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Abstract. In this paper we present an victim cache design for caches organized 
with line that contains multiple sectors (sector cache). Sector caches use less 
memory bits to store tags than non-sectored caches. Victim cache has been pro-
posed to alleviate conflict misses in a lower associative cache design. This pa-
per examines how victim cache can be implemented in a sector cache and pro-
poses a further optimization of the victim buffer design in which only the tags 
of the victim lines are remembered to re-use data in the sector cache. This de-
sign is more efficient because only an additional “OR” operation is needed in 
the tag checking critical path. We use a full system simulator to generate traces 
and a cache simulator to compare the miss ratios of different victim cache de-
signs in sector caches. Simulation results show that this proposed design has 
comparable miss ratios with designs having much more complexity. 

1   Introduction 

In a cache an address tag (or tag) is used to identify the memory unit stored in the 
cache. The size of this memory unit affects how well a cache functions. For a fixed 
size cache larger unit size needs less memory bits to store tags and helps programs 
that possess special locality. However, larger unit may cause fragmentation making 
the cache less efficient when spatial locally is not there. Moreover, transferring each 
unit from lower memory hierarchy takes higher bandwidth. Smaller unit size allows 
more units to be included and may help programs that spread memory usage. 

Sector cache[1][2] has been proposed as an alternative to strike a balance of cache 
unit sizes. A sector cache’s memory unit is divided into sub-sections. Each unit needs 
only one tag thus saves tag memory bits. These sub-sections of a sector cache need 
not to be simultaneously brought in the cache allowing lower transferring bandwidth. 
Another advantage of sector caches is observed for multiprocessors systems because 
they reduce false sharing[3][4]. Sector cache’s advantage is evident in that many 
microprocessors employ sector caches in their designs. For example, Intel’s Pen-
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tium® 41[5], SUN’s SPARC™[6] and IBM’s POWERPC™ G4™[7]/G5™[8] all 
employ sector cache in their cache organization.  

This work intends to propose and evaluate further optimization techniques to im-
prove performance of a sector cache. One of those designs is the victim cache[9]. A 
victim cache includes an additional victim buffer. When a line is replaced it is put 
into this small buffer which is full associative instead of just being discarded. The 
idea is to share the victim buffer entries among all sets since only a few of them are 
hotly contended usually. First, we discuss how victim buffer/cache idea can be ap-
plied in a sector cache. We evaluate two implementations of victim cache. One is 
called “line-victim” and the other is “sector-victim”. We further propose a third vic-
tim mechanism design named “victim sector tag buffer”(VST buffer) for further util-
ize the sector cache lines.  This design tries to address a sector cache’s potential dis-
advantage of having larger unit size and could be under-utilized. 

Since there are many different names[3][6][10][11][12][13][14][15] used to de-
scribe the units used in a sector cache, we first describe the terminology used in this 
paper. In our terminology a cache consist of lines which have tags associated with 
each of them. Each line consists of sub-units which are called sectors. This naming 
convention is the same as described in the manuals of Pentium® 4[5] and 
POWERPC™[7][8]. An example 4-way set-associative cache set is shown in figure 1. 
A valid bit is added to every sector to identify a partial valid cache line. We also use 
the terminology s-ratio which is defined as the ratio between the line size and the 
sector size. A sector cache with s-ratio equals to p is called p-sectored cache as [1]. 
The example in figure 1 it is a 4-sectored cache.  

 

Fig. 1. Principles of sectored cache 

This paper is organized as follows. In this section we introduce the concept of sec-
tor cache and victim mechanism. In the next section we first review other related 
works in this area. We then describe in more detail of our design. In section three we 
present the simulation methodology. In section four and five we introduce our simula-
tion results on different cache levels. Finally we conclude with some observations. 

                                                           
1  Pentium is a registered trademark of Intel Corp. or its subsidiaries in the United States and 

other countries. 
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2   Sector Cache with Victim Buffer 

2.1   Related Work 

Sector caches can be used to reduce bus traffic with only a small increase in miss 
ratio[15]. Sector cache can benefit in two-level cache systems in which tags of the 
second level cache are placed at the first level, thus permitting small tag storage to 
control a large cache. Sector cache also is able to improve single level cache system 
performance in some cases, particularly if the cache is small, the line size is small or 
the miss penalty is small. The main drawback, cache space underutilization is also 
shown in [13]. 

Rothman propose “sector pool” for cache space underutilization[13]. In the design, 
each set of set-associative cache compose of totally s-ratio sector lists. Each list has a 
fix number of sectors that the number is less than the associativity. S-ratio additional 
pointer bits, associate with a line tag, point to the actual sector as the index of the 
sector list. Thus a physical sector can be shared in different cache lines to make the 
cache space more efficient. Unlike our victim mechanism who tries to reduce the 
cache Miss ratio, this design more focus on cache space reduction. It depends on a 
high degree set associative cache. The additional pointer bits and the sector lists will 
make the control more complex. For example, the output of tag comparison need to 
be used to get the respond pointer bit first then can get the result sector. This length-
ens the critical path. Another example is that different replacement algorithms for the 
cache lines and sector list need to be employed at the same time. 

Seznec propose “decoupled sectored cache”[1][11]. A [N,P] decoupled sectored 
cache means that in this P-sectored cache there exists a number N such that for any 
cache sector, the address tag associated with it is dynamically chosen among N possi-
ble address tags. Thus a log2N bits tag, known as the selection tag, is associated with 
each cache sector in order to allow it to retrieve its address tag. This design increases 
the cache performance by allow N memory lines share a cache line if they use differ-
ent sectors that some of the sectors have to be invalid at normal sector cache design. 
Our concern about this design is that the additional tag storage, say N-1 address tags 
and s-ratio * log2N selection tags for each line, need large amount of extra storage. 
Seznec himself use large(32 or 64) s-raio, which will make the validity check and 
coherence control very complex, to reduce tag storage before decoupling. We tried to 
implement this idea and saw the line-fill-in and line-replacement policy is important 
for the performance. If with a line-based-LRU-like fill-in/replacement policy pro-
posed by ourselves, since Seznec did not give enough details of his policies, the de-
coupled sector cache will not perform better than our VST design, if with similar 
extra storage, given s-ratio range of 2~8. And, an additional compare need to be per-
formed to the retrieved selection tag to ensure the sector data is right corresponded to 
the address tag which causes the tag matching. This also lengthens the tag checking 
critical path. 

Victim caching was proposed by Jouppi[9] as an approach to reduce the cache 
Miss ratio in a low associative cache. This approach augments the main cache with a 
small fully-associate victim cache that stores cache blocks evicted from the main 
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cache as a result of replacements. Victim cache is effective. Depending on the pro-
gram, a four-entry victim cache might remove one quarter of the misses in a 4-KB 
direct-mapped data cache. Recently [16] shows that victim cache is the most 
power/energy efficient design among the general cache misses reduction mechanisms. 
Thus it becomes a more attractive design because of the increasing demand of low 
power micro-architecture. 

2.2   Proposed Design 

In order to make our description clearer, we define several terms here. We call a ref-
erence to a sector cache a block-miss if the reference finds no matching tag within the 
selected set. We call a reference a data-miss if the tag matches but the referenced 
word is in an invalid sector. Thus a miss can be either block-miss or data-miss. Simi-
lar to [1][11] describe, for a P-sectored cache we divide the address A of a memory 
block in four sub-strings (A3, A2, A1, A0) defined as: A0 is a log2SL bit string 
which SL is the sector length, A1 is a log2P bit string show which sector this block is 
in if it is in a cache line, A2 is a log2nS bit string which nS is the number of the cache 
sets, A3 consists of the remaining highest significant bits. The main cache line need 
store only the bits in A3. Figure 2 show tag checking of directed-mapped case. A2 
identify the only position of the tag to be compared in the tag array. (A2, A1) identify 
the only position the data sector can be. The data can be fetched without any depend-
ency on the tag comparison. The processor pipeline may even start consuming the 
data speculatively without waiting for the tag comparison result, only roll back and 
restart with the correct data in the case of cache miss which is rarely happened, as line 
prediction.  

 

 

Fig. 2. Directed mapped sector cache tag checking 

In the case of set-associative cache, (A2, A1) can only select the conceptual “sec-
tor set”, then waiting for the comparison result of the address tags to get a line ID to 
deliver the correspond sector. Figure 3 is such an example of a 2-way associate sector 

Data Array V bits 
Array 

A3 A2 A1 

Address Tags 
Array 

Comparator 

And 

Hit? Data out



20         C. Lai and S.-L. Lu 

cache. In a lower-associate cache the sector data and the valid bits being select can be 
got independently with the tag comparison. 

 
 

 

Fig. 3. 2-way associate sector cache tag checking 

In figure 3 a line ID is needed, in critical path, as selection signal of the MUX. 
Line ID is founded after the tag comparison result. For a higher associate cache like a 
CAM, where a simple MUX may not be used, the data and valid bits could be not 
right at hand immediately. But Line ID retrieving still dominates in the critical path 
there[17]. 

As mentioned by many researchers victim cache can reduce cache Miss ratio. 
There are two straightforward victim designs for sector cache. One is line-victim 
cache(LVC), the other is sector-victim cache(SVC). Figure4 show their tag checking. 
Tag checking of the line victim cache is in the left and the other is in the right. The 
most difference between them is the data unit associate with the victim tag. In line-
victim cache, the data unit is a cache line. And the data unit is a sector in the sector-
victim cache. Thus the lengths of the victim tags of LVC and SVC are different. For 
same entries number LVC can be expected more cache misses saved due to more 
storage there, where SVC can be expected a little faster tag checking and data retrieve. 
Figure 4 do not connect the victim cache with main cache to avoid unnecessary com-
plexity and allow architects to decide if swap the victim data with the main cache data 
when hit victim cache. 

Both line-victim cache and sector-victim cache are paralleled accessed with the 
main sector cache. A cache line is evicted to the line- victim cache in case of cache 
replacement happens. As to the sector-victim cache, only the valid sectors in the 
whole line are evicted to the sector-victim-cache. Also when a new line is brought 
into cache, the sector-victim cache is checked to see if there are other sectors in the 
same line. If so the victim sectors are also brought into the main cache line to main-
tain a unique position of a cache line. 
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We know some of the requested data may still be in the data cache but it is just in-
accessible because it has been invalidated. This paper describes another approach, 
called “VST buffer” to remember what is still in the data cache. 

 

Fig. 4. Tag checking of line-victim cache and sector-victim cache 

When a block miss happens and the set is full, a cache line must be replaced. Each 
sector of the replaced line will be mark as invalid. A new sector will be brought into 
the replaced line, and the cache tag will be updated. Thus some of the previously 
replaced line’s sector data may still be in the data array since not all sector, of the 
newly brought in cache line, is brought in. Only their valid bits are marked invalid. 
VST buffer is used to keep track of these sectors whose data is still the data array. 
Thus a VST entry consists of the victim tag, the victim valid bits and the “real loca-
tion” line ID in the cache set. For a directed mapped main cache the line ID field is 
needless. The left side of figure 5 shows the VST buffer tag checking with a directed-
mapped main cache. As seen from the figure the VST buffer produce an additional 
“VST hit” signal to be perform “or” operation with the main cache hit signal in the 
critical path, without affecting the sector fetching and consuming. In either a VST hit 
or a main cache hit the data can be processed continuously.  

The right side of figure 5 shows the VST buffer tag checking of a set-associate 
main cache. A VST hit not only leads to a hit result but also deliver a line ID to the 
main cache selector to get the result data. This line ID signal is performed “or” opera-
tion with the main cache line ID signal to select final line. One extra cost here is when 
a new sector is brought into the main cache, if a data miss happens, the VST needs to 
be checked if the position contains a sector being victimized. If so the victim entry is 
invalidated or thrashed. This does not increase cache-hit latency since it happens 
when cache miss. Since there is already cache miss penalty the additional cost seems 
to be acceptable. 

When compare the cost of the three victim mechanism connected with a p-
Sectored Cache all compose of N entries. We see beside the similar comparators and 
the control, the line- victim cache need N line tags, data of N * line size and N*P 
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Fig. 5. Tag checking of Victim Sector Tag Buffer (VST buffer) with sector cache 

valid bits; the sector-victim cache need N sector tags (each of it is log2P bits longer 
than a line tag), data of N * sector size and N valid bits; and the VST buffer need N 
line tags, N * P valid bits and N * log2Assoc bits of line IDs which Assoc is the cache 
associativity. So the line victim cache needs most resource among them as VST 
buffer need least resource. 

In MP system, where the sector cache is proved efficient, there need additional 
cache coherence protocol, like MESI, to maintain the cache coherence. We think the 
victim mechanism will make the MP sector cache coherence protocol more complex. 
But we will not discuss the details here since it is beyond this paper’s scope.  

3   Simulation Methodology 

Several SpecCPU2K[18] benchmarks (compiled with compiler option “–O3 –Qipo”), 
Java workload SpecJBB2K[19] with Java runtime environment JSEV1.4.1 which is 
an integer benchmark, and two commercial-like floating-point benchmarks, one is a 
speech recognition engine[20], the other is an echo cancellation algorithm[21] in 
audio signal processing, are used in our study.  

In order to consider all the effects, including system calls, we use a full system 
simulator to generate memory reference traces. The simulator used is called 
SoftSDV[22]. The host system runs Windows 2000 and the simulated system is Win-
dowsNT in batch mode using solid input captured in files. Then we run the traces 
through a trace-driven cache simulator.  

We generate both L1 memory reference traces and L2 memory reference traces. 
After 20 billion instructions after system start up (the target application is configured 
auto-run in the simulation) we collect 200 million memory references as our L1 traces. 
We use 100 million references of them to warm up L1 cache and analysis the behav-
ior of the latter 100 million. The L1 sector cache we simulated is mainly configured 
as below with small varieties: 16KBsize, 64B line size, 16B sector size, 4 way associ-
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ate, LRU replacement algorithm and write-back approach. For L2 cache behavior we 
use a built-in first level cache together with trace generation. We warm up the built-in 
cache with 1 billion instructions. Then we collect L2 traces consist of 200 million 
read references. Also in our simulation we use 50 million L2 references to warm up 
the L2 cache. The hierarchy consist L2 sector cache we simulated is mainly config-
ured as below with small varieties: L1: 16KBsize, 32B line size, 4-way associate, 
LRU replacement algorithm and write-back approach. L2: 1MB size, 128 byte line 
size, 32 byte sector size, 8-way associate, LRU replacement algorithm and write-back 
approach. 

4   Level 1 Sector-Cache Simulation Results and Discussion 

We present the L1 simulation data as the Miss Ratio Improvement Percentage (MRIP) 
of all benchmarks. The reason that we present L1 data first is that it is easier to corre-
late the observed L1 behavior back with the source code. Figure 6,7 are the MRIP 
trends with various parameters as the variable. All the numbers are computed as the 
geometric means of the different workload data also list in the paper. Figure 6 indi-
cates that with larger number of the victim mechanism entries the miss ratio im-
provement increases. Since VST requires no data array we can implement a much 
larger victim buffer at the same cost of a smaller SVC/LVC and achieve the same (or 
even better) performance improvement. For example 128 entries VST performs com-
parably with 64 entries SVC or 32 entries LVC. Figure 6 also explores the improve-
ment with several sector cache line sizes and sector sizes. We observed that VST 
performs better with larger s-ratios. This is because of higher underutilization cache 
space exist with higher s-ratio. On the other hand SVC and LVC performs better with 
larger line and sector sizes. Figure 7 compares how the victim mechanisms affect 
caches with different associativities or different cache sizes. It is not surprising to 
learn that all three forms of victim mechanisms help the lower associative cache bet-
ter. This is because higher associativity already reduced much of the conflict misses 
victim cache is targeting. It is also seen smaller L1 cache benefits more from the 
victim mechanisms. As frequency of microprocessors continues to grow, smaller but 
faster (lower associativity gives faster cache too) cache will be more prevalent. 
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Fig. 6. MRIP with victim entries or line/sector sizes (higher is better) 



24         C. Lai and S.-L. Lu 

We observe that LVC gives the best Miss ratio improvement at the highest hard-
ware cost. While the SVC approach we used for this study needs the second highest 
hardware cost, it is not better than VST approach. The VST approach is a reasonable 
approach in terms of hardware design complexity and overhead. 
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Fig. 7. MRIP with different associativities or L1 sizes 

The cache miss ratios with different number of victim entries, correspond to the 
left figure of figure 6, are listed in table 1. The data of other figures are listed in ap-
pendix. Table 1 also list corresponding block misses ratios for further investigation. 

Table 1. Miss Ratios and Block Miss Ratios with numbers of victim entries 

MMiissss  rraattiiooss BBlloocckk MMiissss rraattiiooss  LL11  vviiccttiimm
eennttrriieess  88 1166  3322  6644 112288 oorriiggiinn 88 1166 3322 6644 112288  oorriiggiinn  
LLVVCCSS LLVVCC  22..7777 22..7733  22..6699  22..6644 22..5577 22..9922 11..2222 11..2200 11..1177 11..1144 11..1100  11..3366  

  SSVVCC  22..7799 22..7766  22..7733  22..6699 22..6644 22..9922 11..2255 11..2233 11..2200 11..1188 11..1155  11..3366  
  VVSSTT  22..8811 22..7788  22..7766  22..7733 22..7711 22..9922 11..2255 11..2233 11..2200 11..1188 11..1166  11..3366  

AAMMMMPP  LLVVCC  99..0011 88..9944  88..8811  88..5588 88..2255 99..0088 33..8888 33..8855 33..7777 33..6633 33..4422  33..9911  
  SSVVCC  99..0044 99..0000  88..9933  88..7777 88..5500 99..0088 33..9900 33..8888 33..8855 33..7777 33..6655  33..9911  
  VVSSTT  99..0022 88..9966  88..8866  88..7711 88..5566 99..0088 33..8877 33..8833 33..7766 33..6677 33..5577  33..9911  

MMEESSAA  LLVVCC  00..6633 00..5577  00..5566  00..5544 00..5511 11..6677 00..2277 00..2211 00..2200 00..1199 00..1188  00..9955  
  SSVVCC  00..7722 00..6655  00..5588  00..5555 00..5544 11..6677 00..3355 00..2299 00..2233 00..2200 00..2200  00..9955  
  VVSSTT  00..9999 11..0011  11..0022  11..0033 11..0022 11..6677 00..4499 00..4499 00..4499 00..4488 00..4488  00..9955  

SSAAEECC  LLVVCC  33..2299 33..2266  33..1199  33..0077 22..8844 33..3355 00..9933 00..9922 00..9900 00..8866 00..8800  00..9955  
  SSVVCC  33..3344 33..3322  33..2299  33..2255 33..1188 33..3355 00..9944 00..9944 00..9933 00..9922 00..9900  00..9955  
  VVSSTT  33..3333 33..3322  33..3300  33..2277 33..2255 33..3355 00..9944 00..9933 00..9922 00..9911 00..9900  00..9955  

GGZZIIPP  LLVVCC  1100..6677 1100..5566  1100..3377  1100..0044 99..4455 1100..8811 77..4444 77..3333 77..1133 66..7766 66..1133  77..5588  
  SSVVCC  1100..6688 1100..5588  1100..4411  1100..1122 99..6633 1100..8811 77..4477 77..3399 77..2233 66..9977 66..5555  77..5588  
  VVSSTT  1100..6699 1100..6655  1100..4455  1100..1133 99..7700 1100..8811 77..4455 77..3333 77..1122 66..7755 66..1144  77..5588  

GGCCCC  LLVVCC  22..3322 22..2277  22..0099  11..7766 00..8888 22..3355 00..6688 00..6677 00..6622 00..5533 00..2299  00..6699  
  SSVVCC  22..3344 22..3333  22..3311  22..2233 22..0022 22..3355 00..6699 00..6688 00..6688 00..6666 00..6600  00..6699  
  VVSSTT  22..3300 22..2244  22..1144  22..0077 22..0066 22..3355 00..6677 00..6666 00..6622 00..6600 00..5599  00..6699  

SSJJBBBB  LLVVCC  33..8888 33..8833  33..7766  33..6677 33..5511 33..9966 11..6633 11..6600 11..5566 11..5522 11..4455  11..6677  
  SSVVCC  33..9900 33..8888  33..8844  33..7777 33..6699 33..9966 11..6655 11..6633 11..6611 11..5577 11..5533  11..6677  
  VVSSTT  33..9911 33..8888  33..8844  33..7788 33..7711 33..9966 11..6655 11..6622 11..5599 11..5555 11..5500  11..6677  

 
As shown in table 1, the benchmark “mesa” got most of cache misses reduction 

with victim mechanism regardless LVC/SVC, or VST we used. “ammp” got least 
misses reduction with LVC and “saec” got least misses reduction with SVC and VST. 

For the workload “mesa”, we observed the block Miss ratio reduce much more 
significantly with victim mechanism compared to the cache Miss ratio. Thus with 
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victim mechanism the workload basically keeps more cache lines to save cache 
misses in this level. Other issues, like quantitative spatial localities that make SVC 
performs differently, say reduces different percentage of miss ratio reduced by LVC 
with same entries, play minor role in this level. 

In some cases (GCC with 8 victim entries), the VST buffer approach performs bet-
ter than LVC even without any data array. After investigation we concluded that the 
VST buffer approach sometimes uses the victim buffer more efficiently and can avoid 
be thrashed. Victim cache contains data that may be used in future. But the data can 
also be kicked out of the victim cache before it is needed. For example, streaming 
accesses, if miss the main cache, will evict main cache lines to update the victim 
cache. Thus the victim cache gets thrashed and may lost useful information. It plays 
differently in VST approach. We see in non-sector cache, streaming accesses are 
mapping in different sets of cache which make it difficult to be detected. In a sector 
cache the next sector of a cache is inherently subsequence of the previous sector. 
Figure 8 shows the VST states with one by one streaming accesses (or sequential) 
going to the cache, only one VST entry is enough handling them since the entry can 
be re-used(disabled) after a whole main cache line fill-in. Thus the whole buffer will 
keep longer history. This is right the case VST performs better than LVC for GCC.  

 

 

Fig. 8. Avoid be thrashed by streaming access 

5   Level 2 Sector-Cache Simulation Results and Discussion 

We also explore the possibility of applying our proposed methods on level-two cache 
design. This time only those references that missed the build-in level one cache are 
collected in the trace file. Table 2 illustrates the tabulated result in terms of miss ratio 
for various entries. Data with other parameters are also listed in appendix. 

There are several observations made from the L2 data. First, LVC performs better 
than SVC with same entries but worse than SVC with s-ratios, here 4 times, of entries, 
same as be observed from L1 data. Second, in lower level set-associative cache, vic-
tim mechanism performs differently as L1. It does not save so many cache misses as 
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Table 2. L2 Miss Ratio with Victim Mechanism 

EEnnttrriieess  1166    3322 6644 112288 225566 OOrriiggiinn
AAmmmmpp  LLVVCC  1155..3366 1155..0066 1144..5522 1133..7711 1122..8855 1155..6622

SSVVCC  1155..4499 1155..3344 1155..0066 1144..5588 1133..8899 1155..6622
VVSSTT  1144..8822 1144..2244 1133..7711 1133..3300 1122..9911 1155..6622

LLVVCCSSRR  LLVVCC  3366..5577 3366..5533 3366..4466 3366..3333 3366..0066 3366..6600
SSVVCC  3366..5599 3366..5577 3366..5544 3366..4499 3366..3388 3366..6600
VVSSTT  3366..5577 3366..5544 3366..4488 3366..3366 3366..1144 3366..6600

MMeessaa  LLVVCC  99..6644  99..6644 99..6633 99..6633 99..6633 99..6644
SSVVCC  99..6644  99..6644 99..6644 99..6644 99..6633 99..6644
VVSSTT  99..6644  99..6644 99..6644 99..6644 99..6644 99..6644

GGcccc LLVVCC  88..5522  88..5511 88..5500 88..4488 88..4444 88..5522
SSVVCC  88..5522  88..5522 88..5511 88..5500 88..4499 88..5522
VVSSTT  88..5511  88..5511 88..4499 88..4477 88..4455 88..5522

GGzziipp LLVVCC  00..3333  00..3333 00..3333 00..3333 00..3333 00..3333
SSVVCC  00..3333  00..3333 00..3333 00..3333 00..3333 00..3333
VVSSTT  00..3333  00..3333 00..3333 00..3333 00..3333 00..3333

MMccff LLVVCC  5500..4477 5500..4433 5500..3366 5500..2233 4499..9988 5500..5500
SSVVCC  5500..4488 5500..4477 5500..4444 5500..3388 5500..2266 5500..5500
VVSSTT  5500..4477 5500..4455 5500..4400 5500..3355 5500..2244 5500..5500

SSAAEECC  LLVVCC  00..4400  00..3388 00..3377 00..3377 00..3377 00..4411
SSVVCC  00..4411  00..4400 00..3399 00..3388 00..3377 00..4411
VVSSTT  00..4422  00..4422 00..4422 00..4422 00..4422 00..4411

 
 
L1 cache. This is not surprising since a small L1 already catch a significant part of 
data locality and L2 reference patterns tend to be more irregular. Third, the VST 
buffer performs well among the three victim mechanisms in this memory hierarchy 
level. It can outperform LVC and SVC for the benchmark “ammp”. Even it is more 
difficult to correlate the L2 references back with the source or binary, than L1 refer-
ences. We still ascribe the better VST performance to its property of avoiding be 
thrashed. As to the workloads, “ammp” and “SAEC” get most significant cache 
misses reduction here. This behavior is opposite to the L1 behavior. Also the signifi-
cant block miss reduction can not be observed in this level as the data in appendix 
shows. Thus we suggest that the extra storage of LVC and SVC benefit more from the 
general data locality; and VST benefit more from the cache underutilization whether 
the reference pattern is regular or not. 

6   Conclusion 

We have described three possible implementation of victim buffer design in a sector 
cache. They have different complexity and hardware overhead. Several up-to-date 
applications are used to evaluate their performance in terms of miss ratio. Overall 
three mechanisms have comparable cache misses reduction. For a directed-mapped 
Level 1 cache, the mechanisms can save significant amount of cache misses. 

Among the three mechanisms LVC gives the best performance with highest over-
head. Whether SVC is performance/cost effective or not rely on the quantitative spa-
tial locality of the workload. 
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We also investigate several benefits of VST in this paper. Include the low-cost de-
sign, keeping longer victim history and be more able to capture irregular reference 
pattern in lower memory hierarchy. 
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Appendix: More Simulation Data 

SSeeccttoorr//  
lliinnee  ssiizzee  

1166BB//  
3322BB  

1166BB//  
6644BB  

3322BB//  
6644BB  

1166BB//  
112288BB  

3322BB//  
112288BB  

6644BB//  
112288BB  

3322BB//  
225566BB  

6644BB//  
225566BB  

112288BB//  
225566BB  

LLVVCCSSRR  LLVVCC  22..5522  22..6644  11..6688  22..7700  11..7722  11..1177  11..7744  11..1188  00..8877  
  SSVVCC  22..5533  22..6699  11..7700  22..8833  11..7788  11..1199  11..8877  11..2244  00..8888  
  VVSSTT  22..5599  22..7733  11..7799  22..9900  11..8899  11..3388  22..0022  11..5511  11..2200  
  OORRII  22..6655  22..9922  11..9922  33..2233  22..1155  11..5555  22..8866  22..1199  11..6699  

AAMMMMPP  LLVVCC  88..1177  88..5588  55..3322  99..0000  55..6644  33..8888  55..7744  33..9966  33..0044  
  SSVVCC  88..2233  88..7777  55..3377  99..3366  55..7766  33..9900  66..1122  44..1122  33..0066  
  VVSSTT  88..2277  88..7711  55..4466  99..0099  55..7722  44..0022  55..9900  44..1166  33..4400  
  OORRII  88..3388  99..0088  55..6677  99..8866  66..2255  44..3377  66..6688  44..6699  33..6666  

MMEESSAA  LLVVCC  00..5533  00..5544  00..3311  00..5544  00..3311  00..1199  00..3311  00..2200  00..1144  
  SSVVCC  00..5544  00..5555  00..3322  00..6633  00..3333  00..2200  00..5533  00..2255  00..1155  
  VVSSTT  00..9955  11..0033  00..7755  11..0088  00..7788  00..6699  00..8866  00..7755  11..3399  
  OORRII  11..3366  11..6677  11..2200  22..7722  11..9988  11..6622  22..7722  22..2299  11..9933  

SSAAEECC  LLVVCC  33..1111  33..0077  11..6600  22..9955  11..5544  00..8833  11..4455  00..7788  00..4455  
  SSVVCC  33..1166  33..2255  11..6666  33..3388  11..7733  00..8899  11..8833  00..9933  00..4499  

  VVSSTT  33..2222  33..2277  11..7722  33..3333  11..7755  00..9966  11..8800  00..9999  00..5588  
  OORRII  33..2255  33..3355  11..7755  33..5500  11..8833  00..9999  11..9988  11..0088  00..6622  

GGZZIIPP  LLVVCC  99..0099  1100..00  88..2288  1100..77  99..0000  77..5544  99..3366  77..9955  66..5577  
  SSVVCC  99..1100  1100..11  88..2299  1111..00  99..1166  77..5599  1100..00  88..3388  66..7766  

  VVSSTT  99..1188  1100..1133  88..4466  1100..8866  99..2266  88..0022  99..8833  88..6666  77..9977  
  OORRII  99..5544  1100..88  99..0099  1122..11  1100..55  99..0099  1122..11  1100..88  99..4488  

GGCCCC  LLVVCC  11..9922  11..7766  00..9955  11..4466  00..7799  00..4455  00..4466  00..2277  00..1188  
  SSVVCC  22..0055  22..2233  11..0099  22..4499  11..1199  00..5577  11..3366  00..6633  00..3311  
  VVSSTT  22..0044  22..0077  11..1155  22..0088  11..1166  00..6699  11..1177  00..6699  00..4455  
  OORRII  22..1144  22..3355  11..2255  22..6644  11..4400  00..7777  11..6600  00..8888  00..5511  

SSJJBBBB  LLVVCC  33..5555  33..6677  22..3311  33..7722  22..3344  11..5544  22..3366  11..5555  11..0088  
  SSVVCC  33..5599  33..7777  22..3344  33..9977  22..4455  11..5588  22..7700  11..7700  11..1111  
  VVSSTT  33..6622  33..7788  22..4400  33..9911  22..5500  11..7722  22..4477  11..8899  11..4411  
  OORRII  33..7700  33..9966  22..5522  44..3333  22..7799  11..8899  33..3344  22..8833  11..6688  
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LL11  DDaattaa  DDMM    22wwaayy    44wwaayy    88wwaayy    1166  
WWaayy

DDMM((88    
EEnnttrriieess))

88KKBB  1166KKBB  3322KKBB  6644KKBB  112288KKBB  225566KKBB  

LLVVCCSSRR  LLVVCC  22..7711 22..6688  22..6644  22..6611  22..6600 33..3355 22..7777  22..6644  22..5500  22..3355  22..1188  11..9922  

  SSVVCC  22..7755 22..7711  22..6699  22..6644  22..6633 33..7700 22..9900  22..6699  22..5522  22..3366  22..1188  11..9933  

  VVSSTT  44..1166 33..1100  22..7733  22..6633  22..6622 44..3333 33..0011  22..7733  22..5522  22..3355  22..1188  11..9922  

  OORRII  55..3311 33..6644  22..9922  22..6699  22..6666 55..3311 33..3355  22..9922  22..5588  22..3377  22..1199  11..9933  

AAMMMMPP  LLVVCC  99..1111 88..7766  88..5588  88..5511  88..4499 99..7766 99..4477  88..5588  77..9922  77..6644  77..4444  66..2200  

  SSVVCC  99..3355 99..0011  88..7777  88..6655  88..6655 99..8899 99..8800  88..7777  88..0000  77..6666  77..4455  66..2222  

  VVSSTT  1100..0088 88..9955  88..7711  88..6611  88..5599 1100..4444 99..8899  88..7711  77..9966  77..6655  77..4444  66..1133  

  OORRII  1111..3366 99..3388  99..0088  88..9944  88..9944 1111..3366 1100..2277  99..0088  88..1100  77..6688  77..4455  66..2233  

MMEESSAA  LLVVCC  00..5566 00..5544  00..5544  00..5544  00..5555 44..1100 00..6633  00..5544  00..4411  00..3300  00..1166  00..1100  

  SSVVCC  00..7744 00..5555  00..5555  00..5566  00..5577 44..9911 00..6677  00..5555  00..4444  00..3311  00..1177  00..1100  

  VVSSTT  44..0088 11..5566  11..0033  00..6600  00..5588 44..9944 11..4488  11..0033  00..4455  00..3355  00..1188  00..1100  

  OORRII  66..6688 33..0022  11..6677  00..6666  00..6600 66..6688 33..2222  11..6677  00..4477  00..3322  00..1177  00..1111  

SSAAEECC  LLVVCC  33..2277 33..1155  33..0077  33..0011  33..0022 44..0099 33..8822  33..0077  22..2277  11..2200  11..0000  00..6644  

  SSVVCC  33..7766 33..3377  33..2255  33..2233  33..2233 44..2266 44..1199  33..2255  22..3399  11..3311  11..0011  00..6655  

  VVSSTT  44..2222 33..4433  33..2277  33..2244  33..2233 44..3388 44..3388  33..2277  22..3311  11..2299  11..0000  00..6644  

  OORRII  44..7722 33..5566  33..3355  33..3322  33..3322 44..7722 44..5599  33..3355  22..4433  11..3355  11..0011  00..6655  

GGZZIIPP  LLVVCC  1100..3300 1100..1133  1100..0044  1100..0000  99..9977 1111..5533 1111..2277  1100..0044  88..0088  55..0055  11..8811  00..3377  

  SSVVCC  1100..3355 1100..2211  1100..1122  1100..0077  1100..0044 1111..5500 1111..3355  1100..1122  88..1199  55..1199  11..9911  00..3388  

  VVSSTT  1144..6622 1100..3300  1100..1133  1100..0077  1100..0033 1155..5511 1111..5588  1100..1133  88..1133  55..0055  11..8833  00..3388  

  OORRII  1166..3322 1111..1177  1100..8811  1100..6688  1100..6622 1166..3322 1122..9900  1100..8811  88..6655  55..4477  22..0022  00..3399  

GGCCCC  LLVVCC  11..5555 11..6699  11..7766  11..8822  11..8822 11..9988 33..8822  11..7766  00..3322  00..2211  00..1177  00..1155  

  SSVVCC  11..8888 22..1177  22..2233  22..2244  22..1199 22..0000 44..4466  22..2233  00..3377  00..2222  00..1177  00..1155  

  VVSSTT  11..8866 22..0000  22..0077  22..1199  22..2233 22..0055 44..3322  22..0077  00..3366  00..2222  00..1188  00..1155  

  OORRII  22..3300 22..2266  22..3355  22..4433  22..4477 22..3300 44..4477  22..3355  00..4499  00..2233  00..1199  00..1155  

SSJJBBBB  LLVVCC  33..7766 33..7711  33..6677  33..6677  33..6688 44..3388 44..0055  33..6677  33..1199  22..5588  22..0000  11..7766  

  SSVVCC  44..0077 33..8899  33..7777  33..7755  33..7755 44..5566 44..4422  33..7777  33..2266  22..6633  22..0033  11..7766  

  VVSSTT  44..5566 33..9988  33..7788  33..7733  33..7711 44..8866 44..4422  33..7788  33..2255  22..6633  22..0066  11..7788  

  OORRII  55..3377 44..2233  33..9966  33..8844  33..8800 55..3377 55..0000  33..9966  33..3322  22..6666  22..0044  11..7777  

 
LL22  DDaattaa  225566KKBB 551122KKBB  11MMBB  22MMBB 44MMBB 88MMBB DDMM 22wwaayy 44wwaayy 88wwaayy  1166wwaayy  

AAmmmmpp  LLVVCC 5555..7766 3388..3388  1133..7711  88..2211 77..3366 22..2288 3355..4499  3333..3311  1199..9933  1133..7711  1122..5599  
  SSVVCC  5566..6644 3399..0055  1144..5588  88..2277 77..4411 22..3311 3366..2266  3344..0044  2200..6677  1144..5588  1133..0000  
  VVSSTT  5544..3377 3366..6699  1133..3300  88..2244 77..3399 22..2277 3366..1133  3333..1166  1188..7766  1133..3300  1122..5599  
  OORRII  5577..5577 4400..0077  1155..6622  88..4499 77..5588 22..3344 3388..1188  3355..1111  2211..6655  1155..6622  1133..7755  

LLVVCCSS LLVVCC 5522..6633 4466..0033  3366..3333  2266..4499 2200..7722 1144..6666 4400..6699  3377..7799  3366..6655  3366..3333  3366..0088  
  SSVVCC  5522..8899 4466..2211  3366..4499  2266..5577 2200..7755 1144..6688 4411..3311  3388..0000  3366..8833  3366..4499  3366..2233  
  VVSSTT  5522..8811 4466..1111  3366..3366  2266..5511 2200..7722 1144..6677 4411..3322  3377..8888  3366..7700  3366..3366  3366..1100  
  OORRII  5533..2288 4466..4400  3366..6600  2266..6633 2200..7766 1144..6699 4422..2299  3388..1199  3366..9966  3366..6600  3366..3355  

SSAAEECC  LLVVCC 1144..8866 00..5544  00..3377  00..3366 00..3344 00..3322 77..1166  00..5522  00..3388  00..3377  00..3366  
  SSVVCC  1155..6633 00..8822  00..3388  00..3366 00..3344 00..3322 77..6644  00..6644  00..4455  00..3388  00..3366  
  VVSSTT  1144..7700 00..8877  00..4422  00..3366 00..3344 00..3322 77..4455  00..7766  00..4455  00..4422  00..3366  
  OORRII  1155..7788 11..0077  00..4411  00..3366 00..3344 00..3322 88..4488  00..9955  00..4499  00..4411  00..3366  
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