
P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 16–29, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Efficient Victim Mechanism on Sector Cache
Organization

Chunrong Lai 1 and Shih-Lien Lu 2

1 Intel China Research Center, 8F, Raycom Infotech Park A, No.2 Kexueyuan South Road
ZhongGuanCun, Haidian District, Beijing China, 100080

chunrong.lai@intel.com
2 Microprocessor Research, Intel Labs
shih-lien.l.lu@intel.com

Abstract. In this paper we present an victim cache design for caches organized
with line that contains multiple sectors (sector cache). Sector caches use less
memory bits to store tags than non-sectored caches. Victim cache has been pro-
posed to alleviate conflict misses in a lower associative cache design. This pa-
per examines how victim cache can be implemented in a sector cache and pro-
poses a further optimization of the victim buffer design in which only the tags
of the victim lines are remembered to re-use data in the sector cache. This de-
sign is more efficient because only an additional “OR” operation is needed in
the tag checking critical path. We use a full system simulator to generate traces
and a cache simulator to compare the miss ratios of different victim cache de-
signs in sector caches. Simulation results show that this proposed design has
comparable miss ratios with designs having much more complexity.

1 Introduction

In a cache an address tag (or tag) is used to identify the memory unit stored in the
cache. The size of this memory unit affects how well a cache functions. For a fixed
size cache larger unit size needs less memory bits to store tags and helps programs
that possess special locality. However, larger unit may cause fragmentation making
the cache less efficient when spatial locally is not there. Moreover, transferring each
unit from lower memory hierarchy takes higher bandwidth. Smaller unit size allows
more units to be included and may help programs that spread memory usage.

Sector cache[1][2] has been proposed as an alternative to strike a balance of cache
unit sizes. A sector cache’s memory unit is divided into sub-sections. Each unit needs
only one tag thus saves tag memory bits. These sub-sections of a sector cache need
not to be simultaneously brought in the cache allowing lower transferring bandwidth.
Another advantage of sector caches is observed for multiprocessors systems because
they reduce false sharing[3][4]. Sector cache’s advantage is evident in that many
microprocessors employ sector caches in their designs. For example, Intel’s Pen-

Efficient Victim Mechanism on Sector Cache Organization 17

tium® 41[5], SUN’s SPARC™[6] and IBM’s POWERPC™ G4™[7]/G5™[8] all
employ sector cache in their cache organization.

This work intends to propose and evaluate further optimization techniques to im-
prove performance of a sector cache. One of those designs is the victim cache[9]. A
victim cache includes an additional victim buffer. When a line is replaced it is put
into this small buffer which is full associative instead of just being discarded. The
idea is to share the victim buffer entries among all sets since only a few of them are
hotly contended usually. First, we discuss how victim buffer/cache idea can be ap-
plied in a sector cache. We evaluate two implementations of victim cache. One is
called “line-victim” and the other is “sector-victim”. We further propose a third vic-
tim mechanism design named “victim sector tag buffer”(VST buffer) for further util-
ize the sector cache lines. This design tries to address a sector cache’s potential dis-
advantage of having larger unit size and could be under-utilized.

Since there are many different names[3][6][10][11][12][13][14][15] used to de-
scribe the units used in a sector cache, we first describe the terminology used in this
paper. In our terminology a cache consist of lines which have tags associated with
each of them. Each line consists of sub-units which are called sectors. This naming
convention is the same as described in the manuals of Pentium® 4[5] and
POWERPC™[7][8]. An example 4-way set-associative cache set is shown in figure 1.
A valid bit is added to every sector to identify a partial valid cache line. We also use
the terminology s-ratio which is defined as the ratio between the line size and the
sector size. A sector cache with s-ratio equals to p is called p-sectored cache as [1].
The example in figure 1 it is a 4-sectored cache.

Fig. 1. Principles of sectored cache

This paper is organized as follows. In this section we introduce the concept of sec-
tor cache and victim mechanism. In the next section we first review other related
works in this area. We then describe in more detail of our design. In section three we
present the simulation methodology. In section four and five we introduce our simula-
tion results on different cache levels. Finally we conclude with some observations.

1 Pentium is a registered trademark of Intel Corp. or its subsidiaries in the United States and

other countries.

Address tag

A

Cache data

V Sector 0(to A+SL)
V Sector 1(to A+2*SL)
V Sector 2(to A+3*SL)

B V Sector 0(to B+SL)
V Sector 1(to B+2*SL)
V Sector 2(to B+3*SL)

Line 1

Line 2

V Sector 3(to A+4*SL)

Sector 3(to B+4*SL)V

Address tag

C

Cache data

V Sector 0(to C+SL)
V Sector 1(to C+2*SL)
V Sector 2(to C+3*SL)

D V Sector 0(to D+SL)
V Sector 1(to D+2*SL)
V Sector 2(to D+3*SL)

Line 3

Line 4

V Sector 3(to C+4*SL)

Sector 3(to D+4*SL) V

18 C. Lai and S.-L. Lu

2 Sector Cache with Victim Buffer

2.1 Related Work

Sector caches can be used to reduce bus traffic with only a small increase in miss
ratio[15]. Sector cache can benefit in two-level cache systems in which tags of the
second level cache are placed at the first level, thus permitting small tag storage to
control a large cache. Sector cache also is able to improve single level cache system
performance in some cases, particularly if the cache is small, the line size is small or
the miss penalty is small. The main drawback, cache space underutilization is also
shown in [13].

Rothman propose “sector pool” for cache space underutilization[13]. In the design,
each set of set-associative cache compose of totally s-ratio sector lists. Each list has a
fix number of sectors that the number is less than the associativity. S-ratio additional
pointer bits, associate with a line tag, point to the actual sector as the index of the
sector list. Thus a physical sector can be shared in different cache lines to make the
cache space more efficient. Unlike our victim mechanism who tries to reduce the
cache Miss ratio, this design more focus on cache space reduction. It depends on a
high degree set associative cache. The additional pointer bits and the sector lists will
make the control more complex. For example, the output of tag comparison need to
be used to get the respond pointer bit first then can get the result sector. This length-
ens the critical path. Another example is that different replacement algorithms for the
cache lines and sector list need to be employed at the same time.

Seznec propose “decoupled sectored cache”[1][11]. A [N,P] decoupled sectored
cache means that in this P-sectored cache there exists a number N such that for any
cache sector, the address tag associated with it is dynamically chosen among N possi-
ble address tags. Thus a log2N bits tag, known as the selection tag, is associated with
each cache sector in order to allow it to retrieve its address tag. This design increases
the cache performance by allow N memory lines share a cache line if they use differ-
ent sectors that some of the sectors have to be invalid at normal sector cache design.
Our concern about this design is that the additional tag storage, say N-1 address tags
and s-ratio * log2N selection tags for each line, need large amount of extra storage.
Seznec himself use large(32 or 64) s-raio, which will make the validity check and
coherence control very complex, to reduce tag storage before decoupling. We tried to
implement this idea and saw the line-fill-in and line-replacement policy is important
for the performance. If with a line-based-LRU-like fill-in/replacement policy pro-
posed by ourselves, since Seznec did not give enough details of his policies, the de-
coupled sector cache will not perform better than our VST design, if with similar
extra storage, given s-ratio range of 2~8. And, an additional compare need to be per-
formed to the retrieved selection tag to ensure the sector data is right corresponded to
the address tag which causes the tag matching. This also lengthens the tag checking
critical path.

Victim caching was proposed by Jouppi[9] as an approach to reduce the cache
Miss ratio in a low associative cache. This approach augments the main cache with a
small fully-associate victim cache that stores cache blocks evicted from the main

Efficient Victim Mechanism on Sector Cache Organization 19

cache as a result of replacements. Victim cache is effective. Depending on the pro-
gram, a four-entry victim cache might remove one quarter of the misses in a 4-KB
direct-mapped data cache. Recently [16] shows that victim cache is the most
power/energy efficient design among the general cache misses reduction mechanisms.
Thus it becomes a more attractive design because of the increasing demand of low
power micro-architecture.

2.2 Proposed Design

In order to make our description clearer, we define several terms here. We call a ref-
erence to a sector cache a block-miss if the reference finds no matching tag within the
selected set. We call a reference a data-miss if the tag matches but the referenced
word is in an invalid sector. Thus a miss can be either block-miss or data-miss. Simi-
lar to [1][11] describe, for a P-sectored cache we divide the address A of a memory
block in four sub-strings (A3, A2, A1, A0) defined as: A0 is a log2SL bit string
which SL is the sector length, A1 is a log2P bit string show which sector this block is
in if it is in a cache line, A2 is a log2nS bit string which nS is the number of the cache
sets, A3 consists of the remaining highest significant bits. The main cache line need
store only the bits in A3. Figure 2 show tag checking of directed-mapped case. A2
identify the only position of the tag to be compared in the tag array. (A2, A1) identify
the only position the data sector can be. The data can be fetched without any depend-
ency on the tag comparison. The processor pipeline may even start consuming the
data speculatively without waiting for the tag comparison result, only roll back and
restart with the correct data in the case of cache miss which is rarely happened, as line
prediction.

Fig. 2. Directed mapped sector cache tag checking

In the case of set-associative cache, (A2, A1) can only select the conceptual “sec-
tor set”, then waiting for the comparison result of the address tags to get a line ID to
deliver the correspond sector. Figure 3 is such an example of a 2-way associate sector

Data Array V bits
Array

A3 A2 A1

Address Tags
Array

Comparator

And

Hit? Data out

20 C. Lai and S.-L. Lu

cache. In a lower-associate cache the sector data and the valid bits being select can be
got independently with the tag comparison.

Fig. 3. 2-way associate sector cache tag checking

In figure 3 a line ID is needed, in critical path, as selection signal of the MUX.
Line ID is founded after the tag comparison result. For a higher associate cache like a
CAM, where a simple MUX may not be used, the data and valid bits could be not
right at hand immediately. But Line ID retrieving still dominates in the critical path
there[17].

As mentioned by many researchers victim cache can reduce cache Miss ratio.
There are two straightforward victim designs for sector cache. One is line-victim
cache(LVC), the other is sector-victim cache(SVC). Figure4 show their tag checking.
Tag checking of the line victim cache is in the left and the other is in the right. The
most difference between them is the data unit associate with the victim tag. In line-
victim cache, the data unit is a cache line. And the data unit is a sector in the sector-
victim cache. Thus the lengths of the victim tags of LVC and SVC are different. For
same entries number LVC can be expected more cache misses saved due to more
storage there, where SVC can be expected a little faster tag checking and data retrieve.
Figure 4 do not connect the victim cache with main cache to avoid unnecessary com-
plexity and allow architects to decide if swap the victim data with the main cache data
when hit victim cache.

Both line-victim cache and sector-victim cache are paralleled accessed with the
main sector cache. A cache line is evicted to the line- victim cache in case of cache
replacement happens. As to the sector-victim cache, only the valid sectors in the
whole line are evicted to the sector-victim-cache. Also when a new line is brought
into cache, the sector-victim cache is checked to see if there are other sectors in the
same line. If so the victim sectors are also brought into the main cache line to main-
tain a unique position of a cache line.

Efficient Victim Mechanism on Sector Cache Organization 21

We know some of the requested data may still be in the data cache but it is just in-
accessible because it has been invalidated. This paper describes another approach,
called “VST buffer” to remember what is still in the data cache.

Fig. 4. Tag checking of line-victim cache and sector-victim cache

When a block miss happens and the set is full, a cache line must be replaced. Each
sector of the replaced line will be mark as invalid. A new sector will be brought into
the replaced line, and the cache tag will be updated. Thus some of the previously
replaced line’s sector data may still be in the data array since not all sector, of the
newly brought in cache line, is brought in. Only their valid bits are marked invalid.
VST buffer is used to keep track of these sectors whose data is still the data array.
Thus a VST entry consists of the victim tag, the victim valid bits and the “real loca-
tion” line ID in the cache set. For a directed mapped main cache the line ID field is
needless. The left side of figure 5 shows the VST buffer tag checking with a directed-
mapped main cache. As seen from the figure the VST buffer produce an additional
“VST hit” signal to be perform “or” operation with the main cache hit signal in the
critical path, without affecting the sector fetching and consuming. In either a VST hit
or a main cache hit the data can be processed continuously.

The right side of figure 5 shows the VST buffer tag checking of a set-associate
main cache. A VST hit not only leads to a hit result but also deliver a line ID to the
main cache selector to get the result data. This line ID signal is performed “or” opera-
tion with the main cache line ID signal to select final line. One extra cost here is when
a new sector is brought into the main cache, if a data miss happens, the VST needs to
be checked if the position contains a sector being victimized. If so the victim entry is
invalidated or thrashed. This does not increase cache-hit latency since it happens
when cache miss. Since there is already cache miss penalty the additional cost seems
to be acceptable.

When compare the cost of the three victim mechanism connected with a p-
Sectored Cache all compose of N entries. We see beside the similar comparators and
the control, the line- victim cache need N line tags, data of N * line size and N*P

22 C. Lai and S.-L. Lu

Fig. 5. Tag checking of Victim Sector Tag Buffer (VST buffer) with sector cache

valid bits; the sector-victim cache need N sector tags (each of it is log2P bits longer
than a line tag), data of N * sector size and N valid bits; and the VST buffer need N
line tags, N * P valid bits and N * log2Assoc bits of line IDs which Assoc is the cache
associativity. So the line victim cache needs most resource among them as VST
buffer need least resource.

In MP system, where the sector cache is proved efficient, there need additional
cache coherence protocol, like MESI, to maintain the cache coherence. We think the
victim mechanism will make the MP sector cache coherence protocol more complex.
But we will not discuss the details here since it is beyond this paper’s scope.

3 Simulation Methodology

Several SpecCPU2K[18] benchmarks (compiled with compiler option “–O3 –Qipo”),
Java workload SpecJBB2K[19] with Java runtime environment JSEV1.4.1 which is
an integer benchmark, and two commercial-like floating-point benchmarks, one is a
speech recognition engine[20], the other is an echo cancellation algorithm[21] in
audio signal processing, are used in our study.

In order to consider all the effects, including system calls, we use a full system
simulator to generate memory reference traces. The simulator used is called
SoftSDV[22]. The host system runs Windows 2000 and the simulated system is Win-
dowsNT in batch mode using solid input captured in files. Then we run the traces
through a trace-driven cache simulator.

We generate both L1 memory reference traces and L2 memory reference traces.
After 20 billion instructions after system start up (the target application is configured
auto-run in the simulation) we collect 200 million memory references as our L1 traces.
We use 100 million references of them to warm up L1 cache and analysis the behav-
ior of the latter 100 million. The L1 sector cache we simulated is mainly configured
as below with small varieties: 16KBsize, 64B line size, 16B sector size, 4 way associ-

Efficient Victim Mechanism on Sector Cache Organization 23

ate, LRU replacement algorithm and write-back approach. For L2 cache behavior we
use a built-in first level cache together with trace generation. We warm up the built-in
cache with 1 billion instructions. Then we collect L2 traces consist of 200 million
read references. Also in our simulation we use 50 million L2 references to warm up
the L2 cache. The hierarchy consist L2 sector cache we simulated is mainly config-
ured as below with small varieties: L1: 16KBsize, 32B line size, 4-way associate,
LRU replacement algorithm and write-back approach. L2: 1MB size, 128 byte line
size, 32 byte sector size, 8-way associate, LRU replacement algorithm and write-back
approach.

4 Level 1 Sector-Cache Simulation Results and Discussion

We present the L1 simulation data as the Miss Ratio Improvement Percentage (MRIP)
of all benchmarks. The reason that we present L1 data first is that it is easier to corre-
late the observed L1 behavior back with the source code. Figure 6,7 are the MRIP
trends with various parameters as the variable. All the numbers are computed as the
geometric means of the different workload data also list in the paper. Figure 6 indi-
cates that with larger number of the victim mechanism entries the miss ratio im-
provement increases. Since VST requires no data array we can implement a much
larger victim buffer at the same cost of a smaller SVC/LVC and achieve the same (or
even better) performance improvement. For example 128 entries VST performs com-
parably with 64 entries SVC or 32 entries LVC. Figure 6 also explores the improve-
ment with several sector cache line sizes and sector sizes. We observed that VST
performs better with larger s-ratios. This is because of higher underutilization cache
space exist with higher s-ratio. On the other hand SVC and LVC performs better with
larger line and sector sizes. Figure 7 compares how the victim mechanisms affect
caches with different associativities or different cache sizes. It is not surprising to
learn that all three forms of victim mechanisms help the lower associative cache bet-
ter. This is because higher associativity already reduced much of the conflict misses
victim cache is targeting. It is also seen smaller L1 cache benefits more from the
victim mechanisms. As frequency of microprocessors continues to grow, smaller but
faster (lower associativity gives faster cache too) cache will be more prevalent.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

8 16 32 64 128

LVC

SVC

VST

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

32B 64B 64B 128B 128B 128B 256B 256B 256B

16B/ 16B/ 32B/ 16B/ 32B/ 64B/ 32B/ 64B/ 128B/

LVC SVC VST

Fig. 6. MRIP with victim entries or line/sector sizes (higher is better)

24 C. Lai and S.-L. Lu

We observe that LVC gives the best Miss ratio improvement at the highest hard-
ware cost. While the SVC approach we used for this study needs the second highest
hardware cost, it is not better than VST approach. The VST approach is a reasonable
approach in terms of hardware design complexity and overhead.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

DM 2way 4way 8way 16 Way

LVC
SVC
VST
LVC(8 entries)
SVC(8 entries)
VST(8 entries)

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

20.00%

8 16 32 64 128 256

LVC

SVC

VST

Fig. 7. MRIP with different associativities or L1 sizes

The cache miss ratios with different number of victim entries, correspond to the
left figure of figure 6, are listed in table 1. The data of other figures are listed in ap-
pendix. Table 1 also list corresponding block misses ratios for further investigation.

Table 1. Miss Ratios and Block Miss Ratios with numbers of victim entries

MMiissss rraattiiooss BBlloocckk MMiissss rraattiiooss LL11 vviiccttiimm
eennttrriieess 88 1166 3322 6644 112288 oorriiggiinn 88 1166 3322 6644 112288 oorriiggiinn
LLVVCCSS LLVVCC 22..7777 22..7733 22..6699 22..6644 22..5577 22..9922 11..2222 11..2200 11..1177 11..1144 11..1100 11..3366

 SSVVCC 22..7799 22..7766 22..7733 22..6699 22..6644 22..9922 11..2255 11..2233 11..2200 11..1188 11..1155 11..3366
 VVSSTT 22..8811 22..7788 22..7766 22..7733 22..7711 22..9922 11..2255 11..2233 11..2200 11..1188 11..1166 11..3366

AAMMMMPP LLVVCC 99..0011 88..9944 88..8811 88..5588 88..2255 99..0088 33..8888 33..8855 33..7777 33..6633 33..4422 33..9911
 SSVVCC 99..0044 99..0000 88..9933 88..7777 88..5500 99..0088 33..9900 33..8888 33..8855 33..7777 33..6655 33..9911
 VVSSTT 99..0022 88..9966 88..8866 88..7711 88..5566 99..0088 33..8877 33..8833 33..7766 33..6677 33..5577 33..9911

MMEESSAA LLVVCC 00..6633 00..5577 00..5566 00..5544 00..5511 11..6677 00..2277 00..2211 00..2200 00..1199 00..1188 00..9955
 SSVVCC 00..7722 00..6655 00..5588 00..5555 00..5544 11..6677 00..3355 00..2299 00..2233 00..2200 00..2200 00..9955
 VVSSTT 00..9999 11..0011 11..0022 11..0033 11..0022 11..6677 00..4499 00..4499 00..4499 00..4488 00..4488 00..9955

SSAAEECC LLVVCC 33..2299 33..2266 33..1199 33..0077 22..8844 33..3355 00..9933 00..9922 00..9900 00..8866 00..8800 00..9955
 SSVVCC 33..3344 33..3322 33..2299 33..2255 33..1188 33..3355 00..9944 00..9944 00..9933 00..9922 00..9900 00..9955
 VVSSTT 33..3333 33..3322 33..3300 33..2277 33..2255 33..3355 00..9944 00..9933 00..9922 00..9911 00..9900 00..9955

GGZZIIPP LLVVCC 1100..6677 1100..5566 1100..3377 1100..0044 99..4455 1100..8811 77..4444 77..3333 77..1133 66..7766 66..1133 77..5588
 SSVVCC 1100..6688 1100..5588 1100..4411 1100..1122 99..6633 1100..8811 77..4477 77..3399 77..2233 66..9977 66..5555 77..5588
 VVSSTT 1100..6699 1100..6655 1100..4455 1100..1133 99..7700 1100..8811 77..4455 77..3333 77..1122 66..7755 66..1144 77..5588

GGCCCC LLVVCC 22..3322 22..2277 22..0099 11..7766 00..8888 22..3355 00..6688 00..6677 00..6622 00..5533 00..2299 00..6699
 SSVVCC 22..3344 22..3333 22..3311 22..2233 22..0022 22..3355 00..6699 00..6688 00..6688 00..6666 00..6600 00..6699
 VVSSTT 22..3300 22..2244 22..1144 22..0077 22..0066 22..3355 00..6677 00..6666 00..6622 00..6600 00..5599 00..6699

SSJJBBBB LLVVCC 33..8888 33..8833 33..7766 33..6677 33..5511 33..9966 11..6633 11..6600 11..5566 11..5522 11..4455 11..6677
 SSVVCC 33..9900 33..8888 33..8844 33..7777 33..6699 33..9966 11..6655 11..6633 11..6611 11..5577 11..5533 11..6677
 VVSSTT 33..9911 33..8888 33..8844 33..7788 33..7711 33..9966 11..6655 11..6622 11..5599 11..5555 11..5500 11..6677

As shown in table 1, the benchmark “mesa” got most of cache misses reduction

with victim mechanism regardless LVC/SVC, or VST we used. “ammp” got least
misses reduction with LVC and “saec” got least misses reduction with SVC and VST.

For the workload “mesa”, we observed the block Miss ratio reduce much more
significantly with victim mechanism compared to the cache Miss ratio. Thus with

Efficient Victim Mechanism on Sector Cache Organization 25

victim mechanism the workload basically keeps more cache lines to save cache
misses in this level. Other issues, like quantitative spatial localities that make SVC
performs differently, say reduces different percentage of miss ratio reduced by LVC
with same entries, play minor role in this level.

In some cases (GCC with 8 victim entries), the VST buffer approach performs bet-
ter than LVC even without any data array. After investigation we concluded that the
VST buffer approach sometimes uses the victim buffer more efficiently and can avoid
be thrashed. Victim cache contains data that may be used in future. But the data can
also be kicked out of the victim cache before it is needed. For example, streaming
accesses, if miss the main cache, will evict main cache lines to update the victim
cache. Thus the victim cache gets thrashed and may lost useful information. It plays
differently in VST approach. We see in non-sector cache, streaming accesses are
mapping in different sets of cache which make it difficult to be detected. In a sector
cache the next sector of a cache is inherently subsequence of the previous sector.
Figure 8 shows the VST states with one by one streaming accesses (or sequential)
going to the cache, only one VST entry is enough handling them since the entry can
be re-used(disabled) after a whole main cache line fill-in. Thus the whole buffer will
keep longer history. This is right the case VST performs better than LVC for GCC.

Fig. 8. Avoid be thrashed by streaming access

5 Level 2 Sector-Cache Simulation Results and Discussion

We also explore the possibility of applying our proposed methods on level-two cache
design. This time only those references that missed the build-in level one cache are
collected in the trace file. Table 2 illustrates the tabulated result in terms of miss ratio
for various entries. Data with other parameters are also listed in appendix.

There are several observations made from the L2 data. First, LVC performs better
than SVC with same entries but worse than SVC with s-ratios, here 4 times, of entries,
same as be observed from L1 data. Second, in lower level set-associative cache, vic-
tim mechanism performs differently as L1. It does not save so many cache misses as

VST entry

LineID
of A

tag Invalid

Ld A
Ld A + sbsize
Ld A + sbsize * 2
……

Ld A

Ld A + sbsize * 2

Suppose a 1:2 sector $

Create VST entry

Fill new content on the entry

Disable the entry
Ld A + sbsize

Valid
LineID
of A

tag Invalid Invalid

LineID of A +
sbsize * 2

tag Invalid Valid

26 C. Lai and S.-L. Lu

Table 2. L2 Miss Ratio with Victim Mechanism

EEnnttrriieess 1166 3322 6644 112288 225566 OOrriiggiinn
AAmmmmpp LLVVCC 1155..3366 1155..0066 1144..5522 1133..7711 1122..8855 1155..6622

SSVVCC 1155..4499 1155..3344 1155..0066 1144..5588 1133..8899 1155..6622
VVSSTT 1144..8822 1144..2244 1133..7711 1133..3300 1122..9911 1155..6622

LLVVCCSSRR LLVVCC 3366..5577 3366..5533 3366..4466 3366..3333 3366..0066 3366..6600
SSVVCC 3366..5599 3366..5577 3366..5544 3366..4499 3366..3388 3366..6600
VVSSTT 3366..5577 3366..5544 3366..4488 3366..3366 3366..1144 3366..6600

MMeessaa LLVVCC 99..6644 99..6644 99..6633 99..6633 99..6633 99..6644
SSVVCC 99..6644 99..6644 99..6644 99..6644 99..6633 99..6644
VVSSTT 99..6644 99..6644 99..6644 99..6644 99..6644 99..6644

GGcccc LLVVCC 88..5522 88..5511 88..5500 88..4488 88..4444 88..5522
SSVVCC 88..5522 88..5522 88..5511 88..5500 88..4499 88..5522
VVSSTT 88..5511 88..5511 88..4499 88..4477 88..4455 88..5522

GGzziipp LLVVCC 00..3333 00..3333 00..3333 00..3333 00..3333 00..3333
SSVVCC 00..3333 00..3333 00..3333 00..3333 00..3333 00..3333
VVSSTT 00..3333 00..3333 00..3333 00..3333 00..3333 00..3333

MMccff LLVVCC 5500..4477 5500..4433 5500..3366 5500..2233 4499..9988 5500..5500
SSVVCC 5500..4488 5500..4477 5500..4444 5500..3388 5500..2266 5500..5500
VVSSTT 5500..4477 5500..4455 5500..4400 5500..3355 5500..2244 5500..5500

SSAAEECC LLVVCC 00..4400 00..3388 00..3377 00..3377 00..3377 00..4411
SSVVCC 00..4411 00..4400 00..3399 00..3388 00..3377 00..4411
VVSSTT 00..4422 00..4422 00..4422 00..4422 00..4422 00..4411

L1 cache. This is not surprising since a small L1 already catch a significant part of
data locality and L2 reference patterns tend to be more irregular. Third, the VST
buffer performs well among the three victim mechanisms in this memory hierarchy
level. It can outperform LVC and SVC for the benchmark “ammp”. Even it is more
difficult to correlate the L2 references back with the source or binary, than L1 refer-
ences. We still ascribe the better VST performance to its property of avoiding be
thrashed. As to the workloads, “ammp” and “SAEC” get most significant cache
misses reduction here. This behavior is opposite to the L1 behavior. Also the signifi-
cant block miss reduction can not be observed in this level as the data in appendix
shows. Thus we suggest that the extra storage of LVC and SVC benefit more from the
general data locality; and VST benefit more from the cache underutilization whether
the reference pattern is regular or not.

6 Conclusion

We have described three possible implementation of victim buffer design in a sector
cache. They have different complexity and hardware overhead. Several up-to-date
applications are used to evaluate their performance in terms of miss ratio. Overall
three mechanisms have comparable cache misses reduction. For a directed-mapped
Level 1 cache, the mechanisms can save significant amount of cache misses.

Among the three mechanisms LVC gives the best performance with highest over-
head. Whether SVC is performance/cost effective or not rely on the quantitative spa-
tial locality of the workload.

Efficient Victim Mechanism on Sector Cache Organization 27

We also investigate several benefits of VST in this paper. Include the low-cost de-
sign, keeping longer victim history and be more able to capture irregular reference
pattern in lower memory hierarchy.

Acknowledgement. We thank the AudioProcessing group and the OpenRuntimePlat-
form group of Intel China Research center for giving us their up-to-date workloads
and providing helpful discussions on porting workloads to our simulator. We also
thank Zhu Ning and Peter Liou for providing necessary computing infrastructure
support.

References

[1] Andre. Seznec. "Decoupled sectored caches". IEEE Trans. on Computers, February,
1997

[2] D.A.Patterson, J.L.Hennessy, "Computer architecture: A quantitative approach", Morgan
Kaufmann Publishers Inc., San Francisco,1996.

[3] Kuang-Chih Liu, Chung-Ta King, "On the effectiveness of sectored caches in reducing
false sharing misses" International Conference on Parallel and Distributed Systems, 1997

[4] Won-Kee Hong, Tack-Don Han, Shin-Dug Kim and Sung-Bong Yang, "An Effective
Full-Map Directory Scheme for the Sectored Caches", International Confer-
ence/Exhibition on High Performance Computing in Asia Pacific Region, 1997

[5] Hinton, G; Sager, D.; Upton, M.; Boggs, D.; Carmean, D.; Kyker, A.; Roussel, P., "The
Microarchitecture of the Pentium® 4 processor", Intel Technology Journal, 1st quarter,
2001, http://developer.intel.com/technology/itj/q12001/articles/art_2.htm

[6] "UltraSPARC™ Iii User’s Manual", Sun Microsystems, 1999
[7] PowerPC™ , "MPC7400 RISC Microprocessor Technical Summary ", Mororola, Order

Number: MPC7400TS/D, Rev. 0, 8/1999
[8] Victor Kartunov, "IBM PowerPC G5: Another World", X-bit Labs, Jan. 2004

http://www.xbitlabs.com/articles/cpu/display/powerpc-g5_6.html
[9] N. Jouppi, "Improving direct-mapped cache performance by the addition of a small fully

associative cache and prefetch buffers", International Symposium on. Computer Archi-
tecture 1990

[10] Jeffrey B. Rothman, Alan Jay Smith: "Sector Cache Design and Performance". Interna-
tional Symposium on Modeling, Analysis and Simulation of Computer and Telecommu-
nication Systems, 2000

[11] Andre. Seznec. "Decoupled sectored caches: conciliating low tag implementation cost".
International Symposium on. Computer Architecture, 1994

[12] J.S.Lipty. "Structural Aspects of the System/360 Model 85, Part II: The Cache. IBM
Systems Journal, Vol. 7, 1968

[13] Jeffrey B. Rothman and Alan Jay Smith. "The Pool of SubSectors Cache Design".
International Conference on Supercomputing, 1999

[14] Mark D. Hill and Alan Jay Smith. "Experimental Evaluation of On-Chip Microprocessor
Cache Memories". International Symposium on Computer Architecture, June 1984

[15] James R. Goodman. "Using Cache Memory to Reduce Processor Memory Traffic".
International Symposium on. Computer Architecture 1983

28 C. Lai and S.-L. Lu

[16] G. Albera and R. Bahar, " Power/performance Advantages of Victim Buffer in High-
Performance Processors", IEEE Alessandro Volta Memorial Workshop on Low-Power
Design,1999

[17] Farhad Shafai, Kenneth J. Schultz, G..F. Randall Gibson, Armin G. Bluschke and David
E. Somppi, "Fully Parallel 30-MHz, 2.5-Mb CAM", IEEE journal of solid-state circuits,
Vol. 33, No. 11, November 1998

[18] SPEC CPU2000, http://www.specbench.org/osg/cpu2000
[19] SPEC JBB 2000, http://www.specbench.org/jbb2000
[20] C.Lai, S. Lu and Q. Zhao, "Performance Analysis of Speech Recognition Software",

Workshop on Computer Architecture Evaluation using Commercial Workloads, Interna-
tional Symposium on High Performance Computer Architecture, 2002

[21] J. Song, J. Li, and Y.-K. Chen, "Quality-Delay and Computation Trade-Off Analysis of
Acoustic Echo Cancellation On General-Purpose CPU," International Conference on
Acoustics, Speech, and Signal Processing, 2003.

[22] R. Uhlig et. al., "SoftSDV: A Pre-silicon Software Development Environment for the
IA-64 Architecture", Intel Technology Journal, 4th quarter, 1999.
http://developer.intel.com/technology/itj/q41999/articles/art_2.htm

Appendix: More Simulation Data

SSeeccttoorr//
lliinnee ssiizzee

1166BB//
3322BB

1166BB//
6644BB

3322BB//
6644BB

1166BB//
112288BB

3322BB//
112288BB

6644BB//
112288BB

3322BB//
225566BB

6644BB//
225566BB

112288BB//
225566BB

LLVVCCSSRR LLVVCC 22..5522 22..6644 11..6688 22..7700 11..7722 11..1177 11..7744 11..1188 00..8877
 SSVVCC 22..5533 22..6699 11..7700 22..8833 11..7788 11..1199 11..8877 11..2244 00..8888
 VVSSTT 22..5599 22..7733 11..7799 22..9900 11..8899 11..3388 22..0022 11..5511 11..2200
 OORRII 22..6655 22..9922 11..9922 33..2233 22..1155 11..5555 22..8866 22..1199 11..6699

AAMMMMPP LLVVCC 88..1177 88..5588 55..3322 99..0000 55..6644 33..8888 55..7744 33..9966 33..0044
 SSVVCC 88..2233 88..7777 55..3377 99..3366 55..7766 33..9900 66..1122 44..1122 33..0066
 VVSSTT 88..2277 88..7711 55..4466 99..0099 55..7722 44..0022 55..9900 44..1166 33..4400
 OORRII 88..3388 99..0088 55..6677 99..8866 66..2255 44..3377 66..6688 44..6699 33..6666

MMEESSAA LLVVCC 00..5533 00..5544 00..3311 00..5544 00..3311 00..1199 00..3311 00..2200 00..1144
 SSVVCC 00..5544 00..5555 00..3322 00..6633 00..3333 00..2200 00..5533 00..2255 00..1155
 VVSSTT 00..9955 11..0033 00..7755 11..0088 00..7788 00..6699 00..8866 00..7755 11..3399
 OORRII 11..3366 11..6677 11..2200 22..7722 11..9988 11..6622 22..7722 22..2299 11..9933

SSAAEECC LLVVCC 33..1111 33..0077 11..6600 22..9955 11..5544 00..8833 11..4455 00..7788 00..4455
 SSVVCC 33..1166 33..2255 11..6666 33..3388 11..7733 00..8899 11..8833 00..9933 00..4499

 VVSSTT 33..2222 33..2277 11..7722 33..3333 11..7755 00..9966 11..8800 00..9999 00..5588
 OORRII 33..2255 33..3355 11..7755 33..5500 11..8833 00..9999 11..9988 11..0088 00..6622

GGZZIIPP LLVVCC 99..0099 1100..00 88..2288 1100..77 99..0000 77..5544 99..3366 77..9955 66..5577
 SSVVCC 99..1100 1100..11 88..2299 1111..00 99..1166 77..5599 1100..00 88..3388 66..7766

 VVSSTT 99..1188 1100..1133 88..4466 1100..8866 99..2266 88..0022 99..8833 88..6666 77..9977
 OORRII 99..5544 1100..88 99..0099 1122..11 1100..55 99..0099 1122..11 1100..88 99..4488

GGCCCC LLVVCC 11..9922 11..7766 00..9955 11..4466 00..7799 00..4455 00..4466 00..2277 00..1188
 SSVVCC 22..0055 22..2233 11..0099 22..4499 11..1199 00..5577 11..3366 00..6633 00..3311
 VVSSTT 22..0044 22..0077 11..1155 22..0088 11..1166 00..6699 11..1177 00..6699 00..4455
 OORRII 22..1144 22..3355 11..2255 22..6644 11..4400 00..7777 11..6600 00..8888 00..5511

SSJJBBBB LLVVCC 33..5555 33..6677 22..3311 33..7722 22..3344 11..5544 22..3366 11..5555 11..0088
 SSVVCC 33..5599 33..7777 22..3344 33..9977 22..4455 11..5588 22..7700 11..7700 11..1111
 VVSSTT 33..6622 33..7788 22..4400 33..9911 22..5500 11..7722 22..4477 11..8899 11..4411
 OORRII 33..7700 33..9966 22..5522 44..3333 22..7799 11..8899 33..3344 22..8833 11..6688

Efficient Victim Mechanism on Sector Cache Organization 29

LL11 DDaattaa DDMM 22wwaayy 44wwaayy 88wwaayy 1166
WWaayy

DDMM((88
EEnnttrriieess))

88KKBB 1166KKBB 3322KKBB 6644KKBB 112288KKBB 225566KKBB

LLVVCCSSRR LLVVCC 22..7711 22..6688 22..6644 22..6611 22..6600 33..3355 22..7777 22..6644 22..5500 22..3355 22..1188 11..9922

 SSVVCC 22..7755 22..7711 22..6699 22..6644 22..6633 33..7700 22..9900 22..6699 22..5522 22..3366 22..1188 11..9933

 VVSSTT 44..1166 33..1100 22..7733 22..6633 22..6622 44..3333 33..0011 22..7733 22..5522 22..3355 22..1188 11..9922

 OORRII 55..3311 33..6644 22..9922 22..6699 22..6666 55..3311 33..3355 22..9922 22..5588 22..3377 22..1199 11..9933

AAMMMMPP LLVVCC 99..1111 88..7766 88..5588 88..5511 88..4499 99..7766 99..4477 88..5588 77..9922 77..6644 77..4444 66..2200

 SSVVCC 99..3355 99..0011 88..7777 88..6655 88..6655 99..8899 99..8800 88..7777 88..0000 77..6666 77..4455 66..2222

 VVSSTT 1100..0088 88..9955 88..7711 88..6611 88..5599 1100..4444 99..8899 88..7711 77..9966 77..6655 77..4444 66..1133

 OORRII 1111..3366 99..3388 99..0088 88..9944 88..9944 1111..3366 1100..2277 99..0088 88..1100 77..6688 77..4455 66..2233

MMEESSAA LLVVCC 00..5566 00..5544 00..5544 00..5544 00..5555 44..1100 00..6633 00..5544 00..4411 00..3300 00..1166 00..1100

 SSVVCC 00..7744 00..5555 00..5555 00..5566 00..5577 44..9911 00..6677 00..5555 00..4444 00..3311 00..1177 00..1100

 VVSSTT 44..0088 11..5566 11..0033 00..6600 00..5588 44..9944 11..4488 11..0033 00..4455 00..3355 00..1188 00..1100

 OORRII 66..6688 33..0022 11..6677 00..6666 00..6600 66..6688 33..2222 11..6677 00..4477 00..3322 00..1177 00..1111

SSAAEECC LLVVCC 33..2277 33..1155 33..0077 33..0011 33..0022 44..0099 33..8822 33..0077 22..2277 11..2200 11..0000 00..6644

 SSVVCC 33..7766 33..3377 33..2255 33..2233 33..2233 44..2266 44..1199 33..2255 22..3399 11..3311 11..0011 00..6655

 VVSSTT 44..2222 33..4433 33..2277 33..2244 33..2233 44..3388 44..3388 33..2277 22..3311 11..2299 11..0000 00..6644

 OORRII 44..7722 33..5566 33..3355 33..3322 33..3322 44..7722 44..5599 33..3355 22..4433 11..3355 11..0011 00..6655

GGZZIIPP LLVVCC 1100..3300 1100..1133 1100..0044 1100..0000 99..9977 1111..5533 1111..2277 1100..0044 88..0088 55..0055 11..8811 00..3377

 SSVVCC 1100..3355 1100..2211 1100..1122 1100..0077 1100..0044 1111..5500 1111..3355 1100..1122 88..1199 55..1199 11..9911 00..3388

 VVSSTT 1144..6622 1100..3300 1100..1133 1100..0077 1100..0033 1155..5511 1111..5588 1100..1133 88..1133 55..0055 11..8833 00..3388

 OORRII 1166..3322 1111..1177 1100..8811 1100..6688 1100..6622 1166..3322 1122..9900 1100..8811 88..6655 55..4477 22..0022 00..3399

GGCCCC LLVVCC 11..5555 11..6699 11..7766 11..8822 11..8822 11..9988 33..8822 11..7766 00..3322 00..2211 00..1177 00..1155

 SSVVCC 11..8888 22..1177 22..2233 22..2244 22..1199 22..0000 44..4466 22..2233 00..3377 00..2222 00..1177 00..1155

 VVSSTT 11..8866 22..0000 22..0077 22..1199 22..2233 22..0055 44..3322 22..0077 00..3366 00..2222 00..1188 00..1155

 OORRII 22..3300 22..2266 22..3355 22..4433 22..4477 22..3300 44..4477 22..3355 00..4499 00..2233 00..1199 00..1155

SSJJBBBB LLVVCC 33..7766 33..7711 33..6677 33..6677 33..6688 44..3388 44..0055 33..6677 33..1199 22..5588 22..0000 11..7766

 SSVVCC 44..0077 33..8899 33..7777 33..7755 33..7755 44..5566 44..4422 33..7777 33..2266 22..6633 22..0033 11..7766

 VVSSTT 44..5566 33..9988 33..7788 33..7733 33..7711 44..8866 44..4422 33..7788 33..2255 22..6633 22..0066 11..7788

 OORRII 55..3377 44..2233 33..9966 33..8844 33..8800 55..3377 55..0000 33..9966 33..3322 22..6666 22..0044 11..7777

LL22 DDaattaa 225566KKBB 551122KKBB 11MMBB 22MMBB 44MMBB 88MMBB DDMM 22wwaayy 44wwaayy 88wwaayy 1166wwaayy

AAmmmmpp LLVVCC 5555..7766 3388..3388 1133..7711 88..2211 77..3366 22..2288 3355..4499 3333..3311 1199..9933 1133..7711 1122..5599
 SSVVCC 5566..6644 3399..0055 1144..5588 88..2277 77..4411 22..3311 3366..2266 3344..0044 2200..6677 1144..5588 1133..0000
 VVSSTT 5544..3377 3366..6699 1133..3300 88..2244 77..3399 22..2277 3366..1133 3333..1166 1188..7766 1133..3300 1122..5599
 OORRII 5577..5577 4400..0077 1155..6622 88..4499 77..5588 22..3344 3388..1188 3355..1111 2211..6655 1155..6622 1133..7755

LLVVCCSS LLVVCC 5522..6633 4466..0033 3366..3333 2266..4499 2200..7722 1144..6666 4400..6699 3377..7799 3366..6655 3366..3333 3366..0088
 SSVVCC 5522..8899 4466..2211 3366..4499 2266..5577 2200..7755 1144..6688 4411..3311 3388..0000 3366..8833 3366..4499 3366..2233
 VVSSTT 5522..8811 4466..1111 3366..3366 2266..5511 2200..7722 1144..6677 4411..3322 3377..8888 3366..7700 3366..3366 3366..1100
 OORRII 5533..2288 4466..4400 3366..6600 2266..6633 2200..7766 1144..6699 4422..2299 3388..1199 3366..9966 3366..6600 3366..3355

SSAAEECC LLVVCC 1144..8866 00..5544 00..3377 00..3366 00..3344 00..3322 77..1166 00..5522 00..3388 00..3377 00..3366
 SSVVCC 1155..6633 00..8822 00..3388 00..3366 00..3344 00..3322 77..6644 00..6644 00..4455 00..3388 00..3366
 VVSSTT 1144..7700 00..8877 00..4422 00..3366 00..3344 00..3322 77..4455 00..7766 00..4455 00..4422 00..3366
 OORRII 1155..7788 11..0077 00..4411 00..3366 00..3344 00..3322 88..4488 00..9955 00..4499 00..4411 00..3366

	1 Introduction
	2 Sector Cache with Victim Buffer
	2.1 Related Work
	2.2 Proposed Design

	3 Simulation Methodology
	4 Level 1 Sector-Cache Simulation Results and Discussion
	5 Level 2 Sector-Cache Simulation Results and Discussion
	6 Conclusion
	Appendix: More Simulation Data

