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Abstract. Multi-agent systems offer an architecture for distributed problem solv-
ing. Distributed data mining algorithms specialize on one class of such distributed
problem solving tasks—analysis and modeling of distributed data. This paper of-
fers a perspective on distributed data mining algorithms in the context of multi-
agents systems. It particularly focuses on distributed clustering algorithms and
their potential applications in multi-agent-based problem solving scenarios. It dis-
cusses potential applications in the sensor network domain, reviews some of the
existing techniques, and identifies future possibilities in combining multi-agent
systems with the distributed data mining technology.
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1 Introduction

Multi-agent systems (MAS) often deal with complex applications that require distributed
problem solving. In many applications the individual and collective behavior of the
agents depend on the observed data from distributed sources. In a typical distributed
environment analyzing distributed data is a non-trivial problem because of many con-
straints such as limited bandwidth (e.g. wireless networks), privacy-sensitive data, dis-
tributed compute nodes, only to mention a few. The field of Distributed Data Mining
(DDM) deals with these challenges in analyzing distributed data and offers many al-
gorithmic solutions to perform different data analysis and mining operations in a fun-
damentally distributed manner that pays careful attention to the resource constraints.
Since multi-agent systems are also distributed systems, combining DDM with MAS for
data intensive applications is appealing.

This paper makes an effort to underscore the possible synergy between multi-agent
systems and distributed data mining technology. It particularly focuses on distributed
clustering, a problem finding increasing number of applications in sensor networks,
distributed information retrieval, and many other domains. The paper discusses one of
these application domains, illustrates the ideas, and reviews existing work in this area.
Although, the power of DDM is not just restricted to clustering, this paper chooses to
restrict the scope for the sake of brevity.

The paper is organized as follows. Section 2| provides the motivation behind the
material presented in this paper. Section [3| introduces DDM and presents an overview
of the field. Section 4| focuses on a particular portion of the DDM literature and takes
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an in-depth look at the distributed clustering literature. Section |5 considers distributed
clustering algorithms in the context of sensor networks that are drawing an increasing
amount of interest from the multi-agent systems community. Finally, Section |6 con-
cludes this paper.

2  Motivation

Agents in MAS need to be pro-active and autonomous. Agents perceive their envi-
ronment, dynamically reason out actions based on conditions, and interact with each
other. In some applications the knowledge of the agents that guide reasoning and ac-
tion depend on the existing domain theory. However, in many complex domains this
knowledge is a result of existing domain theory and also the outcome of empirical data
analysis. Scalable analysis of data may require advanced data mining for detecting hid-
den patterns, constructing predictive models, and identifying outliers, among others. In
a multi-agent system this knowledge is usually collective. This collective “intelligence”
of a multi-agent system must be developed by distributed domain knowledge and anal-
ysis of distributed data observed by different agents. Such distributed data analysis may
be a non-trivial problem when the underlying task is not completely decomposable and
computing resources are constrained by several factors such as limited power supply,
poor bandwidth connection, and privacy sensitive multi-party data, among others.

For example, consider a defense related application of monitoring a terrain using
a sensor network that has many tiny mote-type [15] sensors for measuring vibration,
reflectance, temperature, and audio signals. Let us say the objective is to identify and
track a certain type of vehicle (e.g. pick-up trucks). The sensors are battery-powered.
Therefore, in the normal mode they are designed not be very active. However, as soon as
someone detects a possible change in scenario, the sensors must wake up, observe, rea-
son, and collaborate with each other in order to track and identify the object of interest.
The observations are usually time-series data sampled at a device specific rate. There-
fore, collaboration with other sensor-nodes would require comparing data observed at
different nodes. This usually requires sending a window of observations from one node
to another node. This distributed problem solving environment appears to fit very well
with the multi-agent framework since the solution requires semi-autonomous behavior,
collaboration and reasoning among other things. However, regardless of how sophisti-
cated the agents are,from the domain knowledge and reasoning perspective, they must
perform the underlying data analysis tasks very efficiently in a distributed manner. The
traditional framework of centralized data analysis and mining algorithms does not really
scale very well in such distributed applications. For example, if we want to compare the
data vectors observed at different sensor nodes the centralized approach will be to send
the data vectors to the base station (usually connected through a wireless network) and
then compare the vectors using whatever metric is appropriate for the domain. This does
not scale up in large sensor networks since data transmission consumes a lot of battery
power and heavy data transmission over limited bandwidth channel may produce poor
response time. Distributed data mining technology offers more efficient solutions in
such applications. The following discussion illustrates the power of DDM algorithms us-
ing a simple randomized technique for addressing this sensor network-related problem.
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Given vectors @ = (ai,...,a,)" and b = (by,...,b,)T at two distributed site
A and B, respectively, we want to approximate the Euclidean distance between them
using a small number (compared to m) of messages between A and B. Note that the
problem of computing the Euclidean distance between a pair of data tuples a and b
can be represented as the problem of computing the inner products between them as
follows:

d*(a,b) =< a,a>+<bb>-2<a,b>

where d?(a, b) denotes the Euclidean distance between a and b; < a, b > represents
the inner product between a and b, defined as Z:’;l a;b;. Therefore, the core challenge
is to develop an algorithm for distributed inner product computation. One can approach
this problem in several ways. Table 1 shows a simple communication efficient random-
ized technique for computing the inner product between two vectors observed at two
different sites.

Algorithm 2.0.1 Distributed Dot Product Algorithm(a, b)

1. A sends B a random number generator seed. [1 message]

2. A and B cooperatively generate £ X m random matrix R where k < m. Each entry is gen-
erated independently and identically from some fixed distribution with mean zero and variance
one. A and B compute ¢ = Ra, b= Rb, respectively.

3. A sends a to B. B computes a”b = a” R” Rb. [k messages]

4. B computes D = #

So instead of sending a m-dimensional vector to the other site, we only need to
send a k-dimensional vector where k£ < m and the dot product can still be estimated
accurately. Indeed, it can be shown that the expected value of D is < a, b > and Table|l
shows some experimental results concerning accuracy.

This algorithm illustrates a simple communication-efficient-way to compare a pair
of data vectors observed at two different nodes. It potentially offers a building block to
support the collaborative object identification and tracking problem in sensor networks
where the centralized solution does not work because of limited bandwidth and power
supply for the sensor nodes.

Privacy of the data can be another reason for adopting the DDM technology. In many
applications, particularly in security-related applications, data are privacy-sensitive.
When the data are multi-party and privacy-sensitive, centralizing the data is usually
not acceptable. Therefore, many data mining applications in such domains must ana-
lyze data in a distributed fashion without having to first download everything to a single
site. There exists a growing number of DDM algorithms that address many data mining
problems for distributed environments. The following section presents an overview.

3 Distributed Data Mining: A Brief Overview

Data mining [9], [[10], [L1]],and [31] deals with the problem of analyzing data in scalable
manner. Distributed data mining is a branch of the field of data mining that offers a
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Table 1. Relative errors in computing the dot product between two synthetic binary vectors each
with 10000 elements. k is the number of randomized iterations. k is also represented as the per-
centage of the size of the original vectors. Each entry of the random matrix is chosen indepen-
dently from U(1,—1)

k Mean |Var Min [Max

100(1%) |0.1483|0.0098/0.0042|0.3837
500(5%) 10.0795|0.0035|0.0067|0.2686
1000(10%)|0.0430]0.0008|0.0033|0.1357
2000(20%)|0.0299(0.0007[0.0012|0.0902
3000(30%)|0.0262|0.0005|0.0002(0.0732

framework to mine distributed data paying careful attention to the distributed data and
computing resources.

In the DDM literature, one of two assumptions is commonly adopted as to how
data is distributed across sites: homogeneously (horizontally partitioned) and heteroge-
neously (vertically partitioned). Both viewpoints adopt the conceptual viewpoint that
the data tables at each site are partitions of a single global table. In the homogeneous
case, the global table is horizontally partitioned. The tables at each site are subsets of the
global table; they have exactly the same attributes. In the heterogeneous case the table
is vertically partitioned, each site contains a collection of columns (sites do not have
the same attributes). However, each tuple at each site is assumed to contain a unique
identifier to facilitate matching. It is important to stress that the global table viewpoint
is strictly conceptual. It is not necessarily assumed that such a table was physically
realized and partitioned to form the tables at each site. Figures 1 and 2 illustrate the ho-
mogeneously distributed case using an example from weather data. Both tables use the
same set of attributes. On the other hand, Figures 3 and 4 illustrate the heterogeneously
distributed case. The tables have different attributes and tuples are linked through a
unique identifier, Timestamp.

The development of data mining algorithms that work well under the constraints
imposed by distributed datasets has received significant attention from the data min-
ing community in recent years. The field of DDM has emerged as an active area of
study. The bulk of DDM methods in the literature operate over an abstract architec-
ture which includes multiple sites having independent computing power and storage
capability. Local computation is done on each of the sites and either a central site com-
municates with each distributed site to compute the global models or a peer-to-peer
architecture is used. In the latter case, individual nodes might communicate with a re-
source rich centralized node, but they perform most of the tasks by communicating with
neighboring nodes by message passing over an asynchronous network. For example, the
sites may represent independent sensor nodes which connect to each other in an ad-hoc
fashion.

Some features of a distributed scenario where DDM is applicable are as follows.

1. The system consist of multiple independent sites of data and computation which
communicate only through message passing.
2. Communication between the sites is expensive.
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3. Sites may have resource constraints.
4. Sites may have privacy concerns.

Typically communication is a bottleneck. Since communication is assumed to be
carried out exclusively by message passing, a primary goal of many DDM methods in
the literature is to minimize the number of messages sent. Some methods also attempt
to load-balance across sites to prevent performance from being dominated by the time
and space usage of any individual site. As pointed out in [25], “Building a monolithic
database, in order to perform non-distributed data mining, may be infeasible or simply
impossible” in many applications. The cost of transferring large blocks of data may be
prohibitive and result in very inefficient implementations.

Surveys [17] and [24] provide a broad, up-to-date overview of DDM touching on is-
sues such as: clustering, association rule mining, basic statistics computation, Bayesian
network learning, classification, the historical roots of DDM. The collection [[16] de-
scribes a variety of DDM algorithms (association rule mining, clustering, classification,
preprocessing, etc.), systems issues in DDM (security, architecture, efc.), and some top-
ics in parallel data mining. Survey [33]] discusses parallel and distributed association
rule mining in DDM. Survey [34] discusses a broad spectrum of issues in DDM and
parallel data mining and provides a survey of distributed and parallel association rule
mining and clustering. Many of the DDM applications [27,[18] deal with continuous
data streams. Therefore, developing DDM algorithms that can handle such stream sce-
narios is becoming increasingly important. An overview of the data stream mining lit-
erature can be found elsewhere [2].

Instead of looking at the broad spectrum of different DDM algorithms, this paper
restricts itself to distributed clustering methods and their applicability in multi-agent
systems. The following section addresses this issue.

| City | Humidity | Temperature | Rainfall
Baltimore | 10% 23°F 0in.
Annapolis | 13% 43°F 0.2 in.
Bethesda | 56% 67°F 1 in.

Glen Burnie| 88% 88°F 1.2 in.

Fig. 1. Homogeneously distributed weather data at site 1

| City | Humidity | Temperature | Rainfall

San Jose 12% 69° F 0.3 in.
Sacramento| 18% 53° F 0.5 in.
Los Angeles| 86% 72°F 1.2 in.

San Diego 8% 58° F 0in.

Fig. 2. Homogeneously distributed weather data at site 2
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Timestamp |Humidity | Temperature|Rainfall

to 10% 23°F 0 in.
t1 13% 43° F 0.2 in.
to 56% 67° F lin.
i3 88% 88° F 1.2in.

Fig. 3. Heterogeneously distributed weather data

Timestamp|Ice Cream|Pizzas| Milk

to 1.2 quart | 9.9 | 14 quart
t1 1.9 quart | 7.8 | 12 quart
to 2.7 quart | 6.7 | 13 quart
t3 4.2 quart | 5.2 |14.5 quart

Fig. 4. Heterogeneously distributed grocery store data

4 Distributed Clustering Algorithms

In this section, we present an overview of various distributed clustering solutions pro-
posed to date. We classify distributed clustering algorithms into two categories. The
first group consists of methods requiring multiple rounds of message passing. These
methods require a significant amount synchronization. The second group consists of
methods that build local clustering models and transmit them to a central site (asyn-
chronously). The central site forms a combined global model. These methods require
only a single round of message passing, hence, modest synchronization requirements.

4.1 Multiple Communication Round Algorithms

Dhillon and Modha [3]] develop a parallel implementation of the K -means clustering al-
gorithm on distributed memory multiprocessors (homogeneously distributed data). The
algorithm makes use of the inherent data parallelism in the K -means algorithm. Given
a dataset of size n, they divide it into P blocks, (each of size roughly n/P). During
each iteration of K-means, each site computes an update of the current K centroids
based on its own data. The sites broadcast their centroids. Once a site has received all
the centroids from other sites it can form the global centroids by averaging.

Forman and Zhang [8] take an approach similar to the one presented in [3]], but
extend it to -harmonic means. Note that the methods of [3] and [8] both start by par-
titioning and then distributing a centralized data set over many sites. This is different
than the setting we consider: the data is never centralized — it is inherently distributed.
However, their ideas are useful for designing algorithms to cluster homogeneously dis-
tributed data.

Kargupta et al. [[19] develop a collective principle components analysis (PCA)-
based clustering technique for heterogeneously distributed data. Each local site per-
forms PCA, projects the local data along the principle components, and applies a known
clustering algorithm. Having obtained these local clusters, each site sends a small set
of representative data points to a central site. This site carries out PCA on this collected
data (computes global principal components). The global principle components are sent
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back to the local sites. Each site projects its data along the global principle components
and applies its clustering algorithm. A description of locally constructed clusters is sent
to the central site which combines the cluster descriptions using different techniques
including but not limited to nearest neighbor methods.

Klusch et al. [20] consider kernel-density based clustering over homogeneously dis-
tributed data. They adopt the definition of a density based cluster from [12] data points
which can be connected by an uphill path to a local maxima, with respect to the kernel
density function over the whole dataset, are deemed to be in the same cluster. Their
algorithm does not find a clustering of the entire dataset. Instead each local site finds a
clustering of its local data based on the kernel density function computed over all the
data. In principle, their approach could be extended to produce a global clustering by
transmitting the local clusterings to a central site and then combining them. However,
carrying out this extension in a communication efficient manner is non-trivial task and
is not discussed by Klusch er al.

An approximation to the global, kernel density function is computed at each site
using sampling theory from signal processing. The sites must first agree upon a cube
and a grid (of the cube). Each corner point can be thought of as a sample from the space
(not the data set). Then each site computes the value of its local density function at each
corner of the grid and transmits the corner points along with their local density values
to a central site. The central site computes the sum of all samples at each grid point
and transmits the combined sample grid back to each site. The local sites can now inde-
pendently estimate the global density function over all points in the cube (not just the
corner points) using techniques from sampling theory in signal processing. The local
sites independently apply a gradient-ascent based density clustering algorithm to arrive
at a clustering of their local data.

Eisenhardt et al. [5] develop a distributed method for document clustering (hence
operates on homogeneously distributed data). They extend K-means with a “probe and
echo” mechanism for updating cluster centroids. Each synchronization round corre-
sponds to a K -means iteration. Each site carries out the following algorithm at each it-
eration. One site initiates the process by marking itself as engaged and sending a probe
message to all its neighbors. The message also contains the cluster centroids currently
maintained at the initiator site. The first time a node receives a probe (from a neighbor
site p with centroids Cp), it marks itself as engaged, sends a probe message (along with
Cp) to all its neighbors (except the origin of the probe), and updates the centroids in
C), using its local data as well as computing a weight for each centroid based on the
number of data points associated with each. If a site receives an echo from a neighbor
p (with centroids C), and weights W), it merges C}, and W), with its current centroids
and weights. Once a site has received either a probe or echo from all neighbors, it sends
an echo along with its local centroids and weights to the neighbor from which it re-
ceived its first probe. When the initiator has received echos from all its neighbors, it has
the centroids and weights which take into account all datasets at all sites. The iteration
terminates.

While all algorithms in this section require multiple rounds of message passing, [[19]
and [20] require only two rounds. The others require as many rounds as the algorithm
iterates (potentially many more than two).
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4.2 Centralized Ensemble-Based Methods

Many of the distributed clustering algorithms work in an asynchronous manner by first
generating the local clusters and then combining those at the central site. These ap-
proaches potentially offer two nice properties in addition to lower synchronization re-
quirements. If the local models are much smaller than the local data, their transmission
will result is excellent message load requirements. Moreover, sharing only the local
models may be a reasonable solution to privacy constraints in some situations; indeed,
a trade-off between privacy and communication cost is discussed in [22].

We present the literature in chronological order. Some of the methods were not
explicitly developed for distributed clustering, rather for combining clusterings in a
centralized setting to produce a better overall clustering. In these cases we discuss how
well they seem to be adaptable to a distributed setting.

Johnson and Kargupta [4] develop a distributed hierarchical clustering algorithm on
heterogeneously distributed data. It first generates local cluster models and then com-
bines these into a global model. At each local site, the chosen hierarchical clustering
algorithm is applied to generate local dendograms which are then transmitted to a cen-
tral site. Using statistical bounds, a global dendogram is generated.

Lazarevic et al. [21] consider the problem of combining spatial clusterings to pro-
duce a global regression-based classifier. They assume homogeneously distributed data
and that the clustering produced at each site has the same number of clusters. Each lo-
cal site computes the convex hull of each cluster and transmits the hulls to a central site
along with regression model for each cluster. The central site averages the regression
models in overlapping regions of the hulls.

Samatova et al. [26] develop a method for merging hierarchical clusterings from
homogeneously distributed, real-valued data. Each site produces a dendogram based on
local data, then transmits it to a central site. To reduce communication costs,they do not
send a complete description of each cluster in a dendogram. Instead an approximation
of each cluster is sent consisting of various descriptive statistics e.g. number of points
in the cluster, average square Euclidean distance from each point in the cluster to the
centroid. The central site combines the dendogram descriptions into a global dendogram
description.

Strehl and Ghosh [29] develop methods for combining cluster ensembles in a cen-
tralized setting. They argue that the best overall clustering maximizes the average nor-
malized mutual information over all clusters in the ensemble. However, they report that
finding a good approximation directly is very time-consuming. Instead they develop
three more efficient algorithms which are not theoretically shown to maximize mutual
information, but are empirically shown to do a decent job. Given n data points and NV
clusterings (clustering ¢ has k; clusters), consider an n X (Zivzl k;) matrix H con-
structed by concatenating the collection of n x k; matrices H; for each clustering. The
(¢, 7) entry of H; is one if data point £ appears in cluster j in clustering i, otherwise zero.
One algorithm simply applies any standard similarity based clustering over the follow-
ing similarity matrix £ ]I\}’ " The (p, q) entry is the fraction of clusterings in which data
point p and q appear in the same cluster. The other two algorithms apply hyper-graph
based techniques where each column of H is regarded as a hyperedge.
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In principle, Strehl and Ghosh’s ideas can be readily adapted to heterogeneously
distributed data (they did not explicitly address this issue). Each site builds a local clus-
tering, then a centralized representation of the H matrix is constructed. To compute H
directly, each site sends H; to a central site. This, however, likely will involve too much
communication on datasets with large numbers of tuples (n) because H; is n x k;. For
Strehl and Ghosh’s ideas to be adapted to a distributed setting, the problem of construct-
ing an accurate centralized representation of H using few messages need be addressed.

Fred and Jain [[7] report a method for combining clusterings in a centralized set-

ting. Given N clusterings of n data points, their method first constructs an n X n,
HHT

co-association matrix (the same as as described in [29]]). Next a merge algorithm
is applied to the matrix using a single link, threshold, hierarchical clustering technique.
For each pair (i, j) whose co-association entry is greater than a predefined threshold,
merge the clusters containing these points.

In principal Fred and Jain’s approach can be adapted to heterogeneously distributed
data (they did not address the issue). Each site builds a local clustering, then a central-
ized co-association matrix is built from all clusterings Like Strehl and Ghosh’s ideas;
in order for Fred and Jain’s approach to be adapted to a distributed setting, the problem
of building an accurate co-association matrix in a message efficient manner must be
addressed.

Jouve and Nicoloyannis [14] also develop a technique for combining clusterings.
They use a related but different approach than those described earlier. They reduce the
problem of combining clusterings to that of clustering a centralized categorical data
matrix built from the clusterings and apply a categorical clustering algorithm (KER-
OUAC) of their own. The categorical data matrix has dimensions n x N and is defined
as follows. Assume clustering 1 < ¢ < N has clusters labeled 1,2, ..., k;. The (j,1)
entry is the label of the cluster (in the 7*" clustering) containing data point j. The KER-
OUAC algorithm does not require the user to specify the number of clusters desired in
the final clustering. Hence, Jouve and Nicoloyannis’ method does not require the de-
sired number of clusters in the combined clustering to be specified.

Like the approaches in [29] and [7], Jouve and Nicoloyannis’ technique can be read-
ily adapted to heterogeneously distributed data. A centralized categorical data matrix is
built from the local clusterings, then the central site applies KEROUAC (or any other
categorical data clustering algorithm). However, the problem of building an accurate
matrix in a message efficient manner must be addressed (despite the fact that their title
contains “Applications for Distributed Clustering”, they did not address the issue).

Topchy et al. [30] develop an intriguing approach based on combining many weak
clusterings in a centralized setting. One of the weak clusterings used projects the data
onto a random, low-dimensional space (1-dimensional in their experiments) and per-
forms K -means on the projected data. Then, several methods for combining clusterings
are used based on finding a new clustering with minimum sum “difference” between
each of the weak clusterings (including methods from [29]]). His idea does not seem di-
rectly applicable to a distributed setting where reducing message communication is the
central goal. Hence, the work saved at each site by producing a weak clustering is not of
much importance. However, he discusses several new ideas for combining clusterings
which are of independent interest. For example, he shows that when using generalized
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mutual information, maximizing the average normalized mutual information consensus
measure of Strehl and Ghosh is equivalent to minimizing a square-error criterion.

Merugu and Ghosh [22] develop a method for combining generative models pro-
duced from homogeneously distributed data (a generative model is a weighted sum of
multi-dimensional probability density functions i.e. components). Each site produces a
generative model from its own local data. Their goal is for a central site to find a global
model from a pre-defined family (e.g. multivariate, 10 component Gaussian mixtures).
which minimizes the average Kullback-Leibler distance over all local models. They
prove this to be equivalent to finding a model from the family which minimizes the KL
distance from the mean model over all local models (point-wise average of all local
models).

They assume that this mean model is computed at some central site. Finally the
central site computes an approximation to the optimal model using an EM-style algo-
rithm along with Markov-chain Monte-carlo sampling. They did not discuss how the
centralized mean model was computed. But, since the local models are likely to be con-
siderably smaller than the actual data, transmitting the models to a central site seems to
be a reasonable approach.

Januzaj et al. [13] extend a density-based centralized clustering algorithm,
DBSCAN, by one of the authors to a homogeneously distributed setting. Each site car-
ries out the DBSCAN algorithm, a compact representation of each local clustering is
transmitted to a central site, a global clustering representation is produced from local
representations, and finally this global representation is sent back to each site. A clus-
tering is represented by first choosing a sample of data points from each cluster. The
points are chosen such that: (i) each point has enough neighbors in its neighborhood
(determined by fixed thresholds) and (ii) no two points lie in the same neighborhood.
Then K -means clustering is applied to all points in the cluster, using each of the sample
points as an initial centroid. The final centroids along with the distance to the furthest
point in their K -means cluster form the representation (a collection point, radius pairs).
The DBSCAN algorithm is applied at the central site on the union of the local repre-
sentative points to form the global clustering. This algorithm requires an e parameter
defining a neighborhood. The authors set this parameter to the maximum of all the
representation radii.

Methods [13]], [22]], and [26] are representatives of the centralized ensemble-based
methods. These algorithms focus on transmitting compact representations of a local
clustering to a central site which combines to form a global clustering representation.
The key to this class of methods is in the local model (clustering) representation. A
good one faithfully captures the local clusterings, requires few messages to transmit,
and is easy to combine.

Both the ensemble approach and the multiple communication round-based cluster-
ing algorithms usually work a lot better than their centralized counterparts in a
distributed environment. This is well documented in the literature. While, the DDM
technology requires further advancement for dealing with peer-to-peer style and het-
erogeneous data, the current collection of algorithms offer a decent set of choices. The
following section organizes the distributed clustering algorithms based on the data dis-
tribution (homogeneous vs. heterogeneous) they can handle.
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Homogeneous vs. Heterogeneous Clustering Literature. A common classification
of DDM algorithms in the literature is: those which apply to homogeneously distributed
(horizontally partitioned) or heterogeneously distributed (vertically partitioned) data.
To help the reader sort out the clustering methods we have described, we present the
four-way classification seen in Table 4.2

| Homogeneous |Heter0 geneous

Centralized (3], (211, 140, 171,
Ensemble [22], [26] (1141, [29]
Multiple [31, 151, 180, [19]
Rounds of [20]

Communication

Fig. 5. Four-way clustering algorithms classification

The following section considers a specific instance of a DDM problem—analyzing
data in a sensor network with peer-to-peer communication architecture. It identifies
some of the constraints in clustering data in such environments, offers a perspective of
the existing distributed clustering algorithms in the context of this particular application,
and points out areas that require further research.

5 Sensor Networks, Distributed Clustering, and Multi-agent
Systems

Sensor networks are finding increasing number of applications in many domains,
including battle fields, smart buildings, and even human body. Most sensor networks
consist of a collection of light-weight (possibly mobile) sensors connected via wire-
less links to each other or to a more powerful gateway node that is in turn connected
with an external network through either wired or wireless connections. Sensor nodes
usually communicate in a peer-to-peer architecture over an asynchronous network. In
many applications, sensors are deployed in hostile and difficult to access locations with
constraints on weight, power supply, and cost. Moreover, sensors must process a contin-
uous (possibly fast) stream of data. The resource-constrained distributed environments
of the sensor networks and the need for collaborative approach to solve many of the
problems in this domain make multi-agent systems-architecture an ideal candidate for
application development. For example, a multi-agent sensor-network application utiliz-
ing learning algorithms is reported in [27]]. This work reports development of embedded
sensors agents used to create an integrated and semi-autonomous building control sys-
tem. Agents embedded on sensors such as temperature and light-level detectors, move-
ment or occupancy sensors are used in conjunction with learning techniques to offer
smart building functionalities. The peer-to-peer communication-based problem solving
capabilities are important for sensor networks and there exists a number of multi-agent
system-based different applications that explored these issues. Such systems include:
an agent based referral system for peer-to-peer(P2P) file sharing networks [32], and
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an agent based auction system over a P2P network [23]. A framework for developing
agent based P2P systems is described in [1]. Additional work in this area can be found
elsewhere [27,28.16]. The power of multi-agent-systems can be further enhanced by
integrating efficient data mining capabilities and DDM algorithms may offer a better
choice for multi-agent systems since they are designed to deal with distributed systems.

Clustering algorithms are likely to play an important role in many sensor-network-
based applications. Segmentation of data observed by the sensor nodes for situation
awareness, detection of outliers for event detection are only a few examples that may
require clustering algorithms. The distributed and resource-constrained nature of the
sensor-networks demands a fundamentally distributed algorithmic solution to the clus-
tering problem. Therefore, distributed clustering algorithms may come handy [[18]] when
it comes to analyzing sensor network data or data streams.

Clustering in sensor-networks offers many challenges, including,

limited communication bandwidth,
constraints on computing resources,
limited power supply,

need for fault-tolerance, and
asynchronous nature of the network

A

Distributed clustering algorithms for this domain must address these challenges. The
algorithms discussed in the previous section addresses some of the issues listed above.
For example, most of these distributed clustering algorithms are lot more communi-
cation efficient compared to their centralized counterparts. There exists several exact
distributed clustering algorithms, particularly for homogeneous data. In other words,
the outcome of the distributed clustering algorithms are provably same as that of the
corresponding centralized algorithms. For heterogeneous data, the number of choices
for distributed clustering algorithms is relatively limited. However, there do exist sev-
eral techniques for this latter scenario. Most of the distributed clustering algorithms are
still in the domain of academic research with a few exceptions. Therefore, the scala-
bility properties of these algorithms are mostly studied for moderately large number
of nodes. Although the communication-efficient aspects of these distributed clustering
algorithms help addressing the concerns regarding restricted bandwidth and power sup-
ply, the need for fault-tolerance and P2P communication-based algorithmic approach
are yet to be adequately addressed in the literature.

The multiple communication round-based clustering algorithms described in
Section 4] involve several rounds of message passing between nodes. Each round can
be thought of as a node synchronization point (multiple sensor synchronizations are
required). This may not go very well in a sensor network-style environment.

Centralized ensemble-based algorithms provide us with another option. They do not
require global synchronization nor message passing between nodes. Instead, all nodes
communicate a model to a central node(which combines the models). In absence of
a central controlling site one may treat a peer as a central combiner and then apply
the algorithms. We can envision a scenario in which an agent at a sensor node initi-
ates the clustering process and as it is the requesting node, it performs the process of
combining the local cluster models received from the other agents. However, most of
the centralized ensemble-based method algorithms are not specifically designed to deal
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with stream data. That is something that we may need to address in the immediate fu-
ture. Algorithms such as [13]], [22], [26] deal with the limited communication issue by
transmitting compact, lossy models (rather than complete specifications of the cluster-
ings), which may be necessary for a sensor-network-based application. The following
section concludes this paper.

6 Conclusions

Multi-agent systems are fundamentally designed for collaborative problem solving in
distributed environments. Many of these application environments deal with empirical
analysis and mining of data. This paper suggests that traditional centralized data mining
techniques may not work well in many distributed environments where data centraliza-
tion may be difficult because of limited bandwidth, privacy issues and/or the demand
on response time.

This paper pointed out that distributed data mining algorithms may offer a better
solution since they are designed to work in a distributed environment by paying careful
attention to the computing and communication resources. The paper focused on dis-
tributed clustering algorithms and their applications in sensor networks just to illustrate
some of the existing challenges and weaknesses of the DDM algorithms. It noted that
while these algorithms usually perform way better than their centralized counter-parts
on grounds of communication efficiency and power consumption, there exist several
open issues. Developing peer-to-peer versions of these algorithms for asynchronous net-
works and paying attention to fault-tolerance are some examples. Nevertheless, existing
pleasures of distributed clustering algorithms do provide a reasonable class of interest-
ing choices for the next generation of multi-agent systems that may require analysis of
distributed data.
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