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Abstract. Ring signature allows to specify a set of possible signers with-
out revealing which member actually produced the signature. This con-
cept was first formalized in 2001 by Rivest, Shamir, and Tauman[3]. Au-
thors of [3] also proposed two versions of ring signature scheme. However,
to achieve the goal of anonymity, each user should do much computation
in the initial procedure: they should do much work to generate their pri-
vate and public keys, e.g. in the RSA version, each user should find ni

such that it is the product of two distinct large prime and compute his
private/public keys. Moreover, one should extend the one-way trapdoor
functions to a common domain since these functions are computed in
different domains. This paper’s main contribution is to present a ver-
sion of ring signature scheme which uses a common modulus. Thus, Our
proposed scheme is much more efficient in the setup procedure. Further
more, the size of public and private keys are reduced.

1 Introduction

Ring signature scheme was first formalized in 2001 by Rivest, Shamir, and Tau-
man[3]. A ring signature makes it possible to specify a set of possible signers
without revealing which member actually produced the signature.

To achieve the goal of anonymity, each user should generate his public key
and private key independently, i.e. there does not exist a trust center that do the
initial work such as generating secret keys and transmitting these keys to users.
For example, in the RSA version of the ring signature, each user should select
ni such that it is the product of two distinct large prime. Then he compute his
public and private key. Obviously, this initial work involves much computation.
Further more, it require the signer to do additional preparation when he generate
the signature. Similarly, this happens in the Rabin version.

Nyberg and Rueppel [1,2] proposed a signature scheme based on the dis-
crete logarithm problem. The Nyberg-Rueppel scheme allows signatures with
message recovery. Our paper’s main contribution is to present a ring signature
scheme with a common modulus, i.e. all users compute in the domain Zp where
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p is a large prime. Applying the Nyberg-Rueppel scheme to the ring signature,
without weakening the security, different users need not do the computation in
different domains. Thus, our proposed scheme is much more efficient in the setup
procedure. Further more, the size of keys (public and private) are reduced.

1.1 Related Works

Chaum and van Heyst put forth the concept of a group signature scheme In
1991 ([4]). It allows a group member to sign messages anonymously on behalf of
the group. However, the identity of the signature’s originator can be revealed by
the group manager if necessary. A group signature scheme could be used by an
employee of a large company to sign documents on behalf of the company and
it has further applications. Informal notions of ring signatures which was in the
context of general group signatures can be finded in [4, 5]. However, the concept
of ring signatures was first formalized in [3]. A threshold ring signature scheme
was proposed in [6] by Emmanuel Bresson, Jacques Stern, and Michael Szydlo.

The rest of this paper is organized as follows. In section 2, we explain ring
signatures and review some previous works. In section 3, we introduce our ring
signature scheme and discuss its security and efficiency. In section 4, we conclude
the paper.

2 Ring Signature

2.1 Ring Signature

The concept of ring signature was formalized by Rivest, Shamir, and Tauman in
[3].

It is assumed that each possible signer is associated with a public key Pk that
defined his signature scheme and specifies his verification key. The corresponding
secret key (which is used to generate regular signature) is denoted by Sk. These
possible signers are called a ring. It is also necessary that it is a trapdoor one-way
function to generate and verify signatures.

A ring signature consists two procedures:
– ring-sign(m, P1, P2,..., Pr, s, Ss) which produces a ring signature σ for the

message m, given the public keys P1, P2,..., Pr of the r ring members, together
with the secret key Ss of s-th member (who is the actual signer).

– ring-verify(m, σ) which accepts a message m and a signature σ (which
includes the public keys of all the possible signers), and outputs either true or
false.

A ring signature scheme must satisfy the usual soundness and completeness
condition. In addition the signatures should be signer-ambiguous : the verifier
should be unable to determine the identity of the actual signer in a ring of size
r with probability greater than 1/r.

The scheme proposed in [3] has the property of unconditional anonymity in
the sense that even an infinitely powerful adversary can not reveal the actual
signer’s identity.
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2.2 Previous Work

To compare with our proposed method, we review the method in [3].

Combining Functions:
The concept of combining functions is very important in the ring signature

scheme.
A Combing function Ck,v(y1, ..., yr) takes as input a key k, an initialization

value v, and arbitrary values y1, y2, ..., yr in {0, 1}b such that given any fixed
values for k and v, it has the following properties:

1. Permutation on each input: For each s, 1 ≤ s ≤ r, and for any fixed
values of all the other inputs yi, i �= s, the function Ck,v is a one-to-one mapping
from ys to the output z.

2. Efficiently solvable for any single input: For each s, 1 ≤ s ≤ r, given
a b-bit value z and values for all inputs yi except ys, it is possible to efficiently
find a b-bit value for ys such that Ck,v(y1, ..., yr) = z.

3. Infeasible to solve verification equation for all inputs without
trap-doors: Given k, v and z, it is infeasible for an adversary to solve the
equation

Ck,v(g1(x1), ..., gr(xr)) = z

for x1, x2, ..., xr, (given access to each gi, and to Ek) if the adversary can’t invert
any of the trap-door function g1, g2, ..., gr.

[3] proposed a combining function:

Ck,v(y1, ..., yr) = Ek(yr ⊕ Ek(yr−1 ⊕ Ek(... ⊕ Ek(y1 ⊕ v...)))

where Ek is a symmetric encryption function which takes k as secret key.
It satisfies the three properties and the ys is computed as follows:

ys = E−1
k (ys+1 ⊕ ...E−1

k (yr ⊕ E−1
k (z))) ⊕ Ek(ys−1 ⊕ ...Ek(y1 ⊕ v)...)

Trap-Door Permutations and Extending Them to a Common Domain:
Each member Ai(1 ≤ i ≤ r) generates his RSA key ki = (ni, pi, qi, ei, di).

Where Pi = (ni, ei) is his public key and Si = (pi, qi, di) is his private key.
The one-way permutation fi of Zni is defined as:

fi(x) = xei (mod ni)

The inverse permutation f−1
i is computed as:

f−1
i (y) = ydi = x (mod ni).

However, the trap-door RSA permutations of the various ring members have
domains of different sizes. The authors in [3] extend the permutations to have
as their common domain the same set {0, 1}b, where 2b is some power of two
which is larger than all the modular ni’s.
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The extended trap-door permutation gi over {0, 1}b is defined as:
For any b-bit input m define nonnegative integers ti and ri so that m =

tini + ri and 0 ≤ ri < ni. Then

gi(m) =






tini + fi(ri) if (ti + 1)ni ≤ 2b

m else

For more details, please consult [3].

The Ring Signature of RSA Version in [3]:
Given the message m to be signed, the signer’s secret key Ss, and the sequence

of public keys P1, P2, ..., Pr of all the ring members, the signer computes a ring
signature as follows:

1. The signer computes h(m) as the symmetric key k:

k = h(m)

2. The signer picks an initialization value v uniformly at random from {0, 1}b.
3. The signer picks random xi for all the other ring members 1 ≤ i ≤ r,

i �= s uniformly and independently from {0, 1}b, and computes

yi = gi(xi)

4. The signer solves the following ring equation for ys:

Ck,v(y1, y2, ..., yr) = v.

By assumption, given arbitrary values for the other inputs, there is a unique
value for ys satisfying the equation, which can be computed efficiently.

5. The signer uses his knowledge of his trapdoor in order to invert gs on ys

to obtain xs:
xs = g−1

s (ys).

6. The signature on the message m is defined to be the (2r + 1)-tuple:

(P1, P2, ..., Pr; v; x1, x2, ..., xr).

To verify a signature

(P1, P2, ..., Pr; v; x1, x2, ..., xr)

on the message m, the verifier accepts the signature if and only if
CH(m),v(f1(x1), f2(x2), ..., fr(xr)) is equal to v.
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3 Our Proposed Scheme – Nyberg-Rueppel Version

To achieve the goal of using common modulus when computing, we observe that
the RSA signature scheme is not suitable for this goal. We also point out that
general signature schemes is not suitable since it should be a trapdoor one-way
function to generate and verify signatures. For example, the ElGamal signature
scheme is not suitable. We should employ the signature schemes that anyone
can generate ”pseudo” signatures which can be successfully verified using the
verification procedure. But only a person who has his secret key can generate a
”real” signature of a message by his own choice.

Considering the Nyberg-Rueppel signature scheme, we find that it meet our
requirement and thus can be applied to the ring signature scheme.

We build the trapdoor one-way functions based on the Nyberg-Rueppel
signature scheme. Let’s describe the ring signature scheme of Nyberg-Rueppel
version in detail.

Combining Functions:
We use the same combining function proposed in [3], which was described in
part 2.2 in our paper.

Trapdoor Functions using common modulus:
Let p be a prime such that the discrete log problem in Zp is intractable.
Let α ∈ GF (p) be an element of order q where q is equal to p − 1 or is a
large integer factor of p − 1. (p, α) are the common parameters of all the ring
members.

Each user Ai chooses his private key Si ∈ Zq and publishes his public key
as Pi = α−Si mod p.

The one-way function fi takes a 2-tuple (e, y) ∈ Zp×Zq as input and output
a single number in Zp. It is computed as follows:

fi(e, y) = αyPi
ee mod p

If one know the value Si, one can find an inverse of x (= f(e, y)) by following
steps:

First, randomly chooses r ∈ Zp, then computes:

e = xα−r mod p

y = r + Sie mod q

and output (e, y).
This one-way function is derived from the Nyberg-Rueppel signature scheme.

Note that there are not only one inverse of an x. Everyone can compute fi using
the public key Pi, but given x ∈ GF (p), x �= 0, it is hard for anybody not in
possession of Si to compute an inverse of x, since it requires the solution of the
equation:

x = αyPi
ee mod p
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for y and e. The security of Nyberg-Rueppel signature scheme was analyzed in
[1] and [2].

The Ring Signature of Nyberg-Rueppel version:
If a signer who has the secret key Ss want to sign a message m, and the public
keys of all the ring members are P1, P2, ..., Pr. The singer computes a ring
signature as follows.

1. The signer computes h(m) as the symmetric key k:

k = h(m)

2. The signer picks an initialization value v uniformly at random from {0, 1}b.
3. The signer picks random (ei, yi) uniformly and independently from Zp×Zq

(1 ≤ i ≤ r, i �= s) and computes:

xi = fi(ei, yi)

4. The signer solves the following ring equation for xs:

Ck,v(x1, x2, ..., xr) = v

5. The signer uses his secret key Si to invert fs on xs to obtain (es, ys).
6. The signature on the message m is defined to be the (2r + 1)-tuple:

(P1, P2, ..., Pr; v; (e1, y1), ..., (er, yr))

To verify a signature

(P1, P2, ..., Pr; v; (e1, y1), ..., (er, yr))

on the message m, the verifier accept the signature if and only if

CH(m),v(f1(e1, y1), f2(e2, y2), ..., fr(er, yr))

is equal to v.

Security and Efficiency:

We use the combining function proposed in [3] and refer the reader to [3] for
the analysis of the combining function’s security. Now, Let’s consider the one-
way functions derived from Nyberg-Rueppel signature scheme. Everyone can
compute fi provided with the public key Pi. However, given the value of fi(e, y),
only the one who has the secret key Si can obtain (e0, y0) such that fi(e, y) =
fi(e0, y0). Hence, our proposed scheme satisfies the properties of completeness
and soundness.

Our proposed scheme also has the property of unconditional anonymity, i.e.
even an infinitely powerful adversary can not reveal the actual signer’s identity,
because given m and v, the function

CH(m),v(f1(e1, y1), f2(e2, y2), ..., fr(er, yr))
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has pr−1qr solutions for ((e1, y1), (e2, y2), ..., (er, yr)). Every one of these solu-
tions might be chosen with equal probability by an signer.

Let us take a look at the size of keys. The public key of each user is in
Zp and the private key is in Zp, whereas in the RSA version, the public key
of user Ai is (ni, ei) in {0, 1}b × {0, 1}b and the private key is (pi, qi, di) in
{0, 1}b/2 × {0, 1}b/2 × {0, 1}b where b/2 is the approximate length of each prime
in binary representation. Thus, the size of keys are greatly reduced.

Since the users need not to search large primes to compose their public keys
and private keys, there is much less computation in the initial work. But our
proposed scheme also has it’s drawback: signing requires one modular exponen-
tiation and two modular exponentiation for each non-signer; verification requires
two modular exponentiation for each ring member. Thus, this scheme is more
suitable in the case of small rings.

4 Conclusions

We have proposed a ring signature scheme using a common modulus. We showed
that our method satisfies the property of unconditional anonymity and require
much less computation in the setup procedure. Further more, the size of public
and private keys are reduced.
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