
M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 44–57, 2008.
© Springer-Verlag Berlin Heidelberg 2008

SafeSpection – A Systematic Customization Approach
for Software Hazard Identification

Christian Denger, Mario Trapp, and Peter Liggesmeyer

Fraunhofer Institute Experimental Software Engineering, Fraunhofer-Platz 1,
67663 Kaiserslautern, Germany

{Christian.Denger,Mario.Trapp,
Peter.Liggesmeyer}@iese.fraunhofer.de

Abstract. Software is an integral part of many technical systems and responsi-
ble for the realization of safety-critical features contained therein. Conse-
quently, software has to be carefully considered in safety analysis efforts to
ensure that it does not cause any system hazards. Safety engineering approaches
borrowed from systems engineering, like Failure Mode and Effect Analysis,
Fault Tree Analysis, or Hazard and Operability Studies, have been applied on
software-intensive systems. However, in order to be successful, tailoring is
needed to the characteristics of software and the concrete application context.
Furthermore, due to the manual and expert-dependent nature of these tech-
niques, the results are often not repeatable and address mainly syntactic issues.
This paper presents the concepts of a customization framework to support the
definition and implementation of project-specific software hazard identification
approaches. The key-concepts of the approach, generic guide-phrases, and tai-
loring concepts to create objective, project-specific support to detect safety-
weaknesses of software-intensive systems are introduced.

Keywords: Software Safety, Guide-Phrases, SafeSpection, Software FMEA,
Software FTA, Software HAZOP.

1 Introduction

Over the last decades, embedded systems have become an integral part of our daily
lives. Especially in the automotive domain, software-intensive systems execute and
control a variety of functions and safety measures. Without software, many innovative
functions and features would be hard or even impossible to realize.

As a part of a safety-critical system, i.e., a system whose failure might endanger
human life, cause extensive environmental damage, or lead to substantial economic
loss [1], the software itself must be perceived as safety-critical. In other words, as part
of the system the software has the potential of putting the overall system into a haz-
ardous situation. In that sense, Leveson defines safety critical software as any soft-
ware that can contribute to the occurrence of a hazardous system state either directly
or indirectly [2]. As an example of the safety criticality of software, General Motors
had to recall almost one million cars due to problems with their airbag system. On
paved roads under normal conditions the software interpreted the unstable movement

 SafeSpection – A Systematic Customization Approach 45

of the cars as a crash and activated the airbag. Similar examples can be found that
demonstrate the importance of including software in system safety analysis activities
executed during the development life-cycle.

Hence, in the automotive domain, recent standards (e.g., IEC 61508, ISO/WD
26262, MISRA Safety Analysis Guide) request a thorough software safety analysis.
The standards require the application of safety engineering techniques on the func-
tional concept and on the software architecture [3], [4]. In order to fulfill this, compa-
nies typically apply safety analysis techniques like Failure Mode and Effect Analysis
(FMEA), Hazard and Operability Studies (HAZOP), and Fault Tree Analyses (FTA)
to identify potential system hazards caused by the software. However, the applied
techniques are often not customized to the characteristics of software and conse-
quently do not support the identification of conceptual software faults. Mainly, the
standard processes of system-FMEA, -FTA, and -HAZOP techniques are used to
analyze the software work products. These processes are of a manual nature without
concrete guidance on how to identify software faults. The results rely on the experi-
ence of the moderator and the participating experts and hence the analysis is not re-
peatable, subjective and results cannot be compared between different development
teams. During the last decades, some approaches have evolved on how safety analysis
techniques can be applied to software. As Section 2 demonstrates, the efficient appli-
cation of these techniques still remains unclear. The main reason for this is that many
approaches focus the analysts on very detailed, low-level software causes of hazards
like uninitialized variables, too late or too early execution of algorithms, and wrong
data models. Additionally, the guidance provided by existing approaches is often on a
general-purpose level not tailored to the specific context characteristics of a (soft-
ware-) project. Hence, only general aspects like correctness and completeness issues,
and syntactic aspects are captured. Conceptual software faults, i.e., faults in the logic
of the software models, are rarely in the scope of existing approaches. In conse-
quence, what is missing today is an approach that provides systematic guidance on
how to customize safety-analysis techniques to the characteristics of a software de-
velopment context. This approach should support the identification of conceptual,
semantic software faults that might cause system hazards. The identification should
be performed during the early development phases to provide real added value. Safe-
Spection has been developed to close this gap.

Section 2 provides a detailed overview of the state of the art regarding software
safety analyses and motivates the approach. Section 3 introduces the core concept of
SafeSpection: guide-phrases and a grammar to systematically derive project-specific
guidance on detecting conceptual software faults causing system hazards. Section 4
outlines the results of an initial feasibility study in an industrial setting. Section 5
concludes the paper and provides some future research topics.

2 Existing Software Safety Analysis Approaches

Even though the idea of software safety analysis techniques has been around for sev-
eral decades, the number of publications regarding this topic remains quite small [6].
The following subsections categorize the existing approaches and provide a critical
review of these regarding their repeatability, customizability, and focus.

46 C. Denger, M. Trapp, and P. Liggesmeyer

2.1 A General View on Existing Software Safety Approaches

According to Fenelon et al. [5], software safety analysis approaches are categorized
according to the direction of the search for software causes of hazards. Explorative,
inductive, deductive, and descriptive approaches are distinguished. This classification
is based on the categorization of safety analysis techniques used in systems engineer-
ing. In order to provide a more intuitive, software-related classification we rephrased
and extended this existing scheme.

On an abstract level software safety analysis approaches are classified according to
the underlying systems engineering techniques they are based upon. Thus, HAZOP-
like approaches, FMEA-like approaches, Inspection-like approaches, and Formal-
approaches are distinguished indicating that the identification of software causes of
hazards is based on standard FMEA, HAZOP, inspection and formal approach, re-
spectively. FTA-like approaches are not considered in this scheme as these require
software hazards as an input and therefore do not provide concepts to identify these.
In addition to this abstract categorization each approach is classified according to the
scheme illustrated in Fig. 1

Fig. 1. Categorization Scheme for Characteristics of Software Hazard Analysis Approaches

Notation classifies the approaches according to the software development notations
to which they can be applied. The sub-classes of Notation are not orthogonal, that is,
it is possible that a technique is applicable to different notations. Type characterizes
the support provided by the approach in detecting software causes of hazards. The
subtype “ad-hoc/experience-based” indicates that no explicit support is provided; the
sub-type “guide-words/checklists” indicates that some triggers are provided that point
analysts to potential software faults; “scenarios” represent a special kind of support
that gives procedural guidance to the analysts. Scope provides a classification of the
types of software issues that are addressed (e.g., communication issues, correctness
issues, completeness aspects). Additionally, the approaches are classified according to
the software life-cycle phases they are designed for (i.e., requirements analysis, archi-
tecture definition, detailed design, and code).

 SafeSpection – A Systematic Customization Approach 47

We classified 60 references according to this scheme. 33 approaches explicitly
mention the use of FMEA principles to analyze software caused hazards, including
approaches that use a combination of FMEA and FTA. 20 approaches are based on
HAZOP ideas and five on inspection ideas. This result indicates that FMEA is the
technique applied most frequently for identifying and analyzing software causes of
hazards. Classifying the approaches according to Fig. 1 shows that most of the ap-
proaches are defined for lower-level development phases, i.e., detailed design and
code. This finding seems to contradict the finding that natural language is the notation
to which most of the approaches are applied. However, a close analysis of the ap-
proaches shows that they operate on detailed design specifications of code modules
written in natural language, technical models like state-charts, and variable defini-
tions. Analyzing the scope of the existing techniques shows that due to the provided
guidance, i.e., guidewords such as commission, omission, early, late, and the applica-
tion of these on assets like services, variables, data rates, and signals mainly the detec-
tion of syntactic faults and correctness issues is supported. Software faults on a more
subtle, logical level are often not detectable using these approaches.

2.2 Detailed Discussion of Selected Approaches

In the class of HAZOP-like approaches, the most prominent one is the SHARD
approach defined by [9]. The underlying idea of the approach is the suggestion of
potential failure modes of the software by means of guidewords. The focus is on the
interfaces of major software components and on the data- and control-flow between
them. SHARD provides the guidewords service commission, service omission, ser-
vice timing (early, late), and service value (incorrect) to support the detection of po-
tential deviations of the software behavior during the requirement phase. Lisagor et al.
extended the SHARD approach for architecture evaluations [12]. Similar approaches
are SoftwareHAZOP [10, 11] which applies standard HAZOP guidewords (more,
less, part-of, other-than, before, after, etc.) to different software notations (data-flow
diagrams, state-charts, class-diagrams). A formal variant of HAZOP-like techniques
is defined by Reese et al. [13]: the software deviation analysis. The idea is that based
on pre-defined software deviations, it is possible to derive deviation scenarios from a
formal model of the software.

Regarding FMEA-like approaches the most prominent ones are the HiPHOPS ap-
proach [14, 15] and the Bidirectional Analysis [8]. Both approaches are a combination
of FMEA and FTA approaches during the software requirements and design phase.
The idea is to investigate the impact of software failure modes on the software and
system level using a FMEA. Then, the identified hazards that are most critical are
analyzed in detail by means of an FTA to decide whether or not the hazard really can
occur. In case of [15], the FTA can be automatically derived from the formal repre-
sentation of the FMEA results. More recently, the SoftCare approach has been de-
fined [16]. This is also a combination of FMEA and FTA but some more guidance is
provided on how to identify initial software failure modes. For this purpose, the
guidewords (commission, omission, service timing, service value) are applied to
software-related constructs (data, procedures, variables). The resulting list of potential
software failures, however, contains a huge list of items pointing mainly to syntactic
issues (e.g., wrong data value, late procedure call).

48 C. Denger, M. Trapp, and P. Liggesmeyer

Summarizing the analysis of the state of the art of existing approaches, the follow-
ing open issues get evident: 1) Even though requested by many authors (e.g., [2], [6],
[11]), there is no systematic approach on how to perform a customization of the
analyses to a given project context. 2) Many approaches assume that the software
failure modes, i.e., the software causes of a hazard, are already known when the
analysis starts. In practice, this is not the case and the identification of the failure
modes is dependent on the experience and the knowledge of the analysts. This results
in subjective, non-repeatable, hard-to-compare results. 3) Even in the case that guid-
ance is provided for detecting potential software failure modes this guidance mainly
focuses on correctness and completeness issues of software work products. However,
such aspects are also addressed by standard software inspection approaches and it is
important to carefully analyze the overlap of software inspections and the proposed
software safety analysis approaches. Independent of that is the fact that systematic
guidance on how to detect conceptual faults that have an impact on software-safety
are missing. Remember the airbag example given in the introduction. The software
was correct and complete but contained a conceptual fault. The algorithms used in the
software to detect the system state “crash” contained a conceptual fault as they were
too shock-sensitive in certain driving situations.

3 The SafeSpection Framework

The overall objective of SafeSpection is the systematization of the detection of soft-
ware caused hazards, i.e., software failure modes. In that sense, SafeSpection supports
the customization and execution of software FMEA and software FTA analyses by
guiding the analysts in the identification of software causes of hazards. Hence, Safe-
Spection must not be perceived as a substitution but as an add-on to these approaches
to overcome the issues related to their execution. A framework for customizing soft-
ware safety guide-phrases to a specific project context is the core of the SafeSpection
approach that realizes the systematization.

3.1 Approach to Systematization

In order to efficiently and effectively detect software failure modes, it is essential to
provide systematic guidance that focuses the analysts not only on syntactic issues but
mainly on conceptual software faults. The following example taken from a real-world
accident illustrates the importance of focusing on conceptual software faults: The
system specification requires that certain functions of an electronic control unit of an
aircraft are executable if and only if the plane is “on ground”. The system-state “on
ground” is realized by the software as:

aircraft is on ground if signal_wheels_turning == true and signal_pressure_wheels >= x lb.

Typically, the moderator of a FMEA or a HAZOP analysis is responsible for trigger-
ing the analysis team with suitable questions that point to potentially unsafe behavior.
Using HAZOP guidewords, one would trigger the team with questions like “Is the
signal_wheels_turning correct?”, “Is the signal_wheels_turning late?”, “Is the sig-
nal_pressure_wheels too early or omitted?” To answer these questions the software is
analyzed in detail to determine whether or not these events can occur. This is mainly a

 SafeSpection – A Systematic Customization Approach 49

syntactic check. What is missing is the check of whether or not the software realiza-
tion represents a safe solution. An experienced moderator might ask additional ques-
tions pointing at conceptual faults like: “Is it possible that the aircraft is on ground but
the wheels are not turning?” or “Is a situation possible where the wheels are not turn-
ing or pressure is < x lb but the aircraft is on ground?” Asking these questions reveals
that the software realization is correct but not safe: in case of aqua-planning the
wheels are not turning but the aircraft is on ground!.

In order to overcome the reliance on expert experiences, SafeSpection provides an
abstract framework that allows the flexible customization of guide-phrases to a spe-
cific project and product context. The guide-phrases are defined in such a way that
they support the detection of conceptual software faults that cause system level haz-
ards. The underlying idea of the framework is the “formalization” of the provided
support in terms of guide-phrase patterns that are derived from a guide-phrase meta-
model. Based on the meta-model and the patterns, it is possible to instantiate project-
specific guide-phrases that point to conceptual faults. Both the definition of the
patterns and the instantiation of the guide-phrases are supported by SafeSpection
guidelines. This results in more specific guidance on the detection of software-caused
hazards, reduces the overlap of software-safety analysis and standard quality assur-
ance by focusing on conceptual faults rather than syntactic issues (which are ad-
dressed by standard quality assurance activities like software inspections), and makes
the results of the analysis repeatable, i.e., less dependent on individual experts, and
easier to compare between teams. The core elements of the SafeSpection framework
and their application are outlined in the following sections.

3.2 The SafeSpection Framework Concepts and Their Application

SafeSpection differentiates between three abstraction layers of guide-phrases (cf.
Fig. 3). On the highest level, meta-meta-questions define the building blocks of a
guide-phrase. The meta-meta-questions are the fundamental element for defining
systematic and repeatable guidance for the detection of conceptual software faults, as
they prescribe the structure of a general guide-phrase. According to the SafeSpection
approach, a guide-phrase comprises two main parts, a Trigger-Part and an Effect-Part
(cf. Fig. 2). The Trigger-Part is a sentence that represents a question pointing to ele-
ments in the functional specification of the software that might contain conceptual
faults. The Trigger-Part element comprises three sub-elements: The Object represents
elements of a software specification in the focus of the analysis for potential faults
(e.g., a function, service or component). The Influence Factor describes issues that
can have a potentially negative impact on the Object. Finally, Interference describes
the type of impact that is imposed by the Influence Factor on the Object. Each trig-
ger-part of a guide-phrase has one object, one influence factor, and one interference.
The Effect-Part is either a closed question asking about the possibility that an already
known hazard is caused by the question described in the trigger-part, or it is an open
question asking about the possible / thinkable consequences or impacts if the question
described by the Trigger Part becomes true.

50 C. Denger, M. Trapp, and P. Liggesmeyer

Fig. 2. The Meta-Meta-Questions Defining the Structure of SafeSpection Guide Phrases

Having introduced the basic building blocks, the SafeSpection framework defines
meta-questions that represent domain-specific instantiations of the concepts Objects
and Influence Factors.

Fig. 3. The Hierarchies for the SafeSpection MetaModel

Consequently, these meta-questions represent generic guide-phrases that are appli-
cable in a certain domain and that are an intermediate abstraction layer allowing the
systematic customization of feasible, project-specific guidance.

In order to use the SafeSpection framework efficiently it is the responsibility of a
safety manager and a software development leader to identify the domain-specific
instantiations of the meta-meta-questions. This activity has to be done in close
cooperation between software development and safety management to gather the

 SafeSpection – A Systematic Customization Approach 51

Nr. Question

1 How is the behavior of the application software typically described in the domain (in
terms of functions, services, processes)?

2 Can software functions within this domain be characterized with respect to time con-
straints, pre-conditions, post-conditions?

3 Which modeling elements / components are used to describe the software function in the
domain (e.g., sate-machines, data-flow models)

… …..

12 Are assumptions regarding the realization of functions to be considered?

13 What environmental conditions can have an impact on the software behavior (e.g.,
weather conditions, road-conditions)?

14 Is the software behavior dependent on operational modes (e.g., power-up, power-down)?

Fig. 4. SafeSpection Interview-Guide to Identify Guide-Phrase Objects and Influence Factors

knowledge and experience of both worlds. The concepts need to be identified for the
given domain of the systems developed (e.g., electronic control units for a car). Safe-
Spection provides an interview guide that supports the identification of relevant ob-
jects and influence factors (see an excerpt in Fig. 4).

The result of this activity is a set of generic guide-phrases that comprise the do-
main-specific objects and influence factors. The results of the interviews should be
backed up with a comprehensive study of existing functional specifications of ECUs
in the company to identify additional objects and influence factors. In the aircraft
example, one could identify software realizations of external conditions as an object,
i.e., the formula for “on ground”. Examples of influence factors in this domain are
weather conditions, flight situations like landing, take-of, and so on. Hence, the iden-
tification of a complete set of object and influence factors is a crucial success factor of
the SafeSpection approach.

We elicited domain-specific objects and influence factors in the context of func-
tional specifications of electronic control units of cars. In this domain, typical objects
are the functions/services and their characteristics (pre-conditions, timing constraints,
realization, accuracy, assumptions), the interfaces of the functions/services to other
functions (i.e., exchanged signals, their syntax, their semantic, and timing); and the
interactions the functions are involved in. The influence factors that can have a
negative impact on these objects are in the SafeSpection approach: environmental
conditions (e.g., weather conditions, road conditions), operational situations (e.g.,
high-speed driving, urban driving), technical constraints (e.g., latency of actuators,
frequency of sensor polling), realization assumptions (e.g., algorithm xyz is used to
approximate vehicle speed), operational modes (e.g., power-up, power-down, diagno-
sis), and the change of technical constraints (e.g., reusing software in another hard-
ware environment, change of sensor characteristics due to aging).

In order to standardize the definition of the generic guide-phrases, SafeSpection
provides a grammar. This grammar defines rules on how objects and influence factors
are combined into a SafeSpection guide-phrase. The core structure of each guide-
phrase follows the rule: S Intro ● Influence ● interference ● Object?, where Intro
is a phrase introducing a question, like “Does the…”, “Is it possible that…”. Influence
and Object are the identified domain-specific objects and influence factors, and inter-
ference defines the type of impact on the object. In our aircraft example applying
SafeSpection leads to the following generic guide-phrase: “Does the <<weather

52 C. Denger, M. Trapp, and P. Liggesmeyer

condition>> invalidate the <<software realization>> of <<system condition>>. The
words in <<..>> are the generic objects and influence factors that need to be identified
by the experts using the SafeSpection interview guidelines.

According to the combination of objects, interferences, and influence factors, the
SafeSpection approach predefines the following types of guide-phrases that address
certain types of software-caused hazards in the context of an ECU.

Name Scope
1. Overall
assumptions

Supports the identification of software-caused hazards that stem from a violation of system-
wide constraints, pre-requisites and assumptions by the software realization.

2. External
Influence

Supports the identification of software-caused hazards that stem from an inappropriate
consideration of special characteristics of driving situation, operational modes, and
environmental conditions in the software.

3. Changed
Environment

Supports the identification of software-caused hazards that stem from changes in the software
environment (like changed technical constraints, changed application context, changed sensor
characteristics) that are not properly mapped / considered in the software realization.

4. Communication Supports the identification of software-caused hazards that stem from wrong or inappropriate
interactions of software elements and software-realized functions / services / processes.

5. Functional
Realization

Supports the identification of software-caused hazards that stem from an improper realization
and an insufficient consideration of influences on the software behavior (like the fulfillment of
assumptions, prerequisites constraints that are not given in certain operation of modes).

6. Special
Functions

Supports the identification of software-caused hazards that stem from the implementation of
degradation scenarios that are not properly integrated in the overall functional concept.

Fig. 5. Types of Guide-Phrase Patterns in the SafeSpection Framework

For each type, one or more generic guide-phrase is provided. With respect to the
analysis of functional specifications of ECUs, we defined a set of generic guide-
phrases for the types defined above. The following questions represent guide-phrases
of the type external influence and changed environments:

Does the <<characteristic>> of <<driving situation>> invalidate the
<<pre-condition>> || <<post-condition>> of <<function>>?

Does the change of <<characteristics>> of <<sensor>> || <<actuator>>
violate the timing-constraints of <<function>>?

In the Appendix of thi paper an excerpt of the full set of generic guide-phrases
supporting the detection of conceptual faults is listed. The advantage of the guide-
phrases is their generic nature aimed at conceptual faults compared to the syntactic
guidance provided by existing HAZOP guidewords. Moreover, the guide-phrases are
already tailored to the application domain and hence more specific than general-
purpose guidewords. The following comparison clarifies this advantage: the checklist
questions defined by Leveson [2] typically aim at completeness issues, e.g.,: “A trig-
ger involving the nonexistence of an input must be fully bounded in time”. Guide-
phrases defined with the SafeSpection approach would perceive the definition of such
a trigger and its time bounds as objects of the specification, i.e., SafeSpection takes
these as inputs. These objects are combined with influence factors to check whether
or not the time bound can be violated for example by external conditions or whether
or not the time bound contradicts realization assumptions underlying the software.

Finally, the generic guide-phrases are instantiated to concrete guide-phrases that
are applicable in a certain project. That is, the generic meta-questions defined for the
application domain are instantiated with concrete objects and influence factors of a

 SafeSpection – A Systematic Customization Approach 53

software project. In our aircraft example, the generic guide-phrase is instantiated with
the concrete objects and influence factors: “Does rainy weather invalidate the soft-
ware realization plane on ground if the wheels are turning and the pressure is >= x
lb?” The person responsible for this activity is typically a quality assurance person of
the project team whose functional specification is analyzed. The resulting guide-
phrases are used by the analysis team to identify conceptual faults in the functional
specification. It is most important to identify those generic guide-phrases that are
relevant for the specific project context. Again, the SafeSpection framework provides
guidelines on how to perform this instantiation in terms of expert interviews. The
project-specific guide-phrases result in systematically tailored guidance addressing
the real safety needs in a project context. The detection of conceptual software faults
in the project becomes a repeatable activity and focused on the project-characteristics
rather than on providing general-purpose guidance. The identified guide-phrases can
be used as a stand-alone technique similar to an inspection approach, using the guide-
phrases as checklist questions or as part of the software FMEA and software FTA
activities where they guide the analysis team in detecting software failure modes and
software causes of hazards.

4 SafeSpection Application

In order to validate the applicability of the SafeSpection framework, we validated its
core concepts in an industrial project. The objective of the project was the develop-
ment of a complex, distributed system to realize new functionality in a car. Due to
confidentiality reasons it is not possible to show details of the software system or its
architecture, but on an abstract basis the project can be described.

4.1 The Application Context

The software system in this project realizes an innovative feature of a future car. The
overall software system comprises 8 sub-systems interconnected by a network. Each
sub-system is responsible for the realization of one or more features of the functional-
ity. By applying SafeSpection, the manufacturer of the system wanted to ensure that
the software system does not impact the overall value-adding processes in an unac-
ceptable way. Hence, in this project, safety was not defined in the common way, i.e.,
loss of life, or injury to people, but as the loss of an immense amount of money due to
such potential negative influences caused by the software system. The SafeSpection
approach was used to support the identification of conceptual faults in the general
functional specification of the software system and its conceptual architecture. The
analysis was performed at the end of the requirements analysis step and after the con-
ceptual architecture of the system had been defined. The manufacturer had already
performed an analysis of the potential risks caused by the software system but without
systematic guidance.

4.2 The Application Process

The execution of the software safety analysis was organized in 3 full-day workshops.
Based on the already identified catastrophic influences of the software system, a

54 C. Denger, M. Trapp, and P. Liggesmeyer

fault-tree analysis was performed to analyze the software causes of the unwanted
events. In order to support this step, i.e., the identification of conceptual software
faults causing the top-event, the SafeSpection framework was used to identify and
apply supporting guide-phrases. As outlined in the last section, the first step of the
SafeSpection approach is the definition of generic guide-phrases that combine objects
and potential influence factors. The analysis of the 500-page software specification
written mainly in natural language and the conceptual overview of the software archi-
tecture resulted in the following generic objects: processes, components, interactions,
pre- and post-conditions, assumptions, and constraints; and in the generic influence
factors operational mode, system assumptions, technical and environmental con-
straints. Based on these concepts generic guide-phrases could be created.

In order to identify potential software causes for the unwanted events, the concrete
instances of the identified generic phrases needed to be identified. This was done as
part of the FTA workshop. Starting from the unwanted event, those concrete system
processes influenced by the software were identified that directly contribute to the
unwanted event. Then the components realizing the identified processes as well as the
interaction of these components were identified together with the customer’s experts.
This was done using the customization questions defined in the SafeSpection frame-
work and the results of this step were documented by extended sequence charts show-
ing all concrete objects of realizing the selected processes (see Fig. 6).

The swim-lanes show the concrete components that participate in the identified
processes. The grey-boxes represent the objects, pre-conditions, post-conditions,
constraints, and assumptions. These were also identified as part of the workshop in
cooperation with the customer’s experts. For example, the component Pre-Processing
1 requires as a pre-condition the availability of a certain data-item (xyz) and that the
initialization has been performed successfully. The component Pre-Processing 2 must
fulfill the constraint that the processing of data is completed within 5 ms. The compo-
nent Data-buffer contains the implicit assumption that not more than 25 requests are
sent within one second. Finally, as a post-condition of the whole process the plausible
data are presented at the software interface as a output.

 The negative form of the post-condition of the whole process represents the un-
wanted event, i.e., the top-event of the fault tree. Now, the selected guide-phrase pat-
terns guide the identification of the causes of the unwanted top-event. In other words,
the guide-phrases were used to systematically identify potential software causes of the
unwanted top-events. As it was not possible to derive explicit influence factors prior
to the workshop (due to time limitations in the project) the guide-phrases were used as
open questions. That is, the guide-phrase patterns were modified in such a way that
they ask for potential influence factors that invalidate the object under discussion. The
following list shows an excerpt of instantiated guide-phrase patterns derived for ana-
lyzing the objects in the sequence chart.
Is it possible that the realization of pre-processing 1 violates the timing constraint
“needs to finish in 5 ms” of pre-processing 2?

• Which characteristic of the operational mode contradicts the realization of
pre-processing 1?

• Which external condition invalidates the realization of pre-processing 2?
• Which change of characteristics of external components interacting with the

application software violate the pre-conditions of pre-processing 1?

 SafeSpection – A Systematic Customization Approach 55

Pre-
Processing 1

Pre-
Processing 2

User
Interface

Data-
buffer

Input xyz required;
component must

be initialized

Retrieved data
are plausible

Needs to finish
within 5 ms

Not more than 25
requests / s.

Fig. 6. Application of the Guide-Phrases

• Which change of characteristics of external components interacting with the
application software violate the assumptions of the data buffer?

• Is it possible that the semantic of messages is different for pre-processing 1
and pre-processing 2?

The analysis starts from the unwanted top-event and asks whether or not an inter-
mediate event that is described by the guide-phrase triggers the top-event. If this is the
case, the event is added to the fault tree, if not, the event described by the next guide-
phrase is investigated until all guide-phrases have been considered. The workshop
leaders (two of the authors of this paper) derived the guide-phrases, asked the related
questions, and modeled the results as extensions of the fault tree.

4.3 The Application Results

Using the guide-phrases defined by the SafeSpection approach resulted in a system-
atic and easy to apply refinement of the fault tree top-events. The developers involved
in the analysis perceived the fault tree technique and the systematic consideration of
potential causes as a highly valuable technique to detect conceptual faults in their
functional software specification. The application of SafeSpection resulted in project-
specific guidance, which could be quickly derived during the FTA-meeting. The man-
agement perceived the approach as a success, as the results provided additional
conceptual weaknesses in the software specification.

56 C. Denger, M. Trapp, and P. Liggesmeyer

Criticality of Finding

none
18%

small
42%

medium
8%

high
28%

critical
4%

Fig. 7. Criticality of the Software Faults detected with SafeSpection

For the highest prioritized top-event, for example, we could identify 50 additional
software faults that could cause the top-event. For the 32 findings rated as high and
critical a careful re-consideration of the software specification was performed and miti-
gation strategies needed to be defined. These results show that the SafeSpection ap-
proach created customized guide-phrases that identify so far undetected conceptual
software faults quickly and in a feasible way during the FTA-meeting. We could detect
and resolve several faults that might have caused catastrophic events for the company.

5 Conclusion

The SafeSpection framework introduced here provides a feasible approach to identify
customized and project-specific guidance for the detection of conceptual software
faults that have the potential of causing safety-critical system events. We demon-
strated the feasibility of the core concept of the approach (a grammar for defining
generic guide-phrases) in an industrial case study. The customized guide-phrases
supported the identification of 50 additional software faults; 32 of them required the
definition of suitable mitigation strategies to prevent a catastrophic top-event.

In future steps, it is important to validate the applicability of the customization
approach in more detail. First, it is important to validate the completeness of the pro-
vided support on identifying objects and influence factors of the guide-phrases. Sec-
ond, the resulting guide-phrases will be compared in an empirical study with standard
software-safety analysis techniques (like FMEA or FTA) with respect to the type of
detected software faults (is it possible to detect more conceptual faults) and the re-
peatability and comparability of the results.

References

1. Knight, J.C.: Safety Critical Systems: Challenges and Directions. In: 24th International
Conference on Software Engineering (ICSE 2002), pp. 547–550. ACM, New York (2002)

2. Leveson, N.: Safeware – System Safety and Computers. Addison Wesley Publishers, Bos-
ton (1995)

3. IEC 61508: Institute of Electrical and Electronics Engineers. Functional Safety of electri-
cal/electronic/programmable electronic safety-related systems Part 3 Requirements on
Software (1999)

 SafeSpection – A Systematic Customization Approach 57

4. ISOWD 26262, Road vehicles, Functional Safety Part 6: Product development software.
Working draft (2006)

5. Fenelon, P., McDermid, J.A., Pumfrey, D.J., Nicholson, M.: Towards Integrated Safety
Analysis and Design. ACM Computing Reviews 2(1), 21–32 (1994)

6. McDermid, J.A.: Software Hazard and Safety Analysis. In: Lecture Notes in Computer
Science, vol. 2469, pp. 23–34 (2002)

7. Papadopoulos, Y., et al.: A Method and Tool Support for Model-based Semi-automated
Failure Modes and Effects Analysis for Engineering Designs. In: 9th Australian Workshop
on Safety Related Programmable Systems (SCS 2004), pp. 89–95. Australian Computer
Society (2004)

8. Lutz, R.R., Woodhouse, R.M.: Bi-directional Analysis for Certification of Safety-Critical
Software. In: The proceedings of the International Software Assurance Certification
Conference (ISACC 1999), pp. 1–9. Springer, Heidelberg (1999)

9. Pumfrey, D.J.: The Principled Design of Computer System Safety Analysis. PhD thesis.
Department of Computer Science, University of York, UK (1999)

10. Chudleigh, M.: Hazard analysis using HAZOP: A case study. In: 12th International
Conference on Computer Safety, Reliability and Security (SAFECOMP 1993), pp. 99–
108. Springer, Heidelberg (1993)

11. Redmill, F., Chudleigh, M., Catmur, J.: System Safety: HAZOP and Software HAZOP, p.
248. John Wiley & Sons Ltd., Chichester (1999)

12. Lisagor, O., et al.: Safety Analysis of Software Architectures – Lightweight PSSA. In: The
proceedings of the 22nd International System Safety Conference (ISSC 2004). IEEE
Computer Society, Los Alamitos (2004)

13. Reese, J.D., Leveson, N.G.: Software Deviation Analysis. In: 19th International
Conference on Software Engineering (ICSE), pp. 250–260. IEEE, Los Alamitos (1997)

14. Papadoupoulos, Y., et al.: Hierarchically Performed Hazard Origin and Propagation
Studies. In: Felici, M., Kanoun, K., Pasquini, A. (eds.) SAFECOMP 1999. LNCS,
vol. 1698, pp. 139–152. Springer, Heidelberg (1999)

15. Papadopoulos, Y., et al.: Automating the Failure Mode and Effects Analysis of Safety
Critical Systems. In: The proceedings of the 8th International Symposium on High
Assurance Systems Engineering (HASE 2004), pp. 310–311 (2004)

16. Rodriguez-Dapena, R.: Software safety verification in critical software intensive systems.
Phd Thesis, Eindhoven Technical University, University Printing Office (2002)

	SafeSpection – A Systematic Customization Approach for Software Hazard Identification
	Introduction
	Existing Software Safety Analysis Approaches
	A General View on Existing Software Safety Approaches
	Detailed Discussion of Selected Approaches

	The SafeSpection Framework
	Approach to Systematization
	The SafeSpection Framework Concepts and Their Application

	SafeSpection Application
	The Application Context
	The Application Process
	The Application Results

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

