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Abstract. Using the unneeded computation power in the internet for 
distributed computing is getting more and more eligible. To increase the 
willingness to provide unneeded computing power, a secure platform is 
needed for the execution of untrusted code. We present the architecture of 
the JX operating system, which can be used to safely execute untrusted 
code. The problem of erroneous agents crashing the system is solved by 
using Java – a typesafe language – as implementation language. The 
resource consumption of the agents is controlled by a security manager, that 
inspects every interaction between an agent and a system service. If the 
security policy does not approve the use of a system service, the access can 
be denied. An agent execution system build upon JX is presented to 
illustrate the security problems occurring and the solutions provided by the 
operating system JX. 

1   Introduction 

More and more workstations are connected to the internet. The typical applications do 
not use the full capacity of theses machines. This effect is increased by the 
improvements in computer hardware. Some projects (e.g. seti@home) try to use these 
unneeded computing power for distributed computing. In a generalized way a 
personal computer may provide its unused computing power to the net. Everybody 
who wants to use it can assign a work package (called agent) to this computer. The 
owner or administrator of the machine does not need to trust the agent and must, 
nevertheless, be sure that the agent does not interfere with the normal operation of the 
system. For wider acceptance of this model of distributed computing we need a secure 
execution platform. This platform must assure that erroneous or malicious agents do 
not crash the system or consume all available resources. If this can be guaranteed the 
field of application can be even extended to more critical machines in the net, e.g. 
web servers that do not use their full capacity. 
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We provide JX a java-based operating system as an execution platform for 
untrusted code. Java allows developing applications using a modern object-oriented 
style, emphasizing abstraction and reusability. On the other hand many security 
problems have been detected in Java systems in the past [7]. The main contribution of 
this paper is an architecture for a secure Java operating system that avoids Java 
security problems, such as the huge trusted class library and reliance on stack 
inspection.  

We follow Rushby [23] in his reasoning that a secure system should be structured 
as if it were a distributed system. With such an architecture a security problem in one 
part of the system does not automatically lead to a collapse of the whole system’s 
security. Microkernel systems, especially systems that adhere to the multi-server 
approach, such as SawMill [13], and mediate communication between the servers [17] 
are able to limit the effect of security violations.  

The JX system combines the advantages of a multi-server structure with the 
advantages of type-safety. It uses type-safety to provide an efficient communication 
mechanism that completely isolates the servers with respect to data access and 
resource usage. Code of different trustworthiness or code that belongs to different 
principals can be separated into isolated domains. Sharing of information or resources 
between domains can be completely controlled by the security kernel. 

The paper is structured as follows. Section 2 gives an overview about Java 
security. The JX system architecture is described in Section 3. Section 4 completes 
the architectural overview with focus on security relevant aspect. An agent execution 
server is presented in Section 5 to illustrate the use of the previously presented 
security mechanisms. Section 6 describes related work and Section 7 concludes the 
paper. 

2   Java Security 

Java security is based on the concept of a sandbox, which relies on the type-safety of 
the executed code. Untrusted but verified code can run in the sandbox and can not 
leave the sandbox to do any harm. Every sandbox must have a kind of exit or hole, 
otherwise the code running in the sandbox can not communicate results or interact 
with the environment in a suitable way. These holes must be clearly defined and 
thoroughly controlled. The holes of the Java sandbox are the native methods. 

To control these holes, the Java runtime system first controls which classes are 
allowed to load a library that contains native code. These classes must be trusted to 
guard access to their native methods. The native methods of these classes should be 
non-public and the public non-native methods are expected to invoke the 
SecurityManager before invoking a native method. The SecurityManager inspects the 
runtime call stack and checks whether the caller of the trusted method is trusted. The 
stack inspection mechanism only is concerned with access control. It completely 
ignores the availability aspect of security. This lack was addressed in JRes [6]. Also, 
Java is perceived as inherently insecure due to the complexity of its class libraries and 
runtime system [9]. 

JX avoids this problem by not trusting the JDK class library. No user defined 
native methods are allowed and the system services are implemented in Java 
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accessible with a fast RMI-like communication mechanism as described in the 
following Section. 

3   JX System Architecture 

3.1   Domains 

JX is a single address space system and protection is based on the type-safety of the 
Java bytecode instruction set. A small microkernel contains low-level hardware 
initialization code and a minimal Java Virtual Machine (JVM).  

The JX system is structured into domains (see figure 1). Each domain represents 
the illusion of an independent JVM. A domain has a unique ID, its own heap 
including its own garbage collector, and its own threads. Thus domains are isolated 
with respect to CPU and memory consumption. They can be terminated 
independently from each other and the memory that is reserved for the heap, the stack 
and domain control structures can be released immediately when the domain is 
terminated. The microkernel represents itself also as a domain. This domain has the 
ID 0 and is called DomainZero. DomainZero contains all C and assembler code that is 
used in the system, all other domains execute 100% Java code. JX does not support 
native methods and there is no trusted Java code that must be loaded into a domain. 
There is no trust boundary within a domain which eases administration. Because the 
domain contains no trusted code it is a sandbox that is completely closed. For 
communication with other Domains we create new holes by introducing portals.  
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Fig. 1. Structure of the JX system 

3.2   Portals 

The portal mechanism is used for communication between different Domains, similar 
to RMI which is used for communication between different JVMs. Portals are proxies 
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[25] for a service that runs in another domain. Portals look like ordinary objects and 
are located on a domains heap, but the invocation of a method synchronously 
transfers control to the service that runs in another domain. Parameters are copied 
from the client to the server domain. 

Portals and services are automatically generated during portal communication. 
When a domain wants to provide a service it can define a portal interface, which must 
be a subinterface of jx.zero.Portal, and a class that implements this interface. When 
an instance of such a class is passed to another domain the portal invocation 
mechanism creates a service in the source domain and a portal in the destination 
domain. Each domain possesses an initial portal: a portal to a naming service. Using 
this portal the domain can obtain other portals to access more services. When a 
domain is created, the creating domain can pass the naming portal as a parameter of 
the domain creation call.  

3.3   Scheduler 

CPU scheduling in JX is handled in two levels, which both can be implemented in 
Java. The first level is the global scheduler that decides which domain is allowed to 
use the CPU. Since this scheduler controls the CPU, it is a critical part of the system 
and it must be trusted. When a domain is selected by the global scheduler, a domain-
local scheduler is activated. The task of this scheduler is to distribute the allocated 
CPU time among the threads of its domain. Being only responsible for one domain, 
the schedulers of the second scheduling level need not to be trusted. If they are 
malicious, they can only harm their own domain, other domains are uninfluenced 
concerning CPU time.  

4   JX Security Architecture 

4.1   JX as a Capability System 

The portals, used in JX for inter-domain communication, are capabilities [8]. A 
domain can only access other domains when it possesses a portal to a service of the 
other domain. The operations that can be performed with the portal are listed in the 
portal interface. Although the capability concept is very flexible and solves many 
security problems, such as the confused deputy [14], in a very natural way, it has well 
known limitations. The major concern is that a capability can be used to obtain other 
capabilities, which makes it difficult, if not impossible, to enforce confinement [3]. 

4.2   The Reference Monitor 

JX as described up to now can not enforce confinement. Thus an additional 
mechanism is needed: a reference monitor that is able to check all portal invocations 
and can thereby ensure a user defined security policy. A reference monitor must be 
tamper-proof, mediate all accesses, and be small enough to be verified. A reference 
monitor for JX must at least control incoming and outgoing portal calls. 
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We modified the microkernel to invoke a reference monitor when a portal call 
invokes a service of the monitored domain (inbound) and when a service of another 
domain is invoked via a portal (outbound). The internal activity of a domain is not 
controlled. The same reference monitor must control inbound and outbound calls of a 
domain, but different domains can use different monitors. A monitor is attached to a 
domain when the domain is created. When a domain creates a new domain, the 
reference monitor of the creating domain is asked to attach a reference monitor to the 
created domain. Usually, it will attach itself to the new domain but it can – depending 
on the security policy – attach another reference monitor or no reference monitor at 
all. 

It must be guaranteed, that while the access check is performed, the state to be 
checked can only be modified by the reference monitor. For these reasons the access 
check is performed in a separate domain, not in the caller or callee domain. The 
reference monitor must have a a consistent view of the past parameters. One way is to 
freeze the whole system by disabling interrupts during the portal call. This would 
work only on a uniprocessor, would interfere with scheduling, and allow a denial-of-
service attack. Therefore, our current implementation copies all parameters from the 
client domain to the server domain up to a certain per-call quota. These objects are 
not immediately available to the server domain, but are first checked by the security 
manager. When the security manager approves the call the normal portal invocation 
sequence proceeds. 

4.3   Access Decision Based on Intercepted IPC 

Spencer et al. [26] argue that basing an access decision only on the intercepted IPC 
between servers forces the security server to duplicate part of the object server’s state 
or functionality. We found two examples of this problem. In UNIX-like systems 
access to files in a filesystem is checked when the file is opened. The security 
manager must analyze the file name to make the access decision, which is difficult 
without knowing details of the filesystem implementation and without information 
that is only accessible to the filesystem implementation. The problem is even more 
obvious in a database system that is accessed using SQL statements. To make an 
access decision the reference monitor must parse the SQL statement. This is 
inefficient and duplicates functionality of the database server. 

There are three solutions for these problems: 
1. The reference monitor lets the server proceed and only checks the returned portal 

(the file portal for example). 
2. The server explicitly communicates with the security manager when an access 

decision is needed. 
3. Design a different interface that simplifies the access decision. 

Approach (1) may be too late, especially in cases where the call modified the state 
of the server. Approach (2) is the most flexible solution. It is used in Flask with the 
intention of separating security policy and enforcement mechanism [26]. The main 
problem of this solution is, that it pollutes the server implementation with calls to the 
security manager. This makes approach (3) the most promising approach. Our two 
example problems would be solved by parsing the path in the client domain. In an 
analogous manner the SQL parser is located in the client domain and a parsed 
representation is passed to the server domain and intercepted by the security manager. 
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This has the additional advantage of moving code to an untrusted client, eliminating 
the need to verify this code. 

4.4   Controlling Portal Propagation 

In [18] Lampson envisioned a system in which the client can determine all 
communication channels that are available to the server before talking to the server. 
In JX this is equivalent to a security manager that knows all portals that are owned by 
a domain. As we can not enforce a domain to be memoryless [18], we must also 
control the future communication behaviour of a domain to guarantee the confinement 
of information passed to the domain. 

Several alternative implementations can be used to find all portals of a domain or 
to keep track of them, respectively: 
0 

1. A simple approach is to scan the complete heap of the domain for portal objects. 
Besides the expensive scanning operation, the security manager is not sure, that the 
domain will not obtain portals in the future. 

2. Another approach is to install an outbound intercepter to observe all outgoing 
communication of the domain. Thus a domain is allowed to posses a critical portal 
but the reference monitor can reject it’s use. The performance disadvantage is that 
the complete communication must be checked, even if the security policy allows 
unrestricted communication with a subset of all domains. 

3. The best approach is a security manager that checks all portals transferred to a 
domain. This can be achieved by installing an inbound interceptor which inspects 
all data given to a domain and traverses the parameter object graph to find portals. 
But this operation is expensive if a parameter object is the root of a large object 
graph. During copying of the parameters to the destination domain, the 
microkernel already traverses the whole object graph. Therefore it is easy to find 
portals during this copying operation and the kernel is able to inform the security 
manager, that there is a portal passed to the domain. Then the security manager 
decides whether the portal will be created or not accordingly to the security policy. 
The security manager must also be informed if a portal is released. This way the 
reference monitor is able to keep track of the portals a domain actually possesses. 
Confinement can now be guaranteed with two mechanisms that can be used 

separately or in combination: 1. the control of portal communication and 2. the 
control of portal propagation. 

4.5   Principals 

A security policy uses the concept of a principal [8] to name the subject that is 
responsible for an operation. The principal concept is not known to the JX 
microkernel. It is an abstraction that is implemented by the security system outside 
the microkernel, while the microkernel only operates with domains. Mapping a 
domain ID to a principal is the responsibility of the security manager. We 
implemented a security manager which uses a hash table to map the domain ID to the 
principal object. Once the principal is known, the security manager can use several 
policies for the access decision, for example based on a simple identity or based on 
roles [11]. 
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The principal information can also be used for the local scheduling decision of a 
service domain. In our capability based file system interface, for example, each open 
file is represented by a portal. Each request (reading from or writing to a file) results 
in the activation of a service thread in the file system domain. But these threads do not 
immediately get CPU time. The local scheduler of each service domain decides which 
thread is allowed to run and thus controls which request is executed first. As 
described in the previous paragraph, each portal call and therefore also each service 
thread is associated with the principal information of the calling domain. The 
scheduling decision can be based on this information. 

5   Example of Use: Agent Execution Server 

We configure the system to act as an agent execution platform to illustrate how our 
security architecture works in a real system. A agent execution server should be able 
to execute code that was previously sent to him by a client. In detail the scenario is 
shown in figure 2. 

 

Fig. 2. Agent Execution Platform 

A client transfers a component containing bytecode to the server. There the code is 
verified and compiled to nativecode. Afterwards a new domain is created and the 
received component is installed inside. Executing the component in a new domain is 
necessary to protect the system from erroneous or malicious code. Additionally an 
appropriate security manager must be attached to the domain to restrict the usage of 
resources and services. 

In the following we use an agent implementation, that searches data on the file 
system. In a remote file system this requires that each file that should be examined 
must be transferred over the network. Using an agent reduces the network traffic, 
because it can move to the host that contains the file system and perform local file 
system operations. In this scenario we have to use a reference monitor that checks 
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each file system operation. At the same time we have to control the CPU time each 
client is allowed to use.  

Security Manger. We use a security manager, that controls the access to the file 
system service. Since our file system implementation is accessed using a capability 
based interface, we only have to check whether a domain (agent) is allowed to get a 
file capability or not. To accomplish this, the reference monitor is activated when a 
portal is passed between two domains (see Section 4.4). It reads the principal ID of 
the receiving domain and determines the portal type to know whether it is a file portal 
or not. If it is a file portal, the portal type also informs about whether it is for read-
only access or for modifying access. On the basis of this information the security 
policy can be applied. In our example file operations of agents were restricted to a 
predefined group of files whereas local applications were allowed to access all files. 
Similar to this scenario any other resource, provided by a service of the agent 
execution platform, can be controlled.  

Scheduling. We also have to restrict the time an agent is allowed to use the CPU. 
Since we installed each agent in a separate domain this is the task of the global 
scheduler. We implemented a stride scheduler [28].The stride scheduler distributes 
the available CPU time to the domains accordingly to the amount of tickets they have. 
The tickets are described as the right to use a resource. The more tickets a domain has 
the more often it can use the CPU. Every time a new agent is installed, a predefined 
amount of tickets is assigned to the agent. If there are no tickets left, we can either 
stop the execution of new agents or we can redistribute the available tickets between 
the running agents, thus the maximal CPU time for each agent is reduced.  

If an agent uses a service it is desirable that the time a service spends for an agent 
is charged to the agent’s CPU time account. This demands a cooperation between the 
global scheduler and the scheduler of the service domain hence we have to trust the 
local scheduler of the service. When the local scheduler is activated, it extracts a list 
of domains that have called his service from the list of runnable service threads. Then 
it asks the global scheduler which of these domains should be activated accordingly to 
the stride scheduling strategy. The service thread which handles the request of this 
domain is then activated. The time used by this thread can be charged to the client 
domain’s account. 

For most services this does not allow an exact accounting of this time because 
there are often resources that are shared between all service clients. For example the 
buffer cache management in a file system service. A buffer cache is necessary for an 
efficient service but the time used to manage it can not be accounted to a single 
service thread. If we want an exact accounting we have to use a separate file system 
service instance for each agent, but in most situations it will be enough to have a 
separate service instances for a groups of agents. 

6   Related Work 

Capability-Based Systems. Several operating systems are based on capabilities and 
use three different implementation techniques: partitioned memory, tagged memory 
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[10], and password capabilities. Early capability systems used a tagged memory 
architecture (Burroughs 5000 [22], Symbolics Lisp Machine [21]), or partitioned 
memory in data-containing and capability-containing segments (KeyKOS [12] and 
EROS [24]). To become hardware-independent, password capabilities [1] have been 
invented and are used in several systems (Mungi [16], Opal [4], Amoeba [27]).  

Type-safe instruction sets, such as the Java intermediate bytecode, are a fourth way 
of implementing capabilities. The main advantages of this technique are that it is 
hardware-independent, capability verification is performed at load time, access rights 
are encoded in the capability type and not stored as a bitmap in the capability, and 
capabilities can not be transferred over uncontrolled channels. 

Virtual Machines. Virtual machines can be used to isolate systems that share the 
same hardware. The classic architecture is the IBM OS/360 [20]. Virtual machines 
experienced a recent revival with the VMWare PC emulator [29]. VMs only work at a 
large granularity. VMWare instances consume a lot of resources to emulate a 
complete PC which makes it impossible to create fine-grained domains. Most 
applications require controlled information flow between classification levels; that is 
between VMWare instances. A virtual machine realizes a sandbox. The holes of the 
VMWare sandbox are the emulated devices. Thus, communication is rather expensive 
and stating a security policy in terms of an emulated device may be a difficult task. 

Java Security. The J-Kernel [15] implements a capability architecture for Java. It is 
layered on top of a JVM, with the problems of limited means of resource control. It 
uses classloaders to separate types. The capability system is not orthogonal to 
application code which makes reuse in a different context difficult.  

The MVM [5], and KaffeOS [2] are systems that isolate applications that run in the 
same JVM. The MVM is an extension of Sun’s HotSpot JVM that allows running 
many Java applications in one JVM and give the applications the illusion of having a 
JVM of their own. There are no means for resource control and no fast 
communication mechanisms for applications inside one MVM. KaffeOS is an 
extension of the Kaffe JVM. KaffeOS uses a process abstraction that is similar to 
UNIX, with kernel-mode code and user-mode code, whereas JX is more structured 
like a multi-server microkernel system. There needs to be no trusted Java code in JX. 
Communication between processes in KaffeOS is done using a shared heap. Our goal 
was to avoid sharing between domains as much as possible and we, therefore, use 
RPC for inter-domain communication.  

7   Conclusion 

We described the security architecture of the Java operating system JX, which can be 
used as a secure agent execution platform for distributed computation. The security 
concept of JX consists of language-based protection and operating system protection. 
Typical Java security problems, such as native methods, execution of code of 
different trustworthiness in the same thread, and a huge trusted class library are 
avoided. 
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JX provides a number of security mechanisms of different invasiveness. The 
capability mechanism is inherent in the architecture and guarantees a minimal level of 
security. On a per-domain basis this mechanism can be supplemented by a monitor 
that controls propagation of capabilities between domains and, if necessary, a 
reference monitor that mediates access to these capabilities. 
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