
Multi-way Space Partitioning Trees

Christian A. Duncan

Department of Computer Science, University of Miami,
duncan@cs.miami.edu,

http://www.cs.miami.edu/˜duncan

Abstract. In this paper, we introduce a new data structure, the multi-
way space partitioning (MSP) tree similar in nature to the standard bi-
nary space partitioning (BSP) tree. Unlike the super-linear space require-
ment for BSP trees, we show that for any set of disjoint line segments
in the plane there exists a linear-size MSP tree completely partitioning
the set. Since our structure is a deviation from the standard BSP tree
construction, we also describe an application of our algorithm. We prove
that the well-known Painter’s algorithm can be adapted quite easily to
use our structure to run in O(n) time. More importantly, the constant
factor behind our tree size is extremely small, having size less than 4n.

1 Introduction

Problems in geometry often involve processing sets of objects in the plane or in
a higher dimensional space. Generally, these objects are processed by recursively
partitioning the space into subspaces. A common approach to partitioning the
set involves constructing a binary space partitioning (BSP) tree on the objects.
The operation is quite straightforward. We take the initial input and determine
in some manner a hyperplane that divides the region. We then partition the
space into two subspaces, corresponding to the two half-spaces defined by the
hyperplane. The set of objects is also partitioned by the hyperplane, sometimes
fragmenting individual objects. The process is then repeated for each subspace
and the set of (fragmented) objects until each subspace (cell) contains only
one fragment of an object. This requires the assumption that the objects are
disjoint; otherwise, we cannot guarantee that every cell subspace contains only
one fragment of an object. The final tree represents a decomposition of the space
into cells. Each node of the tree stores the hyperplane splitting that subspace
and each leaf represents a cell in the decomposition containing at most one
fragmented object. For more detailed information see, for example, [9].

In computer graphics, one often wishes to draw multiple objects onto the
screen. A common problem with this is ensuring that objects do not obstruct
other objects that should appear in front of them. One solves this problem by
doing some form of hidden surface removal. There are several approaches to
solving this problem including the painter’s algorithm [11]. Like a painter, one
attempts to draw objects in a back-to-front order to guarantee that an object
is drawn after all objects behind it are drawn and thus appears in front of all

F. Dehne, J.-R. Sack, M. Smid (Eds.): WADS 2003, LNCS 2748, pp. 219–230, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

220 C.A. Duncan

of them. Fuchs et al. [12] popularized the use of BSP trees by applying them
to the painter’s algorithm. Since then BSP trees have been successfully applied
to numerous other application areas including shadow generation [4,5], solid
modeling [13,15,19], visibility [3,17,18], and ray tracing [14].

The size of the BSP tree, bounded by the number of times each object is
partitioned, greatly affects the overall efficiency of these applications. Paterson
and Yao [15] showed some of the first efficient bounds on the size of the binary
space partition tree. In particular, they showed that a BSP tree of size O(n log n)
can be constructed in the plane and an O(n2)-sized tree can be constructed in
IR3, which they prove to be optimal in the worst-case. Recently, Tóth [20] proved
that there exist sets of line segments in the plane for which any BSP tree must
have at least Ω(n log n/ log log n) size.

By making reasonable and practical assumptions on the object set, im-
proved bounds have been established, see [6,10,16,21]. For example, Paterson
and Yao [16] show that a linear-size BSP tree exists when the objects are or-
thogonal line segments in the plane. Tóth [21] shows a bound of O(kn) when the
number of distinct line segment orientations is k. In [6], de Berg et al. show that
in the plane a linear size BSP tree exists on sets of fat objects, on sets of line
segments where the ratio between the longest and shortest segment is bounded
by a constant, and on sets of homothetic objects, that is objects of identical
shape but of varying sizes. Our approach is very similar to theirs but with a
different aim.

The research in higher-dimensional space is also quite rich but is not the
focus of this paper [1,2,7,8,15,16]. We do feel that extending this structure to
IR3 is a natural next step for this data structure.

1.1 Our Results

This paper focuses on partitioning a set of n disjoint line segments in the plane.
We introduce a new data structure, the multi-way space partitioning (MSP) tree.
Unlike standard binary partitioning schemes, MSP trees are produced by parti-
tioning regions into several sub-regions using a spirally shaped cut as described
in the next section. We show that for any set of disjoint line segments in the plane
there exists a linear-size MSP tree on the set. Unlike previous results on linear-
size BSP trees, our segments have no constraints other than being disjoint. More
importantly, the constant factors behind our techniques are extremely small. In
fact, we show that the constructed tree has size less than 4n.

Since our structure is a deviation from the standard BSP tree construction,
we also describe an application of our algorithm. More specifically, we prove that
the painter’s algorithm can quite easily be adapted to use our structure to run in
O(n) time. We accomplish this by creating a visibility ordering of the cells from
a viewpoint v. That is, for any two cells, ci and cj , if any line segment from v
to a point in ci intersects cj then cj comes before ci in the ordering. Since many
other applications using BSP trees rely on some form of a visibility ordering on
the various cell regions, our algorithm should easily adapt to other applications.

Multi-way Space Partitioning Trees 221

2 Multi-way Space Partitioning

For the remainder of this paper, we shall assume we are working exclusively
with objects which are disjoint line segments in the plane. Multi-way space
partitioning trees store information in a fashion very similar to BSP trees. At
each node in the tree, rather than restricting partitioning to a single hyperplane,
we also allow a spiral cut to partition the region into multiple disjoint sub-
regions. Since every region produced will be convex, when we refer to a region
we specifically mean a convex region. As with the BSP tree, every segment that
intersects a sub-region is propagated downwards. In some cases, line segments
may be split by the (spiral) cut and belong to multiple sub-regions. A leaf in the
tree is created when a region contains a single segment. To minimize the size of
the MSP tree, we wish to reduce the number of times any segment is divided
by cuts. In our construction algorithm, we shall bound the number of times a
segment is split to at most three; thus proving a size of less than 4n. Before we
can proceed with the construction and proof of the tree size, we must first define
the spiral cut in detail (see Figure 1).

Definition 1. A spiral cut of size k ≥ 3 is a cyclic set of rays C =
{c0, . . . , ck−1} such that,
1. ci intersects cj if and only if j ≡ i±1 mod k; only neighboring rays intersect.
2. ci and ci+1 intersect only at the endpoint of ci+1 (modk, of course).

Let pi be the endpoint of ray ci lying on ray ci−1. Let the center line seg-
ment li be the segment, lying on ci, formed by the endpoints pi and pi+1. Let
the exterior ray c′

i be the ray formed by removing li from ci. Note that c′
i has

endpoint pi+1.
Define the arm region Ri to be the V-shaped region lying between the two

rays ci and the c′
i−1 defined by pi. Define the center region Rk to be the convex

hull of the set of endpoints pi, i ∈ {0, . . . , k}, which consists of the set of center
line segments.
A point p lies to the right of ray ci if the angle formed from ci to the ray

starting at pi passing through p is in the range (0, π). Similarly, a point p lies to
the left of ray ci if the angle is negative. In addition, a ray ci+1 is to the right
(left) of ray ci if any point on ci+1 is to the right (left) of ci.
A spiral cut is oriented clockwise (counterclockwise) if every consecutive

ray is to the right (left) of its previous ray. That is, if ci+1 is to the right of ci

for all ci ∈ C.

Because the rays are cyclically ordered and only intersect neighboring rays,
every turn must be in the same direction. Therefore, there are only two types
of spiral cuts, clockwise and counterclockwise. As described above, a spiral cut
of size k divides the region into k + 1 convex sub-regions. There are k sub-
regions, R0, . . . , Rk−1, each associated with an arm region of the spiral, and one
sub-region Rk in the center of the spiral (see Figure 1).

There are several properties that we can establish that will prove useful in
our evaluation of the MSP tree.

222 C.A. Duncan

Property 1. If the spiral cut, C, is clockwise (counterclockwise), then any point p
in the center region Rk lies to the right (left) of every ray ci ∈ C. For a clockwise
spiral cut, let p be any point in an arm region, say R0. Point p lies to the left of
c0 and the right of ck−1. In addition, there exists a ray cm such that p lies to the
left of all rays ci for 0 ≤ i ≤ m and to the right of all rays ci for m < i ≤ k − 1.
That is, traversing the cycle from c0 around to ck−1, divides the cycle into two
continuous sequences those with p on the left and those with p on the right. For
counterclockwise spiral cuts, the reverse directions apply.

Fig. 1. An example of a clockwise spiral cut C = {c0, c1, c2, c3, c4, c5} forming. 6 arm
regions and the center region. The point p ∈ R0 lies to the left of c0 and c1 but to the
right of all other rays.

2.1 Construction

Assume we are given an initial set of segments S. The general construction al-
gorithm is quite simple, start with an initial bounding region of the segment
endpoints. For every region R, if there is only one segment of S in the region,
nothing needs to be done. Otherwise, find an appropriate halfplane cut or spi-
ral cut. Then, divide the region into sub-regions R0, R1, . . . Rk which become
child regions of R. The line segments associated with the cut are stored in the
current node and all remaining line segments in R are then propagated into
the appropriate (possibly multiple) sub-regions. Finally, repeat on each of the
sub-regions.

What remains to be shown is how to determine an appropriate cut. We do this
by classifying our segments into two categories: rooted and unrooted segments
(see Figure 2). For any convex region R, a rooted segment of R is a segment which
intersects both the interior and boundary of R. Similarly, an unrooted segment
of R is a segment which intersects the interior of R but not its boundary. By
this definition unrooted segments of R must lie completely inside the region.

Multi-way Space Partitioning Trees 223

Fig. 2. An example of rooted (solid) and unrooted (dashed) segments in a convex
region.

For any region R, let S(R) represent the set of all segments of S lying (par-
tially) inside R. Let R(R) ⊆ S(R) represent the set of rooted segments of S in
R and let U(R) = S(R) − R(R) represent the set of unrooted segments of S
in R. For any two regions R1 and R2 if there exists a segment s ∈ S such that
s ∈ U(R1) and s ∈ U(R2) then R1 ⊆ R2 or R2 ⊆ R1. This means that R1 and
R2 must lie on the same path from the root node to a leaf in the MSP tree. In
addition, if s ∈ U(R1) and s ∈ R(R2) then R2 ⊂ R1. That is, R2 must be a
descendant of R1 in the tree.

Let us now see how we can exploit these rooted and unrooted segments.
In [6], de Berg et al. show that if a region contains only rooted segments then a
BSP tree of linear size can be constructed from it. Of course, the challenge is in
guaranteeing that this situation occurs. As a result, they first made numerous
cuts to partition the initial region R into sub-regions such that every segment
was cut at least once but also not too many times. Their result relied on the
assumption that the ratio between the longest segment and the shortest segment
was some constant value.

We take a somewhat different approach to this problem. We do not mind
having unrooted segments in our region and actually ignore them until they are
first intersected by a dividing cut, after which they become rooted segments
and remain so until they are selected as part of a cut. In our construction, we
guarantee that rooted segments are never divided by a partitioning cut. That
is, only unrooted segments will be cut. This situation can only occur once per
segment in S. Let us now see how to find an appropriate partitioning cut.

2.2 Finding a Spiral or Hyperplane Cut

Let us assume we are given some region R. For this subsection, we will completely
ignore unrooted segments. Therefore, when we refer to a segment s we always
mean a rooted segment s ∈ R(R).

Although not necessary, observe that if a rooted segment intersects the
boundary of R in two locations then we can choose this segment as a valid
partitioning cut. Therefore, for simplicity, we assume that no segment in R in-
tersects the boundary of R more than once.

As in [6], we try to find either a single cut that partitions the region or else
a cycle of segments that do. We do this by creating an ordered sequence on the

224 C.A. Duncan

segments starting with an initial segment s0 ∈ R(R). Let us extend s0 into R
until it either hits the boundary of R or another segment in R(R). Define this
extension to be ext(s0). For clarity, note that the extension of s0 includes s0
itself. If ext(s0) does not intersect any other segment in R(R), then we take it
as a partitioning cut. Otherwise, the extension hits another segment s1. In this
case, we take s1 to be the next segment in our sequence. The rest of the sequence
is completed in almost the same fashion.

Let us assume that the sequence found so far is {s0, s1, s2, . . . , si}. We then
extend si until si hits either the boundary of R, a previous extension ext(sj)
for j < i, or a new segment si+1. If it hits the boundary of R, then we can
take si as a partitioning cut. If it intersects ext(sj), then we have completed our
cycle, which is defined by the sequence C(R) = {ext(sj), ext(sj+1), . . . , ext(si)}.
Otherwise, we repeat with the next segment in our sequence, si+1.

Since there are a bounded number of segments in R(R), the sequence must
find either a single partition cut s or a cycle C. If it finds a single partition cut s
then we can simply divide the region R into two sub-regions by the line formed
by s as usual. Otherwise, we use the cycle C to define a spiral cut.

Let ext(si) and ext(si+1) be two successive extension segments on the cycle.
By the construction of the cycle, ext(si) has an endpoint pi on ext(si+1). We,
therefore, define the ray for ci to be the ray starting at pi and extending outward
along ext(si) (see Figure 3). To be consistent with the spiral cut notation, we
must reverse the ordering of the cycle. That is, we want pi to lie on ci−1 and
not ci+1. Also, except possibly for the initial extended segment, every extension
ext(si) is a subset of li, the center line segments forming the convex center region,
Rk.

Since the initial region is convex and by the general construction of the cycle,
this new cycle of rays defines a spiral cut. We can now proceed to use this spiral
cut to partition our region into multiple regions and then repeat the process
until the space is completely decomposed.

2.3 MSP Size

To complete our description of the tree, we only need to analyze its worst-case
size. The size of the MSP tree produced by our construction algorithm depends
only on the following two conditions:

1. At every stage no rooted segment is partitioned.
2. At every stage no unrooted segment is partitioned more than a constant, c,

number of times.

If both of these conditions hold, the size of the tree is at most (c + 1)n since
an unrooted segment once split is divided into rooted segments only and each
ray of the spiral cut corresponds to one rooted segment.

Lemma 1. Given a convex region R with a set of rooted segments R(R) and
unrooted segments U(R), a partitioning cut or spiral cut can be found which
divides R into sub-regions such that no segment in R(R) is intersected by the

Multi-way Space Partitioning Trees 225

Fig. 3. (a) An example of finding a cycle of cuts. Here, s0 is the initial cut and the
cycle completes when s7 intersects ext(s1). Thus, the sequence is {s1, s2, . . . , s7}. (b)
The resulting spiral cut, {c0, . . . , c6}. This cycle is formed by the sequence of segments
reversed. Observe how the unrooted segments intersect the spiral cut and in particular
how the bold dashed unrooted segment is intersected the maximum three times. (c)
Here, c4 is the ray extending from p4, c′

4 is the ray extending from p5, l4 is the segment
between p4 and p5. The ext(s4) is the dashed portion starting at p4 and ending before
p5. Observe how the unrooted segment can intersect only the ext(s4) if it intersects c4.

cut except those that are part of the cut and no unrooted segment in U(R) is
intersected by the cut more than three times.

Proof. We construct the sequence {s0, s1, . . . sk} as described in the previous
subsection. If we choose a segment si, as a partitioning cut, then by our con-
struction it does not intersect any other rooted segment. Also, it can intersect
an unrooted segment at most once.

Let us then assume that we have identified a spiral cut {c0, c1, c2, . . . , ck−1}.
Given the construction of the spiral cut itself, it is clear that no rooted segment
that is not part of the cycle is intersected. So, all that is left to prove is that
unrooted segments are intersected at most three times.

As described earlier, the rays of the spiral cut can be broken into two pieces,
the portion of the ray forming the convex central region Rk and the arm regions
Ri for 0 ≤ i < k. In particular, let us look at any three successive rays, say c0,
c1, and c2. Recall that p1 is the endpoint of c1 and p2 is the endpoint of c2. In
addition, p1 lies on c0 and p2 lies on c1. Recall that the center line segment l1 is
defined to be the segment from p1 to p2 and that the exterior ray c′

1 is the ray
extending from p2 along c1.

Now, let us look at an unrooted segment s ∈ U(R). We first look at the line
segments li forming Rk. Because the region is convex, s can intersect at most
two segments of the convex central region. Let us now look at the exterior ray
portions. Recall that each extension, ext(si), except for i = 0, is a subset of the
center line segment li. Since the portion of ci lying inside R is exactly the union
of si and ext(si) and, except for i = 0, ext(si) is a subset of the center line
segment li, the portion of c′

i lying inside R is a subset of the segment si. Since
all segments are disjoint and s is unrooted, s cannot intersect c′

i except for c′
0.

As a result, the spiral cut intersects s at most three times (see Figure 3b). ��
This lemma along with the construction of the multi-way space partitioning

tree leads to the following theorem:

226 C.A. Duncan

Theorem 1. Given a set of n disjoint segments S ⊂ IR2, a multi-way space
partitioning tree T can be constructed on S such that |T | < 4n in O(n3) time.

Proof. The proof of correctness and size is straightforward from the construction
and from Lemma 1. As for the running time, a straightforward analysis of the
construction algorithm shows O(n2) time for finding a single spiral cut and hence
the O(n3) overall time. ��

This is most likely not the best one can do for an MSP tree construction. It
seems possible to get the time down to near quadratic time. Although it may
be difficult to develop an algorithm to compete with the O(n log n) construction
time for a regular BSP tree, we should point out that the BSP tree created is
not necessarily optimal and is typically created via a randomized construction.

3 Painter’s Algorithm

To illustrate the vitality of the MSP tree, we now show how to apply this struc-
ture to the painter’s algorithm. In a BSP tree, the traditional approach to solving
the painter’s algorithm is to traverse the tree in an ordered depth-first traversal.
Assume we are given an initial view point, v. At any region R in the tree, we
look at the partitioning cut. Ignoring the degenerate case where v lies on the
cut itself, v must lie on one side or the other of the cutting line. Let R1 be the
sub-region of R lying on the same side of the line as v and let R2 be the other
sub-region. We then recursively process R2 first, process the portion of the line
segment in the region corresponding to the cutting line, and then process R1. In
this way, we guarantee that at any time a line segment s is drawn it will always
be drawn before any line segment between s and v.

To see the corresponding approach to traversing the MSP tree, let us gen-
eralize the depth-first search. Recall at a region R, we visit all the sub-regions
on the opposing side of the cutting line to v and then all sub-regions on the
same side as v. Let R1 be a sub-region of R visited in the search. The ultimate
goal is to guarantee that, for any point p ∈ R1, the line segment pv intersects
only sub-regions that have not been visited already. Now, let R have multiple
sub-regions R0, R1, . . . , Rk rather than just two. We still wish to construct an
ordering on the sub-regions such that the following property holds:

– Let pi be any point in Ri. The line segment piv does not intersect any region
Rj with j < i in our ordering.

Notice if this property holds, then we can traverse each sub-region recursively
as before and guarantee that no line segment s is drawn after a line segment
appearing between v and s.

3.1 Spiral Ordering

Unfortunately, given a spiral cut, we cannot actually guarantee that such an
ordering of the sub-regions always exists from any viewpoint v. However, when

Multi-way Space Partitioning Trees 227

processing a scene one also considers a viewing direction and a viewing plane
onto which to project the scene. In this sense, we assume that one has a view
line vp that passes through v and defines a particular viewing half-plane V .
Therefore, all line segments behind the viewer can in fact be ignored.

Adding a view line does in fact enable us to create an ordering. This particular
point will only arise in one specific case. In addition, for applications such as
shadow generation requiring full processing of the scene, observe that we may
perform the process twice using the same view line with opposing normals.

To compute the order using a spiral, it is somewhat easier to describe how to
compute the reverse ordering. After creating this ordering, we can simply reverse
the ordering to get the desired result. Let us define the following ordering on a
spiral cut:

Definition 2. Given a view point v, a viewing half-plane V , and a spiral cut
{c0, c1, . . . , ck−1}. Let R0, R1, . . . , Rk be the sub-regions produced by the cut. A
visible ordering o(x) represents a permutation of the sub-regions such that,

– for any point pi ∈ Ri ∩V , if the line segment piv intersects a region Rj, then
o(j) ≤ o(i).

Moreover, given any ordering, we say a point pi ∈ Ri is visible from v if the
above condition holds for that point. We also say that v sees pi.

In other words, we visit regions in such a way that v can see every point in a
region Ri by passing only through previously visited regions. Notice this is the
reverse ordering of the painter’s algorithm where we want the opposite condition
that it only passes through regions that it has not yet visited. A simple flip of
the ordering once generated produces the required ordering for the painter’s
algorithm.

Lemma 2. Given a view point v, a viewing half-plane V , and a spiral cut
{c0, c1, . . . , ck−1}. Let R0, R1, . . . , Rk be the sub-regions produced by the cut.
There exists a visible ordering o(x) on the spiral cut.

Proof. Let Ri be the region containing the view point v itself. Let o(i) → 0 be
the first region in our ordering. Notice that since every region is convex and
v ∈ Ri, any point p ∈ Ri is visible from v.

Without loss of generality, assume that the spiral cut is a clockwise spiral.
The argument is symmetrical for counterclockwise spirals. Let us now look at
two different subcases. Recall that the spiral cut consists of two parts the center
region and the arm regions.
Case 1: Let us first assume that Ri is an arm region. Without loss of gener-
ality assume that Ri = R0. We will create our ordering in three stages. In the
first stage, we add regions R1, R2, . . . , Rm for some m to be described shortly.
We then add the center region Rk and finally we add the remaining regions
Rk−1, Rk−2, . . . Rm+1.

Let us begin with the first stage of ordering. Assume that we have partially
created the ordering o(0), o(1), . . . , o(i) and let Ri = Ro(i) be the last region

228 C.A. Duncan

added. Recall that Ri is defined by the rays ci and c′
i−1. Let us now look at the

neighboring region Ri+1 defined by the rays ci+1 and c′
i ⊂ ci.

If v lies to the left of ci+1, add Ri+1 to the ordering. That is, let o(i + 1) →
i + 1. We claim that all points in Ri+1 are visible from v. Let p be any point
in Ri+1. Notice that p also lies to the left of ci+1. Therefore the line segment
pv cannot intersect ray ci+1 and must therefore intersect ray ci. Let q be the
point on this intersection or just slightly passed it. Notice that q lies inside Ri.
By induction, q must be visible from v. Therefore, the line segment qv intersects
only regions with ordering less than or equal to i. In addition, the line segment
pq intersects only Ri+1. Therefore, the line segment pv intersects only regions
with ordering less than or equal to i + 1 and p is visible from v.

If v lies to the right of ci+1, we are done with the first stage of our ordering,
letting m = i.1 We now add the center region Rk into our ordering. That is, let
o(i + 1) → k. Again, we claim that all points in Rk are visible from v. Recall
from Property 1 that v lies to the right of all rays from cm+1 to ck−1, given that
v lies in R0. Let p be any point in Rk. Again, from Property 1 we know that
p lies to the right of every ray in the cut. Let Rj be any region intersected by
the line segment pv. If Rj is Rk or R0 we are done since they are already in the
ordering. Otherwise, we know that since Rj is convex, pv must intersect the ray
cj . Since p is to the right of cj as with all rays, this implies that v must lie to
the left of cj . But, that means that cj cannot be part of cm+1 to ck−1. Rj must
be one of the regions already visited and so j ∈ {o(0), . . . , o(m)}. Hence, p is
visible from v.

We now enter the final stage of our ordering. We shall now add into the
ordering the regions from Rk−1 backwards to Rm+1. Let us assume that we have
done so up to Rj . We claim that all points in Rj are visible from v. Let p be
any point in Rj . Again look at the line segment pv and the first (starting from
p) intersection point q with another region. This point must certainly lie on one
of the two rays cj−1 or cj . Since p is to the right of cj−1 (Property 1), if it
intersects cj−1, v must lie to the left of cj−1. This means that Rj−1 is already in
the ordering and, as with previous arguments, q is visible from v and hence so is
p. If it intersects cj instead, then q lies either in Rk or Rj+1. But again in either
case, since we added the center region already and are counting backwards now,
both Rk and Rj+1 are in the ordering. This implies that q is visible from v and
so then is p.

Thus, we have constructed a visible ordering of the regions assuming p lies
in one of the arm regions. We now need to prove the other case.
Case 2: Let v lie in the center region Rk. In this case, unfortunately, there is
no region that is completely visible from v except for the center region. This
is where the viewing half-plane V comes into play. Our arguments are almost
identical to the above case except we now only look at points in V . For simplicity,
let us assume that V is horizontal with an upward pointing normal.

1 For the sake of simplicity, we are ignoring degenerate cases such as when v lies
directly on the line defined by ci+1.

Multi-way Space Partitioning Trees 229

Look at the ray from v going horizontal to the right and let Ri be the first
new region hit by this ray. That is, Ri is the region directly to the right of
v. Without loss of generality, we can let this region be Rk−1. We then add all
regions into the ordering starting with the center region and counting backwards
from the rightmost region, Rk, Rk−1, Rk−2, . . . , Rm, where Rm is the last region
visible, at least partially intersecting V . We first claim that all point in Rk−1∩V
are visible from v. Let p be any point in Rk−1 ∩ V . Since p lies to the left of
and v lies to the right of ck−1, the line segment pv must intersect ck−1. Let q
be this intersection point. Since Rk−1 is the first region to the right of v and p
lies above the line defined by V , we know that q must actually lie on lk−1 or else
R0 would be seen first horizontally by v. This implies that q is seen from v and
hence so is p. Let us now assume that we have constructed the ordering up to
some region Ri. We claim that all points in Ri ∩ V are visible from v. Let p be
any point in Ri ∩V . Once again from the sidedness of p and v, we know that the
line segment pv must intersect ci. Let q be this intersection point. Now, either
q lies in Rk ∩ V or in Ri+1 ∩ V . In either case, both regions have been added to
our ordering and so q is visible from v. Therefore, p must also be visible from v.
By induction, our ordering is a proper visible ordering and we are done. ��

The technique for calculating the ordering is quite straightforward. The al-
gorithm must make one full scan to determine the sub-region containing v. Af-
terwards, it either marches along one direction, adds in the center region, and
marches in the other direction or it adds in the center region first, finds the first
region intersected by the viewing half-plane V and marches backwards along
the list. In either case, the algorithm can be implemented in at most two scan
passes. These observations and the fact that the MSP tree has linear size, leads
to the following theorem:

Theorem 2. Given an MSP tree constructed on a set of n line segments S in
IR2, one can perform the painter’s algorithm on S in O(n) time.

4 Conclusion and Open Problems

In this paper, we have described a simple space-partitioning tree that can be
constructed in linear size on any set of disjoint line segments in the plane. We
hope to improve construction time and reduce the maximum degree for any single
node from O(n) to constant degree. More importantly, we would like to focus on a
similar technique in IR3 space where BSP trees are known to have very poor sizes.
The question arises whether deviating from the standard notion of binary space
partitions provides better performance, even in the average case. We feel that
answering such a question would demonstrate the greatest promise for this new
tree structure. The spiral cut as mentioned for the plane will not immediately
translate into higher-dimensions, but we are hopeful that some other deviation
from the standard cutting method may produce surprising results.

230 C.A. Duncan

References

1. P. Agarwal, T. Murali, and J. Vitter. Practical techniques for constructing binary
space partitions for orthogonal rectangles. In Proc. of the 13th Symposium on
Computational Geometry, pages 382–384, New York, June 4–6 1997. ACM Press.

2. P. K. Agarwal, E. F. Grove, T. M. Murali, and J. S. Vitter. Binary space partitions
for fat rectangles. SIAM Journal on Computing, 29(5):1422–1448, Oct. 2000.

3. J. M. Airey. Increasing Update Rates in the Building Walkthrough System with
Automatic Model-Space Subdivision and Potentially Visible Set Calculations. PhD
thesis, Dept. of CS, U. of North Carolina, July 1990. TR90-027.

4. N. Chin and S. Feiner. Near real-time shadow generation using BSP trees. Com-
puter Graphics (SIGGRAPH ’90 Proceedings), 24(4):99–106, Aug. 1990.

5. N. Chin and S. Feiner. Fast object-precision shadow generation for areal light
sources using BSP trees. Computer Graphics (1992 Symposium on Interactive 3D
Graphics), 25(4):21–30, Mar. 1992.

6. de Berg, de Groot, and Overmars. New results on binary space partitions in the
plane. CGTA: Computational Geometry: Theory and Applications, 8, 1997.

7. M. de Berg. Linear size binary space partitions for fat objects. In Algorithms—
ESA ’95, Third Annual European Symposium, volume 979 of Lecture Notes in
Computer Science, pages 252–263. Springer, 25–27 Sept. 1995.

8. M. de Berg and M. de Groot. Binary space partitions for sets of cubes. In Abstracts
10th European Workshop Comput. Geom., pages 84–88, 1994.

9. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry Algorithms and Applications. Springer-Verlag, Berlin Heidelberg, 1997.

10. A. Dumitrescu, J. S. G. Mitchell, and M. Sharir. Binary space partitions for
axis-parallel segments, rectangles, and hyperrectangles. In Proceedings of the 17th
annual symposium on Computational geometry, pages 141–150. ACM Press, 2001.

11. J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics:
Principles and Practice. Addison-Wesley, Reading, MA, 1990.

12. H. Fuchs, Z. M. Kedem, and B. Naylor. On visible surface generation by a priori
tree structures. Comput. Graph., 14(3):124–133, 1980. Proc. SIGGRAPH ’80.

13. B. Naylor, J. A. Amanatides, and W. Thibault. Merging BSP trees yields polyhe-
dral set operations. Comp. Graph (SIGGRAPH ’90)., 24(4):115–124, Aug. 1990.

14. B. Naylor and W. Thibault. Application of BSP trees to ray-tracing and CGS
evaluation. Technical Report GIT-ICS 86/03, Georgia Institute of Tech., School
of Information and Computer Science, Feb. 1986.

15. M. S. Paterson and F. F. Yao. Efficient binary space partitions for hidden-surface
removal and solid modeling. Discrete Comput. Geom., 5:485–503, 1990.

16. M. S. Paterson and F. F. Yao. Optimal binary space partitions for orthogonal
objects. J. Algorithms, 13:99–113, 1992.

17. S. J. Teller. Visibility Computations in Densely Occluded Polyhedral Environments.
PhD thesis, Dept. of Computer Science, University of California, Berkeley, 1992.

18. S. J. Teller and C. H. Séquin. Visibility preprocessing for interactive walkthroughs.
Comput. Graph., 25(4):61–69, July 1991. Proc. SIGGRAPH ’91.

19. W. C. Thibault and B. F. Naylor. Set operations on polyhedra using binary space
partitioning trees. Comput. Graph., 21(4):153–162, 1987. Proc. SIGGRAPH ’87.

20. C. D. Tóth. A note on binary plane partitions. In Proceedings of the seventeenth
annual symposium on Computational geometry, pages 151–156. ACM Press, 2001.

21. C. D. Tóth. Binary space partitions for line segments with a limited number
of directions. In Proceedings of the thirteenth annual ACM-SIAM symposium on
Discrete algorithms, pages 465–471. ACM Press, 2002.

	Introduction
	Our Results

	Multi-way Space Partitioning
	Construction
	Finding a Spiral or Hyperplane Cut
	MSP Size

	Painter's Algorithm
	Spiral Ordering

	Conclusion and Open Problems

