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Abstract. We evaluate the anonymity provided by two popular email
mix implementations, Mixmaster and Reliable, and compare their ef-
fectiveness through the use of simulations which model the algorithms
used by these mixing applications. Our simulations are based on actual
traffic data obtained from a public anonymous remailer (mix node). We
determine that assumptions made in previous literature about the dis-
tribution of mix input traffic are incorrect: in particular, the input traffic
does not follow a Poisson distribution. We establish for the first time that
a lower bound exists on the anonymity of Mixmaster, and discover that
under certain circumstances the algorithm used by Reliable provides no
anonymity. We find that the upper bound on anonymity provided by
Mixmaster is slightly higher than that provided by Reliable.

We identify flaws in the software in Reliable that further compromise its
ability to provide anonymity, and review key areas that are necessary for
the security of a mix in addition to a sound algorithm. Our analysis can
be used to evaluate under which circumstances the two mixing algorithms
should be used to best achieve anonymity and satisfy their purpose. Our
work can also be used as a framework for establishing a security review
process for mix node deployments.

1 Introduction

The Internet was initially perceived as a rather anonymous environment. Now we
know that it can be a powerful surveillance tool: anyone capable of listening to
the communication links can spy on Internet users, while data mining techniques
are becoming increasingly powerful and more widely accessible.

Preserving privacy does not only mean keeping information confidential; it
also means not revealing information about who is communicating with whom.
Anonymous remailers (also called mixes) allow their users to send emails without
disclosing the identity of the recipient to a third party. They also allow the sender
of a message to stay anonymous to the recipient.

The objective of this work is to have quantitative results on the anonymity
actually provided by two mix software implementations in wide deployment, to
test the actual anonymity provided to the users of the remailer service, and
to compare the two different designs. We evaluate anonymity in a single-node
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context. To assess the anonymity provided by the entire remailer network, addi-
tional considerations are necessary. As individual nodes are the basic component
to the network of mixes, we aim to provide information to be considered when
choosing this component. We have used as input real-life data gathered from a
popular remailer, and simulated the behavior of the mix.

2 Mixes

Mixes are the essential building block of anonymous email services. A mix is
a router that hides the relationship between incoming and outgoing messages.
The mix changes the appearance and the flow of the message traffic. In order to
make messages indistinguishable from each other the mix uses techniques such as
padding and encryption, which provide bitwise unlinkability between inputs and
outputs. Techniques such as reordering messages delaying them, and generating
dummy traffic are used to modify the flow of messages. This modification of the
traffic flow is needed to prevent timing attacks that could disclose the relationship
between input and output messages by observing the time the messages arrived
at and left from the mix.

The idea of mixes was introduced by Chaum [Cha81]. This first design was
a threshold mix, a mix that collects a certain number of messages and then
flushes them. Since then, variants on this first design have been proposed in the
literature. In this paper, we focus on two practical mix designs that have been
implemented and are part of the Mixmaster remailer network [Cot95], which has
been providing anonymous email services since 1995.

The first design is called “Mixmaster” (as the remailer network) because it
is descended from the original software program designed by Cottrell
[Cot,MCPS03]. The second design, called “Reliable”, uses a different reordering
strategy [RPr99]. The details of the two remailers are explained in the following
sections. We compare version 3.0 of the Mixmaster software and version 1.0.5 of
Reliable.

2.1 Mixmaster

Mixmaster1 is a pool mix. Pool mixes process the messages in batches. They
collect messages for some time, place them in the pool (memory of the mix), and
select some of them for flushing in random order when the flushing condition
is fulfilled. Mixmaster is a timed mix that has a timeout of 15 minutes. During
this period of time, it collects messages that are placed in the pool of the mix.
When the timeout expires, the mix takes a number of messages from the pool
1 Mixmaster version 3.0, as well as Reliable, also optionally supports the older

“Cypherpunk” remailer message format. For the purposes of this paper, we are
assuming that the remailers are being operated without this support. As anonymity
sets for the two protocols generally do not overlap, this does not impact our results.
The Cypherpunk remailer protocol is known to contain numerous flaws, and should
not be used if strong anonymity is required [Cot,DDM03].
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Fig. 1. Mixmaster in the GMM

that are forwarded to their next destination, which may be another mix or a
final recipient. The number s of messages sent in a round (one cycle of the mix)
is a function of the number n of messages in the pool:

if (n<45) s=0;
else if (0.35*n < 45) s=n-45;
else s=0.65*n;

Mixmaster is represented in the generalized mix model (GMM) proposed
by Dı́az and Serjantov [DS03b] as shown in Figure 1. In this model, the mix is
represented at the time of flushing. The function P (n) represents the probability
that a message is flushed by the mix, as a function of the number n of messages
in the pool. Note that P (n) = s/n.

2.2 Reliable

Reliable is loosely based on the Stop-and-Go (S-G Mix ) mix proposed by Kes-
dogan et al. in [KEB98]. In S-G mixes (also called continuous mixes), the users
generate a random delay from an exponential distribution. The mix holds the
message for the specified delay and then forwards it. The messages are reordered
by the randomness of the delay distribution. This mix sends messages continu-
ously: when it has been kept for the delay time it is sent out by the mix.

Reliable interoperates with Mixmaster on the protocol level by using the
Mixmaster message format for packet transfer. Reliable uses a variant of the
S-G mix design2.

2 The theoretical S-G mix design assumes that the delay parameter adapts to the
traffic load, that is, the users should set the delay parameter according to the amount
of input traffic the mix is receiving. This feature is not implemented in Reliable,
which has a static delay parameter. True S-G mixes also implement timestamps in
order to prevent active attacks (n−1 attacks in particular). Previous work has argued
that this method is unlikely to be effective, since the senders be able to determine the
appropriate delay for each mix in the path [SDS]. True S-G mixes would require a
service provide such information. Regardless, as the message protocol was originally
designed with only a pool mix network in mind, these timestamps are not used.
Reliable thus does not provide any resistance to this kind of active attack.
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In Reliable, the delay may be chosen by the sender from an exponential
distribution of mean one hour. If the sender does not provide any delay to the
mix, then the mix itself picks a delay from a uniform distribution of one and four
hours. Note that these parameters of the delay distributions are configurable,
and therefore many remailer operators may set them lower to provide a faster
service.

2.3 Dummy Traffic

A dummy message is a fake message introduced into the mix network to make it
more difficult for an attacker to deploy attacks that compromise the anonymity
of a message. The dummy messages are produced by the mixes, and use a chain
of mix nodes that terminates at a mix instead of a real recipient.

Dummies are indistinguishable from real messages as they travel in the mix
network. Since they are introduced to prevent traffic analysis, the dummy policy
should maximize the number of possible destinations for the messages flushed
by the mix. Dummy traffic has an impact when analyzing the mix network as a
whole. We have made measurements that show that the impact of dummies on
the anonymity provided by a single mix is very small. To make the comparison
of Mixmaster and Reliable easier, we have not taken into account the dummy
policies of these two mixes in the results presented in this paper.

Dummy Policy of Mixmaster. Each time a message is received by Mixmaster,
d1 dummies are generated and inserted in the pool of the mix. The number d1

of dummies generated follow a geometrical distribution whose parameter has
the default value of 1/10. In addition, each time Mixmaster flushes messages, it
generates a number d2 of dummies that are sent along with the messages. The
number d2 of dummies follows a geometrical distribution whose parameter has
the default value 1/30.

Dummy Policy of Reliable. Reliable’s default dummy policy consists of the gen-
eration of 25 dummies every 6 hours. The time these dummies are kept in the mix
is selected from a uniform distribution whose minimum value is 0 and maximum
is 6 hours.

3 Anonymity Metrics

In this section we introduce the anonymity metrics for mixes and we present
the attack model that we have considered. Let us first define anonymity in this
context. Anonymity was defined by Pfitzmann and Köhntopp [PK00] as “the
state of being not identifiable within a set of subjects, the anonymity set”.

The use of the information theoretical concept of entropy as a metric for
anonymity was simultaneously proposed by Serjantov and Danezis in [SD02]
and by Dı́az et al. in [DSCP02]. The difference between the two models for
measuring anonymity is that in [DSCP02] the entropy is normalized with respect
to the number of users. In this paper we will use the non-normalized flavor of
the metric.
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The anonymity provided by a mix can be computed for the incoming or for
the outgoing messages. We call this sender anonymity and recipient anonymity.

Sender Anonymity. To compute the sender anonymity, we want to know the
effective size of the anonymity set of senders for a message output by the mix.
Therefore, we compute the entropy of the probability distribution that relates
our target outgoing message with all the possible inputs.

Recipient Anonymity. To compute the effective recipient anonymity set size of an
incoming message that goes through the mix, we have to compute the entropy
of the probability distribution that relates the chosen input with all possible
outputs.

Note that in these two cases, the metric computes the anonymity of a partic-
ular input or output message; it does not give a general value for a mix design
and it is dependent on the traffic pattern. The advantage of this property is that
mixes may offer information about the current anonymity they are providing.
The disadvantage is that it becomes very difficult to compare theoretically dif-
ferent mix designs. Nevertheless, it is possible to measure on real systems (or
simulations) the anonymity obtained for a large number of messages and provide
comparative statistics, as we do in this paper.

To measure Mixmaster’s sender and recipient anonymity, we have applied the
formulas provided by Dı́az and Preneel in [DP04]. The anonymity of Reliable has
been measured using the formulas presented in Appendix A. Note that we could
not apply the method used by Kesdogan [KEB98] because we did not make any
assumption on the distribution of the mix’s incoming traffic (Kesdogan assumes
incoming Poisson traffic).

3.1 Attack Model

The anonymity metric computes the uncertainty about the sender or the re-
cipient of a message, given that some information is available. In our case, we
assume that the mix is observed by a passive attacker, who can see the incoming
and outgoing messages of the mix. The attacker knows all internal parameters of
the mix so he can effectively compute the anonymity set size for every incoming
and outgoing message.

Previous work by Serjantov et al. [SDS] has focused on active attacks on
several mix designs. We refer to this paper for complementary information on
the resistance of several mixes to active attackers.

4 Simulators

We have implemented Java simulators for Reliable and Mixmaster. We have
fed the simulated mixes with real input, obtained by logging a timestamp each
time a message arrived to a working Mixmaster node (note that the information
we logged does not threaten the anonymity of the users of the mix). We have
used four months of incoming traffic (July-November 2003) to obtain the results
presented in Section 5.
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In order to make a fair comparison, we have set the mean of the exponential
delay of Reliable (default 1 hour) to be the same as provided by Mixmaster for
the given four months of input (43 minutes)3. We have assumed users choose
their delays from an exponential distribution. The mix-chosen uniform delay
option has not been taken into account, due to the infeasibility of implementing
algorithms that compute the anonymity for such a delay distribution without
making assumptions on the traffic pattern, as explained in Appendix A.

The simulators log the delay and the anonymity for every message. Mixes
are empty at the beginning of the simulation. The first message that is taken
into account for the results is the one that arrives when the first input has been
flushed with 99% probability. All messages flushed after the last arrival to the
mix are also discarded for the results. This is done in order to eliminate the
transitory initial and final phases. In our simulations, the number of rounds
discarded in the initial phase is 3, and the number of rounds discarded in the
final phase is 39. The total number of rounds for our input traffic is 11846.

5 Results

In this section we present and analyze the results we have obtained with the
simulations.

5.1 Analysis of the Input Traffic

It is a common assumption in the literature that the arrivals at a mix node
follow a Poisson process. We have analyzed the input traffic, and found that
it does not follow a Poisson distribution nor can it be modeled with a single
time-independent parameter.

A Poisson process is modeled by a single parameter λ representing the ex-
pected amount of arrivals per (fixed) time interval. If the arrivals to a mix are
assumed to follow a Poisson process with an average of λ arrivals per time in-
terval ∆t and we denote the number of arrivals in such a time interval by X ,
then X is Poisson distributed with parameter λ: X ∼ Poiss(λ). It is important
to note that λ is time-independent.

In our statistical analysis we first assumed that the process of arrivals was
a Poisson process and we estimated the parameter λ. The latter was done by
taking the maximum likelihood estimate given the number of arrivals per time
interval ∆t = 15 minutes (N = 11800). We also constructed a 95% confidence
interval for this estimate. In this way we found λ̂ = 19972 with confidence region
[19891; 20052]. Then we performed a goodness-of-fit test to determine if we can
reject the hypothesis
3 We have made some simulations for Reliable with mean 1 hour, and the results

obtained do not differ significantly from the ones presented in this paper (i.e., some
messages do not get any anonymity at all). We do not include these figures here due
to a lack of space, but they will be added to an extended abstract version of the
paper.
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H0 : the number of arrivals per time interval ∼ Poiss(λ̄) ,

where λ̄ varies over the constructed confidence interval. The goodness-of-fit test
we used is the well-known Chi-square test (df=n−1=11802). Using a significance
level of 0.01, the null hypothesis gets rejected (Chi-value=826208)!

In the left part of Figure 2 we show the number of messages received by
the mix per hour. The right part of Figure 2 shows the evolution of the arrivals
per day. We can observe that the traffic that arrived at the mix during the first
month is much heavier than in the following three months. This shows that the
input traffic pattern that gets to a mix node is highly unpredictable and that
the assumption of lambda being time-independent cannot hold.

Figure 3 shows the frequency in hours and in days of receiving a certain
number of arrivals. We can see that in most of the hours the mix receives less
than 20 messages.

5.2 Analysis of Mixmaster

We have simulated a Mixmaster node as explained in Section 4. Mixmaster is
a pool mix and processes messages in batches. The recipient anonymity of each
message in a given round is the same. Equivalently, all outputs of a round have
the same sender anonymity value. In this section we show the results obtained
in our simulation.

In Figure 4 we show the correlation between the recipient anonymity and the
delay for every message. Figure 4 shows the same for sender anonymity.

The first conclusion we come to when observing the figures is that there
is a lower bound to the anonymity of Mixmaster. It is worth noting that, so
far, we do not know any theoretical analysis of pool mixes able to predict the
anonymity a pool mix provides, and prior to this analysis there were no figures
on the anonymity that Mixmaster was actually providing. With this simulation,
we can clearly see that Mixmaster guarantees a minimum sender and recipient
anonymity of about 7. This means that the sender (recipient) of a message gets
a minimum anonymity equivalent to perfect indistinguishability among 27 = 128
senders (recipients).

We can see that the minimum anonymity is provided when the traffic (ar-
rivals) is low. As the traffic increases, anonymity increases, getting maximum val-
ues of about 10 (i.e., equivalent to perfect indistinguishability among 210 = 1024)
senders or recipients. We also observe that the delays of the messages don’t take
high values, unless the traffic load getting to the mix is very low.

In order to study the behavior of the mix under different traffic loads, we
have plotted values of delay and anonymity obtained in the simulation for the
rounds with few arrivals (low traffic), intermediate number of arrivals (medium
traffic), and many arrivals (high traffic).

We have selected the low, medium, and high traffic taking into account the
data statistics of the arrival process:

Low traffic: all rounds where the number of arrivals was between the first and
third quartile (1 ≤ data ≤ 17); hence 50 percent of the rounds are denoted
as normal traffic.
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Fig. 2. Incoming traffic patterns
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Fig. 3. Frequency analysis of inputs
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Medium traffic: all rounds where the number of arrivals was greater than the
third quartile but lower than the outlier bound (17 < data ≤ 41).
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High traffic: all rounds with outlier values for the incoming messages (data
> 41).

In Figure 5 we show the minutes of delay of every message (the x-axis indi-
cates the evolution in time). We can see that the delay only takes high values
when the traffic is low. The fact that some messages appear as having a delay
close to zero in the low traffic figure is due to the fact that we have more sam-
ples, so there are messages that arrive just before the flushing and are forwarded
immediately. In Figure 6 we show the recipient anonymity of every message (the
sender anonymity presents very similar characteristics). We can see that as the
traffic increases, the anonymity provided takes higher values. No matter how low
the traffic load is, the anonymity provided by Mixmaster is always above 7.
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5.3 Analysis of Reliable

The theoretical method proposed in [KEB98] that gives a probabilistic prediction
on the anonymity provided by Reliable is based on the assumption of Poisson
traffic. As we have seen, this assumption is definitely not correct for email mix
traffic.

We have simulated a Reliable mix as explained in Section 4. Reliable treats
every message independently: when it receives a message it delays it for a prede-
termined amount of time (selected from an exponential distribution) and then
forwards it. We represent a star, ‘*’, per message.

In Figure 7 we present the sender and recipient anonymity provided by Re-
liable for the real stream of inputs we have considered. We can see that the
anonymity takes minimum values close to zero, which means that some of the
messages can be trivially traced by a passive attacker. The maximum values
of Reliable’s anonymity for this input are lower than Mixmaster’s maximums.
Figure 8 shows the highly correlated values of sender and recipient anonymity
for both Reliable and Mixmaster. We can clearly see that for Reliable some of
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Fig. 7. Correlation Delay-Anonymity for Reliable
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the messages get nearly no anonymity, while the ones of Mixmaster get at least
sender and recipient anonymity 7.

5.4 Mixmaster vs. Reliable

As we have shown in the previous two sections, Mixmaster and Reliable have
very different behaviors for the same traffic stream. Note that we have modified
the default (1 hour) mean delay of Reliable, so that the average delay is the
same as Mixmaster for comparison purposes.

Mixmaster priorizes the anonymity over the delay, and it provides a minimum
recipient (sender) anonymity of around 7, equivalent to perfect indistinguisha-
bility among 27 = 128 input (output) messages. When the traffic load decreases,
Mixmaster provides a larger latency to keep the anonymity at high levels.

Reliable delays messages according to an exponential distribution, regardless
of the traffic load. This has an effect on the anonymity, in that it will only have
high values when there is a high traffic load. When the traffic load decreases,
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the anonymity provided by Reliable drops to very low values. In some cases of
very low load, Reliable does not provide anonymity at all.

Our conclusion is that a continuous mix like Reliable is not appropriate to
provide anonymous services for applications that do not have real-time require-
ments (like email). A pool mix like Mixmaster should be used instead.

Continuous mixes like Reliable may be useful for real-time applications with
tight delay constraints (like web browsing). Nevertheless, in order to provide
acceptable levels of anonymity, the traffic load should be kept high.

6 Other Factors That Influence Anonymity

We have evaluated the anonymity strength of the mixing algorithms imple-
mented in Mixmaster and Reliable. Additional factors have a direct impact on
the anonymity provided by the system. Concerns such as the security of the
underlying operating system, host server integrity, proper implementation of
the cryptographic functions provided by the remailer software, and likelihood of
administration mistakes all contribute to the overall anonymity these software
packages can provide. We assume that no active attacks against the software
occurred during the development or compilation process, though additional con-
cerns are present in that area [Tho84].

This paper does not aim to be an in-depth analysis of the full spectrum of
host-attacks against remailer nodes. Nevertheless, it is important to mention
some significant differences between Reliable and Mixmaster that may affect
their ability to provide adequate anonymity for their users.

6.1 Host Server Integrity

The security of an operating mix is dependent on the security of the underlying
host server. Many factors can impact the underlying system’s security. Some
considerations include shared access to the system by untrusted users, access to
key material on disk or in memory, and the ability to insert shims to intercept
dynamically loaded libraries called by the remailer software [Tha03].

Reliable is limited to operation on the Windows platform. Mixmaster is
portable, and has been known to run on a wide variety of operating systems4.

Host server security is ultimately the responsibility of the remailer operator.

6.2 UI Issues

In a privacy application client, an intuitive user interface is essential in order to
ensure that the software is used consistently and correctly [Sas02]. A greater level
of skill can safely be assumed when designing privacy software that is intended
to be operated as a service, however. Most anonymity systems, including mix
4 There have been instances of remailers based on the Mixmaster 3.0 codebase operat-

ing on SunOS, Solaris, SunOS, AIX, Irix, BeOS, MacOS X, Windows NT (natively
and through the use of Cygwin), Windows 2000 (natively and through the use of
Cygwin), Windows XP (through the use of Cygwin), FreeBSD, NetBSD, OpenBSD,
and multiple versions of Linux.
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implementations, do imply a significant degree of complexity. Since the operation
of a public Internet service involves the correct configuration and maintenance of
the host server, this necessary complexity is acceptable as long as the operator’s
skill level is sufficient. The level of skill required to properly install, configure,
and operate a mix node should not exceed that required to properly install,
configure, and operate the server itself.

The software packages we evaluated differed with regard to their interface
complexity in a number of areas.

In general, Reliable has a greater “ease of use” factor with respect to its
interface. Mixmaster automates many important tasks, such as adaptive dummy
generation, key rotation and key expiration announcement, and integrates more
easily with the host MTA5. Reliable’s installation process is easier, but its build
process requires the use of third-party commercial applications and assumes
experience with Windows development, so most users will install a pre-compiled
binary. Compilation of Mixmaster is performed through a simple shell script.

At first glance, it appears that Reliable will be easier for hobbyists to op-
erate than Mixmaster. However, Mixmaster’s difficulty does not rise above the
difficulty of maintaining a secure Internet-connected server, and thus has little
effect on the overall security of a mix node deployment.

6.3 Programming Language

While the most critical factor in the creation of secure code is the manner in
which it is written, some languages lend themselves to greater risk of exploitable
mistakes. An inexperienced or unskilled programmer will always be in danger
of making an application insecure. The choice of programming language merely
sets the bar for the required level of experience and ability necessary to develop
applications in that language safely. Thus, when evaluating the likelihood of the
existence of exploitable code in an application, it is worthwhile to consider the
programming language used to create that application. Mixmaster is written in
C, while Reliable is written in Visual Basic. Since neither Mixmaster nor Reliable
was written by seasoned software developers, we assume a level of experience that
would allow for simplistic security mistakes6.

6.4 Source Code Documentation

To facilitate source code review and verification of an application’s correctness
with regard to its implementation of a protocol, it is beneficial for there to
5 Mail Transport Agent, e.g. sendmail or postfix
6 The bulk of the code for Mixmaster 3.0 was written by Ulf Möller as his first major

software development project while completing his undergraduate computer science
degree [M0̈2]. He has since gained respect as a skilled cryptographic software devel-
oper for his open source and proprietary development projects. Reliable was authored
under a pseudonym, and we can only speculate about the level of experience of its
author. (There has been no known communication with the author of Reliable since
February, 2000).
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be both good commenting in the source code and a clear specification for its
behavior.

While neither program is sufficiently commented or written clearly enough
to allow a reviewer to easily learn how either system works by reading the source
code alone, there exists a complete specification of the Mixmaster node behav-
ior [MCPS03]. No such specification or description exists for Reliable.

6.5 Included Libraries

In addition to the standard POSIX libraries provided by the compilation OS,
Mixmaster 3.0 (the version of Mixmaster evaluated in this paper) requires that
the zlib [DG96] and OpenSSL [CEHL] libraries be included. Optionally, Mix-
master also links against pcre [Haz] and ncurses [BHRPD].

Reliable requires many native Windows system calls as well as the third-party
application, Mixmaster 2.0.47.

6.6 Cryptographic Functions

Both Mixmaster and Reliable avoid direct implementation of cryptographic al-
gorithms when possible. Mixmaster 3.0 relies strictly on OpenSSL for these cryp-
tographic functions. Any attackable flaws in the cryptographic library used to
build Mixmaster that affect the security of the algorithms8 used by Mixmaster
may be an attack against Mixmaster as well.

Reliable abstracts the cryptographic operations one step further. To support
the Mixmaster message format, Reliable acts as a wrapper around the DOS
version of Mixmaster 2.0.4. Thus, any attack against the Mixmaster message
format due to implementation flaws in Mixmaster 2.0.x will work against Reliable
as well. Mixmaster 2.0.4 relies on the cryptographic library OpenSSL or its
predecessor SSLeay for the MD5, EDE-3DES, and RSA routines9.

6.7 Entropy Sources

The quality of the entropy source plays an extremely important role in both the
pool mix and S-G mix schemes. In pool mix systems, the mixing in the pool must
be cryptographically random in order to mix the traffic in a non-deterministic
7 Mixmaster 2.0.x has an entirely different codebase than that of Mixmaster 3.0. While

Reliable relies on the Mixmaster 2.0.4 binary for some of its functionality, Reliable
is an independent application in its own right, and should not be considered a mere
extension to the Mixmaster codebase.

8 It is understood that flaws in the cryptographic algorithms will affect the security
of software that relies upon those algorithms. However, since most attacks on cryp-
tographic applications are due to flaws in the implementation, care must be taken
when evaluating the shared cryptographic libraries.

9 Prior to the expiration of the RSA patent, versions of Mixmaster 2.0.x offered sup-
port for the RSAREF and BSAFE libraries as well. Use of these versions of Mix-
master is largely abandoned.
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way. The timestamps that determine how long a message should be held by an
S-G mix implementation must also be from a strong entropy source for the same
reasons. In addition, the Mixmaster message format specifies the use of random
data for its message and header padding.

Software is dependent on its underlying operating system for a good source of
entropy. Cryptographic quality entropy is a scarce resource on most systems10,
and therefore the entropy sources provided by most modern operating systems
actually provide PRNG output which has been seeded with truly-random data.

Mixmaster uses OpenSSL’s rand functions11. Reliable uses the standard
Windows system call, Rnd(), when obtaining entropy, with the exception of
message and header padding (which is done by the supporting Mixmaster 2.0.4
binary). The Rnd() function is not a cryptographically strong source of en-
tropy [Cor]. Rnd() starts with a seed value and generates numbers which fall
within a limited range. Previous work has demonstrated that systems that use a
known seed to a deterministic PRNG are trivially attackable [GW96]. While its
use of Rnd() to determine the latency for a message injected into the mix is the
most devastating, Reliable uses Rnd() for many other critical purposes as well.

6.8 Network Timing Attacks

By analyzing the input and output traffic of a mix, a skilled attacker may be
able to deduce the value of pool variables by timing observation. This affects
pool mixes more than S-G mixes, and possibly aids an attacker in some non-
host based active attacks such as (n − 1) attacks. The anonymity strength of a
remailer should not require pool values to be hidden, and countermeasures to
this class of active attacks should be taken [DS03a].

7 Conclusions and Future Work

In this paper we have analyzed the traffic pattern of a real traffic stream going
through a working mix node and found that the traffic is not Poisson, as it is
commonly assumed in the literature. The traffic pattern is highly unpredictable.
Therefore, no assumptions on the traffic should be made when designing a mix.

We measure the anonymity of the pool mix scheme used in Mixmaster by
applying a metric previously proposed in the literature. We provide our own
metric for evaluating the anonymity of the S-G mix variant used in Reliable
that does not assume a Poisson traffic pattern.

Our comparison of the two predominant mixing applications shows that Mix-
master provides superior anonymity, and is better suited for the anonymization of
email messages than Reliable. Mixmaster provides a minimum level of anonymity
at all times; Reliable does not. Reliable’s anonymity drops to nearly zero if the
10 Systems that employ the use of noisy diodes or other plentiful sources of entropy

have less of a concern for entropy pool exhaustion.
11 OpenSSL relies on its internal PRNG seeded with various system sources to provide

cryptographically strong entropy.
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traffic is very low. In high-traffic situations, Mixmaster provides a higher maxi-
mum anonymity than Reliable for the same stream of input: 10.5 of Mixmaster
versus 10 of Reliable. We have shown that Mixmaster provides higher average
anonymity than Reliable for the same input and same average delay. Due to
its nature as a pool mix, Mixmaster provides higher delays than Reliable in
low traffic conditions. Comparatively, due to the nature of S-G mixes, Reliable’s
delay is not dependent on the traffic.

In addition, we have identified a number of key points of attack and weakness
in mix software to which anonymity software designers need to pay particular
attention. In addition to the areas of theoretical weakness that we have identified,
we discovered a fatal flaw in the use of randomness in Reliable, which diminishes
its ability to provide anonymity, independent of our findings with regard to the
S-G mix protocol.

We can conclude from our analysis of the mixing algorithms used by these
mix implementations that S-G mix variants such as the one used in Reliable are
not suitable for use with systems that may have occurrences of low traffic on the
network. While such S-G mixes may be an appropriate solution for systems with
a steady input rate, they are not suited for systems with variable input traffic.
Pool mixes such as Mixmaster should be preferred for systems with fluctuating
traffic loads and relaxed latency contraints.
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A Method to Compute the Anonymity of Reliable

To formalize the behavior of the mixes, we define:

– Xs : an incoming message arriving at time s;
– Yt : an outgoing message leaving at time t;
– D : the amount of time a message has been delayed.

We know that the mixes delay the messages exponentially and we have set the
mean to 1 hour: D ∼ exp(1):

pdf : f(d) = e−d for all d ≥ 0 ;

= 0 elsewhere ;

cdf : F (d) = P (D ≤ d) = 1 − e−d for all d ≥ 0 ;

= 0 elsewhere .

All delay times are independent.

Crucial to note in this setup is that the sequence of outgoing messages is
not a Poisson process. This would only be true if all inputs would arrive at the
same time, hence belong to the mix when the delaying starts or if the sequence
of arrivals are a Poisson process. But in our case, messages arrive at distinct
moments in time, each being exponentially delayed upon their arrival times.

Mixes flush at fixed time moments which are observed by the attacker:

t ∈ {out1, out2, . . . , outM}.
He also observes the arrival times:

s ∈ {in1, in2, . . . , inN}.
If a message leaves the mix at time t, what are then the probabilities for the

arrival times? Suppose the departure time t =out is fixed. We then look for the
probability that the message that left at time out is the same message as the
one that entered the mix at time s:

P (Yout = Xs) = P (D = out − s) .

We can hence rephrase the problem in terms of the delay: which values for
the delay times are the most probable? Clearly, negative delay is impossible
so only arrival times prior to out are probable. These arrival times form a set
{in1, in2, . . . , ink} with ink < out. The matching delay times are then { out -
in1, out -in2,. . . , out -ink } to which we will refer to as {d1, d2, . . . , dk}. Note that
d1 > d2 > . . . > dk. We are almost at the solution as the density function of
the delay times is known! Caution has to be taken however as the exponential
function is a continuous function which means that the probability of the delay
taking a single value is zero: P (D = d1) = . . . = P (D = dk) = 0!
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Fig. 9. An example of an exponential probability density function

Fig. 10. The matching exponential cumulative density function

How can we then calculate the probabilities of the delay times? To make this
clear, let us look at Figure 9 and suppose that we only have three arrival times
prior to out. We have thus three possible delays d1 > d2 > d3. Let us now assume
for simplicity reasons that d1 = 3 hours, d2 = 2 hours and d3 = 1 hour. The
variable delay is continuous and can theoretically take every value in the interval
[0, 3]. However, we know that we only flush at three particular times and that
hence only three particular delays can occur. We can exploit this knowledge in
the following way:

P (D = d1) ≈ P (d2 < D ≤ d1) = light surface ;
P (D = d2) ≈ P (d3 < D ≤ d2) = medium surface ;
P (D = d3) ≈ P (0 < D ≤ d3) = dark surface .

In this way one can clearly see that the biggest surface corresponds to the most
probable delay! This is straightforward for more than three delays. For computa-
tion we make use of the cumulative distribution function (cdf) which is graphed



158 Claudia Dı́az, Len Sassaman, and Evelyne Dewitte

in Figure 10. Cumulative probabilities are listed in tables and known in statis-
tical software. For reasons of simplicity we put the mean of the exponential to
be 1 hour (easy parameterization):

P (D = d1) ≈ F (d1) − F (d2) = 0.9502− 0.8647 = 0.0855 ;
P (D = d2) ≈ F (d2) − F (d1) = 0.8647− 0.6321 = 0.2326 ;
P (D = d3) ≈ F (d3) = 0.6321 .

In our little example, the message corresponds most likely with the one that
entered the mix 1 hour before out. You can also clearly see this on Figure 9.
In practical applications however, many possible delays will occur so that visual
inspections will not be efficient and calculations have to made and compared.

A.1 Uniform Delays

Reliable allows for mix-chosen uniform delays if the users do not specify any
delay for their messages.

We have found a method to compute the anonymity provided by a mix
that delays inputs uniformly from a distribution U [a, b]. The method consists in
creating a tables with all inputs and outputs. Then we search for all possible
combinations input-output that are possible from an external observer’s point of
view (i.e., those that assign to every input that arrives at time T an output that
leaves between T + a and T + b). Let us call the total number of combinations
C.

Then, to compute the recipient (sender) anonymity of message mi, we need to
find the distribution of probabilities that link this input (output) to all outputs
(inputs).

If input mi appears matching output sj in P combinations, then the proba-
bility assigned to sj is P/C.

The probability of an input of matching an output is computed as possible
cases divided by total cases. From this distribution, the sender and recipient
anonymity can be computed for every message.

Unfortunately, due to the large amount of messages considered, the imple-
mentation of this algorithm in our case is not feasible.
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