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Abstract. Continuous monitoring k nearest neighbors in highly dy-
namic scenarios appears to be a hot topic in database research com-
munity. Most previous work focus on devising approaches with a goal
to consume litter computation resource and memory resource. Only a
few literatures aim at reducing communication overhead, however, still
with an assumption that the query object is static. This paper consti-
tutes an attempt on continuous monitoring k nearest neighbors to a
dynamic query object with a goal to reduce communication overhead.
In our RFA approach, a Range Filter is installed in each moving object
to filter parts of data (e.g. location). Furthermore, RFA approach is ca-
pable of answering three kinds of queries, including precise kNN query,
non-value-based approximate kNN query, and value-based approximate
kNN query. Extensive experimental results show that our new approach
achieves significant saving in communication overhead.

1 Introduction

Finding k nearest neighbors (kNN) to a query object is one of the most crit-
ical operations in the field of spatial databases. The primary focus of spatial
database research till recently has been on static spatial data which are updated
infrequently, such as buildings, roads, .etc[7,13,14]. Nowadays, there has been
an increasing interest in processing objects in motion, which change location
frequently, such as vehicles, mobile networks, .etc. In a typical scenario, each
moving object continues to report its location to a special site frequently, where
the answer is calculated and output in real-time. Most previous work focus on
devising various solutions to generate qualified results with few memory resource
and computation resource (e.g., [8,9,11]).

The network communication resource is a critical resource in many real-world
scenarios, especially distributed environments. For example, if the amount of
objects becomes larger and larger, the network resource appears to be the
bottle-neck for the processing system. Consequently, it is necessary to devise
communication-efficient solutions for such scenarios. Unfortunately, to our best
knowledge, only a few literatures[1,2,10] take this factor into account and give out
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solutions. Babcock et al. propose a method to monitor k objects with largest nu-
meric value over distributed environments, which can be viewed as a solution for
finding kNN objects in 1-dimensional space with a special query object (∞)[1].
Recently, Cheng et al. present a solution to find k nearest neighbors with non-
value tolerance over distributed environments[2]. Mouratidis et al. also propose
one threshold-based approach to monitor k-nearest neighbors[10].

One common weakness of the above methods is that they mainly focus on
handling static query object, i.e, the value of the query object being unaltered
with time going on (e.g., the query object is ∞ in [1] and a constant in [2]).
An example query can be described like: what are k nearest taxies to a school?
However, there still exist some situations requiring dynamic query object, i.e, an
object in motion. For example, in the query like: what are k nearest clients to a
free taxi?, the free taxi is a moving object. Previous methods (e.g. [1,2]) cannot
be easily adapted to solve such problem, it is necessary to seek new solutions. A
simple way to handle dynamic query object is: some objects (more than k) are
forced to report current location whenever the query object moves[10].

This paper focuses on devising novel approach on continuous monitoring k
nearest neighbors to a dynamic query object with a goal to reduce the com-
munication overhead. We assume an environment containing n moving objects
sending their locations to a central site frequently. The central site continues to
process the query without any knowledge about the velocities and the trajecto-
ries of objects.

The main contribution is that we have proposed a novel approach, the Range-
Filter-based Approach (RFA), to cope with the problem. We sketch the approach
as follows. Initially, each object is affiliated with a range filter whose purpose is to
transmit new location to the central site if the location exceeds a specified range.
The filter is initialized by the central site and maintained by the cooperation of
the central site and the object itself. Simultaneously, the central site also reserves
a copy of all filters. During the running time, when an object moves, it detects
new location v, compares v with the range, and sends v to the central site once
v is out of the range. The central site also updates filter settings of some objects
if necessary. At any time, the central site can output the answer based on the a
copy of filter settings in the central site.

The most significant characteristic of a range filter, the core structure in
the RFA approach, is the self-adaptivity. In previous filter-based approaches,
(e.g., [1,2,12]), when remote filters are outdated, the central site calculates the
new setting, and sends them to remote objects. It may result in great network
transmission overhead if such events frequently happen. But in RFA approach,
when encountering such situation, the central site and the remote object are
capable of calculating a same filter setting simultaneously. If the new setting
satisfies the querying condition, no additional transmission occurs.

Some scenarios prefer approximate answer because it can be calculated eas-
ily even though the rate of stream is rapid and the volume of data is huge.
Besides providing precise answer, RFA approach is capable of processing two
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kinds of approximate queries, including value-based approximate kNN query and
non-value-based approximate kNN query[2]. The value-based approximate kNN
query introduces a numeric value to guarantee the answer, whereas the non-
value-based approximate kNN query expresses the error tolerance in terms of
a rank.

The rest of the paper is organized as follows. Section 2 describes the envi-
ronment in brief and defines the query formally. Section 3 depicts Range Filter
structure and RFA approach in detail. Section 4 evaluates the performance of
the new approach by a series of experiments. Section 5 reviews related work of
this paper. Finally, Section 6 concludes the paper with a summary and directions
for future work.

2 Preliminaries

2.1 Environment

We consider an environment containing n moving objects and 1 central site.
When an object (say, Oi) moves, it sends its identity and new location to the
central site through wireless network. Let S denote a set containing all objects,
S = {O1, O2, · · · , On}; let Vi,t denote the location of the object Oi at time t. Each
object Oi generates a stream of trace: {Vi,0, Vi,1, · · · , }. Although an object can
send(/receive) data to(/from) the central site, no direct communication routine
exists between any pair of objects. Based on the data received from objects, the
central site is capable of answering a kNN query in real-time, as demonstrated
in Figure 1.

The location of each object is in a d-dimensional metric space. The distance
between two arbitrary locations can be described by a distance function dist
with following properties, where V1, V2 and V3 are locations of three objects.

1. dist(V1, V2) = dist(V2, V1)
2. dist(V1, V2) > 0(V1 �= V2) and dist(V1, V2) = 0(V1 = V2)
3. dist(V1, V2) ≤ dist(V1, V3) + dist(V2, V3)

 

Object O1 Object O2 
Object O3 

Object O4 

Object O5 

Object O6 

Object O7 
Central site 

Fig. 1. Environment

 

Set A: {Oi,Oj,…} 

Filter Pool: {F1,…,Fn} 

Process Engine 

Central  
site

Filter Fi 

Communication routine 

Object Oi 

Fig. 2. Architecture
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Table 1. An example of source data and query results

Time O1 O2 O3 O4 O5 kNN(O1, 2) nvakNN(O1, 2, 1) vakNN(O1, 2, 1.5)

0 1 3 7 10 12 {O2, O3} {O2, O3, O4} {O2, O3}
1 4 5 10 14 9 {O2, O5} {O2, O3, O5} {O2, O3, O5}
2 3 4 15 14 9 {O2, O5} {O2, O4, O5} {O2, O5}
3 1 3 11 12 8 {O2, O5} {O2, O3, O5} {O2, O5}
4 2 8 15 16 7 {O2, O5} {O2, O3, O5} {O2, O5}

2.2 Query Definition

This paper considers three kinds of kNN queries, including precise kNN query,
non-value-based approximate kNN query and value-based approximate kNN
query. The query object q can be either static (e.g, school, landmark), or dy-
namic (e.g, vehicle). Let qt denote the location of q at time t.

Precise kNN query (kNN(q, k)): q is a query object, q ∈ S; k is the num-
ber of neighbors, k ∈ N+. At any time point t, return a set A satisfying
following conditions: (1) q �∈ A; (2) ∀Oi ∈ A, Oj ∈ S − A − {q}, we have:
dist(Vi,t, qt) ≤ dist(Vj,t, qt); (3) |A| = k.

Non-value-based approximate kNN query (nvakNN(q, k, r)): q is a query
object; k is the number of neighbors, k ∈ N+; r is an error parameter,
r ∈ N+. At any time point t, return a set A satisfying following conditions:
(1) A ⊆ kNN(q, k + r); (2) |A| = k.

Value-based approximate kNN query (vakNN(q, k, e)): q is a query ob-
ject; k is the number of neighbors, k ∈ N+; e is an error parameter, e ∈ R+.
At any time point t, return a set A satisfying following conditions: (1) q �∈ A;
(2) ∀Oi ∈ A, dist(Vi,t, qt) ≤ e + maxOj∈kNN(q,k)(dist(Vj,t, qt)); (3) |A| = k.

Example 1. Table 1 demonstrates a small example on processing above queries.
The locations (in 1-dimensional space) of 5 objects in first 5 time points are
illustrated in the left 6 columns. The seventh column shows the answer for
kNN(O1, 2). The right 2 columns show the maximum result set for
nvakNN(O1, 2, 1) and vakNN(O1, 2, 1.5) respectively, which implies that any
subset containing two objects is a legal answer. For instance, at time point 4,
any subset of {O2, O3, O5} ( i.e., {O2, O3}, {O2, O5}, {O3, O5}) is legal for the
query nvakNN(O1, 2, 1).

3 Range Filter-Based Approach (RFA)

This section describes our novel Range-Filter-based Approach (RFA) in detail.
Figure 2 illustrates the architecture. A range filter (say, Fi) is installed in one
object (say, Oi) to reduce communication overhead by filtering parts of new
locations within a range. The central site consists of three components, such as
a range filter, an answer set A and process engine. The filter pool reserves a copy
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Algorithm 1. newRange(F, v) /* F = (c, l, u, b) */
1: Δ = dist(c, v) − b;
2: if (Δ > 0) then
3: l = b + Δ

2 ;
4: u = b + 3Δ

2 ;
5: else
6: l = max(0, b + 3Δ

2 );
7: u = b + Δ

2 ;

of all filters of moving objects. At any time point, the process engine is capable
of calculating an answer set A based on the data in filter pool. Another task of
the process engine is to reset filters in remote objects if current settings cannot
satisfy the query requirement.

Section 3.1 describes the structure of Range Filter. Section 3.2 describes a
way to calculate answers from filters. Finally, Section 3.3 introduces the overall
algorithm.

3.1 Range Filter

A Range Filter F is defined as (c, l, u, b). Field c is a location value in d-
dimensional space, representing the central point of the filter’s range. Fields
l and u are the lower diameter and upper diameter respectively, representing the
minimum and maximum distance from the location c, 0 ≤ l ≤ u. The range of a
filter F is the collection of locations whose distances to c are within [l, u]. In other
words, a new location v is claimed in the range of filter F only if dist(v, c) ∈ [l, u].
In RFA approach, an object sends current location to the central site only when
(1) its location exceeds range, (2) receives a request from the central site.

One important characteristic of a range filter is that it can generate a new
range when current location v exceeds the range, as shown in Algorithm 1. With
the help of field b (backup diameter). Algorithm newRange (Algorithm 1) alters
the lower diameter l and upper diameter u, but retains the central location c
unchanged. Clearly, after processing, we still have: l ≤ dist(c, v) ≤ u. Note that
the value of b is only determined by the central site (see Algorithm 3).

Figure 3 demonstrates how to reset the range by invoking Algorithm
newRange. When the new value v (the shadowed circle) jumps out of the range
(covered by the dotted curve in the left part of Figure 3), Algorithm newRange
calculates new lower and upper diameter (l′, u′), as shown in the right part of
Figure 3. Figure 3(a) shows situations when dist(c, v) < b, while Figure 3(b)
shows situations when dist(c, v) > b.

3.2 Finding Nearest Neighbors from Filter Pool

One task of the process engine is to seek the nearest neighbors based on a copy of
objects’ filters reserved in filter pool. The first step is to determine the minimum
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Fig. 3. Resetting the filter by invoking Algorithm newRange

and maximum distance between Vi,t and qt (qt is the current value of query object
q). Remember that dist(Vi,t, ci) ∈ [li, ui]. Consequently, dist(Vi,t, qt) is influenced
by two factors, including the filter setting and the value of qt. According to the
definition of subroutine dist, the minimum and the maximum possible values of
dist(Vi,t, qt), denoted as Li and Ui, are calculated as follows.

Li =

⎧
⎨

⎩

li − dist(qt, ci) : dist(qt, ci) < li
0 : (dist(qt, ci) < ui) ∧ (dist(qt, ci) > li)

dist(qt, ci) − ui : dist(qt, ci) > ui

(1)

Ui = dist(qt, ci) + ui (2)

Let Ri denote the maximum possible number of objects nearer to qt than Oi.
The value of Ri is calculated when assuming Oi is at the furthest possible point
to qt, and other objects are at the nearest possible points to qt, as shown in
Equ. (3).

Ri = |X |, where X = {Oj |Oj ∈ (S − {Oi, q}), Lj ≤ Ui} (3)

Lemmas (1)-(3) show how to answer three kinds of queries from the filter pool.

Lemma 1. Let A = {Oi|Ri < k}. If |A| = k, then A is the answer for Precise
kNN query kNN(q, k).

The correctness of Lemma 1 comes from the definition of Ri (Equ. (3)).

Lemma 2. Let A = {Oi|Ri < k + r}. If |A| ≥ k, then any subset of A
containing k objects is an answer for non-value-based approximate kNN query
nvakNN(q, k, r).

The correctness of Lemma 2 also comes from the definition of Ri (Equ. (3)).
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Algorithm 2. RFA client(i)
1: loop
2: if Sees a new location Vi,t then
3: if Object Oi itself is the query object q then
4: Sends Vi,t to central site
5: else if dist(Vi,t, ci) �∈ [li, ui] then
6: newRange(Fi, Vi,t);
7: Sends Vi,t to central site;
8: else if Receives (c′

i, l
′
i, u

′
i, b

′
i) from central site then

9: (ci, li, ui, bi) = (c′
i, l

′
i, u

′
i, b

′
i);

10: else if Receives a request SEND from central site then
11: Sends Vi,t to central site;

Lemma 3. Let A = {Oi|Ri < k} ∪ {Oi|Ui ≤ L̂ + e, Ri ≥ k}, where L̂ is the
kth smallest value of Li. If |A| ≥ k, any subset of A containing k objects is an
answer for a value-based approximate kNN query vakNN(q, k, e).

We sketch the proof here. The set A consists of two parts. The first part is
{Oi|Ri < k}. According to the definition of Ri, all objects belong to k nearest
neighbors. The second part is {Oi|Ui ≤ L̂+e, Ri ≥ k}. Because L̂ is the minimum
possible distance between the kth nearest neighbor and the query object, and
Ui is the maximum possible distance between the object Oi and qt, any object
in the second part also meets the requirement according to the definition of
value-based approximate kNN query.

3.3 Algorithm Description

This section introduces RFA approach in detail. RFA approach consists of two
parts: (1) Algorithm RFA client (Algorithm 2), running in moving objects; and
(2) Algorithm RFA server (Algorithm 3), running in the central site.

Running in each moving object, the goal of Algorithm RFA client is to handle
new location value and to communicate with the central site. When object Oi

‘sees ’ a new location Vi,t, and the object Oi is just the query object q, Oi sends
Vi,t to the central site immediately. Otherwise, Oi begins to check whether Vi,t

stays in the range or not. Only when Oi exceeds the range, subroutine newRange
is invoked to update filter Fi and send Vi,t to the central site (lines 2-7). Each
remote object may receive two kinds of messages from the central site. The
first kind is new filter setting (c′i, l

′
i, u

′
i, b

′
i), and the second kind is a SEND

request. When receiving a first kind message, object Oi updates the local filter
Fi accordingly. When receiving a second kind message, Oi sends Vi,t to the
central site immediately(lines 8-11).

Algorithm RFA server contains two phases, initialization phase and maintain-
ing phase. In initialization phase (lines 1-7), the central site receives all locations
of objects, based on which it creates set A containing k objects nearest to q0.
And then, it calculates filter settings to update all objects. The field ci of all fil-
ters is set to q0. The field bi is set to the average value of the maximum distance
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Algorithm 3. RFA server()

1: Receives all locations {V1,0, V2,0, · · · Vn,0} from moving objects;
2: Creates set A, containing k objects with minimum dist(Vi,0, q0);
3: V ′ = minOi∈S−A−{q}(dist(Vi,0, q0)); V ′′ = maxOi∈A(dist(Vi,0, q0));
4: B = V ′+V ′′

2 ;
5: foreach filter Fi

6: ci = q0; bi = B; newRange(Fi, Vi,0);
7: Sends Fi to object Oi;
8: loop
9: if Receives Vi,t from object Oi then

10: newRange(Fi, Vi,t);
11: if Can’t find answer according to Lemma (1)-(3) then
12: adjust();
13: Output result;

Algorithm 4. adjust()
1: Calculates a set A satisfying A = {Oi|Ri < k};
2: while (|A| < k)
3: Finds Oi with min Li in S − A − {q};
4: if Oi has not send Vi,t to the central site then
5: receives Vi,t from Oi by sending SEND signal to Oi;
6: Li = dist(Vi,t, qt); Ui = dist(Vi,t, qt);
7: else
8: A = A + {Oi};
9: B = L′+U′

2 , where L′ = max(Ui|Oi ∈ A), U ′ = min(Li|Oi ∈ S − A − {q});
10: forall objects with Li = Ui

11: ci = qt; bi = B; newRange(Fi, Vi,t);
12: Sends (ci, li, ui, bi) to object Oi;

in A and the minimum distance in S − A − {q}, so that Lemmas (1)-(3) can be
satisfied after invoking Algorithm newRange. In maintaining phase (lines 8-13),
the central site begins to process query when a new location Vi,t arrives. First, it
invokes Algorithm newRange to update the filter setting in filter pool (lines 9-10).
Second, it continues to check whether Lemmas (1)-(3) are satisfied. Once these
lemmas cannot be satisfied, it would invoke Algorithm adjust(Algorithm 4) to
update filter settings, and output new data.

The goal of Algorithm adjust (Algorithm 4) is to find a set of k objects near-
est to the query object q and update filters accordingly. In fact, the initialization
phase of Algorithm 3 has implied a simple method to cope with it. However, it
requires all objects sending their locations to the central site, which results in
heavy network transmission burden. Algorithm 4 illustrates a more efficient way.
First, it calculates a set A = {Oi|Ri < k}. Clearly, if |A| = k, set A contains all k
nearest neighbors. Otherwise, we should continue to add a neighbor object into
A to make |A| = k by iterations. For every an iteration, we check an object with
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smallest Li (because this object is a candidate) (lines 1-8). Second, it continues
to reset filter settings for parts of objects just sending new locations to the
central site. Similar to the initialization phase in Algorithm 3, the local variable
B is calculated as the average value of the maximum possible value in A and
minimum possible value in S − A − {q}. Finally, it updates filter settings for
objects with Li = Ui by invoking Algorithm newRange, and sends new settings
to corresponding objects (lines 10-12).

Analysis: RFA approach is capable of answering a kNN query at any time
point. Initially, Algorithm RFA server creates filters for all objects. During the
maintaining phase, if no new location is transmitted from remote objects, we
can always answer the query because all current locations are within the range.
Otherwise, if the central site receives a new data from any object, it invokes
newRange to create new setting, and checks the validation by Lemmas (1)-(3).
Algorithm adjust is then invoked to generate new settings satisfying Lemma 1
on condition that the above exam fails.

4 Experiments

This section begins to evaluate the performance of RFA approach through a se-
ries of experiments. Section 4.1 compares the performance between RFA
approach and RTP approach[2]. Section 4.2 continues to analyze the network
communication overhead in RFA approach. Finally Section 4.3 reports the per-
formance of RFA approach upon different error tolerances.

All experiments are based on a dataset containing the location traces (in 2-
dimensional space) of hundreds of vehicles. Each vehicle is initialized with (1) a
location (x0, y0) random selected from [-1000, 1000], (2) a velocity s, s ∈ [5, 15]
and (3) a moving direction α, α ∈ [−π, π]. At any time point t, the new location
(xt, yt) is calculated as:(xt, yt) = (xt−1 +s ·cos(α), yt−1 +s · sin(α)). The velocity
and the direction are changed randomly for every a minute. Totally, 100 vehicles
will generate 100*(60*60*24)=8,640,000 locations.

4.1 Handling a Static Query Object

The RTP approach is a filter-based solution to answer kNN queries over dis-
tributed environments[2]. However, this method only focuses on handling static
query object, such as school, landmark, and so on.

Figure 4 compares the performance between the RTP approach and RFA
approach. The query point is fixed at (0, 0). Figures 4(a) and (b) report the
number of messages transfered via network when running kNN((0, 0), k) and
nvakNN((0, 0), k, 10) respectively. The x-axis represents the number of neigh-
bors k, and the y-axis represents the number of messages raised. In all situations,
RFA approach outperforms RTP approach significantly. The main reason is that
all filters share same width in RTP approach, so that nearly all objects are
forced to send their new locations to the central site once |A| > k. But in RFA
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Fig. 4. Comparison between RTP approach and RFA approach

approach, each filter owns a different range, so that when |A| < k or |A| > k
occurs, only a small fraction of objects send new locations to the central site.

4.2 Analysis on Communication Cost

RFA approach involves three kinds of network transmission costs, including (1)
T1: moving objects transmit new location to the central site when it moves out
of the range; (2) T2: the central site sends a SEND message to a moving object
for new location; (3) T3: the central site updates filter settings of moving ob-
jects. Figure 5 demonstrates the number of messages transmitted via network
when running three different queries, such as kNN(q, k), nvakNN(q, k, 10) and
vakNN(q, k, 100). The number of neighbors changes from 5 to 50. When k in-
creases, all kinds of costs increase. In all situations, T2 and T3 are smaller than
T1. We can also observe that the amount of messages transfered is still only a
small fraction of total messages (8, 640, 000).
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Fig. 5. All kinds of communication costs

4.3 The Impact of Tolerance

RFA approach can support two kinds of approximate kNN queries, including
non-value-based approximate kNN query and value-based approximate kNN
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query. Here, we implement experiments to evaluate the communication cost un-
der different tolerances. Figure 6(a)and (b) examine queries nvakNN(q, k, r) and
vakNN(q, k, e) respectively. The x-axis represents the error tolerance (e.g. r in
Figure 6(a) and e in Figure 6(b)); the y-axis represents the number of neighbors;
the z-axis represents the total number of messages transfered. In all situations,
the communication cost is reduced when given larger tolerance.
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Fig. 6. The performance under different error tolerance

5 Related Work

Finding k nearest neighbors to a query object has been widely studied for a
long period. Traditional approaches mainly focus on creating and maintaining
various indexes over static objects for optimization with a premise that all data
have resided in the disks, and can be accessed multiple times[7,13,14]. Nowa-
days, there has been an increasing interest in continuous monitoring objects
in motion[8,9,10,11,15]. Iwerks et al. invented CW approach to monitor PKO
objects (point kinematic object)[8]. Koudas et al. proposed a system for approx-
imate kNN queries over streams of multi-dimensional points[9]. Yu et al. gave out
grid-base algorithms to index objects and queries to reduce processing cost[15].
Mouratidis et al. pioneered the work on continuous monitoring objects in road
networks[11]. The common goal of such work is to provide qualified results with
small memory resource and computation resource.

One of the critical goals for applications over distributed environments is to
minimize the usage of network communication cost. Example algorithms consist
of cardinality of set-expressions monitoring[6], quantile monitoring[4], general-
purpose approximate query monitoring[3], distinct count estimate and distinct
sample estimate[5], .etc. However, only a few literatures on monitoring k nearest
neighbors consider network communication factors[1,2,10]. Babcock et al. give
a solution for top-k monitoring, which can be treated as a special case of kNN
monitoring. Cheng et al. propose solution for kNN monitoring with non-value
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tolerance[2]. These work only consider a static query object, while the work in
[10] gives a simple method to handle dynamic query object, which is the target
of this paper.

6 Conclusions

This paper constitutes an attempt in finding k nearest neighbors to a dynamic
query object with a goal to reduce the communication overhead, which is crit-
ical for distributed monitoring applications. The main contribution is a novel
approach, the Range-Filter-based Approach(RFA). Each moving object is in-
stalled with a range filter, so that only a small part of data is transmitted via
network. At any time point, the central site can find k nearest neighbors to the
query object by merely checking the information in its filter pool. Our approach
supports three kinds of queries: precise kNN query, non-value-based approximate
kNN query, and value-based approximate kNN query. Experimental results show
that our approach only consumes small amount of network transmission. One
challenging research direction is the kNN monitoring in road network, which is
more common in real-life.
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