure 3NF model since every element in that model needs to depend on
the key, the whole key, and nothing but the key of the entity it’s in.

Maintaining the Models 343

Technology Data Model
The technology data model is a collection of the specific information being
addressed by a particular system and implemented with specific technologies.
All the technology used for this data store needs to be considered, including
the hardware, operating system, and DBMS. Further, strategies for denormal-
ization, views, partitions, indexing, and referential integrity are all reflected in
the model. Some aspects of security are also incorporated into the model; other
aspects may be considered external to the model. This model may change if
anything relating to these factors changes, if there is a change in the governing
system data model, or if there is a change to another technology model.

Governing system data model change. Top-down development approaches
generate the system data model first and then use it to generate the technol-
ogy data model. Therefore, as each new enhancement to the data ware-
house is contemplated, the system data model needs to be updated. The
technology model is updated to reflect those revisions.

Technical environment changes. The other major source of changes to the
technology model is based on its role. This model describes the physical
environment, and hence any change to this environment dictates a change
to the technology data model. For example, if we migrate from one DBMS
to another, the technology model is adjusted to reflect changes that are
needed to meet performance objectives in the new environment.

Changes in other technology models. A technology model exists for the
data warehouse and for each of the data marts. When there is a change to a
data mart, changes in the data warehouse model may be dictated to satisfy
performance objectives.

Synchronization Implications
Synchronization can be required due to changes in any of the models, although
not all changes in one model dictate a change in another model. For example, a
change in a technology model that is based on a physical constraint does not
create a change in the system model; however, a change that is based on denor-
malizing to improve performance may create a change in the system model.
Similarly, a change in the business model does not necessarily change all of the
subordinate system models. Only those models that reflect information
addressed by the change are affected. For example, if you add attributes to the
business data model that are not within the scope of a particular operational
system, its system data model remains unchanged.

C h a p t e r 11344

Figure 11.2 Synchronization implications.

B
u

si
n

es
s

D
at

a
M

o
d

el

Sy
st

em
 D

at
a

M
o

d
el

s

T
ec

h
n

o
lo

g
y

D
at

a
M

o
d

el
s

C
H

A
N

G
E

Maintaining the Models 345

One of the hidden implications of the changes in any model (for example, a
system data model) is the potential for changes required in other models of
that type (that is, the other system data models). As Figure 11.2 illustrates,
when there is a change in a system model, the subordinate technology models
and the business data model need to be reviewed to determine the impact on
them. If the change in the system data model dictates an update to the business
model due to the feedback, then every other system model needs to be
reviewed to determine if it needs to change.

Model Coordination

Now that we understand the types of changes and how they can affect the
individual models, let’s explore what we need to do to maintain synchroniza-
tion among the models. We will examine the coordination for each pair of
models, as shown in Figure 11.3.

Subject Area and Business Data Models
The subject area model is not generally maintained within the modeling tool
itself. It is often drawn using tools such as Visio (not necessarily the data mod-
eling version), PowerPoint, CorelDraw, or a word processor. This is because
the common modeling tools do not provide a graphic to represent the subject
area. Definitions are maintained within a spreadsheet or document. We

C h a p t e r 11346

Criticality

Model synchronization is absolutely critical for an enterprise that wants to
achieve the goal of consistent data. Organizations that do not recognize the role
and value of the data models in ensuring consistent data are prone to skimp in
this area. The impact of skipping the model synchronization activities may not be
felt initially; they will manifest themselves in a new series of silo applications
that eventually will recreate the data integration problems that made data inte-
gration so difficult in the initial data warehouse project.

An effective data stewardship program and proper placement of the data man-
agement staff are extremely important. Without an effective data stewardship
program, there is no focal point for quickly making decisions for synchronizing
the models; if the data management group does not have the appropriate level of
authority, development teams will tend to ignore its policies.

describe three techniques that facilitate keeping these two models synchro-
nized. If the modeling tool supports it, we’ve found the first approach is the
easiest to maintain and provides the best tool for communicating with the busi-
ness community.

Figure 11.3 Model coordination.

Su
b

je
ct

 A
re

a
M

o
d

el

B
u

si
n

es
s

D
at

a
M

o
d

el

Sy
st

em
 M

o
d

el
s

B
u

si
n

es
s

D
at

a
M

o
d

el

T
ec

h
n

o
lo

g
y

M
o

d
el

s

Sy
st

em
 M

o
d

el

Maintaining the Models 347

Color-Coding

The recommended approach, when the modeling tool supports it, is to estab-
lish a different color for each subject area and to use that color for the back-
ground of the entities that belong in the subject area. The major advantages of
this approach are:

■■ The subject areas are visible and do not require the modeler to segregate
data into separately maintained views.

■■ Since all the data within a subject area is in a single color, the modeler can
quickly visualize the subject areas. Further, in general, there are more rela-
tionships between entities within a subject area than between entities that
are in different subject areas. With this knowledge, the modeler has useful
information for organizing the business data model by grouping entities
of the same color (that is, subject area) together.

■■ The visible subject area distinctions also help in understanding the model
and in identifying the data stewards who should be contacted to help
with each section.

■■ With a default color of white, the modeler need not be concerned with the
subject area initially, but can look for white entities for subject area assign-
ments prior to completing the work. This lets the modeler focus his or her
attention on entities and attributes during model creation and ensures that
the business data model remains coordinated with the subject area model.

The major disadvantage of this approach is that often the model is printed in
black and white. The colors either do not appear at all or are represented as
shades of gray, so the distinction between the subject areas is only visible on a
color monitor or in a color print of the model. Further, if the color selected is
dark, the black and white print may actually impede seeing the text.

We recommend selecting light colors whenever possible so that the printing
impact is minimized. Additionally, some of the modeling tools permit adjust-
ing other display properties, such as the thickness of the border, the font size,
and type. These adjustments can be used to distinguish the subject areas with-
out presenting any printing problems. Further, the model can be laid out so
that subject areas are segregated on separate pages with a text box of the sub-
ject area name appearing on each page. Figure 11.4, first introduced in Chapter
3, shows another approach in which the subject areas were segregated on a
page and the name of the subject area was inserted.

Subject Area Views

The first technique entails using the “subject area” views provided by the
modeling tool and setting up a separate subject area in the modeling tool to

C h a p t e r 11348

correspond to each subject area. (This technique cannot be used if the tool does
not provide the ability to divide the model into subject area views.) This tech-
nique facilitates the grouping of the data entities by subject area and the pro-
vision of views accordingly. The major advantages of this technique are:

■■ Each entity is assigned to a subject area and the subject area assignment is
clear.

■■ If a particular data steward or data modeler has responsibility for a spe-
cific subject area, then all of the data for which that person is responsible
is in one place.

■■ Information can easily be retrieved for specific subject areas.

The major disadvantage of this technique is that the subject area view is fine
for developing the data model, but a single subject area rarely provides a com-
plete picture of the business scenario. Hence, for discussion with business
users, we need to create additional (for example, process-oriented) views,
thereby increasing the maintenance work.

Including the Subject Area within the Entity Name

The third approach is to include the subject area name or code within the
entity name. For example, if the Customers subject area is coded CU and the
Products subject area is coded PR, we would have entities such as CU Cus-
tomer, CU Prospect, PR Item, and PR Product Family.

The major advantages of this approach are:

■■ It is easy to create the initial entity name with the relationship to the sub-
ject area.

■■ It is independent of the data-modeling tool.

■■ There is no issue with respect to displaying the relationship between an
entity and a subject area.

■■ Alphabetic lists of entities will be grouped by subject area.

The major disadvantages of this approach are:

■■ The entity name is awkward. With this approach, the modeler is moving
away from using business-meaningful names for the entity names.

■■ Maintenance is more difficult. It is possible to have an entity move from
one subject area to another when the subject area is refined. A refinement,
for example, may change the definition of subject areas, so that with the
revised definition, some of the entities previously assigned to it may need
to be reassigned. With this approach, the names of the entities must
change. This is a relatively minor inconvenience since it does not cascade
to the system and technology models.

Maintaining the Models 349

Figure 11.4 Segregating subject areas.

C h a p t e r 11350

Business and System Data Models
The toughest relationship to maintain is that between the business data model
and the system data model. This difficulty is caused by the volume of changes,
the fact that these two models need to be consistent—but not necessarily iden-
tical—to each other, and the limited tool support for maintaining these rela-
tionships. Some examples of the differences include:

Differences in the attributes within an entity. The entity within the busi-
ness data model includes all of the attributes for that entity. Within each
system model, only the attributes of interest to that “system” are included.
In Chapter 4 (Step 1), we discussed the exclusion of attributes that are not
needed in the data warehouse.

Representation over time. The business data model is a point-in-time
model that represents the current view of the data and not a series of snap-
shots. The data warehouse represents data over time (that is, snapshots),
and its governing system model is therefore an over-time model. As we
saw in Step 2 of the methodology for developing this model, there are sub-
stantial structural differences that exist in the deployment since some rela-
tionships change, for example, from one-to-many to many-to-many.

Inclusion of summarized data. Summarized data is often included in a sys-
tem model. Step 5 of our methodology described specifically how to incor-
porate summarized data in the data warehouse. Summarized data is
inappropriate in a 3NF model such as the business data model.

These differences contribute to the difficulty of maintaining the relationships
between these models. None of the data-modeling tools with which we are
familiar provide an easy way to overcome these differences. The technique we
recommend is that the relationship between the business data model and the
system models be manually maintained. There are steps that you can take to
make this job easier:

Maintaining the Models 351

Associative Entities

Associative entities that resolve the many-to-many relationship between entities
that reside in different subject areas do not cleanly fit into a single subject area.
Because one of the uses of the subject area model is to ensure that an entity is
only represented once in the business data model, a predictable process for desig-
nating the subject area for these entities is needed. Choices include basing the
decision on stewardship responsibilities (our favorite) or making arbitrary choices
and maintaining an inventory of these to ensure that they are not duplicated. If the
first option is used, a special color can be used for these entities if desired; if the
second option is used, entities could be shown in multiple subject area views,
since they still would exist only once in the master model.

1. Develop the business data model to the extent practical for the first itera-
tion. Be sure to include definitions for all the entities and attributes.

2. Include derived data in the business data model. The derived data repre-
sents a deviation from pure normal form. Including it within the business
data model promotes consistency since we will be copying a portion of
this model as a starting point for each system data model.

3. Maintain some physical storage characteristics of the attributes in the
business data model. These characteristics really don’t belong in the busi-
ness data model since that model represents the business and not the elec-
tronic storage of the information. As you will see in a subsequent step, we
use a copy of information in the business data model to generate the start-
ing point for each system data model. Since an entity in the business data
model may be replicated into multiple system data models, by storing
some physical characteristics in the business data model, we promote con-
sistency and avoid redundant entry of the physical characteristics. The
physical characteristics we recommend maintaining within the business
data model are the column name, nullability information, and the
datatype (including the length or precision). There may be valid reasons
for the nullability information and the datatype to change within a sys-
tems model, but we at least start out with a standard set. For example, the
relationship between a customer and a sales transaction may be optional
(null permitted) in the business data model if prospects are considered
customers. If we are building a data warehouse or application system that
only applies to people who actually acquired our product, the relationship
is mandatory, and the foreign key cannot be null.

4. Copy the relevant portion of the business data model and use it as the
starting point of the system data model. In the modeling tool, this consists
of a copy-and-paste operation—not inclusion. Inclusion of entities from
one model (probably represented as a view in the modeling tool) into
another within the modeling tool does not create a new entity, and any
changes made will be reflected back into the business data model.

5. Make appropriate adjustments to the model based on the scope of the
application system or data warehouse segment. Each time an adjustment
is made, think about whether or not the change has an impact on the busi-
ness data model. Changes that are made to reflect history, to adjust the
storage granularity, and to improve performance generally don’t affect the
business data model. It is possible that as the system data model is devel-
oped definitions will be revised. These changes do need to be reflected in
the business data model.

6. Periodically compare the system data model to the business data model
and ensure that the models are consistent with each other and that all of
the differences are due to what each of the models represents.

C h a p t e r 11352

This process requires adherence to data-modeling practices that promote
model consistency. Significant effort will be required, and a natural question to
ask is, “Is it worth the trouble?” Yes, it is worth the effort. Maintaining consis-
tency between the data warehouse system model and the business data model
promotes stability and supports maintenance of the business view within the
data warehouse and other systems. The benefits of the business data model
noted in Chapter 2 can then be realized.

Another critical advantage is that the maintenance of the relationship between
the business data model and the system data model forces a degree of disci-
pline. Project managers are often faced with database designers who like to
jump directly to the physical design (or technology model) without consider-
ing any of the preceding models on which it depends. To promote adherence
to these practices, the project managers must ensure that the development
methodology includes this steps, that everyone who works with the model
understands the steps and why they are important. Effective adherence to
these practices should also be included in the job descriptions.

The forced coordination of the business and system data models and the sub-
sequent downstream relationship between the system and technology mod-
els ensures that sound data management techniques are applied in the data
warehouse development of all data stores. It promotes managing of data and
information as corporate assets.

System and Technology Data Models
Most companies have only a single instance of a production database such as
a data warehouse. Even companies that have multiple production versions of
this database typically deploy them on the same platform and in the same
database management system. This approach significantly simplifies the
maintenance of the system and technology data models since we have a one-
to-one relationship, as shown in Figure 11.5.

Most of the data-modeling tools maintain a “logical” and “physical” data
model. While these are often presented as two separate data models, they are
often actually two views of the same data model with (in some tools) an ability
to include some of the entities and attributes in only one of the models. These
two views correspond to the system data model and the technology data model.
Without the aid of a repository, most of the tools do not enable the modeler to
easily maintain separate system and technology data models. If a company has
only one version of the physical data warehouse, we recommend coupling these
tightly together and using the data-modeling tool to accomplish this.

The major advantage of this approach is its simplicity. We don’t have to do any
extra work to keep the system and technology models synchronized—the
modeling tool takes care of that for us. Further, if the data-modeling tool is

Maintaining the Models 353

Figure 11.5 Common deployment approach.

P
o

te
n

ti
al

Si
tu

at
io

n

D
at

a
W

ar
eh

o
u

se
Sy

st
em

 M
o

d
el

T
ec

h
n

o
lo

g
y

M
o

d
el

s

C
o

m
m

o
n

Si
tu

at
io

n

C h a p t e r 11354

used to generate the DDL for the database schema, the system model and the
physical schema are always synchronized as well. The final technology model
is dependent on the physical platform, and changes in the model are made to
improve performance. The major disadvantage of this approach is that when
the system and technology model are tightly linked, changes in the technology
model create changes in the system model, and we lose information about
which decisions concerning the model were made based on the system level
constraints and which were made based on the physical deployment con-
straints. While this disadvantage is worth noting, we feel that a pragmatic
approach is appropriate here unless the modeling tool facilitates the separate
maintenance of the system and technology models.

Managing Multiple Modelers

The preceding section dealt with managing the relationships between succes-
sive pairs of data models. Another maintenance coordination we face is man-
aging the activities of multiple modelers. The two major considerations for
managing a staff of modelers are the roles and responsibilities of each person
or group and the collision management facilities.

Roles and Responsibilities
Traditionally, data-modeling roles are divided between the data administration
staff and the database administration staff. The data administration staff is gener-
ally responsible for the subject area model and the business data model, while the
database administration staff is generally responsible for the technology model.
The system model responsibility may fall in either court or may be shared. The
first thing that companies must do is establish responsibilities at the group level.

Even if a single group has responsibility for a model, we have the potential
of having multiple people involved. Let’s examine each of the data models
individually.

Subject Area Model

The subject area model is developed under the auspices of a cross-functional
group of business representatives and rarely changes. While it may be under
the responsibility of the data administration group, no single individual in that
group should change the subject area model. Any changes to this model need
to be understood and sanctioned by the data administration organization. We
feel the most appropriate approach is to maintain it under the auspices of the
data stewardship group (if one exists), but data administration if there is no
data stewardship group. This model actually helps us in managing the devel-
opment of the business data model.

Maintaining the Models 355

Business Data Model

The business data model is the largest data model in our organization. This is
true because, when completed, it encompasses the entire enterprise. A com-
plete business data model may contain hundreds of entities and over 10,000
attributes. All entities and attributes in any of the successive models are either
extracted from this model or can be derived, based on elements within this
model. The most effective way to manage changes in this model is to assign
prime responsibilities based on groupings of entities, some of which may be
defined by virtue of the subject areas. We may, for example, have a modeler
responsible for an entire subject area, such as Customers. We could also split
responsibility for a subject area, with the accountability for some of the entities
within a subject area being within the realm of one modeler and the account-
ability for other entities being within the realm of another modeler. We feel
that allocating responsibility at an attribute level is inappropriate.

Very often an individual activity will impact multiple subject areas. The entity
responsibilities need to be visibly published so that efforts that entail overlaps
can involve the appropriate people.

Having prime responsibilities allocated does not mean that only one modeler
can work within a section of the model. It means that one modeler is responsi-
ble for that section. When we undertake a data warehouse effort that encom-
passes several subject areas, it may not be appropriate to involve all of the
responsible data analysts. Instead, a single person may be assigned to repre-
sent data administration, and that person coordinates with the modelers
responsible for each section of the model.

System and Technology Data Model

We previously recommended that the data-modeling tool facilities be used to
maintain synchronization between the system and technology data model. We
noted that, in respect to the tool, these are in fact a single model with two
views. The system and technology data models are developed within the
scope of a project. The project leader needs to assign responsibilities appropri-
ately and to ensure that the entire team understands each person’s responsi-
bility. Since all of the activities are under the realm of the project leader, the
project plan can be used to aid in the coordination.

Remember that any change to the system data model needs to be considered in
the business data model. The biggest challenge is not in maintaining the syn-
chronization among the people responsible for any particular model—it is in
maintaining the synchronization among the people responsible for the differ-
ent (that is, business data model and system data model) models. Just as com-
panies have procedures that require maintenance programmers to consider

C h a p t e r 11356

downstream systems in making changes, procedures are needed to require
people maintaining models to consider the impact on other models. The
impact of the changes was presented in Figure 11.2. An inventory of the data
models and their relationships to each other should be maintained so that the
affected models can be identified.

Collision Management
Collision management is the process for detecting and addressing changes to
the model. The process entails providing the modeler with access to a portion
of the model, making the model changes, comparing the revised model to the
base model, and incorporating appropriate changes. A member of the Data
Administration team is responsible for managing this process. That person
must be familiar with the collision management capabilities of the tool, have
data modeling skills, have strong communication and negotiation skills, and
have a solid understanding of the overall business data model.

Model Access

Access to the model can be provided in one of two forms. One approach is to
let the data modeler copy the entire model, and another is to let the data mod-
eler check out a portion of the model. When the facility to check out a portion
of the model exists, some tools provide options with respect to exclusivity of
control. When these options are provided, the data modeler checks out the
model portion and can lock this portion of the model, protecting it from
changes made by any other person. Anyone else who makes a request to check
out that portion of the model is informed that he or she is receiving read-only
access and will not be able to save the changes. When the tool does not provide
this level of protection, two people can actively make changes to the same por-
tion of the model, and the one who gets his or her changes in first will have an
easier time getting them absorbed, as described in the remainder of this sec-
tion. With either approach, the data modeler has a copy of the data model that
he or she can modify to reflect the necessary changes.

Modifications

Once the modeler has a copy of the portion of the data model of interest, he or
she performs the modeling activities dictated by his or her responsibilities.
Remember, these changes are being made to a copy of the data model—not to
the base model (that is, the model from which components are extracted).
When the modeler completes the work, the updates need to be migrated to the
base model.

Maintaining the Models 357

Comparison

Each data modeler is addressing his or her view of the enterprise. The full
business data model has a broader perspective. The business data model rep-
resents the entire enterprise; the system data model represents the entire scope
of a data warehouse or application system. It is possible for the modeler to be
unaware of other aspects of the model that are affected by the changes. The
collision management process identifies these impacts.

Prior to importing the changes into the base model, the base model and the
changed model are compared using a technique called collision management.
The technique has this name because it looks for collisions—or differences—
between the two models and identifies them. The person responsible for over-
all model administration can review the identified collisions and indicate
which ones should be absorbed into the base model. This step in the process
also provides a checkpoint to ensure that the changes in the system model are
appropriately reflected in the business model. Any changes that are not incor-
porated should be discussed with the modeler.

Incorporation

The last step in the process is incorporation of the changes. Once the person
responsible for administering the base model makes the decision concerning
incorporation of the changes, these are incorporated. Each modeling tool han-
dles this process somewhat differently, but most provide for some degree of
automation.

Summary

Synchronization of the various data models is critical if you are to accomplish a
major goal of the data warehouse—data consistency. The business data model
is used as the foundation for all subsequent models. Every data element that is
eventually deployed in a database is linked back to a defined element in the
business data model. This linkage ensures consistency and significantly simpli-
fies integration and transformation activities in building the data warehouse.

The individual data models may change for a variety of reasons. Changes to the
subject area model and business data model are driven primarily by business
changes, and revisions to the other models are driven primarily by impacts of
these changes and deployment decisions. The challenge of keeping the models
synchronized is exacerbated by the absence of tools that can automate the entire
process. The most difficult task is keeping the business data model synchronized
with the lower-level models, but as we saw, this synchronization is at the heart
of keeping the enterprise perspective.

C h a p t e r 11358

Installing Custom Controls 359

Deploying the Relational Solution

C H A P T E R 12

By now, you should have a very good idea of what your data warehouse should
look like and what its roles and functions are. This is all well and good if you
are starting from scratch—no warehouse, no marts—just a clean slate from
which to design and implement your business intelligence environment. That
rarely happens, though.

Most of you already have some kind of BI environment started. What we find
most often is a mishmash of reporting databases, hypercubes of data, and
standalone and unintegrated data marts, sprinkled liberally all over the enter-
prise. The questions then become, “What do I do with all the stuff I already
have in place? Can I ever hope to achieve this wonderful architecture laid out
in this book?” The answer is yes—but it will take hard work, solid support
from your IT and business communities, and a roadmap of where you want to
go. You will have to work hard on garnering the internal support for this
migration. We have given you the roadmap in Chapter 1. Now, all you need is
a migration strategy to remove the silos of analytical capabilities and replace
them with a maintainable and sustainable architecture.

This chapter discusses just that—how your company can migrate from a
stovepipe environment of independent decision support applications to a
coordinated central data warehouse with dependent data marts. We start with
a discussion of data mart chaos and the problems that environment causes. A
variety of migration methods and implementation steps are discussed next,

359

thus giving the reader several options by which to achieve a successful and
maintainable environment. The pros and cons of each method are also cov-
ered. Most of you will likely use a mixture of more than one method. The
choice you make is dependent upon a variety of factors such as the business
culture, political environment, technological feasibility, and costs.

Data Mart Chaos

In a naturally occurring BI environment—one in which there are no architec-
tural constraints—the OLAP applications, reporting systems, statistical and
data mining analyses, and other analytical capabilities are designed and
implemented in isolation from each other. Figure 12.1 shows the appealing
and deceivingly simple beginnings of this architecture. There is no doubt that
it takes less time, effort, money, and resources to create a single reporting sys-
tem or OLAP application without a supporting architecture than it does to cre-
ate the supporting data warehouse with a dependent data mart—at least for
the individual effort. In this case, Finance has requested a reporting system to
examine the trend in revenues and expenses.

Let’s look at the characteristics that naturally occur from this approach:

■■ The construction of the independent data mart must combine both data
acquisition and data delivery processes into a single process. This process
does all the heavy lifting of data acquisition, including the extraction, inte-
gration, cleansing, and transformation of disparate sources of data. Then,
it must perform the data delivery processes of formatting the data to the
appropriate design (for example, star schema, cube, flat files, and statisti-
cal sample) and then deliver the data to the mart for loading and access-
ing by the chosen technology.

■■ Since there is no repository of historical, detailed data to dip into when
new elements or calculations are needed, the extraction, integration,
cleansing, transformation, formatting, and ultimately delivery (ETF&D)
process must go all the way back to the source systems continuously.

■■ If detailed data is required by the data mart—even if it is used very
infrequently—then all the needed detail must be stored in the data mart.
This will eventually lead to poor performance.

■■ Proprietary and departmentalized summarizations, aggregations, and
derivations are stored in the data mart and may not require detailed meta
data to describe them since they are used by a limited audience with simi-
lar or identical algorithms.

■■ Definitions of the key elements or attributes in the data mart are specific
to the group using the data and may not require detailed meta data to
describe them.

C h a p t e r 12360

Figure 12.1 Independent data mart.

Ex
tr

ac
t,

Tr
an

sf
or

m
,

C
le

an
se

, I
nt

eg
ra

te
,

Su
m

m
ar

iz
e,

 F
or

m
at

an
d

D
el

iv
er

D
at

a
M

ar
t

O
p

er
at

io
na

l
Sy

st
em

s

Fi
na

nc
e

Deploying the Relational Solution 361

■■ If the business users change their chosen BI access technology (for exam-
ple, the users change from cube to relational technology), the data mart
may need to be torn down and reconstructed to match the new technolog-
ical requirements.

Why Is It Bad?
Now let’s see what happens if this form of BI implementation continues down
its natural path. Figure 12.2 shows the architecture if we now add two more
departmental requests—one for Sales personnel to analyze product profitabil-
ity and one for Marketing to analyze campaign revenues and costs. We see that
for each data mart, a new and proprietary set of ETF&D processes must be
developed.

There are some obvious problems inherent in this design including the following.

Impact on the operational systems. Since these three marts use very similar
data (revenues and expenses for products under various circumstances),
they are using the same operational systems as sources for their data. How-
ever, instead of going to these systems once for the detailed revenue and
expense data, they are interfacing three times! This has a significant impact
on the overall performance of these critical OLTP systems.

Redundant ETF&D processing. Given that they are using the same sources,
this means that the ETF&D processes are basically redundant as well. The
main differences in their processing are the filters in place (inclusion and
exclusion of specific data), the proprietary calculations used by each depart-
ment to their version of revenues and expenses, and the timing of their
extracts. This leads to the spider web of ETF&D processing shown in
Figure 12.2.

Redundancy in stored detailed data. As mentioned for the single data
mart, each mart must have its own set of detailed data. While not identical,
each of these marts will contain very similar revenue and expense transac-
tion records, thus leading to significant duplication of data.

Inconsistent summarized, aggregated, and derived fields. Finance, Sales,
and Marketing certainly do not use the same calculations in interpreting the
detail data. The numbers generated from each of these data marts has little
to no possibility of being reconciled without massive effort and wasted time.

Inconsistent definitions and meta data. If the implementers took the time
to create definitions and meta data behind the ETF&D processes, it is
highly unlikely that these definitions and meta data contents match across
the various data marts. Again significant effort has been wasted in creating
and recreating these important components.

C h a p t e r 12362

Figure 12.2 Naturally occurring architecture.

O
p

er
at

io
na

l
Sy

st
em

s

Fi
na

nc
e

Ex
tr

ac
t,

Tr
an

sf
or

m
,

C
le

an
se

, I
nt

eg
ra

te
,

Su
m

m
ar

iz
e,

 F
or

m
at

an
d

D
el

iv
er

D
at

a
M

ar
t

D
at

a
M

ar
t

D
at

a
M

ar
t

M
ar

ke
tin

g

Sa
le

s

Deploying the Relational Solution 363

Inconsistent integration (if any) and history. Because the definitions and
meta data do not match across the data marts, it is impossible for the data
from the various operational sources to be integrated in a like manner in
each data mart. Each mart will contain its own way of identifying what a
product is. Therefore, there is little hope that the different implementers
will have identical integration processing and, thus, all history stored in
each mart will be equally inconsistent.

Significant duplication of effort. The amount of time, effort, resources, and
money spent on each individual data mart may be as high as for the initial
CIF implementation but it should be obvious that there is no synergy cre-
ated as the next data mart is implemented. Let’s list just of few of the
duplicated efforts taking place:

■■ Source systems analyses are performed for each data mart.

■■ Definitions and meta data are created for each mart.

■■ Data hygiene is performed on the same sets of data (but not in the
same fashion).

Huge impact on IT resources. The maintenance of data marts becomes
nightmarish, given the spider web architecture in place. IT or the line of
business IT becomes burdened with the task of trying to understand and
maintain the redundant, yet inconsistent, ETF&D processes for each data
mart. If a change occurs in the operational systems that affects all three
marts, the change must be implemented not once but three times—each
with its own set of quirks and oddities—resulting in about three times the
resources needed to maintain and sustain this environment.

Because there is no synergy or integration between these independent efforts,
each data mart will have about the same price tag on it. When added up, the
costs of these independent data marts become significantly more than the price
tag for the architected CIF approach.1 (See Figure 12.3.) For each subsequent
CIF implementation, the price tag drops substantially to the point that the over-
all cost of the environment is less than the cost of the individual data marts
together.

Why is this true? Let’s look at the reasons for the decreasing price tag for BI
implementations using the architected environment:

■■ The most significant cost for any BI project is in the ETL design, analysis,
and implementation. Because there is no synergy between the indepen-
dent data mart implementations, there is no reduction in cost as more and
more data marts are created. This reduction in the CIF architecture occurs
because the data warehouse serves as the repository of historical and

C h a p t e r 12364

1 “Data Warehouses vs. Data Marts” by Campbell (Databased Web Advisor, January 1998, page 32)

detailed data that is used over and over again for all data marts. Any data
that was brought into the data warehouse for a data mart that has been
deployed merely needs to be delivered to the new mart; it does not need
to be recaptured from the source system. The ETL processes are per-
formed only once rather than over and over again.

■■ The redundancy in definition and meta data creation is greatly reduced in
the CIF architecture. Definitions and meta data are created once and simply
updated with each new data mart project started. There is no “reinventing”
of the wheel for each project. Issues may still arise from disparities in defini-
tions but at least you have a sound foundation to build from.

■■ Finally, there is no need for each individual data mart to store the detailed
data that it infrequently needs. The data is stored only once in the data
warehouse and is readily accessible by the business community when
needed At that point, the detail could be replicated into the data mart.

This means that by the time the third or fourth data mart is created there is a
substantial amount of properly documented, integrated, and cleansed data
stored in the data warehouse repository. The next data mart requirement will
likely find most, if not all, of its supporting data already to go. Implementation
time, effort, and cost for this data mart are significantly less than it would be
for the standalone version.

Figure 12.3 Implementation costs.

1 2 3 4 5

Data Mart Projects

Es
ti

m
at

ed
 C

o
st

 (
$
)

p
er

 D
at

a
M

ar
t

CIF Architecture

Independent Data Marts

Deploying the Relational Solution 365

Criteria for Being In-Architecture
Having laid the foundation for the need of a CIF-like architecture for your BI
environment, what then are the criteria for a project being “in-architecture,”
that is, the guidelines for ensuring that your projects and implementations
adhere to your chosen architecture? Here is our checklist for determining
whether your project is properly aligned with the architectural directions of
the company:

■■ It is initiated and managed through a Program Management Office
(PMO). The PMO is responsible for creating and maintaining the concep-
tual and technical architectures, establishing standards for data models,
programs, and database schemas, determining which projects get fund-
ing, and resolving conflicts and issues within a project or across projects.

■■ It employs the standardized, interoperable, technology platforms. The
technology may not be the same for each BI implementation but it should
be interoperable with the existing implementations.

■■ It uses a standardized development methodology for BI projects. There
are several books available on this subject. We suggest you adopt one of
these methodologies, modify it to suit your environment, and enforce its
usage for all BI projects.

■■ It uses standard-compliant software components for its implementation.
Just as the hardware should be interoperable and standardized, so should
the software components including the ETL and access software.

■■ It uses model-based development and starts with the business data model.
Change procedures for the data models are established and socialized.

■■ It uses meta data- or repository-driven development practices. In particular,
the ETL processing should be meta data-driven rather than hand-coded.

■■ It adheres to established change control and version management proce-
dures. Because changes are inevitable, the PMO should be prepared for
change by creating and enforcing formal change management or version
control processes to be used by each project.

It is important to note that these architectural criteria are evolutionary; they
will change as the BI environment grows and matures. However, it is also
important to ensure that the architectural criteria are deliberate, consistent,
and business-driven with business value concluded.

Migration to the chosen BI architecture must be planned and, ultimately, it must
be based on a rigorous cost/benefit analysis. Does it make sense for a specific
project to adhere to the PMO standards? The long-term costs and benefits of
adhering or not adhering will make that determination. The migration process
will take a long time to accomplish; furthermore, it may never be finished. As a
final consideration, you should be aware that the architected applications and

C h a p t e r 12366

processes must support communication with nonarchitected systems gracefully
and consistently.

With these guidelines in place, let’s look at how you would get started in your
migration process. Following is a high-level overview of the steps to take:

1. Develop a strategic information delivery architecture. This is the roadmap
you use to determine which data marts will be converted to the architec-
ture and in what order. The CIF is a solid, proven one that many compa-
nies have successfully implemented.

2. Obtain the buy-in for your architecture from the IT and business commu-
nity sponsors.

3. Perform the appropriate cost/benefit analyses for the various conversion
projects. This should include a ranking or prioritization for each project.

4. Obtain funding for the first project through the PMO.

5. Design the technical infrastructure with the PMO hardware and software
standards enforced.

6. Choose the appropriate method of conversion from those in the following
section. Each option may generate significant political and cultural issues.

7. Develop the project plan and scope definition, including the timeframes
and milestones, and get the appropriate resources assigned.

The next section will describe in detail the different methods you can use to
accomplish the migration of independent data marts into a maintainable and
sustainable architecture. As with all endeavors of this sort, the business com-
munity must be behind you. It is your responsibility to constantly garner their
active support of this migration.

Migrating from Data Mart Chaos

In this section, we discuss several approaches for migrating from “data mart
chaos.” The idea is to go from the chaos of independent data marts to the Cor-
porate Information Factory architecture. In our experience, there are at least
five different methods to achieve a migration from chaos, and it is likely that
you will find yourself using components from each of these in your approach.
We list them here and discuss them in detail in the following sections:

■■ Conform the dimensions used in the data marts.

■■ Create a data warehouse data model and convert each data mart
model to it.

■■ Convert data marts to the data warehouse architecture—two paths are
described.

Deploying the Relational Solution 367

■■ Build new data marts only “in-architecture”—leave old marts alone.

■■ Build the full architecture from one of the existing independent data marts.

Each method has its advantages and disadvantages, which you must consider
before choosing one. We list these with each section as well.

Conform the Dimensions
For certain environments, one way to mitigate the inconsistency, redundancy
of extractions, and chaos created by implementing independent data marts is
to conform the dimensions commonly used across the various data marts.
Conforming the dimensions consists of creating a single, generic dimension
for each of the shared dimensions used in each mart. For example, a single
product dimension would be created from all the product dimension require-
ments of the data marts. This unified dimension would then replace all the
fractured versions of a product dimension in the data marts.

This technique is for those environments that have only multidimensional or
OLAP data marts. It cannot be used if your BI environment includes a need for
statistical analyses, data mining, or other nonmultidimensional technologies.
Given this caveat, what is it about the multidimensional marts that allows this
technique to help mitigate data mart chaos?

First, each data mart has its own set of fact and dimension tables, unique to
that data mart. The dimensions consist of the constraints used in navigating
the fact table and contain mostly textual elements describing the dimensions.
Examples of one such dimension, the Product dimension, are shown for the
Finance, Sales, and Marketing data marts described in Figure 12.4. We see that
each data mart has its own way of dealing with its dimensions. Sales and Mar-
keting have identified various attributes to include in their Product dimen-
sion. Finance does not even call the dimension Product; it uses the term Item
and uses an Item identifier as the key to the dimension.

Second, the facts or measurements used in the fact table are derived from these
dimensions. They form the intersection of the various dimensions at the level
of detail specified by the dimensions. In other words, a measurement of rev-
enue for a product (or item) is calculated for the intersection of the Product ID,
the Store ID, Time Period, and any other desired dimensions (for example,
Salesperson, Sales Region or Territory, or Campaign). Therefore, the dimen-
sions hold the key to integration among the data marts. If the depictions of a
dimension such as Product are all at the same level of detail and have the same
definition and key structure, then the measurements derived from their com-
bination should be the same across data marts. This is what is meant by con-
forming the dimensions.

C h a p t e r 12368

Figure 12.4 Each data mart has its own dimensions.

P
ro

d
u

ct
 D

im
en

si
o

n
Pr

od
uc

t
ID

 (
nu

m
 5

)
Pr

od
uc

t
D

es
cr

ip
to

r
(C

ha
r

20
)

Pr
od

uc
t

Ty
p

e
(C

ha
r

7)
St

d
C

os
t

(n
um

 7
)

Ve
nd

or
 ID

(n
um

 8
)

P
ro

d
u

ct
 D

im
en

si
o

n
Pr

od
uc

t
N

o
(n

um
 7

)
Pr

od
uc

t
N

am
e

(C
ha

r
25

)
Pr

od
uc

t
Fa

m
ily

 (
N

um
 6

)
D

at
e

Is
su

ed
 (

D
at

e)

It
em

 D
im

en
si

o
n

It
em

 ID
 (

ch
ar

 9
)

It
em

 N
am

e
(C

ha
r

15
)

D
at

e
Fi

rs
t

So
ld

 (
D

at
e)

St
or

e
ID

 (
C

ha
r

8)
Su

p
p

lie
r

N
o

(N
um

 9
)

M
ar

ke
tin

g
D

at
a

M
ar

t

Sa
le

s
D

at
a

M
ar

t

Fi
na

nc
e

D
at

a
m

ar
t

Deploying the Relational Solution 369

Figure 12.5 Conversion of the data marts.

St
o

re
 D

im
en

si
o

n
C

u
st

o
m

er
 D

im
en

si
o

n
P

ro
d

u
ct

 D
im

en
si

o
n

Pr
od

uc
t

ID
 (

nu
m

 5
)

Pr
od

uc
t

N
am

e
(C

ha
r

25
)

Pr
od

uc
t

Ty
p

e
(C

ha
r

7)
Pr

od
uc

t
Fa

m
ily

 (
N

um
 6

)
St

d
C

os
t

(n
um

 7
)

Su
p

p
lie

r
N

o
(N

um
 9

)
D

at
e

Fi
rs

t
So

ld
 (

D
at

e)
St

or
e

ID
 (

C
ha

r
8)

O
th

er
 D

im
en

si
o

n
s

C h a p t e r 12370

The differences between the three data marts’ Product dimensions are recon-
ciled and a single Product dimension is created containing all the attributes
needed by each mart. It is important to note that getting buy-in for this can be
a very difficult process involving a lot of political skirmishing, difficult com-
promising from different departments, and resolving complicated integration
issues. This process can be repeated for each dimension that is used in more
than one data mart. The next dimension is examined, reconciled, and imple-
mented in the three marts.

Once the new conformed dimensions are created, each data mart is converted
to the newly created and conformed dimensions. (See Figure 12.5.) The recon-
ciliation process can be difficult and politically ugly. You will encounter resis-
tance to changing implemented marts to the conformed dimensions. Make
sure that you have your sponsor(s) lined up and that you have done the
cost/benefit analysis to defend the process.

This technique is perhaps the easiest way to mitigate at least some of the data
mart chaos. It is certainly not the ideal architecture but at least it’s a step in the
right direction. You must continue to strive for the enterprise data warehouse
creation, ultimately turning these data marts into dependent ones.

NOTE
Conformation of the dimensions will not solve the problems of redundant data
acquisition processes, redundant storage of detailed data, or the impact on the
source systems. It simply makes reconciliation across the data marts easier. It will
also not support the data for the nonmultidimensional data marts.

Create the Data Warehouse Data Model
The next process takes conformation of the dimensions a step further. It is sim-
ilar to the prior one, except that more than just the dimensions will be con-
formed or integrated. We will actually create the data warehouse data model
as a guide for integration and conformation. Note, though, that we are still not
creating a real, physical data warehouse yet.

The first step is to determine whether your organization has a business data
model in existence. If so, then you should begin with that model rather than
reinventing it. If it does not exist, then the business data model must be created
within a well-defined scope. See Chapter 3 for the steps in creating this model.

The data warehouse or system model is then built from the business data
model as described in Chapter 4. The data warehouse model is built without
regard to any particular data mart; rather its purpose is to support all the data
marts. We suggest that you start with one subject area (for example, Cus-
tomers, Products, or Sales) and then move on to the next one.

Deploying the Relational Solution 371

Figure 12.6 Create the data warehouse data model.

The data warehouse data model focuses on the integration of strategic data
only, that is, it will use only a subset of the business data model’s entities and
attributes. Once a subject area is finished, you begin mapping the various data
mart data models to the data warehouse one. As this process continues, you
will notice that changes will occur in both data models. It is inevitable that new

Fi
na

nc
e

M
ar

ke
tin

g

Sa
le

s

*
Th

e
m

ap
p

in
g

oc
cu

rs
 fo

r
bo

th
 t

he
 d

at
a

m
od

el
s

an
d

th
e

da
ta

 a
cq

ui
si

tio
n

p
ie

ce
s.

*
N

ew
 e

nt
er

p
ris

e-
dr

iv
en

 d
at

a
ac

q
ui

si
tio

n
p

ro
gr

am
s

ar
e

de
ve

lo
p

ed
 t

ha
t

 e
xt

ra
ct

da
ta

 o
nc

e
an

d
di

st
rib

ut
e

to
 m

an
y

da
ta

m
ar

ts
.

*
Re

du
nd

an
t

ex
tr

ac
tio

n
p

ro
gr

am
s

ar
e

el
im

in
at

ed
, w

he
re

 p
os

si
bl

e
(X

).

X
X

X

C h a p t e r 12372

requirements will turn up for the warehouse data model and that the data
mart models must convert to the new enterprise standards.

These standardized data model attributes are then mapped back to the data
acquisition programs, the programs are rewritten and, in some cases, redun-
dant ones are eliminated where possible. A one-to-many relationship is estab-
lished for the data acquisition programs and the data marts they must load;
one program may “feed” two or more marts with data. Figure 12.6 shows this
process for the data acquisition process for one source system.

This process can be a time-consuming effort to retrofit into the existing data
marts and to see the benefits of integration. As in the previous case, you may
encounter resistance from the business community to changing their imple-
mented marts. The good news is that, unlike the previous migration path, you
have a minimal base from which to grow future data marts, you have properly
documented meta data, and you have a proper data warehouse data model.
The creation of this model also gives you a design from which to implement a
real data warehouse—perhaps behind the scenes.

There will still be problems with maintenance because not all the duplicate
data acquisition programs can be replaced until a real data warehouse exists,
so you must continue to push for the implementation of the warehouse and
the conversion of the data marts to dependent ones. However, at least some of
the redundant data acquisition processing may be eliminated.

Create the Data Warehouse
In this migration path, we see for the first time the construction of a real, phys-
ical data warehouse and the conversion of the chaotic, independent data marts
to maintainable, dependent ones. There are two paths available for you to
achieve this state. In the first path, you create one subject area at a time in the
new data warehouse and then convert each mart to be dependent upon that
subject area in the data warehouse.

As an alternative, you can convert one entire data mart at a time to the new
architecture, bringing into the warehouse all of the data needed to support that
mart. This requires that the entire data model for the data mart be converted
into the enterprise data warehouse data model at once. Then, the data mart is
fed the data it needs from the newly constructed data warehouse. Let’s look at
each of these approaches in more detail.

Convert by Subject Area

This approach starts with a selection of the subject area to be converted. If the
business data model exists, it should be used as the starting point for the data
warehouse data model. If it does not exist, then the business data model for the

Deploying the Relational Solution 373

chosen subject area must be created. The requirements for the individual data
marts are gathered for the chosen subject area and the modeler follows the estab-
lished methodology for creating the data warehouse data model. (See Chapter 4.)

The emphasis of the data warehouse system model is on the integration of the
enterprise data, that is, the focus in on “Getting the data in” to a proper repos-
itory. The detailed data (the least common denominator) is modeled for the
subject area, mapped to the source systems, and the data acquisition programs
are developed. We recommend that you consider establishing a data steward-
ship program (see prior chapters for more detail on data stewardship) to help
with the creation of enterprise standards for entities, attributes, definitions, as
well as calculated, derived, and aggregated data.

Each data mart must be mapped to the implemented data in the data warehouse
and the mart models are changed to match the enterprise nature of the data
warehouse data model. Be sure to perform an analysis to ensure that the detailed
data in the data warehouse will serve a solid basis for the various marts.

Data acquisition programs for the subject area create the integrated, cleansed,
and transformed data, which is then loaded into the data warehouse. The data
marts’ schemas are recreated based on the new data model. Data delivery pro-
grams must be created to populate the data marts (“Getting information out”).
For the first time, there is a true separation between data acquisition and data
delivery. At the completion of this phase, the next subject area is picked and
the process begins again. See Figure 12.7.

There are significant advantages to this approach. By examining the require-
ments of all the data marts for an entire subject area, you are far more likely to
maintain an enterprise view of the data. This means that the data warehouse
data model may be much more stable, and thus the data warehouse will be
easier to maintain and sustain.

The disadvantage of this approach is that all of the implemented data marts as
well as the reports and queries using them will have significant changes occur-
ring to them over and over as each subject area is implemented in the data
warehouse. The business community may not be very tolerant of the constant
upheaval to their analytical applications.

Convert One Data Mart at a Time

A variation of the third approach is to convert the data marts, one at a time. In
this approach, an entire data mart is analyzed and the business data model
and data warehouse data model are created in support of this mart. This will
most certainly cross multiple subject areas. In addition, the likelihood of get-
ting a rather proprietary view of the data is high so the modeler must be very
careful to develop the business and data warehouse data models so that they
reflect the enterprise business rules.

C h a p t e r 12374

Figure 12.7 Converting one subject area at a time (continued).

Fi
na

nc
e

*
Th

e
da

ta
 a

cq
ui

si
tio

n
p

ro
gr

am
s

be
gi

n
to

 p
op

ul
at

e
th

e
da

ta
w

ar
eh

ou
se

 s
ub

je
ct

 a
re

a.

*
Th

e
da

ta
 d

el
iv

er
y

p
ro

gr
am

s
ar

e
cr

ea
te

d
an

d
be

gi
n

de
liv

er
in

g
in

fo
rm

at
io

n
to

 t
he

 d
at

a
m

ar
ts

.

M
ar

ke
tin

g

M
et

a
D

at
a

M
an

ag
em

en
t

D
at

a
A

cq
ui

si
tio

n
C

IF
 D

at
a

M
an

ag
em

en
t

D
at

a
D

el
iv

er
y

Sa
le

s

D
at

a
W

ar
eh

ou
seX

Deploying the Relational Solution 375

Figure 12.8 Converting one data mart at a time.

No doubt, there will be changes to the data warehouse data model (and there-
fore the reconstructed data mart) with every new data mart brought into the

Fi
na

nc
e

* * * *

M
et

a
D

at
a

M
an

ag
em

en
t

D
at

a
A

cq
ui

si
tio

n
C

IF
 D

at
a

M
an

ag
em

en
t

D
at

a
D

el
iv

er
y

M
ar

ke
tin

g

Sa
le

s

D
at

a
ac

q
ui

si
tio

n
p

ro
gr

am
s

ar
e

co
ns

tr
uc

te
d

to
 lo

ad
 t

he
 d

at
a

w
ar

eh
ou

se
, r

ep
la

ci
ng

 t
ho

se
us

ed
 b

y
th

e
da

ta
 m

ar
t.

Th
e

da
ta

 m
ar

t
is

 c
on

ve
rt

ed
 t

o
th

e
fu

ll
da

ta
w

ar
eh

ou
se

 a
rc

hi
te

ct
ur

e
by

 im
p

le
m

en
ta

tio
n

of
its

 d
at

a
de

liv
er

y
p

ro
gr

am
s.

Th
en

 a
 s

ec
on

d
da

ta
 m

ar
t

is
 c

on
ve

rt
ed

 in
th

e
sa

m
e

m
an

ne
r.

Fi
na

lly
 t

he
 la

st
 d

at
a

m
ar

t
is

 c
on

ve
rt

ed
 a

nd
al

l t
he

 r
ed

un
da

nt
 d

at
a

ac
q

ui
si

tio
n

p
ro

ce
ss

in
g

is
 e

lim
in

at
ed

 a
nd

 a
 s

ep
ar

at
io

n
is

 a
ch

ie
ve

d
be

tw
ee

n
da

ta
 a

cq
ui

si
tio

n
an

d
da

ta
 d

el
iv

er
y.

X D
at

a
W

ar
eh

ou
se

C h a p t e r 12376

architecture. Your goal in this approach is to mitigate the changes to the con-
verted data marts as much as possible. The entire data warehouse infrastruc-
ture must be set up from the first data mart onward. This means that the entire
data delivery programs for the first data mart must be created in addition to
the data acquisition programs for the data warehouse. Once the first restruc-
tured data mart is back into production, the team begins work on to the next
data mart, using the same process, as shown in Figure 12.8.

As with the subject-area-oriented conversion, this process is time-consuming
but well worth the effort in the long run. You will need to set expectations up
front regarding the changes that may happen to the converted data marts and
their models as more and more data marts are implemented. Without doubt,
changes will occur as a broader enterprise focus is attained. Once again, we
recommend that you establish a data stewardship function to mitigate this sit-
uation and to garner agreement and adherence to the enterprise standards for
entities, attributes, definitions, and calculated, aggregated, and summarized
data. With the data warehouse in place, we now have a critical mass of data
that will begin to pay substantial dividends with each subsequent request for
change.

Build New Data Marts Only “In-Architecture”—
Leave Old Marts Alone

You may find that it is just not possible to convince the business community of
the benefits of converting their independent marts into the more manageable
and maintainable environment. We have run into this several times, and a
curious thing happens if you use this fourth approach.

First off, you must leave the aging data marts alone. They will continue to be
supported by their existing staff in their chaotic state. However, it must be
mandated that all new data marts will be planned and designed using the
adopted data warehouse architecture. The classical data warehouse methodol-
ogy is used to create the full Corporate Information Factory architecture as
described in the previous chapters, resulting in a dual environment.

The real strategy here is that we are building for the future by creating an
enterprise data architecture. Each implementation of a CIF architecture com-
ponent will help to better prepare the IT department for the eventual conver-
sion or demise of the aging legacy data marts (Lega-Marts!). What we have
observed at our clients in this situation is that the more success achieved with
the CIF architecture, the more (often self-imposed) pressure is placed on the
legacy data mart owners to convert to the architecture. Indeed, the advantages
of the architecture themselves often “sell” these reluctant owners into convert-
ing to the architecture:

Deploying the Relational Solution 377

■■ It is very easy to bring in new data elements or calculated fields into exist-
ing dependent data marts since they already exist in detail form in the
data warehouse.

■■ It is easy to switch access tools if the starting blocks of data reside in the
data warehouse. It becomes a much simpler process of tearing down and
rebuilding the data mart from data stored in the data warehouse repository.

■■ The separation of data acquisition from data delivery means that the lega-
mart owners have a much simpler set of programs to maintain and sustain.

■■ Reconciliation is much simpler within and between the dependent data
marts. This is difficult at best in the independent data mart environment.

The bottom line is that you may be pleasantly surprised to find that you win
over the reluctant business community—one lega-mart at a time!

Build the Architecture from One Data Mart
Many times, we find that one data mart that is surprisingly sophisticated in
terms of its focus, design, and implementation. This data mart could serve as a
starting point for your enterprise data warehouse architecture. Some of the
characteristics to look for in this data mart include the following:

■■ The data mart has nicely integrated and detailed data. The data acquisi-
tion processing includes reasonable data cleansing procedures and is well
documented. It is a plus if the process is supported by an ETL tool.

■■ The technology is scalable and can be easily expanded to accommodate
large amounts of data. The technology is not proprietary, such as some
cube technologies.

■■ The design has a mostly enterprise-wide perspective. The implementers
interviewed more than just one department or used the business data
model as a starter model to get the entities, attributes, definitions, and
calculations used in their data mart.

■■ The technology can support both a data warehouse and data mart. We
recommend a standard relational database management system rather
than the cube technology, which may be proprietary.

If you find such a data mart in your organization, and its owner is cooperative,
you can proceed to convert it into the preferred architecture through the fol-
lowing four steps:

1. Begin with an analysis of the data in the chosen mart for what data belongs
in the data warehouse data versus the data used in the data mart. Your job
is to separate the data into the data model for the data warehouse and the
data model for the data mart. We recommend that you begin by separating

C h a p t e r 12378

detailed data from the more summarized or aggregated data as the criteria
for data warehouse data as opposed to data mart data. Remember that the
data warehouse model will be more normalized, and the data mart model
may be a star schema, snowflake schema, token design, flat files, or other
design, depending on the technology chosen for the data mart. The data
warehouse data model should be based on the business data model and
should have the characteristics outlined in this book.

2. Map the data warehouse data model to the source systems. You also begin
the natural separation of the data acquisition and data delivery programs.
It may be prudent to examine other potential data marts to see if there are
other easily attainable pieces of data that will facilitate the conversion of
other data marts. (By extending the design to include other data, you may
get some welcomed help with some of the political problems you may
encounter later—see the next section for a discussion of these.) The data
acquisition programs are designed, coded, tested, and executed. You then
begin loading the data warehouse.

3. Map the data mart data model to the data in the data warehouse. The data
delivery programs are then designed, coded, and tested. These are much
simpler than the previous programs used to create the data mart because
all the heavy lifting (the extraction, integration, transformation, and
cleansing) has been done by the data acquisition programs. The data
delivery programs focus on the extraction of the subset of data needed by
the data mart (filter), set up of the data according to the needs of the
access tool (format), including the aggregation and summarization that is
required, and distribute the data to the appropriate data mart (delivery).

4. Here, the data mart schema is implemented and the data delivery programs
are put into production. Data begins flowing from the data warehouse into
the specific data mart. It is important to note that the data warehouse and
data mart may only be logically separated at this point in time. To simplify
life, you may decide to co-locate both constructs in the same instance of the
database. If a performance problem occurs later, you can easily separate the
two components with minimal effort since the data model for the data mart
and the data delivery programs are already logically separated. The last
step is to decide on the next data mart to be brought into the established
architecture and to repeat the process. Fortunately, the subsequent data
marts will be easier to build because much of the data needed for them may
already reside in the newly created data warehouse.

The advantages to this migration path are:

■■ Many of the integration issues have already been decided upon. Since the
data mart was created with an enterprise view maintained (mostly), the
heated discussions and escalation of issues have already taken place and

Deploying the Relational Solution 379

resolutions put into practice. You may find a few remaining issues to solve
but, by and large, most should be taken care of.

■■ The hardware and software are acceptable for an enterprise database. The
technology was chosen with growth, scalability, and performance in mind.

■■ The data mart was well documented through the meta data captured in
the ETL tool. This makes separating the data acquisition process from the
data delivery process much simpler.

As with every situation that changes the status quo, there will be challenges.
Politically, you may run into difficulty in getting acceptance of this data mart
as the beginnings of the enterprise data warehouse. There are several reasons
for this, including:

■■ The data mart may be perceived as proprietary or belonging to the
department or function that created this. Other departments may not feel
that their particular view of the world is not well represented in this “ver-
sion of the truth.” Resolution may require executive intervention to assure
skeptics that the resulting data warehouse can be used enterprise-wide.

■■ The chosen data mart may not have as much of the enterprise perspective
maintained throughout as first thought. Upon analysis, you may find that
it does indeed reflect the perspectives of one set of users rather than the
collective view of the enterprise. Once again, data stewardship will be a
useful function to mitigate or remove this challenge.

■■ Arguments may come up over who “owns” the data warehouse. Since the
beginnings of the warehouse were created under the jurisdiction of the
independent data mart, these implementers may feel that they paid for
the warehouse and, therefore, it is still theirs rather than belonging to the
enterprise as a whole. The enterprise may wish to “pay back” the depart-
ment or function for the data warehouse part of the architecture, thus
ensuring a neutral ownership.

You should be very sensitive to any or all of these problems and head them off
as soon as they are discovered. Strong management support can be invaluable
to you in maintaining the proper course of actions.

Choosing the Right Migration Path

As with any enterprise-wide endeavor, the politics and culture of your organi-
zation must be taken into account before making any decision about how you
will migrate from data mart chaos to a sustainable and maintainable environ-
ment. You must consider the following characteristics of your company when
choosing the path:

C h a p t e r 12380

■■ The level of executive support for this endeavor. Are your executives on
board with this migration? Do they understand and actively support you
and your team?

■■ The willingness of the business community to “share” its data. This one
factor will have a significant impact on your ability to migrate indepen-
dent marts to the dependent state.

■■ The business community’s resistance to change. Many business users are
so fed up with IT constantly changing their environment that they
actively campaign against any further changes to their world (especially if
they control the production of their data mart).

■■ The stability of the overall enterprise. In today’s economy, many organiza-
tions are undergoing massive changes such as mergers, acquisitions, and
divestitures. In this unstable environment, it may be difficult to make any
headway toward an “enterprise” view when what constitutes the very
enterprise is in doubt.

Some of your best arguments will come from the reduction in costs and effort
spent in maintaining a chaotic analytical environment. Never lose sight of the
ultimate reason for creating a maintainable and architected environment.

Summary

This chapter has shown you five different paths to migrate from the world of
independent and chaotically created data marts to one that is architected and
efficient. Migration from chaos is not easy; after all, it took the organization
many years to get itself into the chaotic situation. It should realize that getting
out of it might also take years.

The costs and benefits of moving from chaos to an architected environment
must be determined before attempting any of the paths we have discussed in
this chapter. You must prove to the affected parties that migration to an archi-
tecture will be ultimately beneficial to the enterprise as a whole (and hopefully
to the individuals as well). It must be shown that the final state will be worth
the disruption and costs to the organization.

You may choose to use more than one of the pathways described in this chapter.
Different situations call for different approaches, and no one approach will work
in all situations. Carefully think through each situation, the politics involved, the
support you have, and the timeframe you have for the conversion. Then exam-
ine these pathways for the one that seems best suited for that situation.

An architected approach will no doubt be the accepted one, if you do your
homework. We wish you all the best in this most difficult endeavor!

Deploying the Relational Solution 381

Installing Custom Controls 383

Comparison of Data Warehouse
Methodologies

C H A P T E R 13

It’s appropriate at this point to recognize that the Corporate Information Fac-
tory (CIF) is not the only business intelligence (BI) architecture. Another archi-
tecture worth noting is Dr. Ralph Kimball’s multidimensional (MD) architecture1.
This chapter starts with a brief description of the MD and CIF architectures
and then highlights the significant similarities and differences between the
two by using the criteria of scope, perspective, data flow, implementation
speed and cost, volatility, complexity, and functionality.

Perhaps as a way of introducing the two architectures, we should explain that
we believe that a combination of the data-modeling techniques found in the two
architectural approaches works best—ERD or normalization techniques for the
data warehouse and the star schema data model for multidimensional data
marts. That said, it is important that BI architects study their situation, politics,
and culture to determine what works best in their environment.

The Multidimensional Architecture

The MD architecture (see Figure 13.1) is based on the premise that all BI analyses
have at their foundation a multidimensional design. The star schema is an ele-
gant data model that layers multidimensional meta data over what is basically a

383

1 See The Data Warehouse Lifecycle Toolkit, Ralph Kimball et al., Wiley Publishing, Inc., 1998.

two-dimensional data store (columns and rows), making it act to the user as if it
were multidimensional. The star schema gave BI a solid and much needed push
into the mainstream when it first appeared. It is still one of the most popular and
useful designs for usage in strategic decision-making environments.

One of the more significant differences between the MD and CIF architectures is
in the definition of the data mart. For the MD architecture, the aggregated data
mart star schema is approximately the same as the data mart in the CIF architec-
ture. The atomic-level data mart star schema contains the detailed data roughly
equivalent to the content in the CIF’s data warehouse. However, the design of the
atomic-level data marts (star schemas) is significantly different from the design of
the CIF data warehouse (denormalized ERD schema). These data-modeling dif-
ferences constitute the main design differences in these two architectures.

All star schema-based data marts may or may not reside within the same data-
base instance. A collection of these schemas in a single database instance is
called the Data Warehouse Bus Architecture. Unlike the CIF, a separate and
physically distinct data warehouse does not exist.

The MD architecture is divided into two groups of components and processes—
the back room and front room. The back room is where the data-staging and
data acquisition processes take place. Mapping to the operational systems and
the technical meta data surrounding these maps is also part of the back room.
It is roughly equivalent to the CIF’s “Getting Data In” components with some
notable exceptions. One is the lack of an ERD-based data warehouse, as men-
tioned, and the other is the presence of atomic and aggregated star schema
data marts—both discussed later in this chapter. The latter appears in both the
back and front rooms.

The data-staging area contains the conformed dimensions but it is also the
place where surrogate keys are generated, maps to the operational systems are
kept, current loads of operational data are stored, and any atomic data not cur-
rently used in the data marts is stored. Most of the heavy lifting performed by
the ETL tools occurs here as well.

The Data Warehouse Bus Architecture consists of two types of data marts:

Atomic Data Marts. These data marts hold multidimensional data at the low-
est common denominator level (lowest level of detail available throughout
the environment). They may contain some aggregated data as well to
improve query performance. The data is stored in a star schema data model.

Aggregated Data Marts. These data marts contain data related to a core
business process such as marketing, sales, or finance. Generally, the atomic
data marts supply the data to be aggregated for these data marts but that is
not mandatory. It is possible to create an aggregated data mart directly
from the data-staging area. As with the atomic data marts, data is stored in
the aggregated data marts in star schema designs.

C h a p t e r 13384

Figure 13.1 The multidimensional architecture.

Your need for both types of data marts depends on your business require-
ments and the performance of each of these structures in your environment.
However, it is important to understand that the MD architecture starts and
ends with its focus primarily on the individual business unit(s) or group of
business users with a specific BI requirement. This singular focus is reflected
in the structure of the data, which is optimized to accommodate that unit or
group of users perfectly. No two star schemas are exactly alike—each provides
an optimal way of accessing data for a specific set of requirements. As unit
after unit or group after group is added to the list of BI recipients, either new

A
P

I

A
P

I

A
P

I

A
P

I

O
p

er
at

io
n

al
Sy

st
em

s

Q
u

er
y

Se
rv

ic
es

(D
SI

)

Q
u

er
y

Se
rv

ic
es

(D
SI

)

Q
u

er
y

Se
rv

ic
es

(D
SI

)

Q
u

er
y

Se
rv

ic
es

(D
SI

)

Ba
ck

 R
oo

m
Fr

on
t

Ro
om

D
at

a
W

ar
eh

ou
se

Bu
s

D
at

a
St

ag
in

g
Se

rv
ic

es
(D

at
a

A
cq

ui
si

tio
n

an
d

D
at

a
D

el
iv

er
y

co
m

bi
ne

d)

ER
P

Ex
te

rn
al

In
te

rn
et

Le
ga

cy

O
th

er

D
im

en
si

on
al

D
at

a
M

ar
t

w
/

A
g

g
re

g
at

ed
D

at
a

D
im

en
si

on
al

D
at

a
M

ar
t

w
/

A
g

g
re

g
at

ed
D

at
a

D
im

en
si

on
al

D
at

a
M

ar
t

w
ith

 A
to

m
ic

D
at

a

D
im

en
si

on
al

D
at

a
M

ar
t

w
ith

 A
to

m
ic

D
at

a

Comparison of Data Warehouse Methodologies 385

star schemas must be built to accommodate them specifically or the existing
design must be reconstructed to expand its functionality.

The front room is the interface for the business community. We see it as roughly
equivalent to the CIF’s “Getting Information Out” components. It is clear that
the decision support interfaces (called Access Services) and their corresponding
end user access tools belong in this part of the architecture. The two types of data
marts also appear in the front room as the source of data for these interfaces and
tools. The basic tenet of the front room is to mask or hide the complexity going
on in the back room from the business community since it is believed by these
authors that users of these components neither know nor care about the signifi-
cant amount of energy, time, and resources poured into creating the back room.

It is in the front room that we begin to see personal data marts (also called
“spreadmarts”) popping up, as well as disposable data marts (data marts cre-
ated for a specific short-lived business requirement). Care should be taken in
both cases to ensure that these do not supplant or replace the real data marts;
otherwise, you end up with chaos again.

The end user access tools consist of OLAP engines, reporting and querying tools,
and maybe even some data-mining tools. We caution the reader here that the
process of building a star schema limits the usefulness of these data marts for
complete and unbiased data mining and statistical analyses, as well as for explo-
ration analyses. (See Chapter 1 for more on this.) If the data is stored in only star
schemas, then it becomes impossible to find unrelated patterns or correlations in
the raw data. Because the star contains only known relationships, then patterns
or correlations between unrelated data sets cannot be performed.

The front room also contains the query management and activity-monitoring
services. These are very useful in maintaining the appropriate performance for
each data mart installation. Query management involves services such as
query retargeting, aggregate awareness, and query governing. Activity moni-
toring captures information about the usage of these databases to determine if
performance and user support are optimal.

There are many other services embedded in the front room that we do not list
here. For the full set, please refer to the books by Ralph Kimball et al. Suffice it to
say that much of what is captured in the CIF Operations and Administration Ser-
vice Management function is also captured in parts of this architecture as well.

Because the approach is predominately a bottom-up one, it is easy to violate
the corporate or enterprise business rules when constructing the star schema.
If there is no insistence that top-down design work be performed, the star
schemas can easily become stovepipe implementations, lacking in the ability
to link together, producing inconsistent and, perhaps worse, conflicting, intel-
ligence across the enterprise. Strong and experienced multidimensional model-
ers, just like experienced ERD modelers, overcome this because their experience
allows them to recognize the need to do so.

C h a p t e r 13386

In addition, over the years, the MD approach has been modified in attempts to
overcome the shortcoming of the lack of an enterprise view, by ensuring that
the various data mart star schemas “conform” to some enterprise standards.
Conformed dimensions are one way to overcome this shortcoming. According
to Kimball et al., a conformed dimension is one that means the same thing to
every possible fact table to which it can be joined. Ideally, this means that a
conformed dimension is identical in every star schema that uses it. Examples
of these are Customer, Product, Time, and Locations dimensions.

Another workaround the shortcoming was the creation of a data-staging area
(not shown in Figure 13.1). In this data store, the designer consolidates all of a
dimension’s attributes into a single conformed dimension to be replicated to
all the requesting star schemas. It is the responsibility of the design team to cre-
ate, publish, maintain, and enforce the usage of these conformed dimensions
throughout all data marts. Once consolidated, the conformed dimensions are
permanently stored in the data-staging area. This retrofit of an enterprise stan-
dard mitigates the possible inconsistencies and discrepancies that occur in
dimensions with no enterprise consideration. The data warehouse bus design
concept was developed for this purpose.

The Corporate Information Factory Architecture

Chapter 1 discusses the functions and components associated with “getting
data in” and “getting information out.” Figure 13.2 is a simplified version of
the CIF, showing these two functions and the components and processes
involved in each.

The staging area (not shown in Figure 13.2) in the CIF includes persistent
tables for storing the key conversion information and other reference tables
used in the data acquisition process. Replicated operational data not yet used
in the warehouse may also be stored there, waiting for integration and loading
into the warehouse. The staging area may or may not be separate from the data
warehouse but if it is on the same platform as the warehouse, it should be in its
own database instance.

In the MD architecture, the back room is completely off-limits to the business
community. Unlike the data-staging area in the back room of the MD architec-
ture, business community access to the CIF data warehouse is discouraged,
but exceptions for special exploration or one-time extraction needs are permit-
ted. Other than security restrictions that you may want to implement, there is
nothing to prevent its usage since the data is completely documented, inte-
grated, and validated. However, the data model is complicated, and the busi-
ness user must understand an ERD model and how to “walk a relational
database” in order to use it.

Comparison of Data Warehouse Methodologies 387

Figure 13.2 Simplified corporate information factory.

D
at

a
A

cq
ui

si
tio

n

C
IF

 D
at

a
M

an
ag

em
en

t
D

at
a

D
el

iv
er

y

A
P

I

A
P

I

A
P

I

A
P

I
D

SI

D
SI

T
rI

D
SI

D
SI

O
p

er
at

io
n

al
Sy

st
em

s

G
et

tin
g

D
at

a
In

G
et

tin
g

In
fo

rm
at

io
n

O
ut

Ex
te

rn
al

D
at

a
W

ar
eh

ou
se

O
p

er
at

io
na

l
D

at
a

St
or

e

ER
P

In
te

rn
et

Le
ga

cy

O
th

er

Ex
p

lo
ra

tio
n

W
ar

eh
ou

se

D
at

a
M

in
in

g
W

ar
eh

ou
se

O
LA

P
D

at
a

M
ar

t

O
p

er
 M

ar
t

C h a p t e r 13388

Comparison of the CIF and MD Architectures

Figure 13.3 is an adaptation of a slide from Laura Reeves of StarSoft (www.
starsoftinc.com) comparing the CIF and MD architectures. The significant points
in this figure are that access is generally not allowed above the diagonal line in
both architectures, and there is no physical repository equivalent to the data
warehouse in the MD architecture. The “data warehouse bus” shown for the MD
architecture is the collection of the atomic and aggregated data marts.

Both the CIF and MD architectures have a staging area, meta data manage-
ment, and sophisticated data acquisition processing. The designs of the data
marts are predominantly multidimensional for both architectures, though the
CIF is not limited to just this design and can support a much broader set of
data mart design techniques.

What’s missing in the MD architecture is a separate physical data warehouse.
The “data warehouse” in this architecture as mentioned earlier is virtual and
consists of the collection of all the individual data marts and their correspond-
ing data (both atomic level and aggregated levels). The closest thing to the CIF
data warehouse seems to be the “data-staging area” in the MD architecture,
which, in his August 1997 DBMS Magazine article “A Dimensional Modeling
Manifesto,” Ralph Kimball states is often designed using ERD or third normal
form data models.

Now, let’s look more closely at the major comparison topics for the MD and
CIF architectures: scope, perspective, data flow, implementation speed and
cost, volatility, flexibility, functionality, and ongoing maintenance.

Scope
BI is about discovery. CIF and MD architectures both help an enterprise satisfy
its basic need for more information about both itself and the environment in
which it exists. CIF and MD both assume that BI requirements will emerge from
business units of an organization, as well as from the organization as a whole. To
illustrate how enterprise data can differ from business unit data, consider that,
for a bank, “customer” might mean an individual account holder to Finance, a
household of account holders to Marketing, and a non-account-holder to Cus-
tomer Service. To the enterprise, “customer” means all of these and more, and
distinct terms and definitions for each type of customer may be needed.

Such differences in meaning are synonymous with differences in scope. While
neither of the architectures ignores enterprise scope or business unit scope,
each favors one over the other. CIF places a higher priority on enterprise
scope, and MD places a higher priority on business unit scope. Hence, the
scope of the first few projects under the CIF architecture may be a bit larger
than the scope for an MD architectural project.

Comparison of Data Warehouse Methodologies 389

Figure 13.3 Comparison of CIF and MD architectures.

C
IF

 A
rc

hi
te

ct
ur

e

•
E/

R
M

od
el

•
Su

bj
ec

t
A

re
as

•
Tr

an
sa

ct
io

n
Le

ve
l D

et
ai

l
•

Li
m

ite
d

En
d

U
se

r
A

cc
es

s
A

bo
ve

 t
he

 L
in

e

•
D

im
en

si
on

al
 a

nd
 o

th
er

 d
es

ig
ns

•
D

at
a

M
ar

t
D

es
ig

n
by

 B
us

in
es

s
Fu

nc
tio

n
•

Su
m

m
ar

y
&

 D
et

ai
l L

ev
el

 D
at

a
•

M
ul

tip
le

 M
ar

ts
 m

ay
 e

xi
st

 in
 in

Si
ng

le
 D

at
ab

as
e

In
st

an
ce

•
D

im
en

si
on

al
•

Tr
an

sa
ct

io
n

&
 S

um
m

ar
y

D
at

a
•

D
at

a
M

ar
t

Si
ng

le
 S

ub
je

ct
 A

re
a

(i.
e.

 F
ac

t
Ta

bl
e)

•
M

ul
tip

le
 M

ar
ts

 M
ay

 E
xi

st
 in

 a
Si

ng
le

 D
at

ab
as

e
In

st
an

ce

St
ag

in
g

D
at

a
A

re
a

•
E/

R
D

es
ig

n
or

 F
la

t
Fi

le
•

N
o

En
d

U
se

r
A

cc
es

s
A

bo
ve

 t
he

 L
in

e

St
ag

in
g

D
at

a
St

or
e

D
at

a
W

ar
eh

o
u

se

D
at

a
M

ar
t

D
at

a
M

ar
t

D
at

a
M

ar
t

•
U

se
rs

 A
cc

es
s

Tr
an

sa
ct

io
ns

D
at

a
W

ar
eh

ou
se

Bu
s

A
gg

re
ga

te
d

D
at

a
M

ar
t

Pe
rs

on
al

D
at

a
M

ar
t

A
gg

re
ga

te
d

D
at

a
M

ar
t

A
to

m
ic

D
at

a
M

ar
t

A
to

m
ic

D
at

a
M

ar
t

C h a p t e r 13390

Perspective
CIF proponents frequently say that the historic problem with BI implementa-
tions is that the BI source data is difficult to locate, gather, integrate, under-
stand, and deliver. Given an enterprise scope, they emphasize the perspective
of supplying enterprise data. IT is often centralized and experienced at main-
taining data at the enterprise level, so IT tackles the problems of supplying BI
source data from an enterprise point of view. CIF proponents favor the needs
of the enterprise and advocate getting the BI source data modeled for the
enterprise as a prerequisite for any BI implementation. Note though, that this
does not mean that the entire enterprise data must be dealt with during the
first project. On the contrary, a subset of the overall enterprise’s data is
selected, predominantly from a subject area like Customer or Product, and the
data warehouse data model and resulting database are implemented for just
this small part of the overall set of enterprise data.

MD proponents frequently say the same thing about the historic problem with
BI implementations. Using the same words, and given their business unit scope,
they emphasize the perspective of consuming business unit data. Business units
that consume BI data, such as Sales or Finance, are experienced with their indi-
vidual needs and views. If another business unit has different needs and views,
that’s okay. They just don’t value other business unit needs and views as much
as they do their own. MD proponents favor the needs of the business unit and
advocate getting the BI source data modeled for the business unit as a prerequi-
site for any BI implementation. It is important to note that the multidimensional
modeler must strive to achieve consensus on the definition of the conformed
dimensions across the enterprise, however. He or she concentrates only on those
dimensions pertinent to the facts being loaded. Where a new fact is introduced
that requires new dimensions not previously defined, the multidimensional
modeler must again take an enterprise view and gain a consensus definition
among those business areas that have some stake in that dimension.

Data Flow
To create a sustainable BI environment, one must understand the iterative
nature of the projects and the relationship the ultimate environment has with the
sources of data supplied to the enterprise. Like the chicken and egg paradox, BI
questions create answers that create more BI questions (see Figure 13.4.). Even
though BI source data starts and ends at the same places for CIF and MD, given
these two architectures’ unique scopes and perspectives, they view BI data flow
differently. It’s a matter of push versus pull. In general, the CIF approach is top-
down. CIF suppliers of enterprise BI data use the business requirements to push
the data from the operational systems to where it’s needed. The focus is on inte-
grating the enterprise data for usage in any data mart from the very first project.

Comparison of Data Warehouse Methodologies 391

By contrast, the MD approach is bottom-up. MD consumers of business unit BI
data use the business requirements to pull the data from the operational sys-
tems to where it’s needed. The focus is on getting business-unit-specific data
quickly into the hands of the users with minimal regard for the overall enter-
prise usage until such a need is demonstrated.

CIF and MD both seek to minimize BI implementation time and cost. Both
benefit greatly from a prototype of decision support interface functionality.
The difference between the two in terms of implementation speed and cost
involves long-term and short-term trade-offs.

Because of CIF’s enterprise scope, the first CIF project will likely require more time
and cost than the first MD project, due to increased overhead for making parts of
the subject area and business data models as compatible across the enterprise as
practically possible. CIF developers should be cautioned against both losing sight
of the business unit requirements and trying to perfect the enterprise data model.

In contrast, subsequent CIF projects tend to require less time and cost than
subsequent MD projects, especially for business units that utilize existing,
robust subject areas. MD developers should be reminded that each subsequent
MD project might include nontrivial changes to the already implemented con-
formed dimensions. Expediting the requirements-gathering and implementa-
tion processes may complicate the task of providing consistent and reliable
data throughout the BI environment.

The detailed data generally appears once in the CIF (though some denormaliza-
tion may occur for loading and data delivery performance reasons) and is readily
available for any and all data marts, thus minimizing storage space requirements.
This nonredundancy precludes storing data (except foreign keys) in multiple
places. This feature of the data model also minimizes or may eliminate update or
delete anomalies that could occur during cascading processes with redundant
data content. These benefits are comprised in the MD architecture.

Volatility
The multidimensional model, especially for the aggregated data marts, is
dependent on a determination of the possible questions that might be asked in
order to eliminate or reduce the need to reconstruct the fact tables should new
or changed dimensions be needed. If a change occurs in a business process
(that is, the queries change), then the multidimensional model must be reshuf-
fled or reconstructed. The multidimensional model can certainly be extended
to accommodate some unexpected new data elements such as new facts (as
long as they are at the same level of granularity as the rest of the fact table) and
new dimensional attributes. However, at the atomic level, this can be a severe
penalty. The fact tables can contain many hundreds of millions or even billions
of rows, so a rebuild is not advised. Generally, a new (and mostly redundant)
star schema is created when this happens.

C h a p t e r 13392

Figure 13.4 Cyclical relationship between business requirements and sources of data.

D
at

a
Su

p
p

lie
d

D
at

a
Re

q
ui

re
d

Bu
si

ne
ss

 C
om

m
un

ity
O

p
er

at
io

na
l S

ou
rc

es
of

 D
at

a

A
P

I

A
P

I

A
P

I

A
P

I

Ex
te

rn
al

ER
P

In
te

rn
et

Le
ga

cy

O
th

er

Comparison of Data Warehouse Methodologies 393

For the CIF approach, the data warehouse data model is process-free, which
removes any biases or hard-coded relationships due to process influences. The
data model is dependent on the enterprise’s business rules—not what queries
will be run against it—for its design. The data model is also far more forgiving
of processing changes in the business environment due to a lack of processing
bias. Because the model is not designed with any questions in mind, it can sup-
ply information for the ultimate data marts through the relatively trivial process
of data delivery. If an established data mart requires changes or enhancements,
it can be reasonably and quickly rebuilt from the detailed data stored in the data
warehouse.

Flexibility
The MD architecture puts a stake in the ground in terms of the design of the
entire BI environment. That stake is that all components (except the data-
staging area) must be multidimensional in design. This might make sense
from an academic standpoint; however, we find in practice that significant and
useful technologies can be deployed without this stringent restriction. This is
analogous to someone saying that all they have is a hammer and therefore
everything must be a nail. If you design your environment using multidimen-
sional designs, then all you will ever do are multidimensional analyses.
Nothing more sophisticated or advanced.

The CIF architecture makes no such claim and, in fact, goes to extremes to
include the possibility of many different forms of BI analyses. The data ware-
house as we have described in this book can support technologies that are not
multidimensional in nature. Technologies like memory resident BI tools are
certainly not multidimensional. In fact, they require no data model whatso-
ever. Bitmapped indexes and token databases have no need for multidimen-
sional designs. Finally, true statistical analytical tools require flat files or data
sets that are not dependent upon multidimensional designs. All are supported
with no caveats, biases, or false preconditioning by the CIF data warehouse.

Complexity
Complexities tend to cause fewer problems for CIF than for MD, because the
architecture starts with an enterprise-focused, complex data model and then
uses it in multiple situations that are usually simpler in design. In the case of
creating the multidimensional data marts from the CIF data warehouse, you
pull data from a more-complex, multipurpose model into a less-complex one.
The data model for the CIF data warehouse minimizes the risk of data incon-
sistencies because the detailed data in the data warehouse is process-free. In
other words, it has not been set up for a specific set of questions, functions, or
processes; rather, it is able to supply data for any question or query.

C h a p t e r 13394

For the MD approach, the multidimensional or star schema data model is easy
to understand by the business community. The data model is generally less
complex and resembles the way many business community members think
about their data—that is, they think in terms of multiple dimensions, for exam-
ple, “Give me all the sales revenues for each store, in each city and state, by
market segment over the last two months.” Thus, it is also easier to construct
by the IT data modelers. However, given the complexity of an enterprise view
of the data as you go from data mart implementation to data mart implemen-
tation, retrofitting is significantly harder to accomplish for this architecture.
That is why the CIF architecture places the star schema designs in the data
marts only—never in the data warehouse itself.

Functionality
The multidimensional architecture provides an ideal environment for relation-
ally oriented multidimensional processing, ensuring good performance for
complex “slice and dice,” drill-up, -down, and -around queries. All dimen-
sions are equivalent to each other, meaning that all queries within the bounds
of the star schema are processed with roughly the same symmetry. We recom-
mend that it be used for the majority of CIF data mart implementations. But do
remember that multidimensional modeling does not easily accommodate
alternate methods of analysis such as data mining and statistical analysis.

The CIF uses a data model that is based on an ERD methodology that supports
the business rules of the enterprise. This type of model is also easily enhanced
or appended if need be. Attributes are placed in the data model based on their
inherent properties rather than specific application requirements. This is an
important differentiator in the BI world because it means that the data ware-
house is positioned to support any and all forms of strategic data analyses, not
just multidimensional ones. Data mining, statistical analysis, and ad hoc or
exploration functionalities are supported as well as the multidimensional ones.

Ongoing Maintenance
There is an old adage: “Pay me now or pay me later.” For this final discussion,
that adage should be expanded to include: “But it will cost you a lot more if
you pay me later.” By now, you realize that the whole purpose behind the CIF
is to stop the high costs of later constructions, adjustments, retrofits, and sub-
optimal accommodations to your BI environment. It may cost you a bit more
up front, in terms of making the effort to capture an enterprise view of your
company’s data for your first or second BI implementation. However, BI envi-
ronments build upon the past iterations and will take years to complete, if it’s
ever finished. Just as a sound foundation for a house takes forethought and
is absolutely necessary for the longevity of the structure, regardless of the

Comparison of Data Warehouse Methodologies 395

changes that occur to it over the years, a well-designed data warehouse data
model will serve your enterprise for the long haul. With each iteration, the CIF
as your foundation will yield tremendous paybacks in terms of:

■■ The end-to-end consistency and integration of your entire BI environment

■■ The ease with which new marts are created

■■ The enhancement of existing marts

■■ The maintenance and sustenance of the data warehouse and related data
marts

■■ The overall satisfaction for all your business community members, includ-
ing those focused on multidimensional analyses

Summary

In this chapter, we described the Multidimensional (MD) and the Corporate
Information Factory (CIF) architectures in terms of their approach to the con-
struction of the BI environment. The MD architectural approach subordinates
data management to business requirements because its reason for being is to
satisfy a business unit within the enterprise. On the other hand, the CIF archi-
tectural approach manages data to the subordination of the business require-
ments because its reason for being is to serve the entire enterprise. The
similarities and differences between these two approaches stem from these
fundamental differences.

As stated earlier, we find that a combination of the data-modeling techniques
found in the two architectural approaches works best—ERD or normalization
techniques for the data warehouse and the star schema data model for multi-
dimensional data marts. This is the ultimate goal of the CIF and uses the
strengths of one form of data modeling and combines it seamlessly with the
strengths of the other. In other words, a CIF with only a data warehouse and
no multidimensional marts is fairly useless and a multidimensional
data-mart-only environment risks the lack of an enterprise integration and
support for other forms of BI analyses. Please develop an understanding of the
strengths and weaknesses of your own situation and corporation as a whole to
determine how best to design the architectural components of your BI envi-
ronment. We wish you continued success with your BI endeavors.

C h a p t e r 13396

Installing Custom Controls 397G LO S S A RY

Administrative Meta Data Administrative meta data is information about
the utilization and performance of the Corporate Information Factory and
is used for maintenance and management of the environment.

Aggregated Data Mart An aggregated data mart is a data mart that con-
tains data related to a core business process such as marketing, sales, and
finance. Generally, the atomic data marts supply the data to be aggregated
for these data marts but that is not mandatory. It is possible to create an
aggregated data mart directly from the data-staging area. As with the
atomic data marts, data is stored in the aggregated data marts in star
schema designs.

Analytical Application An analytical application is a predesigned, ready to
install, decision support application. These applications generally require
some customization to fit the specific requirements of the enterprise. The
source of data may be the data warehouse or the operational data store
(ODS). Examples of these applications are risk analysis, scorecard applica-
tions, database marketing (CRM) analyses, vertical industry “data marts in
a box,” and so on.

Associative Entity An associative entity is an entity that is dependent upon
two or more entities for its existence, and that records data at the point of
intersection.

397

Atomic Data Mart An atomic data mart is a data mart that holds multi-
dimensional data at the lowest level of detail available. Atomic data marts
may contain some aggregated data as well to improve query performance.
The data is stored in a star schema data model.

Attribute An attribute is the lowest level of information relating to any
entity. It models a specific piece of information or a property of a specific
entity. Dimensional modeling has a more restrictive definition; it refers to
information that describes the characteristics of a dimension.

Attributive Entity An attributive (or characteristic) entity is an entity whose
existence depends on another entity. It is created to handle a group of data
that could occur multiple times for each instance of its parent entity.

Back Room The back room of the Multidimensional architecture developed
by Ralph Kimball et al. is where the data-staging and data-acquisition
processes take place. Mapping to the operational systems and the technical
meta data surrounding these maps are also part of the back room.

Balanced Hierarchy A balanced hierarchy is one in which all leafs exist at
the lowest level in the hierarchy, and every parent is one level removed
from the child.

Business Data Model The business data model, sometimes known as the
logical data model, describes the major things (“entities”) of interest to the
company and the relationships between pairs of these entities. It is an
abstraction or representation of the data in a given business environment,
and it provides the benefits cited for any model. It helps people envision
how the information in the business relates to other information in the
business (“how the parts fit together”).

Business Intelligence (BI) Business intelligence is the set of processes and
data structures used to analyze data and information used in strategic
decision support. The components of Business Intelligence are the data
warehouse, data marts, the DSS interface and the processes to “get data in”
to the data warehouse and to “get information out.”

Business Management Business management is the set of systems and data
structures that allow corporations to act, in a tactical fashion, upon the
intelligence obtained from the strategic decision support systems. The
components of Business Management are the operational data store, the
transactional interfaces, and the processes to “get data in” to the opera-
tional data store and to apply it.

Business Meta Data Business meta data is information that provides the
business context for data in the Corporate Information Factory.

Business Operations Business operations are the family of systems (opera-
tional, reporting, and so on) from which the rest of the Corporate Informa-
tion Factory inherits its characteristics.

G l o s s a r y398

Cardinality Cardinality denotes the maximum number of occurrences of
one entity that can be related to another entity. Usually, these are expressed
as “one” or “many.”

Change Data Capture Change data capture is a technique for propagating
only changes to source data through the data acquisition process.

Characteristic Entity See Attributive Entity.

Conformed Dimension A conformed dimension is one that is built for use
by multiple data marts. Conformed dimensions promote consistency by
enabling multiple data marts to share the same reference and hierarchy
information.

Corporate Information Factory (CIF) The Corporate Information Factory is
a logical architecture whose purpose is to deliver business intelligence and
business management capabilities driven by data provided from business
operations.

Data Acquisition Data acquisition is the set of processes that captures,
integrates, transforms, cleanses, reengineers, and loads source data into
the data warehouse and operational data store.

Data Delivery Data delivery is the set of processes that enables end users
or their supporting IS groups to build and manage views of the data ware-
house within their data marts. It involves a three-step process consisting of
filtering, formatting, and delivering data from the data warehouse to the
data marts. It may include customized summarizations or derivations.

Data Mart The data mart is customized and/or summarized data that is
derived from the data warehouse and tailored to support the specific ana-
lytical requirements of a given business unit or business function. It uti-
lizes a common enterprise view of strategic data and provides business
units with more flexibility, control, and responsibility. The data mart may
or may not be on the same server or location as the data warehouse.

Data-Mining Warehouse The data-mining (or statistical) warehouse is a
specialized data mart designed to give researchers and analysts the ability to
delve into the relationships of data and events without having preconceived
notions of those relationships. It provides good response times for people to
perform queries and apply mining and statistical algorithms to data, without
having to worry about disabling the production data warehouse or receiving
biased data such as that contained in multidimensional designs.

Data Model A data model is an abstraction or representation of the data in
a given environment. It is a collection and subsequent verification and
communication method for fully documenting the data requirements used
in the creation of accurate, effective, and efficient physical databases. The
data model consists of entities, attributes, and relationships.

Glossary 399

Data Stewardship Data stewardship is the function that is largely responsi-
ble for managing data as an enterprise asset. The data steward is responsi-
ble for ensuring that the data provided by the Corporate Information
Factory is based on an enterprise view. An individual, a committee, or both
may perform data stewardship.

Data Warehouse (DW) The data warehouse is a subject-oriented, inte-
grated, time-variant, nonvolatile collection of data used to support the
strategic decision-making process for the enterprise. It is the central point
of data integration for business intelligence and is the source of data for the
data marts, delivering a common view of enterprise data.

Data Warehouse Bus The data warehouse bus is a collection of star-
schema-based data marts in a single database instance.

Data Warehouse Data Model The data warehouse data model is the “sys-
tem” model for the data warehouse that is created by transforming the
business data model into one that is suitable for the data warehouse.

Decision Support Interface (DSI) The decision support interface is an
easy-to-use, intuitively simple tool that allows the end user to distill infor-
mation from data. The DSI enables analytical activities and provides the
flexibility to match a tool to a task. DSI activities include data mining,
OLAP or multidimensional analysis, querying, and reporting.

Delta During data extraction, the delta is the change in the data from the
previous time it was extracted to the present extraction. Recognizing only
changed data decreases the amount of data that needs to be processed dur-
ing data acquisition. See also Change Data Capture.

Dependent Data Mart A dependent data mart is one that is fully derived
from the data warehouse.

Derived Field A derived field is an element that is calculated (or derived)
based on other data elements. Its storage in the data warehouse promotes
business consistency and improves delivery performance.

Dimension Table A dimension table is a set of reference tables that pro-
vides the basis for constraining and grouping queries for information in a
fact table within a dimensional model. The key of the dimension table is
typically part of the concatenated key of the fact table, and the dimension
table contains descriptive and hierarchical information.

Dimensional Model A dimensional model is a form of data modeling that
packages data according to specific business queries and processes. The
goals are business user understandability and multidimensional query
performance.

Element See Attribute.

G l o s s a r y400

Entity An entity is a person, place, thing, concept, or event in which the
enterprise has both the interest and capability to capture and store infor-
mation. An entity is unique within the business data model.

Entity-Relationship (ER) Diagram (ERD) The ERD is a proven and reliable
data-modeling approach with straightforward rules of construction. The nor-
malization rules yield a stable, consistent data model that upholds the policies
and rules of engagement established by the enterprise. The resulting database
schema is the most efficient in terms of storage and data loading as well.

Enterprise Data Management Enterprise data management is the set of
processes that manage data within and across the data warehouse and
operational data store. It includes processes for backup and recovery, parti-
tioning, creating standard summarizations and aggregations, and archival
and retrieval of data to and from alternative storage.

Executive Information System (EIS) An executive information system is a
set of applications that is designed to provide business executives with
access to information. Early executive information systems often failed
because they lacked a robust supporting architecture.

Exploration Warehouse The exploration warehouse is a data mart that is
built to provide exploratory or true ad hoc navigation through data. This
data mart provides a safe haven that provides reasonable response time for
users with unstructured, unpredictable queries. Most of these data marts
are temporary in nature. New technologies have greatly improved the abil-
ity to explore data or to create a prototype quickly and efficiently.

External Data External data is any data outside the normal data collected
through an enterprise’s internal applications. There can be any number of
sources of external data such as demographic, credit, competitor, and
financial information. Generally, external data is purchased by the enter-
prise from a vendor of such information.

Fact A business metric or measure stored in a fact table (see Measure).

Fact Table A fact table is the table within a dimensional model that contains
the measures and metrics of interest.

First Normal Form Model The first normal form (1NF) of the data model
requires that all attributes in the entity be dependent on the key. This requires
two conditions — that every entity has a primary key that uniquely identifies
it and that the entity contains no repeating or multivalued groups. Each
attribute is at its lowest level of detail and has a unique meaning and name.

Fiscal Calendar A fiscal calendar is a calendar used to define the accounting
cycle. The fiscal calendar describes when accounting periods begin and end.

Flattened Tree Hierarchy A flattened tree hierarchy is a simple structure
that arranges the hierarchical elements horizontally, in different columns,
rather than rows.

Glossary 401

Foreign Key A foreign key is an attribute that is inherited because of a
parent-child relationship between a pair of entities. The foreign key in the
child entity is the primary key in the parent entity and links the two enti-
ties together. If the relationship is identifying, then the foreign key is part
of the primary key of the child attribute.

Front Room The front room is the interface for the business community as
described in the Multidimensional Architecture developed by Ralph Kim-
ball et al. It is clear that the decision support interfaces (called Access Ser-
vices) and their corresponding end-user access tools belong in this part of
the architecture.

Fundamental Entity A fundamental entity is an entity that is not depen-
dent on any other entity.

Getting Data In Getting data in refers to the set of activities that captures
data from the operational systems and then migrates it to the data ware-
house and operational data store.

Getting Information Out Getting information out refers to the set of activi-
ties that delivers information from the data warehouse or operational data
store and makes it accessible to the end users.

Granularity Level Granularity level is the level of detail of the data in a
data warehouse or data mart.

Hierarchy A hierarchy, sometimes called a tree, is a special type of a
“parent-child” relationship. In a hierarchy, a child represents a lower level
of detail, or granularity, of the parent. This creates a sense of ownership or
control that the superior entity (parent) has over the inferior one (child).

Hierarchy Depth The maximum number of levels in a hierarchy.

Identifying Relationship An identifying relationship is a parent-child rela-
tionship in which the child entity’s existence is dependent on the existence
of the parent. The primary key of the parent entity is inherited as a foreign
key within the child entity and is also part of its primary key.

Independent Data Mart An independent data mart is a data mart that con-
tains at least some data that is not derived through the data warehouse.

Information Feedback Information feedback is the set of processes that
transmit the intelligence gained through usage of the Corporate Informa-
tion Factory to appropriate data stores.

Information Workshop The information workshop is the set of tools avail-
able to business users to help them use the resources of the Corporate
Information Factory. The information workshop typically provides a way
to organize and categorize the data and other resources in the CIF, so that
users can find and use those resources. This is the mechanism that pro-
motes the sharing and reuse of analysis across the organization.

G l o s s a r y402

Intersection Entity See Associative Entity.

Inversion Index An inversion index is an index that permits duplicate key
values.

Junk Dimension A junk dimension is a dimension table that is a collection
of “left over” attributes.

Key Performance Indicator (KPI) A key performance indicator is a metric
that provides business users with an indication of the current and histori-
cal performance of an aspect of the business.

Leaf Node A node that is at the lowest level of a hierarchy.

Library and Tool Box The library and tool box are components of the Infor-
mation Workshop and consist of the collection of meta data that provides
information to effectively use and administer the Corporate Information
Factory. The library provides the medium from which knowledge is
enriched. The tool box is a vehicle for organizing, locating, and accessing
capabilities.

Measure A measure is a dimensional modeling term that refers to values,
usually numeric, that measure some aspect of the business. Measures
reside in fact tables. The dimensional terms measure and attribute, taken
together, are equivalent to the relational modeling use of the term attribute.

Meta Data Meta dta is informational the glue that holds the Corporate
Information Factory together. It supplies definitions for data, the calcula-
tions used, information about where the data came from (what source sys-
tems), what was done to it (transformations, cleansing routines, integration
algorithms, etc.), who is using it, when they use it, what the quality metrics
are for various pieces of data, and so on. (See also Administrative Meta
Data, Business Meta Data, and Technical Meta Data.)

Modality See Optionality.

Multidimensional Architecture The Multidimensional Architecture is an
architecture for business intelligence that is based on the premise that all BI
analyses have at their foundation a multidimensional data design. It is
divided into two major groups of components — the back room, where the
data staging and acquisition take place, and the front room, which pro-
vides the interface for the business community and the corresponding
end-user access tools.

Multidimensional Data Mart The multidimensional data mart is a data
mart that is designed to support generalized multidimensional analysis,
using Online Analytical Processing (OLAP) software tools. The data mart
is designed using the star schema technique or proprietary ‘hypercube”
technology.

Node A member of a hierarchy.

Glossary 403

Nonidentifying Relationship A nonidentifying relationship is one in
which the primary key of the parent entity becomes a nonkey attribute of
the child entity. An example of this type of relationship is a recursive rela-
tionship, that is, a situation in which an entity is related to itself.

Normalization Normalization is a method for ensuring that the data model
meets the objectives of accuracy, consistency, simplicity, nonredundancy,
and stability. It is a physical database design technique that applies mathe-
matical rules to the relational data model to identify and reduce insertion,
updating, or deletion anomalies.

OLAP Data Mart See Multidimensional Data Mart.

On Line Analytical Processing (OLAP) Online Analytical Processing is a
term coined by E.F. Codd that refers to any software that permits interac-
tive data analysis through a human-computer interface. It is commonly
used to label a category of software technology that enables analysts, man-
agers, and executives to perform ad hoc data access and analysis based on
its dimensionality. This form of multidimensional analysis provides busi-
ness insight through fast, consistent, interactive access to a wide variety of
possible views of information. However, the term itself does not imply the
use of multidimensional analysis or structures.

Operational Data Store (ODS) The operational data store is a subject-
oriented, integrated, current, volatile collection of data used to support the
operational and tactical decision-making process for the enterprise. It is the
central point of data integration for business management, delivering a
common view of enterprise data.

Operational Systems Operational systems are the internal and external
core systems that run the day-to-day business operations. They are
accessed through application program interfaces (APIs) and are the source
of data for the data warehouse and operational data store.

Operations and Administration Operations and administration refers to
the set of activities required to ensure smooth daily operations, to ensure
that resources are optimized, and to ensure that growth is managed. This
consists of enterprise data management, systems management, data acqui-
sition management, service management, and change management.

Optionality Optionality is an indication whether an entity occurrence must
participate in a relationship. This characteristic tells you the minimum
number (zero or optional) of occurrences in the relationship.

Primary Entity See Fundamental Entity.

Primary Key A primary key uniquely identifies the entity and is used in the
physical database to locate a specific row for storage or access.

Ragged Hierarchy A ragged hierarchy is a hierarchy of varying depth.

G l o s s a r y404

Referential Integrity Referential integrity is the facility of a database
management system to ensure the validity of a predefined foreign key
relationship.

Relational Model The relational model is a form of data model in which
data is packaged according to business rules and data relationships, regard-
less of how the data will be used in processes, in as nonredundant a fashion
as possible. Normalization rules are used to create this form of model.

Relationship A relationship documents the business rule associating two
entities. The relationship is used to describe how the two entities are natu-
rally linked to each other.

Root Node A node that is at the highest level of a hierarchy.

Second Normal Form Model The second normal form (2NF) requires that
all attributes be dependent on the whole key. To attain 2NF, the entity must
be in 1NF and every nonprimary attribute must be dependent on the entire
primary key for its existence. 2NF further reduces possible redundancy in
the data model by removing attributes that are dependent on part of the
key and placing them in their own entity.

Snapshot A snapshot is a view of information at a particular point in time.

Staging Area The staging area is where data from the operational systems is
first brought together. It is an informally designed and maintained grouping
of data that may or may not have persistence beyond the load process.

Star Schema A star schema is a dimensional data model implemented on a
relational database.

Statistical Applications Statistical applications are set up to perform com-
plex, difficult statistical analyses such as exception, means, average, and
pattern analyses. The Data Warehouse is the source of data for these analy-
ses. These applications analyze massive amounts of detailed data and
require a reasonably performing environment.

Statistical Warehouse See Data-Mining Warehouse.

Stock Keeping Unit (SKU) A stock keeping unit is a component identifier
used to keep track of an item when maintaining inventory. It is the smallest
unit handled within the warehouse or storeroom. This term is also used
interchangeably to refer to the item identifier for that unit.

Strategy A strategy is a plan or method for achieving a specific goal.

Subject Area A subject area is a major grouping of items, concepts, people,
events, and places of interest to the enterprise. These things of interest are
eventually depicted in entities. The typical enterprise has between 15 and
25 subject areas.

Glossary 405

Subject Area Model The subject area model groups the major categories of
data for the enterprise. It provides a valuable communication tool and also
helps in organizing the business data model.

Subject Matter Expert (SME) The subject matter expert is the business rep-
resentative with the required understanding of the existing business envi-
ronments and of the requirements.

Subject Orientation Subject orientation is a property of the data warehouse
and operational data store that orients data around major data subjects
such as customer, product, transaction, and so on.

Subtype Entity A subtype entity is a logical division or category of a parent
(supertype) entity. The subtypes always inherit the characteristics or attrib-
utes and relationships of the parent entity.

Surrogate Key A surrogate key is a substitute key that is usually an arbi-
trary numeric value assigned by the load process or the database system.
The advantage of the surrogate key is that it can be structured so that it is
always unique throughout the span of integration for the data warehouse.

System Data Model A system data model is a collection of the information
being addressed by a specific system or function such as a billing system,
data warehouse, or data mart. The system model is an electronic represen-
tation of the information needed by that system. It is independent of any
specific technology or DBMS environment.

Systems Management Systems management is the set of processes for
maintaining the core technology on which the data, software, and tools
operate.

Tactical Analysis Tactical analysis consists of the ability to act upon strate-
gic analyses in an immediate fashion. For example, the decision to stop a
campaign in mid-execution is based on the intelligence garnered from past
campaigns or recent history of activities in the current campaign (cannibal-
ism or incorrect audience targeted).

Technical Data Model The technology data model is a collection of the spe-
cific information being addressed by a particular system and implemented
on a specific platform.

Technical Meta Data Technical meta data is information that provides the
details of how and where data was physically acquired, stored and distrib-
uted in the Corporate Information Factory.

Technical Sponsor The technical sponsor is responsible for garnering
business support and for obtaining the needed technical personnel and
funding.

Technology Data Model The technology data model is the technology
dependent model of the data needed to support a particular system.

G l o s s a r y406

Thin Client Architecture Thin client architecture is a technological topol-
ogy in which the user’s terminal requires minimal processing and storage
capabilities. Most of these capabilities reside on a server.

Third Normal Form Data Model The third normal form (3NF) requires
that all attributes be dependent on nothing but the key. To attain 3NF, the
entity must be in 2NF, and the nonkey fields must be dependent on only
the primary key, and not on any other attribute in the entity, for their exis-
tence. This removes any transitive dependencies in which the nonkey
attributes depend on not only the primary key but also on other nonkey
attributes.

Transactional Interface (TrI) The transactional interface is an easy-to-use
and intuitively simple interface that allows the end user to request and
employ business management capabilities. It accesses and manipulates
data from the operational data store.

Tree See Hierarchy.

Universal Product Code (UPC) The Universal Product Code is a standard
code used to identify retail products. It is commonly seen as a printed bar
code on a retail package. It is primarily used in North, Central, and South
America. Other parts of the world have similar coding systems.

Workbench The workbench is a strategic mechanism for automating the
integration of capabilities and knowledge into the business process.

Glossary 407

R E C O M M E N D E D R E A D I N G

409

Adelman, Sid. Impossible Data Warehouse Situations. Boston, MA: Addison-
Wesley Professional, 2002.

Adelman, Sid and Moss, Larissa T. Data Warehouse Project Management.
Boston, MA: Addison Wesley, 2000.

Berry, Michael J. A. and Linoff, Gordon. Data Mining Techniques. New York,
NY: Wiley Publishing, Inc., 1997.

Berry, Michael J. A. and Linoff, Gordon. Mastering Data Mining. New York,
NY: Wiley Publishing, Inc., 2000.

English, Larry P. Improving Data Warehouse and Business Information Quality.
New York, NY: Wiley Publishing, Inc., 1999.

Feldman, Candace and von Halle, Barbara. Handbook of Relational Database
Design. Reading, MA: Addison-Wesley Longman, 1989.

Hoberman, Steve. Data Modeler’s Handbook. New York, NY: Wiley Publishing,
Inc., 2000.

Imhoff, Claudia, Loftis, Lisa, and Geiger, Jonathan G. Building the Customer
Centric Enterprise: Data Warehousing Techniques for Supporting Customer
Relationship Management. New York, NY: Wiley Publishing, Inc. 2002.

Inmon, W. H. Building the Data Warehouse, Second Edition. New York, NY:
Wiley Publishing, Inc., 1996.

Inmon, W. H. Building the Operational Data Store, Second Edition. New York,
NY: Wiley Publishing, Inc., 1999.

Inmon, W. H., Imhoff, Claudia, and Sousa, Ryan. Corporate Information
Factory. New York, NY: Wiley Publishing, Inc., 1998.

Inmon, W. H., Imhoff, Claudia, and Terdeman, Robert. Exploration Ware-
housing. New York, NY: Wiley Publishing, Inc., 2000.

Inmon, W. H., Rudin, Ken, Buss, Christopher K., and Sousa, Ryan. Data Ware-
house Performance. New York, NY: Wiley Publishing, Inc., 1999.

Inmon, W. H., Terdeman, R. H., Norris-Montanari, Joyce, and Meers, Dan.
Data Warehousing for e-Business. New York, NY: Wiley Publishing, Inc. 2002.

Inmon, W. H., Welch, J. D., and Glassey, Katherine L. Managing the Data
Warehouse. New York, NY: Wiley Publishing, Inc., 1997.

Inmon, W. H., Zachman, John A., and Geiger, Jonathan G. Data Stores Data
Warehousing and the Zachman Framework: Managing Enterprise Knowledge.
New York, NY: McGraw-Hill, 1997.

Kachur, Richard. Data Warehouse Management Handbook. Paramus, NJ:
Prentice Hall, 2000.

Kaplan, Robert S. and Norton, David P. The Balanced Scorecard: Translating
Strategy into Action. Boston, MA: Harvard Business Press,1996.

Kimball, Ralph and Merz, Richard. The Data Webhouse Toolkit. New York, NY:
Wiley Publishing, Inc. 2000.

Kimball, Ralph, Reeves, Laura, Ross, Margy, and Thornthwaite, Warren. The
Data Warehouse Lifecycle Toolkit: Expert Methods for Designing, Developing,
and Deploying Data Warehouses. New York, NY: Wiley Publishing, Inc. 1998.

Kimball, Ralph and Ross, Margy. The Data Warehouse Toolkit: The Complete
Guide to Dimensional Modeling, 2nd Edition. New York, NY: Wiley Publish-
ing, Inc. 2002.

Marco, David. Building and Managing the Meta Data Repository. New York, NY:
Wiley Publishing, Inc., 2000.

Moore, Geoffrey A. Crossing the Chasm. New York, NY: Harper, 1991.

Moore, Geoffrey A. Inside the Tornado. New York, NY: Harper, 1995.

Moore, Geoffrey A. Living on the Fault Line. New York, NY: Harper, 2000.

Silverston, Len. The Data Model Resource Book,. Volumes 1 & 2, New York, NY:
Wiley Publishing, Inc., 2001.

von Halle, Barbara. Business Rules Applied. New York, NY: Wiley Publishing,
Inc., 2002.

R e c o m m e n d e d R e a d i n g410

I N D E X

411

1NF (first normal form), 49–50
2NF (second normal form), 50, 216
3NF (third normal form), 51, 93–94, 97

business model, 57
entities with successive one-to-many

relationships, 117
transforming data to recursive tree

structure, 245–246
3NF flattened tree hierarchy, 208–210
3NF tables, 217
4-5-4 calendar, 161–163

DFC (Delicious Food Company),
191–192

week-centric, 180
7-day periods, 161

A
Access Services, 386
Account entity, 316
accounting, 241
active partitions, 293
activity-monitoring services, 386
actual sales reports, 242
administrative metadata, 15
affinity cards, 279
aggregated data marts, 384–385
aggregated fields, 362
Allocated Automobile entity, 87, 106
Allocated entity, 106
allocation factors, 202–203
alternate date formats, 178
analysis

entities, 85
month-to-month, 166

optimizing, 286
sharing and reuse, 15

analytical applications, 18
application interfaces, 253–258
application systems, multiple, 333
applications

multidimensional, 25
optimizing development, 286–288
selecting ETL tool, 286–288

archiving partitions, 293
arrays, creation of, 131–132
association table, 194
associative entities, 32, 112, 272–275,

328–329, 336, 351
associative entity model, 275
atomic data marts, 384–385
attribute entity, 31–32
attributes, 32–33, 35, 48, 152

adding, 92–93
anticipating, 92
from business perspective, 93
characteristic, 275
common category groupings, 334
confusing and misleading names, 40
defining, 87–89
dependency identification, 42
differences within entity, 351
dimensions, 153
documenting

changes, 43
source and meaning, 335

excluding, 104–106
homonyms, 40
lowest level of detail, 49

I n d e x412

attributes (continued)
measurable, 275
modeling conventions, 86–87
naming conventions, 40, 86
physical storage characteristics, 352
redundant, 40, 42, 263
standardizing, 333–335
synonyms, 40
unique meaning and name, 49

attributive entity, 131
Automobile entity, 87, 104
Automobile Status entity, 87, 105
Automobiles subject area, 61, 80, 83,

87–89, 103–104

B
balanced hierarchies, 203, 246
balanced tree structure, 204
base entities, 117, 130
base unit of measure, 264
batch windows, 22
BI (business intelligence), 11

architecture, 6–9, 10
“back room” capabilities, 25
CIF (Corporate Information Factory),

6, 364
decreasing price tag, 364
ETL tools, 5
getting information in and out, 8
IT (information technology), 5
mature environments, 5
more widespread use, 5
overview, 3–9
significant costs, 364
technologies supported by, 18–19

billing cycle calendar, 164
bill-of-materials structure, 244
Bill-to Customer, 141
bitmap indexes, 259, 304, 306–307,

309–310
BLOBs (binary large objects), 315
Boolean attribute, 275
B&Q Markets distribution centers,

213–214
brainstorming, 72–73, 85
Brand foreign key, 246

bridge tables, 219, 221–222, 228,
239, 244

b-tree indexes, 259, 302–304
Building the Data Warehouse, Third

Edition (Inmon), 286
business

anticipated, current and extended
granularity needs, 122

calendars, 158–169
data warehouse use, 251–252
hierarchies, 197–198
historical perspective, 252
holiday information, 168
holiday practices, 166
operations, 11
orientation, 46
predictable sales cycles, 167
time context to activity, 169
typical industry granularity, 122

business data model, 57, 71, 99, 101, 366
3NF (third normal form), 93–94
adding attributes, 92–93
attribute-level section, 103
attributive entity, 131
benefits, 39–43
business changes, 342
business rules, 90, 341
causes of changes, 341–342
change management, 43
confirming content and structure,

93–94
coordinating with

subject area model, 346–350
system data model, 351–353

customer data, 84
Customer entity, 137
data modelers, 82
data stewards, 82
defining relationships, 90–91
dependency identification, 42
derived data, 352
development process, 82–94
entities, 57, 341
establishing identifiers, 85–90
excluding subject areas, 83–84

Index 413

existing-system database, 92
first development, 352
guiding development, 38
ideal inventory of data elements, 101
identifying

major entities, 85–90
relevant subject areas, 83

information, 92, 94
integration foundation, 40
key business representatives, 82
lack of completeness, 342
limiting scope, 83
logical view, 94
metadata, 82
multiple modelers, 356
multiple project coordination, 42
normalization, 48
organizing, 348
overlapping iterations, 84
participants, 82–83
physical storage characteristics of

attributes, 352
point-in-time model, 351
potential historical relationships, 327
products, 82
redundancy management, 42
refinement, 341–342
relationships, 141–142
repeating groups, 131
scope, 39–40, 371
SMEs (subject matter experts), 82–83
subdividing project, 84
summarized data, 351
time for development, 83

Business Environment subject area, 63
business key, 219, 331
business management, 12
business metadata, 15
business model

3NF (third normal form), 57
buyer

hierarchy, 234–236
implementing responsibility, 236–238
responsibility relationship, 238–240

customer hierarchy, 144

operational systems, 138
order appearance in data warehouse,

262–266
primary buyer, 237
secondary buyers, 237–238

business representatives, 94
business rules, 24

business data model, 90, 341
changes, 253
denormalized flat hierarchy

structures, 215
diagrammatically portraying, 90
documenting, 34
exceptions, 326
governing subject areas, 84
operational systems violating,

138–139
reassigning codes based on

changes, 334
relaxing enforcement, 326
roles, 335
verifying, 94
worse case analysis, 326–327

business transactions, 249–253, 257
business units definitions, 136–137
business users

hierarchies, 200
involvement, 47

buyer
delivering, 240
hierarchy, 234–236
implementing responsibility, 236–238
responsibility relationship, 238–240

Buyer entity, 237
buyer relationship table, 238–240
Buyer Responsibility entity, 237
Buyer Responsibility table, 238

C
Calendar dimension, 177, 184
Calendar table, 182

alternate keys, 192
denormalized, 178
derived columns, 178–180
surrogate keys, 192

I n d e x414

calendars, 157
4-5-4 fiscal calendar, 161–163
billing cycle calendar, 164
business, 158–169
Corporation Identifier, 192
data associated to, 172
day of the week, 165–166
elements, 165–168
factory calendar, 164–165
fiscal calendars, 159, 164–165
Fiscal Date entity, 192
Gregorian calendar, 158
holiday season, 167–168
holidays, 166–167
influencing businesses, 167
multiple independent, 192
nonworkdays, 165
planning horizon, 169
redundancy, 184
seasonal calendar, 168
seasons, 168
surrogate keys, 172
thirteen-month fiscal calendar, 164
time span, 169
types, 158–164
workdays, 165

capacity planning, 210–231
capturing historical data, 115–117
cardinality, 34, 309–309
cascaded foreign keys, 85
cascading keys, 118
cases, 264–265
change

business keys, 331
business rules concerning, 253
complete snapshot interface, 255
controlling, 323–324
CRC code, 268–269
data warehouses, 321–326
detecting, 268–269
extracompany changes, 322
implementing, 325–326, 332–337
initiating, 325
integrating subject areas, 333–336
intracompany changes, 322
intradepartmental changes, 322

intrateam changes, 323
modeling for, 326–332
natural keys, 331
nature of, 267
reasons for, 322–323
resisting, 321–322
synchronization implications,

344–346
system and user acceptance

testing, 325
change history and vertical partition-

ing, 310, 312–314
change log, 256
change management, 16, 43
change requestor, 325
change snapshot capture

associative entities, 272–275
detecting change, 268–269
foreign keys, 269–272

change snapshot with delta capture,
275–278

CHAR datatype, 315
characteristic attributes, 275
characteristic entity, 31–32
child foreign key, 223
child key, 246
child nodes, 199, 244
CIF (Corporate Information Factory),

6, 136
BI (business intelligence), 11
business community access, 387
business management, 12
business operations, 11
categorizing and ordering

information components, 16
CRM (Customer Relationship

Management), 9
data acquisition, 8, 12–13
data delivery, 8, 14
data management, 16
data marts, 8, 14–15
data warehouses, 8, 13
directory of resources and data

available, 16
growth of, 8–9

Index 415

identifying information management
activities, 12

information feedback, 15
information workshop, 15–16
metadata management, 15
modeling methodology, 286
ODS (operational data store), 13–14
oper marts, 8
operational data store, 8
operational system databases, 8
operational systems, 12
operations and administration, 16
replicated operational data, 387
staging area, 387
using resource of, 15–16

CIF (Corporate Information Factory)
architecture, 377

complexity, 394–395
data flow, 391–392
flexibility, 394
functionality, 395
ongoing maintenance, 395–396
perspective, 391
redundancy in definition and

metadata creation, 365
scope, 389
star schema, 384
volatility, 392, 394

claims subject area, 67
CLOBs (character large objects), 315
closed room development, 68–69
Codd, Ted, 24
Codd and Date premise, 24–25
code description tables, 332
coding systems incompatibility, 334
collection of independent

attributes, 200
collision management and multiple

modelers, 357–358
Color entity, 87, 105
color-coding entities and subject

areas, 348
columnar delta interfaces, 256
combination pack, 241–244

combining
hierarchies, 198
languages, 189–190

commercial sales business
definition, 137

common standard time, 170
common subject areas, 62–65
Communications subject area, 63, 80
complete snapshot capture, 266–268
complete snapshot interface, 254–255
complex hierarchies, 202, 216–217
complex ragged hierarchy, 241–242
complex tree structure, 204
compliance, 35
compound indexes, 302–304
compound keys, 112, 148–149, 188
compound primary keys, 188
Computer World, 120
concatenated key, 33
conformed dimension table, 130
conformed dimensions, 129–130
conformity, 35
consistency, 23
consistent data, 346
constraints, 300
Consumer, 144
consumer unit, 264
continuous summary, 126
core business entity tables, 332
CorelDraw, 346
Corporation Identifier, 192
costs, level of granularity, 123
Coupon Line entity, 279
CRC (cyclical redundancy checksum)

code, 268–269
CRC Value attribute, 268
credit hold, 119
CRM (Customer Relationship

Management), 9
currency and complete snapshot

interface, 255
Current Indicator attribute, 277, 328
current snapshots, 255, 258, 278
CurrentIndicator attribute, 275

I n d e x416

Customer dimension, 154
Customer entity, 87, 137, 140–142, 144,

153, 210
mapping foreign keys, 336
Ship-To Customer role, 263
surrogate key, 154

customer hierarchy, 210
comparing values, 212
customer entities, 222–223
planning customers, 212
recursive tree data structure,

214, 222–226
separate tables for each entity, 224
ship-to customer location, 212
sold-to customers, 212
user groups, 213

Customer HQ entity, 224
Customer Segment entity, 140–141, 145
customer service business definition

for customer, 137
customer ship-to locations, 210
customer subject area, 67
Customer table, 332
customer-level data, 140, 145
customers

across different systems, 333
data grouped by characteristics,

140–141, 145
distribution hierarchy, 212
duplicating, 147
existing only once in file, 147
hierarchy not depicted, 142–144, 146
holidays, 166, 167
identifying, 136–137
inconsistent

business definition, 136–138,
144–145

system definition, 138–140
system identifier, 140, 145

targeting segments, 141
uniquely identified based on role,

141–142, 145
Customers subject area, 63, 80, 84, 87

D
data

accessing, 287
approving use, 324
changes to, 256–257
clustering, 288–289
consistent, 346
controlling access, 324
current active state, 255
customer-level, 140
data entity, 119
denormalized, 109, 129
derived, 119–121
documenting requirements, 46
flexibility in usage, 24
generating when value changes, 126
grouped by customer characteristics,

140–141, 145
grouping into states, 132
improving

delivery performance, 119
usability, 265

inadequate quality, 109
integration, 13, 324
level of granularity, 46, 121–124
lowest common denominator

level, 123
maintaining separate from data

warehouse, 193
merging in tables, 252
nonredundant, 22–23
not violating business rules, 22
only storing once, 365
picture at extraction time, 254–255
point in time, 114
primary source of record, 147
quality issues, 324
real-time acquisition, 287
recasting, 129
reference, 109
segregating, 99–100, 132, 253
selecting, 99–111
selection criteria, 103
snapshots, 114
span of time, 114

Index 417

stability, 132
summarizing, 124–129
transactional, 108–109
usage, 126, 132
validating transmission, 269
value at regular time intervals, 126
volatility, 19, 117, 126
volume, 109

data acquisition, 4
CIF (Corporate Information Factory),

8, 12–13
management, 16
manually intensive set of activities, 4
performance, 123
tools and technologies, 5

data acquisition programs, 373–374
data administration staff, 355
data allocation factors, 202–203
data capture, 254
data delivery, 8, 14

technology, 44
vertical partitioning, 311

data elements, 32–33, 98
adding, 343
data warehouse model, 111
definitions, 323
for derived field, 108
development impact, 111
inventory, 101
inventory of, 101
load impact, 111
mathematical operation of, 119–121
might be needed, 107
needed and not needed, 107
never changing, 117
performance impact, 111
processing time, 111
prototypes, 106–107
reusable, 26
selection process, 107–111
sources identifying, 92
storage impact, 111

data entities
data, 119
reusable, 26

data flow in CIF and MD architecture,
391–392

data mart chaos, 360
huge impact on IT resources, 364
impact on operational systems, 362
in-architecture criteria, 366–367
inconsistent

definitions and metadata, 362
integration and history, 364
summarized, aggregated, and

derived fields, 362
migrating from, 367–380
redundancy in stored detailed

data, 362
redundant ETF&D processing, 362
significant duplication of effort, 364

data mart data model, 379
data marts, 8, 14–15, 21, 374

analytical applications, 18
b-tree indexes with bitmap

indexes, 309
building architecture from, 378–380
building in-architecture, 377–378
buyer’s foreign key, 240
conformed dimensions, 129
construction independent, 360
converting one at a time, 374–377
data belonging in data warehouse

data, 378–379
data delivery processes, 26
database localization, 187
database structures, 18–19
data-mining warehouse, 18
date and number formats, 185
denormalized tables as dimension

tables, 182–183
department-specific, 13
derived fields, 121
designs, 19
detailed data, 360
dimension tables, 368
dimensional keys, 153
enterprise-wide perspective, 378, 380
exploding data, 245

I n d e x418

data marts (continued)
exploding recursive tree structure, 227
exploration warehouse, 18
fact tables, 259, 368
flexibility in support of types of, 25
global indexes, 299
impact on creation of, 25–26
improving population of, 131
increasing number of rows

passed to, 239
incremental deliveries, 277–278
integrated and detailed data, 378
isolated, 13
key conformance across, 332
least common denominator of

detailed data, 11
leaving existing alone, 377
length of key, 147
local indexes, 299
location-specific detail, 184
mitigating changes to converted, 377
multidimensional, 368
multilingual, 190
nonproprietary, 378
OLAP, 18, 368
one-to-many relationship, 373
out of sync, 281
outer joins, 239
ownership, 380
perceived as proprietary, 380
physical location, 14
poor performance, 360
populating, 374
publishing data to, 245
publishing exploded structure, 231
recursive trees, 226–228
reflecting current buyer structure, 240
refreshing, 240
scalability, 378
schemas, 18
sizes, 15
star schema, 130, 384
statistical warehouse, 18
structures, 239, 242
subset of data warehouse data, 14
summary by date, 184

supported types, 17–18
technology model, 344
use of various technologies for, 11
user-specific, 13

data mining, 5, 122
data modelers, 82, 349
data modeling, 45–48
data models

1NF (first normal form), 49–50
2NF (second normal form), 50
3NF (third normal form), 51
accounting for events occurring, 328
adaptable to changes, 25
associative entities, 328
assuming worst case, 326–327
attributes, 35
business data model, 39–43
business rules, 24
change, 326–332
communicating view to technical

people, 46
compliance, 35
conformity, 35
consistency, 23
correct across business, 25
data usage flexibility, 24
difficulties creating, 35
encompassing entire enterprise, 36
enterprise perspective, 36
entities, 31–32, 35
envisioning final product interface, 30
ERD (entity-relationship diagram),

24–25
expectations about ultimate

outcome, 30
flexible support of data marts, 25
fourth and fifth normal forms, 52
fulfilling needs and objectives, 30
imposing relationship generaliza-

tion, 327–330
intangible products, 36
maintenance, 47
metadata, 23
minimum amount of redundancy,

22–23
modeling tools, 90

Index 419

nonredundant, 22–23, 42
not using, 36
overnormalizing, 52
pertaining to work function, 30
principles or rules, 45
reasons for use of, 29–30
redundancy, 50
redundant attributes, 263
relating to ultimate product, 30
relationships, 35
reliable across business, 24
reuse, 36
sharable across enterprise, 24
significant business involvement, 36
stability, 23
subject area model, 37
surrogate keys, 330–332
system model, 43
technology model, 43–45
tools, 35
training needs, 30
types, 35–45

data stewards, 82, 325, 348–349
data stewardship, 323–324, 346, 374
data subject, 31
data summaries and misleading

results, 128
data warehouse applications, 150
data warehouse data model, 371–373
data warehouse group, 325
(The) Data Warehouse Lifecycle

Toolkit, Second Edition (Kimball
and Ross), 383

data warehouse model
anticipating attributes, 92
arrays, 131–132
building from business data

model, 371
business data model, 99, 101
data elements, 108, 111
definitions in source systems, 140
derived data, 119–121
dimensional model

considerations, 118
ensuring consistency, 119
existing reports and queries, 99, 106

historical data, 115–117
historical perspective, 111–119
historical relationships, 117–118
improving data delivery

performance, 119
information

changes with time, 92
requirements, 99, 101–106

inputs, 99–107
level of granularity, 121–124
merging entities, 129–130
over-time model, 111
project scope document, 99
prototypes, 99, 106–107
reference data, 109
scope document, 101
segregating data, 132
selecting data of interest, 99–111
selection process, 107–111
source data, 107, 109, 111
summarizing data, 124–129
system or physical models, 99
time to entity key, 111–119
transactional data, 108–109

data warehouse system model
absorption of external data, 145
business-related issues, 98
customers

hierarchy not depicted, 146
inconsistent business definition, 144
inconsistent identifier among

systems, 145
inconsistent system definition,

144–145
uniquely identified based on

role, 145
data elements, 98
date keys, 172–173
methodology, 98–132
performance issues, 98–99
practical target environment, 144

data warehouse technology model, 146
key from recognized standard, 149
key from system of record, 147–148
surrogate key, 149–151

I n d e x420

(The) Data Warehouse Toolkit,
Second Edition (Kimball and
Ross), 239, 332

data warehouses, 4, 8, 13
3NF (third-normal form), 97
accessing data, 21
adding

derived data, 252
subject areas, 336–337

administration activities, 123–124
amount of work to create, 121
base entities, 130
batch processes, 300
batch windows, 22
bitmap indexes, 309
building, 21

architecture from data mart, 378–380
data marts only in-architecture,

377–378
bus architecture, 384
business keys, 331
business use of, 251–252
business user involvement, 109
calendar, 157
canceled documents, reversals, and

consolidations, 328
changes, 321–326
changing data and data structures, 22
characteristics of maintainable, 20
CIF (Corporate Information Factory),

11–16
common view of enterprise data, 13
compound key, 148
conflicting data elements and

definitions resolution, 17
conformed dimension table, 130
consistency, 23, 119
content, 97
converting one data mart at a time,

374–377
critical stability, 332
current snapshot of data, 278
daily data, 122
data

delivery technology, 44
elements of interest, 251

not violating business rules, 22
supporting BI analyses in multiple

technologies, 17
data model, 22–25
data stewardship, 323–324
database design, 17
dates, 157
defining, 9–16

different date formats, 187
one table with all columns, 316

delivering transaction data, 258–259
denormalized calendar structure, 178
determining size, 121
development projects, 39
enterprise focus, 16, 22
enterprise perspective, 145
evolution of, 9
extracompany changes, 322
flexibility in data usage, 24
growth of information, 13
guiding project selection, 38
historical information, 13
historical nature, 14
information warehouses, 10
integrating subject areas, 333–336
Internet, 5
intracompany changes, 322
intradepartmental changes, 322
intrateam changes, 323
labor costs, 286
leaving existing data marts

alone, 377
length of key, 147
level of granularity, 11, 252
lifespan, 147
Load Log table, 267
load process, 253–254
loading

massive amounts of data quickly, 17
new data, 22

magnitude of change, 252
mapping to implemented data, 374
migration and creation of, 373–377
minimum amount of redundancy,

22–23
missing information, 169

Index 421

monthly data, 122
multilingual version of denormal-

ized table structure, 188
multiple instances of entities, 148
multiple project coordination, 42
multipurpose nature of, 16–20
objectives, 111
optimal data extraction, 17
out of sync, 281
over-time model, 351
parallelism, 21
partitioning strategy, 44
potential capability and flexibility, 121
primary mission, 97
priorities, 323
processes, 300
production landscape, 324
purpose of, 10–11
query performance, 294
recasting data, 129
recognized code and abbreviation

standards, 149
recording change history, 265
recursive tree structure, 234
relational DBMS characteristics, 21
relational model, 99
requirements supported by, 5
resilient to change, 17
roles, 10–11, 335
scalability, 21
scope, 111, 323
seasonal calendar, 168
segregating from data marts, 99–100
setting expectations, 101
sharable across enterprise, 24
size, 21
source system analysis, 138
stability, 23
staging area, 10
states of interest, 251
storing

allocation results, 213
differences, 252

strategic decisions, 13
structures, 242
subject area conversion, 373–374

subject-orientation, 62
subtype tables, 316
supplying data, 13
supporting multiple BI

technologies, 22
surrogate keys, 148, 330–332
technology adoption curve, 4
technology model, 344
tiered storage strategy, 294
time, 169–172
tracking workdays, 165
transactional data presentations,

253–258
units of measurement, 264
utilities, 21
various technologies for data

marts, 11
ZAC (Zenith Automobile Company),

61–62
database administration staff, 355
databases

bitmap indexes, 304–309
b-tree indexes, 302–304
bulk load utility, 259
concatenated key, 33
constraints, 300
converting date column to text

string, 187
data clustering, 288–289
date and numeric values, 187
defining one table with all

columns, 316
design of, 17
enforcing referential integrity,

299–300
existing and business data model, 92
extension blocks, 289
foreign key, 33
full date/time value, 171
global indexes, 296–299
indexing techniques, 301–309
index-organized tables, 301
keys, 85, 300
local indexes, 296–299
localization, 187
multiple instances of entities, 148

I n d e x422

databases (continued)
numeric surrogate key, 150
optimizing, 288–310
parallel queries, 295
performance, 311
primary key, 32–33
query performance, 294–295
recursive tree traversal within

SELECT statement, 224
restart and recovery capabilities,

257–258
split blocks, 289
structures, 18–19
subtype tables, 316
table partitioning, 289–299
transaction log, 254
triggers, 277

data-mining warehouse, 18
Date, Chris, 24
Date attribute, 170
Date entity, 166–167
date keys and data warehouse system

model, 172–173
Date table, 175–176, 178
date-based partitions, 293
dates, 157, 172

alternate formats, 178, 187
delivery localization, 187
fiscal calendar, 159
Gregorian calendar, 159
grouping time with, 169–170
many-to-many relationships, 194
multilingual formats, 185–187
native database format, 172
storing in different formats, 173

Davenport, Tom, 120
day of the week, 165–166
Day of the Week entity, 165–166
D&B (Dunn & Bradstreet), 142
DBMS (database management

system), 21, 44
Dealer entity, 87, 120
Dealer Financial Statement entity, 88
Dealer Objective entity, 88
Dealer on Credit Hold entity, 88

Dealers subject area, 61, 80, 83–84,
87–89

definitions, inconsistent, 362
deletions and complete snapshot

interface, 255
delivering multiple languages,

188–192
Delivery Address entity, 263
Delta entities, 275
delta interfaces, 254, 256–258
delta snapshot interfaces, 257, 260
delta tables, 276–278
denormalization, 49, 315
denormalized flat hierarchy structures

and business rules, 215
denormalized tables, 178–179, 182
denormalizing

data, 109, 129
fiscal calendar, 177–180

department, 232
department-specific data marts, 13
derived data, 119–122, 352
derived fields

data element for, 108
days before peak selling season, 167
inconsistent, 362
multiple data marts, 121

design, optimizing, 286
detailed data, redundancy in

stored, 362
detecting change, 268–269
development process, optimizing,

287–288
DFC (Delicious Foods Company)

4-5-4 calendar, 191–192
business rules for calendar, 173
fiscal calendar, 173–180
fiscal months, 191–192
ICE (Ice Cream Enterprises), 190–191
multiple fiscal calendars, 190–193
standard holiday list, 174
supporting fiscal and Gregorian

calendars, 174
dimension foreign keys, 152

Index 423

dimension tables, 239, 368
keys, 147
supporting multiple languages, 188

dimensional conformance, 153–154
dimensional data marts

association table, 194
bitmap indexes, 304, 309
delivering multiple languages,

188–192
denormalized tables, 178
dimensions, 152
fact tables, 179
facts, 152
implications, 151–154
maintaining dimensional

conformance, 153–154
model differences, 152–153
season dimension table, 194
simplifying and speeding queries, 153
surrogate key assignment, 150

dimensional foreign keys, 154
dimensional keys, 153
dimensional model, 112, 118
dimensions

associations between, 152
attributes, 152–153
conformation, 371
consistent foreign key reference, 153
generic, 368
maintaining conformance, 153–154
migration conformation, 368–371
representing business objects, 152
shared, 368
slowly changing, 118

disposable data marts, 386
distribution

each, 264
units of measure, 264–265

distribution centers, 210, 213–214
districts foreign key, 209
Division entity, 246
Division key, 246
Division table, 225
documenting

changes, 43
data requirements, 46

domain definitions, 94
dual foreign key, 115
duplicating customer, 147
duplication of effort, 364
DWInfo Center Web site, 286

E
each, 264
early adopters, 4
early majority, 4
EIS (executive information

systems), 4, 6
Emission Type entity, 88, 105
end-of-day status reports, 267
enterprise data warehouses

local partition indexes, 296
manageability, 290–291

enterprises
historical perspective, 111
integration of data, 374
perspective, 145
subject areas, 37–39

entities, 31–32, 35, 57, 341
adding time component to key,

112–119
analysis, 85
assigning to subject area, 349
associative, 112, 117–118
attributes, 48, 92–93
brainstorming, 85
business rules associating, 34
color-coding, 348
common attributes, 221
compressed into one, 112
confusing and misleading names, 40
consolidating, 336
CRC Value attribute, 268
current data, 117
defining, 85, 87–89

instance, 330
relationships, 90–91

dependency identification, 42
describing or characterizing, 33
differences in attributes within, 351
documenting changes, 43
dual foreign key, 115

I n d e x424

entities (continued)
explicit statement of, 39–40
grouping, 91, 348
historical data, 117
homonyms, 40
identifiers, 85–90
identifying, 76

potential source systems, 40
subject matter experts, 40

including subject area within
name, 349

integrating, 335
interviews, 85
many-to-many relationships, 272, 351
merging, 129–130
modeling conventions, 86–87
modifying list of, 85
multiple instances, 148
naming conventions, 86
parent-child relationship, 33, 198–199
primary key, 49
programmatically enforcing

referential integrity, 115, 117
redundancies, 40, 42
relative stability of data, 118
repeating or multivalued groups, 49
serial key, 115
subtypes, 31
surrogate keys, 149, 272
synonyms, 40
table creation for, 225
uniquely identifying, 32

Equipment subject area, 63, 66, 80
E-R model

data within entity depends on
key, 129

historical perspective, 111–112
history of interest, 118
month, 127

ER Studio, 90
ERD (entity-relationship diagram),

24–25, 31
ERP (enterprise resource planning)

vendors, 9
ERwin, 90

ETF&D (extraction, integration,
cleansing, transformation, format-
ting, and delivery), 360, 362

ETL (extract, transform, and load),
4, 269, 286–288

exception report, 151
exceptions to business rules, 326
exclusive or relationships, 163
exploded hierarchy entity, 227
exploded sales reports, 242
exploded tree point-in-time

snapshot, 231
exploding

recursive tree structure, 227–228
time-sensitive tree, 230–231

exploration needs, 5
exploration warehouse data marts, 18
exporting buyer responsibility

relationship, 239
extended price, 265
extension blocks, 289
external data, 140–141, 145
External Organizations subject area, 63
extracompany changes, 322

F
facilitated sessions, 47, 101

action plan, 78
assigning subject areas, 76
brainstorming, 72–73, 73
conclusion, 72–73
consolidation and preparation for

second, 76–77
education on relevant concepts and

process, 72–73
excluding irrelevant subject areas,

74–75
first session, 72–76
follow-on work, 78
follow-up actions defining, 77
generic or industry model, 72–73
grouping subject areas, 75
identifying types of customers, 137
introductions, 72–73
issues list, 78
preparation, 72

Index 425

refinement, 72–73
refining subject areas and

definitions, 77
relationships between subject

areas, 77
reviewing, 76–77
subject area model development,

72–78
success of, 78
unresolved issues, 77

Facilities subject area, 63, 89
fact keys, 118
fact tables, 259, 368

combining sales information with
inventory information, 127

consistent foreign key reference, 153
facts or measurements used in, 368
keys, 147
primary key, 151

Factories subject area, 80, 83, 88
factory calendar, 164–165
Factory entity, 88
facts, 152
files and customers, 147
financial hierarchies, 225
Financials subject area, 64, 67, 80
fiscal calendars, 164–165

dates, 159
denormalizing, 177–180
DFC (Delicious Foods Company),

173–180
expanding, 192
extending date table, 175–176
insignificant data, 174–175
multiple, 190–193
start and end, 159

Fiscal Date entity, 192
fiscal months, 159
fiscal periods, 159
fiscal quarters, 159
Fiscal Week entity, 181
fiscal year, 159
flat file, 24, 194–195
flattened structures hierarchy

depth, 215

flattened tree hierarchy, 208–210
flattened tree structure, 208, 210
flattening

ragged hierarchy, 236
recursive tree, 246, 248

foreign keys, 33, 209
cascading, 118
change snapshot capture, 269–272
consistent references in fact tables

and dimensions, 153–154
dual, 115

fourth and fifth normal forms, 52
fundamental entity, 31

G
global indexes, 296–300, 300
Google Web site, 171
GOSH (General Omnificent Shopping

Haven)
Gregorian calendar, 181
location specific calendar, 180–184
monitoring return rates on items, 279
multilingual calendar, 184–190
retail purchasing, 231–240
sales transactions, 249–250
seasonal calendars, 193–195
transaction interface, 278–284

granularity level, 121–124, 253
Gregorian calendar, 158

Date entity, 170
dates, 159
GOSH (General Omnificent

Shopping Haven), 181
relationships, 192

Gross and Net Proceeds of Sale, 265
grouping

data into sets, 132
entities, 348

guidelines for relational
data-modeling, 45–48

H
hardware, 43
hashing, 294
health industry subject area model, 67
Heraclitus, 321

I n d e x426

hierarchies
allocation factors, 202–203
balanced, 203, 246
balanced tree structure, 204
business, 197–198
business users, 200
changes in relationships, 204
child node, 199
children, 200, 202–203
combining, 198
complex, 202
complex tree structure, 204
current view of, 229
depth, 199–200, 215
descriptions, 246
entity changes, 204
financial, 225
as flattened structures, 215, 246
history, 204
inverted tree diagram, 199
known depth, 199–200, 215, 236
leaf nodes, 199, 223
multiple parents, 202
multiple tree structures, 204
nodes, 199
number of levels in, 118
parent node, 199
parent-child relationship, 200, 223
parents, 200, 202–203
product cost, 225
ragged tree structure, 203–204, 246
recursive tree structure, 202–203,

215, 223, 225
relationships, 198
retail sales hierarchy, 206–210
root nodes, 199, 223
sales and capacity planning, 210–231
simple, 200
smooth, 203
sparse, 203
texture, 203–204
unknown depth, 199–200
user-defined levels, 215
varying depth, 203–204

high-cardinality indexes, 309
historical data, 115–117, 335

historical relationships, 237
capturing, 117–118
maintaining, 239

historical sales data, 336–337
history, inconsistent, 364
holiday season, 167–168
holidays, 166–167
homonyms, 40
horizontal partitioning, 44, 289–290
Human Resources Department, 168
Human Resources subject area,

64, 66, 80

I
ICE (Ice Cream Enterprises), 190–192
identifiers, 85–90, 336
identifying relationships, 34
identity relationships, 221
in-architecture criteria, 366–367
Incentive Program entity, 88
Incentive Program Participant

entity, 88
Incentive Program Term entity, 88
Incentive Programs subject area,

61, 80, 83, 88
incremental backups and active

partitions, 293
index-clustered tables, 301
indexes

databases, 300–309
global, 296–299
high-cardinality, 309
local, 296–299
partitioning tables, 296–299

index-organized tables, 301
Inferred Indicator attribute, 328
inferred relationships, 328–329
information

addressed by specific system or
function, 43

categorizing and ordering
components, 16

changing with time, 92
feedback, 15
requirements, 99, 101–106

Information subject area, 64

Index 427

information warehouses, 10
information workshop, 15–16
Inmon, Bill, 13
innovators, 4
integrated information workbench, 16
integrating subject areas, 333–336
integration foundation, 40
intelligent primary keys, 33
interest business item, 118
interfaces, 253

altering, 254
delta interfaces, 254, 256–257
delta snapshot, 257
denormalized form data, 263
flexibility, 335
reference data, 257
snapshot interfaces, 254–255
transaction, 257, 278

Internal Organizations subject area,
66, 80

Internet and data warehouses, 5
intersection entity, 32
interviews, 47, 70–71, 85, 101, 103
intracompany changes, 322
intradepartmental changes, 322
intrateam changes, 323
inverted tree diagram, 199
isolated data marts, 13
IT (information technology)

BI (business intelligence), 5
huge impact on resources, 364

Item Extended Price, 265
Item UOM entity, 263
items

multiple hierarchies, 198
SKU number, 264

Items subject area, 66, 80

J
junk dimension, 332

K
key from recognized standard, 149
keys, 85, 219, 300

changing, 331
compound, 148

concatenated, 33
cross-referencing, 148
different for same customer, 148
foreign, 33
length of, 147
primary, 32–33
reusing, 147
surrogate, 148–151
time component, 115
transactions, 118
unchangeable, 147
use of system, 147–148
well-behaved, 33

Kimball, Ralph, 5
KPI (key performance indicator)

analyses, 9

L
laggards, 4
Language Identifier, 188
languages, combining, 189–190
late majority, 4
leaf nodes, 199, 223
level of granulary. See granularity

level
library, 15
line consolidations, 328
line-pricing segments, 260
Load Log identifier, 267
Load Log table, 267
load process

bitmap indexes, 259
change detection logic, 255
changing snapshot with delta

capture, 276–278
determining what is missing, 255
global indexes, 296
growth, 259
inefficient, 259
inferred relationships, 328–329
Load Log row, 267
natural key values, 330
referential integrity, 299
transforming data, 258
updating or inserting rows, 259

local indexes, 296–300

I n d e x428

local time, 170
Location Calendar dimension, 184
Location Calendar table, 182–183
Location Schedule entity, 181
location specific calendar, 180–184
Locations subject area, 64, 82
logical components, 66
logical data modeling, 31
logical partitioning, 290
Logistics group, 241

M
maintainable data warehouse

environment, 20–21
maintenance and data model, 47
Make entity, 88, 105
managing multiple modelers, 355–358
manufacturing, 241

business definition for customer, 137
subject area model, 66
units of measure, 264–265

Manufacturing Facilities subject
area, 66

many-to-many relationships, 112, 117,
237, 328

dates, 194
entities, 272, 351
flat file, 194
order lines, 272
partially owned subsidiaries, 142
retail sales hierarchy, 206
seasons, 194

marketing business definition for
customer, 137

marketing group, 241
materialized views, 44
Materials subject area, 64
MD (multidimensional architecture)

activity-monitoring services, 386
aggregated data marts, 384–385
atomic data marts, 384–385
back room, 384
business community interface, 386
complexity, 394–395
components and processes, 384
conformed dimensions, 387

data flow, 391–392
data mart definition, 384
data-staging area, 384, 387
decision support interfaces, 386
disposable data marts, 386
end user access tools, 386
flexibility, 394
front room, 384, 386
functionality, 395
lack of

enterprise view, 387
ERD-based data warehouse, 384

ongoing maintenance, 395–396
personal data marts, 386
perspective, 391
query management services, 386
scope, 389
star schema, 384
violating business rules, 386
volatility, 392, 394

meal-in-a-box product group, 241
measurable attributes, 275
measures, 152
merging

data in tables, 252
entities, 129–130

metadata, 114
administrative, 15
business, 15
business data model, 23, 82
ETL (extract, transform, and load)

tool, 287
explicitly explaining data included

or excluded, 123
inconsistent, 362
management, 15
month in fact table, 127
technical, 15

Metropolitan Statistical entity, 89
migrating

to BI architecture, 366
conforming dimensions, 368–371
from data mart chaos, 367–380
data warehouse creation, 373–377
data warehouse data model creation,

371–373

Index 429

migration path, 380–381
missing information, 169
MMSC (make, model, series, and

color), 61
modality, 34
model coordination

business and system data models,
351–353

subject area and business data
models, 346–350

system and technology data models,
353–355

Model entity, 89, 105
modeler

business understanding by, 68
modeling

for business change, 326–332
expertise, 68
tools, 90

models
evolution and governing, 339–346
inclusion of entities from, 352
one-to-many relationships, 269–270
printing in black and white, 348
reducing normalized form, 315
synchronization, 346

monolingual reporting, 188
months, 161
month-to-month analysis, 166
MSA (metropolitan statistical area), 61
MSA Zipcode entity, 89
multidimensional

applications, 25
data marts, 5, 368

multilingual calendar
combining languages, 189–190
date formats, 185
delivering multiple languages,

188–192
different date presentation formats,

185–187
GOSH, 184–190
monolingual reporting, 188
storing, 185

multilingual data marts, 190

multiple
fiscal calendars, 190–193
languages, delivering, 188–192
modelers, 355–358
project coordination, 42
tree structures, 204

N
natural keys, 149–150, 330–331
Networks subject area, 66
new relationships, 328
nodes and hierarchies, 199
nonidentifying relationships, 34
nonkey attributes and elements, 33
nonrecursive table of relationship

pairs, 227
nonrecursive tree structure, 208
nonredundant data model, 22–23, 42
non-store-specific buyer-product

relationships, 238
nonworkdays, 165
normalization, 48–52
normalization rules, 42
number formats, 185
number of days in month, 119–120

O
objects and relational data-modeling,

30–34
ODS (operational data store), 4, 13–14
OLAP data marts, 18, 368
old relationships, 328
OLTP system and enforced referential

integrity, 299–300
one-to-many relationships, 112, 117,

142, 237, 269–270, 329, 373
one-to-one relationships, 328, 329
oper marts, 8
operational data store, 8
operational systems, 12, 138–139

databases, 8
enforcing data relationships, 329
insignificant fiscal calendar data,

174–175
keys, 147
level of detail available, 123

I n d e x430

operational systems (continued)
lifespan, 147
maintaining isolation from, 331
referential integrity, 331
surrogate keys, 331
working schedules, 180

optimizing
analysis, 286
application development, 286–288
databases, 288–310
design, 286
development process, 287–288
system model, 310–317

Option entity, 89, 105
Option Package entity, 89, 105
optionality, 34
Oracle, 9

recursive tree traversal within
SELECT statement, 224

schemas, 190
transparent multilingual

environments, 190
updating rows, 259

Oracle Designer, 90
Order entity, 152
Order Header entity, 263, 272, 315
Order Line 1 table, 311
Order Line 2 table, 311
Order Line Delta entity, 275
Order Line Delta table, 276
Order Line entity, 152, 263, 272,

275, 315
Order Line Line Pricing, 272
Order Line Line Schedule, 272
Order Line Pricing, 265, 272
Order Line table, 270, 276, 311, 313
Order Line Value, 265
order lines, 260, 272
Order Reason attribute, 334
Order Snapshot Date, 266
Order Status dimension, 152, 153
order transaction, 260–263
orders, 260–261, 267–268, 327
organizational chart, 70
organizations, 12, 200
Other Facilities subject area, 82

overnormalizing data models, 52
over-time model, 111, 351

P
pallets, 264–265
parallel queries, 297
parallelism, 21
Parent Customer, 141
parent entity changes, 272
parent foreign key, 223
parent key, 246
parent nodes, 199, 244
parent-child relationship, 198–200, 223
partially owned subsidiaries, 142
partitioning

horizontal, 289–290
logical, 290
physical, 290
vertical, 289, 310–315

partitioning tables
date-based, 294
dates, 293
indexes, 296–299
manageability, 293–294
motivation, 290–296
performance, 296–298
reasons for, 290–296

partitions, 293–296
Patients subject area, 67
PeopleSoft, 9
performance and vertical partitioning,

310–312
period of time data, 125, 127–129
personal data marts, 386
petroleum industry subject area

model, 67
physical components subject area, 66
physical partitioning, 290
physical schema

changes, 343
constraint, 300

planning customers entity, 210
Planning Group entity, 224
planning horizon, 169
platforms and hardware, 43
point in time, 114, 127–129

Index 431

point-in-time model, 351
point-in-time snapshots, 258, 278
policies subject area, 67
postload delivery, 283–284
PowerPoint, 346
power-producing facilities subject

area, 66
predictable business sales cycles, 167
premiums subject area, 67
pricing segments, 260
primary buyer, 237–238
primary entity, 31
primary key, 32–33, 49, 300

denormalized tables, 178–179
fact table, 151
Language Identifier, 188
source system, 150
surrogate key as, 150

processes, 300
processing transactions, 281–284
Product (SKU), 219
Product dimension, 368, 371
Product entity, 237
product entity, 209–210
Product Group, 219
Product Group key, 246
Product Group row, 246
Product Group table, 246
product groups, 216, 241
product hierarchy, 210–211

2NF structure, 216
bridge table, 219, 221
bridging levels, 219–221
bridging row pairs, 221
comparing values, 212
flattened (nonrecursive)

denormalized hierarchy, 215
as flattened structure, 214
independent attributes, 216
interpreting column, 215
known entities, 215
product group codes, 216
simplifying, 216–218
as single column, 215

SKU (Stock Keeping Unit), 210
storing, 215–216
surrogate primary key, 221
UPC (Universal Produce Code), 210
updating bridge, 221–222
user groups, 213

Product ID dimension, 368
Product table, 332
products

business data model, 82
commonalities, 210
cost hierarchies, 225
planning, 210
storage requirements, 210
variations, 210

Products subject area, 64, 66
profitability analyses, 9
project scope document, 99
projects, 366

estimating, 40
guiding selection, 38–39
scope definition, 39–40

property and casualty insurance
industry subject area model,
66–67

proprietary multidimensional
databases (MOLAP), 21

prototypes, 99, 106–107
purchasing area, 232
Purchasing Area entity, 232
purchasing group organizational

chart, 232
purchasing organization, 232

Q
quantity, 261
quantity factor, 244
quarters, 161
queries

3NF (third normal form) flattened
tree hierarchy, 208

existing, 106
management services, 386
performance, 296
tools, 187

I n d e x432

R
ragged hierarchy, 203–204, 234, 246

3NF (third normal form) flattened
tree hierarchy, 208

complex, 241–242
converting flat 2NF

representation, 236
flattening, 236
known depth, 236
purchasing organization, 232
skipping levels, 236
unknown depth, 236, 244
varying depth, 234

ragged tree structure, 204
reassigning codes based on rule

changes, 334
recasting data, 129
recursive algorithm, 223–224
recursive queries, 227
recursive sort, 226
recursive tree structure, 208, 210,

223, 234
bill-of-materials structure, 244
b-tree indexes, 302
building sort key, 226
child foreign key, 223
children belonging to parents, 227
current snapshot, 229
data marts, 226–228
expired relationship, 229
exploding, 227–228
flattening, 246, 248
foreign key references, 224
hierarchies, 225
identifying relationship between

levels, 227
insensitive to existence or

nonexistence of levels, 234
leaves, 244
maintaining history, 228–231
new relationship, 229
no sense of sequence, 226
OLAP tools, 224
parent foreign key, 223
primary key, 229
recursive sort, 226

reporting hierarchy structure,
223–224

roots, 244
sorting, 226–227
SQL extensions to traverse, 226
structures, 202–203
table with two columns, 223
transforming 3NF data to, 245–246
traversal within SELECT

statement, 224
traversing, 226
updating, 229–230

redundancy
calendars, 184
data models, 50
uncontrolled, 49

redundant attributes, 40, 263
redundant entities, 40
Reeves, Laura, 389
reference data, 109
referential integrity, 44

enforcing, 299–300
historical data, 117
loading process, 299
operational systems, 331
programmatically enforcing, 115, 117
surrogate foreign keys, 151
surrogate key, 150

refineries subject area, 67
relational data model, 97, 99

guidelines, 45–48
keys, 300
normalization, 48–52
objects, 30–34
queries, 153

relational DBMS (database
management system), 48

relationships, 34, 35, 141–142
associative entities, 329
based on buyer, product, and

store, 237
based on buyer and product, 237
buyer responsibility, 238–240
cardinality, 34
defining, 90–91
documenting changes, 43

Index 433

exclusive or, 163
expired, 229
Gregorian calendar, 192
hierarchies, 129, 198
historical, 117–118, 237
identifying, 34
identity, 221
imposing generalization, 327–330
inferred, 328–329
many-to-many, 112, 117, 272, 328
modality, 34
new, 229, 328
nonidentifying, 34
nonrecursive table of pairs, 227
non-store-specific buyer-product, 238
old, 328
one-to-many, 112, 117, 269–270, 329
one-to-one, 328–329
optionality, 34
parent-child, 198–199
redundancies, 42
relative stability data, 118
retail sales hierarchy, 206
secondary buyer, 237

reports
actual sales, 242
end-of-day status, 267
existing, 106
exploded sales, 242
hierarchical nature of data, 228

reserves subject area, 67
responsible buyer role, 238
retail industry

subject area model, 65–66
weekly results, 161

retail purchasing
buyer hierarchy, 234–236
buyer responsibility relationship,

238–240
GOSH, 231–240
implementing buyer responsibility,

236–238
primary buyer, 237
secondary buyers, 237–238

retail sales hierarchy, 206–210

Return Line entity, 279
returns, 279
reusable

components, 16
data entities, 26
elements, 26

revenue, 244
revenue allocation factor, 244
roles, 335
rolling summary, 125
root nodes, 199, 223, 246
row delta interfaces, 256

S
Sale Line table, 279
sales, 241

customer business definition, 137
data, 261
history and capacity-planning

system, 212–213
information about, 279
planning, 210–231
reporting, 213
returns, 279
summarizing detailed data, 219

Sales Area entity, 89
Sales Department, 232
Sales Manager entity, 89
sales order snapshots, 260–265

change snapshot capture, 268–275
change snapshot with delta capture,

275–278
complete snapshot capture, 266–268

Sales Organizations subject area,
61, 80, 83, 89

sales plan, 210, 213–214, 219
sales plan table, 221
Sales Region entity, 89
Sales subject area, 65, 82
Sales Territory entity, 89
sales transaction entity, 208–209
sales transactions, 249–250, 265
sales transactions model, 279–281
SAP, 9
scalability, 21, 378
schedule lines, 261

I n d e x434

Schedule table, 181
scope, 323

definition, 39–40
MD architecture, 389

scope document, 101
season dimension table, 194
Season entity, 194
Season Schedule entity, 194
Season Store Date entity, 194
Season Stores entity, 194
seasonal calendar, 168, 193–195
seasons, 168, 193–194
secondary buyer relationships, 237
security and DBMS (database

management system), 44
segregating data, 132
selecting data, 99–111
SELECT...UNION statement, 290
serial key, 115
Series entity, 89, 105
Service Management, 16
Ship-To Customer entity, 224
Ship-to Customer entity, 141
Ship-To Customer role, 263
ship-to customers, 213
ship-to customers entity, 210
Silverrun, 90
simple cumulations, 125
simple direct summary, 126
simple hierarchies, 216–218
simple indexes, 302–303
simplifying complex hierarchies, 216
simultaneous delivery, 281
SKU identifier, 264
SKU number, 264
SKUs (Stock Keeping Units), 210, 221
SKUs component, 241, 244
slowly changing dimension, 112
SMEs (subject matter experts), 82–83
smooth hierarchies, 203
snapshot entities, 275
snapshot interfaces, 254–255
snapshot tables, 276–277
snapshots, 114

current, 258, 278
extracting complex structures, 254

point-in-time, 258
processing data extract, 267
reference data, 254
sales order, 260–278
storing differences, 252
summarizing data, 126
time-variant, 257

Sold Automobile entity, 89, 106
Sold-To Customer entity, 224
sold-to customers, 213
sold-to customers entity, 210
sold-to/ship-to relationship, 213
sort key, building, 226
sorting recursive trees, 226–227
source data

data warehouse model, 107
integration rules, 111
level of detail available, 123
structure, 109, 111

source systems
analysis, 138
current view of hierarchy, 229
primary key, 150
time collected by, 171

span of time, 114
sparse hierarchies, 203
sparsity, 203
split blocks, 289
spreadmarts, 386
stability, 23
staging area, 10
Standard Product, 219
standardizing

attributes, 333–335
time, 170–172

star schema, 383–384
data navigation possibilities, 103
dimension tables hierarchies, 130
prototypes, 106

StarSoft Web site, 389
statistical analysis, 5
statistical warehouse, 18
Stock Keeping Unit transaction, 266
Store entity, 194
Store ID dimension, 368
Store subject area, 66

Index 435

Stores subject area, 82
storing multiple languages, 185
structures, transforming, 245–248
subject area model, 37, 57, 62, 83, 340

benefits, 38–39, 78
changing or augmenting, 341
closed room development, 68–69
coordinating with business data

model, 346–350
definitions, 38
development process, 67–78
facilitated sessions development,

72–78
guiding

business model development, 38
data warehouse development

projects, 39
data warehouse project selection, 38

health industry, 67
interviews, 70–71
lack of completeness, 341
level of abstraction for subject

areas, 38
major business change, 341
manufacturing industry, 66
multiple modelers, 355
mutually exclusive subject areas, 38
names of subject areas, 38
organizational chart, 70
petroleum industry, 67
property and casualty insurance

industry, 66–67
refinement, 341
retail industry, 65–66
specific industries considerations,

65–67
subject areas, 62
transaction-processing capabilities, 62
utility industry, 66
ZAC (Zenith Automobile Company),

79–82
subject areas, 31, 62, 341

adding, 336–337
adjusting display properties, 348
assigning, 76

assigning entities to, 349
business rules governing, 84
closed room development, 68
color-coding, 348
common across industries, 62–65
consolidating, 333
converting, 373–374
data acquisition programs, 374
defining, 68–69, 72–73, 76
definitions, 38, 341
developing potential list, 72–73
discussion time for, 78
dividing workload, 38
easily retrieving information, 349
entities, 335–336
excluding from business data

model, 83–84
excluding irrelevant, 74–75
grouping, 75
grouping entities, 91
identifying

entities, 76
relevant, 83–84

including in entity name, 349
inferring roles, 335–336
integrating, 333–336
interviews, 71
level of abstraction, 38
mutually exclusive, 38
names, 38
refining list, 72–73
refining wording of definition, 78
relationships between, 77–78
reviewing and refining, 77
templates, 76–77
views, 348–349
ZAC definitions, 80

subjects, 31
substitutions, 327
subtype clusters, 316
subtype entity, 31
subtypes, 31
summarized data, 351
summarized fields, 362
summarizing data, 124–129

I n d e x436

supertype tables, 316
Suppliers subject area, 65
surrogate foreign keys, 151
surrogate keys, 112, 149–151, 154, 172,

219, 272, 330–332
surrogate primary keys, 149, 188,

330, 336
synchronization implications, 344–346
synonyms, 40
System Architect, 90
system data model, 342

adding data elements, 343
causes of changes, 343
coordinating with

business data model, 351–353
technology data model, 353–355

generating starting points, 352
granularity change, 343
multiple modelers, 356–357
physical schema adjustments, 343
refinement, 342
revising definitions, 352
summarized data, 351
updates, 344

system model, 43
building from business data

model, 371
denormalization, 315
developed from business data

model, 43
documenting changes, 43
multiple unique, 43
normalization, 49
nullability information and datatype

changes, 352
optimizing, 310–317
subtype clusters, 316
vertical partitioning, 310–315

systems, 145, 147–148
Systems Management, 16

T
tables, 221

categorizing columns, 313
change history, 312–314

date-based partitioning, 294
denormalized, 109, 182
different coding systems for same

code, 334
for entities, 225
increased size, 111
index-clustered, 301
index-organized, 301
large-column vertical partitioning,

314–315
matching detail level keys with

hierarchy level keys, 219
merging data in, 252
partitioning, 289–299
redundant columns, 315
storing hierarchical elements, 224
surrogate keys, 172, 332
updating individually, 225
vertical partitioning, 312–314

tactical decision making, 13–14
technical metadata, 15
technology

adoption curve, 4
nonproprietary, 378
scalable, 378

technology data model
causes of changes, 344
coordinating with system data

model, 353–355
DBMS (database management

system), 44
documenting changes, 43
governing system data model

change, 344
hardware, 43
multiple, 44
multiple modelers, 356–357
normalization, 49
technical environment changes, 344

texture, 203–204
thirteen-month fiscal calendar, 164
tiered storage strategy, 294
time, 169–172
time entity, 210

Index 437

Time Period dimension, 368
time-sensitive tree, exploding, 230–231
time-variant snapshots, 257
toolbox, 15
tracking workdays, 165
transaction files requirements, 148
transaction interface, 257

GOSH, 278–284
processing transactions, 281–284
sales transactions model, 279–281

transaction logs, 257–258
transaction tables

partitioning by date range, 293
primary key, 151
rules for E-R modeling, 118
surrogate key, 332

transactional data
assigning and storing dimensional

foreign keys, 154
integration, 108
surrogate key assignment, 150–151

transactional data tables, 150
transaction-level data, 14
transaction-processing capabilities, 62
transactions

adding derived data, 252
average lines per, 252
business, 249–253, 257
changes, 256–257
data elements of interest, 251
data presentation, 253–258
date of view of, 118
delivering data, 258–259
delta interface, 256
dimensional model, 118
foreign key, 335
historical perspective, 251–252
incomplete subject areas, 336
keys, 118
level of granularity, 253
nature of change, 275
occurring over time, 108
processing, 281–284
purged from source system, 108

recording all proper states, 272
representing change, 252
sales, 249–250
storing, 252

transformations
defining, 324
improving usability of

information, 265
transforming

order transactions, 262–263
structures, 245–248

trees. See hierarchies
triggers, 277
Tuxedos, 58–59

U
Unallocated Automobile entity, 89, 106
unit price, 261
unit value, 265
units of measure, 264–265
UPC (Universal Produce Code), 210
user acceptance testing, 324
user-specific data marts, 13
utilities, 21
utility industry subject area model, 66

V
validation, 47
values, differences between, 275
VARCHAR datatype, 315
variable depth tree structure, 204
Vendors subject area, 82
vertical partitioning, 44, 289

change history, 310, 312–314
data delivery processes, 311
large columns, 314–315
large text, 310
performance, 310, 311–312

vertical summary, 127
Visio, 90, 346

W
warehouse data model, mapping to

source systems, 379
Warehouse Designer, 90

I n d e x438

Warehouse entity, 89
Waste subject area, 66
week-centric 4-5-4 calendar, 180
well-behaved keys, 33
wells subject area, 67
wholly owned subsidiaries, 142
word processors, 346
workbench, 15–16
Workday Sequence Number, 166
workdays, 165

Z
ZAC (Zenith Automobile Company),

58–59
business data model, 102
car series, 60
credit hold, 119
data warehouses, 61–62
subject area definitions, 80
subject area model, 79–82
types of systems, 60–61

Zeniths, 58–59
Zulu (UMT or Greenwich Mean Time)

time, 171

	Mastering Data

Warehouse Design

Relational and Dimensional

Techniques
	Mastering Data

Warehouse Design

 Relational and Dimensional

 Techniques
	Copyright
	DEDICATION
	CONTENTS
	ACKNOWLEDGMENTS
	ABOUT TH E AUTHORS

	Part One Concepts
	Chapter 1 Introduction
	Overview of Business Intelligence
	BI Architecture

	What Is a Data Warehouse?
	Role and Purpose of the Data Warehouse
	The Corporate Information Factory
	Operational Systems
	Data Acquisition
	Data Warehouse
	Operational Data Store
	Data Delivery
	Data Marts
	Meta Data Management
	Information Feedback
	Information Workshop
	Operations and Administration

	The Multipurpose Nature of the Data Warehouse
	Types of Data Marts Supported
	Types of BI Technologies Supported

	Characteristics of a Maintainable Data Warehouse Environment
	The Data Warehouse Data Model
	Nonredundant
	Stable
	Consistent
	Flexible in Terms of the Ultimate Data Usage
	The Codd and Date Premise

	Impact on Data Mart Creation
	Summary

	Chapter 2 Fundamental Relational Concepts
	Why Do You Need a Data Model?
	Relational Data- Modeling Objects
	Subject
	Entity
	Element or Attribute
	Relationships

	Types of Data Models
	Subject Area Model
	Subject Area Model Benefits

	Business Data Model
	Business Data Model Benefits

	System Model
	Technology Model

	Relational Data- Modeling Guidelines
	Guidelines and Best Practices
	Normalization

	Normalization of the Relational Data Model
	First Normal Form
	Second Normal Form
	Third Normal Form
	Other Normalization Levels

	Summary

	Part Two Model Development
	Chapter 3 Understanding the Business Model
	Business Scenario
	Subject Area Model
	Considerations for Specific Industries
	Retail Industry Considerations
	Manufacturing Industry Considerations
	Utility Industry Considerations
	Property and Casualty Insurance Industry Considerations
	Petroleum Industry Considerations
	Health Industry Considerations

	Subject Area Model Development Process
	Closed Room Development
	Development through Interviews
	Development through Facilitated Sessions
	Subject Area Model Benefits

	Subject Area Model for Zenith Automobile Company

	Business Data Model
	Business Data Development Process
	Identify Relevant Subject Areas
	Identify Major Entities and Establish Identifiers
	Define Relationships
	Add Attributes
	Confirm Model Structure
	Confirm Model Content

	Summary

	Chapter 4 Developing the Model
	Methodology
	Step 1: Select the Data of Interest
	Inputs
	Selection Process

	Step 2: Add Time to the Key
	Capturing Historical Data
	Capturing Historical Relationships
	Dimensional Model Considerations

	Step 3: Add Derived Data
	Step 4: Determine Granularity Level
	Step 5: Summarize Data
	Summaries for Period of Time Data
	Summaries for Snapshot Data
	Vertical Summary

	Step 6: Merge Entities
	Step 7: Create Arrays
	Step 8: Segregate Data

	Summary

	Chapter 5 Creating and Maintaining Keys
	Business Scenario
	Inconsistent Business Definition of Customer
	Inconsistent System Definition of Customer
	Inconsistent Customer Identifier among Systems
	Inclusion of External Data
	Data at a Customer Level
	Data Grouped by Customer Characteristics

	Customers Uniquely Identified Based on Role
	Customer Hierarchy Not Depicted

	Data Warehouse System Model
	Inconsistent Business Definition of Customer
	Inconsistent System Definition of Customer
	Inconsistent Customer Identifier among Systems
	Absorption of External Data
	Customers Uniquely Identified Based on Role
	Customer Hierarchy Not Depicted

	Data Warehouse Technology Model
	Key from the System of Record
	Key from a Recognized Standard
	Surrogate Key

	Dimensional Data Mart Implications
	Differences in a Dimensional Model
	Maintaining Dimensional Conformance

	Summary

	Chapter 6 Modeling the Calendar
	Calendars in Business
	Calendar Types
	The Fiscal Calendar
	The 4- 5- 4 Fiscal Calendar
	Thirteen- Month Fiscal Calendar

	Other Fiscal Calendars
	The Billing Cycle Calendar
	The Factory Calendar

	Calendar Elements
	Day of the Week
	Holidays
	Holiday Season
	Seasons

	Calendar Time Span

	Time and the Data Warehouse
	The Nature of Time
	Standardizing Time

	Data Warehouse System Model
	Date Keys

	Case Study: Simple Fiscal Calendar
	Analysis
	A Simple Calendar Model
	Extending the Date Table
	Denormalizing the Calendar

	Case Study: A Location Specific Calendar
	Analysis
	The GOSH Calendar Model
	Delivering the Calendar

	Case Study: A Multilingual Calendar
	Analysis
	Storing Multiple Languages
	Handling Different Date Presentation Formats
	Database Localization
	Query Tool Localization
	Delivery Localization

	Delivering Multiple Languages
	Monolingual Reporting
	Creating a Multilingual Data Mart

	Case Study: Multiple Fiscal Calendars
	Analysis
	Expanding the Calendar

	Case Study: Seasonal Calendars
	Analysis
	Seasonal Calendar Structures
	Delivering Seasonal Data

	Summary

	Chapter 7 Modeling Hierarchies
	Hierarchies in Business
	The Nature of Hierarchies
	Hierarchy Depth
	Hierarchy Parentage
	Hierarchy Texture
	Balanced Hierarchies
	Ragged Hierarchies

	History
	Summary of Hierarchy Types

	Case Study: Retail Sales Hierarchy
	Analysis of the Hierarchy
	Implementing the Hierarchies
	Flattened Tree Hierarchy Structures
	Third Normal Form Flattened Tree Hierarchy

	Case Study: Sales and Capacity Planning
	Analysis
	The Product Hierarchy
	Storing the Product Hierarchy
	Simplifying Complex Hierarchies
	Bridging Levels
	Updating the Bridge

	The Customer Hierarchy
	The Recursive Hierarchy Tree
	Using Recursive Trees in the Data Mart
	Maintaining History

	Case Study: Retail Purchasing
	Analysis
	Implementing the Business Model
	The Buyer Hierarchy
	Implementing Buyer Responsibility
	Delivering the Buyer Responsibility Relationship

	Case Study: The Combination Pack
	Analysis
	Adding a Bill of Materials
	Publishing the Data

	Transforming Structures
	Making a Recursive Tree
	Flattening a Recursive Tree

	Summary

	Chapter 8 Modeling Transactions
	Business Transactions
	Business Use of the Data Warehouse
	Average Lines per Transaction
	Business Rules Concerning Changes

	Application Interfaces
	Snapshot Interfaces
	Complete Snapshot Interface
	Current Snapshot Interface

	Delta Interfaces
	Columnar Delta Interface
	Row Delta Interface
	Delta Snapshot Interface
	Transaction Interface

	Database Transaction Logs

	Delivering Transaction Data
	Case Study: Sales Order Snapshots
	Transforming the Order
	Technique 1: Complete Snapshot Capture
	Technique 2: Change Snapshot Capture
	Detecting Change
	Method 1 ¡ª Using Foreign Keys
	Method 2 ¡ª Using Associative Entities

	Technique 3: Change Snapshot with Delta Capture
	Load Processing

	Case Study: Transaction Interface
	Modeling the Transactions
	Processing the Transactions
	Simultaneous Delivery
	Postload Delivery

	Summary

	Chapter 9 Data Warehouse Optimization
	Optimizing the Development Process
	Optimizing Design and Analysis
	Optimizing Application Development
	Selecting an ETL Tool

	Optimizing the Database
	Data Clustering
	Table Partitioning
	Reasons for Partitioning
	Indexing Partitioned Tables

	Enforcing Referential Integrity
	Index- Organized Tables
	Indexing Techniques
	B- Tree Indexes
	Bitmap Indexes

	Conclusion

	Optimizing the System Model
	Vertical Partitioning
	Vertical Partitioning for Performance
	Vertical Partitioning of Change History
	Vertical Partitioning of Large Columns

	Denormalization
	Subtype Clusters

	Summary

	Part Three Operation and Management
	Chapter 10 Accommodating Business Change
	The Changing Data Warehouse
	Reasons for Change
	Controlling Change
	Implementing Change

	Modeling for Business Change
	Assuming the Worst Case
	Imposing Relationship Generalization
	Using Surrogate Keys

	Implementing Business Change
	Integrating Subject Areas
	Standardizing Attributes
	Inferring Roles and Integrating Entities

	Adding Subject Areas

	Summary

	Chapter 11 Maintaining the Models
	Governing Models and Their Evolution
	Subject Area Model
	Business Data Model
	System Data Model
	Technology Data Model
	Synchronization Implications

	Model Coordination
	Subject Area and Business Data Models
	Color- Coding
	Subject Area Views
	Including the Subject Area within the Entity Name

	Business and System Data Models
	System and Technology Data Models

	Managing Multiple Modelers
	Roles and Responsibilities
	Subject Area Model
	Business Data Model
	System and Technology Data Model

	Collision Management
	Model Access
	Modifications
	Comparison
	Incorporation

	Summary

	Chapter 12 Deploying the Relational Solution
	Data Mart Chaos
	Why Is It Bad?
	Criteria for Being In- Architecture

	Migrating from Data Mart Chaos
	Conform the Dimensions
	Create the Data Warehouse Data Model
	Create the Data Warehouse
	Convert by Subject Area
	Convert One Data Mart at a Time

	Build New Data Marts Only ¡° In- Architecture¡± ¡ª
	Leave Old Marts Alone
	Build the Architecture from One Data Mart

	Choosing the Right Migration Path
	Summary

	Chapter 13 Comparison of Data Warehouse Methodologies
	The Multidimensional Architecture
	The Corporate Information Factory Architecture
	Comparison of the CIF and MD Architectures
	Scope
	Perspective
	Data Flow
	Volatility
	Flexibility
	Complexity
	Functionality
	Ongoing Maintenance

	Summary

	GLOSSARY
	RECOMMENDED READING
	INDEX

