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Abstract. We propose a new lattice reduction method. Our algorithm
approximates shortest lattice vectors up to a factor ≤ (k/6)n/2k and
makes use of Grover’s quantum search algorithm. The proposed method
has the expected running time O(n3(k/6)k/8A + n4A). That is about
the square root of the running time O(n3(k/6)k/4A + n4A) of Schnorr’s
recent random sampling reduction which in turn improved the running
time to the fourth root of previously known algorithms. Our result
demonstrates that the availability of quantum computers will affect
not only the security of cryptosystems based on integer factorization
or discrete logarithms, but also of lattice based cryptosystems. Rough
estimates based on our asymptotic improvements and experiments
reported in [1] suggest that the NTRU security parameter needed to be
increased from 503 to 1277 if sufficiently large quantum computer were
available nowadays.
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1 Introduction

Impact of Quantum Computers on Classical Cryptology. It is well known that
quantum computers will be able to break cryptosystems that are based on the
integer factorization problem or some discrete logarithm problem in polynomial
time [2]. In particular, this affects RSA and elliptic curve cryptosystems, but
also number field cryptosystems [3].

However, quantum computers are not believed to be able to solve NP -hard
problems in polynomial time. The closest and shortest lattice vector problems
(CVP and SVP) are known to be NP -hard [4,5,6]. Up to now, there was no
evidence that the security of cryptosystems of GGH-type [7,8], that are based
on SVP or CVP in arbitrary lattices, will be affected by the future availability of
quantum computers. Neither is such a result known for NTRU. In fact, Regev’s
quantum reduction [9] of the Θ(n2.5)-unique shortest vector problem applies to
a class of lattices only which NTRU lattices do not belong to.

Classical Lattice Reduction Methods. Kannan’s algorithm [10] computes a short-
est lattice vector but it has an exponential running time. The renowned LLL al-
gorithm [11] and its many variants compute in polynomial time a vector at most
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(4/3 + ε)(n−1)/2 times as long as the shortest vectors in a given n-dimensional
lattice. By applying Kannan’s algorithm to blocks of length 2k in the lattice
basis, Schnorr [12] improved the approximation factor of LLL to (k/3)n/k for
sufficiently large k at the cost of an additional running time O(n3kk+o(k)A).
(A covers the number of bit operations for the arithmetic on O(n2)-bit inte-
gers.) The so called primal-dual method by Koy is claimed [13] to reduce the
additional running time to O(n3kk/2+o(k)A) and still achieve an approximation
factor ≤ (k/6)n/k. A variant of the 2k-algorithm called BKZ (for Block Korkine-
Zolotarev) [14] is widely used in practice, even though it is not proven to run in
time polynomial in n.

Whenever the 2k-method replaces the first base vector it takes only the first
2k base vectors into account. Schnorr [13] recently proposed an algorithm that is
kind of complementary. It searches a replacement for the first base vector in the
span of an LLL-reduced basis, but only the contribution of the last base vectors
can be varied. If many such vectors are sampled, a sufficiently short vector
will be found with high probability. The expected additional running time of
this random sampling reduction (RSR) is O(n3(k/6)k/4A) and it guarantees an
approximation factor (k/6)n/2k. If the alloted running time is fixed, RSR reduces
the approximation factor to about its 4th root compared with the primal-dual
method.

Schnorr also proposed to replace the random sampling by a birthday sam-
pling method that exploits the birthday paradox. The additional running time
of his simple birthday reduction (SBR) is only O(n3(4/3)k/3(k/6)k/8A), k ≥ 60
according to [13], but it requires the storage of (4/3)k/3(k/6)k/8 additional lat-
tice vectors. Even if k = 60 and n = 100, almost 1012 integers need to be stored.
The massive space requirements raise doubts about the practicability of SBR.

Contribution of this Paper and Outline. We propose to replace the random
sampling of vectors in Schnorr’s algorithm by the technique of Grover’s quan-
tum search. We show that a quantum computer finds a sufficiently short vector
with only O((k/6)k/8) evaluations of a predicate that is as expensive to evaluate
as one call to Schnorr’s sampling algorithm. This leads to a quantum search re-
duction algorithm (QSR) that performs O(n3(k6)k/8A) operations and achieves
an approximation factor ≤ (k/6)n/2k. Hence, QSR improves in fixed time the
approximation factor to about the square root compared with RSR and to about
the 8th root compared with the primal-dual method.

Our result has an immediate effect on the security offered by all lattice based
cryptosystems, including systems of GGH-type. But of particular interest is the
impact of QSR on NTRU. If we transfer our improved running time bounds on
the experimental results reported in [1] and require the security thresholds from
the Lenstra-Verheul heuristic [15], we find that NTRU’s security parameter need
to be more than doubled. More precisely, the security parameter for NTRU’s
“highest security” parameter set had to be raised from 503 up to 1277 if quantum
computers were available in 2005.

After some technical preliminaries and notations in section 2 we will out-
line Schnorr’s random sampling reduction in section 3. Section 4 presents our
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proposed quantum reduction method. In section 5 we study the possible impact
of the availability of sufficiently large quantum computers on NTRU. Section
6 points to possible further improvements of our algorithm and open research
questions.

2 Preliminaries and Notation

All vector norms are Euclidean. A d-dimensional integral lattice L = L(B) is the
ZZ-span of some linear independent lattice basis B = {b1, . . . , bd} ⊂ ZZn, i. e.
L = {∑d

i=1 aibi : a1, . . . , ad ∈ ZZ}. By abuse of notation, we identify the basis
B with the n× d matrix B = [b1, . . . , bd]. For simplicity, we assume d = n.

We also assume maxj{‖bj‖} = 2O(n). Then the LLL algorithm operates on
integers of bitlength O(n2). A denotes the the number of bit operations required
for an arithmetic step on such integers.

Let B = B̂R be the Gram-Schmidt decomposition of B, i. e. the columns b̂j

of B̂ ∈ Qn×n are pairwise perpendicular and R = (µi,j) ∈ Qn×n is unit upper
triangular. In the following, whenever we pass B to an algorithm, we implicitly
also pass B̂ and R.

B is δ-LLL reduced (1/4 ≤ δ < 1) if and only if

|µi,j | ≤ 1/2 for all 1 ≤ i < j ≤ n and

δ‖b̂j‖2 ≤ ‖µj,j+1b̂j + b̂j+1‖2for all 1 ≤ j < n .

Then the first basis vector b1 satisfies ‖b1‖ ≤
(
δ − 1

4

)− n−1
2 λ1, where λ1 =

min{‖u‖ : 0 �= u ∈ L(B)} is the length of the shortest nonzero lattice vectors.
For many applications of lattice theory an approximate solution of a Shortest

Vector Problem (SVP) is required for some approximation factor α: Given a
basis B, find a nonzero lattice vector v ∈ L such that ‖v‖ ≤ αλ1. In high
dimensional lattices, this is infeasible for very small approximation factors; in
fact, the problem is NP -hard for randomized reductions if α <

√
2 [6]. The LLL

algorithm computes solutions to SVP with approximation factor α = 2(n−1)/2,
though.

3 Schnorr’s Random Sampling Reduction

In 2001, Schnorr proposed a novel algorithm for approximate solutions of the
SVP. We present here only the essential parts of the algorithm; for a detailed
description as well as proofs, cf. [13].

RSR is built around the sampling algorithm (SA). SA randomly chooses
lattice vectors with Gram-Schmidt coefficients ν1, . . . , νn that satisfy

νj ∈ (− 1
2 , 1

2 ]for 1 ≤ j ≤ n− k′,
νj ∈ (−1, 1] for n− k′ < j < n,

νn ∈ {1, 2}
(1)

for some integer k′. Denote Dn,k′ := (− 1
2 , 1

2 ]n−k′ × (−1, 1]k
′−1 × {1, 2}.
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Algorithm 1 (Sampling Algorithm (SA)). Given a lattice basis B and an
integer 1 ≤ k′ < n, SA returns in O(n2) arithmetic steps a uniformly chosen
b = B̂ν ∈ L(B) such that ν ∈ Dn,k′ .

Based on empiric data, Schnorr makes two assumptions:

Assumption 1 (Randomness Assumption (RA)). The coefficient vector
ν = (ν1, . . . , νn)t sampled by SA satisfies the following conditions:

1. The random variables ν1, . . . , νn−1 are uniformly distributed in the intervals
(− 1

2 , 1
2 ] and (−1, 1], respectively.

2. The random variables ν1, . . . , νn−1 are pairwise statistically independent.

Note that (RA) is crucial only for coefficients νj with small index j.

Assumption 2 (Geometric Series Assumption (GSA)). There is 0 < q <

1 such that ‖b̂j‖2 = qi−1‖b1‖2 for 1 ≤ j ≤ n.

In practice, of course, (GSA) holds approximately only, but the analysis
remains valid as long the approximation is good enough. Schnorr [13] outlines
how to “repair” bases that do not approximate (GSA) by reducing subbases.

Under these assumptions, SA will eventually yield a short lattice vector after
expected O((k/6)(k−1)/4) iterations:

Algorithm 2 (Sample Short Vector (SHORT)). Let B be a δ-LLL reduced
basis and let k ≥ 24 be an integer subject to

n ≥ 3(k + 1) + k−1
4 log2

(
k
6

)
. (2)

Assume (RA) and (GSA) with q < (6/k)1/k. On input k and B, SHORT com-
putes in average O(n2(k/6)(k−1)/4) arithmetic steps a vector b ∈ L(B) satisfying
‖b‖2 ≤ 0.99‖b1‖2.

Once we found a short lattice vector b, an LLL update (LLLU) replaces b1
by b and LLL reduces the resulting bases again. Since it is merely an update,
this algorithm requires only O(n3) arithmetic steps.

Algorithm 3 (Random Sampling Reduction (RSR)). Let B be a δ-LLL
reduced basis and let k ≥ 24 be an integer subject to (2). On input k and B,
RSR computes under (RA) and (GSA) in average

O
(
n3

(
k
6

) k−1
4 A + n4A

)

bit operations a still δ-LLL reduced basis B′ = [b′
1, . . . , b

′
n] satisfying

‖b′
1‖ ≤

(
k
6

) n
2k λ1 .

1: while ‖b1‖ > (k/6)(n−1)/2k‖b̂n‖ do /* O(n) iterations */
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2: b← SHORT(B, k)
3: B ← LLLU(B, b)
4: end while
5: return B′ ← B

The loop condition implies q < (6/k)1/k whence the preconditions of SHORT
are met. Since the input of RSR is already δ-LLL reduced, the approximation
factor α after the i-th iteration satisfies 1 ≤ α ≤ 0.99i2(n−1)/2. Therefore, RSR
returns after O(n) iterations.

All arithmetic steps operate on integers of length O(n2). Combining the
complexity of SHORT and LLLU with the number of iterations in RSR, we get
the average bit complexity O(n3(k/6)(k−1)/4A + n4A).

4 Quantum Search Reduction

Algorithm SHORT searches in the unsorted finite set of coefficient vectors ν ∈
Dn,k′ with B̂ν ∈ L(B) for an element such that ‖B̂ν‖2 ≤ 0.99‖b1‖2. This is a
setup where Grover’s quantum search algorithm outperforms all classical search
algorithms. For details on quantum computing in general and Grover’s quantum
search in particular we refer to [16] and [17,18], respectively.

Grover’s quantum search QS makes use of a quantum operator called black
box oracle. Let S = {0, . . . , N − 1}, N = 2n. Given a (classical) algorithm that
evaluates the predicate f : S → {0, 1}, we can easily construct a black box
oracle Of such that QS finds some s ∈ S with f(s) = 1. More precisely, if there
is a uniform circuit family evaluating f with O(Tf (n)) gates then Of requires
O(Tf (n)) quantum operations and ancilla qubits.

Algorithm 4 (Quantum Search (QS)). Assume M := |f−1({1})| > 0. On
input a black box algorithm Of the quantum algorithm QS returns some s ∈ S
such that f(s) = 1.

QS makes expected Θ((N/M)1/2) queries to Of (even if M is unknown) and
applies additional expected Θ((N/M)1/2) quantum operations on its n+1 qubit
register.

Remark 1. QS can be easily modified to handle the case M = 0 at the cost of
a small error probability [18]. However, in our particular application we know
M ≥ 1 whence we do not have to deal with sporadic errors

The idea underlying the quantum search reduction is to replace algorithm
SHORT by a quantum search for a vector b satisfying ‖b‖2 ≤ 0.99‖b1‖2 . More
precisely, we look for some sufficiently short b in

VB,k =
{

v ∈ L(B) : v = B̂ν, ν ∈ Dn,k′ with k′ = 1 +
⌈

k−1
4 log2

(
k
6

)⌉}
.

Let N = 2k′
= min

{
2t : 2t ≥ 2

(
k
6

)(k−1)/4}. There is a (classical) O(n2A)-
time algorithm that enumerates VB,k. In particular, |VB,k| = N . The algorithm
mimics Schnorr’s algorithm SA; only the random bits are replaced by the input
index.
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Algorithm 5 (Enumerate VB,k (ENUM)). Let B be a δ-LLL reduced ba-
sis with Gram-Schmidt decomposition B̂R, R = [µ1, . . . , µn] and k ≥ 24 be
an integer subject to (2). On input B, k, and an index 0 ≤ i < N , ENUM
computes in O(n2) arithmetic steps the vector vi for some enumeration of
VB,k.
1: i0 ← i mod 2, i← 
i/2�
2: ν = (ν1, . . . , νn)t ← (i0 + 1)µn, b← νnbn

3: for j = n− 1 downto 1 do
4: if j ≤ n− 1− ⌈

k−1
4 log2

(
k
6

)⌉
then

5: c← �νj�
6: else
7: i0 ← i mod 2, i← 
i/2�
8: c← �νj
 − i0
9: end if

10: b← b− cbj , ν ← ν − cµj

11: end for
12: return b

The vector returned by ENUM satisfies (1) because R is unit upper triangular.
Since we restricted the coefficients in (1) to half-open intervals, the enumeration
of VB,k is exhaustive.

The oracle black box of the quantum search is based upon the predicate
fB,k : {0, . . . , N−1} → {0, 1} with fB,k(i) = 1 if and only if ‖ENUM(B, k, i)‖2 ≤
0.99‖b1‖2. The evaluation of fB,k requires O(n2) arithmetic steps on integers of
length O(n2), whence OfB,k

requires O(n2A) quantum operations and O(n2A)
ancilla qubits.

We then have the following trivial algorithm to find sufficiently short vectors:

Algorithm 6 (Quantum Short Vector Search (QSHORT)). Let B be
a δ-LLL reduced basis and k ≥ 24 be an integer subject to (2). On in-
put B and k, QSHORT computes under (RA) and (GSA) with expected
O(n2(k/6)k/8A) operations on O(n2A) qubits a lattice vector b ∈ L(B) sat-
isfying ‖b‖2 ≤ 0.99‖b1‖2.
1: i← QS(OfB,k

)
2: b← ENUM(B, k, i)
3: return b

Schnorr [13] shows Pr[‖b‖2 ≤ 0.99‖b1‖2] ≥ 1
2

(
k
6

)(1−k)/4
under (RA) and

(GSA) provided b is a vector sampled by SA. Since SA returns elements uni-
formly chosen from VB,k, we have

M = NPr[‖b‖2 ≤ 0.99‖b1‖2] ≥ 2
(

k
6

) k−1
4 1

2

(
k
6

) 1−k
4 = 1 .

Therefore, QSHORT makes under (RA) and (GSA) expected

Θ((N/M)1/2) = O(N1/2) = O((k
6 )(k−1)/8)
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queries to the black box OfB,k
. The total number of expected elementary opera-

tions is O(n2(k/6)(k−1)/8A). The space requirements of QSHORT are dominated
by the black box OfB,k

.
Replacing SHORT by QSHORT, RSR becomes a quantum algorithm QSR

that achieves the same approximation factor with significantly less elementary
operations.

Algorithm 7 (Quantum Search Reduction (QSR)). Let B = [b1, . . . , bn]
be a δ-LLL reduced basis and let k ≥ 24 be an integer subject to (2). On input
B and k, QSR computes under (RA) and (GSA) a still δ-LLL reduced basis
B′ = [b′

1, . . . , b
′
n] satisfying

‖b′
1‖ ≤

(
k
6

) n
2k λ1 .

QSR performs on average

O
(
n3

(
k
6

)(k−1)/8
A + n4A

)

operations.
1: while ‖b1‖ > (k/6)(n−1)/2k‖b̂n‖ do /* O(n) iterations */
2: b← QSHORT(B, k)
3: B ← LLLU(B, b)
4: end while
5: return B

Like RSR, QSR executes the loop body O(n) times and each iteration requires
O(n2(k/6)(k−1)/8A + n3A) operations, yielding the stated operation bound.

5 Impact on NTRU

We discuss the impact of our proposed reduction algorithm QSR on NTRU if
quantum computers were available. The NTRU cryptosystem attracted a lot of
attention since it is very efficient. It is being standardized by the IEEE P1363
workgroup; another standard has already been published by the Consortium for
Efficient Embedded Security [19].

The one-wayness of NTRU is based on the hardness of SVP in a certain class
of lattices generated by convolution matrices. The resistance of NTRU against
lattice reduction attacks has been studied in [1, §4.2 and Appendix] and [20].
The authors of these papers report experiments on a 200 MHz PC with the
BKZ implementation found in Shoup’s NTL library [21]. They tried to recover
private keys in lattice dimension 2N , 75 ≤ N ≤ 108, for parameter sets relating
to “moderate”, “high”, and “highest” security. We are not aware of any more
recent data on lattice attacks against the one-wayness of NTRU.

It is noticeable that in the experiments, the block size had to be increased
very quickly. For N = 75 a block size k between 4 and 6 sufficed to approximate
the corresponding SVP well enough, but for N = 108 the required block size
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Table 1. Estimated running time for recovering private NTRU keys (in MIPS-years)

N tBKZ(N) tRSR(N) tQSR(N)

503 1.2 ∗ 1030 3.3 ∗ 108 5.8 ∗ 103

709 6.5 ∗ 1046 2.8 ∗ 1011 5.3 ∗ 105

809 2.7 ∗ 1053 2.3 ∗ 1013 4.8 ∗ 106

1277 1.4 ∗ 1089 1.9 ∗ 1022 1.4 ∗ 1011

1511 9.7 ∗ 10106 5.6 ∗ 1026 2.4 ∗ 1013

[15] considers 1.02 ∗ 1011 and 2.07 ∗ 1013 MIPS-years infeasible
in 2005 and 2015, respectively.

was already k = 22. From their experiments the authors extrapolated the run-
ning time t necessary to recover an NTRU key generated for highest security.
Assuming a second on a 200 MHz PC is equivalent to 200 MIPS-seconds, they
found

tBKZ(N) ≥ e0.17564N−19.04795 MIPS-years .

The estimated cost of their attack for N = 503 is about 1030 MIPS-years. Ac-
cording to the Lenstra-Verheul heuristic [15], even 3∗1021 MIPS-years are infea-
sible until 2050, i. e. NTRU’s security margin with respect to this attack seemed
plenty.

However, recall that QSR reduces the running time to about the 8th root
compared with Koy’s primal-dual method. The primal-dual method is already
supposed to perform better than the BKZ reduction used in [1]. As a first ap-
proximation, we therefore estimate the running time of an attack with QSR
as

tQSR(N) ≥ e(0.17564N−19.04795)/8 MIPS-years .

Therefore, keys generated for NTRU-503 will be recovered after ≈ 1030/8 =
103.75 MIPS-years and NTRU-503 cannot be considered secure anymore once
QSR can be implemented.

But the speedup by QSR is only polynomial, whence the NTRU scheme itself
won’t be broken by QSR. It is sufficient to multiply NTRU’s security param-
eter with a constant factor. Lenstra and Verheul claim that a running time of
1.02 ∗ 1011 MIPS-years will be infeasible in 2005, 2.07 ∗ 1013 will be infeasi-
ble in 2015. By our rough estimate, it would only be infeasible to recover an
NTRU key in 2005 if N ≥ 1277. Tab. (1) gives an overview of the estimated
running times for recovering a private NTRU key generated with the parame-
ters proposed for NTRU-503 if the attacker uses the BKZ implementation from
NTL, Schnorr’s random sampling reduction, and the proposed quantum search
reduction, respectively. The shown values of N are minimal primes that can be
considered secure against attacks with the RSR and QSR algorithm in 2005 and
2015, respectively.
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6 Further Improvements and Research

Schnorr [13] reports that a variant of RSR that replaces any one of the first
ten base vectors and updates the basis by BKZ rather than LLL is very effec-
tive. His extended sampling algorithm ESHORT returns a pair (b, i) such that
‖πi(b)‖2 =

∑n
j=i νj‖b̂j‖2 ≤ 0.99‖b̂j‖2. We can implement an analog quantum

search algorithm QESHORT by straightforward modifications to our predicate
f . The time bounds for QESHORT do not change. Of course, we cannot bound
the overall running time of the resulting reduction algorithm since we have no
proven time bound for the BKZ algorithm.

As mentioned before, Schnorr also proposes a sampling reduction that ex-
ploits the birthday paradox. Unfortunately, he has to trade very much space for
the additional speedup whence it is doubtful whether the simple birthday re-
duction (SBR) is practical. Anyway, the birthday paradox has also been used to
accelerate Grover’s search algorithm. Brassard, Høyer and Tapp [22] proposed
an quantum algorithm that finds a collision in a hash function h : X → Y
with at most O(N1/3) evaluations of h, N = |X|. Thus, on the first glance, it
seemed possible to construct a quantum variant of SBR that performs estimated
O(n3(4/3)k/3(k/6)k/12A + n4A) operations. Unfortunately, our attempt failed
since [22] requires N ≥ 2|Y | which does not hold if we follow the construction
of SBR. It therefore stays an open question whether QSR allows an additional
speedup by a time-space trade-off.

7 Conclusion

We presented a quantum algorithm QSR that approximates shortest lattices
vectors up to a factor ≤ (k/6)n/2k where n is the lattice dimension and k ≥ 24
is an almost arbitrary parameter. The expected running time of our algorithm is
O(n3(k/6)k/8A+n4A) which is roughly the square root of the running time of the
fastest known classical algorithm RSR. We reconsidered the security analysis of
NTRU and found that an attack against NTRU-503 with our algorithm required
only (roughly) estimated 5.8 ∗ 103 MIPS-years. An attack with QSR against
NTRU would be infeasible only if NTRU’s security parameter was raised up to
1277.

References

1. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryp-
tosystem. In Buhler, J.P., ed.: Algorithmic Number Theory (ANTS III). Volume
1423 of LNCS., Springer-Verlag (1998)

2. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26 (1997) 1484–1509

3. Hallgren, S.: Polynomial-time quantum algorithm for Pell’s equation and the prin-
cipal ideal problem. In: Proceedings of the Thirty-Fourth Annual ACM Symposium
on Theory of Computing, ACM Press (2002)



208 C. Ludwig

4. Emde Boas, P.v.: Another NP -complete partition problem and the complexity
of computing short vectors in a lattice. Technical Report 81-04, University of
Amsterdam, Department of Mathematics, Netherlands (1981)

5. Ajtai, M.: The shortest vector problem in L2 is NP -hard for randomized reductions
(extended abstract). In: Proceedings of the Thirtieth Annual ACM Symposium on
Theory of Computing, ACM Press (1998) 10–19

6. Micciancio, D.: The shortest vector in a lattice is hard to approximate to within
some constant. In: IEEE Symposium on Foundations of Computer Science. (1998)
92–98

7. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice
reduction problems. In Kaliski, Jr., B.S., ed.: Advances in Cryptology – Crypto’97.
Volume 1294 of LNCS., Springer-Verlag (1997) 112–131

8. Micciancio, D.: Improving lattice based cryptosystems using the Hermite normal
form. In Silverman, J.H., ed.: Cryptography and Lattices. Volume 2146 of LNCS.,
Springer-Verlag (2001) 126–145

9. Regev, O.: Quantum computations and lattice problems. In: The 43rd Annual
IEEE Symposium on Foundations of Computer Science (FOCS’02), IEEE (2002)
520–529

10. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Research 12 (1987) 415–440

11. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261 (1982) 515–534

12. Schnorr, C.P.: A hierachy of polynomial lattice basis reduction algorithms. Theo-
retical Computer Science 53 (1987) 201–224

13. Schnorr, C.P.: Lattice reduction by random sampling and birthday methods. In
Alt, H., Habib, M., eds.: STACS 2003: 20th Annual Symposium on Theoretical
Aspects of Computer Science. Volume 2607 of LNCS., Springer (2003) 146–156

14. Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Math. Programming 66 (1994) 181–199

15. Lenstra, A.K., Verheul, E.R.: Selecting cryptographic key sizes. J. Cryptology 14
(2001) 255–293

16. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press (2000)

17. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing
(STOC), ACM Press (1996) 212–219

18. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching.
arXiv e-print quant-ph/9605034 (1996)

19. Consortium for Efficient Embedded Security: EESS #1: Implementation aspects
of NTRUEncrypt and NTRUSign.
http://www.ceesstandards.org/documents/EESS1_11122002_v2.pdf (2002) Ver-
sion 1.0.

20. Silverman, J.: Estimated breaking times for NTRU lattices. Technical Report 12,
NTRU Cryptosystems, Inc. (1999)

21. Shoup, V.: NTL – a library for doing number theory.
URL http://www.shoup.net/ntl/index.html (2001) Release 5.2.

22. Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free
functions. In Lucchesi, C., Moura, A., eds.: LATIN’98: Theoretical Informatics.
Volume 1380 of LNCS., Springer-Verlag (1998)

http://www.ceesstandards.org/documents/EESS1_11122002_v2.pdf
http://www.shoup.net/ntl/index.html

	Introduction
	Preliminaries and Notation
	Schnorr's Random Sampling Reduction
	Quantum Search Reduction
	Impact on NTRU
	Further Improvements and Research
	Conclusion

