Efficient Victim Mechanism on Sector Cache
Organization

Chunrong Lai ! and Shih-Lien Lu 2

!'Intel China Research Center, 8F, Raycom Infotech Park A, No.2 Kexueyuan South Road

ZhongGuanCun, Haidian District, Beijing China, 100080
chunrong.lai@intel.com

2 Microprocessor Research, Intel Labs
shih-lien.1l.lu@intel.com

Abstract. In this paper we present an victim cache design for caches organized
with line that contains multiple sectors (sector cache). Sector caches use less
memory bits to store tags than non-sectored caches. Victim cache has been pro-
posed to alleviate conflict misses in a lower associative cache design. This pa-
per examines how victim cache can be implemented in a sector cache and pro-
poses a further optimization of the victim buffer design in which only the tags
of the victim lines are remembered to re-use data in the sector cache. This de-
sign is more efficient because only an additional “OR” operation is needed in
the tag checking critical path. We use a full system simulator to generate traces
and a cache simulator to compare the miss ratios of different victim cache de-
signs in sector caches. Simulation results show that this proposed design has
comparable miss ratios with designs having much more complexity.

1 Introduction

In a cache an address tag (or tag) is used to identify the memory unit stored in the
cache. The size of this memory unit affects how well a cache functions. For a fixed
size cache larger unit size needs less memory bits to store tags and helps programs
that possess special locality. However, larger unit may cause fragmentation making
the cache less efficient when spatial locally is not there. Moreover, transferring each
unit from lower memory hierarchy takes higher bandwidth. Smaller unit size allows
more units to be included and may help programs that spread memory usage.

Sector cache[1][2] has been proposed as an alternative to strike a balance of cache
unit sizes. A sector cache’s memory unit is divided into sub-sections. Each unit needs
only one tag thus saves tag memory bits. These sub-sections of a sector cache need
not to be simultaneously brought in the cache allowing lower transferring bandwidth.
Another advantage of sector caches is observed for multiprocessors systems because
they reduce false sharing[3][4]. Sector cache’s advantage is evident in that many
microprocessors employ sector caches in their designs. For example, Intel’s Pen-

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 16-29, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Efficient Victim Mechanism on Sector Cache Organization 17

tium® 4![5], SUN’s SPARC™[6] and IBM’s POWERPC™ G4™][7]/G5™[8] all
employ sector cache in their cache organization.

This work intends to propose and evaluate further optimization techniques to im-
prove performance of a sector cache. One of those designs is the victim cache[9]. A
victim cache includes an additional victim buffer. When a line is replaced it is put
into this small buffer which is full associative instead of just being discarded. The
idea is to share the victim buffer entries among all sets since only a few of them are
hotly contended usually. First, we discuss how victim buffer/cache idea can be ap-
plied in a sector cache. We evaluate two implementations of victim cache. One is
called “line-victim” and the other is “sector-victim”. We further propose a third vic-
tim mechanism design named “victim sector tag buffer”(VST buffer) for further util-
ize the sector cache lines. This design tries to address a sector cache’s potential dis-
advantage of having larger unit size and could be under-utilized.

Since there are many different names[3][6][10][11][12][13][14][15] used to de-
scribe the units used in a sector cache, we first describe the terminology used in this
paper. In our terminology a cache consist of lines which have tags associated with
each of them. Each line consists of sub-units which are called sectors. This naming
convention is the same as described in the manuals of Pentium® 4[5] and
POWERPC™([7][8]. An example 4-way set-associative cache set is shown in figure 1.
A valid bit is added to every sector to identify a partial valid cache line. We also use
the terminology s-ratio which is defined as the ratio between the line size and the
sector size. A sector cache with s-ratio equals to p is called p-sectored cache as [1].
The example in figure 1 it is a 4-sectored cache.

Address tag Cache data Address tag Cache data

| A [V Sector O(to A+SL) | c [v Sector 0(to C+SL)
Line 1 \' Sector 1(to A+2*SL) Line 3 Vv Sector 1(to C+2*SL)
\' Sector 2(to A+3*SL) Vv Sector 2(to C+3*SL)
\ Sector 3(to A+4*SL) Vv Sector 3(to C+4*SL)

B [V Sector O(to B+SL) | D [V Sector O(to D+SL)
. \' Sector 1(to B+2*SL) . Vv Sector 1(to D+2*SL)
Line 2 \' Sector 2(to B+3*SL) Line 4 Vv Sector 2(to D+3*SL)
\ Sector 3(to B+4*SL) \ Sector 3(to D+4*SL)

Fig. 1. Principles of sectored cache

This paper is organized as follows. In this section we introduce the concept of sec-
tor cache and victim mechanism. In the next section we first review other related
works in this area. We then describe in more detail of our design. In section three we
present the simulation methodology. In section four and five we introduce our simula-
tion results on different cache levels. Finally we conclude with some observations.

' Pentium is a registered trademark of Intel Corp. or its subsidiaries in the United States and
other countries.

18 C.Laiand S.-L. Lu

2 Sector Cache with Victim Buffer

2.1 Related Work

Sector caches can be used to reduce bus traffic with only a small increase in miss
ratio[15]. Sector cache can benefit in two-level cache systems in which tags of the
second level cache are placed at the first level, thus permitting small tag storage to
control a large cache. Sector cache also is able to improve single level cache system
performance in some cases, particularly if the cache is small, the line size is small or
the miss penalty is small. The main drawback, cache space underutilization is also
shown in [13].

Rothman propose “sector pool” for cache space underutilization[13]. In the design,
each set of set-associative cache compose of totally s-ratio sector lists. Each list has a
fix number of sectors that the number is less than the associativity. S-ratio additional
pointer bits, associate with a line tag, point to the actual sector as the index of the
sector list. Thus a physical sector can be shared in different cache lines to make the
cache space more efficient. Unlike our victim mechanism who tries to reduce the
cache Miss ratio, this design more focus on cache space reduction. It depends on a
high degree set associative cache. The additional pointer bits and the sector lists will
make the control more complex. For example, the output of tag comparison need to
be used to get the respond pointer bit first then can get the result sector. This length-
ens the critical path. Another example is that different replacement algorithms for the
cache lines and sector list need to be employed at the same time.

Seznec propose “decoupled sectored cache”[1][11]. A [N,P] decoupled sectored
cache means that in this P-sectored cache there exists a number N such that for any
cache sector, the address tag associated with it is dynamically chosen among N possi-
ble address tags. Thus a log2N bits tag, known as the selection tag, is associated with
each cache sector in order to allow it to retrieve its address tag. This design increases
the cache performance by allow N memory lines share a cache line if they use differ-
ent sectors that some of the sectors have to be invalid at normal sector cache design.
Our concern about this design is that the additional tag storage, say N-1 address tags
and s-ratio * 1og2N selection tags for each line, need large amount of extra storage.
Seznec himself use large(32 or 64) s-raio, which will make the validity check and
coherence control very complex, to reduce tag storage before decoupling. We tried to
implement this idea and saw the line-fill-in and line-replacement policy is important
for the performance. If with a line-based-LRU-like fill-in/replacement policy pro-
posed by ourselves, since Seznec did not give enough details of his policies, the de-
coupled sector cache will not perform better than our VST design, if with similar
extra storage, given s-ratio range of 2~8. And, an additional compare need to be per-
formed to the retrieved selection tag to ensure the sector data is right corresponded to
the address tag which causes the tag matching. This also lengthens the tag checking
critical path.

Victim caching was proposed by Jouppi[9] as an approach to reduce the cache
Miss ratio in a low associative cache. This approach augments the main cache with a
small fully-associate victim cache that stores cache blocks evicted from the main

Efficient Victim Mechanism on Sector Cache Organization 19

cache as a result of replacements. Victim cache is effective. Depending on the pro-
gram, a four-entry victim cache might remove one quarter of the misses in a 4-KB
direct-mapped data cache. Recently [16] shows that victim cache is the most
power/energy efficient design among the general cache misses reduction mechanisms.
Thus it becomes a more attractive design because of the increasing demand of low
power micro-architecture.

2.2 Proposed Design

In order to make our description clearer, we define several terms here. We call a ref-
erence to a sector cache a block-miss if the reference finds no matching tag within the
selected set. We call a reference a data-miss if the tag matches but the referenced
word is in an invalid sector. Thus a miss can be either block-miss or data-miss. Simi-
lar to [1][11] describe, for a P-sectored cache we divide the address A of a memory
block in four sub-strings (A3, A2, Al, AO) defined as: A0 is a log2SL bit string
which SL is the sector length, Al is a log2P bit string show which sector this block is
in if it is in a cache line, A2 is a log2nS bit string which nS is the number of the cache
sets, A3 consists of the remaining highest significant bits. The main cache line need
store only the bits in A3. Figure 2 show tag checking of directed-mapped case. A2
identify the only position of the tag to be compared in the tag array. (A2, Al) identify
the only position the data sector can be. The data can be fetched without any depend-
ency on the tag comparison. The processor pipeline may even start consuming the
data speculatively without waiting for the tag comparison result, only roll back and
restart with the correct data in the case of cache miss which is rarely happened, as line
prediction.

| A3 A2 Al

Address Tags J

Array V bits
* Array Data Array
Data out

Fig. 2. Directed mapped sector cache tag checking

In the case of set-associative cache, (A2, Al) can only select the conceptual “sec-
tor set”, then waiting for the comparison result of the address tags to get a line ID to
deliver the correspond sector. Figure 3 is such an example of a 2-way associate sector

20 C.Laiand S.-L. Lu

cache. In a lower-associate cache the sector data and the valid bits being select can be
got independently with the tag comparison.

As | A2 A
~N

H |

s ' 1
tag| |VO [sectorO VN-1 |sectorN-1 VO [sector0 VN-1 [sectorN-1 tag
tag| |VO [sectorO VN-1 |sectorN-1 VO [sector0 VN-1 [sectorN-1 tag
tag| |VO |sector0 VN-1 [sectorN-1 VO |sector0 VN-1 |sectorN-1 tag
tag| |VO |sector0 VN-1 [sectorN-1 VO |sector0 VN-1 |sectorN-1 tag

1 g Vaid? § data § vaidry 3
-’I comparator I_pl And And |<—| comparator |<-

A3 A3

Hit? V¥ Data Out

Fig. 3. 2-way associate sector cache tag checking

In figure 3 a line ID is needed, in critical path, as selection signal of the MUX.
Line ID is founded after the tag comparison result. For a higher associate cache like a
CAM, where a simple MUX may not be used, the data and valid bits could be not
right at hand immediately. But Line ID retrieving still dominates in the critical path
there[17].

As mentioned by many researchers victim cache can reduce cache Miss ratio.
There are two straightforward victim designs for sector cache. One is line-victim
cache(LVC), the other is sector-victim cache(SVC). Figure4 show their tag checking.
Tag checking of the line victim cache is in the left and the other is in the right. The
most difference between them is the data unit associate with the victim tag. In line-
victim cache, the data unit is a cache line. And the data unit is a sector in the sector-
victim cache. Thus the lengths of the victim tags of LVC and SVC are different. For
same entries number LVC can be expected more cache misses saved due to more
storage there, where SVC can be expected a little faster tag checking and data retrieve.
Figure 4 do not connect the victim cache with main cache to avoid unnecessary com-
plexity and allow architects to decide if swap the victim data with the main cache data
when hit victim cache.

Both line-victim cache and sector-victim cache are paralleled accessed with the
main sector cache. A cache line is evicted to the line- victim cache in case of cache
replacement happens. As to the sector-victim cache, only the valid sectors in the
whole line are evicted to the sector-victim-cache. Also when a new line is brought
into cache, the sector-victim cache is checked to see if there are other sectors in the
same line. If so the victim sectors are also brought into the main cache line to main-
tain a unique position of a cache line.

Efficient Victim Mechanism on Sector Cache Organization 21

We know some of the requested data may still be in the data cache but it is just in-
accessible because it has been invalidated. This paper describes another approach,
called “VST buffer” to remember what is still in the data cache.

A3 A2 A [A | a2 | a
N\ AN 7
Line victim cache l Sector victim cache
A
tag |comparator VO|sectorO || VN-1|sectorN-1 tag |comparator | |V |One sector data
tag | comparator VO|[sectorO || VN-1|sectorN-1 tag |comparator | |V |One sector data
tag | comparator VO|sectorO | | VN-1|sectorN-1 tag |comparator | |V |One sector data
tag | comparator VO|sectorO | | VN-1|sectorN-1 tag |comparator | |V |One sector data
Valid?
Match? And al l
Data Out Valid?
; ata Du Match? .
Hit? ¢ \{ Hit? Data Qut

Fig. 4. Tag checking of line-victim cache and sector-victim cache

When a block miss happens and the set is full, a cache line must be replaced. Each
sector of the replaced line will be mark as invalid. A new sector will be brought into
the replaced line, and the cache tag will be updated. Thus some of the previously
replaced line’s sector data may still be in the data array since not all sector, of the
newly brought in cache line, is brought in. Only their valid bits are marked invalid.
VST buffer is used to keep track of these sectors whose data is still the data array.
Thus a VST entry consists of the victim tag, the victim valid bits and the “real loca-
tion” line ID in the cache set. For a directed mapped main cache the line ID field is
needless. The left side of figure 5 shows the VST buffer tag checking with a directed-
mapped main cache. As seen from the figure the VST buffer produce an additional
“VST hit” signal to be perform “or” operation with the main cache hit signal in the
critical path, without affecting the sector fetching and consuming. In either a VST hit
or a main cache hit the data can be processed continuously.

The right side of figure 5 shows the VST buffer tag checking of a set-associate
main cache. A VST hit not only leads to a hit result but also deliver a line ID to the
main cache selector to get the result data. This line ID signal is performed “or” opera-
tion with the main cache line ID signal to select final line. One extra cost here is when
a new sector is brought into the main cache, if a data miss happens, the VST needs to
be checked if the position contains a sector being victimized. If so the victim entry is
invalidated or thrashed. This does not increase cache-hit latency since it happens
when cache miss. Since there is already cache miss penalty the additional cost seems
to be acceptable.

When compare the cost of the three victim mechanism connected with a p-
Sectored Cache all compose of N entries. We see beside the similar comparators and
the control, the line- victim cache need N line tags, data of N * line size and N*P

22 C.Laiand S.-L. Lu

A3 A2 A I A3 | A2 A
N\ N
Directed-mapped Ij - v T *

- Line ID| tag |comparator | [VO | ... |VN-1
tag |comparator V_O """ VN1 Line ID| tag [comparator vo| .. [VN-1
tag [comparator Vol VN-1 —

............... Line ID tag comparator W ... |VN-1
tag [comparator VO ... VN-1 Line ID| tag [comparator [vo | ... [VNA
tag [comparator vol ... VN-1 I Match? | — |

atch? And
Match? Valid? - Valid?
For main VST Hit? Hit?
VST Hit? Hit? cache line N

Main cache hit? selection main cache hit?

Fig. 5. Tag checking of Victim Sector Tag Buffer (VST buffer) with sector cache

valid bits; the sector-victim cache need N sector tags (each of it is log2P bits longer
than a line tag), data of N * sector size and N valid bits; and the VST buffer need N
line tags, N * P valid bits and N * log2Assoc bits of line IDs which Assoc is the cache
associativity. So the line victim cache needs most resource among them as VST
buffer need least resource.

In MP system, where the sector cache is proved efficient, there need additional
cache coherence protocol, like MESI, to maintain the cache coherence. We think the
victim mechanism will make the MP sector cache coherence protocol more complex.
But we will not discuss the details here since it is beyond this paper’s scope.

3 Simulation Methodology

Several SpecCPU2K][18] benchmarks (compiled with compiler option “-~03 —Qipo”),
Java workload SpecJBB2K[19] with Java runtime environment JSEV1.4.1 which is
an integer benchmark, and two commercial-like floating-point benchmarks, one is a
speech recognition engine[20], the other is an echo cancellation algorithm[21] in
audio signal processing, are used in our study.

In order to consider all the effects, including system calls, we use a full system
simulator to generate memory reference traces. The simulator used is called
SoftSDV[22]. The host system runs Windows 2000 and the simulated system is Win-
dowsNT in batch mode using solid input captured in files. Then we run the traces
through a trace-driven cache simulator.

We generate both L1 memory reference traces and L2 memory reference traces.
After 20 billion instructions after system start up (the target application is configured
auto-run in the simulation) we collect 200 million memory references as our L1 traces.
We use 100 million references of them to warm up L1 cache and analysis the behav-
ior of the latter 100 million. The L1 sector cache we simulated is mainly configured
as below with small varieties: 16KBsize, 64B line size, 16B sector size, 4 way associ-

Efficient Victim Mechanism on Sector Cache Organization 23
ate, LRU replacement algorithm and write-back approach. For L2 cache behavior we
use a built-in first level cache together with trace generation. We warm up the built-in
cache with 1 billion instructions. Then we collect L2 traces consist of 200 million
read references. Also in our simulation we use 50 million L2 references to warm up
the L2 cache. The hierarchy consist L2 sector cache we simulated is mainly config-
ured as below with small varieties: L1: 16KBsize, 32B line size, 4-way associate,
LRU replacement algorithm and write-back approach. L2: 1MB size, 128 byte line
size, 32 byte sector size, 8-way associate, LRU replacement algorithm and write-back
approach.

4 Level 1 Sector-Cache Simulation Results and Discussion

We present the L1 simulation data as the Miss Ratio Improvement Percentage (MRIP)
of all benchmarks. The reason that we present L1 data first is that it is easier to corre-
late the observed L1 behavior back with the source code. Figure 6,7 are the MRIP
trends with various parameters as the variable. All the numbers are computed as the
geometric means of the different workload data also list in the paper. Figure 6 indi-
cates that with larger number of the victim mechanism entries the miss ratio im-
provement increases. Since VST requires no data array we can implement a much
larger victim buffer at the same cost of a smaller SVC/LVC and achieve the same (or
even better) performance improvement. For example 128 entries VST performs com-
parably with 64 entries SVC or 32 entries LVC. Figure 6 also explores the improve-
ment with several sector cache line sizes and sector sizes. We observed that VST
performs better with larger s-ratios. This is because of higher underutilization cache
space exist with higher s-ratio. On the other hand SVC and LVC performs better with
larger line and sector sizes. Figure 7 compares how the victim mechanisms affect
caches with different associativities or different cache sizes. It is not surprising to
learn that all three forms of victim mechanisms help the lower associative cache bet-
ter. This is because higher associativity already reduced much of the conflict misses
victim cache is targeting. It is also seen smaller L1 cache benefits more from the
victim mechanisms. As frequency of microprocessors continues to grow, smaller but
faster (lower associativity gives faster cache too) cache will be more prevalent.

25.00%

45.00%
40. 00%

——LVC —=SVC

VST |

20.00% - L¥C 35.00% =
e sWC / 30.00% —
5. 00% VST / i&gﬁ“ i
15. 00%
10. 00% / = 10. 0% ///(
" 5.00% F—F——

5. 00% e 0. 00% |

,’é:/ 328 | 64B | 64B | 1288 | 1288 | 128B | 256B | 2568 | 2568
0.00% : :

s B » o 198 168/ | 168/ | 328/ | 168/ | 328/ | 648/ | 328/ | 64B/ | 1288/

Fig. 6. MRIP with victim entries or line/sector sizes (higher is better)

24 C.Laiand S.-L. Lu

We observe that LVC gives the best Miss ratio improvement at the highest hard-
ware cost. While the SVC approach we used for this study needs the second highest
hardware cost, it is not better than VST approach. The VST approach is a reasonable
approach in terms of hardware design complexity and overhead.

40. 00% 20. 00%
35.006 —— || 18.00% = —
30,006 2 g Z 22: : t:t
- Ve es) 14. 00% Sy —
0. 00 TG || 12,00 AN wro —
20,008 ————< - 10, o0t
15.00% T 800 e
10. 00% * p—— 6.00%
. . , 4.00%
;82) - 2.00% —
0. 00% ‘ : ‘
DY 2way 4way Sway 16 Way 3 6 39 64 198 256

Fig. 7. MRIP with different associativities or L1 sizes
The cache miss ratios with different number of victim entries, correspond to the
left figure of figure 6, are listed in table 1. The data of other figures are listed in ap-

pendix. Table 1 also list corresponding block misses ratios for further investigation.

Table 1. Miss Ratios and Block Miss Ratios with numbers of victim entries

L1 victim Miss ratios Block Miss ratios

entries 8 16 32 64 | 128 |origin| 8 16 32 64 128 | origin
LVCS |LVC | 2.77 273|269 | 2.64| 257|292 122|120 (117 |1.14| 1.10 | 1.36
SVC| 279|276 273269264292 |125[1.23|1.20|1.18| 1.15 | 1.36
VST |2.81 (278|276 273271292 |125[1.23|1.20|1.18| 1.16 | 1.36
AMMP [LVC | 9.01 [8.94 | 8.81 | 8.58 | 8.25 | 9.08 | 3.88 | 3.85 | 3.77 | 3.63 | 3.42 | 3.91
SVC| 9.04 | 9.00 | 8.93 | 8.77 | 8.50 | 9.08 | 3.90 | 3.88 | 3.85 | 3.77 | 3.65 | 3.91
VST | 9.02 |1 8.96 | 8.86 | 8.71 | 8.56 | 9.08 | 3.87 | 3.83 | 3.76 | 3.67 | 3.57 | 3.91
MESA |LVC | 0.63 | 0.57 | 0.56 | 0.54 | 0.51 | 1.67 | 0.27 | 0.21 [0.20 | 0.19 | 0.18 | 0.95
SVC| 0.72 | 0.65 | 0.58 | 0.55 | 0.54 | 1.67 | 0.35 [0.29 | 0.23 | 0.20 | 0.20 | 0.95
VST |0.99[1.011.02 | 1.03]1.02|1.67[0.49]0.49 |0.49|0.48| 0.48 | 0.95
SAEC |LVC|3.29 | 3.26 [3.19 | 3.07 | 2.84 | 3.35| 0.93 | 0.92 | 0.90 | 0.86 | 0.80 | 0.95
SVC|3.34 3.32|3.29[325|3.18|3.35/0.94 | 0.94 | 0.93|0.92| 0.90 | 0.95
VST |[3.33]3.32 330327 325[3.35/094 /093092091 | 090 | 0.95
GZIP_|LVC [10.67/10.56/10.37|10.04| 9.45 |10.81| 7.44 | 7.33 | 7.13 | 6.76 | 6.13 | 7.58
SVC|[10.68|10.58/10.41[10.12| 9.63 [10.81| 747 | 7.39 | 7.23 | 6.97 | 655 | 7.58
VST [10.69(/10.65|10.45(10.13| 9.70 |10.81| 7.45 | 7.33 | 7.12 | 6.75 | 6.14 | 7.58
GCC |LvC|2.32 |2.27[2.09|1.76 | 0.88 | 2.35| 0.68 | 0.67 | 0.62 | 0.53 | 0.29 | 0.69
SVC|2.34 [2.33|2.31 | 2.23]2.02]|2.35|0.69|0.68|0.68 | 0.66| 0.60 | 0.69
VST | 2.30 | 224 [2.14 [2.07 |2.06 | 2.35| 0.67 | 0.66 | 0.62 | 0.60 | 0.59 | 0.69
SJBB |LVC|3.88 | 3.83 |3.76 | 3.67 | 3.51 |3.96 | 1.63 | 1.60|1.56 | 152 | 145 | 1.67
SVC|3.90 | 3.88|3.84 |3.773.69|396|165|1.63|1.61|1.57| 1.53 | 1.67
VST |3.91[3.88)|3.84[3.78|3.71|396|165]|1.62|1.59|1.55]| 1.50 | 1.67

As shown in table 1, the benchmark “mesa” got most of cache misses reduction
with victim mechanism regardless LVC/SVC, or VST we used. “ammp” got least
misses reduction with LVC and “saec” got least misses reduction with SVC and VST.

For the workload “mesa”, we observed the block Miss ratio reduce much more
significantly with victim mechanism compared to the cache Miss ratio. Thus with

Efficient Victim Mechanism on Sector Cache Organization 25

victim mechanism the workload basically keeps more cache lines to save cache
misses in this level. Other issues, like quantitative spatial localities that make SVC
performs differently, say reduces different percentage of miss ratio reduced by LVC
with same entries, play minor role in this level.

In some cases (GCC with 8 victim entries), the VST buffer approach performs bet-
ter than LVC even without any data array. After investigation we concluded that the
VST buffer approach sometimes uses the victim buffer more efficiently and can avoid
be thrashed. Victim cache contains data that may be used in future. But the data can
also be kicked out of the victim cache before it is needed. For example, streaming
accesses, if miss the main cache, will evict main cache lines to update the victim
cache. Thus the victim cache gets thrashed and may lost useful information. It plays
differently in VST approach. We see in non-sector cache, streaming accesses are
mapping in different sets of cache which make it difficult to be detected. In a sector
cache the next sector of a cache is inherently subsequence of the previous sector.
Figure 8 shows the VST states with one by one streaming accesses (or sequential)
going to the cache, only one VST entry is enough handling them since the entry can
be re-used(disabled) after a whole main cache line fill-in. Thus the whole buffer will
keep longer history. This is right the case VST performs better than LVC for GCC.

Ld A .
Ld A + sbsize Ld A + sbsize * 2

Ld A+ sbsize * 2 Fill new content on the entry
...... LinelD of A +

Suppose a 1:2 sector § [sbsize * 2

[VsTeny | T 7

Ld A + sbsize
Ld A :> Disable the entry
Create VST entry

: LinelD
LinelD : :
of A tag |Invalid|Valid of A

tag |Invalid|Valid

tag |Invalid|Invalid

Fig. 8. Avoid be thrashed by streaming access

5 Level 2 Sector-Cache Simulation Results and Discussion

We also explore the possibility of applying our proposed methods on level-two cache
design. This time only those references that missed the build-in level one cache are
collected in the trace file. Table 2 illustrates the tabulated result in terms of miss ratio
for various entries. Data with other parameters are also listed in appendix.

There are several observations made from the L2 data. First, LVC performs better
than SVC with same entries but worse than SVC with s-ratios, here 4 times, of entries,
same as be observed from L1 data. Second, in lower level set-associative cache, vic-
tim mechanism performs differently as L1. It does not save so many cache misses as

26 C.Laiand S.-L. Lu

Table 2. L2 Miss Ratio with Victim Mechanism

Entries 16 32 64 128 256 | Oriqin
Ammp |LVC 15.36] 15.06 14.52 13.71 12.85 15.62
SVC 1549 15.34 15.06 1458 13.89 15.62
VST 14820 1424 13.71 13.30 1291 15.62
LVCSRILVC| 36.57] 36.53 36.46 36.33 36.06 36.60
SVC 36.59] 36.57] 36.54] 36.49 36.38 36.60
VST| 36.57] 36.54 36.48 36.36 36.14 36.60
Mesa |LVC 9.64 9.64 9.63 9.63 9.63 9.64
SVC| 9.64 9.64 9.64 9.64 9.63 9.64
VST 9.64 9.64 9.64 9.64 9.64 9.64
Gce LVC 8.52 8.51 8.50 8.48 8.44 8.52
SVC 8.52 8.52 8.51 8.50 8.49 8.52
VST 8.51 8.51 8.49 8.47 8.45 8.52
Gzip |LVC 0.33 0.33 0.33 0.33 0.33 0.33
SVC| 0.33 0.33 0.33 0.33 0.33 0.33
VST 0.33 0.33 0.33 0.33 0.33 0.33
Mcf LVC| 50.47 50.43 50.36] 50.23 49.98 50.50
SVC 50.48) 50.47] 50.44] 50.38 50.26 50.50
VST| 50.47] 50.45 50.40 50.35 50.24] 50.50
SAEC |LVC 0.40 0.38 0.37 0.37 0.37 0.41
SVC| 0.41 0.40 0.39 0.38 0.37 0.41
VST 0.42 0.42 0.42 0.42 0.42 0.41

L1 cache. This is not surprising since a small L1 already catch a significant part of
data locality and L2 reference patterns tend to be more irregular. Third, the VST
buffer performs well among the three victim mechanisms in this memory hierarchy
level. It can outperform LVC and SVC for the benchmark “ammp”. Even it is more
difficult to correlate the L2 references back with the source or binary, than L1 refer-
ences. We still ascribe the better VST performance to its property of avoiding be
thrashed. As to the workloads, “ammp” and “SAEC” get most significant cache
misses reduction here. This behavior is opposite to the L1 behavior. Also the signifi-
cant block miss reduction can not be observed in this level as the data in appendix
shows. Thus we suggest that the extra storage of LVC and SVC benefit more from the
general data locality; and VST benefit more from the cache underutilization whether
the reference pattern is regular or not.

6 Conclusion

We have described three possible implementation of victim buffer design in a sector
cache. They have different complexity and hardware overhead. Several up-to-date
applications are used to evaluate their performance in terms of miss ratio. Overall
three mechanisms have comparable cache misses reduction. For a directed-mapped
Level 1 cache, the mechanisms can save significant amount of cache misses.

Among the three mechanisms LVC gives the best performance with highest over-
head. Whether SVC is performance/cost effective or not rely on the quantitative spa-
tial locality of the workload.

Efficient Victim Mechanism on Sector Cache Organization 27

We also investigate several benefits of VST in this paper. Include the low-cost de-
sign, keeping longer victim history and be more able to capture irregular reference
pattern in lower memory hierarchy.

Acknowledgement. We thank the AudioProcessing group and the OpenRuntimePlat-
form group of Intel China Research center for giving us their up-to-date workloads
and providing helpful discussions on porting workloads to our simulator. We also
thank Zhu Ning and Peter Liou for providing necessary computing infrastructure
support.

References

(1]
(2]
(3]

(4]

(5]

[6]

(71

(8]

[91

[10]

(11]
[12]
[13]
[14]

[15]

Andre. Seznec. "Decoupled sectored caches". IEEE Trans. on Computers, February,
1997

D.A.Patterson, J.L.Hennessy, "Computer architecture: A quantitative approach", Morgan
Kaufmann Publishers Inc., San Francisco,1996.

Kuang-Chih Liu, Chung-Ta King, "On the effectiveness of sectored caches in reducing
false sharing misses" International Conference on Parallel and Distributed Systems, 1997
Won-Kee Hong, Tack-Don Han, Shin-Dug Kim and Sung-Bong Yang, "An Effective
Full-Map Directory Scheme for the Sectored Caches", International Confer-
ence/Exhibition on High Performance Computing in Asia Pacific Region, 1997

Hinton, G; Sager, D.; Upton, M.; Boggs, D.; Carmean, D.; Kyker, A.; Roussel, P., "The
Microarchitecture of the Pentium® 4 processor", Intel Technology Journal, 1" quarter,
2001, http://developer.intel.com/technology/itj/q12001/articles/art 2.htm
"UltraSPARC™ [ii User’s Manual", Sun Microsystems, 1999

PowerPC™ | "MPC7400 RISC Microprocessor Technical Summary ", Mororola, Order
Number: MPC7400TS/D, Rev. 0, 8/1999

Victor Kartunov, "IBM PowerPC G5: Another World", X-bit Labs, Jan. 2004
http://www.xbitlabs.com/articles/cpu/display/powerpc-g5 6.html

N. Jouppi, "Improving direct-mapped cache performance by the addition of a small fully
associative cache and prefetch buffers", International Symposium on. Computer Archi-
tecture 1990

Jeffrey B. Rothman, Alan Jay Smith: "Sector Cache Design and Performance". Interna-
tional Symposium on Modeling, Analysis and Simulation of Computer and Telecommu-
nication Systems, 2000

Andre. Seznec. "Decoupled sectored caches: conciliating low tag implementation cost".
International Symposium on. Computer Architecture, 1994

J.S.Lipty. "Structural Aspects of the System/360 Model 85, Part II: The Cache. IBM
Systems Journal, Vol. 7, 1968

Jeffrey B. Rothman and Alan Jay Smith. "The Pool of SubSectors Cache Design".
International Conference on Supercomputing, 1999

Mark D. Hill and Alan Jay Smith. "Experimental Evaluation of On-Chip Microprocessor
Cache Memories". International Symposium on Computer Architecture, June 1984
James R. Goodman. "Using Cache Memory to Reduce Processor Memory Traffic".
International Symposium on. Computer Architecture 1983

28

[16]

(17]

(18]
(19]
[20]

[21]

[22]

C.Laiand S.-L. Lu

G. Albera and R. Bahar, " Power/performance Advantages of Victim Buffer in High-
Performance Processors”, IEEE Alessandro Volta Memorial Workshop on Low-Power
Design, 1999

Farhad Shafai, Kenneth J. Schultz, G..F. Randall Gibson, Armin G. Bluschke and David
E. Somppi, "Fully Parallel 30-MHz, 2.5-Mb CAM", IEEE journal of solid-state circuits,
Vol. 33, No. 11, November 1998

SPEC CPU2000, http://www.specbench.org/osg/cpu2000

SPEC JBB 2000, http://www.specbench.org/jbb2000

C.Lai, S. Lu and Q. Zhao, "Performance Analysis of Speech Recognition Software",
Workshop on Computer Architecture Evaluation using Commercial Workloads, Interna-
tional Symposium on High Performance Computer Architecture, 2002

J. Song, J. Li, and Y.-K. Chen, "Quality-Delay and Computation Trade-Off Analysis of
Acoustic Echo Cancellation On General-Purpose CPU," International Conference on
Acoustics, Speech, and Signal Processing, 2003.

R. Uhlig et. al., "SoftSDV: A Pre-silicon Software Development Environment for the
IA-64 Architecture”, Intel Technology Journal, 4" quarter, 1999.
http://developer.intel.com/technology/itj/q41999/articles/art 2.htm

Appendix: More Simulation Data

Sector/ (16B/ |16B/ [32B/ (16B/ [32B/ |64B/ (32B/ |64B/ |128B/

linesize 32B [64B |64B |128B [128B [I128B [256B [256B [256B
LVCSR LVC 252]2.64 [1.68 1270 |1.72 |1.17 [1.74 |1.18 |0.87
SVC 253 .69 [1.70 [2.83 |1.78 |1.19 [1.87 [1.24 |0.88
VST 259 .73 [1.79 290 [1.89 [1.38 [2.02 [I.51 |1.20
ORI 265 292 [1.92 323 .15 [1.55 [.86 [2.19 [1.69
AMMP [LVC 8.17 [8.58 532 19.00 |5.64 |[3.88 [5.74 [3.96 [3.04
SVC 823 [8.77 [537 936|576 3.90 [6.12 UK.12 [3.06
VST 827 [8.71 [5.46 [9.09 [5.72 14.02 |590 K4.16 [3.40
ORI [8.38 [9.08 [5.67 [9.86 [6.25 H4.37 [6.68 K.69 [3.66
IMESA [LVC 0.53 0.54 [0.31 (0.54 [0.31 .19 .31 .20 0.14
SVC 10.54 |0.55 [0.32 0.63 0.33 .20 .53 .25 [0.15
VST 1095 [1.03 10.75]1.08 [0.78 .69 .86 .75 |1.39
ORI 136 [1.67 [1.20 [2.72 198 [1.62 [2.72 [2.29 [1.93
SAEC |LVC .11 3.07 [1.60 295 |1.54 .83 145 .78 0.45
SVC 3.16 3.25 [1.66 [3.38 |1.73 .89 [1.83 .93 [0.49
VST 322 [3.27 |1.72 333 [1.75 .96]1.80 .99 10.58
ORI 325 335 [L.75 [3.50 |1.83 99 [1.98]1.08 0.62
GZIP _|LVC 9.09]10.0 [8.28 |10.7 9.00 [7.54 .36 [1.95 16.57
SVC _9.10 [10.1 829 [11.0 [9.16 [7.59 [10.0 [8.38 16.76
VST [9.18 [10.13 [8.46]10.86 [9.26 [8.02 .83 8.66 [7.97
ORI 9.54 [10.8 [9.09 [12.1]10.5 [9.09 [12.1 [10.8 [9.48
GCC |LVC |1.92]1.76 095 |1.46 0.79 .45 .46 .27 0.18
SVC [2.05 223 [1.09 [249 |1.19 .57 |1.36 .63 [0.31
VST [2.04 .07 |1.15]2.08 [1.16 .69 117 .69 0.45
ORI |2.14 235 [1.25 [2.64 |1.40 .77 [1.60 .88 [0.51
SIBB_[LVC 3.55 [3.67 231 372 234 |1.54 236 |1.55]1.08
SVC 359 3.77 234 397 245 [1.58 [2.70 [1.70 |1.11
VST 362 [3.78 [2.40 391 .50 [1.72 [2.47 [1.89 [1.41
ORI 3.70 396 [2.52 433 279 |1.89 [3.34 [2.83 |1.68

Efficient Victim Mechanism on Sector Cache Organization 29
L1 Data DM [Pway [4way [8Bway (16 DM(8 8KB 16KB [32KB |64KB [128KB [256KB
Wav Entries)
LVCSR [LVC| 2.71 | 2.68 | 2.64 | 2.61 2.60 3.35 2.77 2.64 2.50 2.35 2.18 1.92
SVC[2.75 | 2.71 | 2.69 | 2.64 2.63 3.70 2.90 2.69 2.52 2.36 2.18 1.93
IVST| 4.16 | 3.10 | 2.73 | 2.63 2.62 4.33 3.01 2.73 2.52 2.35 2.18 1.92
ORI [5.31 | 3.64 | 292 | 2.69 2.66 5.31 3.35 2.92 2.58 2.37 219 1.93
IAMMP |LVC| 9.11 | 8.76 | 8.58 | 8.51 8.49 9.76 947 | 858 | 792 | 764 | 744 | 6.20
SVC[9.35 | 9.01 | 8.77 | 8.65 8.65 9.89 9.80 8.77 8.00 7.66 7.45 6.22
IVST|[10.08| 8.95 | 8.71 | 8.61 8.59 10.44| 9.89 | 8.7 796 | 765 | 744 | 6.13
ORI [11.36] 9.38 | 9.08 | 8.94 8.94 11.36 | 10.27 | 9.08 8.10 7.68 7.45 6.23
IMESA |LVC| 0.56 | 0.54 | 0.54 | 0.54 0.55 4.10 0.63 0.54 0.41 0.30 0.16 0.10
SVC| 0.74 | 0.55 | 0.55 | 0.56 0.57 4.91 0.67 0.55 0.44 0.31 0.17 0.10
IVST| 4.08 | 1.56 | 1.03 | 0.60 | 0.58 4.94 1.48 1.03 0.45 0.35 0.18 0.10
ORI | 6.68 | 3.02 | 1.67 | 0.66 0.60 6.68 3.22 1.67 0.47 0.32 0.17 0.11
SAEC |LVC| 3.27 | 3.15 | 3.07 | 3.01 3.02 4.09 3.82 3.07 2.27 1.20 1.00 0.64
SVC| 3.76 | 3.37 | 3.25 | 3.23 3.23 4.26 4.19 3.25 2.39 1.31 1.01 0.65
IVST| 4.22 | 343 | 3.27 | 3.24 3.23 4.38 4.38 3.27 2.31 1.29 1.00 0.64
ORI[4.72 | 3.56 | 3.35 | 3.32 3.32 4.72 4.59 3.35 2.43 1.35 1.01 0.65
GZIP__ |LVC|10.30(10.13[10.04|10.00| 9.97 11.53 | 11.27 | 10.04 8.08 5.05 1.81 0.37
SVC[10.35] 10.21 [10.12|10.07| 10.04 11.50 | 11.35 | 10.12 8.19 5.19 1.91 0.38
I\VST|14.62] 10.30 [10.13|10.07| 10.03 15.51 | 11.58 | 10.13 8.13 5.05 1.83 0.38
ORI [16.32] 11.17 [10.81|10.68| 10.62 16.32 | 12.90 | 10.81 8.65 5.47 2.02 0.39
GCC |LVC| 155 | 1.69 | 1.76 | 1.82 1.82 1.98 3.82 1.76 0.32 0.21 0.17 0.15
SVC[1.88 | 2.17 | 2.23 | 2.24 219 2.00 4.46 2.23 0.37 0.22 0.17 0.15
IVST| 1.86 | 2.00 | 2.07 | 2.19 2.23 2.05 4.32 2.07 0.36 0.22 0.18 0.15
ORI[2.30 | 2.26 | 2.35 | 2.43 2.47 2.30 4.47 2.35 0.49 0.23 0.19 0.15
SJBB |LVC| 3.76 | 3.71 | 3.67 | 3.67 | 3.68 4.38 4.05 3.67 3.19 2.58 2.00 1.76
SVC| 4.07 | 3.89 | 3.77 | 3.75 3.75 4.56 4.42 3.77 3.26 2.63 2.03 1.76
IVST| 4.56 | 3.98 | 3.78 | 3.73 3.71 4.86 4.42 3.78 3.25 2.63 2.06 1.78
ORI[5.37 | 423 | 3.96 | 3.84 3.80 5.37 5.00 3.96 3.32 2.66 2.04 1.77
L2 Data 256KB[512KB{IMB 2MB 4MB [EMB DM Rway dway [8way |l6way
Ammp [LVC| 55.76 | 38.38 | 13.71 | 8.21 | 7.36 | 2.28 | 3549 | 3331 | 1993 | 13.71 | 12.59
SVC| 56.64 | 39.05 | 14.58 | 8.27 | 7.41 | 2.31 | 36.26 | 34.04 | 20.67 | 14.58 | 13.00
IVST| 54.37 [36.69 | 1330 | 8.24 | 7.39 | 2.27 | 36.13 | 33.16 | 18.76 | 13.30 | 12.59
ORI | 57.57 | 40.07 | 15.62 | 849 | 7.58 | 2.34 | 38.18 | 35.11 | 21.65 | 15.62 | 13.75
LVCS [LV(| 52.63 | 46.03 | 36.33 | 26.49 [20.72 | 14.66 | 40.69 | 37.79 | 36.65 | 36.33 | 36.08
SVC| 52.89 | 46.21 | 36.49 | 26.57 | 20.75 | 14.68 | 41.31 | 38.00 | 36.83 | 36.49 | 36.23
IVST| 52.81 [46.11 | 36.36 | 26.51 | 20.72 | 14.67 | 41.32 | 37.88 | 36.70 | 36.36 | 36.10
ORI | 53.28 | 46.40 | 36.60 | 26.63 | 20.76 | 14.69 | 42.29 | 38.19 | 36.96 | 36.60 | 36.35
SAEC [LV(C| 1486 | 0.54 | 0.37 | 0.36 | 0.34 | 032 | 7.16 0.52 0.38 0.37 0.36
SVC|[1563 | 0.82 | 0.38 [036 | 0.34 [032 | 764 | 0.64 | 045 | 038 | 0.36
IVST| 14.70 | 0.87 | 042 | 036 | 034 | 032 | 7.45 0.76 0.45 0.42 0.36
ORI| 1578 | 1.07 | 041 | 036 | 0.34 | 0.32 | 848 0.95 0.49 041 0.36

	1 Introduction
	2 Sector Cache with Victim Buffer
	2.1 Related Work
	2.2 Proposed Design

	3 Simulation Methodology
	4 Level 1 Sector-Cache Simulation Results and Discussion
	5 Level 2 Sector-Cache Simulation Results and Discussion
	6 Conclusion
	Appendix: More Simulation Data

