An Efficient Public Key Trace
and Revoke Scheme Secure
against Adaptive Chosen Ciphertext Attack*

Chong Hee Kim, Yong Ho Hwang, and Pil Joong Lee

IS Lab, Dept. of Electronic and Electrical Eng., POSTECH, Korea
{chhkim,yhhwang}@oberon.postech.ac.kr, pjl@postech.ac.kr
http://islab.postech.ac.kr

Abstract. We propose a new public key trace and revoke scheme secure
against adaptive chosen ciphertext attack. Our scheme is more efficient
than the DF scheme suggested by Y. Dodis and N. Fazio[9]. Our scheme
reduces the length of enabling block of the DF scheme by (about) half.
Additionally, the computational overhead of the user is lower than that
of the DF scheme; instead, the computational overhead of the server is
increased. The total computational overhead of the user and the server
is the same as that of the DF scheme, and therefore, our scheme is more
practical, since the computing power of the user is weaker than that of
the server in many applications. In addition, our scheme is secure against
adaptive chosen ciphertext attack under only the decision Diffie-Hellman
(DDH) assumption and the collision-resistant hash function H assump-
tion, whereas the DF scheme also needs the one-time MAC (message
authentication code) assumption.

1 Introduction

A broadcast encryption scheme enables a center to send encrypted data to a
large group of users over an insecure channel, where only legitimate users can
decrypt the data. The set of legitimate users is dynamically changing, so it
should be possible to prevent some revoked users from decrypting the data.
The broadcast encryption scheme has numerous applications, such as pay-TV
systems, the distribution of copyrighted materials, internet multicasting of video,
music, magazines, and so on.

A. Fiat and M. Naor first formalized the basic definitions and paradigms
of the broadcast encryption scheme [I1]. Afterwards, many variants have been
investigated. One example is the scheme of tracing traitors [6]. In this setting,
the center can trace the traitors after a pirate decoder is confiscated. There are
two types of approaches to the traitor-tracing scheme. One is a scheme that
uses a secret key and coding approach [AJ6/I2T6I7IT8/I9] and the other uses a
public key [3[14]. In the secret key scheme, the keys in the pirate decoder can
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be identified by combinatorial methods. In the public key approach, the size
of the enabling block is independent of the number of subscribers. In addition,
the public key traitor tracing schemes enable the center to prepare a public key
that allows any entity to broadcast data to users. There is another variant of
broadcast encryption, the revoke system, which concentrates on the problem of
excluding a certain subset of users from receiving the data in a dynamically
changing set of users. There are many revoke systems that use the secret key
setting. These schemes are also divided into two categories. One is for stateless
receivers [I513]2] and the other is for non-stateless receivers [2122].

Recently, a public key traitor-tracing scheme with the revocation capability
was introduced by W. Tzeng and Z. Tzeng [20]. They also proposed a vari-
ant of their basic scheme to be secure against adaptive chosen ciphertext attack
(CCA2). However, Dodis and Fazio noted that W. Tzeng and Z. Tzeng’s scheme
was not secure against CCA2 even if a single user is corrupted [9]. Dodis and
Fazio also proposed their own scheme secure against CCA2 under the decision
Diffie-Hellman (DDH) assimption, the collision-resistant hash function H as-
sumption, and the one-time MAC assumption [9].

Our Results. We propose a new public key trace and revoke scheme secure
against CCA2. Our scheme does not use the additional one-time MAC, so its
security does not depend on the one-time MAC assumption. The length of the
enabling block of our scheme is about half that of the DF scheme. Additionally,
the computational overhead of the user is lower than that of the DF scheme
instead the computational overhead of the server is increased. The total com-
putational overhead of the user and the server is the same as that of the DF
scheme. (We only consider the computation of exponentiation computed by the
server and the user. If we did the analysis more precisely, our scheme is more
efficient than the DF scheme because it does not require computational overhead
for the MAC). Our scheme is more practical, since the computing power of the
user is weaker than that of the server in many applications.

By slightly modifying standard tracing algorithms from previous schemes
(e.g. [20]), our scheme can be a fully functional trace and revoke scheme. How-
ever, due to space limitations we will omit the tracing part and focus only on
the revoke scheme, which is the original contribution of this paper.

2 Preliminaries

In this section, we review the Lagrange interpolation in the exponent, the de-
cision Diffie-Hellman (DDH) assumption, and public key encryption schemes
secure against CCA2.

The Lagrange Interpolation in the Exponent. Let ¢ be a prime and
f(z)=>";_,atz; a polynomial of degree z over Z,. Let zy,...,z, be distinct
elements in Z,. Then using the Lagrange interpolation, we can express f(z)
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as > i o(f(z¢) - Ae(z)), where A\y(z) = HOgj#tgz%’ 0 <t < z. We de-
fine the Lagrange interpolation operator as: LI(xq,...,x.; f(xo),..., f(z.))(2)
= Yo (Flae) - Mula))

Next, we consider a cyclic group G of order ¢ and a generator g of G. Let v,
= ¢g/®) 0 <t < z, where z; € Z4 and v; € G. Then we define the Lagrange
interpolation operator in the exponent as: EX P—LI(xg,...,2.;v0,...,0;)(x) =
gl @orwsif (@o),nf(@2)) = [T7_ g @) Xe(@) = T]7_ v We also remark that
EXP — LI(xo,...,x:;05,...,v5)(x) = [EXP — LI(xg,...,25v0,...,05)(z)]".
In what follows, we will refer to a function of the form ¢f(®), where f(z) is
polynomial, as an EX P- polynomial.

The Decision Diffie-Hellman Assumption. Let G be a group of large prime
order ¢, and consider the following two distributions:

— the distribution R of random quadruples (g1, g2, u1,us) € G4,
— the distribution D of quadruples (g1, go,u1,u2) € G*, where g1, go are ran-
dom, and u; = g{ and up = g5 for random r € Z,.

The decision Diffie-Hellman (DDH) assumption is that it is computationally
hard to distinguish these two distributions. That is, we consider an algorithm
that should output 0 or 1, given a quadruple coming from one of the two distri-
butions. Then the difference between the probability that it outputs a 1 given
an input from R, and the probability that it outputs a 1 given an input from D
is negligible.

Our scheme is based on the modified Cramer-Shoup (M-CS) scheme [5] and
the DF scheme is based on the Cramer-Shoup (CS) scheme [7]. The M-CS scheme
is a variant of the CS scheme. We briefly review these schemes.

The Cramer-Shoup Scheme. Given a security parameter 1*, the secret key
is (z1, z2, Y1, Y2, z) and the public key is (p, q, 91, 92, ¢, d, h, H), where p is a A-bit
prime, g1, g2 are generators of G(a subgroup of Z; of a large prime order g),
function H is a hash function chosen from a collision-resistant hash function
family, 21, 2o, Y1, Yo, 2 & Zy, c=97'g5%, d=g¥' gy, and h = g7 .

Given a message m € (G, the encryption algorithm runs as follows. First, it
chooses r & Z4 and computes u; = g],u2 = g5, = h"m, o = H(ui,us,€),v =
c"d™™. The ciphertext is (u1,uz,e,v). Given a ciphertext, the decryption algo-
rithm runs as follows. First, it computes v’ = uf* ™1 *.u5>*¥2% Next, it performs
a validity check. If v # ', then it outputs an error message, denoted ‘L’; oth-

€

erwise, it outputs m = -%. The security of this scheme against CCA2 is proven,

=
uy

based on DDH assumption, in [7].

The Modified Cramer-Shoup Scheme. R. Canetti and S. Goldwasser
slightly modified the above CS scheme as follows, without losing in security
[5]. If the decryption algorithm finds v # v’, instead of outputting ‘L’ it outputs
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a random value in G. In a sense, the modified scheme is even “more secure” since
the adversary is not notified by the decryption algorithm whether a ciphertext
is valid.
Now that the decryption algorithm does not explicitly check validity, given
€

u1, U, €,v) it outputs (-%) - v)s instead, where v’is computed as in the CS
u v
1

scheme and s & Z4. Note that the decryption algorithm is now randomized. To
see the validity of this modification, notice that if v = v’ then (7)*=1 for all
s, and the correct value is outputted. If v # v/, then the decryption algorithm
outputs a uniformly distributed value in G, independent of m. The security of

M-CS scheme against CCA2 is proven, based on the DDH assumption, in [5].

3 Public Key Broadcast Encryption Scheme

We use the definition in [9]. In a public key broadcast encryption scheme BE,
a session key s is encrypted and broadcasted with the symmetric encryption of
the “actual” message. Generally, the encryption of s is called the enabling block.

3.1 Public Key Broadcast Encryption Scheme

A public key broadcast encryption scheme BE consists of a 4-tuple of poly-time
algorithms (KeyGen, Reg, Enc, Dec):

— KeyGen, the key generation algorithm, is a probabilistic algorithm used by
the center to set up all the parameters of the scheme. KeyGen takes as input a
security parameter 1* and a revocation threshold z (i.e. the maximum number
of users that can be revoked) and generates the public key PK and the master
secret key SKpg.

— Reg, the registration algorithm, is a probabilistic algorithm used by the center
to compute the secret initialization data needed to construct a new decoder each
time a new user subscribes to the system. Reg receives as input the master secret
key SKpg and a (new) index ¢ associated with the user; it returns the user’s
secret key SK;.

— Enc, the encryption algorithm, is a probabilistic algorithm used to encapsulate
a given session key s within an enabling block T. Enc takes as input the public
key PK, the session key s, and a set R of revoked users (with |R| < z) and
returns the enabling block T'.

— Dec, the decryption algorithm, is a deterministic algorithm that takes as input
the secret key SK; of user i and the enabling block T and returns the session
key s that was encapsulated within T if © was a legitimate user when T was
constructed, or the special symbol “17.

3.2 Security against Adaptive Chosen Ciphertext Attack

An adversary A in an adaptive chosen ciphertext attack (CCA2) is a proba-
bilistic, poly-time oracle query machine. The attack game is defined in terms
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of an interactive computation between the adversary and its environment. We
describe the attack game used to define the security against CCA2; that is, we
define the environment in which A runs. We assume that the input to A is 1
for some .

Stage 1: The adversary queries a key generation oracle. The key generation
oracle computes (PK, SKpg)+ BE.KeyGen(1*, z) and responds with PK.

Stage 2: The adversary enters the user corruption stage, where she is given ora-
cle access to the User Corruption Oracle Corgg,,(+). This oracle receives as in-
put the index 4 of the user to be corrupted, computes SK; + BE.Reg(SKgg, 1)
and returns the user’s secret key SK;. This oracle can be called adaptively for
at most z times. Let us say that at the end of this stage the set R of at most z
users is corrupted.

Stage 3: The adversary submits two session keys sg, s; to an encryption or-

acle. On input sg, s1, the encryption oracle computes: o & {0,1}; T* «
BE.Enc(PK, s,, R) and responds with the “target” enabling block T*.

Stage 4: The adversary continues to make calls to the decryption oracle, subject
only to the restriction that a submitted enabling block T is not identical to 7.

Stage 5: The adversary outputs o* € {0,1}.

We define the advantage of A as Adv§E42(N)= |Pr(c* = o) — §|

We consider a variant of the CCA2, generalized chosen ciphertext attack
(gCCA2) [1I9]. The attack game of gCCA2 is the same as that of CCA2 ex-
cept Stage 4. In the attack game of gCCA2, the adversary cannot ask about
enabling blocks closely related to the “target” enabling block. That is, in Stage
4, the decryption oracle first checks whether equivalence relation R;(T,T*) holds.
If so, it outputs “L”.

Definition 1 (z-resilience of a public key broadcast encryption scheme)
We say that a public key broadcast encryption scheme BE is z-resilient against
CCA2 attack if for all probabilistic, poly-time oracle query machines A, the func-
tion Advggff()\) grows negligibly in X .

4 The DF Schemes

Y. Dodis and N. Fazio proposed three broadcast encryption schemes (we call
them DF-CPA, DF-gCCA, DF-CCA2 ) that achieve z-resilience in an adap-
tive setting for the case of CPA (chosen plaintext attack), gCCA2, and CCAZ2,
respectively. Subsequent schemes build on the previous one in an incremental
manner. Therefore, the DF-CPA scheme is more efficient than the DF-gCCA2
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Encryption algorithm Enc(PK, s, R) Decryption algorithm Dec(i,T)
FEi.1r1 <0 Zq Di. o+ H(S,yhu% (jl, Hjl)',..7 (jz;HjZ))
Eo. ug 9;1 Ds. 7 < ui(l(ZH'Yl('L)O‘ L X2 FY2 (D
E3. up < go' D3. v; + EXP-LI(0,.., z; vo,..,v2) ()
FEy. Ht<—h:1,(t=0,..,z) Dy. if v; = v;
Es. Hj, < EXP-LI(0,.., ; Ho,.., H.)(je) |Ds. then Hy « u?*() .22
(t=1,.2) Ds. s+ E‘XP—LI(jl,A.,jz,AiS’;Hjl,.A,HjZ,Hi)(O)
Eg. S <+ s-Hy D7. return s

E7. o+ H(S,u1,u2, (j1,Hj,),.., (=, Hj,))| Ds. else return L

Eg. vy < ¢;rd 1%, (t=0,.., 2)

Eg. T +< S,ul,uz,(jl,H]- ),.., (jZ,I{jz)7
VO,.ey Vz >

Fig. 1. DF-gCCA2

scheme and DF-gCCA2 scheme is more efficient than the DF-CCA2 scheme in
the length of the enabling block and the computational overhead. In the next
section, we define DF-gCCA2 and DF-CCA2. For a more detailed description,
see [9].

4.1 DF-gCCA2

Key generation algorithm: KeyGen selects two random generators g1, g €
G, where G is a group of order ¢, in which ¢ is a large prime such that 2¢g = p—1,
and p is a large prime. KeyGen selects six z-degree polynomials X7 (€), X2(§),
Yi(6), Y2(§), Z1(§), Z2(§) over Z,, and computes ¢; = gfﬁ(t) . gfz(t), d;y =
g}/l(t) -g;@(t), hy = glzl(t) -gQZQ(t), for 0 <t < z. Finally, KeyGen chooses a hash
function H from a family of F of collision resistant hash functions, and outputs
(PKa SKBE)& where PK = (pa q,91,92,Co," " Cz,dOa Ty dZa hOa Ty h27H) and
SKpp = (X1,X2,Y1,Y2, 71, Z).

Registration algorithm: Each time a new user ¢ > z decides to subscribe to
the system, the center provides him with a decoder box containing the secret
key SKZ = (i, X1 (Z), Xg(i), Y1 (Z), }/2(2)7 Z1 (Z), ZQ(Z))

Encryption algorithm: Using the ides of the CS scheme [7[8], in order to
obtain a non-malleable ciphertext, they “tag” each encrypted message so that it
can be verified before proceeding with the actual decryption. In the broadcast
encryption scenario, where each user has a different decryption key, the tag
cannot be a single point - they need to distribute an entire X P-polynomial
V(x). This is accomplished by appending z+1 tags, vy, . . ., v, to the ciphertext.

The encryption algorithm receives as input the public key PK, the session
key s, and a set R = {j1,...,4.} of revoked users. It proceeds as described in
Fig. 1, and finally it outputs 7.

Decryption algorithm: To recover the session key, a legitimate user ¢ can
proceed as in Fig. 1. He computes the tag ©; using his private key and then
verifies the validity of the ciphertext by checking the interpolation of the z+1
values in point ¢ against its 0; (Step Do, D3, and Dy). If ¢ is a revoked user,
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the algorithm fails in Step Dg, since the interpolation points ji,-- -, j.,? are not
pairwise distinct.

Security: The adversary can make the ciphertext malleable because of the use
of an FX P-polynomial V(). Since each user ¢ can verify the value of V(x) in
only one point, the adversary can modify vg,---,v, and construct a different
EX P-polynomial V'(z) such that V'(z = x;)=V(x;), thus fooling user i to
accept as valid a corrupted ciphertext. To prevent this, a family of equivalence
relations{R;} is introduced. Two ciphertext 7" and T’ are equivalent for user
i if they have the same “data” components, and the tag “relevant to user ¢’
is correctly verified, i.e. v; = v'; (even though other ”irrelevant” tags could
be different)[9]. By using this equivalent relation, DF-gCCA2 is secure against
gCCA2. In Stage 4 of the attack game, the adversary cannot ask 7" which is
equivalently related to the “target” T*.

4.2 DF-CCA2

In Section 4.1, we saw that the DF-gCCA2 scheme does not provide a complete
solution to the CCA2 problem, but only suffices for gCCA2 security. Indeed,
given a challenge 7™ with tag sequence vy, - - -, v,, it is trivial to make a different
sequence vy, - - -, v, such that v; = v}, resulting in a “different” enabling block
T # T*: however, Dec(i,T*)=Dec(i,T), allowing the adversary to “break”
CCA2 security.

To achieve CCA2 security Dodis and Fazio used a trick to make the tag
sequence v, - - -, U, non-malleable. To this end, they used a message authentica-
tion code (MAC). The key generation algorithm and the registration algorithm
are the same as those of DF-gCCA2. The encryption and decryption algorithm
are shown in Fig. 2. The encryption algorithm operates similarly to the gCCA2
encryption algorithm, but the main difference is that now a MAC key k is used
to MAC the tag sequence vg,---,v,, and is encapsulated within 7' along with
the session key s.

If the DDH problem is hard in G, H is chosen from a collision-resistant hash
function family F, and MAC is a one-time message authentication code, then
the DF-CCAZ2 scheme is z-resilient against CCA2[9].

5 Proposed Scheme

In this section, we propose a new public key trace and revoke scheme secure
against CCA2. Our scheme does not use the additional one-time MAC, so its se-
curity does not depend on the one-time MAC. The length of the enabling block of
our scheme is about half that of the DF-CCA2 (DF-gCCA2) scheme. Addition-
ally, the computational overhead of the user is lower than that of the DF-CCA2
(DF-gCCA2) scheme. Instead, the computational overhead of the server is in-
creased, but the total computational overhead of the user and the server is the
same as that of the DF-CCA2 (DF-gCCA2) scheme. We only consider the com-
putation of exponentiation computed by the server and user. Our scheme is more
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Encryption algorithm Enc(PK, s, R)

Decryption algorithm Dec(s, T)

FE1.r1 <1 Zq
FEa.uy < gr1

Di. a+ H(S u17U27(]17

Hj),-
T e X1(2)+Y1( )0‘_

Xz( )+Y2(

(=, Hj.))

)

E3.ug < g4t Ds. v; <+ E'XP LI(0,..,z; vg, L, 02)(3)
E4Hy byt (t=0,.,2) Dy. if v; = v; _
Es.Hj, < EXP-LI(0,..,z; Ho,.., H:)(j:) |Ds. then Hy < u?1(®) .4 22(%)
(t=1..,2) De. sllk < £xp—110G1, 52005, By A0
E¢.k < K D7. extract s and k from (s||k)
Er. S« ( Hk‘) Hy Dg. if 7 # MACk(’U(),..’UZ)
Ega(—H(S ui,u2, (41, Hj, )y, (42, Hj,))|Dg.  then return L

Ey.vg < ¢t d;*%, (t=0,.., 2)
E1o. 7'<—MACI¢('UO7 z)
E11.T < S,u1,u2, (j1,

v0,- 7UZ7T>

Dqg. else return s
D11 .else return L

Hj.),

]1)7 7(]za

Fig. 2. DF-CCA2

efficient precisely because it does not require the computational overhead for the
MAC but the DF-CCA2 scheme does. Our scheme is more practical, since the
computing power of the user is weaker than the server in many applications.

Main Idea: In the DF-CCA2 scheme, given the enabling block T << S, u1, ug,
(J1.Hj,), -+, (4=.Hj.), vo, ..., vs, T) >, to check the validity of T user i con-
structs V(x) using v, ..., v, and checks whether V(z = i) = v;. He also checks
the validity of vg,---,v, by use of the MAC value 7. Our idea starts from the
problem of the DF-gCCA2 scheme. In the DF-gCCA2 scheme, the decryption or-
acle cannot distinguish V'(z) such that V' (i) = V(3), but v{, -+ -, v}, # vg, -+, v,
The DF-CCA2 scheme solves this problem by the use of the MAC.

We make the enabling block T +< S,uy,us,c"d"*, vy,...,v, >. Given T,
user ¢ computes V(x) using vy, - - -, v, and his secret share v;. Then he checks the
validity of T  using ¢"d"® and V (z = 0). The adversary cannot compute V(x = 0),
since he knows only z shares of the degree-z polynomial V' (z). Therefore, the
adversary cannot cheat the decryption oracle.

Key generation algorithm: KeyGen selects two random generators g;, g2 €
G, where G is a group of order ¢ in which, ¢ is a large prime such that 2¢ = p—1,
and p is a large prime. It selects z1,22,y1,y2 € Z,; and z-degree polynomials
X1(§)7 XQ(E)a Yl(g)v }/2(5) over Zq such that X1(0) = T, XQ(O) = T2, Yl(O) = Y1,
Y2(0) = yo. It also selects z-degree polynomials Z; (§), Z2(€) over £ and computes

H(®) ZQ(t) ,0<t < zand
w1 =90, 20, = g5 2()7y1,t=91 @ e = g3 Ostﬁz.

Finally, KeyGen chooses a hash function H from a family F of collision
resistant hash functions, and outputs (PK,SKgg), where PK = (p, q, g1, 92,
c, d7 xl,Oa ceny L1,z L2,09 -+ o5 L2,25 Y1,05- 5 Y1,25 Y2,05- - -5 Y2,2, hOa Y hsz) and
SKBE = (Xh X27 Yla }/27 Z17 ZQ)

Tr1 T2

C=9'%, d = g{'¢3*. Then, it computes h; = g

Registration algorithm: Each time a new user ¢ > z decides to subscribe to
the system, the center provides him with a decoder box containing the secret
key SK; = (i, X1(i), X2(i), Y1(i), Y2(i), Z1(4), Z2(3)).
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Encryption algorithm Enc(PK, s, R) |Decryption algorithm Dec(i, T')

Ei.ri <, Zq D1.@<—H(S,U1,U2)

By uy + git Dy. C; i( 1O+ (@Da | X2 () +Y2(Da

FEs3. us <+ g;l Ds. H; + UZl(l) UQZZ(i)

Ey. Hy < h}', (t=0,..,2) Dy. Fi + Hi &

Es. Hj, + EXP-LI(0,.., z; Ho,.., H:)(j:)| Ds. s + EXP_LI(].M]Zi T 1)
(t=1,..,2)

FEs. S+ s- Hy

E7. o — H(S,U1,UQ)
Eg. Ct < (21,t22,4) ™ (y1,6y2,6)™

(t=0,.,2)
FEy. Cjt — EXP—LI(O,..,Z;Co,..,cz)(jt),
(t=1,..,2)

Elo.c — c'td"ne
B .Fj, = Hj, CC (t=1,.,2)
Fi12.T < S U1,UQ,CT1dT1a,

(jl’Fj1)7"7 (jvajz) >

Fig. 3. Our Proposed scheme.

Encryption algorithm: Our scheme is based on the idea of M-CS [B]. The
encryption algorithm receives as input the public key PK, the session key s,
and a set R = {j1,--,j.} of revoked users. It proceeds as described in Fig. 3,
and finally it outputs 7". Enc computes and distributes F},, 1 <t < z. We can

think that F, = ng(J’) where Q(§) is z-degree polynomial in Z,. Therefore, the
adversary Who only knows z shares of F};, cannot cheat the decryption oracle.

Decryption algorithm: To recover the session key, a legitimate user ¢ can
proceed as in Fig. 3. A legitimate user can compute s in Step D5, but the revoked
user fails, since the interpolation of jq,---,j,,4 are not pairwise distinct.

We here verify that the output of the decryption algorithm is identical to the
session key s if the user i is a legitimate user. We can rewrite F; computed from
Step Dy as follows (let g2 = ¢¥"):

F; = Hi (c )
z z ooy, —X Y1 (i) —X Yo (i)
:(11() 2())(c1d1)(1 1()—-Y1(i)a 2(1)—Y2(4)
r1 21 (4 )+wr122(i)*T1X1( )—r1Y1(i)a— “”"1X2<1) wr1Y2 (De ry grya
3“121(1')+w?°122(i)—T1X1(1) r1Y1(i)a—wry Xa (i) —wr1 Ya(i)at+(rizr +wrize+riyiatwriyz o)
_ g?(l)
Consequently, F; gQ( ) where Q(&) is z-degree polynomial in Z,. If we com-
pute Fy using the Lagrange interpolation in the exponent as in Step Dy, we can
obtain the following value:

Fo=EXP—LI(ji, 4z % Fj,,...,Fj,, F;)(0)
(r1z1+wr1zz)7rla:17r1y1a wWr1To— w'rly2a+(r1z1+wr1z2+r1y1a+wr1y2a)
—HO

Tl drl a4
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s H
Therefore, F% = % =s.

Security:

Theorem 1 If the DDH problem is hard in G and H is chosen from a collision-
resistant hash function family F, then our scheme is z-resilient against the adap-
tive chosen ciphertext attack.

Proof. Our overall strategy for the proof follows the structural approach in [g].
We shall define a sequence Gg, Gq,...,G; of modified attack games. Each of
the games Go, G1, ..., G] operates on the same underlying probability space.
In particular, the public key cryptosystem, the coin tosses Coins of A, and the
hidden bit ¢ take on identical values across all games, while some of the rules
that define how the environment responds to oracle queries may differ from game
to game. For any 1 < ¢ < [, we let T; be the event that ¢ = ¢* in the game
G;. Our strategy is to show that for 1 <4 <, the quantity |Pr[T;_1] — Pr[T}]]
is negligible. In addition, it will be evident from the definition of game Gy that
Pr[T;] = 1, which will imply that |Pr[Ty] — %] is negligible.
Before continuing, we state the following simple but useful lemma in [§].

Lemma 1 Let Uy,Us, and F be the events defined on some probability space.
Suppose that the event Uy AN =F occurs if and only if Uy A =F occurs. Then
|Pr[U;] — Pr[Us]| < Pr[F].

Game Gg: Let Gg be the original attack game, let o* € {0, 1} denote the output
of A, and let Ty be the event that 0 = ¢* in Gy, so that Advgucréghem@A()\) =
|PrTo] — % .

Game Gi: G; is identical to Gy, except that in Gy, steps E4 and Fg are
replaced with the following:

E). H; + ulzl(t) ~u222(t), t=0,...

, 2
E}. C; + AR ~u§2(t)+y2(t)a t=0,.

1 B4

The change we have made is purely conceptual, it is just to make explicit
any functional dependency of the above quantities on u; and us. Cleary, it holds
that P’I’[To] = PT[Tl]

Game Ga: We again modify the encryption oracle, replacing steps E; and Fj
by

Ei T < Zq,TQ —r Zq\{’l’l}
By up < g5’

Notice that while in G; the values u; and ug are obtained using the same
value r1, in Gg they are independent subject to 71 # ro. Therefore, any difference
in behavior between 1 and Go immediately yields a PPT algorithm 4, that is
able to distinguish DH tuples from totally random tuples with a non negligible
advantage. That is, |Pr[Ts] — Pr[T1]| < €; for some negligible €;.

Game Gg: In this game, we modify the decryption oracle in G2 to obtain Gg
as follows:
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D;. a<—H(S,u1,u2)

D,. C;+« uiﬁ(i)-*-yl (D)ot (X2 (4)+Y2(i)a)w

Dqy_q.1if (u2 = u?fl)
Dl then H; 21 (0220w
! 7
C
Da Fi e Hicy s
/
Dy. S+ EXP—LI(j1,.-rjz+0:Fgq - Fj, , F7)(0)
Dj.  else return L

At this point, let R3 be the event that the adversary A submits some de-
cryption queries that are rejected in Step Ds_1 in Gg, but passed in Ga. Note
that if a query passes in Do_1 in Gg, it would have also passed in Gg. It is clear
that G2 and Gj proceed identically until the event R3 occurs. In particular, the
event To A =Rz and T3 A ~Rj3 are identical. Therefore, by Lemma 1, we have

|P7‘[T3] — PT[TQ“ S PT[R;),}

and so it suffices to bound Pr[R3]. To do this we consider two more games, G4
and Gg
Game Gy: This game is identical to Gg, except for a change in Step FEg as
follows:

Ej.e < Zy, S < ¢

It is clear by construction that Pr[Ty] = %, since in Gy, the variable o is
never used at all, and so the adversary’s output is independent of o.
Let R4 be the event that some decryption queries that would have passed in

G, fail to pass in Step D31 in Gy4. Then we have the following facts.
Lemma 2 Pr{T,] = Pr[T3] and Pr[R4] = Pr[Rs).

The proof of Lemma 2 is shown in the Appendix
Game Gj: This game is identical to Gy, except for the following modification. In
the decryption algorithm, we add the following special rejection rule, to prevent
A from submitting an illegal enabling block to the decryption oracle once she
has received her challenge T*.

Special rejection rule: After the adversary A receives the challenge T* = (5*, uj,
uz, (c"d™)*, (41, F},), - -, (4%, F})), the decryption oracle rejects any query <
i, T >, with T = (S, uy, ua, (¢"d™®), (j1, Fj,), - - - (jz, Fj.)), such that (S*,u}, u3)
# (S, u1,uz), but a = a*, and it does so before executing the test in Step Do_1.

To analyze this game, we define two events. Let C5 be the event that the
adversary A submits a decryption query that is rejected using the above special
rejection rule, and Rj the event that the adversary A submits some decryption
query that would have passed in Gg, but fails to pass in Step D2_1 in Gs. Now it
is clear that G4 and Gy proceed identically until event C5 occurs. In particular,
the event R4 A —=C5 and Rs5 A —Cj are identical. Therefore, by Lemma 1, we have

|Pr[Rs] — Pr[R4]| < Pr[Cs]
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Now, if event C5 occurs with non-negligible probability, we can construct
a PPT algorithm A, that breaks the collision resistance assumption with non-
negligible probability. So, |Pr[Cs]| < e for some negligible es.

Finally, we show that event Rs occurs with negligible probability.

Lemma 3 Pr[Rs] < Q““T()‘).

Where, Q4()) is an upper bound on the number of decryption queries made
by the adversary A. The proof of Lemma 3 is shown in the Appendix.

Finally, combining the intermediate results, we conclude that the adversary
A’s advantage is negligible:

AdvECA2 ()\) <€+ €6+

Ourscheme, A

Qa(N)
q
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Appendix

To prove Lemma 2 and Lemma 3, the following lemma is useful. The proof of
Lemma 4 is shown in [§]. Our proofs follow the structural approach in [S/T0].
Therefore, they are similar to that of [I{]] except for some variables and notations.

Lemma 4 Let k, n be integers with 1 < k < n, and let K be a finite field.
Consider a probability space with random variables o € K™Y, B=(B1,...,8c)T
€ KF<l ~ e KR and M € K**™, such that a is uniformly distributed over
K™ B=Mao+~, and for 1 <i <k, thei th rows of M and ~ are determined
by Bi,. .., Bi-1.

Then conditioning on any fixed values of B, ..., Bk—1 such that the resulting
matric M has rank k, the value of By is uniformly distributed over K in the
resulting conditional probability space.

In what follows, we define:
Coins: the coin tosses of A; Xy = X1(t) + wX2(t),Y: = Yi(t) + wYa(t), Z: =
Zl(t) + 'U]ZQ(t),t = 0, ey 2
w = logg, g2
Proof of Lemma 2

Lemma 2. Pr[Ty] = Pr[T3] and Pr[Ry] = Pr[R3).

Proof. Consider the quantity X := (Coins, H, w, X1(0), ..., X1(2), X2(0), ...,
Xo(2), Y1(0), ..., Yi(2), Y2(0), ..., Ya(2), Z1, ..., Z., 0, 7], r3) and the quantity
Zy. Note that X and Z; take on the same values in Gz and G4. Consider also
the quantity e*=log,y, S*. This quantity takes on different values in Gz and Ggy.
For clarity, let us denote these values as [e*]3 and [e*]4, respectively.

It is clear by inspection that the events R3 and T35 are determined as functions
of X, Zy, and [e*]5. Also, the events Ry and Ty are determined as functions
of X, Zy and [e*]4. Therefore to prove Lemma 2, it suffices to show that the
distributions of (X, Zy, [e*]3) and (X, Zp, [e*]4) are identical. Observe that by
the construction, conditioning on any fixed values of X and Zj, the distribution
of [e*]4 is uniform over Z,. Therefore, it will suffice to show that conditioning
on any fixed values of X and Zj, the distribution of [e*]3 is uniform over Z, .
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We have the following equation:

()= () (260) + ()

where det(M)=w(r5 —r}) # 0 since r; # r7}.

Conditioning only on a fixed value of X, the matrix M is fixed, but the
values Z1(0) and Z2(0) are still uniformly and independently distributed over
Zq4. If we further condition on a fixed value of Zj, the value of s, is fixed; hence,
by Lemma 4, the distribution of [e*]3 is uniform over Z,. O

Proof of Lemma 3
Lemma 3. Pr[Rs] < Q*‘T(A).

Proof. For 1 < j < Q4(X), we define the following events;
— jo ). the event that the jth ciphertext < ¢, T >, submitted to the decryption
oracle in Gg, fails to pass Do_1, but would have passed in Gg,
— Béj) : the event that the jth ciphertext < 4, T >, submitted to the decryption
oracle before A received her challenge,
- Béj) : the event that the jth ciphertext < 4,7 >, submitted to the decryption
oracle after A received her challenge.
If we show that Pr[Réj)|Béj)] < % and Pr[Réj)|Béj)] < %, then Lemma 3 is
proved. O

I=

Lemma 5 For all1 < j < Q4()), we have PT[Réj)\Béj)] <

_

I=

Lemma 6 For all1 < j < Qa()), we have PT[Réj)\Béj)] <

2

Proof of the Lemma 5. Fix 1 < j < Q 4()\) and consider the quantities:
X :=(Coins,H,w, Zy, ..., Z,), X' := (Xo,..., X, Yy,...,Y2)

These two quantities completely determine the behavior of the adversary up
to the moment that A performs the encryption query, and in particular, they
completely determine the event Béj ) Let us call X and X’ relevant if the event
Béj ) occurs. Hence to prove Lemma 5, it suffice to prove that the probability of
event Réj ), conditioned on any relevant values of X and X', is less than *.

The test Dy_; fails if and only if us # u{’. Thus if the test in Dy_; fails but
would have passed in Ga, it must be the case that uy # u{’ and ¢ d""*=EXP-
LI(ji,...,jz%: Cj,...,C;,,C;)(0). Taking the logs (base g1), the condition
ug # uy is equivalent to ro # r1. If we let B=log,, ¢ d™* and leogg1 EXP-
LI(j1,...,7z%: Cjy,...,C;,,Ci)(0), then B=r1 X1 (0)+wry X2(0)+ar Y1 (0)+aw
r5Y5(0). Notice that 3 can be expressed in terms of (X1(0), X2(0), ..., X1(2),
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Xo(z2), Y1(0),Y2(0), ..., Yi(2),Y2(2))T. Therefore, we can make the following
equation (for details, see [10]):
X1(0)
X 1 w--0 0 0 0 - 0 0 X>(0)
X. 001 w 0 0 - 0 0 ?8
Yo |=]00-- 0 1 ) 0 2
.O Y1(0)
: : . : Y>(0)
Jé] 00 01+ 02 02241 02242 02543 *** Odz42 Odz43 Yliz)
M Ya(2)

Let us first fix X, which fixes the first 2z+2 rows of the matrix M, but the
values (X71(0), X2(0), ..., Y1(2),Ya2(2)) are still uniformly distributed over Z,.
Next fix X’ such that X and X' are relevant and ry # ro. Then the last row
of the matrix M is fixed. From this, it follows by Lemma 4 that B is uniformly
distributed over Z,, but § is fixed, we have Pr[3 = B] = %. O

Proof of the Lemma 6. Fix 1 < j < Q4()\) and consider the quantities:
X = (Coins, H,w, Zy, ..., Z,,r5,15,¢*), X' :=(Xo,..., X, Y0,...,Y,, 5%).

where 8* =logg, (c"'d™*)* and i > z. The values of X and X’ completely deter-
mine the adversary’s entire behavior in Game G5, in particular, they completely
determine the event Béj ) Let us call X and X’ relevant if the event Béj ) oceurs.
It will suffice to prove that conditioned on any fixed, relevant values of X and
X', the probability that Réj ) oceurs is bounded by %. As in the proof of Lemma
5, we have the following equation (for the detail, see [10]):

X1(0)
Xo 1 w-- 0 0 0 o --- 0 0 Xg(())
X, 00 1 w 0 0 0 0 Xl(z)
Yy _ 00 0 0 1 0 0 Xg(z)
Y1(0)
: : . : V-
Y, 00--0 0 0O 0 - 1 w QFO)
ﬂ:k US O'T e O';z O';z—i-l U;z+2 U;z+3 e UZZ-"-Q UZZ+3
ﬁ 00 01 "+ 022 02241 02242 02243 *** 04242 04243 Yl(Z)

M

Again conditioning on a fixed value of X and X', we have that [3 is uniformly

distributed over Z,, but 5* is fixed. Therefore, we have Pr{* = B]:% O
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