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Abstract. 3D reconstruction from image data is required in many medical 
procedures. Recently, the use of fluoroscopy data to generate these 3D models 
has been explored. Most existing methods require knowledge of the scanning 
path either from precise hardware, or pre-calibration procedures. We propose an 
alternative of obtaining this needed pose information without the need of 
additional hardware or pre-calibration so that many existing fluoroscopes can 
be used. 

Our method generates 3D data from fluoroscopy collected along a non-
repeatable path using cone-beam tomographic reconstruction techniques. The 
novelty of our approach is its application to imagery from existing fluoroscopic 
systems that are not instrumented to generate pose information or collect data 
along specific paths. Our method does not require additional hardware to obtain 
the pose, but instead gathers the needed object to camera pose information for 
each frame using 2D to 3D model matching techniques [1-3]. Metallic markers 
are attached to the object being imaged to provide features for pose 
determination. Given the pose, we apply Grangeat’s cone-beam reconstruction 
algorithm to recover the 3D data.  

In developing this approach, several problems arose that have not been 
addressed previously in the literature. First, because the Radon space sampling 
is different for each scan, we cannot to take advantage of a known Radon space 
discretization. Therefore we have developed a matching score that will give the 
best Radon plane match for the resampling step in Grangeat's approach [4]. 
Second, although we assume Tuy's condition [5] is satisfied, there are 
sometimes data gaps due to discretization. We have developed a method to 
correct for these gaps in the Radon data. 

1   Introduction 

Many medical procedures require three dimensional (3D) imaging of the human body. 
For example, when planning or executing surgical procedures, 3D imaging yields 
tremendous advantages over conventional 2D static radiographs. 3D image data can 
be obtained from CT and MRI, but these procedures may not be available in many 
clinics and operating rooms, and are therefore not as convenient as 3D from a 
fluoroscopy machine.  

Fluoroscopy machines are much less expensive than CT or MRI instruments, and 
are widely available in operating rooms and clinics. However, a fluoroscopy image is 
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only a single plane projection, similar to a 2D X-ray. To obtain 3D data, the 
fluoroscope can be rotated in order to get multiple views of the object, and these 
projections can be processed using cone-beam tomographic reconstruction methods 
[4] to produce a 3D volumetric image similar to that obtained from CT. 

Recently, Siemens has created a 3D fluoroscope using cone-beam tomography, 
called the SIREMOBIL Iso-C 3D. This instrument has a fluoroscope on a mobile C-
arm that rotates automatically in a 190-degree arc around the patient. General Electric 
has produced a similar 3D fluoroscopic imaging and navigation system called 
FluoroCAT, an add-on for their OEC 9800 Plus fluoroscope.  

Although the method used in these systems gives good results, it requires a 
specialized fluoroscope that is designed to precisely and automatically rotate the 
source/detector  around an axis, along with instrumentation to accurately 
measure the rotation. There are a great numbers of existing fluoroscopes in use that do 
not have this capability.  

  (SD)

We have developed a method of generating 3D volumetric intensity data from 
fluoroscopy x-ray projections collected along a non-repeatable path using exact cone-
beam reconstruction techniques. The novelty of our approach is that it can be applied 
to imagery from existing fluoroscopic systems that are not instrumented to reproduce 
specific paths or to generate accurate pose information for each image. Therefore our 
method does not require the addition of any external hardware to control or sense the 
motion of the fluoroscopy unit, but instead gathers the needed object to camera pose 
information for each frame using 2D to 3D model matching techniques [1-3]. In 
developing this method, several problems arose that have not been addressed 
previously in the literature. First, because the discrete sampling of the Radon space is 
different for each set of fluoroscopy images, we are not able to take advantage of a 
known discretization of our Radon space. Therefore we have developed a Radon 
plane matching score that will find the best matching plane during the resampling step 
in Grangeat's approach [4]. Second, although we assume that Tuy's condition [5] is 
satisfied, in practice there are sometimes gaps in the data due to discretization. We 
have developed a method to correct for any such missing Radon data. Although our 
implementation assumes that internal camera parameters are fixed, it could easily be 
modified to remove this assumption as was done in [6]  

This approach allows much greater flexibility in imaging configurations, even 
allowing reconstruction from images collected as the patient moves in the field of 
view of a fixed fluoroscope. Variations of this approach could also be applied to 3D 
imaging using highly portable systems such as might be used in field hospitals in 
disaster relief or combat situations, as well as applications in non-destructive testing. 

2 Previous Work 

2.1 Pose Estimation 

Tomographic reconstruction from projections requires accurate knowledge of the 
position and orientation (referred to collectively as the pose) of the  relative to the 
object being scanned. A standard technique of determining the pose of a 3D object 

SD
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from a two dimensional image is to incorporate a set of fiducial markers of known 3D 
structure into the object. Once the images of these fiducial markers are correctly 
associated with their 3D counterparts, the pose of the object with respect to the 
imaging sensor can be determined using an “absolute orientation” algorithm [7]. 
Examples of 2D-to-3D registration in X-ray images using the fiducial technique 
include [1-3]. 

2.2 Cone Beam Tomographic Reconstruction 

The Siemens SIREMOBIL Iso-C3D mentioned in Section 1 is an example of a 
commercial cone-beam tomography unit. In addition, many approaches to cone-beam 
tomography have been developed or enhanced in earlier work including many specific 
path algorithms [4, 5, 8-18]. Whereas most commercial systems use the Feldkamp 
method [8], we have selected the method of Grangeat [4] as the most suitable for our 
problem since it is an exact cone-beam reconstruction method. We have modified the 
common resampling step of Grangeat’s algorithm in a way similar to [19] to allow it 
to be applied to arbitrary discrete sets of SD  locations. Because our path may be 
different for each scan, our sampling of the Radon space will be different for each 
scan.  We therefore have developed a new method of choosing the best-matching 
Radon plane. 

3 Approach 

The processing required for reconstruction from an arbitrary path consists of two 
steps: recovery of the unknown pose of the SD , and cone-beam tomographic 
reconstruction. We assume that the images being used to perform this reconstruction 
have already been calibrated in such a way that the common pinhole camera model is 
an acceptable projection model [6] which removes the geometric distortions such as 
pincushion or barrel distortions We also assume that the pixel values have been 
calibrated to be proportional to the integral of the density along the 3D ray projecting 
to each pixel. The details of these calibration methods are available in [20]. The first 
step, recovery of the unknown pose is described in Section 3.1, followed by the 
description of the reconstruction process in Section 3.2. 

3.1 Pose Estimation 

In order to estimate the pose of the sensor in each image from the image data, we use 
markers at known 3D locations relative to the object and perform 2D to 3D model 
matching techniques. We use 2mm steel ball bearings rigidly attached to the object 
and uniformly distributed to cover the entire field of view. 

To compute the pose of the sensor, we first find the correct associations (or 
correspondences) between image points and the 3D fiducial locations using an 
interpretation tree search method [21]. The correspondences are used to calculate a 
pose solution which is used to project the object points back onto the image to 
determine how accurately the pose solution fits the data. Once a set of correct 
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correspondences is found, we compute the pose using a non-linear least squares 
method [22]. The solution minimizes the squared error between the observed image 
points and the expected position of those points, based on the projected model and the 
hypothesized pose. Once this process is complete, the pose of the SD  for each image 
can be used in Grangeat’s tomographic reconstruction algorithm to reconstruct the 3D 
volume. 

3.2 Tomographic Reconstruction 

The second step, cone-beam tomographic reconstruction, uses the algorithm 
developed by Grangeat [4]. Tomographic reconstruction using Grangeat’s method has 
been well published and so we will not provide the details of his process here [4, 12, 
13, 18, 19, 23]. Grangeat provides us with a method of computing 3D Radon data 
from the 2D detector data of a cone beam scan by way of the first derivative of the 
detector plane Radon data. This 3D Radon data must then be resampled to a spherical 
coordinate system. More specifically, it is resampled from the available planes   ( AP)  
in the sensor coordinate system, which is attached to the SD , to the desired planes 

 in the 3D spherical object coordinate system where the backprojections can be 
computed. Using the pose found for the 
  (DP)

SD

D

 for each image in the previous pose 
estimation step, we can resample our Radon data collected on our sensor array into 
3D Radon data using a method similar to [18, 19]. However, unlike methods with 
fixed paths, we cannot take advantage of any regularity in the path to reduce 
computation or to precompute the resampling coefficients. One issue that must be 
addressed in resampling is how to find the P  closest to a particular  AP . Unlike 
[19], we define the closeness entirely in terms of the distance between the planes in 
the reconstruction volume. The available planes are parameterized by the 2D Radon 
parameters ( A,α )

( , ,

 in the image plane, and the image number, in . The desired 

planes are given in the object coordinate system, whose axis are  with 
coordinates 

um

k̂ˆ ˆ( , ,i j )
)x y z

ˆ
. In the object coordinate space, we parameterize the  by its 

unit normal n  and its distance, 
DP

ρ , from the origin.  In order to get accurate 
reconstruction, it is crucial to match these two planes in the reconstruction volume as 
well as possible.  

In [19] the plane matching method is based on the assumption that the  DP  should 
pass as close as possible to the vertex of the SD . Once the SD  vertex position has 
been identified for each frame of the fluoroscopic image sequence the distance to the 
 DP  can be calculated and minimized to obtain the 2D Radon plane giving the best 
estimate of the plane. Then, within that image a search will determine which 2D 
Radon plane will match best. However, due to the discretization of the available 2D 
Radon dataset (the 2D Radon is typically computed on a discrete set of   ( A,α )  
values), there may be cases where the best AP  will not be associated with the closest 
to the  SD  vertex. Fig. 1 helps to illustrate one situation where this could arise. Two 
consecutive  SD  positions are shown looking along the edge of the planes of interest. 
The first  SD  position is labeled SD − A  and the second SD − B . Because of the 
discretization of the 2D Radon transforms, the closest two APs  for  SD − A  are 
  AP − A1  and   AP − A2  shown as the dotted lines in Fig. 1, and similarly for  SD − B  
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shown as the solid lines. Notice that in this case, the vertex for SD − B  is closer to 
the  DP , however,  SD − A  will give a better approximation of the  DP  by using 
  AP − A1 . Similar situations can arise due to the limited field of view of the sensor.  
Even if the desired plane passes close to the  vertex, the sensor’s field of view 
might not cover that desired plane.  For these reasons we chose to develop a new 
plane matching method that finds the closest plane in the reconstruction volume rather 
than the  vertex location [19]. 

SD
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, )inumα

ρ

2D

P

2 2

,
A A 2

ˆ ˆ, ,u v wn n ρ ρ ρρ ρ




SD
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Fig. 1. The best matching AP may not always be found from the SD vertex position which is 
closest to the DP. This figure illustrates a case in which the discretization of the actual planes 
may be such that a plane whose SD vertex is closest to the DP does not contain the best 
estimate of the DP in the reconstruction volume. Notice how the Radon planes for SD-A are 
closer to the DP, but the vertex position of SD-B is closer. Here, most existing algorithms 
would choose SD-B as the source location from which to get the Radon data, however it is clear 
that SD-A would provide more accurate data. 

Depending on our path taken during the data collection, we will have a set of 
images providing available Radon planes, AP , indexed by ( ,A . From these 
we must determine the appropriate ( ˆ)nρ  of the closest . Using similar triangles 
we compute the distance 

DP
 as 

 
2

AD

A
ρ =

+
, (1) 

where D is the perpendicular distance between the  vertex and the image plane. 
We can write the 

SD
A  normal in the image coordinates,  as ( , , )u v w

 [ ]
2

ˆ cos sin , An
A D

ρ α α


= 
+

. (2) 

With the AP  defined in the image coordinate system, we can use the pose of the 
 to transform this vector to OAP , which is the available plane in object 

coordinates. Now we can directly compare A  and the , which is also in object 
coordinates.  

DP

SD-A 

SD-B DP 
AP-A1 

AP-B2 

AP-A2 

AP-B1 

Reconstruction Region
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Our criterion for measuring the closeness of two Radon planes is related to the 
squared distance between the two planes within the reconstruction volume. We define 
two planes we would like to match (both in object coordinates) as 

 [ ] ˆ: , ,
ii DPDP x y z n

iDPρ• =  (3)a 

 [ ] ˆ: , ,
ii APAP x y z n

iAPρ• = . (3)b 

We can write the signed perpendicular distance from an arbitrary point [ , , ]x y z  in 
 to iDP iAP  as 

 [ ] ˆ, ,
iAP APx y z n

i
ρ• − . (4) 

Solving Equation (3a) for z 1, substituting into (4), squaring to get the squared 
distances, and integrating within the reconstruction volume over  d−  to  in d x  and 

, gives us our match score, y ( )MS , correlating to how well the two planes are 
aligned. 

 
2

ˆ ˆ
ˆ ˆ ˆ

ˆ
i ix iy

ix iy iz i

iz

d d DP DP DP
AP AP AP APd d

DP

xn yn
MS xn yn n dxdy

n

ρ
ρ

− −

 − −  = + + −  
    

∫ ∫  (5) 

(5)

Each time a new plane is found that will project into a particular  DP , we 
calculate the  MS  given by (5), compare it to the currently stored  MS  in the 
destination array (the distances are initialized to infinity) and keep the best match.  

Because our source data is generated along an arbitrary non-repeatable path and 
therefore, the discretization of the Radon space may be different for each scan, we 
may have cases where there is no AP  to support a particular DP . Tuy’s data 
sufficiency criterion [5] is not strictly met in this case, and we refer to this case as 
“missing data.” In order to handle any missing data that may arise from an arbitrary 
non-repeatable path, we use a binary array to record whenever a DP  bin is filled, 
defined as ˆ( )N nρ . After the complete dataset has been resampled from the detector 
coordinate system to the world coordinate system, we can backproject the array  N  
along with the resampled data as described in [4]. Once N  has been processed it will 
be a reconstructed volume weighted according to which portions of the volume have 
the most supporting data. We can then use N  as a normalization factor for our 
reconstructed volume to help account for missing data artifacts. 

 

                                                 
1 In general we need to solve for whichever variable, ( , , )x y z  is most aligned with 
the normal . However, for simplicity of the discussion, we just use . Note also 
that this will avoid division by zero in  since the coefficient in the divisor will 
always be the greatest in magnitude of the three (i.e. not equal to zero). 

n̂ z
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4 Results 

Since the accuracy of our reconstruction relies heavily on the computation of the pose 
of the  SD  for each image, we first quantify the error in the pose calculation by 
comparing estimated poses to ground truth measurements collected with an optical 
tracker.  Then we present the tomographic reconstructions of synthetic and real data 
sets to characterize the quality of the reconstructions. 

4.1 Pose Estimation Compared to an Optical Tracker 

To test the pose estimation accuracy, we used an Optotrak optical tracker2 to record 
ground truth poses during an image data collection of a physical phantom constructed 
of PVC and acrylic. The various coordinate systems we used are illustrated in Fig.2. 
There are four coordinate systems that we must be concerned with in order to perform 
the verification in this way. First, we refer to the Optotrak probe coordinate system as 
 P  and the Optotrak base coordinate system as our world coordinate system, or  W  
since it is the reference from for the ground truth measurements from the Optotrak. 
Finally, we refer to the  SD  coordinate system of the fluoroscope as F  and the object 
coordinate system origin as . O

In order to measure the pose accuracy, we compare the motion of the object from 
frame 0 to frame i using two different transform paths. The paths are illustrated in Fig. 
3. The first path (shown on the bottom of Fig. 3) takes us from the  P  coordinate 
system’s initial pose through the world reference coordinate system    to the i(W ) th 
frame of  P . The second path (shown across the top of Fig. 3) takes us from the same 
starting reference coordinate system of P  through the initial frame of  O  to the  SD  
reference frame,    (which is fixed during the data collection) back through the i(F ) th 
frame of  , and into the iO th frame of P .  
 
 

Attached 
O
PH  

 

Fig. 2. Top view of Pose estimation verification setup. The P  is attached to the outside of the 
phantom whose origin,  , is defined in the center of all the beads. O

                                                 
2 The Optotrak used is the Northern Digital model #3020. 
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Path 1  

Fig. 3. The two paths used to verify the pose finding algorithm. 

The transforms between W  and P  are calculated from the Optotrak data. The 
transforms between  F  and  are given from the pose estimation algorithm, which is 
the transform we wish to verify. The transform from 

O
P  to O  can be found with 

physical measurements since P  and O  are rigidly attached as Fig. 2 suggests. We 
denote the transform between O  and P  as . Note also that because the probe is 

rigidly attached to the object, we know that  and these notations will 

be used interchangeably to make consecutive transform cancellations more clear. We 
define the transformation from the 

HO
P

HO
P = HOi

Pi
O0

P0= H

F  to  at the time of the iO th image as  , and 

the transform between 

HF
Oi

 W  and P  at the time of the ith image as .  HW
Pi
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Fig. 4. The Euclidean distance between the probe origin found from the pose finding algorithm 
to the origin found using the Optotrak method (left). The error in the rotation angle between 
two consecutive image frames for 67 frames in the sequence. This error is calculated as the 
rotational error from the angle-axis representation of the residuals from the two pose 
calculation paths (right). 

We measure our pose error by finding the change in the pose of P  relative to its 
initial position, or HP0

Pi , in two ways, one using the Optotrak and the other using our 
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pose estimation algorithm, or the two paths shown in Fig. 3. Then we compare the 
results to measure our error. We call the result of the first (using the Optotrak) O , 

and readily see that it can be computed as 
  

HP0

Pi

  
A HP0

Pi

  (6) O HP0

Pi = HW
Pi HP0

W

We call the result of the second method (using our pose estimation algorithm) . 

Given the transform   from the physical measurements, we see that we can 

compute  from the transforms  and  computed by our pose estimation 

algorithm as 

HP
O

  
AHP0

Pi HO0

F HF
Oi

 . (7) AHP0

Pi = HOi

Pi HF
Oi HO0

F HP0

O0

By comparing these two results we can analyze the error in our pose finding method. 
We compare these two paths by computing  

 . (8) O HP0

Pi




−1

A HP0

Pi

If the two transforms were equal this would produce an identity matrix. We convert 
the relative rotation from this transform to angle-axis form and use the magnitude of 
the angle as our orientation error measure, and the magnitude of the translation as our 
position error measure. The position errors are shown in Fig. 4 (left), while the 
orientation errors are shown in Fig. 4 (right) for 63 frames. The mean translation error 
is 3.37mm, with a standard deviation of 1.53. The mean error in the angular deviation 
is 0.023 degrees, with a standard deviation of 0.0104. 

These results demonstrate that our pose recovery algorithm is accurate when 
compared to a commercial optical tracker. Because the accuracy of our reconstruction 
depends primarily on the accuracy of pose, this result is critical to the success of our 
approach. Next we consider the reconstruction of various objects using our proposed 
method. 

4.2 Tomographic Reconstruction Results 

The next step in the analysis of our method is to evaluate the results of the complete 
reconstruction process. First we evaluate reconstructions from a set of synthetic 
phantom images and then from real imagery of a cadaver knee.  
Synthetic Phantom Reconstruction. In order to verify the reconstruction algorithm 
independently of the pose finding algorithm, we generated synthetic data by 
integrating densities along a cone-beam projection pattern through a synthetically 
created 3D volume. The synthetic volumetric data used was a set of ellipsoids. Fig. 5 
shows the rendered reconstructed volumetric results on the right with the original data 
on the left. The boundaries of the various ellipsoids can be seen clearly.  
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Fig. 5. Images taken of the reconstructed synthetic phantom. There are two different views of 
the same reconstructed volume with the original volume displayed next to it. The original 
volumes are shown on the left while the reconstructed volumes are shown on the right. 

We used these synthetic reconstruction results to analyze the accuracy of the 
recovered densities relative to the original volumetric data, and to measure the 
geometric accuracy of our reconstruction algorithm.  
Density analysis. In order to test the accuracy of our reconstructed voxel density 
information we can compare the final reconstructed voxel values with the density 
values of the original data. Since the most common use of the 3D density data is 
segmentation, ensuring accurate reconstructed density values is not as important as 
verifying relative density information. Therefore we fit a linear function to transform 
our reconstructed density information to the original density information and then 
compare to the linearly transformed data. We found the mean signed deviation to be 
3.64 (from a range of zero to 255), and the standard deviation was 2.62. 
Geometric accuracy analysis. In order to determine whether the reconstruction 
algorithm introduced any geometric errors (e.g., position offsets and scaling), we 
compared the position and size of each reconstructed ellipsoid to those of the 
corresponding ellipsoid in the original volume. We first found the three axes of each 
reconstructed ellipsoid by measuring the extremities of the segmented ellipsoid in the 
 x ,  , and y z -directions. We then found the center of the ellipsoid by averaging the 
axis endpoints. The average of the absolute deviations of the center positions for the 
ellipsoids was 0.163 voxels, while the average of the absolute deviations from the axis 
lengths was 1.303 voxels. The errors in the axis lengths are larger than the error in the 
positions which is probably due to the blurring effect of the algorithm (accurate 
segmentation is very difficult with blurred edges, and a different segmentation 
method might reduce these errors). However, note the positions of the ellipsoids were 
found very accurately.  
Cadaver Reconstruction. Fig. 6 shows our algorithm’s reconstruction of a cadaver 
knee from 596 fluoroscopic images taken at 30 frames per second. Some noise can be 
seen at the top and bottom of the reconstruction due to parts of the cadaver being in 
the field of view during only part of the scan, thus these portions of the reconstructed 
volume do not satisfy Tuy’s condition and are not a part of our supported 
reconstruction area. This effect has been addressed in the literature [24] and we do not 
address it here as it is out of the scope of this particular paper. We also notice some 
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metal artifacts from the marker beads which are also addressed extensively in the 
literature (e.g. [25-27]). Further refinements to our algorithms could incorporate these 
enhancements and remove these artifacts. However, this demonstrates that our 
method can tomographically reconstruct a volume from real fluoroscopic imagery 
with quality sufficient to allow segmentation (e.g., to produce a 3D model of the bone 
for surgical planning or surgical navigation). 

 

Fig. 6. The reconstructed volume from projections generated along an arbitrary path using our 
proposed algorithm.  

5 Conclusions and Discussion 

This paper presents results of a method of generating 3D volumetric data from 
fluoroscopy using image-based pose estimation and cone-beam reconstruction 
methods. The novelty of our approach is that it can be used with existing generic 
fluoroscopic systems that produce scans along a new path for each scan, and that have 
no hardware to control or sense the movement of the fluoroscopy system.  

Because the discrete sampling of the Radon space is different for each scan of 
images, we are not able to take advantage of a known discretization of our Radon 
space, which has led us to develop a Radon plane matching score that will give the 
best plane match for the resampling step in Grangeat's approach. This allows any 
arbitrary and non-repeatable sensor path that meets Tuy’s condition to be used to 
generate the source data for reconstructions. Because of the arbitrary discretization of 
the Radon space we have also developed a method to help correct for any missing 
Radon data. We have demonstrated the feasibility of our approach through accurate 
preliminary reconstructions of phantom data and a cadaver knee and have as well 
performed analysis of the accuracy of our pose finding method and the reconstruction.  

The results from this work have the potential to provide an inexpensive and 
readily available 3D imaging capability that can benefit many medical applications. 
Advances in visualization and localization based on this method will allow minimally 
invasive procedures to be used more frequently, thus reducing the trauma to the 
patient. This 3D imaging capability can also make computer-aided procedures more 
accessible.  It is expected that long term health care costs will be reduced because of 
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the high efficiency of computer-aided procedures, and from the shorter hospitalization 
and recovery times that will be required [28].  

References 

1. Kall, B.K., Comprehensive multimodality surgical planning and interactive 
neurosurgery, in Computers in Stereotactic Neruosurgery, P.J. Kelly and B.K. Kall, 
Editors. 1992, Blackwell Scientific: Boston. p. 209-229. 

2. Penney, G., et al., A comparison of similarity measures for use in 2D-3D medical image 
registration. IEEE Trans. on Medical Imaging, 1998. 1496: p. 586-595. 

3. Weese, J., et al., Voxel-based 2D/3D registration of fluoroscopy images and CT scans for 
image-guided surgery. IEEE Trans. Information Technology in Biomedicine, 1997. 1(4): 
p. 284-293. 

4. Grangeat, P., Mathematical Framework of Cone Beam 3D Reconstruction via the First 
Derivative of the Radon Transform, in Mathematical Methods in Tomography. 1992: 
Springer Verlag. p. 66. 

5. Tuy, H.K., INVERSION FORMULA FOR CONE-BEAM RECONSTRUCTION. SIAM 
Journal on Applied Mathematics, 1983. 43(3): p. 546-552. 

6. Mitschke, M. and N. Navab, Recovering the X-ray projection geometry for three-
dimensional tomographic reconstruction with additional sensors: Attached camera 
versus external navigation system. Medical Image Analysis, 2003. 7: p. 65-78. 

7. Horn, B.K.P., Closed-form solution of absolute orientation using unit quaternions. 
Journal Optical Soc. of America, 1987. 4(4): p. 629-642. 

8. Feldkamp, L.A., L.C. Davis, and J.W. Kress, Practical cone-beam algorithm. Journal of 
the Optical Society of America A: Optics and Image Science, 1984. 1(6): p. 612-619. 

9. Mueller, K., R. Yagel, and J.J. Wheller, Anti-aliased three-dimensional cone-beam 
reconstruction of low-constrast objects with algebraic methods. IEEE Trans. on Medical 
Imaging, 1999. 18(6): p. 519-537. 

10. Mueller, K., R. Yagel, and J.J. Wheller, Fast implementations of algebraic methods for 
three-dimensional reconstruction from cone-beam data. IEEE Trans. on Medical 
Imaging, 1999. 18(6): p. 538-548. 

11. Noo, F., M. Defrise, and R. Clack, Direct reconstruction of cone-beam data acquired 
with a vertex path containing a circle. IEEE Trans. on Image Processing, 1998. 7(6): p. 
854-867. 

12. Schaller, S., T. Flohr, and P. Steffen, Efficient Fourier method for 3-D Radon inversion in 
exact cone-beam CT reconstruction. IEEE Transactions on Medical Imaging, 1998. 
17(2): p. 244-250. 

13. Axelsson, C. and P.E. Danielsson, Three-dimensional reconstruction from cone-beam 
data in O(N^3log N) time. Physics in Medicine and Biology, 1994. 39(3): p. 477. 

14. Jacobson, C., Fourier Methods in 3D-Reconstruction from Cone-Beam Data. Linkoping 
Studies in Science and Technologry Dissertations, 1996. 427. 

15. Kudo, H., et al., Performance of Quasi-Exact Cone-Beam Filtered Backprojection 
Algorithm for Axially Truncated Helical Data. IEEE Transactions on Nuclear Science, 
1999. 46(3): p. 608-617. 

16. Turbell, H. and D. Per-Erik, Helical cone-beam tomography. International Journal of 
Imaging Systems and Technology, 2000. 11(1): p. 91-100. 

17. Wang, G., et al., A General Cone-Beam Reconstruction Algorithm. IEEE Transactions on 
Medical Imaging, 1993. 12(3): p. 486-496. 

18. Wang, X. and R. Ning, Cone-beam reconstruction algorithm for circle-plus-arc data-
acquisition geometry. IEEE Transactions on Medical Imaging, 1999. 18(9): p. 815-824. 



CT from an Unmodified Standard Fluoroscopy Machine           23 

19. Noo, F., R. Clack, and M. Defrise, Cone-beam Reconstruction from General Discrete 
Vertex Sets using Rdon Rebinning Algorithms. IEEE Transactions on Nuclear Science, 
1997. 44(3): p. 1309-1316. 

20. Baker, C., Computed Tomography from Imagery Generated by Fluoroscopy along an 
Arbitrary Path, in Engineering. 2004, Colorado School of Mines: Golden. p. 115. 

21. Grimson, W.E.L., Object recognition by Computer. 1990, Cambridge, Massachusetts: 
MIT Press. 

22. Haralick, R. and L. Shapiro, Computer and Robot Vision. 1993: Addison-Wesley Inc. 
23. Kudo, H. and T. Saito, Derivation and implementation of a cone-beam reconstruction 

algorithm for nonplanar orbits. IEEE Transactions on Medical Imaging, 1994. 13(1): p. 
196-211. 

24. Hsieh, J., Reconstruction Algorithm for Single Circular Orbit Cone Beam Scans. IEEE, 
2002: p. 836-838. 

25. Benac, J., Alternating Minimization Algorithms for Metal Artifact Reduction in 
Transmission Tomography., in Electrical Engineering. 2002, Washington University: St. 
Louis, Missouri. 

26. Wang, G., et al., Iterative Deblurring for CT Metal Artifact Reduction. IEEE Transactions 
on Medical Imaging, 1996. 15(5): p. 657-664. 

27. Zhao, S., et al., X-Ray CT Metal Artifact Reduction Using Wavelets: An Application for 
Imaging Total Hip Prostheses. IEEE Transactions on Medical Imaging, 2000. 19(12). 

28. Jolesz, F., Kikinis, and F. Shtern, The Vision of Image-Guided Computer Surgery. The 
High Tech Operating Room in Computer Integrated Surgery - Technology and Clinical 
Applications, ed. e.a. R. Taylor. 1996, Cambridge, Massachusetts: MIT Press. 717-721. 

 
 


	1   Introduction
	2   Previous Work
	3   Approach
	4   Results
	5   Conclusions and Discussion
	References

