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Abstract. In this paper we presenta new type of signature for a group of persons, called a group signature,
which has the following properues:

(i) only members of the group can sign messages;
(i) the receiver can verify that it is a valid group signature, put cannot discover which group member made
it
(iif) if necessary, the signature can be “openea , ;0 at the person who signed the message is revealed.

These group signatures are a generalization” of the credential/ membership authentication schemes, in which
one person proves that he belongs to a certain group.

We present four schemes that satisfy the properties apove. Not all these schemes are based on the same
cryptographic assumpuon. In some of the schemes a trusted centre 18 only needed during the setup; and in
other schemes, each person can create the group he belongs to.

1. Introduction

In this paper we present a new type of signature, which will be illustrated with the following example:

A company has several computers, each connected to the local network. Each department of that
company has its own printer (also connected t0 the network) and only persons of that department are
allowed to use their department’s printer. Before printing, therefore, the printer must be convinced that
the user is working in that department. At the same time, the company wants privacy: the user’s name
may not be revealed. If, however, someone discovers at the end of the day that a printer has been used too
often, the director must be able to discover who misused that printer, to send him a bill.

More formally: a group of persons wants to create a signature scheme, which we will call a group
signature scheme, that has the following three properties:

(i) only members of the group can sign messages;

(ii) the receiver of the signature can verify that it is a valid signature of that group, but cannot discover
which member of the group made it;

(iif) in case of dispute later on, the signature can be “opened” (with or without the help of the group
members) to reveal the identity of the signer.

Group signatures are a ““generalization” of credential mechanisms ([Ch85]) and of membership
(authentication) schemes (ct. [OOK90}, [SKI90]), in which a group member can convince a verifier that
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he belongs to a certain group, without revealing his identity. In [OOK90] and [SKI90], several of these
schemes are proposed in which the same secret key is given to each group member. We define the
following assumptions.

Assumption 1. For each person it is unreasible to compute RSA roots (hence it is unfeasible to spiit
numbers that are the product of some large primes; and it is unfeasible to compute discrete logarithms
modulo a large composite number).

Assumption 2. For each person it is unteasible 1o compute the discrete logarithm modulo a large prime
number.

In this paper, only one group of cersons il e considered (the hierarchical situation will not be
treated here); and four different group signature scnemes are presented. These schemes are compared.

Cryprographic assumption. In the first scheme every public key system can be used; the other schemes
are based on Assumption 1 or 2. In ail schemes {except in some modifications of the first scheme), the
privacy of the signer is protected computatonaily. Mot even a person from the group can determine who
made a certain signature (except of course for the person who made that signature). Care must of course

be taken in the selection of the exponents used in order to protect the anonymity of the signer. See Section
6.

Trusted authority. Let Z be a trusted authority, which sets the group signature scheme ( it may be
possible to distribute the power of 2). Except for the first scheme, Z is no longer needed after the setup.

In the last scheme, a group signature scheme can be created from a “normal” setup, without a trusted
authority.

Creation of the group. In the first two schemes the group of persons is fixed in advance. In the last two
schemes, it is assumed that there is already a setup, based on RSA or discrete logarithm. If in these
schemes someone wants to sign a message without revealing his name, then at that moment he creates
some group of persons (for instance by picking them from a Trusted Public Directory of public keys) and

proves that he belongs to that group. In case of dispute later on, the other “group members” are able to
deny that signature.

Type of signature. In the last three schemes, the signatures made by the group members are undeniable
signatures, but it is possible to make digital signatures. This can be realized as in [FS86], by doing the &
iterations of the confirmation protocol in parallel and let the recipient choose the challenge vector not
randomly, but as the outcome of a one-way-function on the received numbers. Because this protocol is no
longer zero-knowledge, the signature and the confirmation protocol together will be a digital signature.
Still to be proven is that this parallel protocol gives “no useful knowledge” to the recipient.

Costs. Inall schemes the length of the public key (i.e., the number of bits of the group’s public key) is
linear in the number of group members. The numbers of bits and of computations are only compared in
the case of the confirmation protocol, because in one disavowal protocol, these numbers are independent

of the number of group members. We have not taken into account the looking-up of some public keys in a
Trusted Public Directory.
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Fig. 1. Comparison of the four group signature schemes presented in this paper. “Independent,
linear” means that the number 1s independent respectively linear in the number of group
members.

first group signature scheme

Z chooses a public kev svstem. gives each person a :ist ot secret keys (these lists are all disjunct) and
publishes the complete list of corresponding pusiic kevs (in random order) in a Trusted Public Directory.

Each person can sign a message with a secret kev from his list, and the recipient can verify this
signature with the corresponding public key rrom the public list. Each key will be used only once,
otherwise signatures created with that key are linked. .Z knows all the lists of secret keys, so that in case
of dispute, he knows who made the disputed signature. Hence 2 is needed for the setup and for “opening”
a signature.

If each person gets the same number of secret keys, then the length of the public key of this group

signature scheme (i.e. the length of the Trusted Public Directory) is linear in the number of persons; but
the number of messages a person can sign is fixed.

A problem with this scheme is that Z knows all the secret keys of the group members and can
therefore also create signatures. This can be prevented by using blinded public keys. Let the public key
system used be based on Assumption 2: for instance tne ElGamal scheme [E1G85] or the undeniable
signature scheme [CvA89]. Let g be a generator of the multiplicative group Z;, where p is a prime.

Group member i creates his own secret key s; and gives g” (mod p) to Z. Thus Z has a list of all these
public keys together with the group member’s name. Each week 2 gives each group member i a
randomly chosen number r;e {1,...,p-1] and publishes the list of all the blinded public keys (g%)".
During this week group member i will use s5;r; (mod p — 1) as secret key.

The advantages of this modification are that Z cannot fake signatures, and that each group member
only has to have one “really secret key” (for instance in a smart card), which can be blinded in order to
make other secret keys. Only the one week’s signatures can be linked, so that each group member can

have only a few secret keys in his smart card to prevent this linking. If an r; is accidentally revealed, still
no more information about the secret key s, is revealed.

In another modification, no trusted authority is needed: each user untraceably sends one (or more)
public keys to a public list, which wil' be the public key of the group. But only group members must be
able to send public keys to that list.

3. Second group signature scheme

Zchooses two different large primes p,q together with a one-way-function f of which the outcome may
be assumed to be coprime with N=pq. Z gives person i of the group a secret key s;, which is a large
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prime randomly chosen from the set O={j~N |.....| VN -1, computes v =[]s;, and publishes N,v
and f. If group member i wants to s1gn message n. hlS signature will be

F(n)’ modN ,

and he has to prove to the recipient that s ;v and that s,€®, without revealing anything more about 5
(see Section 3.1). In case of dispute later on. the recipient can perform a confirmation/disavowal protocol

with each group member, without the heip of Z (see Section 3.2). To prove the security of these schemes
we need Assumption 1.

3.1. Confirmation protocol

Ve first consider the following L.siaies. waich is solved by [BCDvdG87] by using Protocol 1, which
uses computationally secure blobs 2.

§ P’s secret c
| public N xove Z,,Q=(a,...,a+ B} <IN
]' proveto 7V x* =vimodN) AceQ.

Instance 1.

I[f this protocol is iterated & times. 7/ will be convinced (with probability 1—2"‘) that

ce fl=[a—ﬁ,...,a+2B}, but 7 will receive no knowledge other than the fact that ceQ
={a,...,a+B}"

Protocol 1. (for Instance 1)

(1) P chooses re (0,....8). He computes blobs on z=x" (modN) and z, =x""? (modN), and
sends the unordered pair { Bz,), Bz9)} 10 V.

(2) Vchooses randomly be (0.1} and sends it 1o P

(3) Psends Vin case
b=0: r and opens both blobs.

b=1: F which is (c+r) or (c+r=03), whichever is in the set Q, and opens respectively the
blob on zy or z5 (wWhich is called 7).

(4) V'verifies in case

b=0: that re (0,...,8) and that the blobs contain x" and x"~? in some order.
b=1: that FeQ, that one of the blobs contains 3 and that 7 satisfies x" = zy.

If ce Q, then the distribution of 7 is uniform over Q and 1s thus independent of c¢. With this protocol
we will create a confirmation protocol, so let - be a fixed group member who wants to convince the

recipient (verifier 44 that he gave him a vaiid signature S. So the following instance (in which we write
m 1n stead of f(n)) has to be soived:

" Hence, by using Q=({1,...,V}, one can prove that he knows a discrete logarithm modulo N, without knowing @(N).
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| P’s secret 5.
| public Nov.mS.d mSe Z.
| prove to V S=m’ (modN)YAsED Aslv.

Instance 2.

Protocol 2. (for Instance 2)

Step L. Prove the knowledge of s such that S=m (modN) and that se® with Protocol 1, iterated k
times (take Q=®, x=m, y=S and c=s,.

Step 2. Prove that slv as follows

' Prover @ Verifier 7/

x = hooses r = 1{1,..., N}
l 3iby

i verifiesa  ———

1 ~pen biob verifies opening

]1 and thatb=m""

Note that for all x the probability distributions of x" (mod N) where re(l,.
re {1,..

.@N)} or
.,N} are polynomially indistinguishable [CEvdG87]. Step 1 of this protocol was already proven
10 be sound, complete, and zero-knowledge. Step 2 is trivially complete and zero-knowledge (the blobs B
are computationally secure zero-knowledge). Because in Step 1 it is proved that S =m’, one can easily
see that it is feasible to compute b=(m")" from {s,v,a=(m")* } if and only if slv (under the
assumption that it is unfeasible to compute RSA roots, so here we use that N is not a prime). Hence Step
2 is also sound. Q

3.2. Disavowal protocol

If P wants to prove to Vthat § is not his signature on m, the following instance has to be solved:

P’ssecret S,

Nov,mS,®; mSe Z,.

Stm’ (modN)AseD Asiv.
Instance 3.

public

prove to ‘V

There are no zero-knowledge disavowal protocols to prove that o ¥ f* (modN), for given
(N,a,B,a*}, where ¢XN) is unknown. Therefore we use the following modification of [Ch90] to solve
Instance 3. Z publishes < g,k >, which generates the whole group Zy (see the next section how to
construct g and h), together with a Trusted Public Directory containing {name group member, g’ ,h). Let
! be a very small constant such that exhaustuve search over {0,...,1} is feasib.e. Note that if S= m’, then

P can not compute g from (—’%f-)“, because (-’%’-)“ =1. So he has to guess a.
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‘ Prover P Verifier 7/

; Mg SUEY (A chooses r,,r, €(1,...,N}
z ’ and a €1{0,....{)

| computes a from (2-)* 3ta)

by exhaustive search
verifies numbers

“nen diob

> verifies opening

2rotocot 3. (for Instance 3)

3.3. Some remarks on this group signature scneme

If all zrcup members except one conspire. =2 “=2cr2t xev of that one person is revealed. This threat can be
casily eliminatea 1f the aulnority . makes aimseil a member of the group, i.e., if & computes v as

v =5, ]1s;, where s, is a secret kev only <nown 1o .. With this trick, the group can also consist of two
MEeme:Ts.

The number of bits of the public kev v is iinear 1n the number of persons, so raising a number to the
power v wilil take a time linear in the number of group members.

The set @ can also be chosen in other ways, but it must satisfy the following conditions. If
D ={p,,....0, + ¢} <IN, then I,N,(pfe ?= {@) = ©q,...,01 +2(,}. The first condition is necessary to
avoid the use of s=1. According ‘o the last condition the following conspiracy attack is avoided: if two
group members, say i and j, conspire, they can create signatures S = m’", which they can both disavow

later. But s;5; ¢ @, so this signature wili not be accepted in Step 1 of Protocol 2. Hence also the choice of
vis Or v as exponent in the signature is avoided.

The blob B can be implemented in the following way: Z chooses generators 8p and hy of Z;, and

, mod p

x . ‘ . . . g
Zq respectively, and constructs with the use of the Chinese Remainder Theorem g E{ and

1 modg
1 modp
h=i

=1, modg " So <g,h> generates Zy uniformiy, but it reveals the factorization of N. Therefore he
()

chooses integers ay,a;,0y,b, satisfying ged(ay, by, p-1)=ged(ay,b,,9 —1)=gcd(ayb; — @q,%x—;)zl
and publishes §=g®h% and h=g™h™. It is not difficult to see also that < 3,k > generates the whole
group Z;, uniformly, if the exponents are chosen from (1,...,@N)}. Hence, in order for P to make
B(y), he chooses r|,ry€ {1,....N) and creates ‘By) as yg"h" (mod N).

Another method of implementation is the following: ? chooses randomly & numbers g;,...,8; from

{1,...,N}. Then with high probability <g,.....3,> generates Z;, nearly uniformly, for & sufficiently
large. In this case no trusted centre is needed [Ch87].

4. Third group signature scheme

For the security of this scheme we need Assumption 1, and we assume that there is a Trusted Public
Directory in which each person’s RSA modulus is listed (the public RSA exponent is not needed in this
group signature scheme).

The secret key of gronn member i will he the factorization of his own RSA modulus N; = pg;.
i Copyright (c) 1998, Springer-Verlag
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During the setup, Z chooses an RSA-modulus &, wnich 1s independent of all the N;’s. Let M be a

public integer such that pe®=(vM ... 2vM -1 and g;>4vM (for all J). If person i wants to
sign message #. he chooses randomly some set [ of persons (including himself); his signature will be

SNt mod N,

and he has to give a zero knowiedge proor that tne used =xponent p;e® and that p; is a divisor of the
sroduct of the RSA moduli of the persons o 7. This can be done with Protocol 2 (with Q=®), because
N:>g;>4vM and thus all moduli, every proauct or two prime divisors of different moduli and each g;

3 = Vo T . . R
sre no elements of ®={ M I....,..3vM J}. Hence the exponent used in the signature must be p;. If a
srouD member wants to deny a signature. ne ¢an use Protocol 3.

3. Fourth group signature scheme

The fourth group signature scheme is based on Assumpuon 2. Let p be a large public prime and let g,k
be public generators of Z‘,‘ Person i has a secret kev s; and a public key k; = g’ (mod p). If person i

wants to sign message m=f{n), he randomly chooses some set I" of persons (including himself); and his
signature will be

I, m” (mod p),

and he has to give a zero-knowledge proof that the secret exponent used in that signature is also used in
the public key of somebody of the group I, .. ine protocol has to solve the following instance:

P’s secret DS

| public . p.g.hST.
! toproveto V. : S=m’ (modp)Ag” elkljell)

instance 4.

To prove this, P uses the following protocol. which gives no additional information about iands;.
We have compressed the proofs that S is of the correct form, that the exponents used in S and in some
public key are the same, and that the public key is used by somebody in I" into one protocol.

Protocol 4. (for Instance 4)

(1) P chooses numbers ry,...; ¢ ni.id3€ {1,....p-1} and a permutation t of I'. He sends ‘V the

numbers: x = (%)& K" (mod p), y =m’ (mod p) and z4;, = k;k7 (mod p) (for all je ).
(2y Vchooses be {0,'} and sends b to P.
(3) P sends Vin case

b=0: ry,...nplpttzand T

b=1: 1+, ta+r;, 1y+s; and index T).
(4) Vverifies in case

b=0: that the numbers x,y,2y,.....,py are formed correctly.

_ _ t,+s5,  Copyright (c) 1998, Springer-Verlag -, 5
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If P can answer both questions, then he knows s;; it is easy to see that this s; satisfies § = m* and

%, = g". Hence if this protocol is iterated & tmes, then ¥/ will be convinced with confidence 1-27%, This
protocol is aiso zero-knowledge because it can be simulated (with the same probability distributions) by:

‘1) Choose a permutation Tof U. numbers ... piynipnie {1,...p-1} and e€ (0,1}.
Compute and send the numbers: .., sk_.-hr’ (modp) (jeI'), y=m"/S°(modp) and
. t X
¥ = (%) WEIRY Iy (mod p).

2) Receive be {O,1].
3) Senain case

C=0=U T, npdniiy and T
e=h=1 index Wi)andt, i, is.
e#D : restart this algorithm.

If a person wants to deny a group signature, ie can for instance use the disavowal protocol of [Ch90].

6. Some open problems

We have presented several group signature schemes, in which to open a signature the recipient asks Z or
he performs a disavowal protocol with each group member. Is it possible to create other situations, such
as: a majority of the group members can open a signature?
[s it possible to make digital group signatures other than by using [FS86] on undeniable signatures?
Can the results of [SS90] and [Per85] be applied to show that specific choices of the exponents in the
schemes of Sections 2-4 and 35, respectively, protect anonymity in ways equivalent to known
computational problems?

[s it possible to modify the fourth group signature system in such a way that the number of transmitted
bits during the confirmation protocol is independent of the number of group members?
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