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Abstract. Cyclic timetabling for public transportation companies is usually mod-
eled by the periodic event scheduling problem. To obtain a mixed-integer program-
ming formulation, artificial integer variables have to be introduced. There are many
ways to define these integer variables.
We show that the minimal number of integer variables required to encode an in-
stance is achieved by introducing an integer variable for each element of some
integral cycle basis of the directed graph D = (V, A) defining the periodic event
scheduling problem. Here, integral means that every oriented cycle can be ex-
pressed as an integer linear combination.
The solution times for the originating application vary extremely with different
integral cycle bases. Our computational studies show that the width of integral
cycle bases is a good empirical measure for the solution time of the MIP. Integral
cycle bases permit a much wider choice than the standard approach, in which
integer variables are associated with the co-tree arcs of some spanning tree. To
formulate better solvable integer programs, we present algorithms that construct
good integral cycle bases. To that end, we investigate subsets and supersets of
the set of integral cycle bases. This gives rise to both, a compact classification of
directed cycle bases and notable reductions of running times for cyclic timetabling.

1 Introduction and Scope

Cycle bases play an important role in various applications. Recent investigations cover
ring perception in chemical structures ([8]) and the design and analysis of electric net-
works ([3]). Cyclic timetabling shares with these applications that the construction of
a good cycle basis is an important preprocessing step to improve solution methods for
real world problems.

Since the pioneering work of Serafini and Ukovich[23], the construction of periodic
timetables for public transportation companies, or cyclic timetabling for short, is usually
modeled as a periodic event scheduling problem (PESP). For an exhaustive presentation
of practical requirements that the PESP is able to meet, we refer to Krista[12]. The fea-
sibility problem has been shown to be NP-complete, by reductions from Hamiltonian
Cycle ([23] and [18]) or Coloring ([20]). The minimization problem with a linear ob-
jective has been shown to be NP-hard by a reduction from Linear Ordering ([16]). We
want to solve PESP instances by using the mixed integer solver of CPLEX c©[5].
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716 C. Liebchen

RelatedWork. The performance of implicit enumeration algorithms for mixed integer
programming can be improved by reducing the number of integer variables. Already
Serafini and Ukovich detected that there is no need to introduce an integer variable for
every arc of the directed constraint graph. Rather, one can restrict the integer variables to
those that correspond to the co-tree arcs of a spanning tree. These arcs can be interpreted
to be the representatives of a strictly fundamental cycle basis.

Nachtigall[17] profited from the spanning tree approach when switching to a tension-
based problem formulation. Notice that our results on integral cycle bases apply to that
tension-perspective as well. Odijk[20] provided box constraints for the remaining integer
variables. Hereby, it becomes possible to quantify the difference between cycle bases. But
the implied objective function for finding a short integral cycle basis is bulky. De Pina[21]
observed that a cycle basis that minimizes a much simpler function also minimizes our
original objective. What remains to solve is a variant of the minimal cycle basis problem.

Contribution and Scope. We show that the width of a cycle basis is highly correlated
with the solution time of the MIP solver. Thus, it serves as a good empirical measure for
the run time and provides a way to speed up the solver by choosing a good basis.

Hence, in order to supply MIP solvers with promising problem formulations, we want
to compute short directed cycle bases which are suitable for expressing PESP instances.
But there is a certain dilemma when analyzing the two most popular types of directed
cycle bases: On the one hand, there are directed cycle bases that induce undirected cycle
bases. For these, we can minimize a linear objective function efficiently (Horton[11]).
But, contrary to a claim of de Pina[21], undirected cycle bases unfortunately are not
applicable to cyclic timetabling in general – we give a counter-example. On the other
hand, strictly fundamental cycle bases form a feasible choice. But for them, minimization
is NP-hard (Deo et al.[7]).

To cope with this dilemma, we investigate if there is a class of cycle bases lying in
between general undirected cycle bases and strictly fundamental cycle bases, hopefully
combining both, good algorithmic behavior and the potential to express PESP instances.
To that end, we will present a compact classification of directed cycle bases. Efficient
characterizations will be based on properties of the corresponding cycle matrices, e.g.
its determinant, which we establish to be well-defined. This allows a natural definition
of the determinant of a directed cycle basis.

An important special class are integral cycle bases. They are the most general struc-
ture when limiting a PESP instance to |A|−|V |+1 integer variables. But the complexity
of minimizing a linear objective over the integral cycle bases is unknown to the author.

The computational results provided in Section 6 show the enormous benefit of gene-
ralizing the spanning tree approach to integral cycle bases for the originating application
of cyclic timetabling. These results point out the need of deeper insights into integral
cycle bases and related structures. Some open problems are stated at the end.

2 Periodic Scheduling and Short Cycle Bases

An instance of the Periodic Event Scheduling Problem (PESP) consists of a directed con-
straint graph D = (V, A, �, u), where � and u are vectors of lower and upper time bounds
for the arcs, together with a period time T of the transportation network. A solution of
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a PESP instance is a node potential π : V → [0, T )—which is a time vector for the pe-
riodically recurring departure/arrival events within the public transportation network—
fulfilling periodic constraints of the form (πj − πi − �ij) mod T ≤ uij − �ij . We re-
formulate the mod operator by introducing artificial integer variables pij ,

�ij ≤ πj − πi + pijT ≤ uij , (i, j) ∈ A. (1)

Our computational results will show that the running times of a mixed-integer solver
on instances of cyclic timetabling correlate with the volume of the polytope spanned by
box constraints provided for the integer variables. Formulation (1) permits three values
pa ∈ {0, 1, 2} for a ∈ A in general,1 even with scaling to 0 ≤ �ij < T .

Serafini and Ukovich observed that the above problem formulation may be simplified
by eliminating |V | − 1 integer variables that correspond to the arcs a of some spanning
tree H , when relaxing π to be some real vector. Formally, we just fix pa := 0 for
a ∈ H . Then, in general, the remaining integer variables may take more than three
values. For example, think of the directed cycle on n arcs, with � ≡ 0 and u ≡ T − 1

n ,
as constraint graph. With π = 0, the integer variable of every arc will be zero. But
πi = (i − 1) · (T − 1

n ), i = 1, . . . , n would be a feasible solution as well, implying
pn1 = n − 1 for the only integer variable that we did not fix to zero. Fortunately,
Theorem 1 provides box constraints for the remaining integer variables.

Theorem 1 (Odijk[20]). A PESP instance defined by the constraint graph D = (V, A,

�, u) and a period time T is feasible if and only if there exists an integer vector p ∈ Z
|A|

satisfying the cycle inequalities

aC ≤
∑

a∈C+

pa −
∑

a∈C−
pa ≤ bC , (2)

for all (simple) cycles C ∈ G, where aC and bC are defined by

aC =

⌈
1
T

(
∑

a∈C+

�a −
∑

a∈C−
ua

)⌉
, bC =

⌊
1
T

(
∑

a∈C+

ua −
∑

a∈C−
�a

)⌋
, (3)

and C+ and C− denote the sets of arcs that, for a fixed orientation of the cycle, are
traversed forwardly resp. backwardly.

For any co-tree arc a, the box constraints for pa can be derived by applying the cycle
inequalities (2) to the unique oriented cycle in H ∪ {a}.

Directed Cycle Bases and Undirected Cycle Bases. Let D = (V, A) denote a con-
nected directed graph. An oriented cycle C of D consists of forward arcs C+ and
backward arcs C−, such that C = C+ ∪̇ C− and reorienting all arcs in C− results
in a directed cycle. A directed cycle basis of D is a set of oriented cycles C1, . . . , Ck

with incidence vectors γi ∈ {−1, 0, 1}|A| that permit a unique linear combination of
1 For T = 10, �ij = 9, and uij = 11, πj = 9 and πi = 0 yield pij = 0; pij = 2 is achieved

by πj = 0 and πi = 9.
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the incidence vector of any (oriented) cycle of D, where k denotes the cyclomatic num-
ber k = |A| − |V | + 1 of D. Arithmetic is performed over the field Q.

For a directed graph D, we obtain the underlying undirected graph G by removing
the directions from the arcs. A cycle basis of an undirected graph G = (V, E) is a
set of undirected cycles C1, . . . , Ck with incidence vectors φi ∈ {0, 1}|E|, that again
permit to combine any cycle of G. Here, arithmetic is over the field GF(2). A set of
directed cycles C1, . . . , Ck projects onto an undirected cycle basis, if by removing the
orientations of the cycles, we obtain a cycle basis for the underlying undirected graph G.

Lemma 1. Let C = {C1, . . . , Ck} be a set of oriented cycles in a directed graph D. If
C projects onto an undirected cycle basis, then C is a directed cycle basis.

This can easily be verified by considering the mod 2 projection of C, cf. Liebchen and
Peeters[15]. But the converse is not true, as can be seen through an example defined on
K6, with edges oriented arbitrarily ([15]).

Objective Function for Short Cycle Bases. Considering the co-tree arcs in the spanning
tree approach as representatives of the elements of a directed cycle basis enables us to
formalize the desired property of cycle bases that we need to construct a promising
MIP formulation for cyclic timetabling instances.

Definition 1 (Width of a Cycle Basis). Let C = {C1, . . . , Ck} be a directed cycle basis
of a constraint graph D = (V, A, �, u). Let T be a fixed period time. Then, for aCi and
bCi

as defined in (3), we define the width of C by W (C) :=
∏k

i=1(bCi
− aCi

+ 1).

The width is our empirical measure for the estimated running time of the MIP solver on
instances of the originating application. Hence, for the spanning tree approach, we should
construct a spanning tree whose cycle basis minimizes the width function. Especially,
if many constraints have small span da := ua − �a, the width will be much smaller
than the general bound 3|A|, which we deduced from the initial formulation (1) of the
PESP. To deal with the product and the rounding operation for computing aCi and bCi ,
we consider a slight relaxation of the width:

W (C) ≤
k∏

i=1

⌈
1
T

∑

a∈Ci

da

⌉
. (4)

De Pina[21] proved that an undirected cycle basis that minimizes the linearized objective∑k
i=1
∑

a∈Ci
da also minimizes the right-hand-side in (4). But there are pathological

examples in which a minimal cycle basis for the linearized objective does not minimize
the initial width function, see Liebchen and Peeters[15].

Applying the above linearization to spanning trees yields the problem of finding a
minimal strictly fundamental cycle basis. But two decades ago, Deo et al.[7] showed
this problem to be NP-hard. Recently, Amaldi[1] established MAX-SNP-hardness.

General Cycle Bases are Misleading. De Pina[21] keeps an integer variable in the
PESP only for the cycles of some undirected cycle bases. Consequently, he could exploit
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Horton’s[11] O(m3n)-algorithm2 for constructing a minimal cycle basis subject to the
linearized objective, in order to find a cycle basis which is likely to have a small width.

In more detail, for a directed cycle basis C, define the cycle matrix Γ to be its arc-
cycle-incidence matrix. He claimed that the solution spaces stay the same, in particular

{p ∈ Z
m | p allows a PESP solution} ?⊆ {Γq | q ∈ Z

C , q satisfies (2) on C}. (5)

We show that, in general, inclusion (5) does not hold. Hartvigsen and Zemel[10]
provided a cycle basis C for their graph M1, cf. Figure 1. For our example, we assume

D C1 C2 C3 C4

1

2

3

4
5

6
7

8

Fig. 1. Cycle basis C = {C1, . . . , C4} for which de Pina’s approach fails

that the PESP constraints of D allow only the first unit vector e1 for p in any solution
and choose the spanning tree H with p|H = 0 to be the star tree rooted at the center
node.

For C, the transpose of the cycle matrix Γ and the inverse matrix of the submatrix Γ ′,
which is Γ restricted to the rows that correspond to A \ H , are

Γ t =





1 1 1 0 −1 1 0 0
0 1 1 1 0 −1 1 0
1 0 1 1 0 0 −1 1
1 1 0 1 1 0 0 −1



 and (Γ ′)−1 =
1
3





1 1 1 −2
−2 1 1 1

1 −2 1 1
1 1 −2 1



 .

The unique inverse image of p = e1 is q = (Γ ′)−1p|A\H �∈ Z
k. Thus, the only feasible

solution will not be found when working on Z
C . In the following section we will establish

that the crux in this example is the fact that there is a regular k × k submatrix of the
cycle matrix whose determinant has an absolute value different from one.

Thus, key information is lost, when only integer linear combinations of the cycles of
some arbitrary cycle basis are considered. To summarize, our dilemma is: Cycle bases
over which minimization is easy do not fit our purpose. But minimization over cycle
bases that are suitable to formulate instances of cyclic timetabling, becomes NP-hard.

3 Matrix-Classification of Directed Cycle Bases

In order to develop algorithms that construct short cycle bases which we may use for
expressing instances of cyclic timetabling, we want to identify an appropriate class of

2 Golynski and Horton[9] adapted it to O(msn), with s being the exponent of fast matrix multipli-
cation. By a substantially different approach, de Pina[21] achieved a O(m3 + mn2 log n)-algo-
rithm for the same problem.
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cycle bases. Fortunately, there is indeed some space left between directed cycle bases
that project onto undirected ones, and cycle bases which stem from spanning trees. As
our classification of this space in between will be based on properties of cycle matrices,
we start by giving two algebraic lemmata.
Lemma 2. Consider a connected digraph D, with a directed cycle basis C and the
corresponding m × k cycle matrix Γ . A subset of k rows Γ ′ of Γ is maximal linearly
independent, if and only if they correspond to arcs which form the co-tree arcs of a tree.

Proof. To prove sufficiency, consider a spanning tree H of D, and {a1, . . . , ak} to
become co-tree arcs. Consider the cycle matrix Φ with the incidence vector of the unique
cycle in H ∪{ai} in column i. As C is a directed cycle basis, there is a unique matrix B ∈
Q

k×k for combining the cycles of Φ, i.e. ΓB = Φ. By construction, the restriction of Φ
to the co-tree arcs of H is just the identity matrix. Hence, B is the inverse matrix of Γ ′.

Conversely, if the arcs that correspond to the n− 1 rows which are not in Γ ′ contain
a cycle C, take its incidence vector γC . As C is a directed cycle basis, we have a unique
solution xC �= 0 to the system Γx = γC . Removing n−1 rows that contain C cause xC

to become a non-trivial linear combination of the zero vector, proving Γ ′ to be singular.

Lemma 3. Let Γ be the m × k cycle matrix of some directed cycle basis C. Let A1 and
A2 be two regular k × k submatrices of Γ . Then we have det A1 = ± det A2.

Proof. By Lemma 2, the k rows of A1 are the co-tree arcs a1, . . . , ak of some spanning
tree H . Again, consider the cycle matrix Φ with the incidence vector of the unique cycle
in H ∪ {ai} in column i. We know that Φ is totally unimodular (Schrijver[22]), and we
have ΦA1 = Γ , cf. Berge[2]. Considering only the rows of A2, we obtain Φ′A1 = A2.
As det Φ′ = ±1, and as the det-function is distributive, we get det A1 = ± det A2.

Definition 2 (Determinant of a Directed Cycle Basis). For a directed cycle basis C
with m × k cycle matrix Γ and regular k × k submatrix Γ ′, the determinant of C is

det C := | det Γ ′|.
We first investigate how this determinant behaves for general directed cycle bases, as
well as for those who project onto undirected cycle bases.

Corollary 1. The determinants of directed cycle bases are positive integers.

Theorem 2. A directed cycle basis C projects onto a cycle basis for the underlying
undirected graph, if and only if det C is odd.

Due to space limitations, we omit a formal proof and just indicate that taking the mod 2
projection after every step of the Laplace expansion for the determinant of an integer
matrix maintains oddness simultaneously over both, Q and GF(2).

The following definition introduces the largest class of cycle bases from which we
may select elements to give compact formulations for instances of the PESP.

Definition 3 (Integral Cycle Basis). Let C = {C1, . . . , Ck} be cycles of a digraph D,
where k is the cyclomatic number k = |A| − |V | + 1. If, for every cycle C in D, we can
find λ1, . . . , λk ∈ Z such that C =

∑k
i=1 λiCi, then C is an integral cycle basis.
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Theorem 3 (Liebchen and Peeters[15]). A directed cycle basis C is integral, if and
only if det C = 1.

By definition, for every pair of a strictly fundamental cycle basis and an integral cy-
cle basis with cycle matrices Γ and Φ, respectively, there are unimodular matrices B1
and B2 with ΓB1 = Φ and ΦB2 = Γ . Thus, integral cycle bases immediately inherit
the capabilities of strictly fundamental cycle bases for expressing instances of cyclic
timetabling. Moreover, the example in Figure 1 illustrates that, among the classes we
consider in this paper, integral cycle bases are the most general structure for keeping such
integer transformations. Hence, they are the most general class of cycle bases allowing
to express instances of the periodic event scheduling problem.
Corollary 2. Every integral cycle basis projects onto an undirected cycle basis.

The cycle basis in Figure 1 already provided an example of a directed cycle basis that is
not integral, but projects onto an undirected cycle basis.

Theorem 3 provides an efficient criterion for recognizing integral cycle bases. But
this does not immediately induce an (efficient) algorithm for constructing a directed
cycle basis being minimal among the integral cycle bases. Interpreting integral cycle
bases in terms of lattices (Liebchen and Peeters[15]) might allow to apply methods for
lattice basis reduction, such as the prominent L3[13] and Lovász-Scarf algorithms. But
notice that our objective function has to be adapted carefully in that case.

4 Special Classes of Integral Cycle Bases

There are two important special subclasses of integral cycle bases. Both give rise to
good heuristics for minimizing the linearized width function. We follow the notation of
Whitney[24], where he introduced the concept of matroids.
Definition 4 ((Strictly) Fundamental Cycle Basis). Let C = {C1, . . . , Ck} be a di-
rected cycle basis. If for some, resp. any, permutation σ, we have

∀ i = 2, . . . , k : Cσ(i) \ (Cσ(1) ∪ · · · ∪ Cσ(i−1)) �= ∅,

then C is called a fundamental resp. strictly fundamental cycle basis.

The following lemma gives a more popular notion of strictly fundamental cycle bases.

Lemma 4. The following properties of a directed cycle basis C for a connected di-
graph D are equivalent:

1. C is strictly fundamental.
2. The elements of C are induced by the chords of some spanning tree.
3. There are at least k arcs that are part of exactly one cycle of C.

We leave the simple proof to the reader.
Hartvigsen and Zemel[10] gave a forbidden minor characterization of graphs in

which every cycle basis is fundamental. Moreover, if C is a fundamental cycle basis such
that σ = id complies with the definition, then the first k rows of its arc-cycle incidence
matrix Γ constitute an upper triangular matrix with diagonal elements in {−1, +1}. As
an immediate consequence of Theorem 3, we get
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Corollary 3. Fundamental cycle bases are integral cycle bases.

The converse is not true, as can be seen in a node-minimal example on K8, which is
due to Liebchen and Peeters[15]. Champetier[4] provides a graph on 17 nodes having
a unique minimal cycle basis which is integral but not fundamental. The graph is not
planar, as for planar graphs Leydold and Stadler[14] established the simple fact that
every minimal cycle basis is fundamental. To complete our discussion, we mention that
a directed version of K5 is a node-minimal graph having a minimal cycle basis which
is fundamental, but only in the generalized sense.

The Venn-diagram in Figure 2 summarizes the relationship between the four major
subclasses of directed cycle bases.

fundamental
strictly generalized

fundamental

K3 K5 8K M1 K6

diagonal upper triangular

integral

det. one odd det.

undirected

nonzero det.

directed

Fig. 2. Map of directed cycle bases

5 Algorithms

A first approach for constructing short integral cycle bases is to run one of the algo-
rithms that construct a minimal undirected cycle basis. By orienting both edges and
cycles arbitrarily, the determinant of the resulting directed cycle basis can be tested for
having value ±1. Notice that reversing an arc’s or cycle’s direction would translate into
multiplying a row or column with minus one, which is of no effect for the determinant
of a cycle basis. But if our constructed minimal undirected cycle basis is not integral, it
is worthless for us and we have to turn to other algorithms.

Deo et al.[6] introduced two sophisticated algorithms for constructing short strictly
fundamental cycle bases: UV (unexplored vertices) and NT (non-tree edges). But the
computational results we are going to present in the next section demonstrate that we can
do much better. The key are (generalized) fundamental cycle bases. As the complexity
status of constructing a minimal cycle basis among the fundamental cycle bases is un-
known to the author, we present several heuristics for constructing short fundamental—
thus integral—cycle bases. These are formulated for undirected graphs.

Fundamental Improvements to Spanning Trees. The first algorithm has been pro-
posed by Berger[3]. To a certain extent, the ideas of de Pina[21] were simplified in order
to maintain fundamentality. The algorithm is as follows:
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1. Set C := ∅.
2. Compute some spanning tree H with edges {ek+1, . . . , em}.
3. For i = 1 to k do

3.1. For ei = {j, l}, find a shortest path Pi between j and l which only
uses arcs in {e1, . . . , ei−1, ek+1, . . . , em}, and set Ci := ei ∪ Pi.

3.2. Update C := C ∪ Ci.

Obviously, the above procedure ensures ei ∈ Ci \{C1, . . . , Ci−1}. Hence, C is a funda-
mental cycle basis. Although this procedure is rather elementary, Section 6 will point out
the notable benefit it achieves even when starting with a rather good strictly fundamental
cycle basis, e.g. the ones resulting from the procedures NT or UV. In another context,
similar ideas can be found in Nachtigall[19].

Horton’s Approximation Algorithm. Horton[11] proposed a fast algorithm for a sub-
optimal cycle basis. Below, we show that Horton’s heuristic always constructs a funda-
mental cycle basis for a weighted connected graph G.

1. Set C := ∅ and G′ := G.
2. For i = 1 to n − 1 do

2.1. Choose a vertex xi of minimum degree ν in G′.
2.2. Find all shortest paths lengths in G′ \ xi between neighbors xi1 , . . . , xiν

of xi.
2.3. Define a new artificial network Ni by

2.3.1. introducing a node s for every edge {xi, xis} in G′ and
2.3.2. defining the length of the branch {s, t} to be the length of a shortest path

between xis
and xit

in G′ \ xi.
2.4. Find a minimal spanning tree Hi for Ni.
2.5. Let Ci1 , . . . , Ciν−1 be the cycles in G′ that correspond to branches of Hi.
2.6. Update C := C ∪ {Ci1 , . . . , Ciν−1} and G′ := G′ \ xi.

Proposition 1. Horton’s approximation algorithm produces a fundamental cycle basis.

Proof. First, observe that none of the edges {xi, xis
} can be part of any cycle Cr· of a

later iteration r > i, because at the end of iteration i the vertex xi is removed from G′.
Hence, fundamentality follows by ordering, within each iteration i, the edges and cycles
such that eij ∈ Cij \ (Ci1 , . . . , Cij−1) for all j = 2, . . . , ν − 1. Moreover, every leaf s
of Hi encodes an edge {xi, xis} that is part of only one cycle. Finally, as Hi is a tree,
by recursively removing branches that are incident to a leaf of the remaining tree, we
process every branch of the initial tree Hi.

We order the branches b1, . . . , bν−1 of Hi according to such an elimination scheme,
i.e. for every branch bj = {sj , tj}, node sj is a leaf subject to the subtree Hi\

⋃j−1
�=1{b�}.

Turning back to the original graph G′, for j = 1, . . . , ν − 1, we define eij
to correspond

to the leaf sν−j , and Cij
to be modeled by the branch bν−j . This just complies with the

definition of a fundamental cycle basis.
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6 Computational Results

The first instance has been made available to us by Deutsche Bahn AG. As proposed
in Liebchen and Peeters[16], we want to minimize simultaneously both the number of
vehicles required to operate the ten given pairs of hourly served ICE/IC railway lines, and
the waiting times faced by passengers along the 40 most important connections. Single
tracks and optional additional stopping times of up to five minutes at major stations
cause an average span of 75.9% of the period time for the 186 arcs that remain after
elimination of redundancies within the initial model with 4104 periodic events.

The second instance models the Berlin Underground. For the eight pairs of directed
lines, which are operated every 10 minutes, we consider all of the 144 connections
for passengers. Additional stopping time is allowed to insert for 22 stopping activities.
Hereby, the 188 arcs after eliminating redundancies have an average span of 69.5% of
the period time. From earlier experiments we know that an optimal solution inserts
3.5 minutes of additional stopping time without necessitating an additional vehicle. The
weighted average passengers’ effective waiting time is less than 1.5 minutes.

For the ICE/IC instance, in Table 1 we start by giving the base ten logarithm
of the width of the cycle bases that are constructed by the heuristics proposed in
Deo et al.[6] These have been applied for the arcs’ weights chosen as unit weights,
the span da = ua − �a, or the negative of the span T − da. In addition, minimal span-
ning trees have been computed for two weight functions. The fundamental improvement
heuristic has been applied to each of the resulting strictly fundamental cycle bases, For
sake of completeness, the width of a minimal cycle basis subject to the linearized ob-
jective is given as well. The heuristic proposed by Horton has not been implemented so
far.

Subsequently, we report the behavior of CPLEX c©[5] when faced with the different
problem formulations. We use version 8.0 with standard parameters, except for strong
branching as variable selection strategy and aggressive cut generation. The computations
have been performed on an AMD Athlon c© XP 1500+ with 512 MB main memory.

Table 1. Influence of cycle bases on running times for timetabling (hourly served ICE/IC lines)

algorithm global MST UV NT
weight minima span nspan unit span nspan unit
initial width 34.3 65.9 88.4 59.7 58.6 61.2 58.5
fund. improve – 41.0 43.2 42.9 42.2 42.9 42.7
without fundamental improvement
time (s) – 14720 >28800 20029 23726 6388 >28800
memory (MB) – 13 113 29 30 10 48
status – opt timelimit opt opt opt timelimit
solution 620486 667080 629993
fundamental improvement applied
time (s) – 807 11985 9305 17963 1103 >28800
memory (MB) – 1 23 24 30 3 114
status – opt opt opt opt opt timelimit
solution – 626051
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Due to space limitations, we just summarize that the solution behavior is the same
for the instance of the Berlin Underground. The width of a minimal cycle basis is about
1039, and the fundamental improvement reduced the width from values between 1062

and 1085 down to values ranging from 1046 to only 1049. The only computation which
exceeded our time limit is again MST nspan without fundamental improvement. Only
19 seconds were necessary to optimize the improved UV nspan formulation.

A key observation is the considerable positive correlation (> 0.44 and > 0.67)
between the base ten logarithm of the width of the cycle basis and the running time of
the MIP solver. With the exception of only one case, the fundamental improvement either
results in a notable speed-up, or enables an instance to be solved to optimality, in case
that the time limit of eight hours is reached when not applying the heuristic. Figure 3
provides a detailed insight into the distribution of cycle widths of the basic cycles for
the ICE/IC instance before and after the fundamental improvement.
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Fig. 3. Shift in distribution of cycle widths due to the fundamental improvements

Since the known valid inequalities, e.g. (2) and Nachtigall[18], heavily depend on
the problem formulation, they have not been added in any of the above computations.
However, they also provide a major source for improving computation times. For the
instance of Deutsche Bahn AG, an optimal solution was obtained after only 66 seconds
of CPU time for a formulation refined by 115 additional valid inequalities which were
separated in less than 80 seconds.

7 Conclusions

We generalized the standard approach for formulating the cyclic timetabling problem,
based on strictly fundamental cycle bases. Integral cycle bases have been established
to be the most general class of directed cycle bases that enable the modeling of cyclic
timetabling problems. Finally, we presented algorithms that construct short fundamental
cycle bases with respect to a reliable empirical measure for estimating the running time
of a mixed-integer solver for the originating application.

But some questions remain open. One is the complexity status of minimizing a
(linear) objective function over the class of fundamental, or even integral, cycle bases.
Another is progress in the area of integer lattices. Finally, it is unknown, whether every
graph has a minimal cycle basis that is integral.
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Rolf H. Möhring, Leon Peeters, and of course the anonymous referees contributed in
various ways to this paper.

References

1. Amaldi, E. (2003) Personal Communication. Politecnico di Milano, Italy
2. Berge, C. (1962) The Theory of Graphs and its Applications. John Wiley & Sons
3. Berger, F. (2002) Minimale Kreisbasen in Graphen. Lecture on the annual meeting of the DMV

in Halle, Germany
4. Champetier, C. (1987) On the Null-Homotopy of Graphs. Discrete Mathematics 64, 97–98
5. CPLEX 8.0 (2002) http://www.ilog.com/products/cplex ILOG SA, France.
6. Deo, N., Kumar, N., Parsons, J. (1995) Minimum-Length Fundamental-Cycle Set Problem:

A New Heuristic and an SIMD Implementation. Technical Report CS-TR-95-04, University
of Central Florida, Orlando

7. Deo, N., Prabhu, M., Krishnamoorthy, M.S. (1982) Algorithms for Generating Fundamental
Cycles in a Graph. ACM Transactions on Mathematical Software 8, 26–42

8. Gleiss, P. (2001) Short Cycles. Ph.D. Thesis, University of Vienna, Austria
9. Golynski, A., Horton, J.D. (2002) A Polynomial Time Algorithm to Find the Minimum Cycle

Basis of a Regular Matroid. In: SWAT 2002, Springer LNCS 2368, edited by M. Penttonen
and E. Meineche Schmidt

10. Hartvigsen, D., Zemel, E. (1989) Is Every Cycle Basis Fundamental? Journal of Graph Theo-
ry 13, 117–137

11. Horton, J.D. (1987) A polynomial-time algorithm to find the shortest cycle basis of a graph.
SIAM Journal on Computing 16, 358–366

12. Krista, M. (1996) Verfahren zur Fahrplanoptimierung dargestellt am Beispiel der Synchron-
zeiten (Methods for Timetable Optimization Illustrated by Synchronous Times). Ph.D. Thesis,
Technical University Braunschweig, Germany, In German

13. Lenstra, A.K., Lenstra, H.W., Lovász, L. (1982) Factoring polynomials with rational coeffi-
cients. Mathematische Annalen 261, 515–534

14. Leydold, J., Stadler, P.F. (1998) Minimal Cycle Bases of Outerplanar Graphs. The Electronic
Journal of Combinatorics 5, #16

15. Liebchen, C., Peeters, L. (2002) On Cyclic Timetabling and Cycles in Graphs. Technical
Report 761/2002, TU Berlin

16. Liebchen, C., Peeters, L. (2002) Some Practical Aspects of Periodic Timetabling. In: Opera-
tions Research 2001, Springer, edited by P. Chamoni et al.

17. Nachtigall, K. (1994) A Branch and Cut Approach for Periodic Network Programming.
Hildesheimer Informatik-Berichte 29

18. Nachtigall, K. (1996) Cutting planes for a polyhedron associated with a periodic network.
DLR Interner Bericht 17

19. Nachtigall, K. (1996) Periodic network optimization with different arc frequencies. Discrete
Applied Mathematics 69, 1–17

20. Odijk, M. (1997) Railway Timetable Generation. Ph.D. Thesis, TU Delft, The Netherlands
21. de Pina, J.C. (1995) Applications of Shortest Path Methods. Ph.D. Thesis, University of

Amsterdam, The Netherlands
22. Schrijver, A. (1998) Theory of Linear and Integer Programming. Second Edition. Wiley
23. Serafini, P., Ukovich, W. (1989) A mathematical model for periodic scheduling problems.

SIAM Journal on Discrete Mathematics 2, 550–581
24. Whitney, H. (1935) On the Abstract Properties of Linear Dependence. American Journal of

Mathematics 57, 509–533


	Introduction and Scope
	Periodic Scheduling and Short Cycle Bases
	Matrix-Classification of Directed Cycle Bases
	Special Classes of Integral Cycle Bases
	Algorithms
	Computational Results
	Conclusions



