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Abstract. We investigate algorithmic properties of infinite transition
graphs that are generated by rewriting systems over unranked trees. Two
kinds of such rewriting systems are studied. For the first, we construct a
reduction to ranked trees via an encoding and to standard ground tree
rewriting, thus showing that the generated classes of transition graphs
coincide. In the second rewriting formalism, we use subtree rewriting
combined with a new operation called flat prefix rewriting and show
that strictly more transition graphs are obtained while the first-order
theory with reachability relation remains decidable.
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1 Introduction

One of the main trends in verification is the field of infinite state model checking,
in which procedures (and limits to their applicability) are developed to check
systems with infinite state spaces against formal specifications (for a survey on
infinite graphs cf. [19]).

In automatic verification, checking whether a system can reach an undesir-
able state or configuration translates to the reachability problem “Given a finite
representation of an infinite graph G and two vertices u, u’ of G, is there a path
from u to w/?”. From this point of view, an important task in the development
of a theory of infinite graphs is to identify classes of infinite graphs where such
elementary problems like reachability are decidable.

The strong formalism of monadic second-order logic (MSO) subsumes tempo-
ral logic (cf. [I1]) and thus allows to express reachability properties. A well-known
representative of graph classes with decidable MSO theory is the “pushdown hi-
erarchy” introduced by Caucal [6]. Although this hierarchy is very rich and
contains a lot of graphs, grid-like structures are not captured.

In order to compensate this weakness, a different approach of generating tran-
sition systems is to employ ranked trees (or terms) as the basic objects of the
rewriting formalism, as already considered in [2]. Thereby, the internal structure
of the trees is not of primary interest, but the different rewriting operations
that can be applied on trees. Consequently, the vertices of the generated infinite
graphs are represented by ranked trees, while the edge relation is induced by
(simple) tree operations.
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Among attractive subclasses of rewriting systems, an interesting and practi-
cal subclass is made up by the ground tree rewriting systems (which contain
the infinite grid as transition graph; for an extensive analysis cf. [I5]). “Ground
rewriting” means that no variables occur in the rules, thus in ground tree (or
term) rewriting systems (GTRSs), only explicitly specified subtrees can be re-
placed by other explicitly specified subtrees. Though in general MSO is unde-
cidable for transition graphs of GTRSs, there is a decidable logic that allows to
express reachability problems: first-order logic with the reachability relation [10].
In [I3] [15] the structure of the transition graphs of GTRSs and their relation
to other classes of infinite graphs, in particular to pushdown graphs, was stud-
ied. Furthermore, in [14 [T5] several variants of the reachability problem for this
class of graphs were investigated and a decidable logic was defined for the class
of (regular) ground tree rewriting graphs.

For many applications however, the modelling of system states, messages, or
data by ranked trees is not the most intuitive approach (if not impossible as e.g.
the modelling of associative operations), since every symbol is of a fixed arity.
Thus, our aim is to investigate a possible generalization of the idea of ground tree
rewriting systems to the case of unranked trees. Briefly, unranked trees are finite
labeled trees where nodes can have an arbitrary but finite number of children,
and no fixed rank is associated to any label.

In this paper, we investigate to which extent results for ground tree rewriting
systems are transferable to the unranked case. Note however, that the direct
adaptation of this rewriting principle is not of interest: When starting from a
fixed initial tree and applying a finite set of rewrite rules with constant trees,
the resulting trees are of bounded branching and hence can be traced to the case
of ground tree rewriting over ranked trees. Another natural approach to handle
unbounded branching of unranked trees is to encode unranked trees as binary
trees. Using this formalism, we show that there is a class of rewriting systems
over unranked trees, which will be called partial subtree rewriting systems, that
generates the same class of infinite graphs as ground tree rewriting systems over
ranked trees.

However, encodings are problematic as they alter locality and path properties.
This means that this approach of compensating unbounded branching via a
dispersal into subtrees blurs a decisive point, namely the separation of two types
of unboundedness: one is derived from the arbitrariness of “hierarchy levels”
(represented by the height of the tree) while the other unboundedness refers to
the number of data on the same hierarchy level. Pursuing the latter aspect, we
define a new class of rewriting systems over unranked trees, the subtree and flat
prefix rewriting systems, which combine ground tree rewriting with prefix word
rewriting on the “flat front” of a tree. Here, a flat front indicates a successor
sequence wherein all nodes are leaves. With this approach related to ground tree
rewriting, we obtain a class of infinite graphs which has a decidable first-order
theory with reachability predicate. Furthermore, analogous to regular ground
tree rewriting systems over ranked trees, a regular variant of these rewriting
systems is considered.
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After introducing the basic terminology in Section 2] the class of transition
graphs of partial subtree rewriting systems is treated in Section[3l We show that
this class coincides with the class of transition graphs of ground tree rewriting
systems over ranked trees. Section Fl introduces (regular) subtree and flat prefix
rewriting systems, relates the classes of transition graphs to the previous ones,
and investigates the decidability of the reachability problem over the transition
graphs of (regular) subtree and flat prefix rewriting systems. Furthermore, it is
shown that the structure consisting of the set of unranked trees and the relations
reachability and one-step reachability is automatic for a suitable definition over
unranked trees and thus has a decidable first-order theory (cf. [I]). Section
concludes with a short summary and points to further aspects of interest.

2 Preliminaries

It is assumed that the reader is familiar with the basic notions of automata theory
and regular languages (for an introduction cf. [12], for automata on ranked trees
cf. [7], and on unranked trees cf. [3]).

An unranked tree over an alphabet X' is a mapping from a nonempty finite
domain dom; C N* to X, where dom; is prefix closed and it holds that if xi €
dom, then xj € dom, for x € N*, i € N, and j < 4. In an unranked tree, each
node may have an arbitrary but finite number of successors. If the root of a finite
tree t is labeled by a € Y and has k successors at which the subtrees tq,...,tx
are rooted, then ¢ can be written as the term a(t1,...,t). The set of unranked
trees over an alphabet Y is denoted by T’.

The subtree ty, of t is the tree rooted at node = € dom; (i.e. t).(u) = t(zu)
for xu € domy). The height of a tree is defined as ht(t) := maz{|x| | z € dom,};
if a tree ¢ is of height 1, the word derived from the front (i.e. the sequence of
leaves read from left to right) of ¢ is called the flat front.

A hedge as introduced by Courcelle [9] is a (possibly empty) finite ordered
sequence of trees. The width of a hedge is defined as the number of trees that
are contained in the sequence; consequently, a tree is a hedge of width 1.

A nondeterministic bottom up tree automaton (NTTA) on unranked trees is
of the form A = (Q, X, A, F) over an unranked alphabet X', with a finite set
Q of states, a set F© C @ of final states, and a finite set of transitions A C
REG(Q) x X x @, where REG(Q) denotes the class of regular word languages
over @, which are given for single transitions e.g. by a nondeterministic finite
(word) automaton (NFA). A run of A on t is a mapping p : dom; — @ such that
for each node © € dom, there is a transition (L, t(z), p(z)) € A such that the
sequence ¢1 - - - ¢, of states formed by the run at the successors of x is a word in
L. Thus, an NTTA employs NFAs that read the successor sequence of a node,
and decide with this word and the label of the current node which state to assign
to the current node.

As usual, a run is accepting if the root is labeled with a final state, and the
accepted language T'(A) contains all trees for which there is an accepting run.
If there is a run labeling the root with state ¢ then we write A : ¢t —* ¢.
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We also use the equivalent model NI TA as well as an extended model (denoted
by e-N1TTA) with e-transitions from the set @ x @, each with the standard
semantics.

A tree is called ranked if every symbol a € X is assigned a unique arity
rk(a) € N, and each node labeled with a has exactly rk(a) successors.

A ground tree rewriting system (GTRS) over ranked trees is defined as a tuple
R = (X, I, R, t;,), with ranked alphabet X, transition alphabet I', finite set R

of rules of the form s <& s’ with s,s8' € Tx, o € I', and initial tree t;, € Tx.

Arues & ¢ € Ris applicable to a tree t if there is a node z € dom; with
s = ty5, and the resulting tree is t' = t[z|s'], where the subtree rooted at node

z is replaced by the tree s’. In this case, ' is derived from t by the rule s <> s’
and we write t —% t’. The tree language that is generated by R is denoted
T(R) = {t € Tx | tin —% t}; the focus of this paper will be the structure
induced by the rewriting system with respect to the tree language. This is a
directed edge labeled transition graph Gr = (Vr, Er,I"), of R with Vg = T(R),
and (t,0,t') € Er iff t =% t'. Note that the vertex set Vi is defined as the set
of trees that are reachable from t;, by repeated application of the rewrite rules.
The class of transition graphs of GTRSs is denoted by GTRG. For an extensive
survey on GTRG cf. [15].

One way of dealing with unranked trees is to encode them by ranked trees.
We use here a formalism proposed in [I8], and employed as an encoding in [4],
that uses only one binary symbol corresponding to an operation for constructing
unranked trees. The extension operator Q : Ts; x T, — T's; extends a given tree
t by t' by adjoining ¢’ as the next sibling of the last child of ¢: a(t1,...,t,) @t =
a(ty, ..., ty,t"), respectively for case n = 0 : a@t’ = qa(¢'). Furthermore, we
can also adjoin a hedge instead of a single tree ¢’ in the intuitive way. Note
that every unranked tree can be generated uniquely from trees of height 0 using
the extension operator: a(ty,...,t,) = [(--- (a@Qt;) Qty) - -- @Qt,], and thus, this
formalism can be used as an encoding of unranked trees into binary ones (by
assigning rank 0 to each symbol of the unranked alphabet and rank 2 to the
extension operator @).

3 Partial Subtree Rewriting Systems

As mentioned in the Introduction, the direct transfer of the ground tree rewrit-
ing principle to unranked trees would result in bounded branching, therefore
new rewriting principles have to be considered. The first rewriting principle
considered aims at an easy transfer of nice properties of GTRSs. Therefore, un-
ranked trees are encoded into ranked ones via the extension operator encoding
as introduced in Section 2l Subtrees of the tree obtained after the encoding are
hereby mapped to partial subtrees in the corresponding unranked tree; where if
a(ty,...,t,)is a subtree, then a(ty, ..., ;) is a partial subtree for each 0 < i < n.
The rewriting system therefore is defined such that exactly those partial subtrees
are replaced.
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The set T’z ¢ is the set of all unranked trees over X' with one occurrence of
the variable £ as leaf and rightmost child of the root, i.e. the set of trees of the
form t @ ¢ with ¢ € Ty,

A partial subtree rewriting system (PSRS) over unranked trees in T, is of the
form R = (¥, I, R, t;,), with an unranked alphabet X, a transition alphabet
I', a finite set of rules R, and an initial tree t;,. The set R consists of subtree
rewrite rules over trees of T's; ¢ of the form: r <! with 7,1 € Ts ¢ando el

A tree t' is derived from t (t —% t'), if there is a node x € dom;, a hedge h
over ¥, and a rule r <> ' € R, such that r[£|h] = t., and t[z|r'[¢|h] = t' (cf.
Figure[D)). The class of transition graphs of PSRSs is denoted by PSRG.

Fig. 1. Application of rewrite rule r oy according to the definition of PSRSs

With these definitions it can be shown that PSRSs over unranked trees and
GTRSs over ranked trees generate the same transition graphs up to isomorphism.

Theorem 1. Partial subtree rewriting systems generate the same class of tran-
sition graphs as ground tree rewriting systems (PSRG = GTRG).

Proof (Sketch). When unranked trees are encoded into ranked ones by the ex-
tension operator encoding, subtrees of the ranked encoding correspond exactly
to the partial trees of Tx; ¢ by construction. Thus applying a rule of a PSRS
corresponds to rewriting an entire subtree in the ranked tree obtained after the
encoding. The technical details of the construction of a GTRS for a given PSRS
can be found in [I7].

Since ranked trees can be viewed as unranked trees, and since each symbol
has a unique rank, the construction of a PSRS R for a GTRS § = (X, I, S, tin)
over ranked alphabet Y. is straightforward. The ranks of the symbols are simply
omitted, the initial tree is kept, and the given rules of the GTRS are endorsed
by extending the trees in the rules with the variable £ to obtain trees in T's; ¢.
Consequently, with the same initial tree for both rewriting systems, the variable
& can only be substituted by the empty hedge, thus resulting in isomorphic
transition graphs. a

This class equivalence of GTRG and PSRG induces that by disregarding the
inner structure of the vertices (unranked vs. ranked trees), the transition graphs
are of identical structure.
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Corollary 2. The first-order theory with reachability is decidable for PSRG.

Additionally, several other decidability and undecidability results for GTRG can
be transferred to PSRG (cf. [2, [15]).

4 Subtree and Flat Prefix Rewriting Systems

Previously, unbounded branching was coped with via a dispersal into the un-
boundedness of depth of a tree. In order to respect the nature of these two
different types of unboundedness, we now consider a new rewriting formalism.
Towards a compromise between known principles and meeting this requirement,
we combine standard subtree substitution with flat prefix substitution. That
means, for subtrees of height 1, a prefix of the successor sequence of this subtree
can be replaced by another sequence, enabling us to exploit properties of prefix
rewriting over words.

Note that these prefix rewrite rules can be regarded as a kind of synchroniza-
tion: they can only be applied at a node x if all subtrees rooted at its successors
have a certain property, namely are of height 0. This kind of structural control
is not available for the previously considered rewriting systems, and thus yields
a new class of transition graphs.

t . t'
—
z z
Sy ,
S
(a) Subtree substitution (b) Flat prefix substitution

Fig. 2. Application of rewrite rules of according to the definition of SFPRSs

A subtree and flat prefix rewriting system (SFPRS) over unranked trees in
Ty is of the form R = (X, I, R, t;,), with a finite unranked alphabet X, a finite
transition alphabet I', an initial tree t;,, and a finite set R of rules of two types:

1. subtree substitution (cf. Figure
with rules of the form r; : s; < siforj€J, sj,8;€Ts,0 €I, and
2. flat prefix substitution at the flat front of the tree (cf. Figure
with rules of the form r; : u; <> w,forie I, u,u, e Xt o€l

with TUJ = {1,...,|R|} and I NJ = (. The class of transition graphs of
SFPRSs is denoted by SFPRG.

A tree t' is derived from t (t —% t’) by applying a subtree rewrite rule r;, if
there is a node 2 € dom; with t,, = s; such that t[z|s}] = t' (cf. Figure Pfa)).
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A tree t' is derived from t by applying a prefix rewrite rule r;, if there is a
node © € dom; with ht(t,,) = 1 and flatfront(t,,) = u;v, a tree s € T with
ht(s) = 1 and s(e) = t(x), flatfront(s) = u,v, such that t[x|s] = ¢’ for some
v € X* (cf. Figure (b)).

Naturally, the definition of SFPRSs can be extended to regular SFPRSs by
introducing regular sets of trees resp. words in the rules to obtain an even larger
class of transition graphs. Conversely, SFPRSs can be regarded as the special
case of singletons in the rules of regular SFPRSs. Note that all negative results in
this paper are shown for SFPRSs while correspondingly, all positive results are
shown for regular SFPRSs and thus hold for both classes of transition graphs.

4.1 Classification of Transition Graph Classes

Towards a classification of the transition graph classes PSRG and (regular) SF-
PRG, consider the SFPRS Ry = (X, I, R, tiy,) with X' = {a,c,e}, I' = {0,1},

R:{T1:c<l> T,Tg:e<i> T,TgIC‘iCC} (I ={3},J=1{1,2}), and t;, = A

whose transition graph is depicted in Figure
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Fig. 3. Transition graph of SFPRS Rg

Note that the O-transition r3 can only be applied at the trees of the vertices
on the top line in Figure [ since these are the only trees that have a subtree of
height 1 with flat front cw for w € XF. For the transition graph this means that
after traversing a 1-edge, no 0-edges are available any more.

Lemma 3. The transition graph of SFPRS Ry cannot be generated by a GTRS.

Proof (Sketch). It can be shown that using a GTRS, an enabled 0-transition can-
not be disabled by an aritrary number of 1-transitions leading to different nodes.

Towards a contradiction: consider a vertex of the top row of Figure Bl with n
out edges with label 1 and one out edge with label 0. For the tree at this vertex



74 C. Loéding and A. Spelten

in a corresponding transition graph of a GTRS &, there have to be n different
1-transitions which rewrite the subtree available for the applicable O-transition
in order to prevent a O-transition afterwards. However, the number of nodes in
the tree where these 1-transitions have to be applied in order to fulfill this re-
quirement is bounded by the number of rewrite rules of S and the height of the
trees of the left hand sides of the rewrite rules of S. For n large enough this is
a contradiction (for details, we refer the reader to [I7]). ]

Note that Lemma [3] is already true if we omit rule ro from SFPRS Ry. Con-
versely, every ground tree rewriting system can always be conceived as a SFPRS
with subtree rewrite rules only. With the same initial tree and the same subtree
rewrite rules, omitting the ranks of the symbols does not provide more substi-
tution possibilities. Since the classes of transition graphs GTRG and PSRG are
equivalent, one obtains the following.

Proposition 4. The class of transition graphs of PSRSs is strictly included in
the class of transition graphs of SFPRSs: PSRG ; SFPRG.

Thus, undecidability results for PSRSs carry over to (regular) SFPRSs. These in-
clude the reachability problems: constrained reachability, universal reachability,
and universal recurrence (cf. [19]).

Additionally, since this is the case for ground tree rewriting systems, the
monadic second-order logic of SFPRSs is undecidable. This can also be observed
directly from the transition graph of R, since it includes the two-dimensional
grid, whose monadic second-order logic is undecidable (as proven e.g. in [16]).

We would like to point out that the increase of expressive power of SFPRSs
over PSRSs results from the fact that prefix rewrite rules can only be applied
to flat fronts. Due to this restriction it is not possible to transfer these rules to
standard rewriting rules over encodings.

4.2 Reachability Via Saturation

The main contribution of this paper is the decidability of the reachability prob-
lem for transition graphs of (regular) SFPRSs. This is done by an adaption of
the well-known saturation algorithm which e.g. solves the reachability problem
for semi-monadic linear rewriting systems over ranked trees (cf. [§]) by calcu-
lating the set prex(T) = {t € Tx | ' € T : t —% t'} of trees from which
the set T' can be reached. Thereby, the rewrite rules of a (regular) SFPRS
are simulated by adding transitions to an e-NTTA that recognizes the union
of the target set T and all trees that correspond to a left hand side of the
rewrite rules similar to the construction in [I5]. In the very same manner, the
set post (T) ={t € Tx | ' € T : ¢’ —% t} of trees which are reachable from
the set T can be obtained by pursuing the same strategy for the reversed rewrit-
ing system, i.e. the left and right hand sides of the rules are simply swapped.
However, due to the different natures of the two types of rules of (regular)
SFPRSs, and the employment of word automata in e-N1TTAs over unranked
trees, the saturation is based on an interleaving of two saturation algorithms on
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different levels of automata. In detail, for a prefix rewrite rule the saturation
is basically realized by adding e-transitions on the level of word automata that
recognize the sequence of labels of the successors of a node, while for subtree
rewrite rules, the saturation is realized by adding e-transitions on the level of
tree automata. The crucial interleaving aspects include that by the application
of subtree rewrite rules new flat fronts may be introduced, which also need to
be saturable.

For an elaborate example, the full construction, and the formal correctness
proof, we refer the reader to [I7]. The automaton resulting from the saturation
accepts exactly those trees from which the target set is reachable and thus we
obtain the following theorem.

Theorem 5. Given a (reqular) SFPRS R, and a regular set T of unranked trees,
the sets prel, (T') and posty, (T') are again regular.

As emptiness for unranked tree automata is decidable, we obtain the following
corollary.

Corollary 6. The reachability problem for (reqular) SFPRSs: “Given a (regu-
lar) SFPRS R, vertex t, and regular set T of vertices, is there a path from t to
a vertex in T 27 is decidable.

4.3 First-Order Theory Via Automatic Structures

In addition to the decidability of the reachability problem for (regular) SFPRSs,
we now address the first-order theory for these rewriting systems. We will show
that the first-order theory enriched with the predicates reachability and one-step
reachability remains decidable and thus obtain a proper superclass of (regular)
GTRG with the same decidability properties.

We show that the structure consisting of the universe T'y;, the one-step reach-
ability relation, and the reachability relation is tree-automatic for a suitable defi-
nition over unranked trees, thus exploiting the feature that any (tree-) automatic
structure has a decidable first-order theory (cf. [I]). Due to space restrictions, we
stick to an informal description of the automaton that works on the convolution
of two trees.

Briefly, the convolution ¢ = (¢1,t2) encodes two trees t1,t2 € Tx such that
the automaton reading the new tree ¢ has access to both original ones. This is
realized by labeling the node of ¢ with pairs of symbols from ¢; and ¢, such that
the successor sequences of the nodes line up on the right and are padded with a
filling symbol O on the left where necessary. For example, the trees t; = a(bc)
and to = d(efg) are convolved into t = (t1,t2) = [a,d|([O, €], [, ], [¢, g])-

In the construction of the automaton recognizing the reachability relation —*,
we embark on a strategy similar to one for pushdown systems (cf. [B]): Given
two trees t1,to € T'x, we guess the set of “minimal” points of the rewriting steps
in t; —% to and then check whether the first component of the convolution can
be rewritten into the left side of the applied rule while the second component
can be rewritten from the right side of the rule.
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For (regular) SFPRSs this means that we start with an automaton B working on
the convolution t = (1, t2) of two trees, which recognizes the identity function, i.e.
the set {(t1,%2) | t1 = t2}. The automaton then nondeterministically guesses the
set of minimal (w.r.t. the prefix ordering) nodes at which a rewrite rule was applied.
Furthermore, B also guesses which rule was applied for each of these nodes.

For a subtree rewrite rule, B checks whether the projections of the subtree
t,» belong to the regular sets pre* resp. post™ of the applied rule. Theorem
yields automata Appex, Apost» over X' for these sets, and with a straightforward
automaton construction, we can add transitions to B such that if the projections
of ¢, to the components belong to the corresponding sets, I3 accepts subtree |,
of the convolution. A similar but slightly more involved strategy works for flat
prefix rewrite rules.

The construction of an automaton for the one-step reachability relation — is
straightforward. The automaton works in a similar way but ensures that exactly
one rule was applied.

Since both relations are automatic, we obtain the following theorem.

Theorem 7. The first-order theory enriched by the relations reachability and
one-step reachability is decidable for (reqular) SFPRSSs.

5 Summary and Outlook

We showed that using rewriting systems over unranked trees one can generate
a class of infinite graphs that coincides with the class of transition graphs of
ground tree rewriting systems over ranked trees. The rewriting principle of these
PSRSs consists of substituting unranked trees partially, which corresponds to
ground tree rewriting over an encoding of unranked trees as ranked ones. Due
to the class equivalence, several decidability results over the transition graphs of
GTRSs over ranked trees can be transferred to those of PSRSs.

Furthermore, (regular) SFPRSs over unranked trees were introduced, which add
flat prefix rewriting to the known paradigm of subtree substitution. The class of
transition graphs of SFPRSs was shown to strictly include the class of transition
graphs of PSRSs, which allows to transfer several undecidability results. Addition-
ally, we described a saturation algorithm which yields the decidability of the reach-
ability problem over (regular) SFPRG. We have also shown that the structure con-
sisting of the set T's; of unranked trees and the relations reachability and one-step
reachability is automatic for a suitable definition over unranked trees, and thus we
can conclude that the first-order theory with these reachability relations is decid-
able for (regular) SFPRSs. Thus, the class of (regular) SFPRSs contains strictly
more graphs than GTRG, but has the same decidable properties.

In general, other rewriting principles over unranked trees have yet to be in-
vestigated. One aspect could be to use other word rewriting techniques in com-
bination with subtree substitution. Another interesting point of application is
to define and investigate an adaption of (semi) monadic rewriting systems to
unranked trees, which were introduced for ranked trees in [§].
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Finally, we would like to thank Arnaud Carayol for his useful comments on
the decidability proof for the first-order theory.
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