
Improved Algebraic Traitor Tracing Scheme

Chunyan Bai and Guiliang Feng

Center for Advanced Computer Studies,
University of Louisiana at Lafayette,

Lafayette, LA 70504, USA
{cxb7146, glf}@cacs.louisiana.edu
http://www.cacs.louisiana.edu

Abstract. In this paper, we try to use algebraic-geometric codes (AG
codes) to solve the traitor tracing problem over the broadcast channel.
The scheme is shown by using AG codes to construct the linear space
tracing code Γ , which is the base for the distributor to create private
keys for each authorized subscribers. The obtained public key tracing
scheme is deterministic and can trace all the participated traitors.
Compared to the Reed-Solomon code (RS code) based public key traitor
tracing scheme, our scheme can accommodate more users and tolerate
more colluders given a fixed length of private keys.

Index Terms: algebraic-geometric code, Reed-Solomon code, traitor
tracing, broadcast.

1 Introduction

With the rapid development of new IT technologies and electronic commerce,
broadcast encryption is used in a wide range of situations such as video-on-
demand, multi-party teleconferencing, stock quote distribution and updating
softwares. In these cases, everyone can receive the encrypted message, but only
a set of registered users are authorized to decrypt and discover the original
message. This is implemented by using a public key to encrypt the message and
broadcast it into the channel. Also, different decryption keys are generated and
distributed to each legitimated user to guarantee him to obtain the subscribed
service.

The authorized users, however, may have the temptation to distribute their
description keys or the decrypted message further to unauthorized users without
the permission of the distributor. This message leakage will cause great loss for
the distributor. Such unauthorized access to data is known as piracy. Those
authorized users who allow other non-authorized users to obtain data are called
traitors and those unauthorized users are called pirate users. This problem
can be solved by assigning different decryption keys to different user, then the
compromised key could be used to trace back to its origin. While, a new problem
will come. If a group of users try to collude and create a new decryption key,
which may hide the identity of each colluders. How to prevent such message
leakage is the key for the security of broadcast communication.
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There are two non-exclusive approaches for the distributor to protect himself
from the non-authorized redistribution. One option is to deter users from reveal-
ing their personal keys to others, which is referred to as self enforcement; An-
other option is to trace the corrupt users back, which is known as traitor tracing,
and revoke them from further using the service. The self enforcement property is
obtained by inserting some sensitive private information, such as bank account
or credit card number, of traitors into his personal keys. Then the traitor will feel
reluctant to redistribute his personal key to others. Although self enforcement
schemes can prevent small scale piracy and can make it harder for pirates to
obtain decryption keys, we will concentrate on traitor tracing in this paper since
we assume that traitors DO want to reveal their keys to unauthorized users.

Traitor tracing refers to the task of identifying the keys used for generating
the pirate key. In most of the available traitor tracing schemes, the keys have
some combinatorial properties and tracing is probabilistic[1-7,13,14,18]. These
work follows the traitor tracing model proposed by Chor,Fiat and Naor[1]. Each
message is encrypted by a public key and sent to the channel together with
different private keys for each individual user. Tracing is based on the combina-
torial properties of the keys. It is guaranteed from these schemes that at least
one of the traitors will be traced with high probability if less than k traitors
participate in the collusion, which is called k-collusion resistant. Further work
have been done to make the scheme full tracing[10,15,17]. These schemes are
deterministic and catches all of the traitors who contributed to the attack based
on the number theoretic assumption. Dynamic traitor tracing schemes in [8,9]
are designed to combat the less common scenario where a pirate publishes the
periodical access control keys on the Internet or simply rebroadcasts the content
via an independent pirate network. Authors in [12,13] discuss how to revoke
those traitors after they have been discovered. Recent work in [16,18,19] try to
break some of the available traitor tracing schemes and propose new algebraic
schemes by using error-correcting encoding and decoding. We will review the
related work in Section 2.

In this paper, algebraic-geometric codes are used to construct the base for the
public key traitor tracing scheme. The obtained scheme accommodate more users
and achieve a higher threshold of tracing compared to the existed Reed-Solomon
code based scheme.

The rest of this paper is organized as follows: In section 2, we describe work
related to traitor tracing. Section 3 outlines an overview of the problem as well as
definitions used in our approach. Section 4 characterizes and discusses the new
algebraic-geometric codes based traitor tracing scheme. Finally, we summarize
the conclusion and future work in section 5.

2 Related Work

The first attempt to deal with the traitor tracing problem was proposed by Chor,
Fiat and Naor[1] and generalized by Stinson and Wei in [5]. According to Chor
et.al., k-resilient traceability schemes can be implemented, that is, at least one
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traitor will be revealed on the confiscation of a pirate decoder if there are at
most k traitors. Although Chor’s work gives the model for solving the traitor
tracing problem, their scheme is inefficient and non-constructive. Stinson and
Wei showed some explicit constructions by using combinatorial designs, their
work is better for small values of k and n, where k is the number of traitors
and n is the number of users. Both of these two schemes are private key encryp-
tion scheme, that is, they are symmetric in the sense that legitimate users of the
broadcast information share all their secrets with the information provider. Thus
they cannot provide non-reputation. Pfitzmann [2] pointed out this problem and
introduced asymmetric traceability schemes in which the information provider
cannot frame an innocent user and no user can abuse the system without being
detected. In [6,11,14,18], asymmetric traitor tracing schemes are further dis-
cussed and designed which make traitor tracing designs more practical in the
case of disputation between information provider and users.

Traitor tracing scheme can be designed to operate against any pi-
rate decoder with non − negligible success probability, which is called
Fully resilient schemes. Although the security quality of the fully resilient
schemes are good (they perform better than breaking the underlying encryption
system), their complexity costs are too high under some circumstances. Naor and
Pinkas introduced threshold tracing schemes in [3] which can trace the source
of keys of pirate decoders with probability greater than some threshold. These
schemes present a dramatic reduction in the overhead compared to fully resilient
schemes while provide quality that are good enough for most cases.

After noticing that all the discussed traceability schemes assume that the
data supplier should assign the keys after he has determined whom the autho-
rized users are, which maybe unreasonable because changes between authorized
and unauthorized users might be frequent, Stinson and Wei [4] investigated the
key preassigned traceability schemes in which the personal keys can be assigned
before the authorized users are determined. The schemes have better traceability
and are more efficient in the sense of information rate and broadcast information
rate. [8] and [9] tried to combat the less common scenario where a pirate pub-
lishes the periodically access control keys on the Internet or simply rebroadcasts
the content via an independent pirate network. The schemes are accomplished
by using the watermarking techniques, which allows the broadcaster to generate
different versions of the original content, with no noticeable degradation in the
content quality. Watermarks found in the pirate copy are used to trace its sup-
porting traitors. These schemes can deal with not only the case that the private
keys are leaked, but also the case that the private messages are rebroadcasted.

In all the above work, traitor tracings are designed in symmetric encryption
system, thus requires the information provider be coincident with the adminis-
trator of the secure broadcasting infrastructure. However, it is highly desirable
to divide these roles, thus the appearance of public-key traitor tracing schemes
in [6,7,10,11,18]. Public-key traitor tracing schemes can overcome the problem
of non-reputation. The first public-key traceability scheme was shown in [6]. But
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this scheme was broken by Stinson and Wei in [4], and Boneh and Franklin in
[10].

The next public key tracing scheme came with Boneh and Franklin in
1999[10]. The construction of keys is algebraic, which combines the theory of
error correcting codes to discrete logarithm representation problems, and trac-
ing is deterministic. The scheme gains full tracing, that is, if at most k traitors
have participated in generating a new key, they can all be traced. Moreover, the
tracing algorithm is error free. Innocent users are never blamed. Furthermore,
the scheme is efficient in complexity. Following the same idea, some other work
[15,17] have been done. [15] presented a general attempt to make the scheme
long-lived, that is, the server can adapt its encryption procedure to the presence
of pirate decryption keys and modify the transmission to reach the legitimate
users only. [17] gave an attack on [10] and proposed efficient modified scheme
to make it robust. Our scheme in this paper is also based on the work in [10]
because it is the only scheme which can trace all the traitors who participates
in the message leakage.

Most recent work on traitor tracing are [16], [18] and [19]. The scheme in
[16] is specifically designed for tracing fingerprint media data such as images
and video data. Generalized Reed-Solomon codes and their soft-decision decod-
ing algorithms are utilized to present a powerful tracing scheme. [18] broke two
of previous tracing schemes and present a new asymmetric public-key traitor
tracing procedure with detailed proof of the traceability and security. In [19], a
coding theoretic approach is used to produce a fast traitor tracing scheme. It is
shown that when suitable error-correcting codes are used to construct traceabil-
ity schemes, and fast list decoding algorithms are used to trace, the runtime of
the tracing algorithm is polynomial in the codeword length. Also, the question of
what the information provider should do after finding the traitors is considered.
[12] and [13] talk about how to combine tracing scheme with revocation scheme
and make the broadcast information distribution more robust. This direction is
of great significance for future research.

3 Overview

Traitor tracing schemes help in three aspects of piracy prevention: they deter
users from cooperating with pirates, they identify the pirates and enable to
take legal actions against them, and they can be used to disable active pirate
users. We will address the (k, n) traitor tracing problem in this paper, that
is, to identify the source of at least one traitor if there are at most k traitors
among n authorized users. a (k, n)-traceability scheme has four components:
key generation, an encryption algorithm, a decryption algorithm and a tracing
algorithm.

The (k, n) public key traitor tracing scheme proposed by Boneh and Franklin
[10] provided a deterministic FULL tracing approach, that is, it can catch ALL
traitors without accusing any innocent users as long as the number of traitors is
at or below a collusion bound k. The construction of the scheme combines the
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theory of error correcting codes to discrete logarithm representation problems.
Each private key is a different solution vector for a discrete logarithm problem
with respect to a fixed base of field elements. The fixed base is used to construct
the public encryption key. This was the first time that the idea of error-correcting
code was combined with traitor tracing. The resulting scheme is more efficient
than other available schemes in terms of algorithm complexity(the length of the
keys) and the tracing performance. Next, we will summarize the idea of the
so-called Boneh-Franklin scheme (BF scheme) discussed in [10].

First, let’s review some definitions and assumptions that are useful for BF
scheme and our own scheme.

Definition 1. (Representation[10]) If y =
∏2k

i=1 hδi
i , we say that δ =

(δ1, δ2, ..., δ2k) is a representation of y with respect to the base h1, h2, ..., h2k.

Definition 2. (Convex Combination) We say that a vector d is the convex com-
bination of vectors d1, d2, ...,dm if d =

∑m
i=1 αidi, where α1, ..., αm are scalars

such that
∑m

i=1 αi = 1.

According to [10], if d1, d2, ...,dm are representations of y with respect to
the same base and d is the convex combination of d1, d2, ...,dm, then d is also
a representation of y.

The BF scheme works in a multiplicative cyclic group Gq, where q is a prime.
The security of the scheme is based on the difficulty of the Decisional Diffie-
Hellman problem(DDH) over Gq.

Definition 3. (DDH[20]) Let g ∈ Gq be a generator. Consider triples of the
form R:

〈
ga, gb, gc

〉
and triples of the form D:

〈
ga, gb, gab

〉
, where a, b, c <

order(g). A predicate solves the DDH problem if it can distinguish the collec-
tion D from the collection R.

Loosely speaking, the DDH assumption states that no efficient algorithm
(polynomial time algorithm) can distinguish between the two distributions <
ga, gb, gab > and < ga, gb, gc >. The DDH assumption is useful for constructing
efficient cryptographic primitives with very strong security guarantees. These
include the Diffie-Hellman key agreement protocol, the El Gamal encryption
scheme and so on.

Next, let’s see the four components in the construction of BF (k, n)-
traceability scheme.

Let G be a (n − 2k) × n matrix as:

G =











1 1 1 ... 1
1 2 3 ... n

12 22 32 ... n2

. . . . .

. . . . .
1n−2k−1 2n−2k−1 3n−2k−1 ... nn−2k−1











(mod q) . (1)
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Since any vector in the span of the rows of A corresponds to a polynomial
of degree at most n − 2k − 1 evaluated at the points 1, 2, ..., n, G is actually the
generator matrix of a (n, 2k) Reed-Solomon Code. Let w1, ..., w2k be a basis of
the linear space of vectors satisfying Gx = 0 mod q and use these 2k vectors as
the columns of a matrix, an n × 2k matrix Γ is obtained as

Γ =
(
w1 w2 w3 ... w2k

)
(2)

View the line vectors of matrix Γ as a set of codewords, the matrix Γ provides
n codewords of length 2k. Based on this set of codeword, the (n, k)-traceability
schemes is designed as:

Key Generation : For i = 1, ..., 2k, the data supplier chooses a random
ai ∈ Zq and computes yi = gai , where g is a generator of Gq and

∑2k
j=1 ajγ

(i)
j �= 0.

Then the public key is published as < z, y1, ..., y2k >, where z =
∏2k

i=1 yβi

i

for random chosen β1, ..., β2k ∈ Zq. The personal decryption key of user i is
computed as

θi = (
2k∑

j=1

aiβj)/(
2k∑

j=1

ajγ
(i)
j ) (mod q),

where γ(i) = (γ(i)
1 , ..., γ

(i)
2k ) ∈ Γ is the i′th codeword of Γ .

Encryption : For a message M ∈ Gq, the information provider computes
the ciphertext as h = (M ∗ zr, yr

1, ..., y
r
2k), where r ∈ Zq is a random number.

Decryption : Each user i computes M from h as follows by using θi as:

M = M ∗ zr/Uθi , where U =
2k∏

j=1

(yr
j )γ

(i)
j .

Traitor Tracing : It is indicated in [10] that if d1, ...,dm ∈ Z2k
q are rep-

resentations of y, then the convex combinations are the only new representa-
tions of y that can be efficiently constructed from d1, ...,dm. Any representa-
tion (δ1, ..., δ2k) of y with respect to the base hi can be used as a decryption
key. This is because

∏2k
j=1(h

a
j )δj = ya. If the traitors form a new decryption key

d by making the convex combination of at most k decryption keys d1, ...,dm,
then those traitors who participated in forming d can be efficiently determined
by finding a vector w ∈ Fn

q of Hamming weight at most k such that w ∗ Γ = d.
Berlekamp’s algorithm is used in this procedure to find traitors.

The (k, n)-traceability scheme in [10] is based on the theory of Reed-Solomon
codes and the problem of discrete log representation. Traceability follows from
the hardness of discrete log. The private key in all cases is just a single element
of a finite field and can be as short as 160 bits. The complexity of encryption and
decryption is independent of the size of the coalition under the pirate’s control.
But the key will be long if the finite field is big.

Notice that for a Reed-Solomon code over the finite field GF (q), the code-
word length N has to be less than or equal to q, i.e., N ≤ q. Conversely,
for an algebraic-geometric code, the codeword length can be greater than q.
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This presents the possibility of using algebraic-geometric codes instead of Reed-
Solomon codes to further reduce the bits needed to represent the private keys
and consequently the complexity of the scheme.

4 Traitor Tracing Based on Algebraic-Geometric Codes
(AG Codes)

4.1 Background on Algebraic-Geometric Codes

We now give the definition of AG codes, also known as geometric Goppa codes
following the notation in [21].

Let X be an absolutely irreducible smooth projective algebraic curve of genus
g over the finite field GF (q). Consider an ordered set P = {P1, P2, ..., Pn} of
distinct rational points on X and a divisor D on X, rational over GF (q). For
simplicity, let us assume that the support of D is disjoint from P .

Definition 4. (Algebraic − Geometric Code) The linear space L(D) of rational
functions on X associated with D yields the linear evaluation map

L(D) → Fn
q

defined by
f → (f(P1), ..., f(Pn)).

The image of this map is a linear code CL(P, D), which we call an algebraic-
geometric code, or a geometric Goppa code.

Guruswami and Sudan give an efficient decoding algorithm of RS code and
AG code in [22]. For those who need more discussion about AG code, please
refer to [23],[24] and [25].

4.2 AG Codes Based Traitor Tracing Scheme

In this section, we will discuss how to use Algebraic-geometric codes to construct
the linear space tracing code Γ , which is used to create private keys for each
user.

Hermitian curve based construction. An AG code can be constructed from
affine plane curves [25]. Let H

.= {h1, h2, ..., hr, ..., hv} be a sequence of vectors
in Fn

q , where hr
.= (hr1, hr2, ..., hrn), and let S(r) be the linear space over Fq

spanned by the first r vectors of H. Let Ĥ
.= {ĥ1, ĥ2, ..., ĥµ, ..., ĥu} be a supple-

mentary sequence and S(r, u) be the linear space over Fq spanned by only the
first r vectors of H and all the vectors of Ĥ. In most cases, the supplementary
sequence Ĥ may be empty, that is, u = 0. Let

Hr
.=







h1
h2
...
hr





 =







h11 h12 ... h1n

h21 h22 ... h2n

... ... ... ...
hr1 hr2 ... hrn





 . (3)
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We define H∗
r

.=
[

Ĥ
Hr

]

to be a parity check matrix of a linear code over Fq,

denoted by Cr. For a special case of u = 0, H∗
r reduces to Hr. Next we will show

how to include the current AG codes to the above H sequence construction.
Let χ be an algebraic geometric curve with the genus g and let P1, P2, ..., Pn

and P∞ be the set of rational points over a finite field Fq. Let H
.= {f1, f2, ..., fn}

be a sequence of functions and Ĥ
.= φ, then the linear code Cr defined by H∗

r is an
(n, n−r) AG code CΩ(D, G), where D = P1+P2+...+Pn and G = (r+g−1)P∞.

Improved geometric Goppa codes can be constructed from algebraic-
geometric curves based on a well-behaving sequence H [23]. The key of the
construction lies in the definitions of weight w(x) and total order. Next, we will
show how to construct an improved geometric code from the Hermitian curves.

Let a location set LS be a set of all the rational points of the Hermitian
curve xq+1 + yq + y = 0 over GF (q2), there should have a total of q3 elements in
LS. Let w(x) = q and w(y) = q + 1, the total ordering of monomials xi1yi2 can
be determined. After deleting all the monomials linearly dependent on their pre-
vious monomials in H, a well-behaving sequence H(|H| = q3) will be obtained,
from which a (n, n − r, d∗) = (q3, q3 − r, d∗) AG code can be constructed. H∗

r

will be treated as the parity check matrix for (n, n − r, d∗) AG code, where r is
determined by the given designed minimum distance d∗ according to [23]. And
this (n − r) × n matrix will be utilized as the G matrix, which is further used to
create the linear space tracing code Γ in the traitor tracing scheme. Let us see
an example about the detailed construction of the H sequence.

Consider the Hermitian curve x5 + y4 + y = 0 over GF (42). Let w(x) = 4
and w(y) = 5, then we have

H ′ = {1, x, y, x2, xy, y2, x3, x2y, xy2, y3, x4, x3y,

x2y2, xy3, y4, x5, x4y, x3y2, x2y3, xy4, x6,

y5, x5y, x4y2, x3y3, x2y4, x7, xy5, x6y, y6, x5y2, ...}
After deleting all the monomials denoted by yi2xi1 , which are linearly dependent
on their previous monomials, a well-behaving sequence H is found to be:

H = {1, x, y, x2, xy, y2, x3, x2y, xy2, y3, x4, x3y, x2y2,

xy3, y4, x4y, x3y2, x2y3, xy4, y5, x4y2, x3y3,

x2y4, xy5, y6, x4y3, x3y4, x2y5, xy6, y7, x4y4,

x3y5, x2y6, xy7, y8, x4y5, x3y6, x2y7, xy8,

y9, x4y6, x3y7, x2y8, xy9, y10, x4y7, x3y8, x2y9,

xy10, y11, x4y8, x3y9, x2y10, xy11, y12, x4y9,

x3y10, x2y11, y13, x4y10, x3y11, y14, x4y11, y15}.

|H| = 64 = 43. The weight sequence of H is:
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W = {0, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,

33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,

45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,

57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 70, 71, 75}.

We can see that the weight sequence is not a continuous integer sequence, i.e.,
some gaps exist. For example, 1, 2, 3 between 0 and 4, 6, 7 between 5 and 8.
Such gaps provide the Hermitian curve with a genus, which is related to the
performance of the constructed AG code. That is, the smaller the genus is, the
greater the efficiency of the linear codes Cr.

Suppose we want to construct an improved geometric Goppa code with length
n = 64 and designed minimum distance d∗ = 6 over GF (42). Using the construc-
tion 2.1 from [23], we have r = 7 and thus H∗

7 = (1, x, y, x2, xy, y2, x3, y3, x4)T .
This (n−r)×n = 9×64 matrix is the parity check matrix for (64, 55, 6) AG code
and will be utilized as the G matrix in the public key traitor tracing scheme.

The tracing algorithm, that is, how to efficiently determine the unique set
of vectors in Γ used to construct the pirate key d can be implemented by the
decoding algorithm of AG code in [24].

5 Discussion and Comparison

Notice that for a Reed-Solomon code over the finite field GF (q), the codeword
length n has to be less than or equal to q, i.e., n ≤ q. Conversely, for an algebraic-
geometric code, the codeword length can be designed with any desired length
n, which can be greater than q. Because the codeword length determines the
total number of users in the system, algebraic-geometric code based scheme will
accommodate more users than Reed-Solomon code based scheme if both the
schemes are defined on the same finite field GF (q).

Now, let us see the complexity of the given pubic key traitor tracing scheme.
Suppose n is the total number of users in the system and k is the bound of the

number of traitors, that is, the maximum number of traitors in a confiscation. In
the presented scheme, the size of the ciphertext is 2k + 1 elements of the given
finite field GF (q) and the size of the user-key is O(1), that is, only one finite
field element. The encryption key size is 2k + 1 elements of the finite field. So
the number of bits used to represent the element in a finite field is one of the
key factors that will greatly affect the overload of the scheme.

If we use the parity check matrix of (n, 2k, d) Reed-Solomon code over GF (q3)
as the G matrix in the (n, k)-traceability scheme, then the codeword length n
is less than or equal to the order of the finite field, q3. That is, the maximum
number of users that the scheme can accommodate is n = q3 (this comes from the
construction of the linear space tracing code Γ ). In order to accommodate the
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same number of users in the system, we can instead use an algebraic-geometric
code which is defined on the Hermitian curve

xq+1 + yq + y = 0 over GF (q2).

Since the given Hermitian curve has a total of q3 roots pairs (xi, yi), i =
1, 2, ..., q3, the codeword length of the corresponding algebraic-geometric code
can be designed as q3 although the code is designed on finite field GF (q2). That
is, the algebraic-geometric code based tracing scheme can also accommodate q3

users. As we know that in order to represent each element of finite field GF (q3),
a total number of 3log(q) bits is needed. On the contrary, 2log(q) bits are enough
to represent each element of finite field GF (q2). That is, if we use AG code de-
fined on Hermitian curve xq+1 + yq + y = 0 over GF (q2) to construct the linear
space tracing code Γ , log(q) × (4k + 2) bits will saved compared to RS code
based tracing scheme in order to create the cipertext and the encryption key.
Also, n ∗ log(q) = q3 × log(q) number of bits will be saved for a total of q3 users
in the system. Consequently, the AG code based traitor tracing scheme greatly
eliminates the complexity overload compared to the RS code based scheme.

6 Conclusion and Future Work

In this paper, we use algebraic-geometric code to construct the linear space
tracing code Γ , which is the key step in public key traitor tracing scheme. The
obtained public key tracing scheme is deterministic and can trace all the partic-
ipated traitors. Compared to the Reed-Solomon code based public key traitor
tracing scheme, our scheme can accommodate more users and tolerate more col-
luders given a fixed length of private keys. Also, the complexity overload of the
AG code based scheme has been greatly eliminated compared to the RS code
based scheme, which makes the AG code based scheme more feasible in practice.

Although the scheme presented in this paper is an pubic key tracing scheme,
it is not an asymmetric scheme. That is, non-reputation is not provided in this
scheme. Also, what the information provider should do after figuring out the
traitors is not discussed in this paper. So how to make the scheme more robust
in the case of the disputation between the information provider and users and
how to combine the given traitor tracing scheme with revocation are our future
work.
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