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Abstract. Following recent works connecting two-variable logic to cir-
cuits and monoids, we establish, for numerical predicate sets P satis-
fying a certain closure property, a one-to-one correspondence between
FO[<,P]-uniform linear circuits, two-variable formulae with 9 predi-
cates, and weak block products of monoids. In particular, we consider
the case of linear TCP, majority quantifiers, and finitely typed monoids.
This correspondence will hold for any numerical predicate set which is
FO[<]-closed and whose predicates do not depend on the input length.

1 Introduction

The computational power of boolean circuits are of great interest as they are
among the most powerful classes of computation devices for which we can prove
nontrivial lower bounds [7]. To understand the power granted by nonuniformity
in this setting, we often consider circuit families which can be generated under
bounded resources.

In the case of small depth circuits, we are particularly interested in circuit fam-
ilies whose structure can be described in terms of some restricted class of logical
formulae (Barrington, Immerman, and Straubing [2]). Such circuit families can
often be characterized in terms of logic. For instance, the languages recognized
by FO[+, *]-uniform AC? circuits are exactly those which are expressible by
FO[+, %] formulae. Likewise, FO + MODI+,*] formulae correspond to ACC®
circuits, and FO + M AJ[+, *] formulae correspond to T'C°. This establishes a
strong connection between circuit classes and logical formulae.

The class of languages recognized by logical formula can be also characterized
in terms of algebra. For instance, the class of languages recognized by FOI[<]
formula corresponds exactly to the class of star-free languages, which are ex-
actly those which are recognized via morphisms to finite aperiodic monoids, or
equivalently, block products of Uy. This gives us a three-fold connection between
circuits, logic and algebra.

In the case of AC® and ACC?, restricting to linear size corresponds in logic to
a restriction to using only two variables. This was shown in [9], and corresponds
in algebra to weakly-blocked monoids. In [2I] Therién and Wilke gave for first
order formulae over two variables with the order predicate an algebraic charac-
terization as the variety DA. By an result of Straubing and Therién [20] this
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variety, and thus FO3[<], can be characterized as weakly blocked monoids of
Ui. Analogously, FO+ MO Ds[<] was shown in [19] to correspond to the variety
DO O Ggo1, which is the closure of DA under weak block products of abelian
groups.

The notion of finitely typed monoids was introduced in [8] to obtain an al-
gebraic characterization for TC® = L(MAJ[<,Sq]) in terms of finitely typed
monoids. It is clear that general numerical predicates, as well as linear TCY,
need the use of infinite monoids. In this paper, we show that types can be used
to algebraically characterize logical formulae for many types predicate sets in a
uniform way. Second, we apply these results to give matching logical and alge-
braic characterizations to a broad class of uniformity conditions for linear TC?,
which include the FO[<]-closure of the predicate sets {<}, {<,+}, and {<, arb}.

In particular we show, subject to a closure property of 3, that the following
properties of a language L are equivalent: (1) that it is recognized by a FO[<, B]-
uniform family of TC? circuits of linear size and linear fan-in, (2) that it can
be described by a FO + MA\JQ[<,§I§] formula, and (3) that it is recognized by
a restricted type of morphism into a particular type of finitely typed group,
constructed from weak block products of simpler groups. Recent results suggest
that these characterizations can be used to prove lower bounds on linear sized
circuits [5].

The remainder of the paper is structured as follows. In Sections 2 and 3
we review notions from circuits, logic, and algebra which we will require in
the exposition. In Section 4 we state the main result of this paper, and in the
remaining sections we prove three inclusions that yield our result.

2 Definitions

2.1 Logic

Following the conventions of Straubing’s book [I7], we express words w € X* of
length n as structures over the universe [n] = {1,...,n} in the following way.
For each o € X we have a unary relation @, such that Q,(z) is true when the
value of w at the position x is o. A formula ¢ over a set of free variables V is
interpreted over V-structures, which are strings w = (w1, V1)(wa, Va) ... (wp, V»)
over ¥ x 2V, where the V;s are disjoint and UZ V; = V. We define 2* ® V to be
the set of all V-structures over £*, while we use (X x 2)* to denote the set of
arbitrary strings over X x 2Y. Let Ly be the set of all V-structures modeling
¢. Then for any first-order sentence 1) we can associate a language Ly, = Ly ¢.

A predicate is called numerical if its truth value does not depend on the input.
(See Section [Z2) Let P be a set of numerical predicates. A first-order formula
over V is a first order formula built from the atomic formulae {Q,(z)} U {P |
P € P} and free variables V.

There are several cases in the literature where a new quantifier has been
defined to obtain a correspondence between logic and algebra. For example,
Mod x ¢(z) [18] has been used to connect FO+MOD formulae to ACCY circuits.
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Likewise, TC? was shown to correspond to logical formulae using the majority
quantifier Maj z ¢(x), which is true iff for more than half of the positions = the
formula ¢(z) evaluates to true. This construction requires that we can use the
logic to simulate counting quantifiers 3=Yx¢(x) [10], which are true if and only
if there are y many positions for  where ¢(x) is true. But since a counting
quantifier is defined with two variables, one has difficulties to apply this result
in the case of two-variable logic. This leads to the following definition, which is
equivalent in power to counting quantifiers and thus majority quantifiers if the
number of variables is not restricted, but gives the right expressibility in the case
of two variables to capture linear TC°.

Definition 1 (Extended Majority Quantifier). Let ¢1(z), ..., ¢.(x) be for-
mulae with one free variable. Then Maj x ($1(x),. .., dc(x)) is a formula. We
define the semantics so that the formula is true if wy—; = @; for the majority of
(i,7) € [n] x [c]. In other words,

, ~x~ [ 1 ifweni ¢
w):Majx<¢17...7¢c>©0<22{_1 cf;herwz'sf(bj
i=1 j=1

In the case of ¢ = 1 we have the old definition of the majority quantifier.

Definition 2. FO + MﬁJ2[<,‘B] is the class of two-variable logical sentences
over words which are constructed from atomic formulae, the order predicate,
numerical predicates from the set P, and the extended majority quantifier.

2.2 Numerical Predicates

A c-ary predicate P is called numerical if the truth value of P(x1, ..., z.) depends
only on the the numeric value of x1,...,z. and the length of the input word.
An assignment to a c-ary predicate can be expressed as a V-structure over a
unary alphabet with V = {z1,...,z.}. A predicate is said to be expressible in
logic Q[] if the corresponding V-structures are expressible in first order with
quantifiers Q and predicates 3. We can naturally represent such predicates as
subsets of N°*1. For a predicate P we have the subset P = {(i1,...,i.,n) |

azlzil,...,zc:ic = P}

Definition 3 (Shifting Predicates). A numerical c-ary predicate P is a shift
of a numerical predicate P, if there exist integers vy, ..., ver1 such that P =
{(i1,-.oyie,n) | (i1 +v1,. .o yic+ Veyn + Vep1) € P}

Now we define the closure properties of predicates we need in this paper. For a
set P of numerical predicates, we say that a numerical predicate P is FO[<]-
constructible from B if P can be expressed by a FO[<, ] formula.

Definition 4. We denote by B the smallest set of predicates that contains P
and is closed under FO[<]-constructions and shifting.

In the case of {<}, {<,+}, {<, +, x} we have that {<}, {<,+}, {<, +, %} are the
FO[<] closure of these predicate sets, i.e. the shifting closure does not introduce



150 C. Behle, A. Krebs, and M. Mercer

new predicates. Shifting may, in general, add extra predicates for predicates that
depend on the length of the word.

2.3 Circuits

In this paper we consider circuits which compute functions f : 2™ — {0,1}. Our
circuits will consist of majority gates and input query gates. A majority gate is
true when more than half of the inputs are true and an Inp, (i) query gate will
output true when the ith letter of the input is o.

A family {C), }nen of such circuits can be said to recognize a language in the
usual way. The complexity class TC? consists of those languages recognized by
families of threshold circuits of constant depth and polynomial size. We define
LTCY to be the class of languages recognized by T'CY circuit families of linear
size and linear fan-in.

We consider the class of LTC? circuits with a uniformity condition that is
expressed in terms of first order formulae over words. As in [6], we need the
following definition in order to construct a uniformity language that can be
expressed by FO[<]| formulae: For v = (v1,...,v.) € [n] the unary shuffled
encoding (v1, ..., v.) of v is the word w of length n over alphabet {«, 5} defined
by 7 (w;) = o < v; <14, where m;((a1,...,ac)) = a;.

Definition 5 (Uniformity language). Let C = {C,} be an LTC® circuit
family. Fiz c € N, a labeling of the gates of each C,, with tuples (x1,z2) € [n]Xx|c],
and a unique identifier from [|X|+ 1] for each possible type of gate (i.e. Inpy or
magjority). Additionally, we require (1,1) to be the output gate of the circuit. Then
a uniformity language of C' is the set of all shuffled encodings (x1,22,y1,y2,t)
such that if t denotes majority gate, then the gate (z1,x2) is a majority gate and
has gate (y1,y2) as an input gate, or if t denotes an Inp, gate, then (x1,x2) is
an Inp,(y1) query gate (yo is arbitrary).

Using the definition of an uniformity language we can easily define uniform
circuits for our setting.

Definition 6 (Uniform LTC"). FO|<,B]-uniform LT is the class of lan-
guages recognizable by a family of LTCP circuits with a uniformity language ex-
pressible in FO[<,P].

3 Finitely Typed Groups

In this section we recall the definition of finitely typed groups introduced in [§].
The motivation for finitely typed groups arises from the fact that the syntac-
tic monoid of the majority function is infinite, yet the majority gates have a
finite output. Typed groups allow us to model majority gates as morphisms in
a meaningful way.

Let T be a group. A type of T is a collection of disjoint subsets T = {7; |i € [}
of T for finite I. A finitely typed group is a group T equipped with a type ¥.
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We call the elements of the boolean closure of ¥ the extended types of T. If the
type set ¥ of T is understood we often simply write T instead of (T, ). Note
that a finite monoid T' can be regarded as a finitely typed monoid equipped with
the type ¥ = {{t} | t € T'}. The direct product (S,8) x (T,%) of two finitely
typed monoids (S, &) and (T, %) is the usual Cartesian product equipped with
the type 6 x T ={SxT|S€6, T €T}

In the following we extend the notion of block products to finitely typed groups.
Let (S,6), (T,%) be finitely typed monoids. Recall that the ordinary block
product of S with 7T is defined as the bilateral semidirect product ST*7 x
* T of ST*T_ the set of all functions from T x T to S, with T, where the
right (resp. left) action of T on ST*T is given by (f -t) (t1,t2) = f(t1,t ta)
(t-f)(t1,t2) = f(tat,t2), t, t1, to € T, f € ST*T. Note that this set may be
uncountable in the case that S and T are infinite. As in [§], a discrete version of
the block product is defined. We begin by defining a set of qualified functions:

Definition 7 (Type respecting functions). A function f(t1,t2) : (T, %) x
(T,%) — S, where S is any set, is called type respecting if it has a finite image
and, for each s € S, the preimage f~'(s) can be described by a finite boolean
combination of conditions of the form t1 -c1 € Ty,co - to € To,t1 - c3-to € T3
where ¢y, ca, c3 are constants in T and Ty, 72, T3 are types in X.

The definition of the block product is the same as in the finite case but restraining
the functions used to type respecting functions.

Definition 8 (Block product). Let (S,6), (T,%) be finitely typed monoids
and let V be the set of all type respecting functions with respect to T'. The finitely
typed block product (X,X)=(S,8) [ (T,%) of (S,8) with (T, %) is defined as
the bilateral semidirect product V xx T of V with T (with respect to the actions
given above). The type set X of X consists of all types S = {(f,n) € X |
f(es,es) € S}, where S € & and eg is the neutral element of S. We also write
m X, with X € X, for the type S € G, such that S=x.

Note that for finite M and M’ equipped with the type sets as above, every
function f: M x M — M’ will be type respecting. Thus we have the ordinary
definition of block product as a special case.

As usual we write the operation in V' additively to provide a more readable
notation. Note that this does not imply that V' is commutative. By definition of
the bilateral semidirect product we have:

(*) (flaml) fnamn Zml mi71-fi-miﬂ...mn,ml...mn).

The neutral element of (S, &) I (T, %) is (e, er) where e is the function mapping
all elements to the neutral element of S and er is the neutral element of T'.
We also have the equivalence:

(fl,ml) L (fn,mn) cX & Zfl(ml c M1, MY mn) emi,

where m X is the base type as in Definition [§ above.
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Definition 9. We say that a finitely typed monoid (T, ¥) recognizes the language
L C X* if there is a morphism h : X* — T and a subset {Ty,...,T;} C T of
types of T' such that L = ffl(Uf:1 7).

Now we turn our attention to how we can characterize predicates via morphisms.

Theorem 1. For each binary numerical predicate P(x,y) there exists a finitely
typed group (T, %) and a distinguished element m € T with the following prop-
erties:

1. there is a morphism h : ({a} x 28*¥})* — T with h((a,0)) = m and an
extended type T such that ay_; . = P(z,y) if and only if h(ay_; ;) € T.
2. for all extended types T over T and all morphisms h : ({a} x 2{=¥})* T
with h((a,0)) = m the predicate corresponding to the language h='(T) N

{a}* @ {z,y} is in {P}.
We call m the incremental element.

If P is a set of predicates that are unary or binary the previous theorem is also
true if we transform an unary predicate P(x) into a binary predicate P’(x,z).
In following we always assume all predicates in the two-variable logic are binary
predicates.

Definition 10 (Predicate group). The tuple of a finitely typed group (T,%)
and incremental element m is called a predicate group of P if it satisfies the
conditions of Theorem [

In the following we denote by (Tp,¥p) and mp the predicate group and incre-
mental element for the predicate P. We define now the algebraic variety which
corresponds to FO + MAJ[<, P].

Definition 11. Let B be a set of predicates. We let Wz (B) be the smallest va-

riety closed under weak block products with X 2:1((2, 7)o (X lcil(Tkl, i)

fore,cy, ... c. € N | where (T, %k) are predicate groups for predicates Py, i.e.
c .
GeWy(P) = GO (XUZ,2") B X (Tw,%w))) € Wz(P).
k=1 1=1

We now introduce restricted elements to ensure that the predicate groups that
appear in the structure of groups of our variety cannot be “abused”. If we do
not restrict the class of allowable morphisms, then the typed monoids above
can simulate counting quantifiers by using the predicate group to simulate a
quantifier which should not be possible with two-variable majority logic. To
assure the predicate groups are used in the designated way we start with the
following definition:

Definition 12 (Restricted Element). We define inductively the set of re-
stricted elements:
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~

All elements of (Z,7F) are restricted.

2. For each predicate group (Tp,Tp) only the incremental element mp is re-
stricted.

3. An element x € A X B is restricted iff w1 (x) and ma(x) are restricted.

4. An element x € A [ B is restricted iff all elements in the image of 71 (x)

are restricted and mo(x) is restricted.

Definition 13. A morphism h : X* — G is restricted if all elements of h(X)
are restricted.

The following definition yields the characterization of the languages that we deal
with in this paper.

Definition 14. For a variety V, Hgl(V) 1s the set of all languages that are
recognized by a some (T, %) € V with a restricted morphism.

4 Results

The main theorem translates the well known connections between two-variable
logic, weak blocked monoids, and linear size circuits [2IJT99] to the case of
majority. By establishing a similar uniformity result as in [6], we can show how
the predicates used in logic have their counterparts in algebra and circuits.

Theorem 2. Let P be a set of predicates closed under FO[<]-constructions and
shifting. The following are equivalent:

1. L € FO[<,B]-uniform LTC",
2. L € L(FO + MAJ,[<,]),
3. L€ Hz' (Wz(B)).

Proof. First we show that we can express a circuit family by a logic formula
(Theorem Hl). Then we show that a language in this logic can by recognized by
a restricted morphism (Theorem [B). Finally, we show how to construct a circuit
family for a restricted morphism (Theorem []).

It is unknown whether the TC? depth hierarchy is strict. In the next theorem
we show a relation between circuit depth and quantifier depth:

Theorem 3. Let P be a set of predicates closed under FO[<]-constructions and
shifting. FO[<,B]-uniform LTC®circuits form a hierarchy in the circuits depth
iff FO + MAJy[<,B] form a hierarchy in the quantifier depth.

Proof. The proof of Theorem [ translates a circuit of depth d into a formula
of depth d + ¢ for a constant c. Similarly the proof for Theorem [ translates a
formula of quantifier depth d in a homomorphism into a group of weak block
depth d + ¢. The construction of a circuit in Theorem [f from a group of weak
block depth d yields a circuit of depth ¢ - d.
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5 Circuits to Logic

In this section we show how we can transform a circuit into a logical formula.
We proceed inductively, starting with the input gates.
The following lemma helps us to express the uniformity:

Lemma 1. Let ¢ be a formula in FO[<,B]| such that Ly is the uniformity
language of a family of LTCY circuits. Then the following predicates are in B:

1. for all z9,y2 € [c| the binary predicate Cy, y,(21,y1) which is true iff the
gate labeled (z1,x2) is connected to (y1,y2) in C;

2. for all 0 € X,xo € [c] the binary predicate Inpy p,(x1,y1) which is true
iff the gate labeled (x1,x2) is an input gate that checks if there is an o at
position yy1 in the input; and

3. for all x4 € [c] the unary predicate M, (x1) which is true iff the gate labeled
(z1,x2) s a majority gate.

Now we show that, given a subset of positions by a formula ¢(z), we can express
if a formula ¥ (x) is true for the majority of these positions.

Lemma 2 (Relativization). Let ¢(x) and ¥(z) be formulae in FO+MA\J2[<
,B| with one free variable. Then there exists a sentence in FO + MAJs[<, ]
that is modeled by w iff

{i | we=i | ¢(2) ANwa=i = (@)} > {i | we=i = ¢(2) A ~wami = ¢(2)}]-

Proof. The formula Maj x (¢p(x) Ap(x), =¢(z) V (x)) will do. If ¢(z) is false,
both formula add to 0 in the evaluation of the extended majority quantifier. If
¢(x) is true, the contribution of the two formulae to the sum will be +2 or —2
depending on the value of ¢ (x).

Theorem 4. If L is recognized by a FO[<,B]-uniform family of LTC°-circuits,
then L can be expressed as a formula in FO + MAJy[<,B].

Proof. The construction we use is standard (see e.g. [I'7J6]) but must be modified
to work with two variables. Let (C},)nen be the LTCO-circuit family recognizing
L. By the assumption there is an FO[<, ] formula ¢ that recognizes the uni-
formity language of (C),)nen. As shown above we can assume that we have the
predicates Cy, 4, (21, Y1), My, (21), and Inpe z,(x1,y1) in B

We now recursively construct a sentence ¢ in FO + MAJ>[<,B] which de-
scribes the same language as (C,)nen. We construct formulae ¢§f§) such that

(d )( 1) is true iff gate (x1,x2) outputs true and has depth at most d. For
d =0, (x1,x2) outputs true iff it is an input gate which outputs true, so:

¢(0) .731 \/ 3 Y1 Inpd -’E2($17y1) /\Qo(yl))
oy

Now let G(m‘? (x1) =

Mag yy { Cuyi(z1,51) A (1), 7Cly 1 (21, 51) VD (1), . .
(d— (d—
Cuye(@r,y1) AN (1), ~Cy ez, y) VO D yn) ).
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This is the essential step. Observe that G,E,f? (z1) models a majority gate at
depth d. By the proof of Lemma [ it evaluates to true iff the number of true
predecessors is larger than the number of false predecessors. With the help of the
formula Ggg)(acl), we define: wi‘i)(xl) = My, (1) A G(j? (x1)V 1/19(52) (21). Finally,
we define 1 to be the value of the gate labeled (1,1), thus 1 = ¥\ (1) where d
is the depth of the circuit family.

6 Logic to Algebra

We will show that we can replace a logic formula over two variables by apply-
ing the weak block product principle a finite number of times. This extends the
construction of [20].

Definition 15 (weak block product principle). Let a : X* — (T, %) be a
morphism, I' be a finite alphabet and v : T x X x T — I be a function such that
ro(t1,t2) = r(t1,0,t2) is a type respecting function for all o € X. Then we define
a length-preserving mapping Ty : X% — I by Tr o(v1 -+ - vy) = w1 - - - Wy, where
w; = r(a(vy - vi—1), v, a(Vigr -+ vy)). If « is a restricted morphism, then we
54y Tr,o 15 restricted.

As in the usual case [20], 7, is not a morphism. Without loss of generality
we can assume an innermost formula of quantifier depth one to always be of
moved out of the scope of the quantifier, and the formulae inside the quantifier
can be assumed to have the form Q,,(x) A P;(z,y) since the predicate set is
closed under boolean combinations. We now proceed by induction on the depth.

Lemma 3. Let ¢ be a formula in FO—|—M11]2[<7 PB] with an innermost formula
Y of quantifier depth one over the alphabet X, and I' = X x {0,1}. We let ¢’
be the formula over I', which is ¢ if we replace Qo (y) by Q4,0)(y) V Q(o,1)(y)
and Y(y) by V,ex Qo1)(y). Then there exists a morphism o : X* — (T,%) =

(z,7z+) 3 X lC:l(TPL,TPL) and type respecting functionr: T x X x T — I" such
that T;&(LW) = L¢.

Lemma 4. Let ¢ be a formula in FO + MﬁJ2[<,‘B] of quantifier depth d >
1 over the alphabet X. Then there exists a finite alphabet I' and a restricted
mapping Tro : X* — I'* and a formula ¢ in FO + MAJ2[<,B| of quantifier
depth d — 1 such that Ly = 7,1 (L),).

Lemma 5. Let 7, be a restricted mapping with o : ¥* — (T, %) and let L C I'*
be a language recognized by a morphism to (S,6). Then 7, (L) is recognized by
a morphism to (S,6) O (T,%).

Theorem 5. For each L € FO + MAJy[<,P] there is a (T, <) in W () and
a restricted morphism h such that L = h=1(T) for an extended type T over T.
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Proof. Let ¢ be a FO 4+ MAJy[<, ] formula of depth d with L = Ly. By
applying Lemma [ inductively we get a chain of mappings:

Tra,az Trg—1,0q-1

Try,a
L I = Ty S T

r* Iy
and a FO + MAJy[<, %] formula ¢4~ of depth one such that
L= T;,loq o T;il—l’ad—l(L¢(d71))'

The remaining formula ¢ is of depth 1 and has no free variable
¢ = Maj z (Pi(z) A Qoy (), ..., Pe(x) A Qo (2)). hence it is easy to apply
the construction of Lemma [B] for the morphism «. Since we do not have a free
variable y we replace a, by a., in the construction that simulates a variable y
at the position z but is ignored by the formula ¢’.

Now we have a morphism /' and a type T such that Lyu-1 = h'~'(T). By
applying Lemma Bl inductively to 7, | o, , Up t0 Ty q,, We will get a morphism
h:X*— (--((T'0OSq—1) 0 Sq_2)---) 081, and a type X with L = h=1(X).

7 Algebra to Circuits

In order to model a morphism by a circuit, we will first split the morphism into
mappings.

Lemma 6. Let h: X* — (S,8) O (T,%) and L = h=Y(X) for some type X of
(5,6) B (T,%). Then there is a finite alphabet I' and a map 7y o = X* — ' with
a: X* — (T,%) and a morphism b’ : I'* — (8,6) such that 7,3 (k'"*(S)) = L
for some S € &. If h is restricted, then T, and b’ are also restricted.

So if L is recognized by restricted morphism into a group Wy (), then there is
a set of mappings 71, . .., 74 such that L =7, ' o---o7r; ' (h=}(7)), where all the

morphisms map to a group of the form X ;:1 ((Z7 7zt) o X lcfl(Tpﬂip,)).

Lemma 7. A FO[<, Pl-uniform LTC" circuit can compute the function T,
where a : X* — (T,%) = X ;:1 (z,z+t) O X lcil(Tpl,{EPl) is restricted. We
require here for each letter v € I' the corresponding output gates to be labeled by
(i,7).

Theorem 6. Let (T, %) € Wyz(*B) recognize L then L is in FO[<,B]-uniform
LTCP.

Proof. Let h : ¥* — (T, %) be a restricted morphism with L = h=!(7), where
7 € . By applying Lemma [0l inductively we get a chain of mappings 7, o, and
a morphism h':

Try,aq

Tro,an Trg—1,04—1 h T

X Iy I3 == Iy g ——— Iy,
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where T" = Xi:l (Z,7%) O chil(TP“(zpl)) and there is a 7/ € ¥ such
that L =71, 007! (R =H(T")).

71,001 Td—1,0d—1

To recognize h'~1(T") we construct 7,, , with r(t;,o,ts) = 1iff t; -t € 7,
r(t1,0,t2) = 0 otherwise and & = h. Then 7, o, = 1" iff w € L and 0™ otherwise.
Hence we can apply Lemma [1 to construct a circuit with only one output gate.

Now for each 7., o, We can construct a circuit as in Lemma [l by connecting
these circuits together and also append the circuit for A’ that we just created, we
get a circuit that recognized L. To see that this circuit has a uniformity language
in FO[<, ], we label the gates (x1,z2) that belong to 7, o, With (21, (k, z2))
and the gates (x1,x2) that belong to b’ by (z1, (d, z2)). Since we now have that
the uniformity language for the individual circuit layers is in FO[<, ], also the
uniformity language for all layers is in FO[<,B]. The interconnection between
these circuits is FO[<]-uniform since we always connect a series of output gates
labeled by a tuple (y1, (dk,y2)) where ys is a fixed constant to an input gate
(21, (dg+1,22)) where 21 = y; and x5 is a fixed constant.

8 Discussion

In this paper we extend the known connections between linear circuits, two-
variable logic, and weakly blocked algebra from the case of linear AC? and linear
ACC? to the case of linear TC®. This algebraic characterization can be used to
prove that the word problem over As (known to be complete for NC* [1]) is not
in uniform LTC? [5].

FO;[<] (resp. FO 4+ MODs[<]) was linked to weakly blocked Uy (resp. Zj)
but no connection to circuits is known. On the other hand, FOslarb] (resp.
FO + MODs[arb]) corresponds to linear ACY (resp. linear ACC?). We obtain
a three-way correspondence for predicate sets respecting certain closure prop-
erties. Our proofs also hold for the case of FOy and FO + MODs: The group
(Z,77), which simulates the quantifier, can be substituted by Uy, or by U; and
7y, to get results for those cases. In this way we obtain the possibility to handle
predicate sets between the order predicate and arbitrary numerical predicates,
e.g. {<, +H{< +,*}

We want to thank Klaus-Jorn Lange and Stephanie Reifferscheid for helpful
comments.
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