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Abstract. Software is an integral part of many technical systems and responsi-
ble for the realization of safety-critical features contained therein. Conse-
quently, software has to be carefully considered in safety analysis efforts to  
ensure that it does not cause any system hazards. Safety engineering approaches 
borrowed from systems engineering, like Failure Mode and Effect Analysis, 
Fault Tree Analysis, or Hazard and Operability Studies, have been applied on 
software-intensive systems. However, in order to be successful, tailoring is 
needed to the characteristics of software and the concrete application context. 
Furthermore, due to the manual and expert-dependent nature of these tech-
niques, the results are often not repeatable and address mainly syntactic issues. 
This paper presents the concepts of a customization framework to support the 
definition and implementation of project-specific software hazard identification 
approaches. The key-concepts of the approach, generic guide-phrases, and tai-
loring concepts to create objective, project-specific support to detect safety-
weaknesses of software-intensive systems are introduced. 

Keywords: Software Safety, Guide-Phrases, SafeSpection, Software FMEA, 
Software FTA, Software HAZOP. 

1   Introduction 

Over the last decades, embedded systems have become an integral part of our daily 
lives. Especially in the automotive domain, software-intensive systems execute and 
control a variety of functions and safety measures. Without software, many innovative 
functions and features would be hard or even impossible to realize.  

As a part of a safety-critical system, i.e., a system whose failure might endanger 
human life, cause extensive environmental damage, or lead to substantial economic 
loss [1], the software itself must be perceived as safety-critical. In other words, as part 
of the system the software has the potential of putting the overall system into a haz-
ardous situation. In that sense, Leveson defines safety critical software as any soft-
ware that can contribute to the occurrence of a hazardous system state either directly 
or indirectly [2]. As an example of the safety criticality of software, General Motors 
had to recall almost one million cars due to problems with their airbag system. On 
paved roads under normal conditions the software interpreted the unstable movement 
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of the cars as a crash and activated the airbag. Similar examples can be found that 
demonstrate the importance of including software in system safety analysis activities 
executed during the development life-cycle. 

Hence, in the automotive domain, recent standards (e.g., IEC 61508, ISO/WD 
26262, MISRA Safety Analysis Guide) request a thorough software safety analysis. 
The standards require the application of safety engineering techniques on the func-
tional concept and on the software architecture [3], [4]. In order to fulfill this, compa-
nies typically apply safety analysis techniques like Failure Mode and Effect Analysis 
(FMEA), Hazard and Operability Studies (HAZOP), and Fault Tree Analyses (FTA) 
to identify potential system hazards caused by the software. However, the applied 
techniques are often not customized to the characteristics of software and conse-
quently do not support the identification of conceptual software faults. Mainly, the 
standard processes of system-FMEA, -FTA, and -HAZOP techniques are used to 
analyze the software work products. These processes are of a manual nature without 
concrete guidance on how to identify software faults. The results rely on the experi-
ence of the moderator and the participating experts and hence the analysis is not re-
peatable, subjective and results cannot be compared between different development 
teams. During the last decades, some approaches have evolved on how safety analysis 
techniques can be applied to software. As Section 2 demonstrates, the efficient appli-
cation of these techniques still remains unclear. The main reason for this is that many 
approaches focus the analysts on very detailed, low-level software causes of hazards 
like uninitialized variables, too late or too early execution of algorithms, and wrong 
data models. Additionally, the guidance provided by existing approaches is often on a 
general-purpose level not tailored to the specific context characteristics of a (soft-
ware-) project. Hence, only general aspects like correctness and completeness issues, 
and syntactic aspects are captured. Conceptual software faults, i.e., faults in the logic 
of the software models, are rarely in the scope of existing approaches. In conse-
quence, what is missing today is an approach that provides systematic guidance on 
how to customize safety-analysis techniques to the characteristics of a software de-
velopment context. This approach should support the identification of conceptual, 
semantic software faults that might cause system hazards. The identification should 
be performed during the early development phases to provide real added value. Safe-
Spection has been developed to close this gap.  

Section 2 provides a detailed overview of the state of the art regarding software 
safety analyses and motivates the approach. Section 3 introduces the core concept of 
SafeSpection: guide-phrases and a grammar to systematically derive project-specific 
guidance on detecting conceptual software faults causing system hazards.  Section 4 
outlines the results of an initial feasibility study in an industrial setting. Section 5 
concludes the paper and provides some future research topics.  

2   Existing Software Safety Analysis Approaches  

Even though the idea of software safety analysis techniques has been around for sev-
eral decades, the number of publications regarding this topic remains quite small [6]. 
The following subsections categorize the existing approaches and provide a critical 
review of these regarding their repeatability, customizability, and focus.  
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2.1   A General View on Existing Software Safety Approaches 

According to Fenelon et al. [5], software safety analysis approaches are categorized 
according to the direction of the search for software causes of hazards. Explorative, 
inductive, deductive, and descriptive approaches are distinguished. This classification 
is based on the categorization of safety analysis techniques used in systems engineer-
ing. In order to provide a more intuitive, software-related classification we rephrased 
and extended this existing scheme.  

On an abstract level software safety analysis approaches are classified according to 
the underlying systems engineering techniques they are based upon. Thus, HAZOP-
like approaches, FMEA-like approaches, Inspection-like approaches, and Formal-
approaches are distinguished indicating that the identification of software causes of 
hazards is based on standard FMEA, HAZOP, inspection and formal approach, re-
spectively. FTA-like approaches are not considered in this scheme as these require 
software hazards as an input and therefore do not provide concepts to identify these. 
In addition to this abstract categorization each approach is classified according to the 
scheme illustrated in Fig. 1  

 

Fig. 1. Categorization Scheme for Characteristics of Software Hazard Analysis Approaches 

Notation classifies the approaches according to the software development notations 
to which they can be applied. The sub-classes of Notation are not orthogonal, that is, 
it is possible that a technique is applicable to different notations. Type characterizes 
the support provided by the approach in detecting software causes of hazards. The 
subtype “ad-hoc/experience-based” indicates that no explicit support is provided; the 
sub-type “guide-words/checklists” indicates that some triggers are provided that point 
analysts to potential software faults; “scenarios” represent a special kind of support 
that gives procedural guidance to the analysts. Scope provides a classification of the 
types of software issues that are addressed (e.g., communication issues, correctness 
issues, completeness aspects). Additionally, the approaches are classified according to 
the software life-cycle phases they are designed for (i.e., requirements analysis, archi-
tecture definition, detailed design, and code).  
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We classified 60 references according to this scheme. 33 approaches explicitly 
mention the use of FMEA principles to analyze software caused hazards, including 
approaches that use a combination of FMEA and FTA. 20 approaches are based on 
HAZOP ideas and five on inspection ideas. This result indicates that FMEA is the 
technique applied most frequently for identifying and analyzing software causes of  
hazards. Classifying the approaches according to Fig. 1 shows that most of the ap-
proaches are defined for lower-level development phases, i.e., detailed design and 
code. This finding seems to contradict the finding that natural language is the notation 
to which most of the approaches are applied. However, a close analysis of the ap-
proaches shows that they operate on detailed design specifications of code modules 
written in natural language, technical models like state-charts, and variable defini-
tions. Analyzing the scope of the existing techniques shows that due to the provided 
guidance, i.e., guidewords such as commission, omission, early, late, and the applica-
tion of these on assets like services, variables, data rates, and signals mainly the detec-
tion of syntactic faults and correctness issues is supported. Software faults on a more 
subtle, logical level are often not detectable using these approaches.   

2.2   Detailed Discussion of Selected Approaches  

In the class of HAZOP-like approaches, the most prominent one is the SHARD  
approach defined by [9]. The underlying idea of the approach is the suggestion of 
potential failure modes of the software by means of guidewords. The focus is on the 
interfaces of major software components and on the data- and control-flow between 
them. SHARD provides the guidewords service commission, service omission, ser-
vice timing (early, late), and service value (incorrect) to support the detection of po-
tential deviations of the software behavior during the requirement phase. Lisagor et al. 
extended the SHARD approach for architecture evaluations [12]. Similar approaches 
are SoftwareHAZOP [10, 11] which applies standard HAZOP guidewords (more, 
less, part-of, other-than, before, after, etc.) to different software notations (data-flow 
diagrams, state-charts, class-diagrams). A formal variant of HAZOP-like techniques 
is defined by Reese et al. [13]: the software deviation analysis. The idea is that based 
on pre-defined software deviations, it is possible to derive deviation scenarios from a 
formal model of the software. 

Regarding FMEA-like approaches the most prominent ones are the HiPHOPS ap-
proach [14, 15] and the Bidirectional Analysis [8]. Both approaches are a combination 
of FMEA and FTA approaches during the software requirements and design phase. 
The idea is to investigate the impact of software failure modes on the software and 
system level using a FMEA. Then, the identified hazards that are most critical are 
analyzed in detail by means of an FTA to decide whether or not the hazard really can 
occur. In case of [15], the FTA can be automatically derived from the formal repre-
sentation of the FMEA results. More recently, the SoftCare approach has been de-
fined [16]. This is also a combination of FMEA and FTA but some more guidance is 
provided on how to identify initial software failure modes. For this purpose, the 
guidewords (commission, omission, service timing, service value) are applied to 
software-related constructs (data, procedures, variables). The resulting list of potential 
software failures, however, contains a huge list of items pointing mainly to syntactic 
issues (e.g., wrong data value, late procedure call).  
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Summarizing the analysis of the state of the art of existing approaches, the follow-
ing open issues get evident: 1) Even though requested by many authors (e.g., [2], [6], 
[11]), there is no systematic approach on how to perform a customization of the 
analyses to a given project context. 2) Many approaches assume that the software 
failure modes, i.e., the software causes of a hazard, are already known when the 
analysis starts. In practice, this is not the case and the identification of the failure 
modes is dependent on the experience and the knowledge of the analysts. This results 
in subjective, non-repeatable, hard-to-compare results. 3) Even in the case that guid-
ance is provided for detecting potential software failure modes this guidance mainly 
focuses on correctness and completeness issues of software work products. However, 
such aspects are also addressed by standard software inspection approaches and it is 
important to carefully analyze the overlap of software inspections and the proposed 
software safety analysis approaches. Independent of that is the fact that systematic 
guidance on how to detect conceptual faults that have an impact on software-safety 
are missing. Remember the airbag example given in the introduction. The software 
was correct and complete but contained a conceptual fault. The algorithms used in the 
software to detect the system state “crash” contained a conceptual fault as they were 
too shock-sensitive in certain driving situations.  

3   The SafeSpection Framework 

The overall objective of SafeSpection is the systematization of the detection of soft-
ware caused hazards, i.e., software failure modes. In that sense, SafeSpection supports 
the customization and execution of software FMEA and software FTA analyses by 
guiding the analysts in the identification of software causes of hazards. Hence, Safe-
Spection must not be perceived as a substitution but as an add-on to these approaches 
to overcome the issues related to their execution. A framework for customizing soft-
ware safety guide-phrases to a specific project context is the core of the SafeSpection 
approach that realizes the systematization.  

3.1   Approach to Systematization  

In order to efficiently and effectively detect software failure modes, it is essential to 
provide systematic guidance that focuses the analysts not only on syntactic issues but 
mainly on conceptual software faults.  The following example taken from a real-world 
accident illustrates the importance of focusing on conceptual software faults: The 
system specification requires that certain functions of an electronic control unit of an 
aircraft are executable if and only if the plane is “on ground”. The system-state “on 
ground” is realized by the software as: 

aircraft is on ground if signal_wheels_turning == true and signal_pressure_wheels >= x lb.  

Typically, the moderator of a FMEA or a HAZOP analysis is responsible for trigger-
ing the analysis team with suitable questions that point to potentially unsafe behavior. 
Using HAZOP guidewords, one would trigger the team with questions like “Is the 
signal_wheels_turning correct?”, “Is the signal_wheels_turning late?”, “Is the sig-
nal_pressure_wheels too early or omitted?” To answer these questions the software is 
analyzed in detail to determine whether or not these events can occur. This is mainly a 
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syntactic check. What is missing is the check of whether or not the software realiza-
tion represents a safe solution. An experienced moderator might ask additional ques-
tions pointing at conceptual faults like: “Is it possible that the aircraft is on ground but 
the wheels are not turning?” or “Is a situation possible where the wheels are not turn-
ing or pressure is < x lb but the aircraft is on ground?” Asking these questions reveals 
that the software realization is correct but not safe: in case of aqua-planning the 
wheels are not turning but the aircraft is on ground!.  

In order to overcome the reliance on expert experiences, SafeSpection provides an 
abstract framework that allows the flexible customization of guide-phrases to a spe-
cific project and product context. The guide-phrases are defined in such a way that 
they support the detection of conceptual software faults that cause system level haz-
ards. The underlying idea of the framework is the “formalization” of the provided 
support in terms of guide-phrase patterns that are derived from a guide-phrase meta-
model. Based on the meta-model and the patterns, it is possible to instantiate project-
specific guide-phrases that point to conceptual faults. Both the definition of the  
patterns and the instantiation of the guide-phrases are supported by SafeSpection 
guidelines. This results in more specific guidance on the detection of software-caused 
hazards, reduces the overlap of software-safety analysis and standard quality assur-
ance by focusing on conceptual faults rather than syntactic issues (which are ad-
dressed by standard quality assurance activities like software inspections), and makes 
the results of the analysis repeatable, i.e., less dependent on individual experts, and 
easier to compare between teams. The core elements of the SafeSpection framework 
and their application are outlined in the following sections.  

3.2   The SafeSpection Framework Concepts and Their Application 

SafeSpection differentiates between three abstraction layers of guide-phrases (cf.  
Fig. 3). On the highest level, meta-meta-questions define the building blocks of a 
guide-phrase. The meta-meta-questions are the fundamental element for defining 
systematic and repeatable guidance for the detection of conceptual software faults, as 
they prescribe the structure of a general guide-phrase. According to the SafeSpection 
approach, a guide-phrase comprises two main parts, a Trigger-Part and an Effect-Part 
(cf. Fig. 2). The Trigger-Part is a sentence that represents a question pointing to ele-
ments in the functional specification of the software that might contain conceptual 
faults. The Trigger-Part element comprises three sub-elements: The Object represents 
elements of a software specification in the focus of the analysis for potential faults 
(e.g., a function, service or component). The Influence Factor describes issues that 
can have a potentially negative impact on the Object. Finally, Interference describes 
the type of impact that is imposed by the Influence Factor on the Object. Each trig-
ger-part of a guide-phrase has one object, one influence factor, and one interference. 
The Effect-Part is either a closed question asking about the possibility that an already 
known hazard is caused by the question described in the trigger-part, or it is an open 
question asking about the possible / thinkable consequences or impacts if the question 
described by the Trigger Part becomes true. 
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Fig. 2. The Meta-Meta-Questions Defining the Structure of SafeSpection Guide Phrases  

Having introduced the basic building blocks, the SafeSpection framework defines 
meta-questions that represent domain-specific instantiations of the concepts Objects 
and Influence Factors.  

 

Fig. 3. The Hierarchies for the SafeSpection MetaModel  

Consequently, these meta-questions represent generic guide-phrases that are appli-
cable in a certain domain and that are an intermediate abstraction layer allowing the 
systematic customization of feasible, project-specific guidance.  

In order to use the SafeSpection framework efficiently it is the responsibility of a 
safety manager and a software development leader to identify the domain-specific 
instantiations of the meta-meta-questions. This activity has to be done in close  
cooperation between software development and safety management to gather the  
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Nr.  Question 

1 How is the behavior of the application software typically described in the domain (in 
terms of functions, services, processes)? 

2 Can software functions within this domain be characterized with respect to time con-
straints, pre-conditions, post-conditions?  

3 Which modeling elements / components are used to describe the software function in the 
domain (e.g., sate-machines, data-flow models) 

… ….. 

12 Are assumptions regarding the realization of functions to be considered? 

13 What environmental conditions can have an impact on the software behavior (e.g., 
weather conditions, road-conditions)? 

14 Is the software behavior dependent on operational modes (e.g., power-up, power-down)? 

Fig. 4. SafeSpection Interview-Guide to Identify Guide-Phrase Objects and Influence Factors 

knowledge and experience of both worlds. The concepts need to be identified for the 
given domain of the systems developed (e.g., electronic control units for a car). Safe-
Spection provides an interview guide that supports the identification of relevant ob-
jects and influence factors (see an excerpt in Fig. 4). 

The result of this activity is a set of generic guide-phrases that comprise the do-
main-specific objects and influence factors. The results of the interviews should be 
backed up with a comprehensive study of existing functional specifications of ECUs 
in the company to identify additional objects and influence factors. In the aircraft 
example, one could identify software realizations of external conditions as an object, 
i.e., the formula for “on ground”. Examples of influence factors in this domain are 
weather conditions, flight situations like landing, take-of, and so on. Hence, the iden-
tification of a complete set of object and influence factors is a crucial success factor of 
the SafeSpection approach.  

We elicited domain-specific objects and influence factors in the context of func-
tional specifications of electronic control units of cars. In this domain, typical objects 
are the functions/services and their characteristics (pre-conditions, timing constraints, 
realization, accuracy, assumptions), the interfaces of the functions/services to other 
functions (i.e., exchanged signals, their syntax, their semantic, and timing); and the 
interactions the functions are involved in. The influence factors that can have a  
negative impact on these objects are in the SafeSpection approach: environmental 
conditions (e.g., weather conditions, road conditions), operational situations (e.g., 
high-speed driving, urban driving), technical constraints (e.g., latency of actuators, 
frequency of sensor polling), realization assumptions (e.g., algorithm xyz is used to 
approximate vehicle speed), operational modes (e.g., power-up, power-down, diagno-
sis), and the change of technical constraints (e.g., reusing software in another hard-
ware environment, change of sensor characteristics due to aging).  

In order to standardize the definition of the generic guide-phrases, SafeSpection 
provides a grammar. This grammar defines rules on how objects and influence factors 
are combined into a SafeSpection guide-phrase. The core structure of each guide-
phrase follows the rule: S  Intro ● Influence ● interference ● Object?, where Intro 
is a phrase introducing a question, like “Does the…”, “Is it possible that…”. Influence 
and Object are the identified domain-specific objects and influence factors, and inter-
ference defines the type of impact on the object. In our aircraft example applying 
SafeSpection leads to the following generic guide-phrase: “Does the <<weather  
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condition>> invalidate the <<software realization>> of <<system condition>>. The 
words in <<..>> are the generic objects and influence factors that need to be identified 
by the experts using the SafeSpection interview guidelines. 

According to the combination of objects, interferences, and influence factors, the 
SafeSpection approach predefines the following types of guide-phrases that address 
certain types of software-caused hazards in the context of an ECU.  

Name  Scope
1. Overall 
assumptions  

Supports the identification of software-caused hazards that stem from a violation of system-
wide constraints, pre-requisites and assumptions by the software realization. 

2. External 
Influence  

Supports the identification of software-caused hazards that stem from an inappropriate 
consideration of special characteristics of driving situation, operational modes, and 
environmental conditions in the software. 

3. Changed 
Environment 

Supports the identification of software-caused hazards that stem from changes in the software 
environment (like changed technical constraints, changed application context, changed sensor 
characteristics) that are not properly mapped / considered in the software realization. 

4. Communication Supports the identification of software-caused hazards that stem from wrong or inappropriate 
interactions of software elements and software-realized functions / services / processes. 

5. Functional 
Realization  

Supports the identification of software-caused hazards that stem from an improper realization 
and an insufficient consideration of influences on the software behavior (like the fulfillment of 
assumptions, prerequisites constraints that are not given in certain operation of modes). 

6. Special 
Functions  

Supports the identification of software-caused hazards that stem from the implementation of 
degradation scenarios that are not properly integrated in the overall functional concept.  

Fig. 5. Types of Guide-Phrase Patterns in the SafeSpection Framework   

For each type, one or more generic guide-phrase is provided. With respect to the 
analysis of functional specifications of ECUs, we defined a set of generic guide-
phrases for the types defined above. The following questions represent guide-phrases 
of the type external influence and changed environments:  

 

Does the <<characteristic>> of <<driving situation>> invalidate the  
<<pre-condition>> || <<post-condition>> of <<function>>?  

Does the change of <<characteristics>> of <<sensor>> || <<actuator>> 
violate the timing-constraints of <<function>>? 

 

In the Appendix of thi paper an excerpt of the full set of generic guide-phrases 
supporting the detection of conceptual faults is listed. The advantage of the guide-
phrases is their generic nature aimed at conceptual faults compared to the syntactic 
guidance provided by existing HAZOP guidewords. Moreover, the guide-phrases are 
already tailored to the application domain and hence more specific than general-
purpose guidewords. The following comparison clarifies this advantage: the checklist 
questions defined by Leveson [2] typically aim at completeness issues, e.g.,: “A trig-
ger involving the nonexistence of an input must be fully bounded in time”. Guide-
phrases defined with the SafeSpection approach would perceive the definition of such 
a trigger and its time bounds as objects of the specification, i.e., SafeSpection takes 
these as inputs. These objects are combined with influence factors to check whether 
or not the time bound can be violated for example by external conditions or whether 
or not the time bound contradicts realization assumptions underlying the software.  

Finally, the generic guide-phrases are instantiated to concrete guide-phrases that 
are applicable in a certain project. That is, the generic meta-questions defined for the 
application domain are instantiated with concrete objects and influence factors of a 
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software project. In our aircraft example, the generic guide-phrase is instantiated with 
the concrete objects and influence factors: “Does rainy weather invalidate the soft-
ware realization plane on ground if the wheels are turning and the pressure is >= x 
lb?” The person responsible for this activity is typically a quality assurance person of 
the project team whose functional specification is analyzed. The resulting guide-
phrases are used by the analysis team to identify conceptual faults in the functional 
specification. It is most important to identify those generic guide-phrases that are 
relevant for the specific project context. Again, the SafeSpection framework provides 
guidelines on how to perform this instantiation in terms of expert interviews. The 
project-specific guide-phrases result in systematically tailored guidance addressing 
the real safety needs in a project context. The detection of conceptual software faults 
in the project becomes a repeatable activity and focused on the project-characteristics 
rather than on providing general-purpose guidance. The identified guide-phrases can 
be used as a stand-alone technique similar to an inspection approach, using the guide-
phrases as checklist questions or as part of the software FMEA and software FTA 
activities where they guide the analysis team in detecting software failure modes and 
software causes of hazards. 

4   SafeSpection Application 

In order to validate the applicability of the SafeSpection framework, we validated its 
core concepts in an industrial project. The objective of the project was the develop-
ment of a complex, distributed system to realize new functionality in a car. Due to 
confidentiality reasons it is not possible to show details of the software system or its 
architecture, but on an abstract basis the project can be described. 

4.1   The Application Context 

The software system in this project realizes an innovative feature of a future car. The 
overall software system comprises 8 sub-systems interconnected by a network. Each 
sub-system is responsible for the realization of one or more features of the functional-
ity. By applying SafeSpection, the manufacturer of the system wanted to ensure that 
the software system does not impact the overall value-adding processes in an unac-
ceptable way. Hence, in this project, safety was not defined in the common way, i.e., 
loss of life, or injury to people, but as the loss of an immense amount of money due to 
such potential negative influences caused by the software system. The SafeSpection 
approach was used to support the identification of conceptual faults in the general 
functional specification of the software system and its conceptual architecture. The 
analysis was performed at the end of the requirements analysis step and after the con-
ceptual architecture of the system had been defined. The manufacturer had already 
performed an analysis of the potential risks caused by the software system but without 
systematic guidance.  

4.2   The Application Process  

The execution of the software safety analysis was organized in 3 full-day workshops. 
Based on the already identified catastrophic influences of the software system, a  
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fault-tree analysis was performed to analyze the software causes of the unwanted 
events. In order to support this step, i.e., the identification of conceptual software 
faults causing the top-event, the SafeSpection framework was used to identify and 
apply supporting guide-phrases. As outlined in the last section, the first step of the 
SafeSpection approach is the definition of generic guide-phrases that combine objects 
and potential influence factors.  The analysis of the 500-page software specification 
written mainly in natural language and the conceptual overview of the software archi-
tecture resulted in the following generic objects: processes, components, interactions, 
pre- and post-conditions, assumptions, and constraints; and in the generic influence 
factors operational mode, system assumptions, technical and environmental con-
straints. Based on these concepts generic guide-phrases could be created.  

In order to identify potential software causes for the unwanted events, the concrete 
instances of the identified generic phrases needed to be identified. This was done as 
part of the FTA workshop. Starting from the unwanted event, those concrete system 
processes influenced by the software were identified that directly contribute to the 
unwanted event. Then the components realizing the identified processes as well as the 
interaction of these components were identified together with the customer’s experts. 
This was done using the customization questions defined in the SafeSpection frame-
work and the results of this step were documented by extended sequence charts show-
ing all concrete objects of realizing the selected processes (see Fig. 6). 

The swim-lanes show the concrete components that participate in the identified 
processes. The grey-boxes represent the objects, pre-conditions, post-conditions, 
constraints, and assumptions. These were also identified as part of the workshop in 
cooperation with the customer’s experts. For example, the component Pre-Processing 
1 requires as a pre-condition the availability of a certain data-item (xyz) and that the 
initialization has been performed successfully. The component Pre-Processing 2 must 
fulfill the constraint that the processing of data is completed within 5 ms. The compo-
nent Data-buffer contains the implicit assumption that not more than 25 requests are 
sent within one second. Finally, as a post-condition of the whole process the plausible 
data are presented at the software interface as a output.  

 The negative form of the post-condition of the whole process represents the un-
wanted event, i.e., the top-event of the fault tree. Now, the selected guide-phrase pat-
terns guide the identification of the causes of the unwanted top-event. In other words, 
the guide-phrases were used to systematically identify potential software causes of the 
unwanted top-events. As it was not possible to derive explicit influence factors prior 
to the workshop (due to time limitations in the project) the guide-phrases were used as 
open questions. That is, the guide-phrase patterns were modified in such a way that 
they ask for potential influence factors that invalidate the object under discussion. The 
following list shows an excerpt of instantiated guide-phrase patterns derived for ana-
lyzing the objects in the sequence chart.  
Is it possible that the realization of pre-processing 1 violates the timing constraint 
“needs to finish in 5 ms” of pre-processing 2? 

• Which characteristic of the operational mode contradicts the realization of 
pre-processing 1? 

• Which external condition invalidates the realization of pre-processing 2? 
• Which change of characteristics of external components interacting with the 

application software violate the pre-conditions of pre-processing 1? 
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Pre-
Processing 1

Pre-
Processing 2

User 
Interface 

Data-
buffer

Input xyz required; 
component must 

be initialized 

Retrieved data 
are plausible 

Needs to finish 
within 5 ms

Not more than 25 
requests / s.

 

Fig. 6. Application of the Guide-Phrases    

• Which change of characteristics of external components interacting with the 
application software violate the assumptions of the data buffer? 

• Is it possible that the semantic of messages is different for pre-processing 1 
and pre-processing 2? 

 

The analysis starts from the unwanted top-event and asks whether or not an inter-
mediate event that is described by the guide-phrase triggers the top-event. If this is the 
case, the event is added to the fault tree, if not, the event described by the next guide-
phrase is investigated until all guide-phrases have been considered. The workshop 
leaders (two of the authors of this paper) derived the guide-phrases, asked the related 
questions, and modeled the results as extensions of the fault tree. 

4.3   The Application Results  

Using the guide-phrases defined by the SafeSpection approach resulted in a system-
atic and easy to apply refinement of the fault tree top-events. The developers involved 
in the analysis perceived the fault tree technique and the systematic consideration of 
potential causes as a highly valuable technique to detect conceptual faults in their 
functional software specification. The application of SafeSpection resulted in project-
specific guidance, which could be quickly derived during the FTA-meeting. The man-
agement perceived the approach as a success, as the results provided additional  
conceptual weaknesses in the software specification.  
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Fig. 7. Criticality of the Software Faults detected with SafeSpection 

For the highest prioritized top-event, for example, we could identify 50 additional 
software faults that could cause the top-event. For the 32 findings rated as high and 
critical a careful re-consideration of the software specification was performed and miti-
gation strategies needed to be defined. These results show that the SafeSpection ap-
proach created customized guide-phrases that identify so far undetected conceptual 
software faults quickly and in a feasible way during the FTA-meeting. We could detect 
and resolve several faults that might have caused catastrophic events for the company. 

5   Conclusion 

The SafeSpection framework introduced here provides a feasible approach to identify 
customized and project-specific guidance for the detection of conceptual software 
faults that have the potential of causing safety-critical system events. We demon-
strated the feasibility of the core concept of the approach (a grammar for defining 
generic guide-phrases) in an industrial case study. The customized guide-phrases 
supported the identification of 50 additional software faults; 32 of them required the 
definition of suitable mitigation strategies to prevent a catastrophic top-event. 

In future steps, it is important to validate the applicability of the customization  
approach in more detail. First, it is important to validate the completeness of the pro-
vided support on identifying objects and influence factors of the guide-phrases. Sec-
ond, the resulting guide-phrases will be compared in an empirical study with standard 
software-safety analysis techniques (like FMEA or FTA) with respect to the type of 
detected software faults (is it possible to detect more conceptual faults) and the re-
peatability and comparability of the results. 
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