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Preface

Uncertain data management has seen a revival in interest in recent years be-
cause of a number of new fields which utilize this kind of data. For example, in
fields such as privacy-preserving data mining, additional errors may be added
to data in order to mask the identity of the records. Often the data may be
imputed using statistical methods such as forecasting. In such cases, the data
is uncertain in nature. Such data sets may often be probabilistic in nature. In
other cases, databases may show existential uncertainty in which one or more
records may be present or absent from the data set. Such data sets lead to a
number of unique challenges in processing and managing the underlying data.

The field of uncertain data management has been studied in the traditional
database literature, but the field has seen a revival in recent years because of
new ways of collecting data. The field of uncertain data management presents
a number of challenges in terms of collecting, modeling, representing, query-
ing, indexing and mining the data. We further note that many of these issues
are inter-related and cannot easily be addressed independently. While many of
these issues have been addressed in recent research, the research in this area is
often quite varied in its scope. For example, even the underlying assumptions
of uncertainty are different across different papers. It is often difficult for re-
searchers and students to find a single place containing a coherent discussion
on the topic.

This book is designed to provide a coherent treatment of the topic of uncer-
tain data management by providing surveys of the key topics in this field. The
book is structured as an edited volume containing surveys by prominent re-
searchers in the field. The choice of chapters is carefully designed, so that the
overall content of the uncertain data management and mining field is covered
reasonably well. Each chapter contains the key research content on a particular
topic, along with possible research directions. This includes a broad overview
of the topic, the different models and systems for uncertain data, discussions
on database issues for managing uncertain data, and mining issues with uncer-
tain data. Two of the most prominent systems for uncertain data have also been
described in the book in order to provide an idea how real uncertain data man-
agement systems might work. The idea is to structurally organize the topic,



vi

and provide insights which are not easily available otherwise. It is hoped that
this structural organization and survey approach will be a great help to stu-
dents, researchers, and practitioners in the field of uncertain data management
and mining.

Preface
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Chapter 1

AN INTRODUCTION TO UNCERTAIN DATA

ALGORITHMS AND APPLICATIONS

Charu C. Aggarwal
IBM T. J. Watson Research Center

Hawthorne, NY 10532

charu@us.ibm.com

Abstract

In recent years, uncertain data has become ubiquitous because of new tech-
nologies for collecting data which can only measure and collect the data in an
imprecise way. Furthermore, many technologies such as privacy-preserving data
mining create data which is inherently uncertain in nature. As a result there is
a need for tools and techniques for mining and managing uncertain data. This
chapter discusses the broad outline of the book and the methods used for various
uncertain data applications.

1. Introduction

In recent years many new techniques for collecting data have resulted in an
increase in the availability of uncertain data. While many applications lead to
data which contains errors, we refer to uncertain data sets as those in which
the level of uncertainty can be quantified in some way. Some examples of
applications which create uncertain data are as follows:

Many scientific measurement techniques are inherently imprecise. In
such cases, the level of uncertainty may be derived from the errors in the
underlying instrumentation.

Many new hardware technologies such as sensors generate data which is
imprecise. In such cases, the error in the sensor network readings can be
modeled, and the resulting data can be modeled as imprecise data.



2 MANAGING AND MINING UNCERTAIN DATA

In many applications such as the tracking of mobile objects, the future
trajectory of the objects is modeled by forecasting techniques. Small
errors in current readings can get magnified over the forecast into the
distant future of the trajectory. This is frequently encountered in cosmo-
logical applications when one models the probability of encounters with
Near-Earth-Objects (NEOs). Errors in forecasting are also encountered
in non-spatial applications such as electronic commerce.

In many applications such as privacy-preserving data mining, the data is
modified by adding perturbations to it. In such cases, the format of the
output [5] is exactly the same as that of uncertain data.

A detailed survey of uncertain data mining and management algorithms may
be found in [2]. In this book, we discuss techniques for mining and managing
uncertain data. The broad areas covered in the book are as follows:

Modeling and System Design for Uncertain Data: The nature of com-
plexity captured by the uncertain data representation relies on the model
used in order to capture it. The most general model for uncertain data
is the possible worlds model[1], which tries to capture all the possible
states of a database which are consistent with a given schema. The gen-
erality of the underlying scheme provides the power of the model. On the
other hand, it is often difficult to leverage a very general representation
for application purposes. In practice, a variety of simplifying assump-
tions (independence of tuples or independence of attributes) are used in
order to model the behavior of the uncertain data. On the other hand,
more sophisticated techniques such as probabilistic graphical models
can be used in order to model complex dependencies. This is a natu-
ral tradeoff between representation power and utility. Furthermore, the
design of the system used for representing, querying and manipulating
uncertain data critically depends upon the model used for representation.

Management of Uncertain Data: The process of managing uncertain
data is much more complicated than that for traditional databases. This
is because the uncertainty information needs to be represented in a form
which is easy to process and query. Different models for uncertain
data provide different tradeoffs between usability and expressiveness.
Clearly, the best model to use depends upon the application at hand.
Furthermore, effective query languages need to be designed for uncertain
data and index structures need to be constructed. Most data management
operations such as indexing, join processing or query processing need to
be fundamentally re-designed.

Mining Uncertain Data: The uncertainty information in the data is use-
ful information which can be leveraged in order to improve the quality
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of the underlying results. For example, in a classification application, a
feature with greater uncertainty may not be as important as one which
has a lower amount of uncertainty. Many traditional applications such
as classification, clustering, and frequent pattern mining may need to
re-designed in order to take the uncertainty into account.

This chapter is organized as follows. In the next section, we will discuss the
broad areas of work in the topic of uncertain data. Each of these areas is
represented by a chapter in the book. The next section will discuss a summary
of the material discussed in the chapter and its relationship to other chapters in
the book. Section 3 contains the conclusions.

2. Algorithms for Uncertain Data

This section will provide a chapter-by-chapter overview of the different top-
ics which are discussed in this book. The aim is to cover the modeling, man-
agement and mining topics fairly comprehensively. The key algorithms in the
field are described fairly comprehensively in the different chapters and the rele-
vant pointers are provided. The key topics discussed in the book are as follows:

Models for Uncertain Data. A clear challenge for uncertain data man-
agement is underlying data representation and modeling [13, 16, 20]. This is
because the underlying representation in the database defines the power of the
different approaches which can be used. Chapter 2 provides a clear discus-
sion of the several models which are used for uncertain data management. A
related issue is the representation in relational databases, and its relationship
with the query language which is finally used. Chapter 3 also discusses the
issue of relational modeling of uncertain data, though with a greater emphasis
on relational modeling and query languages. While chapter 2 discusses the
formal definitions of different kinds of models, chapter 3 discusses some of
the more common and simplified models which are used in the literature. The
chapter also discusses the implications of using different kinds of models from
the relational algebra perspective.

Probabilistic Graphical Models. Probabilistic Graphical Models are a
popular and versatile class of models which have significantly greater expres-
sive power because of their graphical structure. They allow us to intuitively
capture and reason about complex interactions between the uncertainties of
different data items. Chapter 4 discusses a number of common graphical mod-
els such as Bayesian Networks and Markov Networks. The chapter discusses
the application of these models to the representation of uncertainty. The chap-
ter also discusses how queries can be effectively evaluated on uncertain data
with the use of graphical models.
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Systems for Uncertain Data. We present two well known systems for
uncertain data. These are the Trio and MayBMS systems. These chapters will
provide a better idea of how uncertain data management systems work in terms
of database manipulation and querying. The Trio system is described in chapter
5, whereas the MayBMS system is discussed in chapter 6. Both these chapters
provide a fairly comprehensive study of the different kinds of systems and
techniques used in conjunction with these systems.

Data Integration. Uncertain data is often collected from disparate data
sources. This leads to issues involving database integration. Chapter 7 dis-
cusses issues involved in database integration of uncertain data. The most im-
portant issue with uncertain data is to use schema mappings in order to match
the uncertain data from disparate sources.

Query Estimation and Summarization of Uncertain Data Streams.

The problem of querying is one of the most fundamental database operations.
Query estimation is a closely related problem which is often required for a
number of database operations. A closely related problem is that of resolving
aggregate queries with the use of probabilistic techniques such as sketches.
Important statistical measures of streams such as the quantiles, minimum, max-
imum, sum, count, repeat-rate, average, and the number of distinct items are
useful in a variety of database scenarios. Chapter 8 discusses the issue of
sketching probabilistic data streams, and how the synopsis may be used for
estimating the above measures.

Join Processing of Uncertain Data. The problem of join processing is
challenging in the context of uncertain data, because the join-attribute is prob-
abilistic in nature. Therefore, the join operation needs to be redefined in the
context of probabilistic data. Chapter 9 discusses the problem of join process-
ing of uncertain data. An important aspect of join processing algorithms is that
the uncertainty model significantly affects the nature of join processing. The
chapter discusses different kinds of join methods such as the use of confidence-
based join methods, similarity joins and spatial joins.

Indexing Uncertain Data. The problem of indexing uncertain data is
especially challenging because the diffuse probabilistic nature of the data can
reduce the effectiveness of index structures. Furthermore, the challenges for
indexing can be quite different, depending upon whether the data is discrete,
continuous, spatio-temporal, or how the probabilistic function is defined [8, 9,
12, 22, 23]. Chapter 10 provides a comprehensive overview of the problem
of indexing uncertain data. This chapter discusses the problem of indexing
both continuous and discrete data. Chapter 11 further discusses the problem of
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indexing uncertain data in the context of spatiotemporal data. Chapters 10 and
11 provide a fairly comprehensive survey of the different kinds of techniques
which are often used for indexing and retrieval of uncertain data.

Probabilistic XMLData. XML data poses a number of special challenges
in the context of uncertainty because of the structural nature of the underlying
data. Chapter 12 discusses uncertain models for probabilistic XML data. The
chapter also describes algebraic techniques for manipulating XML data. This
includes probabilistic aggregate operations and the query language for XML
data (known as PXML). The chapter discusses both special cases for probabil-
ity distributions as well as arbitrary probability distributions for representing
probabilistic XML data.

Clustering Uncertain Data. Data mining problems are significantly in-
fluenced by the uncertainty in the underlying data, since we can leverage the
uncertainty in order to improve the quality of the underlying results. Cluster-
ing is one of the most comprehensively studied problems in the uncertain data
mining literature. Recently, techniques have been designed for clustering un-
certain data. These include the UMicro algorithm, the UK-means algorithms,
the FDBSCAN, and FOPTICS algorithms [6, 18, 19, 21]. Recently, some ap-
proximation algorithms [7] have also been developed for clustering uncertain
data. Chapter 13 discusses a comprehensive overview of the different algo-
rithms for clustering uncertain data.

General Transformations for Uncertain Data Mining. A natural ap-
proach to uncertain data management techniques is to use general transforma-
tions [3] which can create intermediate representations which adjust for the
uncertainty. These intermediate representations can then be leveraged in order
to improve the quality of the underlying results. Chapter 14 discusses such
an approach with the use of density based transforms. The idea is to create a
probability density representation of the data which takes the uncertainty into
account during the transformation process. The chapter discusses two appli-
cations of this approach to the problems of classification and outlier detection.
We note that the approach can be used for any data mining problem, as long
as a method can be found to use intermediate density transformations for data
mining purposes.

Frequent Pattern Mining. Chapter 15 surveys a number of different
approaches for frequent pattern mining of uncertain data. In the case of trans-
actional data, items are assumed to have existential probabilities [4, 10, 11],
which characterize the likelihood of presence in a given transaction. This in-
cludes Apriori-style algorithms, candidate generate-and-test algorithms, pat-
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tern growth algorithms and hyper-structure based algorithms. The chapter ex-
amines the uniqueness of the tradeoffs involved for pattern mining algorithms
in the uncertain case. The chapter compares many of these algorithms for the
challenging case of high existential probabilities, and shows that the behavior
is quite different from deterministic algorithms. Most of the literature [10, 11]
studies the case of low existential probabilities. The chapter suggests that the
behavior is quite different for the case of high-existential probabilities. This
is because many of the pruning techniques designed for the case of low exis-
tential probabilities do not work well for the case when these probabilities are
high.

Applications to Biomedical Domain. We provide one application chapter
in order to provide a flavor of the application of uncertain DBMS techniques
to a real application. The particular application picked in this case is that of
biomedical images. Chapter 16 is a discussion of the application of uncertain
data management techniques to the biomedical domain. The chapter is particu-
lar interesting in that it discusses the application of many techniques discussed
in this book (such as indexing and join processing) to an application domain.
While the chapter discusses the biological image domain, the primary goal is
to present an example of the application of many of the discussed techniques
to a particular application.

3. Conclusions

In this chapter, we introduced the problem of uncertain data mining, and
discussed an overview of the different facets of this area covered by this book.
Uncertain data management promises to be a new and exciting field for prac-
titioners, students and researchers. It is hoped that this book is able to provide
a broad overview of this topic, and how it relates to a variety of data mining
and management applications. This book discusses both data management and
data mining issues. In addition, the book discusses an application domain for
the field of uncertain data. Aside from the topics discussed in the book, some
of the open areas for research in the topic of uncertain data are as follows:

Managing and Mining Techniques under General Models: Most of
the uncertain data mining and management algorithms use a variety of
simplifying assumptions in order to allow effective design of the under-
lying algorithms. Examples of such simplifying assumptions could im-
ply tuple or attribute independence. In more general scenarios, one may
want to use more complicated schemas to represent uncertain databases.
Some models such as probabilistic graphical models [15] provide greater
expressivity in capturing such cases. However, database management
and mining techniques become more complicated under such models.
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Most of the current techniques in the literature do not use such general
models. Therefore, the use of such models for developing DBMS tech-
niques may be a fruitful future area of research.

Synergy between Uncertain Data Acquisition and Usage: The utility
of the field can increase further only if a concerted effort is made to
standardize the uncertainty in the data to the models used for the general
management and mining techniques. For example, the output of both
the privacy-preserving publishing and the sensor data collection fields
are typically uncertain data. In recent years, some advances have been
made [5, 14] in order to design models for data acquisition and creation,
which naturally pipeline onto useful uncertain representations. A lot
more work remains to be done in a variety of scientific fields in order to
facilitate model based acquisition and creation of uncertain data.
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Abstract We discuss, compare and relate some old and some new models for incomplete
and probabilistic databases. We characterize the expressive power of c-tables
over infinite domains and we introduce a new kind of result, algebraic comple-
tion, for studying less expressive models. By viewing probabilistic models as
incompleteness models with additional probability information, we define com-
pleteness and closure under query languages of general probabilistic database
models and we introduce a new such model, probabilistic c-tables, that is shown
to be complete and closed under the relational algebra. We also identify funda-
mental connections between query answering with incomplete and probabilistic
databases and data provenance. We show that the calculations for incomplete
databases, probabilistic databases, bag semantics, lineage, and why-provenance
are particular cases of the same general algorithms involving semi-rings. This
further suggests a comprehensive provenance representation that uses semi-rings
of polynomials. Finally, we show that for positive Boolean c-tables, containment
of positive relational queries is the same as for standard set semantics.

Keywords: Incomplete databases, probabilistic databases, provenance, lineage, semi-rings

1. Introduction

This chapter provides a survey of models for incomplete and probabilistic
information from the perspective of two recent papers that the author has writ-
ten with Val Tannen [28] and Grigoris Karvounarakis and Val Tannen [27]. All
the concepts and technical developments that are not attributed specifically to
another publication originate in these two papers.
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The representation of incomplete information in databases has been an im-
portant research topic for a long time, see the references in [25], in Ch.19
of [2], in [43], in [48, 36], as well as the recent [45, 42, 41, 4]. Moreover,
this work is closely related to recently active research topics such as incon-
sistent databases and repairs [5], answering queries using views [1], data ex-
change [20], and data provenance [9, 8]. The classic reference on incomplete
databases remains [30] with the fundamental concept of c-table and its restric-
tions to simpler tables with variables. The most important result of [30] is the
query answering algorithm that defines an algebra on c-tables that corresponds
exactly to the usual relational algebra (RA). A recent paper [41] has defined
a hierarchy of incomplete database models based on finite sets of choices and
optional inclusion. We shall give below comparisons between the models [41]
and the tables with variables from [30].

Two criteria have been provided for comparisons among all these mod-
els: [30, 41] discuss closure under relational algebra operations, while [41]
also emphasizes completeness, specifically the ability to represent all finite in-
complete databases. We point out that the latter is not appropriate for tables
with variables over an infinite domain, and we describe another criterion,RA-
completeness, that fully characterizes the expressive power of c-tables.

We outline a method for the study of models that are not complete. Namely,
we consider combining existing models with queries in various fragments of
relational algebra. We then ask how big these fragments need to be to obtain
a combined model that is complete. We give a number of such algebraic
completion results.

Early on, probabilistic models of databases were studied less intensively
than incompleteness models, with some notable exceptions [10, 6, 39, 34, 17].
Essential progress was made independently in three papers [22, 33, 47] that
were published at about the same time. [22, 47] assume a model in which
tuples are taken independently in a relation with given probabilities. [33] as-
sumes a model with a separate distribution for each attribute in each tuple. All
three papers attacked the problem of calculating the probability of tuples occur-
ring in query answers. They solved the problem by developing more general
models in which rows are annotated with additional information (“event ex-
pressions,” “paths,” “traces”), and they noted the similarity with the conditions
in c-tables.

We go beyond the problem of individual tuples in query answers by defin-
ing closure under a query language for probabilistic models. Then we describe
probabilistic c-tables which add to the c-tables themselves probability distri-
butions for the values taken by their variables. Here is an example of such
a representation that captures the set of instances in which Alice is taking a
course that is Math with probability 0.3; Physics (0.3); or Chemistry (0.4),
while Bob takes the same course as Alice, provided that course is Physics or
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Chemistry and Theo takes Math with probability 0.85:

Student Course Condition

Alice x
Bob x x = phys ∨ x = chem
Theo math t = 1

x =





math : 0.3
phys : 0.3
chem : 0.4

t =

{
0 : 0.15
1 : 0.85

The concept of probabilistic c-table allows us to solve the closure problem by
using the same algebra on c-tables defined in [30].

We also give a completeness result by showing that probabilistic Boolean
c-tables (all variables are two-valued and can appear only in the conditions, not
in the tuples) can represent any probabilistic database.

An important conceptual point is that, at least for the models we consider,
the probabilistic database models can be seen, as probabilistic counterparts
of incomplete database models. In an incompleteness model a tuple or an at-
tribute value in a tuple may or may not be in the database. In its probabilistic
counterpart, these are seen as elementary events with an assigned probability.
For example, the models used in [22, 33, 47] are probabilistic counterparts
of the two simplest incompleteness models discussed in [41]. As another ex-
ample, the model used in [17] can be seen as the probabilistic counterpart of
an incompleteness model one in which tuples sharing the same key have an
exclusive-or relationship.

A consequence of this observation is that, in particular, query answering for
probabilistic c-tables will allow us to solve the problem of calculating proba-
bilities about query answers for any model that can be defined as a probabilistic
counterpart of the incompleteness models considered in [30, 41].

Besides the models for incomplete and probabilistic information, several
other forms of annotated relations have appeared in various contexts in the
literature. Query answering in these settings involves generalizing RA to per-
form corresponding operations on the annotations.

In data warehousing, [14] and [15] compute lineages for tuples in the output
of queries, in effect generalizing RA to computations on relations annotated
with sets of contributing tuples. For curated databases, [9] proposes decorating
output tuples with their why-provenance, essentially the set of sets of contribut-
ing tuples. Finally, RA on bag semantics can be viewed as a generalization to
annotated relations, where a tuple’s annotation is a number representing its
multiplicity.

We observe that in all of these cases, the calculations with annotations are
strikingly similar. This suggests looking for an algebraic structure on anno-
tations that captures the above as particular cases. It turns out that the right
structure to use for this purpose is that of commutative semi-rings. In fact,
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one can show that the laws of commutative semi-rings are forced by certain ex-
pected identities inRA. Having identified commutative semi-rings as the right
algebraic structure, we argue that a symbolic representation of semi-ring calcu-
lations is just what is needed to record, document, and trackRA querying from
input to output for applications which require rich provenance information. It
is a standard philosophy in algebra that such symbolic representations form
the most general such structure. In the case of commutative semi-rings, just
as for rings, the symbolic representation is that of polynomials. This strongly
suggests using polynomials to capture provenance.

The rest of this chapter is organized as follows:

We develop the basic notions of representation systems for incomplete
information databases, and we give several examples (Section 2).

We define two measures of expressive power for representation systems,
RA-Completeness and finite completeness. RA-com-pleteness charac-
terizes the expressiveness of c-tables, and finite completeness the expres-
siveness of a restricted system which we call finite c-tables (Section 3).

We examine the related notion of closure of representation systems un-
der relational operations (Section 4).

We define the notion of algebraic completion, and we give a number of
results showing, for various representation systems not closed under the
full relational algebra, that “closing” them under (certain fragments of)
the relational algebra yields expressively complete representation sys-
tems (Section 5).

We develop the basic notions of probabilistic representation systems
(Section 6) and present probabilistic counterparts of various represen-
tation systems for incomplete databases (Sections 7 and 8).

We observe patterns in the calculations used in incomplete and proba-
bilistic databases, bag semantics, and why-provenance which motivate
the more general study of annotated relations (Section 9).

We define K-relations, in which tuples are annotated (tagged) with ele-
ments from K . We define a generalized positive algebra on K-relations
and argue that K must be a commutative semi-ring (Section 10).

For provenance semi-rings we use polynomials with integer coeffi-
cients, and we show that positive algebra semantics for any commutative
semi-rings factors through the provenance semantics (Section 11).
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We consider query containment w.r.t. K-relation semantics and we
show that for unions of conjunctive queries and when K is a distribu-
tive lattice, query containment is the same as that given by standard set
semantics (Section 12).

2. Incomplete Information and Representation Systems

Our starting point is suggested by the work surveyed in [25], in Ch. 19
of [2], and in [43]. A database that provides incomplete information consists
of a set of possible instances. At one end of this spectrum we have the con-
ventional single instances, which provide “complete information.” At the other
end we have the set of all allowable instances which provides “no information”
at all, or “zero information.”

We adopt the formalism of relational databases over a fixed countably infi-
nite domain D. We use the unnamed form of the relational algebra. To simplify
the notation we will work with relational schemas that consist of a single rela-
tion name of arity n. Everything we say can be easily reformulated for arbitrary
relational schemas. We shall need a notation for the set of all (conventional)
instances of this schema, i.e., all the finite n-ary relations over D:

N := {I | I ⊆ D
n, I finite}

Definition 2.1 An incomplete(-information) database

(i-database for short), I , is a set of conventional instances, i.e., a subset
I ⊆ N .

The usual relational databases correspond to the cases when I = {I}. The
no-information or zero-information database consists of all the relations:
N .

Conventional relational instances are finite. However, because D is infinite
incomplete databases are in general infinite. Hence the interest in finite, syn-
tactical, representations for incomplete information.

Definition 2.2 A representation system consists of a set (usually a syn-
tactically defined “language”) whose elements we call tables, and a function

Mod that associates to each table T an incomplete database Mod(T ).

The notation corresponds to the fact that T can be seen as a logical assertion
such that the conventional instances inMod(T ) are in fact the models of T (see
also [38, 44]).

The classical reference [30] considers three representation systems: Codd
tables, v-tables, and c-tables. v-tables are conventional instances in which
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variables can appear in addition to constants from D. If T is a v-table then1

Mod(T ) := {ν(T ) | ν : Var(T )→ D is a valuation for the variables of T}

Codd tables are v-tables in which all the variables are distinct. They correspond
roughly to the current use of nulls in SQL, while v-tables model “labeled” or
“marked” nulls. c-tables are v-tables in which each tuple is annotated with
a condition — a Boolean combination of equalities involving variables and
constants. The tuple condition is tested for each valuation ν and the tuple is
discarded from ν(T ) if the condition is not satisfied.

Example 2.3 A v-table and its possible worlds.

R :=
1 2 x
3 x y
z 4 5

Mod(R) =

8
<
:

1 2 1
3 1 1
1 4 5

,
1 2 2
3 2 1
1 4 5

, . . . ,
1 2 77
3 77 89
97 4 5

, . . .

9
=
;

Example 2.4 A c-table and its possible worlds.

S :=
1 2 x
3 x y x = y ∧ z 6= 2
z 4 5 x 6= 1 ∨ x 6= y

Mod(S) =


1 2 1
3 1 1

,
1 2 2
1 4 5

, . . . ,
1 2 77
97 4 5

, . . .

ff

Several other representation systems have been proposed in a recent pa-
per [41]. We illustrate here three of them and we discuss several others later.
A ?-table is a conventional instance in which tuples are optionally labeled
with “?,” meaning that the tuple may be missing. An or-set-table looks like a
conventional instance but or-set values [31, 37] are allowed. An or-set value
〈1, 2, 3〉 signifies that exactly one of 1, 2, or 3 is the “actual” (but unknown)
value. Clearly, the two ideas can be combined yielding another representation
systems that we might (awkwardly) call or-set-?-tables.2

Example 2.5 An or-set-?-table and its possible worlds.

T :=
1 2 〈1, 2〉
3 〈1, 2〉 〈3, 4〉
〈4, 5〉 4 5 ?

Mod(T ) =

8
<
:

1 2 1
3 1 3
4 4 5

,
1 2 1
3 1 3

, . . . ,
1 2 2
3 2 4

9
=
;

3. RA-Completeness and Finite Completeness

“Completeness” of expressive power is the first obvious question to ask
about representation systems. This brings up a fundamental difference be-
tween the representation systems of [30] and those of [41]. The presence of

1We follow [2, 41] and use the closed-world assumption (CWA). [30] uses the open-world assumption
(OWA), but their results hold for CWA as well.
2In [41] these three systems are denoted byR?,RA andRA? .
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variables in a table T and the fact that D is infinite means thatMod(T ) may be
infinite. For the tables considered in [41],Mod(T ) is always finite.

[41] defines completeness as the ability of a representation system to repre-
sent “all” possible incomplete databases. For the kind of tables considered
in [41] the question makes sense. But in the case of the tables with vari-
ables in [30] this is hopeless for trivial reasons. Indeed, in such systems there
are only countably many tables while there are uncountably many incomplete
databases (the subsets of N , which is infinite). We will discuss separately be-
low finite completeness for systems that only represent finite databases. Mean-
while, we will develop a different yardstick for the expressive power of tables
with variables that range over an infinite domain.
c-tables and their restrictions (v-tables and Codd tables) have an inherent

limitation: the cardinality of the instances inMod(T ) is at most the cardinality
of T . For example, the zero-information database N cannot be represented
with c-tables. It also follows that among the incomplete databases that are rep-
resentable by c-tables the “minimal”-information ones are those consisting for
some m of all instances of cardinality up to m (which are in fact representable
by Codd tables with m rows). Among these, we make special use of the ones
of cardinality 1:

Zk := {{t} | t ∈ D
k}.

Hence, Zk consists of all the one-tuple relations of arity k. Note that Zk =
Mod(Zk) where Zk is the Codd table consisting of a single row of k distinct
variables.

Definition 3.1 An incomplete database I isRA-definable if there exists a
relational algebra query q such that I = q(Zk), where k is the arity of the
input relation name in q.

Theorem 3.2 If I is an incomplete database representable by a c-table T ,
i.e., I = Mod(T ), then I isRA-definable.

Proof: Let T be a c-table, and let {x1, . . . , xk} denote the variables in T .
We want to show that there exists a query q in RA such that q(Mod(Zk)) =
Mod(T ). Let n be the arity of T . For every tuple t = (a1, . . . , an) in T with
condition T (t), let {xi1 , . . . , xij} be the variables in T (t) which do not appear
in t. For 1 ≤ i ≤ n, define Ci to be the singleton {c}, if ai = c for some
constant c, or πj(Zk), if ai = xj for some variable xj . For 1 ≤ j ≤ k, define
Cn+j to be the expression πij (Zk), where xj is the jth variable in T (t) which
does not appear in t. Define q to be the query

q :=
⋃

t∈T

π1,...,n(σψ(t)(C1 × · · · × Cn+k)),
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where ψ(t) is obtained from T (t) by replacing each occurrence of a variable xi
with the index j of the termCj in which xi appears. To see that q(Mod(Zk)) =
Mod(T ), since Zk is a c-table, we can use Theorem 4.2 and check that, in fact,
q̄(Zk) = T where q̄ is the translation of q into the c-tables algebra (see the
proof of Theorem 4.2). Note that we only need the SPJU fragment ofRA.

Example 3.3 The c-table from Example 2.4 is definable as Mod(S) = q(Z3)
where q is the following query with input relation name V of arity 3: q(V ) :=
π123({1} × {2} × V ) ∪ π123(σ2=3,46=‘2’({3} × V )) ∪ π512(σ36=‘1’,3 6=4({4} ×
{5} × V )).

Remark 3.4 It turns out that the i-databases representable by c-tables are
also definable via RA starting from the absolute zero-information instance,
N . Indeed, it can be shown (Proposition 15.1) that for each k there exists
an RA query q such that Zk = q(N ). From there we can apply Theo-
rem 3.2. The class of incomplete databases {I | ∃q ∈ RA s.t. I = q(N )}
is strictly larger than that representable by c-tables, but it is still countable
hence strictly smaller than that of all incomplete databases. Its connections

with FO-definability in finite model theory might be interesting to investigate.

Hence, c-tables are in some sense “no more powerful” than the relational
algebra. But are they “as powerful”? This justifies the following:

Definition 3.5 A representation system isRA-complete if it can represent
anyRA-definable i-database.

Since Zk is itself a c-table the following is an immediate corollary of the
fundamental result of [30] (see Theorem 4.2 below). It also states that the
converse of Theorem 3.2 holds.

Theorem 3.6 c-tables areRA-complete.

This result is similar in nature to Corollary 3.1 in [25]. However, the exact
technical connection, if any, is unclear, since Corollary 3.1 in [25] relies on the
certain answers semantics for queries.

We now turn to the kind of completeness considered in [41].

Definition 3.7 A representation system is finitely complete if it can repre-
sent any finite i-database.

The finite incompleteness of ?-tables, or-set-tables, or-set-?-tables and other
systems is discussed in [41] where a finitely complete representation system
RAprop is also given (we repeat the definition in the Appendix). Is finite com-
pleteness a reasonable question for c-tables, v-tables, and Codd tables? In
general, for such tables Mod(T ) is infinite (all that is needed is a tuple with
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at least one variable and with an infinitely satisfiable condition). To facilitate
comparison with the systems in [41] we define finite-domain versions of tables
with variables.

Definition 3.8 A finite-domain c-table (v-table, Codd table) consists of a
c-table (v-table, Codd table) T together with a finite dom(x) ⊂ D for each

variable x that occurs in T .

Note that finite-domain Codd tables are equivalent to or-set tables. Indeed,
to obtain an or-set table from a Codd table, one can see dom(x) as an or-set
and substitute it for x in the table. Conversely, to obtain a Codd table from
an or-set table, one can substitute a fresh variable x for each or-set and define
dom(x) as the contents of the or-set.

In light of this connection, finite-domain v-tables can be thought of as a
kind of “correlated” or-set tables. Finite-domain v-tables are strictly more
expressive than finite Codd tables. Indeed, every finite Codd table is also a
finite v-table. But, the set of instances represented by e.g. the finite v-table
{(1, x), (x, 1)} where dom(x) = {1, 2} cannot be represented by any finite
Codd table. Finite-domain v-tables are themselves finitely incomplete. For ex-
ample, the i-database {{(1, 2)}, {(2, 1)}} cannot be represented by any finite
v-table.

It is easy to see that finite-domain c-tables are finitely complete and hence
equivalent to [41]’sRAprop in terms of expressive power. In fact, this is true even
for the fragment of finite-domain c-tables which we will call Boolean c-tables,
where the variables take only Boolean values and are only allowed to appear
in conditions (never as attribute values).

Theorem 3.9 Boolean c-tables are finitely complete (hence finite-domain
c-tables are also finitely complete).

Proof: Let I = {I1, . . . , Im} be a finite i-database. Construct a Boolean c-
table T such that Mod(T ) = I as follows. Let ℓ := ⌈lgm⌉. For 1 ≤ i < m,
put all the tuples from Ii into T with condition ϕi, defined

ϕi :=
∧

j

¬xj ∧
∧

k

xk,

where the first conjunction is over all 1 ≤ j ≤ ℓ such that jth digit in the ℓ-
digit binary representation of i− 1 is 0, and the second conjunction is over all
1 ≤ k ≤ ℓ such that the kth digit in the ℓ-digit binary representation of i− 1 is
1. Finally, put all the tuples from Im into T with condition ϕm ∨ · · · ∨ϕ2ℓ .
Although Boolean c-tables are complete there are clear advantages to using
variables in tuples also, chief among them being compactness of representa-
tion.



18 MANAGING AND MINING UNCERTAIN DATA

Example 3.10 Consider the finite v-table {(x1, x2, . . . , xm)} where

dom(x1) = dom(x2) = · · · = dom(xm) = {1, 2, . . . , n}. The equivalent
Boolean c-table has nm tuples.

If we additionally restrict Boolean c-tables to allow conditions to contain
only true or a single variable which appears in no other condition, then we
obtain a representation system which is equivalent to ?-tables.

Since finite c-tables and RAprop are each finitely complete there is an ob-
vious naïve algorithm to translate back and forth between them: list all the
instances the one represents, then use the construction from the proof of finite
completeness for the other. Finding a more practical “syntactic” algorithm is
an interesting open question.

4. Closure Under Relational Operations

Definition 4.1 A representation system is closed under a query language if
for any query q and any table T there is a table T ′ that represents q(Mod(T )).

(For notational simplicity we consider only queries with one input relation
name, but everything generalizes smoothly to multiple relation names.)

This definition is from [41]. In [2], a strong representation system is defined
in the same way, with the significant addition that T ′ should be computable
from T and q. It is not hard to show, using general recursion-theoretic prin-
ciples, that there exist representation systems (even ones that only represent
finite i-databases) which are closed as above but not strong in the sense of [2].
However, the concrete systems studied so far are either not closed or if they are
closed then the proof provides also the algorithm required by the definition of
strong systems. Hence, we see no need to insist upon the distinction.

Theorem 4.2 ([30]) c-tables, finite-domain c-tables, and Boolean c-tables
are closed under the relational algebra.

Proof: (Sketch.) We repeat here the essentials of the proof, including most
of the definition of the c-table algebra. For each operation u of the relational
algebra [30] defines its operation on the c-table conditions as follows. For
projection, if V is a list of indexes, the condition for a tuple t in the output is
given by

π̄V (T )(t) :=
∨

t′∈T s.t. πV (t′)=t

T (t′)

where T (t′) denotes the condition associated with t′ in T . For selection, we
have

σ̄P (T )(t) := T (t) ∧ P (t)

where P (t) denotes the result of evaluating the selection predicate P on the
values in t (for a Boolean c-table, this will always be true or false, while for
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c-tables and finite-domain c-tables, this will be in general a Boolean formula
on constants and variables). For cross product and union, we have

(T1 ×̄ T2)(t) := T1(t) ∧ T2(t)

(T1 ∪̄ T2)(t) := T1(t) ∨ T2(t)

Difference and intersection are handled similarly. By replacing u’s by ū we
translate any relational algebra expression q into a c-table algebra expression q̄
and it can be shown that

Lemma 4.3 For all valuations ν, ν(q̄(T )) = q(ν(T )).

From this, Mod(q̄(T )) = q(Mod(T )) follows immediately.
In Section 10, we shall see a generalization of the (positive) c-table algebra

and Lemma 4.3 in the context of annotated relations.

5. Algebraic Completion

None of the incomplete representation systems we have seen so far is closed
under the full relational algebra. Nor are two more representation systems
considered in [41],RsetsandR⊕≡ (we repeat their definitions in the Appendix).

Proposition 5.1 ([30, 41]) Codd tables and v-tables are not closed un-
der e.g. selection. Or-set tables and finite v-tables are also not closed under
e.g. selection. ?-tables,Rsets, and R⊕≡ are not closed under e.g. join.

We have seen that “closing” minimal-information one-row Codd tables (see
before Definition 3.5) {Z1, Z2, . . .}, by relational algebra queries yields equiv-
alence with the c-tables. In this spirit, we will investigate “how much” of the
relational algebra would be needed to complete the other representation sys-
tems considered. We call this kind of result algebraic completion.

Definition 5.2 If (T ,Mod) is a representation system and L is a query
language, then the representation system obtained by closing T under L is the
set of tables {(T, q) | T ∈ T , q ∈ L} with the function Mod : T × L → N
defined by Mod(T, q) := q(Mod(T )).

We are now ready to state the results regarding algebraic completion.

Theorem 5.3 (RA-Completion)

1 The representation system obtained by closing Codd tables under SPJU
queries isRA-complete.

2 The representation system obtained by closing v-tables under SP queries
isRA-complete.
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Proof: (Sketch.) For each case we show that given a arbitrary c-table T one
can construct a table S and a query q of the required type such that q̄(S) = T .
Case 1 is a trivial corollary of Theorem 3.2. The details for Case 2 are in the
Appendix.

Note that in general there may be a “gap” between the language for which
closure fails for a representation system and the language required for comple-
tion. For example, Codd tables are not closed under selection, but at the same
time closing Codd tables under selection does not yield anRA-complete repre-
sentation system. (To see this, consider the incomplete database represented by
the v-table {(x, 1), (x, 2)}. Intuitively, selection alone is not powerful enough
to yield this incomplete database from a Codd table, as, selection operates on
one tuple at a time and cannot correlate two un-correlated tuples.) On the other
hand, it is possible that some of the results we present here may be able to be
“tightened” to hold for smaller query languages, or else proved to be “tight”
already. This is an issue which may be worth examining in the future.

We give now a set of analogous completion results for the finite case.

Theorem 5.4 (Finite-Completion)

1 The representation system obtained by closing or-set-tables under PJ
queries is finitely complete.

2 The representation system obtained by closing finite v-tables under PJ
or S+P queries is finitely complete.

3 The representation system obtained by closing Rsets under PJ or PU
queries is finitely complete.

4 The representation system obtained by closingR⊕≡ under S+PJ queries
is finitely complete.

Proof:(Sketch.) In each case, given an arbitrary finite incomplete data-base,
we construct a table and query of the required type which yields the incomplete
database. The details are in the Appendix.

Note that there is a gap between the RA-completion result for Codd tables,
which requires SPJU queries, and the finite-completion result for finite Codd
tables, which requires only PJ queries. A partial explanation is that proof of
the latter result relies essentially on the finiteness of the i-database.

More generally, if a representation system can represent arbitrarily-large i-
databases, then closing it under RA yields a finitely complete representation
system, as the following theorem makes precise (see Appendix for proof).

Theorem 5.5 (General Finite-Completion) Let T be a representa-
tion system such that for all n ≥ 1 there exists a table T in T such that
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|Mod(T )| ≥ n. Then the representation system obtained by closing T under
RA is finitely-complete.

Corollary 5.6 The representation system obtained by closing ?-tables un-
derRA queries is finitely complete.

6. Probabilistic Databases and Representation Systems

Finiteness assumption For the entire discussion of probabilistic database
models we will assume that the domain of values D is finite. Infinite domains
of values are certainly interesting in practice; for some examples see [33, 45,
41]. Moreover, in the case of incomplete databases we have seen that they
allow for interesting distinctions.3 However, finite probability spaces are much
simpler than infinite ones and we will take advantage of this simplicity. The
issues related to probabilistic databases over infinite domains are nonetheless
interesting and worth pursuing in the future.

We wish to model probabilistic information using a probability space whose
possible outcomes are all the conventional instances. Recall that for simplicity
we assume a schema consisting of just one relation of arity n. The finiteness
of D implies that there are only finitely many instances, I ⊆ D

n.
By finite probability space we mean a probability space (see e.g. [18])

(Ω,F ,Pr[ ]) in which the set of outcomes Ω is finite and the σ-field of events
F consists of all subsets of Ω. We shall use the equivalent formulation of pairs
(Ω, p) where Ω is the finite set of outcomes and where the outcome probability
assignment p : Ω→ [0, 1] satisfies

∑
ω∈Ω p(ω) = 1. Indeed, we take Pr[A] =∑

ω∈A p(ω).

Definition 6.1 A probabilistic(-information) database (sometimes called
in this paper a p-database) is a finite probability space whose outcomes are
all the conventional instances, i.e., a pair (N , p) where∑I∈N p(I) = 1.

Demanding the direct specification of such probabilistic databases is unrealis-
tic because there are 2N possible instances, where N := |D|n, and we would
need that many (minus one) probability values. Thus, as in the case of incom-
plete databases we define probabilistic representation systems consisting of
“probabilistic tables” (prob. tables for short) and a functionMod that associates
to each prob. table T a probabilistic database Mod(T ). Similarly, we define
completeness (finite completeness is the only kind we have in our setting).

To define closure under a query language we face the following problem.
Given a probabilistic database (N , p) and a query q (with just one input relation
name), how do we define the probability assignment for the instances in q(N )?

3Note however that the results remain true if D is finite; we just require an infinite supply of variables.
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It turns out that this is a common construction in probability theory: image
spaces.

Definition 6.2 Let (Ω, p) be a finite probability space and let f : Ω → Ω′

whereΩ′ is some finite set. The image of (Ω, p) under f is the finite probability
space (Ω′, p′) where 4 p′(ω′) :=

∑
f(ω)=ω′ p(ω).

Again we consider as query languages the relational algebra and its sublan-
guages defined by subsets of operations.

Definition 6.3 A probabilistic representation system is closed under a query
language if for any query q and any prob. table T there exists a prob. table T ′

that represents q(Mod(T )), the image space of Mod(T ) under q.

7. Probabilistic ?-Tables and Probabilistic Or-Set Tables

Probabilistic ?-tables (p-?-tables for short) are commonly used for proba-
bilistic models of databases [47, 22, 23, 16] (they are called the “independent
tuples” representation in [42]). Such tables are the probabilistic counterpart of
?-tables where each “?” is replaced by a probability value. Example 7.4 below
shows such a table. The tuples not explicitly shown are assumed tagged with
probability 0. Therefore, we define a p-?-table as a mapping that associates
to each t ∈ D

n a probability value p
t
. In order to represent a probabilistic

database, papers using this model typically include a statement like “every tu-
ple t is in the outcome instance with probability p

t
, independently from the

other tuples” and then a statement like

Pr[I] =
(∏

t∈I

p
t

)(∏

t6∈I

(1− p
t
)
)
.

In fact, to give a rigorous semantics, one needs to define the eventsEt ⊆ N ,
Et := {I | t ∈ I} and then to prove the following.

Proposition 7.1 There exists a unique probabilistic database such that the
events Et are jointly independent and Pr[Et] = p

t
.

This defines p-?-tables as a probabilistic representation system. We shall
however provide an equivalent but more perspicuous definition. We shall need
here another common construction from probability theory: product spaces.

Definition 7.2 Let (Ω1, p1), . . . , (Ωn, pn) be finite probability spaces. Their
product is the space (Ω1 × · · · ×Ωn, p) where

5 we have:

p(ω1, . . . , ωn) := p1(ω1) · · · pn(ωn)

4It is easy to check that the p′(ω′)’s do actually add up to 1.
5Again, it is easy to check that the outcome probability assignments add up to 1.
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This definition corresponds to the intuition that the n systems or phenom-
ena that are modeled by the spaces (Ω1, p1), . . . , (Ωn, pn) behave without “in-
terfering” with each other. The following formal statements summarize this
intuition.

Proposition 7.3 Consider the product of the spaces (Ω1, p1), . . . , (Ωn, pn).
Let A1 ⊆ Ω1, . . . , An ⊆ Ωn.

1 We have Pr[A1 × · · · ×An] = Pr[A1] · · ·Pr[An].

2 The eventsA1×Ω2×· · ·×Ωn,Ω1×A2×· · ·×Ωn, . . . ,Ω1×Ω2×· · ·×An
are jointly independent in the product space.

Turning back to p-?-tables, for each tuple t ∈ D
n consider the finite prob-

ability space Bt := ({true, false}, p) where p(true) := p
t

and p(false) =
1− p

t
. Now consider the product space

P :=
∏

t∈Dn

Bt

We can think of its set of outcomes (abusing notation, we will call this set P
also) as the set of functions from D

n to {true, false}, in other words, predicates
on D

n. There is an obvious function f : P → N that associates to each
predicate the set of tuples it maps to true.

All this gives us a p-database, namely the image of P under f . It remains
to show that it satisfies the properties in Proposition 7.1. Indeed, since f is a
bijection, this probabilistic database is in fact isomorphic to P . In P the events
that are in bijection with the Et’s are the Cartesian product in which there
is exactly one component {true} and the rest are {true, false}. The desired
properties then follow from Proposition 7.3.

We define now another simple probabilistic representation system called
probabilistic or-set-tables (p-or-set-tables for short). These are the proba-
bilistic counterpart of or-set-tables where the attribute values are, instead of
or-sets, finite probability spaces whose outcomes are the values in the or-set.
p-or-set-tables correspond to a simplified version of the ProbView model pre-
sented in [33], in which plain probability values are used instead of confidence
intervals.

Example 7.4 A p-or-set-table S, and a p-?-table T .

S :=
1 〈2 : 0.3, 3 : 0.7〉
4 5

〈6 : 0.5, 7 : 0.5〉 〈8 : 0.1, 9 : 0.9〉
T :=

1 2 0.4
3 4 0.3
5 6 1.0

A p-or-set-table determines an instance by choosing an outcome in each
of the spaces that appear as attribute values, independently. Recall that or-
set tables are equivalent to finite-domain Codd tables. Similarly, a p-or-set-
table corresponds to a Codd table T plus for each variable x in T a finite
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probability space dom(x) whose outcomes are in D. This yields a p-database,
again by image space construction, as shown more generally for c-tables next
in Section 8.
Query answering The papers [22, 47, 33] have considered, independently,

the problem of calculating the probability of tuples appearing in query answers.
This does not mean that in general q(Mod(T )) can be represented by another
tuple table when T is some p-?-table and q ∈ RA (neither does this hold for
p-or-set-tables). This follows from Proposition 5.1. Indeed, if the probabilistic
counterpart of an incompleteness representation system T is closed, then so is
T . Hence the lifting of the results in Proposition 5.1 and other similar results.

Each of the papers [22, 47, 33] recognizes the problem of query answering
and solves it by developing a more general model in which rows contain addi-
tional information similar in spirit to the conditions that appear in c-tables (in
fact [22]’s model is essentially what we call probabilistic Boolean c-tables, see
next section). It turns out that one can actually use a probabilistic counterpart
to c-tables themselves together with the algebra on c-tables given in [30] to
achieve the same effect.

8. Probabilistic c-tables

Definition 8.1 A probabilistic c-table (pc-tables for short) consists of a
c-table T together with a finite probability space dom(x) (whose outcomes are
values in D) for each variable x that occurs in T .

To get a probabilistic representation system consider the product space

V :=
∏

x∈Var(T )

dom(x)

The outcomes of this space are in fact the valuations for the c-table T ! Hence
we can define the function g : V → N , g(ν) := ν(T ) and then defineMod(T )
as the image of V under g.

Similarly, we can talk about Boolean pc-tables, pv-tables and probabilistic
Codd tables (the latter related to [33], see previous section). Moreover, the
p-?-tables correspond to restricted Boolean pc-tables, just like ?-tables.

Theorem 8.2 Boolean pc-tables are complete (hence pc-tables are also com-
plete).

Proof: Let I1, . . . , Ik denote the instances with non-zero probability in an
arbitrary probabilistic database, and let p1, . . . , pk denote their probabilities.
Construct a probabilistic Boolean c-table T as follows. For 1 ≤ i ≤ k − 1,
put the tuples from Ii in T with condition ¬x1 ∧ · · · ∧ ¬xi−1 ∧ xi. Put the
tuples from Ik in T with condition ¬x1 ∧ · · · ∧ ¬xk−1. For 1 ≤ i ≤ k − 1,
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A B C

a b c b1
d b e b2
f g e b3

A C

a c (b1 ∧ b1) ∨ (b1 ∧ b1)
a e b1 ∧ b2
d c b1 ∧ b2
d e (b2 ∧ b2) ∨ (b2 ∧ b2) ∨ (b2 ∧ b3)
f e (b3 ∧ b3) ∨ (b3 ∧ b3) ∨ (b2 ∧ b3)

A C

a c b1
a e b1 ∧ b2
d c b1 ∧ b2
d e b2
f e b3

(a) (b) (c)

Figure 2.1. Boolean c-tables example

set Pr[xi = true] := pi/(1−
∑i−1

j=1 pj). It is straightforward to check that this
yields a table such that Pr[Ii] = pi.

The previous theorem was independently observed in [42] and [28].

Theorem 8.3 pc-tables (and Boolean pc-tables) are closed under the rela-
tional algebra.

Proof:(Sketch.) For any pc-table T and any RA query q we show that the
probability space q(Mod(T )) (the image of Mod(T ) under q) is in fact the
same as the space Mod(q̄(T )). The proof of Theorem 4.2 already shows that
the outcomes of the two spaces are the same. The fact that the probabilities
assigned to each outcome are the same follows from Lemma 4.3.

The proof of this theorem gives in fact an algorithm for constructing the
answer as a p-database itself, represented by a pc-table. In particular this will
work for the models of [22, 33, 47] or for models we might invent by adding
probabilistic information to v-tables or to the representation systems consid-
ered in [41]. The interesting result of [16] about the applicability of an “ex-
tensional” algorithm to calculating answer tuple probabilities can be seen also
as characterizing the conjunctive queries q which for any p-?-table T are such
that the c-table q̄(T ) is in fact equivalent to some p-?-table.

9. Queries on Annotated Relations

In this section we compare the calculations involved in query answering in
incomplete and probabilistic databases with those for two other important ex-
amples. We observe similarities between them which will motivate the general
study of annotated relations.

As a first example, consider the Boolean c-table in Figure 2.1(a), and the
followingRA query, which computes the union of two self-joins:

q(R) := πAC

(
πABR ⋊⋉ πBCR ∪ πACR ⋊⋉ πBCR

)
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A B C

a b c 2
d b e 5
f g e 1

A C

a c 2 · 2 + 2 · 2 = 8
a e 2 · 5 = 10
d c 2 · 5 = 10
d e 5 · 5 + 5 · 5 + 5 · 1 = 55
f e 1 · 1 + 1 · 1 + 5 · 1 = 7

(a) (b)

Figure 2.2. Bag semantics example

A B C

a b c {{p}}
d b e {{r}}
f g e {{s}}

A C

a c {{p}}
a e {{p, r}}
d c {{p, r}}
d e {{r}}
f e {{s}}

(a) (b)

Figure 2.3. Minimal witness why-provenance example

The Imielinski-Lipski algorithm (cf. Theorem 4.2) produces the Boolean
c-table shown in Figure 2.1(b), which can be simplified to the one shown in
Figure 2.1(c). The annotations on the tuples of this c-table are such that it
correctly represents the possible worlds of the query answer:

Mod(q(R)) = q(Mod(R))

Another kind of table with annotations is a multiset or bag. In this case, the
annotations are natural numbers which represent the multiplicity of the tuple
in the multiset. (A tuple not listed in the table has multiplicity 0.) Query
answering on such tables involves calculating not just the tuples in the output,
but also their multiplicities.

For example, consider the multiset shown in Figure 2.2(a). Then q(R),
where q is the same query from before, is the multiset shown in Figure 2.2(b).
Note that for projection and union we add multiplicities while for join we mul-
tiply them. There is a striking similarity between the arithmetic calculations
we do here for multisets, and the Boolean calculations for the c-table.

A third example involves the minimal witness why-provenance proposed
in [9] for tracking the processing of scientific data. Here source tuples are
annotated with their own tuple ids, and answering queries involves calculating
the set of sets of ids of source tuples which “contribute together” for a given
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output tuple. The minimal witness why-provenance W for an output tuple t is
required to be minimal in the sense that for any A,B in W neither is a subset
of the other.

Figure 2.3(a) shows an example of a source table, where t1, t2, t3 are tuple
ids. Considering again the same query q as above, the algorithm of [9] pro-
duces the table with why-provenance annotations shown in Figure 2.3(b). Note
again the similarity between this table and the example earlier with Boolean c-
tables.

10. K-Relations

In this section we unify the examples above by considering generalized re-
lations in which the tuples are annotated (tagged) with information of various
kinds. Then, we will define a generalization of the positive relational algebra
(RA+) to such tagged-tuple relations. The examples in Section 9 will turn out
to be particular cases.

We use here the named perspective [2] of the relational model in which
tuples are functions t : U → D with U a finite set of attributes and D a domain
of values. We fix the domain D for the time being and we denote the set of all
such U -tuples by U -Tup. (Usual) relations over U are subsets of U -Tup.

A notationally convenient way of working with tagged-tuple relations is
to model tagging by a function on all possible tuples, with those tuples not
considered to be “in” the relation tagged with a special value. For example,
the usual set-theoretic relations correspond to functions that map U -Tup to
B = {true, false} with the tuples in the relation tagged by true and those not
in the relation tagged by false.

Definition 10.1 Let K be a set containing a distinguished element 0. A
K-relation over a finite set of attributes U is a function R : U -Tup→ K such

that its support defined by supp(R) := {t | R(t) 6= 0} is finite.

In generalizing RA+ we will need to assume more structure on the set of
tags. To deal with selection we assume that the set K contains two distinct
values 0 6= 1 which denote “out of” and “in” the relation, respectively. To deal
with union and projection and therefore to combine different tags of the same
tuple into one tag we assume that K is equipped with a binary operation “+”.
To deal with natural join (hence intersection and selection) and therefore to
combine the tags of joinable tuples we assume thatK is equipped with another
binary operation “·”.

Definition 10.2 Let (K,+, ·, 0, 1) be an algebraic structure with two bi-
nary operations and two distinguished elements. The operations of the positive

algebra are defined as follows:
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empty relation For any set of attributes U , there is ∅ : U -Tup→ K such that

∅(t) = 0.

union If R1, R2 : U -Tup→ K then R1 ∪R2 : U -Tup→ K is defined by

(R1 ∪R2)(t) := R1(t) +R2(t)

projection If R : U -Tup → K and V ⊆ U then πVR : V -Tup → K is

defined by

(πVR)(t) :=
∑

t=t′ on V and R(t′) 6=0

R(t′)

(here t = t′ on V means t′ is a U -tuple whose restriction to V is the

same as the V -tuple t; note also that the sum is finite since R has finite
support)

selection IfR : U -Tup→ K and the selection predicate Pmaps each U -tuple
to either 0 or 1 then σPR : U -Tup→ K is defined by

(σPR)(t) := R(t) · P(t)

Which {0, 1}-valued functions are used as selection predicates is left un-
specified, except that we assume that false—the constantly 0 predicate,
and true—the constantly 1 predicate, are always available.

natural join If Ri : Ui-Tup → K i = 1, 2 then R1 ⋊⋉ R2 is the K-relation
over U1 ∪ U2 defined by

(R1 ⋊⋉ R2)(t) := R1(t1) ·R2(t2)

where t1 = t on U1 and t2 = t on U2 (recall that t is a U1 ∪ U2-tuple).

renaming If R : U -Tup → K and β : U → U ′ is a bijection then ρβR is a
K-relation over U ′ defined by

(ρβR)(t) := R(t ◦ β)

Proposition 10.3 The operation of RA+ preserve the finiteness of sup-

ports therefore they map K-relations to K-relations. Hence, Definition 10.2
gives us an algebra onK-relations.

This definition generalizes the definitions ofRA+ for the motivating exam-
ples we saw. Indeed, for (B,∨,∧, false, true) we obtain the usual RA+ with
set semantics. For (N,+, ·, 0, 1) it isRA+ with bag semantics.

For the Imielinski-Lipski algebra on c-tables we consider the set of Boolean
expressions over some set B of variables which are positive, i.e., they involve
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only disjunction, conjunction, and constants for true and false. Then we iden-
tify those expressions that yield the same truth-value for all Boolean assign-
ments of the variables in B.6 Denoting by PosBool(B) the result and apply-
ing Definition 10.2 to the structure (PosBool(B),∨,∧, false, true) produces
exactly the Imielinski-Lipski algebra.

These three structures are examples of commutative semi-rings, i.e., alge-
braic structures (K,+, ·, 0, 1) such that (K,+, 0) and (K, ·, 1) are commuta-
tive monoids, · is distributive over + and ∀a, 0·a = a·0 = 0. Further evidence
for requiring K to form such a semi-ring is given by

Proposition 10.4 The following RA identities:
union is associative, commutative and has identity ∅;
join is associative, commutative and distributive over union;

projections and selections commute with each other as well as with

unions and joins (when applicable);

σfalse(R) = ∅ and σtrue(R) = R.

hold for the positive algebra on K-relations if and only if (K,+, ·, 0, 1) is a
commutative semi-ring.

Glaringly absent from the list of relational identities are the idempotence of
union and of (self-)join. Indeed, these fail for the bag semantics, an important
particular case of the general treatment presented here.

Any function h : K → K ′ can be used to transform K-relations to K ′-
relations simply by applying h to each tag (note that the support may shrink
but never increase). Abusing the notation a bit we denote the resulting trans-
formation from K-relations to K ′-relations also by h. The RA operations we
have defined work nicely with semi-ring structures:

Proposition 10.5 Let h : K → K ′ and assume that K,K ′ are commu-
tative semi-rings. The transformation given by h from K-relations to K ′-
relations commutes with any RA+ query (for queries of one argument)

q(h(R)) = h(q(R)) if and only if h is a semi-ring homomorphism.

Proposition 10.5 has some useful applications. For example, for Boolean c-
tables and semi-ring homomorphisms Evalν : PosBool(B)→ B correspond-
ing to valuations of the variables ν : B → B, Proposition 10.5 generalizes
Lemma 4.3 and can be used to establish the closure of PosBool(B)-annotated
relations (in the sense of Section 4) underRA+ queries.

6in order to permit simplifications; it turns out that this is the same as transforming using the axioms of
distributive lattices [13]
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A B C

a b c p
d b e r
f g e s

A C

a c {p}
a e {p, r}
d c {p, r}
d e {r, s}
f e {r, s}

A C

a c {{p}}
a e {{p, r}}
d c {{p, r}}
d e {{r}, {r, s}}
f e {{s}, {r, s}}

A C

a c 2p2

a e pr
d c pr
d e 2r2 + rs
f e 2s2 + rs

(a) (b) (c) (d)

Figure 2.4. Lineage, why-provenance, and provenance polynomials

11. Polynomials for Provenance

Lineage was defined in [14, 15] as a way of relating the tuples in a query
output to the tuples in the query input that “contribute” to them. The lineage
of a tuple t in a query output is in fact the set of all contributing input tuples.

Computing the lineage for queries in RA+ turns out to be exactly Defini-
tion 10.2 for the semi-ring (P(X) ∪ {⊥},+, ·,⊥, ∅) where X consists of the
ids of the tuples in the input instance,⊥+S = S+⊥ = S, S ·⊥ = ⊥·S = ⊥,
and S + T = S · T = S ∪ T if S, T 6= ⊥7

For example, we consider the same tuples as in relation R used in the ex-
amples of Section 9 but now we tag them with their own ids p,r,s, as shown
in Figure 2.4(a). The resulting R can be seen as a P({p, r, s})-relation by re-
placing p with {p}, etc. Applying the query q from Section 9 to R we obtain
according to Definition 10.2 the P({p, r, s})-relation shown in Figure 2.4(b).

A related but finer-grained notion of provenance, called why-provenance,
was defined in [9].8 The why-provenance of a tuple t in a query output is the
set of sets of input tuples which contribute together to produce t. The lineage
of t can be obtained by flattening the why-provenance of t.

As with lineage, computing the why-provenance for queries inRA+ can be
done [8] using Definition 10.2, this time for the semi-ring
(P(P(X)),∪,⋒, ∅, {∅}) where X is the set of tuple ids for the input instance
andA⋒B is the pairwise union of A andB, i.e., A⋒B := {a∪ b : a ∈ A, b ∈
B}. For example, the R in Figure 2.4(a) can be seen as a why-provenance re-
lation by replacing p with {{p}}, etc. Applying the query q from Section 9 to
R we obtain according to Definition 10.2 the why-provenance relation shown
in Figure 2.4(c).

7This definition for lineage, due to [8], corrects the one which appeared in [27].
8The distinction between lineage and why-provenance, which went unnoticed in [9] and [27], was pointed
out in [8].
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Finally, to return to the third example of Section 9, the minimal witness why-
provenance can be computed [8] using a semi-ring whose domain is irr(P(X)),
the set of irredundant subsets of P(X), i.e., W is in irr(P(X)) if for any
A,B in W neither is a subset of the other. We can associate with any W ∈
P(X) a unique irredundant subset of W by repeatedly looking for elements
A,B such that A ⊂ B and deleting B from W . Then we define a semi-ring
(irr(P(X)),+, ·, 0, 1) as follows:

I + J := irr(I ∪ J) I · J := irr(I ⋒ J)
0 := ∅ 1 := {∅}

The table in Figure 2.3(b) is obtained by applying the query q from Sec-
tion 9 to R of Figure 2.3(a) according to Definition 10.2 for the minimal why-
provenance semi-ring. Note that this is a well-known semi-ring: the construc-
tion above is the construction for the free distributive lattice generated by the
set X . Moreover, it is isomorphic PosBool(X)! This explains the similarity
between the calculations in Figure 2.1 and Figure 2.3.

These examples illustrate the limitations of lineage and why-provenance
(also recognized in [12]). For example, in the query result in Figure 2.4(b)
(f, e) and (d, e) have the same lineage, the input tuples with id r and s. How-
ever, the query can also calculate (f, e) from s alone and (d, e) from r alone.
In a provenance application in which one of r or s is perhaps less trusted or less
usable than the other the effect can be different on (f, e) than on (d, e) and this
cannot be detected by lineage. Meanwhile, with why-provenance we do see
that (f, e) can be calculated from s alone and (d, e) from r alone, but we have
lost information about multiplicities (the number of times a tuple was used in
a self-join, or the number of derivations of an output tuple in which a given set
of tuples is involved) which may be needed to calculate a more refined notion
of trust. It seems that we need to know not just which input tuples contribute
but also exactly how they contribute.9

On the other hand, by using the different operations of the semi-ring, Def-
inition 10.2 appears to fully “document” how an output tuple is produced. To
record the documentation as tuple tags we need to use a semi-ring of sym-
bolic expressions. In the case of semi-rings, like in ring theory, these are the
polynomials.

Definition 11.1 LetX be the set of tuple ids of a (usual) database instance
I . The positive algebra provenance semi-ring for I is the semi-ring of poly-
nomials with variables (a.k.a. indeterminates) fromX and coefficients from N,

9In contrast to why-provenance, the notion of provenance we describe could justifiably be called how-
provenance.
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with the operations defined as usual10:

(N[X],+, ·, 0, 1).

Example of provenance computation. Start again from the relation R in
Figure 2.4(a) in which tuples are tagged with their own id. R can be seen as
an N[p, r, s]-relation. Applying to R the query q from Section 9 and doing
the calculations in the provenance semi-ring we obtain the N[p, r, s]-relation
shown in Figure 2.4(c). The provenance of (f, e) is 2s2 + rs which can be
“read” as follows: (f, e) is computed by q in three different ways; two of them
use the input tuple s twice; the third uses input tuples r and s. We also see that
the provenance of (d, e) is different and we see how it is different! �

The following standard property of polynomials captures the intuition that
N[X] is as “general” as any semi-ring:

Proposition 11.2 Let K be a commutative semi-ring and X a set of vari-

ables. For any valuation v : X → K there exists a unique homomorphism of

semi-rings

Evalv : N[X]→ K

such that for the one-variable monomials we have Evalv(x) = v(x).

As the notation suggests, Evalv(P ) evaluates the polynomial P in K given
a valuation for its variables. In calculations with the integer coefficients, na
where n ∈ N and a ∈ K is the sum in K of n copies of a. Note that N is
embedded in K by mapping n to the sum of n copies of 1K .

Using the Eval notation, for any P ∈ N[x1, . . . , xn] and any K the polyno-
mial function fP : Kn → K is given by:

fP (a1, . . . , an) := Evalv(P ) v(xi) = ai, i = 1..n

Putting together Propositions 10.5 and 11.2 we obtain the following con-
ceptually important fact that says, informally, that the semantics of RA+ on
K-relations for any semi-ring K factors through the semantics of the same in
provenance semi-rings.

Theorem 11.3 Let K be a commutative semi-ring, let R be a K-relation,
and let X be the set of tuple ids of the tuples in supp(R). There is an obvious
valuation v : X → K that associates to a tuple id the tag of that tuple in R.
We associate to R an “abstractly tagged” version, denoted R̄, which is an

X ∪ {0}-relation. R̄ is such that supp(R̄) = supp(R) and the tuples in

10These are polynomials in commutative variables so their operations are the same as in middle-school
algebra, except that subtraction is not allowed.
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supp(R̄) are tagged by their own tuple id. Note that as an X ∪ {0}-relation,
R̄ is a particular kind of N[X]-relation.
Then, for anyRA+ query q we have11

q(R) = Evalv(q(R̄))

To illustrate an instance of this theorem, consider the provenance polynomial
2r2 + rs of the tuple (d, e) in Figure 2.4(c). Evaluating it in N for p = 2, r =
5, s = 1 we get 55 which is indeed the multiplicity of (d, e) in Figure 2.2(a).

12. Query Containment

Here we present some results about query containment w.r.t. the general
semantics in K-relations.

Definition 12.1 Let K be a naturally ordered commutative semi-ring and

let q1, q2 be two queries defined on K-relations. We define containment with
respect toK-relations semantics by

q1 ⊑K q2
def⇔ ∀R ∀t q1(R)(t) ≤ q2(R)(t)

WhenK is B and N we get the usual notions of query containment with respect
to set and bag semantics.

Some simple facts follow immediately. For example if h : K → K ′ is a
semi-ring homomorphism such that h(x) ≤ h(y)⇒ x ≤ y and q1, q2 areRA+

queries it follows from Prop. 10.5 that q1 ⊑K′ q2 ⇒ q1 ⊑K q2. If instead h is
a surjective homomorphism then q1 ⊑K q2 ⇒ q1 ⊑K′ q2.

The following result allows us to use the decidability of containment of
unions of conjunctive queries [11, 40].

Theorem 12.2 If K is a distributive lattice then for any q1, q2 unions of
conjunctive queries we have

q1 ⊑K q2 iff q1 ⊑B q2

Proof:(sketch) One direction follows because B can be homomorphically
embedded inK. For the other direction we use the existence of query body ho-
momorphisms to establish mappings between monomials of provenance poly-
nomials. Then we apply the factorization theorem (11.3) and the idempotence
and absorption laws of K.

Therefore, if K is a distributive lattice for (unions of) conjunctive queries
containment with respect to K-relation semantics is decidable by the same

11To simplify notation we have stated this theorem for queries of one argument but the generalization is
immediate.



34 MANAGING AND MINING UNCERTAIN DATA

procedure as for standard set semantics. PosBool(B) is a distributive lattice,
as is the semi-ring ([0, 1],max,min, 0, 1) which is related to fuzzy sets [46]
and could be referred to as the fuzzy semi-ring. A theorem similar to the one
above is shown in [32] but the class of algebraic structures used there does not
include PosBool(B) (although it does include the fuzzy semi-ring).

13. Related Work

Lineage and why-provenance were introduced in [14, 15, 9], (the last paper
uses a tree data model) but the relationship with [30] was not noticed. The
papers on probabilistic databases [22, 47, 33] note the similarities with [30]
but do not attempt a generalization.

Two recent papers on provenance, although independent of our work, have
a closer relationship to the approach outlined here. Indeed, [12] identifies the
limitations of why-provenance and proposes route-provenance which is also
related to derivation trees. The issue of infinite routes in recursive programs
is avoided by considering only minimal ones. [7] proposes a notion of lineage
of tuples for a type of incomplete databases but does not consider recursive
queries. It turns out that we can also describe the lineage in [7] by means of a
special commutative semi-ring.

The first attempt at a general theory of relations with annotations appears
to be [32] where axiomatized label systems are introduced in order to study
containment.

14. Conclusion and Further Work

The results on algebraic completion may not be as tight as they can be.
Ideally, we would like to be able show that for each representation system
we consider, the fragment of RA we use is minimal in the sense that closing
the representation system under a more restricted fragment does not obtain a
complete representation system.

We did not consider c-tables with global conditions [24] nor did we describe
the exact connection to logical databases [38, 44]. Even more importantly, we
did not consider complexity issues as in [3]. All of the above are important
topics for further work, especially the complexity issues and the related issues
of succinctness/compactness of the table representations.

As we see, in pc-tables the probability distribution is on the values taken by
the variables that occur in the table. The variables are assumed independent
here. This is a lot more flexible (as the example shows) than independent
tuples, but still debatable. Consequently, to try to make pc-tables even more
flexible, it would be worthwhile to investigate models in which the assumption
that the variables take values independently is relaxed by using conditional
probability distributions [21].
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It would be interesting to connect this work to the extensive literature on
disjunctive databases, see e.g., [35], and to the work on probabilistic object-
oriented databases [19].

Probabilistic modeling is by no means the only way to model uncertainty in
information systems. In particular it would be interesting to investigate possi-
bilistic models [29] for databases, perhaps following again, as we did here, the
parallel with incompleteness.

Query answering on annotated relations can be extended beyond RA+ to
recursive Datalog programs, using semi-rings of formal power series (see [27]
for details). These formal power series, which can be represented finitely using
a system of equations, are the foundation of trust policies and incremental
update propagation algorithms in the ORCHESTRA collaborative data sharing
system [26].

Beyond the technical results, the approach surveyed above can be regarded
also as arguing that various forms of K-relations, even multisets, provide
coarser forms of provenance while the polynomial annotations are, by virtue of
their “universality” (as illustrated by the factorization theorem) the most gen-
eral form of annotation possible with the boundaries of semi-ring structures.
This might be a perspective worth using when, in the future, we search for
provenance structures for data models other than relational.
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15. Appendix

Proposition 15.1 There exists a relational query q such that q(N ) = Zn.

Proof: Define sub-query q′ to be the relational query

q′(V ) := V − πℓ(σℓ 6=r(V × V )),

where ℓ is short for 1, . . . , n and ℓ 6= r is short for 1 6= n+ 1 ∨ · · · ∨ n 6= 2n.
Note that q′ yields V if V consists of a single tuple and ∅ otherwise. Now
define q to be the relational query

q(V ) := q′(V ) ∪ ({t} − πℓ({t} × q′(V ))),

where t is a tuple chosen arbitrarily from D
n. It is clear that q(N ) = Zn.

Definition 15.2 A table in the representation system Rsets is a multiset of
sets of tuples, or blocks, each such block optionally labeled with a ‘?’. If T is
an Rsets table, then Mod(T ) is the set of instances obtained by choosing one
tuple from each block not labeled with a ‘?’, and at most one tuple from each

block labeled with a ‘?’.

Definition 15.3 A table in the representation system R⊕≡ is a multiset of
tuples {t1, . . . , tm} and a conjunction of logical assertions of the form i ⊕
j (meaning ti or tj must be present in an instance, but not both) or i ≡ j
(meaning ti is present in an instance iff tj is present in the instance). If T is
an R⊕≡ table then Mod(T ) consists of all subsets of the tuples satisfying the
conjunction of assertions.

Definition 15.4 A table in the representation system RAprop is a multiset of
or-set tuples {t1, . . . , tm} and a Boolean formula on the variables {t1, . . . , tm}.
If T is anRAprop table then Mod(T ) consists of all subsets of the tuples satisfy-
ing the Boolean assertion, where the variable ti has value true iff the tuple ti
is present in the subset.

Theorem 5.3 (RA-Completion).
1 The representation system obtained by closing Codd tables under SPJU
queries isRA-complete.

2 The representation system obtained by closing v-tables under SP queries
isRA-complete.

Proof: In each case we show that given an arbitrary c-table T , one can
construct a table S and a query q such that q̄(S) = T .
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1 Trivial corollary of Theorem 3.2.

2 Let k be the arity of T . Let {t1, . . . , tm} be an enumeration of the tuples
of T , and let {x1, . . . , xn} be an enumeration of the variables which
appear in T . Construct a v-table S with arity k + n + 1 as follows. For
every tuple ti in T , put exactly one tuple t′i in S, where t′i agrees with ti
on the first k columns, the k + 1st column contains the constant i, and
the last m columns contain the variables x1, . . . , xm. Now let q be the
SP query defined

q := π1,...,k(σWm
i=1 k+1=‘i’∧ψi(S))

where ψi is obtained from the condition T (ti) of tuple ti by replacing
variable names with their corresponding indexes in S.

Theorem 5.4 (Finite Completion).

1 The representation system obtained by closing or-set-tables under PJ
queries is finitely complete.

2 The representation system obtained by closing finite v-tables under PJ
or S+P queries is finitely complete.

3 The representation system obtained by closing Rsets under PJ or PU
queries is finitely complete.

4 The representation system obtained by closingR⊕≡ under S+PJ queries
is finitely complete.

Proof: Fix an arbitrary finite incomplete database I = {I1, . . . , In} of
arity k. It suffices to show in each case that one can construct a table T in
the given representation system and a query q in the given language such that
q(Mod(T )) = I .

1 We construct a pair of or-set-tables S and T as follows. (They can be
combined together into a single table, but we keep them separate to sim-
plify the presentation.) For each instance Ii in I, we put all the tuples
of Ii in S, appending an extra column containing value i. Let T be the
or-set-table of arity 1 containing a single tuple whose single value is the
or-set 〈1, 2, . . . , n〉. Now let q be the S+PJ query defined:

q := π1,...,kσk+1=k+2(S × T ).

2 Completion for PJ follows from Case 1 and the fact that finite v-tables
are strictly more expressive than or-set tables. For S+P , take the finite



REFERENCES 43

v-table representing the cross product of S and T in the construction
from Case 1, and let q be the obvious S+P query.

3 Completion for PJ follows from Case 1 and the fact (shown in [41])
that or-set-tables are strictly less expressive than Rsets. Thus we just
need show the construction for PU . We construct an Rsets table T as
follows. Let m be the cardinality of the largest instance in I. Then T
will have arity km and will consist of a single block of tuples. For every
instance Ii in I , we put one tuple in T which has every tuple from Ii
arranged in a row. (If the cardinality of Ii is less than m, we pad the
remainder with arbitrary tuples from Ii.) Now let q be the PU query
defined as follows:

q :=

m−1⋃

i=0

πki,...,ki+k−1(T )

4 We construct a pair of R⊕≡-tables S and T as follows. (S can be en-
coded as a special tuple in T , but we keep it separate to simplify the
presentation.) Let m = ⌈lgn⌉. T is constructed as in Case 2. S is a
binary table containing, for each i, 1 ≤ i ≤ m, a pair of tuples (0, i) and
(1, i) with an exclusive-or constraint between them. Let sub-query q′ be
defined

q′ :=

m∏

i=1

π1(σ2=‘i’(S))

The S+PJ query q is defined as in Case 2, but using this definition of
q′.

Theorem 5.5 (General Finite Completion). Let T be a representation system
such that for all n ≥ 1 there exists a table T in T such that |Mod(T )| ≥ n.
Then the representation system obtained by closing T under RA is finitely-
complete. Proof: Let T be a representation system such that for all n ≥ 1
there is a table T in T such that |Mod(T )| ≥ n. Let I = {I1, ..., Ik} be an
arbitrary non-empty finite set of instances of arity m. Let T be a table in T
such thatMod(T ) = {J1, . . . , Jℓ}, with ℓ ≥ k. DefineRA query q to be

q(V ) :=
⋃

1≤i≤k−1

Ii × qi(V ) ∪
⋃

k≤i≤ℓ

Ik × qi(V ),

where Ii is the query which constructs instance Ii and qi(V ) is the Boolean
query which returns true iff V is identical to Ii (which can be done in RA).
Then q(Mod(T )) = I .
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Abstract Uncertainty in data values is pervasive in all real-world environments and have
received a lot of attention in the literature. Over the last decade or so, several
extensions to the relational model have been proposed to address the issue of
how data uncertainty can be modeled in a comprehensive manner. This chapter
provides a summary of the major extensions. We discuss the strengths and weak-
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1. Introduction

Database systems are widely used as a part of information systems in a va-
riety of applications. The environment that a database attempts to represent is
often very uncertain; this translates into uncertainty in terms of the data values.
There could be several reasons for uncertainty in data items. The actual value
of a data item may be unknown or not yet realized. For example, one may
need to store the uncertainty associated with future stock prices in a securities
database [1]; this information would be useful in developing a portfolio of in-
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vestments with specified characteristics. Uncertainty in data items may also
arise from consolidation or summarization of data [2]. For example, the re-
sults of market surveys are often expressed in a consolidated manner in which
the details of individual consumer preferences are summarized. Such informa-
tion is of considerable importance in designing new products. Another well-
documented source of data uncertainty is data heterogeneity [8, 16]. When two
heterogeneous databases show different values for the same data item, its ac-
tual value is not known with certainty. This has become an important concern
in developing corporate data warehouses which consolidate data from multi-
ple heterogeneous data sources. When the values for common data items are
not consistent it may not be easy to establish which values are correct. How
should such data be stored? One option is to store only values of those data
items that are consistent. Of course, this would lead to ignoring a large number
of data items for which we have some information. The other alternative is to
record the different possible values for such data items, recognizing that there
is some uncertainty associated with those values. By recording such data, and
recognizing explicitly the uncertainty associated with those values, the user
would be able to decide (perhaps using a cost-benefit analysis) when it is ap-
propriate to use such data. The above examples illustrate the need to represent
uncertainty in data models.

The relational data model has become the dominant model for handling data
for a majority of applications. The relational model provides a range of advan-
tages, such as access flexibility, logical and physical data independence, data
integrity, reduced (and controlled) data redundancy, and enhanced program-
mer productivity. Unfortunately, the standard relational model does not have
a comprehensive way to handle incomplete and uncertain data. As discussed
earlier, such data, however, exist everywhere in the real world. Having no
means to model these data, the relational model ignores all uncertain data and
focuses primarily on values that are known for sure; uncertain data items are
represented using “null" values, which are special symbols often employed
to represent the fact that the value is either unknown or undefined [4, 15].
Consequently, relational databases do not yield satisfactory results in many
real-world situations. Since the standard relational model cannot represent the
inherent uncertain nature of the data, it cannot be used directly. This has led to
several efforts to extend the relational model to handle uncertain data.

In order to store uncertain data, one needs to specify the nature of uncer-
tainty that is being considered. It is well-documented that there are two types
of uncertainties in the real world: uncertainty due to vagueness and uncertainty
due to ambiguity [13]. Uncertainty due to vagueness is associated with the dif-
ficulty of making sharp or precise distinctions in the real world. For example,
subjective terms such as tall, far, and heavy are vague. These cases can be
modeled reasonably well with the help of tools such as fuzzy set theory. Un-
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certainty due to ambiguity, on the other hand, is associated with situations in
which the choices among several precise alternatives cannot be perfectly re-
solved. Such situations are better modeled using the probability measure [13].
Probability theory has a rich theoretical basis, is easy to interpret, and empir-
ically testable. Therefore, we restrict our discussion here to models that use
probability theory and its associated calculus.

To summarize, we consider extensions of the relational model that gener-
alize the standard relational model to allow the handling of uncertain data.
The use of the relational framework enables the use of the powerful relational
algebra operations to the extent possible. We focus on those extensions that
use probability measures in representing uncertainty. The choice of probabil-
ity theory allows the use of established probability calculus in manipulating
uncertain data in the relations, and helps extend and redefine the relational al-
gebra operations. Such models are referred to as probabilistic relational data
models.

There have been several alternative modeling frameworks presented in the
literature. We discuss the seminal probabilistic relational models in this chap-
ter. These models can be viewed as belonging to one of the following ap-
proaches:

Point-valued probability measures are assigned to every tuple in a rela-
tion. The probability measure indicates the joint probability of all the
attribute values in that tuple. This includes the work of Cavallo and
Pittarelli [3], Pittarelli [17], Dey and Sarkar [5], and Fuhr and Rölleke [11],
among others.

Point-valued probability measures are assigned to attribute values or sets
of attribute values, resulting in a nested relational model. The model
proposed by Barbara et al [1] uses this approach.

Interval-valued probability measures are assigned to sets of attribute val-
ues, which is also a nested relational model. The choice of interval-
valued probabilities helps capture the error in measurement approaches,
and allows for a generalized set of combination strategies. Lakshmanan
et al [14] present a model using this approach.

Interval-valued probability measures are assigned to complex values,
which are treated as tuples. The model proposed by Eiter et al [9] uses
this approach.

We provide the main theoretical underpinnings of each of the above exten-
sions in the next section. In Section 3, we provide a detailed discussion of the
extended algebra proposed in one of these models (the one developed by Dey
and Sarkar [5]). This forms the basis for comparing the operations suggested
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in the different approaches, as discussed in Section 4. Section 5 provides di-
rections for future research.

2. Different Probabilistic Data Models

We discuss extant research on probabilistic data models. Each model is
associated with a representation scheme for uncertain data, and an associated
algebra specifying how the data in the relations should be manipulated for
relational and set theoretic operations. We discuss in this section the important
representation schemes proposed by different sets of researchers, and discuss
the assumptions underlying these representations.

Our discussion is organized in the following manner. We first discuss those
models that assign point-valued probability measures to each tuple in a rela-
tion. Next, we discuss a model that assigns point-valued probability measures
at the attribute level. After that, we describe a model that assigns probability
intervals at the attribute level. Finally, we discuss a model that assigns prob-
ability intervals at the tuple level. Other important aspects of the models are
discussed along with the models.

2.1 Point-Valued Probability Measures Assigned to Each
Tuple

By assigning point-valued probability measures to each tuple in a relation,
the models in this category adhere to the first Normal Form (1NF). This makes
the implementation of such models straightforward, and the probabilistic op-
erations defined on such models more in line with traditional relational opera-
tions.

Cavallo and Pittarelli [3], Pittarelli [17]. Cavallo and Pittarelli are gener-
ally credited with providing the first probabilistic data model. They attempted
to generalize the relational model by replacing the characteristic function of a
relation with a probability distribution function, so that facts about which one
is uncertain can also be handled. The probability assigned to each tuple in-
dicates the joint probability of all the attribute values in the tuple. The tables
shown in Figure 3.1 illustrate their model for a database that stores information
on employees in an organization [17]. The first table stores information about
the department to which an employee belongs. The second table stores infor-
mation about the quality of an employee and the bonus the employee may be
eligible for. The third table captures the expected sales generated by employees
in the coming year.

An important requirement in their model is that the total probability as-
signed to all tuples in a relation should be one. This implies that tuples are
disjoint; in other words, the set of attribute-values in a tuple is mutually ex-
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Table 1

Employee Department p1(t)
Jon Smith Toy 0.5
Fred Jones Houseware 0.5

Table 2

Employee Quality Bonus p2(t)
Jon Smith Great Yes 0.2
Jon Smith Good Yes 0.25
Jon Smith Fair No 0.05
Fred Jones Good Yes 0.5

Table 3

Employee Sales p3(t)
Jon Smith 30–34 K 0.15
Jon Smith 35–39K 0.35
Fred Jones 20–24 K 0.25
Fred Jones 25–29K 0.25

Figure 3.1. Probabilistic Database with Employee Information (Reproduced from [17])

clusive of the sets of attribute-values for every other tuple in a relation. This
constraint is reasonable when a relation is used to store data about one uncer-
tain event, where the event is characterized by one or more attributes. How-
ever, it is not very convenient to store data on multiple entity instances, which
is typically the case for traditional relations. As a result, even though it may
be known with certainty that Jon Smith works in the Toy department and Fred
Jones works in the Houseware department, Table 1 shows the respective prob-
abilities to be equal to 0.5 each. The known probability for the department
affiliation of each employee in this example can be recovered by multiplying
each probability by the number of tuples [17]. An alternative approach to us-
ing their representation would be to use a separate relation for every distinct
entity (or relationship) instance that is captured in a relation. Of course, this
may result in an unmanageably large number of tables.

Dey and Sarkar [5]. Dey and Sarkar present a probabilistic relational
model that does away with the restriction that the sum of probabilities of tuples
in a relation must equal one. Instead, they consider keys to identify object in-
stances, and use integrity constraints to ensure that the probabilities associated
with different tuples representing the same object instance should not exceed
one. If an object is known to exist with certainty, the probability stamps asso-
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ciated with the corresponding key value sum up to one exactly. Their model
also allows storing data about objects whose very existence may be uncertain.
The probability stamps associated with the key value of such an object sum up
to less than one. Figure 3.2 illustrates an Employee relation in their model.

EMP# ssn lName fName rank salary dept pS
3025 086-63-0763 Lyons James clerk 15K toy 0.2
3025 086-63-0763 Lyons James cashier 20K shoe 0.6
3025 086-63-0763 Lyons James cashier 15K auto 0.2
6723 089-83-0789 Kivari Jack clerk 18K toy 0.4
6723 089-83-0789 Kivari Jack cashier 20K auto 0.4
6879 098-84-1234 Peters Julia clerk 25K toy 0.3
6879 098-84-1234 Peters Julia clerk 27K toy 0.1
6879 098-84-1234 Peters Julia cashier 25K shoe 0.6

Figure 3.2. A Probabilistic Relation Employee (Reproduced from [5])

In this table, the primary key is EMP#, and the last column pS denotes
the probability associated with each row of the relation. The pS column for
the first row has the value 0.2; it means that there is a probability of 0.2 that
there exists an employee with the following associated values: 3025 for EMP#,
086-63-0763 for ssn, Lyons for lName, James for fName, clerk for rank, 15K
for salary, and toy for dept. All other rows are interpreted in a similar fash-
ion. The probability stamp of a tuple is, therefore, the joint probability of the
given realizations of all the attributes (in that tuple) taken together. Probabili-
ties of individual attributes can be derived by appropriately marginalizing the
distribution. For example, the first three rows indicate that it is known with
certainty that (i) there exists an employee with EMP# 3025, and (ii) the ssn,
lName and fName for this employee are 086-63-0763, Lyons and James, re-
spectively. Similarly, the probability of an employee having EMP# = 3025 and
rank = “cashier" is 0.8 (from the second and the third rows). Also, in the ex-
ample shown in Figure 3.2, the probability masses associated with EMP# 6723
add up to 0.8; this means that the existence of an employee with EMP# 6723
is not certain and has a probability of 0.8.

This model assumes that the tuples with the same key value are disjoint, and
each such tuple refers to mutually exclusive states of the world. At the same
time, tuples with different key values are assumed to be independent of each
other. Further, attributes in different relations are assumed to be independent,
conditional on the key values. Dependent attributes are stored with their full
joint distributions in the same relation.

Their model is unisorted, with the only valid object being a relation. The
algebra described on their model is shown to be a consistent extension of tradi-
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tional relational algebra, and reduces to the latter when there is no uncertainty
associated with attribute values.

Fuhr and Rölleke [11]. Fuhr and Rölleke were motivated to develop a
probabilistic relational model in order to integrate a database with information
retrieval systems. The driving force behind their model is to extend the rela-
tional model in such a way that it can handle probabilistic weights required for
performing information retrieval. In document indexing, terms are assigned
weights with respect to the documents in which they occur, and these weights
are taken into account in retrieving documents, where the probability of rele-
vance of a document with respect to a query is estimated as a function of the
indexing weights of the terms involved (for example, [10, 18]).

Analogous to [5], they too consider a model that is closed with respect to the
operations defined, and assign probabilities to tuples as a whole. An important
aspect of their approach is to associate each tuple of a probabilistic relation
with a probabilistic event. A probabilistic relation corresponds to an ordinary
relation where the membership of a single tuple in this relation is affected by
a probabilistic event. If the event is true, the tuple belongs to the relation;
otherwise it does not belong to the relation. For each event, the probability of
being true must be provided.

Events are considered to be of two types: basic and complex. Complex
events are Boolean combinations of basic events. Tuples in base relations are
associated with basic events, while tuples in derived relations are associated
with complex events. Event keys are used as identifiers for tuples in a relation.
Figure 3.3 illustrates probability relations in their framework [11].

The example shows two relations, DocTerm and DocAu. The relation Doc-
Term stores weighted index terms for some documents, while DocAu provides
the probability that an author is competent in the subjects described in a doc-
ument. In these examples, event keys are represented as a combination of the
relation name and the attribute values; e.g., DT(1,IR) is the event key for the
first tuple in the relation DocTerm. It is suggested that actual implementations
use internal IDŠs.

All basic events are assumed to be independent of each other. However,
in order to handle imprecise attributes with disjoint values, they modify the
independence assumption by introducing the notion of a disjointness key. The
disjointness key is used as a kind of integrity constraint in their framework, and
is analogous to that of a primary key in [5]. Since complex events are combina-
tions of basic events, they do not have to be independent of other events (basic
or complex). The authors identify conditions under which operations on com-
plex events are probabilistically meaningful. Attributes in different relations
are implicitly assumed to be independent of each other.
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DocTerm β DocNo Term
DT(1,IR) 0.9 1 IR
DT(2,DB) 0.7 2 DB
DT(3,IR) 0.8 3 IR
DT(3,DB) 0.5 3 DB
DT(4,AI) 0.8 4 AI

DocAu β DocNo AName
DA(1,Bauer) 0.9 1 Bauer
DA(2,Bauer) 0.3 2 Bauer
DA(2,Meier) 0.9 2 Meier

DA(2,Schmidt) 0.8 2 Schmidt
DA(3,Schmidt) 0.7 3 Schmidt

DA(4,Koch) 0.9 4 Koch
DA(4,Bauer) 0.6 4 Bauer

Figure 3.3. Relations DocTerm and DocAu (Reproduced from [11])

2.2 Point-Valued Probability Measures Assigned to
Attributes and Attribute Sets

Barbara et al [1]. This model extends the relational model by assigning
probabilities to values of attributes. Relations have keys which are assumed
to be deterministic. Non-key attributes describe the properties of entities, and
may be deterministic or stochastic in nature. Figure 3.4 illustrates an example
relation in this model.

Key Independent Interdependent Independent
Deterministic Stochastic Stochastic

EMPLOYEE DEPARTMENT QUALITY BONUS SALES
0.4 [Great Yes] 0.3 [30–34K]

Jon Smith Toy 0.5 [Good Yes] 0.7 [35–39K]
0.1 [Fair No]

Fred Jones Houseware 1.0 [Good Yes] 0.5 [20–24K]
0.5 [25–29K]

Figure 3.4. Example Probabilistic Relation (Reproduced from [1])

The example relation stores information on two entities, “Jon Smith” and
“Fred Jones. Since key values are deterministic, the two entities exist with”
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certainty. The attribute DEPARTMENT is also deterministic in this example.
Therefore, it is certain that Jon Smith works in the Toy department, and Fred
Jones in the Houseware department. The attributes QUALITY and BONUS
are probabilistic and jointly distributed. The interpretation is that QUALITY
and BONUS are random variables whose outcome (jointly) depends on the
EMPLOYEE under consideration. In this example, the probability that Jon
Smith has a great quality and will receive a bonus is 0.4. The last attribute,
SALES, describes the expected sales in the coming year by the employee and
is assumed to be probabilistic but independent of the other non-key attributes.

In this model, each stochastic attribute is handled as a discrete probability
distribution function. This means that the probabilities for each attribute in a
tuple must add up to 1.0. However, to account for situations where the full dis-
tribution is not known or is difficult to specify exactly, an important feature of
this model is the inclusion of missing probabilities. The example in Figure 3.5
illustrates how missing probabilities can be represented in this model.

Key Independent Interdependent Independent
Deterministic Stochastic Stochastic

EMPLOYEE DEPARTMENT QUALITY BONUS SALES
0.3 [Great Yes] 0.3 [30–34K]

Jon Smith Toy 0.4 [Good Yes] 0.5 [35–39K]
0.2 [Fair *] 0.2 [*]
0.1 [* *]

Figure 3.5. Example Probabilistic Relation with Missing Probabilities (Reproduced from [1])

In the example shown in Figure 3.5, a probability of 0.2 has not been as-
signed to a particular sales range. While the authors assume that this missing
probability is distributed over all ranges in the domain, they do not make any
assumptions as to how it is distributed. Since the missing probability may or
may not be in the range $30–34K, the probability that the sales will be $30–
34K next year is interpreted to lie between 0.3 and 0.3+0.2. In other words,
the probability 0.3 associated with the sales range $30–34K is a lower bound.
Similarly, 0.5 is a lower bound for the probability associated with $35–39K.
The missing probability for the joint distribution over the attributes QUAL-
ITY and BONUS is interpreted similarly. A probability of 0.1 is distributed
in an undetermined way over all possible quality and bonus pairs, while 0.2
is distributed only over pairs that have a “Fair" quality component. Thus, the
probability that Smith is rated as “Great" and gets a bonus is between 0.3 and
0.3+0.1.

The incorporation of missing probabilities in a probabilistic model is one of
the important contributions of this work. It allows the model to capture uncer-
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tainty in data values as well as in the probabilities. It facilitates inserting data
into a probabilistic relation, as it is not necessary to have all the information
about a distribution before a tuple can be entered. The authors go on to show
how missing probabilities can arise during relational operations, even when the
base relations have no missing probability. It also makes it possible to elimi-
nate uninteresting information when displaying relations. For example, a user
may only be interested in seeing values with probability greater than 0.5; the
rest can be ignored.

Attributes in a relation are implicitly assumed to be independent of attributes
in other relations, conditioned on the key values.

2.3 Interval-Valued Probability Measures Assigned to
Attribute-Values

This line of research attaches a probabilistic interval to each value from a
subset of possible values of an imprecise attribute. The relational algebra oper-
ations are then generalized to combine such probabilities in a suitable manner.
A variety of strategies are considered regarding combinations of probability
intervals.

Lakshmanan et al [14]. A goal of this model is to provide a unified frame-
work to capture various strategies for conjunction, disjunction, and negation
of stochastic events captured in a database. The different strategies are devel-
oped to handle different assumptions regarding the underlying events, such as
independence, mutual exclusion, ignorance, positive correlation, etc. In order
to accommodate the different strategies, this model works with probability in-
tervals instead of point-valued probabilities. This is because, depending on the
assumptions made regarding the underlying events, probability intervals can
arise when deriving probabilities for complex events. Interval-valued proba-
bilities are also considered useful and appropriate when there is noise in the
process of measuring the desired probability parameters, and it is important to
capture the margin of error in the probability of an event.

The model associates probabilities with individual level elements (i.e., at-
tribute values), although the authors note that the element-level probabilities
can be converted into a representation that associates probabilities with whole
tuples. Figure 3.6 provides an example of a probabilistic relation called Target.

The example relation has three attributes, Location, Object, and Band. The
relation includes three tuples. The first tuple has one value for the attribute
Location (“site1") with the probability interval [1,1] associated with it, imply-
ing there is no uncertainty associated with that value. The tuple also has one
value associated with the attribute Object (“radar type1"), again with the prob-
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LOC OBJ Band
site1 radar type1 750, 800
h1(site1)=[1,1] h2(radar type1)=[1,1] h3(750)=[0.4,0.7]

h3(800)=[0.5,0.9]
site2 {radar type1,radar type2} 700
h4(site2)=[1,1] h5(radar type1)=[0.8,0.9] h6(700)=[1,1]

h5(radar type2)=[0.8,0.3]a

site3 {radar type1,radar type2} 700, 750
h7(site3)=[1,1] h8(radar type1)=[0.4,0.7] h9(700)=[0.6,0.9]

h8(radar type2)=[0.5,0.6] h9(750)=[0,0.4]
aClearly, there is a typographical error in [14], since the upper bound cannot be less
than the lower bound.

Figure 3.6. A Probabilistic Relation Target with Three Attributes (Reproduced from [14])

ability interval [1,1]. It has two values associated with the attribute Band, the
value 750 with the probability interval [0.4,0.7], and 800 with the probability
interval [0.5,0.9]. The intervals provide the lower and upper bounds for the
probabilities associated with each value.

The model associates each tuple with a possible world, and interprets a prob-
abilistic tuple as an assignment of probabilities to the various worlds associated
with that tuple (in other words, a world represents a possible realization of a
probabilistic tuple). Thus, there are two worlds associated with the first tuple
in the example relation:

w1 = (site1, radar type1, 750),
w2 = (site1, radar type1, 800).

A world-id is used to identify each possible world, and is associated with tuples
in base relations. In order to identify complex events that result from Boolean
combinations of probabilistic tuples, the model proposes the use of annotated
tuples. Such Boolean combinations of possible worlds are referred to as paths,
and annotated tuples use such paths to identify probabilistic tuples that appear
in derived relations, i.e., views. The algebra defined on their model manipu-
lates data, probability bounds, as well as paths. The paths keep track of the
navigation history for tuples appearing in views, and are expected to be main-
tained internally. The paths help encode interdependencies between attributes,
and hence between tuples, and enable enforcing integrity constraints in rela-
tions. As mentioned earlier, an important consideration behind the proposed
operations is that they be amenable to a wide range of possible assumptions
about tuples. The authors propose a set of postulates that combination strate-
gies should satisfy, and define the operations accordingly.
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2.4 Interval-valued Probability Measures Assigned to
Tuples

Eiter et al [9]. Eiter et al extend the probabilistic model in [14] by incor-
porating complex values (also called derived events) in relations. Probabilistic
intervals are assigned to tuples in their entirety. Tuples in base relations are as-
sociated with basic events. Derived tuples are associated with general events,
than include conjunctions and disjunctions of basic events. Every complex
value v is associated with a probability interval [l, u], and an event e. The in-
terval [l, u] represents the likelihood that v belongs to a relation of the database,
where e records information about how the value is derived. Figure 3.7 pro-
vides an example relation with probabilistic complex values.

v l u e
patient
John

diseases
{lung cancer, tuberculosis} 0.7 0.9 e1 ∨ e2

patient
Jack

diseases
{leprosy} 0.5 0.7 e3

Figure 3.7. A Probabilistic Complex Value Relation (Reproduced from [9])

The example relation holds data about patients and their diseases. The first
tuple in the relation shows that the probability that a patient John suffers from
both lung cancer as well as tuberculosis lies between 0.7 and 0.9. Similarly, the
second tuple shows that the probability that a patient Jack suffers from leprosy
is between 0.5 and 0.7. The complex event (e1∨e2) is associated with the first
tuple, and is assumed to be derived by combining tuples corresponding to basic
events.

As in [14], basic events are not assumed to be pairwise independent or mu-
tually exclusive. The probability range of a complex event is computed using
whatever dependence information is available about the basic events. The com-
bination strategies refine the ones presented in [14].

3. Probabilistic Relational Algebra

In this section, we provide the details of the probabilistic relational model
and algebra proposed in [5].

3.1 Basic Definitions

Let N = {1, 2, . . . , n} be an arbitrary set of integers. A relation scheme

R is a set of attribute names {A1, A2, . . . , An}, one of which may be a prob-
ability stamp pS. Corresponding to each attribute name Ai, i ∈ N , is a set
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Di called the domain of Ai. If Ai = pS, then Di = (0, 1]. The multiset
D = {D1, D2, . . . , Dn} is called the domain of R. A tuple x over R is a
function from R to D (x : R → D), such that x(Ai) ∈ Di, i ∈ N . In other
words, a tuple x over R can be viewed as a set of attribute name-value pairs:
x = {〈Ai, vi〉|∀i ∈ N (Ai ∈ R ∧ vi ∈ Di)}. Restriction of a tuple x over S,
S⊂R, written x(S), is the sub-tuple containing values for attribute names in
S only, i.e., x(S) = {〈A, v〉∈x|A∈S}. The formal interpretation of a tuple is
as follows: a tuple x over R represents one’s belief about attributes (in R) of
a real world object. If pS ∈ R, then a probability of x(pS) > 0 is assigned
to the fact that an object has the values x(R − {pS}) for the corresponding
attributes. In other words, the attribute pS represents the joint distribution of
all the attributes taken together:

x(pS) = Pr [R− {pS} = x(R− {pS})] .
If pS 6∈ R, i.e., if the relation scheme R is deterministic, then every tuple on
R is assigned a probability of one, and is not explicitly written; in that case, it
is implicitly assumed that x(pS) = 1.

Two tuples x and y on relation scheme R are value-equivalent (written x ≃
y) if and only if, for all A ∈ R, (A 6= pS) ⇒ (y(A) = x(A)). Value-
equivalent tuples are not allowed in a relation; they must be coalesced. Two
types of coalescence operations on value-equivalent tuples are defined:

1 The coalescence-PLUS operation is used in the definition of the pro-
jection operation. Coalescence-PLUS (denoted by ⊕) on two value-
equivalent tuples x and y is defined as:

z = x⊕y ⇔ (x ≃ y)∧(z ≃ x)∧
(
z(pS) = min{1, x(pS)+y(pS)}

)
.

2 The coalescence-MAX operation is used in the definition of the union
operation. Coalescence-MAX (denoted by ⊙) on two value-equivalent
tuples x and y is defined as:

z = x⊙ y ⇔ (x ≃ y) ∧ (z ≃ x) ∧
(
z(pS) = max{x(pS), y(pS)}

)
.

The idea of value-equivalent tuples and coalescence operations need not be
confined to just two tuples. Given m tuples x1, x2, . . . , xm, all of which are
on the same relation scheme, they are said to be value-equivalent if xi ≃ xj
for all i, j; 1 ≤ i, j ≤ m. Coalescence-PLUS, for example, on all these m
value-equivalent tuples will recursively coalesce all the tuples pair-wise, i.e.,

m⊕

i=1

xi = (. . . ((x1 ⊕ x2)⊕ x3)⊕ . . .⊕ xm−1)⊕ xm.

Let R be a relation scheme. A relation r on the scheme R is a finite collec-
tion of tuples x on R such that no two tuples in r are value-equivalent.
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3.2 Primary and Foreign Keys

In the relational model, every tuple in a relation represents a unique object
(i.e., an entity or a relationship) from the real world; a superkey is a set of
attributes that uniquely identifies a tuple, and hence an object. A superkey, in
that sense, is an object surrogate, one that uniquely identifies every object. A
candidate key is a minimal superkey, minimal in the sense that no attribute can
be dropped without sacrificing the property of uniqueness. For each relation,
only one candidate key is chosen as the primary key of that relation.

In the probabilistic extension, where every tuple has a probability stamp
that represents the joint probability of occurrence of the attribute values in that
tuple, each tuple cannot stand for a unique object. Associated with every object
there may be several tuples representing the complete joint distribution of its
attributes. This suggests that one must retain the object surrogate interpretation
of the primary key (i.e., unique identifier of real world objects) and discard the
notion of the primary key as a unique identifier of tuples.

The term foreign key retains the usual meaning in this model. In other words,
a foreign key of a relation scheme R is a set of attributes F ⊂ R that refers to
a primary key K of some relation scheme S. Attributes in F and K may have
different names, but they relate to the same real world property of an object
and come from the same domain. If r and s are relations on schemes R and
S respectively, we call r the referring (or, referencing) relation and s the re-
ferred (or, referenced) relation. This is written symbolically as: r.F −→ s.K.
The possibility that r and s are the same relation is not excluded. Primary and
foreign keys are useful in enforcing important integrity constraints on proba-
bilistic relations.

Intra-Relational Integrity Constraints: Let r be any relation on scheme R
with primary key K. The following intra-relational constraints are im-
posed on r:

1 The total probability associated with a primary key value must be
no more than one. In other words, for all x ∈ r,

∑

y∈r
y(K)=x(K)

y(pS) ≤ 1.

2 For all x ∈ r, no part of x(K) can be null.

3 For all x ∈ r, if pS ∈ R, then x(pS) ∈ (0, 1] and x(pS) is not
null.

Referential Integrity Constraints: Let r and s be two relations on schemes
R and S respectively. Let KR and KS be the primary keys of R and
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S, and let r.F −→ s.KS for some F ⊂ R. The following referential
constraints are imposed on r and s:

1 For all x ∈ r, if there exists an attribute A ∈ F such that x(A) is
null, then for all other attributes B ∈ F , x(B) is also null. This
ensures that the foreign key value of a tuple is not partially null.

2 For all x∈ r, either x(F ) is null (fully), or there exists y ∈ s such
that

∑

z∈r
z(KRF )=x(KRF )

z(pS) ≤
∑

z∈s
z(KS)=y(KS)

z(pS),

where KRF is a shorthand for KR ∪ F .

3.3 Relational Operations

Based on the above definitions, we now present the algebraic operations for
this model. In addition to the basic relational operations, a special operation
called conditionalization is introduced. This is useful in answering queries
involving non-key attributes in relations.

Union. Let r and s be relations on the same scheme R. Then the union of
these two relations is defined as:

r ∪ s =

{
x(R)

∣∣∣
(

(x ∈ r) ∧
(
∀y ∈ s(y 6≃ x)

))
∨

(
(x ∈ s) ∧

(
∀y ∈ r(y 6≃ x)

))
∨

(
∃y∈r ∃z∈s(x = y ⊙ z)

)}
.

This operation is a straightforward extension of the deterministic counterpart,
with the added restriction that if there are value-equivalent tuples in the partic-
ipating relations then the higher probability stamp is included in the result. It
can be easily verified that union is commutative, associative, and idempotent.
An alternative definition of the union operation may be obtained by replacing
⊙ with ⊕ in the above definition; in that case, however, the union operation
would not be idempotent.
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Difference. Let r and s be as above. Then the difference of these two
relations is given by:

r − s =

{
x(R)

∣∣∣∣
(

(x ∈ r) ∧
(
∀y ∈ s(y 6≃ x)

))
∨

(
∃y∈r ∃z∈s

(
(x ≃ y ≃ z) ∧

(
y(pS) > z(pS)

)
∧

(
x(pS) = y(pS)−z(pS)

)))}
.

In this operation, if there are value-equivalent tuples in the participating re-
lations, then the difference in the probability stamps is included in the result
provided the difference is positive.

Projection. Let r be a relation on schemeR, and let S ⊂ R. The projection
of r onto S is defined as:

ΠS(r) =





x(S)

∣∣∣∣∣ x =
⊕

y∈r
y(S)≃x

y(S)





.

This operation provides the marginal distribution for a subset of attributes. The
result is meaningful if a candidate key is included in the projection list, as the
marginalization is then conducted separately for each object captured in the
relation.

Selection. Let r be a relation on scheme R. Let Θ be a set of comparators
over domains of attribute names inR. Let P be a predicate (called the selection
predicate) formed by attributes inR, comparators in Θ, constants in the domain
of A for all A ∈ R, and logical connectives. The selection on r for P , written
σP (r), is the set {x ∈ r|P (x)}. This operation is defined at the tuple level,
and is identical to its counterpart in traditional relation algebra.

Natural Join. Let r and s be any two relations on schemes R and S
respectively, and let R′ = R − {pS} and S′ = S − {pS}. The natural join of
r and s is defined as:

r ⊲⊳ s =

{
x(R ∪ S)

∣∣∣ ∃y∈r ∃z∈s
((

x(R′) = y(R′)
)
∧
(
x(S′) = z(S′)

)

∧
(
x(pS) = y(pS)z(pS)

))}
.
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Note that the attributes in R and S should be independent for the natural join
operation to yield meaningful results. It can be easily verified that the natural
join is commutative and associative, but it is not idempotent.

Rename. The rename operation (ρ) is used to change the names of some
attributes of a relation. Let r be a relation on scheme R, and let A and B be
attributes satisfying A ∈ R, B 6∈ R. Let A and B have the same domain, and
let S = (R− {A}) ∪ {B}. Then r with A renamed to B is given by:

ρA←B(r) =

{
y(S)

∣∣∣ ∃x∈r
((

y(S −B) = x(R−A)
)
∧
(
y(B) = x(A)

))}
.

If pS is renamed, it loses its special meaning and behaves like just another
user-defined attribute.

Conditionalization. Let r be a relation on scheme R, and S ⊂ R− {pS}.
The conditionalization of r on S is given by:

ΥS(r) =

{
x(R)

∣∣∣ ∃y∈r
(

(x ≃ y) ∧
(
x(pS) = y(pS)

ηS,r(y)

))}
,

where ηS,r(x) is a function defined on a tuple x ∈ r if pS ∈ R, and is given
by:

ηS,r(x) = min





1,

∑

y∈r
y(S)=x(S)

y(pS)





.

The conditionalization operation on S revises the probability stamp associ-
ated with each tuple by changing the marginal probability of the values for
attributes in S to unity. In other words, after conditionalization, the rela-
tion can be interpreted as the joint conditional distribution of all attributes in
(R−S−{pS}) given the values of attributes in S. As a result, this operation is
useful, for example, in answering queries about non-key attributes of a relation
for a given key value, or, before performing the join operation to obtain mean-
ingful results. Note that, for the conditional probabilities to be meaningful, it
may be necessary to include a candidate key as part of S.

Other relational operations such as intersection and Cartesian product can
be expressed in terms of the above basic operations:
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Intersection. Let r and s be relations on the same scheme R. Then the
intersection of these two relations is given by:

r ∩ s =

{
x(R)

∣∣∣ ∃y∈r ∃z∈s
(

(x ≃ y ≃ z)∧
(
x(pS)= min{y(pS), z(pS)}

))}
.

It can be easily verified that r ∩ s = r − (r − s).
Cartesian Product. The Cartesian product of two relations is a special
case of a natural join [Codd 1990], where the relations do not have any
common attribute name (with the possible exception of pS). Let R and
S be two relation schemes satisfying (R∩S)−{pS} = ∅. Let r and s be
relations on the schemes R and S, respectively. The Cartesian product
of r and s is a relation on scheme (R ∪ S) given by: r × s = r ⊲⊳ s.

Theta-join. Let R, S, r and s be as above. Let Θ be a set of comparators
over domains of attributes in (R ∪ S). Let P be any predicate formed
by attributes in (R ∪ S), comparators in Θ, constants in the domain of
A for all A ∈ (R ∪ S), and logical connectives. The theta-join between
r and s is given by: r ⊲⊳P s = σP (r ⊲⊳ s).

Alpha-cut. The alpha-cut operation selects only those tuples from a
relation that have a probability of α or more. Let r be a relation on
scheme R. Let R′ = R − {pS}. Then alpha-cut of r, denoted Φα(r),
is {x(R′)|(x ∈ r) ∧ (x(pS) ≥ α)}. It is easy to verify that Φα(r) =
ΠR′(σpS≥α(r)).

3.4 Relational Algebra

Assume that U is a set of attribute names, called the universe. U may have
the probability stamp pS as only one of its element. LetD be a set of domains,
and let dom be a total function from U toD. Let R = {R1, R2, . . . , Rp} denote
a set of distinct relation schemes, where Ri ⊂ U , for 1 ≤ i ≤ p. Let d =
{r1, r2 . . . , rp} be a set of relations, such that ri is a relation on Ri, 1 ≤ i ≤ p.
Θ denotes a set of comparators over domains inD. The relational algebra over
U , D, dom, R, d and Θ is the 7-tuple R = (U ,D,dom,R, d,Θ, O), where
O is the set of operators union, difference, natural join, projection, selection,
rename and consolidation using attributes in U and comparators in Θ, and
logical connectives. An algebraic expression overR is any expression formed
legally (according to the restrictions on the operators) from the relations in d
and constant relations over schemes in U , using the operators in O.

The relational algebraic expressions and their schemes over R are defined
recursively (according to the restrictions on the operators) as follows:



Relational Models and Algebra for Uncertain Data 63

1 Let Q = {C1, C2, . . . , Ck} ⊂U be any relational scheme, and let ci ∈
dom(Ci), 1 ≤ i ≤ k. Then {〈c1 : C1, c2 : C2, . . . , ck : Ck〉} is a
relational expression over scheme Q called a constant.

2 Each ri ∈ d is a relational expression over the scheme Ri, 1 ≤ i ≤ p.

3 If E1 and E2 are relational expressions over the same schemeQ, then so
are the following: (i) E1 ∪ E2, (ii) E1 −E2, and (iii) σP (E1), where P
is a selection predicate.

4 If E is a relational expression over the scheme Q, and S ⊂ Q, then
ΠS(E) is a relational expression over the scheme S.

5 If E1 and E2 are relational expressions over schemes Q1 and Q2, then
so is E1 ⊲⊳ E2 over the scheme Q1 ∪Q2.

6 If E is a relational expression over Q, and A and B are attributes with
the same domain, then ρA←B(E) is a relational expression over (Q −
{A}) ∪ {B}.

7 If E is a relational expression over Q, then so is ΥS(E), for all S ⊂
(Q− {pS}).

Dey and Sarkar [5] show that this algebra is closed, is a consistent extension
of the traditional relational algebra, and reduces to the latter.

3.5 Incomplete Distribution and Null Values

We now turn our attention to the case where the joint probability distribution
of the attributes of an object is partially specified. For example, it is possible
that the existence of an employee is certain (i.e., the marginal probability of the
key EMP# is one), but the marginal distribution of the salary of that employee
is not completely specified. This scenario is illustrated in the relation shown
in Figure 3.8, where the existence of an employee with EMP#=6879 is known
with certainty; the marginal distribution of rank is completely specified for this
employee, but the marginal distribution for salary and department information
is not completely available.

The EMPLOYEE relation in Figure 3.8 models this type of incompleteness
with the help of a null value “∗." It means that a portion of the probability mass
is associated with a value that is unknown. For example, out of a total of 1.0,
only 0.3 is associated with a known value of salary for EMP#=6879; remaining
0.7 is given to the null value.

Interpretation of Partial Distribution. An important question is the in-
terpretation of the probability stamp when the joint probability distribution is
not fully specified. How one interprets the probability stamp has to do with the
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EMP# rank salary dept pS
3025 clerk 15K toy 0.2
3025 cashier 20K shoe 0.6
3025 cashier 15K auto 0.2
6723 clerk 18K toy 0.4
6723 cashier 20K auto 0.4
6723 ∗ ∗ ∗ 0.1
6879 clerk 25K toy 0.3
6879 clerk ∗ toy 0.1
6879 cashier ∗ ∗ 0.6

Figure 3.8. EMPLOYEE: A Probabilistic Relation with Null Values

The second interpretation for the missing probabilities is that they could be
distributed over the entire set of realizations of the attributes, including the
ones that already appear in the relation. In that case, the uncertainty associated
with the attribute values for tuples that appear in the relation are represented
by probability intervals, and not point estimates. The probability stamp as-
sociated with a tuple is then the lower bound of the probability interval for
that tuple (as in [1]). Consider the previous example of EMP# 6723; this key
value has a missing probability of 0.1. Since this probability mass could be
assigned to any value, including those that have already appeared, the proba-
bility that EMP#=6723, rank=“clerk," salary=18K and dept=“toy" lies in the
interval [0.4, 0.5]. Similarly, the probability that EMP#=6879 and dept="toy"
lies in the interval [0.4, 1.0]. When the distribution is completely specified, the
interval clearly reduces to a point.

interpretation given to the portion of the total probability mass (associated with
a key value) that is not specified, called the missing probability in [1]. There
are two possible interpretations that may be given to the missing probability.
The first is that the missing probability is associated with realizations of those
values of attributes that are not already included in the relation. Thus, in Fig-
ure 3.8, the missing probability of 0.1 for EMP# 6723 could be distributed in
any manner over those joint realizations for rank, salary and department that
are not already included in the table. With this interpretation, the probability
stamps for tuples that do appear in the relation are construed as point estimates
of the conditional probabilities for given values of the attributes. Therefore, the
probability that EMP#=6723, rank=“clerk,” salary=18K and dept=“toy” is in-
terpreted to be 0.4. Similarly, the probability that EMP#=6879 and dept= toy”
is 0.4.

“
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Extended Relational Operations. The basic algebraic operations can be
extended to incorporate the null values as possible attribute values. An impor-
tant feature of this extension is that the semantics associated with each of the
above two interpretations is preserved as a result of all the basic relational oper-
ations, i.e., the extended operations can handle both interpretations of missing
probabilities. Consequently, depending on their preference, users can represent
uncertainties regarding attribute values either as point estimates or as intervals.
The result of the relational operations will be consistent with the user’s inter-
pretation of the original tables. First, a few definitions are necessary.

Let x be any tuple on scheme R. If A ∈ R and x(A) is not null, x is called
definite on A, written x(A) ↓. For S ⊂ R, x(S) ↓ if x(A) ↓ for all A ∈ S. A
tuple x is said to subsume a tuple y, both on scheme R, written x ≥ y, if for
all A ∈ R, y(A) ↓ implies x(A) = y(A).

Now, the concept of value-equivalent tuples must be redefined for the ones
that might have null values. LetR be a relation scheme and letR′ = R−{pS}.
For any two tuples x and y on R,

(x ≃ y) ⇔ (x(R′) ≥ y(R′)) ∧ (y(R′) ≥ x(R′)).
Again, value-equivalent tuples are not allowed to co-exist in a relation; they
must be coalesced. The coalescence-PLUS and the coalescence-MAX opera-
tions as defined earlier also work for this extension.

As far as the basic relational operations are concerned, the previous defini-
tions of the union, difference, projection, and rename operations can be used
with the extended definition of value-equivalent tuples. Thus, only the selec-
tion, natural join and conditionalization operations have to be redefined.

Selection. Let R, r, Θ, P be as in the earlier definition of the selection
operation. Let S ⊂ R be the set of attributes involved in P . Then,
σP (r) = {x∈r|x(S)↓ ∧P (x)}. In other words, tuples with null values
for attributes involved in the selection predicate are not considered.

Natural Join. Let r and s be any two relations on schemes R and S
respectively. Let Q = R ∩ S, R′ = R − {pS} and S′ = S − {pS}.
Then,

r ⊲⊳ s =

{
x(R ∪ S)

∣∣∣ ∃y∈r ∃z∈s
(
y(Q)↓ ∧z(Q)↓ ∧

(
x(R′) = y(R′)

)
∧
(
x(S′) = z(S′)

)
∧

(
x(pS) = y(pS)z(pS)

))}
.

In other words, join operation matches tuples on non-null attribute values
only.
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Conditionalization. Let r be a relation on schemeR, and S ⊂ R−{pS}.
The conditionalization of r on S is given by:

ΥS(r) =

{
x(R)

∣∣∣ ∃y∈r
(
y(S)↓ ∧(x ≃ y) ∧

(
x(pS) = y(pS)

ηS,r(y)

))}
,

where ηS,r(y) is as before. Again, tuples with null values for attributes
in S are excluded in performing the conditionalization operation.

Finally, [5] introduces a new operation called the N -th moment. This oper-
ation allows one to obtain interesting aggregate properties of different attribute
names based on the original distribution of those attribute names represented
in the form of a relation. The N -th moment of a probability distribution is
traditionally defined in the following manner: let ψ be a random variable with
domain Ψ and probability density function fψ(x), x ∈ Ψ; its N -th moment,
µN (ψ), is then defined as:

µN (ψ) = E[ψN ] =

∫

x∈Ψ

xNfψ(x)dx.

Moments of a distribution are useful in obtaining aggregate properties of a
distribution such as mean, standard deviation, skewness and kurtosis. For ex-
ample, the standard deviation of the random variable ψ can be easily obtained
from its first and second moments:

Stdev(ψ) =
√
µ2(ψ)− (µ1(ψ))2.

These aggregate properties are not only useful in understanding the overall
nature of a distribution, but also in comparing two different distributions. This
is why moments are a very important tool in statistical analysis. The N -th
moment operation helps to form an overall opinion about the nature of real
world objects, as well as allows various statistical analysis to be performed on
the stored data.

N -th Moment. Let r be a relation on schemeR. LetR′ = R−{pS} and
S ⊂ R′. The N -th moment of r given S, written µS,N (r), is defined as:

µS,N (r) =

{
x(R′)

∣∣∣∣ ∃y∈r
(
y(S)↓ ∧

(
x(S) = y(S)

)
∧

(
∀A∈(R′−S)

(
x(A) = mS,r,N (y,A)

)))}
,
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where,

mS,r,N (x,A) =





∑

y∈r
y(A)↓

y(S)=x(S)

(y(A))Ny(pS)

∑

y∈r
y(A)↓

y(S)=x(S)

y(pS)
,

if pS∈R and
A∈R′ is numeric,

Ω, otherwise.

A few comments are in order about theN -th moment operation. First, Ω is a
special type of null value generated as a result of this operation on non-numeric
attributes. Second, this operation is really a family of operations, because one
gets a different operation for each positive integer N . For example, to obtain
the expected value of different attributes, one can use the first moment, i.e.,
N = 1. If the first moment operation is applied on the EMPLOYEE relation
shown in Figure 3.8 with S={EMP#}, one would obtain the expected value of
all other attributes given EMP#; this is illustrated in Figure 3.9. Third, it is

EMP# rank salary dept
3025 Ω 18K Ω
6723 Ω 19K Ω
6879 Ω 25K Ω

Figure 3.9. EMPLOYEE Relation after First Moment Operation

possible to define other operations—such as standard deviation, skewness and
kurtosis—based on the above class of operations. Finally, as can be seen from
the definition, null values (∗) are not considered in calculating moments. In
other words, only the explicitly specified part of the distribution is considered
in calculation of moments.

4. Algebraic Implications of the Different Representations
and Associated Assumptions

In Section 2, we discussed the main differences across the various models in
terms of how the uncertainty in data is represented by the models, and the un-
derlying assumptions for each approach. Having discussed the model from [5]
in considerable detail in Section 3, we now highlight the key differences in the
algebra proposed for each of the different approaches, and discuss where each
approach provides different functionalities to users. To keep this discussion
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brief and easy to follow, we consider the model in [5] as the benchmark and
contrast the differences.

4.1 Models Assigning Point-Valued Probability Measures
at the Tuple Level

We first examine the unique features of the model proposed by Cavallo and
Pittarelli [3], and subsequently refined in [17]. In their work, they focus on
the operations projection, selection, and join. Since, in their model, a relation
can be viewed as storing the distribution of an uncertain event, their projec-
tion operation provides the marginal distribution of the projected attributes.
Thus, the operation in [5] is similar to theirs, except that [5] allows data on
multiple objects (events) to be stored in a relation, leading to marginalization
only within tuples that share the primary key value. The selection operations
in [3] and [5] are also similar, with the difference that [3] requires that the
probabilities associated with selected tuples are normalized to add up to one
(in keeping with their requirement about a relation). Their join operation is
motivated by the idea that, to the extent possible, the full distribution across
the collective set of attributes can be reconstructed from the projections of the
joined relation into the schema for the participating relations. Using this moti-
vation, they propose that the maximum entropy distribution be obtained for the
tuples in the joined relation, while preserving the marginal probability distribu-
tions associated with the participating relations. If the non-common attributes
of a participating relation is conditionally independent of the non-common at-
tributes of the other participating relation given the common attributes, then
their operation calculates the distribution for the tuples in the resulting rela-
tion by using this conditionalization explicitly. The operation provided in [5]
is analogous, where it is implicitly assumed that the conditional independence
property holds (if this property does not hold, then the participating relations
are considered to be ill formed, as they cannot capture the uncertainty associ-
ated with the full set of attributes in the two relations). Neither [3] nor [17]
provide a formal discussion of the union and difference operations, although
they note that updates to the database can be viewed as revising the distribu-
tion associated with the tuples in a manner consistent with incrementing the
relative frequencies of observations that lead to the update process.

Fuhr and Rölleke [11] extend the traditional relational algebra for the five
basic operations. In order to account for the distinction they make in their in-
dependence assumptions regarding relations with basic events and those with
complex events, their algebra is described separately for each of them. We
first discuss their operations defined for basic events, and then contrast them
with operations for complex events. Their approach assumes that tuples cor-
responding to basic events are independent of each other, and their selection
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and natural join operations are identical to those presented in [5]. The other
three operations work differently, because value-equivalent tuples are involved.
Thus, for the projection operation, they compute the probability of a tuple that
is part of multiple tuples in the original relation by forming the disjunction
of the events associated with the original tuples. Implicit in their approach is
the assumption that the primary key attribute is not included in the projected
relation (in which case marginalization would be the appropriate approach).
The union operation likewise computes the probability of a value-equivalent
tuple in the result by considering the disjunction of the corresponding tuples in
the participating relation. Their difference operation returns only those tuples
that appear in the first relation and do not have value-equivalent tuples in the
second one.

When considering operations on complex events, Fuhr and Rölleke [11] pro-
pose that the appropriate Boolean expression implied by the operation be taken
into account when calculating the probabilities for tuples in the resulting rela-
tion. As mentioned earlier, to facilitate this, they explicitly record the complex
events corresponding to tuples in derived relations. When further operations
are performed on these derived relations, the event expressions of relevant tu-
ples are examined to determine if the tuples can be considered independent. If
that is the case, the operations remain unchanged. When that is not the case,
the process requires transforming the Boolean expression for each tuple in the
result into its equivalent disjunctive normal form and then computing the de-
sired probability.

4.2 Models Assigning Point-Valued Probability Measures
at the Attribute Level

Barbara et al [1] focus primarily on the operations projection, selection, and
join, and then present a set of new operations that do not have counterparts in
conventional relational algebra. We do not include the non-conventional op-
erations in this discussion. In their model relations must have deterministic
keys. As a result, the projection operation requires that the key attribute(s)
be included in the projection. Further, since probabilities are stored at the
attribute-level, and there exists only one tuple for any key value, the operation
cannot lead to value-equivalent tuples. When a projection includes a subset of
dependent stochastic attributes, the marginal probabilities are returned for the
projected attributes. If wildcards denoting missing probabilities are involved,
then the wild-cards are treated as just another attribute-value. Two types of
conditions are provided for the selection operation: the certainty condition and
the possibility condition. These two types of conditions exploit the semantics
of the missing probabilities. A query with a certainty condition selects tuples
that are guaranteed to meet the selection criteria regardless of how the miss-
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ing probabilities may be assigned. A query with a possibility condition selects
tuples for which there exists some feasible assignment of the missing probabili-
ties that would lead that tuple to meet the selection criteria. When the selection
condition involves a subset of stochastically dependent non-key attributes, it
involves an implicit projection operation. Their natural join operation requires
that the common attribute(s) must be the key to one of the relations. Since at-
tributes in a relation are assumed to be conditionally independent of attributes
in other relations given the key value, the probability distribution for stochastic
attribute values in the result of the join are obtained by multiplying the proba-
bilities associated with the participating attributes in the two relations.

4.3 Models Assigning Interval-Valued Probability
Measures at the Attribute Level

In their model, Lakshmanan et al [14] define the operations on the anno-
tated representations of their probabilistic relations. The annotated representa-
tion includes, in addition to the possible attribute values, the upper and lower
bounds for the probability associated with the set of specified attribute values,
and the path (which is a Boolean expression involving world-ids). As men-
tioned earlier, the operations manipulate the attribute values, the probability
intervals, as well as the paths.

The selection operation in their algebra is practically identical to that in tra-
ditional relational algebra, with the bounds and the path associated with each
tuple included in the result (which is also annotated). Their projection opera-
tion does not eliminate value-equivalent tuples. As a result, value-equivalent
tuples may appear in the result; these tuples are distinguished by their associ-
ated paths and the probability bounds.

Their Cartesian product and join operations are not straightforward exten-
sions of the classical relational algebra operations. Their definitions incorpo-
rate several possible strategies for combining probabilistic tuples that involve
conjunctions and disjunctions of events. Thus, in concatenating tuple t1 from
relation R1 with tuple t2 from relation R2, the probability interval associated
with the result depends on whatever relationship is known among tuples t1
and t2. For instance, if the tuples are assumed to be independent, the proba-
bility interval for the result is different from the scenario where the tuples are
assumed to be positively correlated. In the former scenario, the bounds for
the result are obtained as the products of the respective bounds on the partic-
ipating tuples. In the latter scenario, the bounds correspond to the minimum
values of the bounds of the participating tuples. With such scenarios in mind,
they define a generic concatenation operation on tuples, with the restriction
that the user should specify a probabilistic strategy that satisfies several pro-
posed postulates on the structure and semantics of computing concatenations



Relational Models and Algebra for Uncertain Data 71

of tuples (i.e., conjunctions of events). The path information also plays a role
if necessary; e.g., if the participating tuples correspond to inconsistent states
of the world (one event is the negation of the other), then the resulting tuple is
not included. When performing a Cartesian product, the user is provided the
flexibility to specify which strategy to use.

To handle value-equivalent tuples, they propose an operation called com-
paction, which is intuitively similar to the coalescence operations defined in [5].
The compaction operation uses a disjunctive combination strategy for evaluat-
ing the probability intervals and paths for the resulting tuple. They propose a
generic disjunction strategy to accommodate different assumptions regarding
the value-equivalent tuples.

Their union operation is analogous to the traditional union operation, again
with the paths and probability bounds used to distinguish value-equivalent tu-
ples. Their difference operation, on the other hand, explicitly takes into account
value-equivalent tuples. The basic intuition behind calculating the probability
bounds involves taking the conjunction of the event associated with the tuple
in the first relation and the negation of the event associated with the value-
equivalent tuple in the second relation. This is complicated by the fact that
multiple value-equivalent tuples may appear in both the participating relations,
each associated with a different path. Since one of these paths may be a sub-
set of another path, special checks are developed that determine which tuples
are subsumed in this manner. The final output includes tuples associated with
paths that are not subsumed.

The actual computation of the probability intervals depend on the assump-
tions being specified by the user. For some assumptions, the values can be
easily obtained. In other situations, linear programs are used to compute the
tightest possible bounds, given the available information.

4.4 Models Assigning Interval-Valued Probability
Measures to Tuples

Eiter et al [9] generalize the annotated representation of the interval-valued
model presented in [14] by allowing complex values. In their model, each tuple
is assigned an event, which is analogous to a path in the model of Lakshmanan
et al [14]. An important distinction is that the combination strategies in their
algebra are based on axioms of probability theory, instead of the postulates for
combination functions suggested in [14]. In their conjunction and disjunction
strategies, they incorporate additional types of dependence information such
as left implication, right implication, exhaustion, and antivalence, which have
not been considered in prior works. They are able to identify combinations of
probabilistic pairs of events and dependence information that are unsatisfiable,
which enables them to refine the combination strategies presented by Laksh-
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manan et al. In certain cases, their approach is able to obtain tighter bounds on
the probability intervals.

While the work by Eiter et al [9] is motivated by Lakshmanan et al [14], the
resulting representations they consider are very similar to the ones in [5], with
the difference that interval-valued probabilities are considered. Their opera-
tions are, of course, generalized to allow for the different combination strate-
gies, which lead to several possible ways to compute the probability intervals
for tuples in derived relations.

4.5 Some Observations on the Independence Assumption
Across Tuples

The various probabilistic relational models can also be viewed as belonging
to one of two groups. In the first group, it is assumed (explicitly or implicitly)
that tuples corresponding to different objects are independent. In the other,
no such assumptions are made. The former include the models presented by
Cavallo and Pittarelli [3], Pittarelli [17], Dey and Sarkar [5], and Barbara et
al [1]. The models proposed by Fuhr and Rölleke [11], Lakshmanan et al [14],
and Eiter et al [9] belong to the latter group. An outcome of relaxing this as-
sumption is that, in order to compute the probabilities (point-valued or interval-
valued) associated with tuples in the result of operations, it is necessary to keep
track of additional information regarding how the tuple was derived. Fuhr and
Rölleke use information in the form of complex events, Lakshmanan et al use
paths, and Eiter et al use derived events to store these kinds of information
along with the relations. In addition, they assume that additional knowledge
about these dependencies is available in order to make the right probabilistic
inferences when computing the result. Consequently, the models in the latter
group, while providing a more generalized set of options, also impose addi-
tional requirements for operational consideration. First, they require that users
be able to specify how the dependencies should be considered for tuples within
each relation, as well as for tuples across all the relations. Second, as Fuhr and
Rölleke observe, even when dependence models may be more appropriate, the
additional parameters needed would often not be available to compute the de-
sired probabilities. They go on to note that complete probability assignments
will not be feasible for a database with a reasonable number of events, if every
possible dependency is to be accurately captured.

5. Concluding Remarks

Although relational databases enjoy a very wide-spread popularity in mod-
ern information systems, they lack the power to model uncertainty in data
items. In this chapter, we provide a summary of the major extensions that
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attempt to overcome this limitation. We discuss the strengths and weaknesses
of these models and show the underlying similarities and differences.

Before any of these models can be implemented, a more complete frame-
work needs to be developed that deals with the issues of table structure and
normal forms, belief revision, and a non-procedural query language. For the
model proposed by Dey and Sarkar [5], these issues have been addressed in a
series of follow-up articles [6–8]. To the best of our knowledge, such follow-up
work has not been undertaken for the other extensions. Future research could
examine these issues for the other models.

Another issue of practical significance is how to obtain the probability dis-
tributions for representing the uncertainty associated with data items. Clearly,
one comprehensive scheme that works in all situations is unlikely to emerge.
Therefore, context-driven schemes need to be devised. In a recent article, Jiang
et al [12] examine this issue in the context of heterogeneous data sources. Fu-
ture research need to examine other contexts that lead to data uncertainty and
develop appropriate schemes for those contexts as well.
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Abstract Graphical models are a popular and well-studied framework for compact repre-
sentation of a joint probability distribution over a large number of interdependent
variables, and for efficient reasoning about such a distribution. They have been
proven useful in a wide range of domains from natural language processing to
computer vision to bioinformatics. In this chapter, we present an approach to us-
ing graphical models for managing and querying large-scale uncertain databases.
We present a unified framework based on the concepts from graphical models
that can model not only tuple-level and attribute-level uncertainties, but can also
handle arbitrary correlations that may be present among the data; our framework
can also naturally capture shared correlations where the same uncertainties and
correlations occur repeatedly in the data. We develop an efficient strategy for
query evaluation over such probabilistic databases by casting the query process-
ing problem as an inference problem in an appropriately constructed graphical
model, and present optimizations specific to probabilistic databases that enable
efficient query evaluation. We conclude the chapter with a discussion of related
and future work on these topics.

Keywords: Graphical models; probabilistic databases; inference; first-order probabilistic
models.
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1. Introduction

An increasing number of real-world applications are demanding support for
managing, storing, and querying uncertain data in relational database systems.
Examples include data integration [14], sensor network applications [22], in-
formation extraction systems [34], mobile object tracking systems [11] and
others. Traditional relational database management systems are not suited for
storing or querying uncertain data, or for reasoning about the uncertainty itself
– commonly desired in these applications. As a result, numerous approaches
have been proposed to handle uncertainty in databases over the years [32, 10,
24, 26, 4, 39, 11, 22, 14, 8, 6]. However, most of these approaches make sim-
plistic and restrictive assumptions concerning the types of uncertainties that
can be represented. In particular, many of the proposed models can only cap-
ture and reason about tuple-level existence uncertainties, and cannot be easily
extended to handle uncertain attribute values which occur naturally in many
domains. Second, they make highly restrictive independence assumptions and
cannot easily model correlations among the tuples or attribute values.

Consider a simple car advertisement database (Figure 4.1) containing infor-
mation regarding pre-owned cars for sale, culled from various sources on the
Internet. By its very nature, the data in such a database contains various types
of uncertainties that interact in complex ways. First off, we may have uncer-
tainty about the validity of a tuple – older ads are likely to correspond to cars
that have already been sold. We may represent such uncertainty by associating
an existence probability (denoted probe) with each tuple. Second, many of the
attribute values may not be known precisely. In some cases, we may have an
explicit probability distribution over an attribute value instead (e.g. the Sell-
erID attribute for Ad 103 in Figure 4.1(a)). More typically, we may have a joint
probability distribution over the attributes, and the uncertainty in the attribute
values for a specific tuple may be computed using the known attribute values
for that tuple. Figure 4.1(d) shows such a joint probability distribution over the
attributes make, model and mpg; this can then be used to compute a distribu-
tion over the mpg attribute for a specific tuple (given the tuple’s make and/or
model information). Finally, the data may exhibit complex attribute-level or
tuple-level correlations. For instance, since the ads 101 and 102 are both en-
tered by the same seller, their validity is expected to be highly correlated; such
a correlation may be represented using a joint probability distribution as shown
in Figure 4.1(c).

Many other application domains naturally produce correlated data as well [52].
For instance, data integration may result in relations containing duplicate tu-
ples that refer to the same entity; such tuples must be modeled as mutually
exclusive [10, 1]. Real-world datasets such as the Christmas Bird Count [16]
naturally contain complex correlations among tuples. Data generated by sen-
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Ad SellerID Date Type Model mpg Price probe
101 201 1/1 Sedan Civic(EX) ? $6000 0.5
102 201 1/10 Sedan Civic(DX) ? $4000 0.45

103
- prob

201 0.6
202 0.4

1/15
- prob

Sedan 0.3
Hybrid 0.7

Civic ? $12000 0.8

104 202 1/1 Hybrid Civic ? $20000 0.2
105 202 1/1 Hybrid Civic ? $20000 0.2

(a) Advertisements

SellerID Reputation

201 Shady
202 Good

(b) Sellers

Ad 101 Ad 102 prob

valid valid 0.4
valid invalid 0.1

invalid valid 0.05
invalid invalid 0.45

(c)

Type Model mpg prob

Sedan

Civic(EX)
26 0.2
28 0.6
30 0.2

Civic(DX)
32 0.1
35 0.7
37 0.2

Civic
28 0.4
35 0.6

Hybrid Civic
45 0.4
50 0.6

(d)

Figure 4.1. (a,b) A simple car advertisement database with two relations, one containing un-
certain data; (c) A joint probability function (factor) that represents the correlation between the
validity of two of the ads (probe for the corresponding tuples in the Advertisements table can
be computed from this); (d) A shared factor that captures the correlations between several at-
tributes in Advertisements – this can be used to obtain a probability distribution over missing
attribute values for any tuple.

sor networks is typically highly correlated, both in time and space [22]. Fi-
nally, data generated through the application of a machine learning technique
(e.g. classification labels) typically exhibits complex correlation patterns. Fur-
thermore, the problem of handling correlations among tuples arises naturally
during query evaluation even when one assumes that the base data tuples are
independent. In other words, the independence assumption is not closed under
the relational operators, specifically join [26, 14].

In this chapter, we present a framework built on the foundations of proba-
bilistic graphical models that allows us to uniformly handle uncertainties and
correlations in the data, while keeping the basic probabilistic framework simple
and intuitive. The salient features of our proposed framework are as follows:

• Our framework enables us to uniformly represent both tuple-level and
attribute-level uncertainties and correlations through the use of conditional
probability distributions and joint probability factors. Our proposed model
is based on the commonly-used possible world semantics [26, 14], and as
a result, every relational algebra query has precise and clear semantics on
uncertain data.
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• Our framework can represent and exploit recurring correlation patterns
(called shared factors) that are common in many application domains and
are also manifested during the query evaluation process itself (Figure 4.1(d)
shows one such shared factor).

• We show how to cast query evaluation on probabilistic databases as an in-
ference problem in probabilistic graphical models and develop techniques
for efficiently constructing such models during query processing. This
equivalence not only aids in our understanding of query evaluation on un-
certain databases, but also enables transparent technology transfer by al-
lowing us to draw upon the prior work on inference in the probabilistic
reasoning community. In fact several of the novel inference algorithms we
develop for query evaluation over probabilistic databases are of interest to
the probabilistic reasoning community as well.

Our focus in this chapter is on management of large-scale uncertain data using
probabilistic graphical models. We differentiate this from the dual problem
of casting inference in probabilistic graphical models as query evaluation in
an appropriately designed database (where the conditional probability distri-
butions are stored as database relations) [9]. We revisit this issue in Section
5, along with several other topics such as probabilistic relational models and
the relationship between our approach and other probabilistic query evaluation
approaches.

The rest of the paper is organized as follows. We begin with a brief overview
of graphical models (Section 2); we focus on representation and inference, and
refer the reader to several texts on machine learning [44, 13, 35, 27] for learn-
ing and other advanced issues. We then present our framework for representing
uncertain data using these concepts (Section 3). Next we develop an approach
to cast query processing in probabilistic databases as an inference problem,
and present several techniques for efficient inference (Section 4). We conclude
with a discussion of related topics such as probabilistic relational models, safe
plans, and lineage-based approaches (Section 5).

2. Graphical Models: Overview

Probabilistic graphical models (PGMs) comprise a powerful class of ap-
proaches that enable us to compactly represent and efficiently reason about
very large joint probability distributions [44, 13]. They provide a principled
approach to dealing with the uncertainty in many application domains through
the use of probability theory, while effectively coping with the computational
and representational complexity through the use of graph theory. They have
been proven useful in a wide range of domains including natural language pro-
cessing, computer vision, social networks, bioinformatics, code design, sensor
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networks, and unstructured data integration to name a few. Techniques from
graphical models literature have also been applied to many topics directly of in-
terest to the database community including information extraction, sensor data
analysis, imprecise data representation and querying, selectivity estimation for
query optimization, and data privacy.

At a high level, our goal is to efficiently represent and operate upon a joint
distribution Pr over a set of random variables X = {X1, . . . , Xn}. Even
if these variables are binary-valued, a naive representation of the joint distri-
bution requires the specification of 2n numbers (the probabilities of the 2n

different assignments to the variables), which would be infeasible except for
very small n. Fortunately, most real-world application domains exhibit a high
degree of structure in this joint distribution that allows us to factor the represen-
tation of the distribution into modular components. More specifically, PGMs
exploit conditional independences among the variables:

Definition 2.1 Let X, Y, and Z be sets of random variables. X is condi-
tionally independent ofY given Z (denotedX⊥Y|Z) in distribution Pr if:

Pr(X = x,Y = y|Z = z) = Pr(X = x|Z = z)Pr(Y = y|Z = z)

for all values x ∈ dom(X), y ∈ dom(Y) and z ∈ dom(Z).

A graphical model consists of two components: (1) A graph whose nodes
are the random variables and whose edges connect variables that interact di-
rectly; variables that are not directly connected are conditionally independent
given some combination of the other variables. (2) A set of small functions
called factors each over a subset of the random variables.

Definition 2.2 A factor f(X) is a function over a (small) set of random
variables X = {X1, . . . , Xk} such that f(x) ≥ 0 ∀x ∈ dom(X1) × . . . ×
dom(Xk).

The set of factors that can be associated with a graphical model is constrained
by the nature (undirected vs directed) and the structure of the graph as we will
see later. Note that it is not required that f(x) be ≤ 1; in other words, factors
are not required to be (but can be) probability distributions.

Definition 2.3 A probabilistic graphical model (PGM)P = 〈F ,X〉 defines
a joint distribution over the set of random variables X via a set of factors F ,
each defined over a subset of X . Given a complete joint assignment x ∈
dom(X1) × · · · × dom(Xn) to the variables in X , the joint distribution is
defined by:

Pr(x) =
1

Z
∏

f∈F

f(xf )
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where xf denotes the assignments restricted to the arguments of f and Z =∑
x′

∏
f∈F f(x′f ) is a normalization constant.

The power of graphical models comes from the graphical representation of
factors that makes it easy to understand, reason about, and operate upon them.
Depending on the nature of the interactions between the variables, there are two
popular classes of graphical models, Bayesian networks (directed models), and
Markov networks (undirected models). These differ in the family of probability
distributions they can represent, the set of factorizations they allow, and the
way in which the interactions are quantified along the edges. We discuss these
briefly in turn.

2.1 Directed Graphical Models: Bayesian Networks

Directed graphical models, popularly known as Bayesian networks, are typ-
ically used to represent causal or asymmetric interactions amongst a set of ran-
dom variables. A directed edge from variable Xi to variable Xj in the graph
(which must be acyclic) is used to indicate that Xi directly influences Xj .
A canonical set of conditional independences encoded by a directed graph-
ical model is obtained as follows: a node Xj is independent of all its non-
descendants given the values of its parents. In other words, if Xi is not a
descendant or a parent of Xj , then Xi⊥Xj|parents(Xj). The rest of the con-
ditional independences encoded by the model can be derived from these.

The probability distribution that a directed graphical model represents can
be factorized as follows:

Pr(X1, . . . , Xn) =
n∏

i=1

Pr(Xi|parents(Xi))

In other words, each of the factors associated with a Bayesian network is a
conditional probability distribution (CPD) over a node given its parents in the
graph.

Figure 4.2 shows a simple example Bayesian network that models the lo-
cation, age, degree, experience, and income of a person. In this application
domain, we might model the location to be independent from the rest of the
variables (as captured by not having any edges to or from the corresponding
node in the graph). For simplicity, we also model the age and degree to be in-
dependent from each other if no other information about the person is known.
Although income is influenced by degree, age, and experience, in most cases,
the influence from age will be indirect, and will disappear given the experi-
ence of the person; in other words, once the experience level of a person is
known, the age does not provide any additional information about the income.
This is modeled by not having any direct edge from age to income. The figure
also shows the factors that will be associated with such a Bayesian network
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Examples of conditional independences captured:
                  Location ⊥ {Age, Degree, Experience, Income}

Degree ⊥ {Age, Experience}
Income ⊥ Age | Experience

Figure 4.2. Example of a directed model for a domain with 5 random variables

(one CPD each corresponding to each node), and the expression for the joint
probability distribution as a product of the factors.

A domain expert typically chooses the edges to be added to the model, al-
though the graph could also be learned from a training dataset. A sparse graph
with few edges leads to more compact representation and (typically) more ef-
ficient inference, but a denser graph might be required to capture all the inter-
actions between the variables faithfully.

The compactness of representing a joint probability distribution using a
Bayesian network is evident from the above example. If each of the variables
has domain of size 10, the size of the joint pdf will be 105, whereas the number
of probabilities required to store the factors as shown in the figure is only about
1000, an order of magnitude reduction.

Since Bayesian networks are easy to design, interpret and reason about, they
are extensively used in practice. Some popular examples of Bayesian networks
include Hidden Markov Models [47, 56], Kalman Filters [37, 57], and QMR
networks [40, 33].
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Location Age
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Income

f'1(L)

f'2(A, E)

f'3(D, E, I)

Pr(L, A, D, E, I)  ∝ f'1(L) f'2(A, E) f'3(D, E, I)

Examples of Conditional Independences Captured:
           Location ⊥ {Age, Degree, Experience, Income}

{Degree, Income} ⊥ Age | Experience  

Note:
Degree ⊥ Experience,   Degree ⊥ Age

Figure 4.3. Example of an undirected model for a domain with 5 random variables

2.2 Undirected Graphical Models: Markov Networks

Undirected graphical models, or Markov Networks, are useful for repre-
senting distributions over variables where there is no natural directionality to
the influence of one variable over another and where the interactions are more
symmetric. Examples include the interactions between atoms in a molecular
structure, the dependencies between the labels of pixels of an image, or the
interactions between environmental properties sensed by geographically co-
located sensors [22]. Markov networks are sometimes preferred over Bayesian
networks because they provide a simpler model of independences between
variables.

The probability distribution represented by a Markov network factorizes in
a somewhat less intuitive manner than Bayesian networks; in many cases, the
factors may only indicate the relative compatibility of different assignments to
the variables, but may not have any straightforward probabilistic interpretation.
Let G be the undirected graph over the random variables X = {X1, . . . , Xn}
corresponding to a Markov network, and let C denote the set of cliques (com-
plete subgraphs) of G. Then the probability distribution represented by the
Markov network factorizes as follows:

Pr(X1, . . . , Xn) =
1

Z

∏

C∈C

fC(XC)

where fC(XC) are the factors (also called potential functions) each over a
complete subgraph of G. Z =

∑
X

∏
C∈C fC(XC) is the normalization con-

stant.
Figure 4.3 shows an example Markov network over the same set of ran-

dom variables as above. The maximal complete subgraphs of the network are
{Location}, {Degree,Experience, Income}, {Age,Experience} and fac-
tors may be defined over any of these sets of random variables, or their subsets.
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The conditional independences captured by a Markov network are deter-
mined as follows: if a set of nodes X separates sets of nodes Y and Z (i.e.,
if by removing the nodes in X, there are no paths between a node in Y and a
node in Z), then Y and Z are conditionally independent given X. Figure 4.3
also shows the conditional independences captured by our example network.

An important subclass of undirected models is the class of decomposable
models [20]. In a decomposable model, the graph is constrained to be chordal
(triangulated) and the factors are the joint probability distributions over the
maximal cliques of the graph. These types of models have many desirable
properties such as closed product form factorizations that are easy to compute
and reason about [21]. Further, these bear many similarities to the notion of
acyclic database schemas [5].

2.3 Inference Queries

Next we consider the main types of tasks (queries) that are commonly per-
formed over the model. The most common query type is the conditional prob-
ability query, Pr(Y | E = e). Such a query consists of two parts: (1) the
evidence, a subset E of random variables in the network, and an instantiation e

to these variables; and (2) the query, a subset Y of random variables in the net-
work. Our task is to compute Pr(Y | E = e) = Pr(Y,e)

Pr(e) , i.e., the probability
distribution over the values y of Y, conditioned on the fact that E = e.

A special case of conditional probability queries is simply marginal compu-
tation queries, where we are asked to compute the marginal probability distri-
bution Pr(Y) over a subset of variables Y.

Another type of query that often arises, calledmaximum a posteriori (MAP),
is finding the most probable assignment to some subset of variables. As with
conditional probability queries, we are usually given evidence E = e, and a
set of query variables, Y. In this case, however, our goal is to compute the
most likely assignment to Y given the evidence E = e, i.e.:

argmaxyPr(y, e)

where, in general, argmaxxf(x) represents the value of x for which f(x) is
maximal. Note that there might be more than one assignment that has the high-
est posterior probability. In this case, we can either decide that the MAP task
is to return the set of possible assignments, or to return an arbitrary member of
that set.

A special variant of this class of queries is the most probable explanation
(MPE) queries. An MPE query tries to find the most likely assignment to all
of the (non-evidence) variables, i.e., Y = X − E. MPE queries are some-
what easier than MAP queries, which are much harder to answer than the other
tasks; this is because MAP queries contain both summations and maximiza-
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tions, thus combining the elements of both conditional probabilities queries
and MPE queries.

The simplest way to use the graphical model to answer any of these queries
is: (1) generate the joint probability distribution over all the variables, (2) con-
dition it using the evidence (generating another joint pdf), and then (3) sum
over the unneeded variables (in the case of a conditional probability query) or
search for the most likely entry (in the case of an MPE query). For example,
consider the example shown in Figure 4.2, and lets say we want to compute the
marginal probability distribution corresponding to income (I). This distribu-
tion can be obtained from the full joint distribution by summing out the rest of
the variables:

Pr(I) = ΣL,A,D,E Pr(I, L,A,D,E)

= ΣL,A,D,E f1(L)f2(A)f3(D)f4(E,A)f5(I, E,D)

However, this approach is not very satisfactory and is likely to be infeasi-
ble in most cases, since it results in an exponential space and computational
blowup that the graphical model representation was designed to avoid. In gen-
eral, the exact computation of either of the inference tasks is #P-complete.
However, many graphical models that arise in practice have certain proper-
ties that allow efficient probabilistic computation [59]. More specifically, the
problem can be solved in polynomial time for graphical models with bounded
tree-width [50].

Variable elimination (VE) [59, 19], also known as bucket elimination, is
an exact inference algorithm that has the ability to exploit this structure. In-
tuitively variable elimination specifies the order in which the variables are
summed out (eliminated) from the above expression; eliminating a variable
requires multiplying all factors that contain the variable, and then summing
out the variable. Say we chose the order: L,A,D,E, then the computation is
as follows (the expression evaluated in each step is underlined, and its result is
bold-faced in the next step):

Pr(I) = ΣL,A,D,Ef1(L)f2(A)f3(D)f4(E,A)f5(I, E,D)

= ΣE(ΣDf5(I, E,D)f3(D) (ΣAf2(A)f4(E,A) (ΣLf1(L))))

= ΣE(ΣDf5(I, E,D)f3(D) (ΣAf2(A)f4(E,A)))

= ΣE(ΣDf5(I, E,D)f3(D)) g1(E)

= ΣE g2(I,E)g1(E)

= g3(I)

The order in which the variables are summed out is known as the elimination
order, and the cost of running VE depends on the choice of the elimination
order. Even though finding the optimal ordering is NP-hard [2] (this is closely
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related to the problem of finding the optimal triangulation of a graph), good
heuristics are available [7, 18].

Another popular algorithm for exact inference is the junction tree algo-
rithm [13, 30]. A junction tree is an efficient data structure for reusing work
for several inference queries on the same graph. Once a junction tree is con-
structed, we can provide exact answers to inference queries over any subset
of variables in the same clique by running the sum-product message passing
or belief propagation algorithms. The message passing algorithm runs in time
that is linear in the number of cliques in the tree and exponential in the size of
the largest clique in the tree (which is same as the tree-width of the model).

However, many real-life graphical models give rise to graphs with large
tree-widths, and the design of good approximation schemes in such cases is
an active topic of research in the statistics and probabilistic reasoning commu-
nities. The most commonly used techniques include methods based on belief
propagation (e.g. loopy belief propagation [42]), sampling-based techniques
(e.g. Gibbs sampling, particle filters [3, 38]) and variational approximation
methods [36] to name a few. We refer the reader to [35] for further details.

3. Representing Uncertainty using Graphical Models

We are now ready to define a probabilistic database in terms of a PGM. The
basic idea is to use random variables to depict the uncertain attribute values
and factors to represent the uncertainty and the correlations. Let R denote
a probabilistic relation or simply, relation, and let attr(R) denote the set of
attributes of R. A relation R consists of a set of probabilistic tuples or simply,
tuples, each of which is a mapping from attr(R) to random variables. Let
t.a denote the random variable corresponding to tuple t ∈ R and attribute
a ∈ attr(R). Besides mapping each attribute to a random variable, every tuple
t is also associated with a boolean-valued random variable which captures the
existence uncertainty of t and we denote this by t.e.

Definition 3.1 A probabilistic database or simply, a database, D is a pair
〈R,P〉 where R is a set of relations and P denotes a PGM defined over the
set of random variables associated with the tuples inR.

Figure 4.4(a) shows a small two-relation database that we use as a running
example. In this database, every tuple has an uncertain attribute (the B at-
tributes) and these are indicated in Figure 4.4(a) by specifying the probabili-
ties with which each attribute takes the assignments from its domain. In our
proposed framework, we represent this uncertainty by associating a random
variable with each of the uncertain attributes, and by using factors to capture
the corresponding probability distributions and correlations if present.

For instance, s2.B can be assigned the value 1 with probability 0.6 and
the value 2 with probability 0.4 and we would represent this using the factor
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Figure 4.4. (a) A small database with uncertain attributes. For ease of exposition, we show
the marginal pdfs over the attribute values in the table; this information can be derived from
the factors. (b) Factors corresponding to the database assuming complete independence. (c)
Graphical representation of the factors.

fs2.B shown in Figure 4.4(b). We show all three required factors fs1.B(s1.B),
fs2.B(s2.B) and ft1.B(t1.B) in Figure 4.4(b). Here we assume that the at-
tributes are independent of each other. If, for instance, s2.B and t1.B were
correlated, we would capture that using a factor ft1.B,s2.B(t1.B, s2.B) (de-
tailed example below).

In addition to the random variables which denote uncertain attribute val-
ues, we can introduce tuple existence random variables s1.e, s2.e, and t1.e, to
capture tuple uncertainty. These are boolean-valued random variables and can
have associated factors. In Figure 4.4, we assume the tuples are certain, so we
don’t show the existence random variables for the base tuples.

3.1 Possible World Semantics

We now define the semantics for our formulation of a probabilistic database.
LetX denote the set of random variables associated with databaseD = 〈R,P〉.
Possible world semantics define a probabilistic databaseD as a probability dis-
tribution over deterministic databases (possible worlds) [14] each of which is
obtained by assigning X a joint assignment x ∈ ×X∈Xdom(X). The proba-
bility associated with the possible world obtained from the joint assignment x
is given by the distribution defined by the PGM P (Definition 2.3).

For the example shown in Figure 4.4, each possible world is obtained by
assigning all three random variables s1.B, s2.B and t1.B assignments from
their respective domains. Since each of the attributes can take 2 values, there
are 23 = 8 possible worlds. Figure 4.5 shows all 8 possible worlds with the
corresponding probabilities listed under the column “prob.(ind.)” (indicating
the independence assumption). The probability associated with each possi-
ble world is obtained by multiplying the appropriate numbers returned by the
factors and normalizing if necessary. For instance, for the possible world ob-
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possible world prob prob. prob. prob.
(ind.) (implies) (diff.) (pos.corr.)

D1 : S = {(a1, 1), (a2, 1)} 0.18 0.50 0.30 0.06
T = {(2, c)}

D2 : S = {(a1, 1), (a2, 1)} 0.18 0.02 0.06 0.30
T = {(3, c)}

D3 : S = {(a1, 1), (a2, 2)} 0.12 0 0.20 0.04
T = {(2, c)}

D4 : S = {(a1, 1), (a2, 1)} 0.12 0.08 0.04 0.20
T = {(3, c)}

D5 : S = {(a1, 2), (a2, 1)} 0.12 0 0 0.24
T = {(2, c)}

D6 : S = {(a1, 2), (a2, 1)} 0.12 0.08 0.24 0
T = {(3, c)}

D7 : S = {(a1, 2), (a2, 2)} 0.08 0 0 0.16
T = {(2, c)}

D8 : S = {(a1, 2), (a2, 2)} 0.08 0.32 0.16 0
T = {(3, c)}

Figure 4.5. Possible worlds for example in Figure 4.4(a) and three other different types of
correlations.
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Primplies(s1.B, s2.B, t1.B) = f implies
t1.B

(t1.B)f implies
t1.B,s1.B
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(t1.B, s2.B)
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2 1 1
2 2 0
3 1 0.2
3 2 0.8

Figure 4.6. Factors for the probabilistic databases with “implies” correlations (we have omitted
the normalization constant Z because the numbers are such that distribution is already normal-
ized)

tained by the assignment s1.B = 1, s2.B = 2, t1.B = 2 (D3 in Figure 4.5)
the probability is 0.6× 0.4× 0.5 = 0.12.

Let us now try to modify our example to illustrate how to represent corre-
lations in a probabilistic database. In particular, we will try to construct three
different databases containing the following dependencies:

implies: t1.B = 2 implies s1.B 6= 2 and s2.B 6= 2, in other words,
(t1.B = 2) =⇒ (s1.B = 1) ∧ (s2.B = 1).

different: t1B and s1.B cannot have the same assignment, in other
words, (t1.B = 2)⇔ (s1.B = 1) or (s1.B = 2)⇔ (t1.B = 3).

positive correlation: High positive correlation between t1.B and s1.B –
if one is assigned 2 then the other is also assigned the same value with
high probability.

Figure 4.5 shows four distributions over the possible worlds that each satisfy
one of the above correlations (the columns are labeled with abbreviations of the
names of the correlations, e.g., the column for positive correlation is labeled
“pos. corr.”).

To represent the possible worlds of our example database with the new cor-
relations, we simply redefine the factors in the database appropriately. For
example, Figure 4.6 represents the factors for the first case (implies). In this
case, we use a factor on t1.B and s1.B to encode the correlation that (t1.B =
2) =⇒ (s1.B = 1). Similarly, a factor on t1.B and s2.B is used to encode
the other correlation.

Note that in Definition 3.1, we make no restrictions as to which random
variables appear as arguments in a factor. Thus, if the user wishes, she may de-
fine a factor containing random variables from the same tuple, different tuples,
tuples from different relations or tuple existence and attribute value random
variables; thus, in our formulation we can express any kind of correlation that
one might think of representing in a probabilistic database.
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id A B

s1 a1 ⊥
s2 a2 ⊥

id B C

t1 ⊥ c

fid args probs

f1 1 “2,0.5;3,0.5”
f2 2 “2,1,1;2,2,0 ...”
f3 2 “2,1,1;2,2,0 ...”
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t1.B f3 = f implies
t1.B,s2.B

1

s2.B f3 = f implies
t1.B,s2.B

2

(a) Base Tables (b) factors table (c) factor-rvs table

Figure 4.7. Representing the factors from Figure 4.6 using a relational database; shared factors
can be represented by using an additional level of indirection.

3.2 Shared Factors

In many cases, the uncertainty in the data is defined using general statistics
that do not vary on a per-tuple basis, and this leads to significant duplication of
factors in the probabilistic database. For instance, when combining data from
different sources in a data integration scenario, the sources may be assigned
data quality values, which may be translated into tuple existence probabili-
ties [1]; all tuples from the same source are then expected to have the same
factor associated with them. If the uncertainties are derived from an attribute-
level joint probability distribution (as shown in our earlier example in Figure
4.1), then many of the factors are expected to be identical.

Another source of shared correlations in probabilistic databases is the query
evaluation approach itself. As we will see in the next section, while evaluat-
ing queries we first build an augmented PGM on the fly by introducing small
factors involving the base tuples and the intermediate tuples. For instance, if
tuples t and t′ join to produce intermediate tuple r, we introduce a factor that
encodes the correlation that r exists iff both t and t exist (an ∧-factor). More
importantly, such a factor is introduced whenever any pair of tuples join, thus
leading to repeated copies of the same ∧-factor.

We call such factors shared factors and explicitly capture them in our frame-
work; furthermore, our inference algorithms actively identify and exploit such
commonalities to reduce the query processing time [53].

3.3 Representing Probabilistic Relations

Earlier approaches represented probabilistic relations by storing uncertainty
with each tuple in isolation. This is inadequate for our purpose since the same
tuple can be involved in multiple factors, and the same factor can be associated
with different sets of random variables. This necessitates an approach where
the data and the uncertainty parts are stored separately. Figure 4.7 shows how
we store the factors and associate them with the tuples in our current prototype
implementation. We use an internal id attribute for each relation that is auto-
matically generated when tuples are inserted into the relation; this attribute is
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used to identify the random variables corresponding to a tuple uniquely. We
use ⊥ to indicate uncertain attribute values (Figure 4.7(a)). Two additional ta-
bles are used to store the factors and their associations with the tuple variables:

factors: This table stores a serialized representation of the factor along
with some auxiliary information such as the number of arguments.

factor-rvs: This normalized relation stores the association between fac-
tors and random variables; the random variables can be of two types:
(1) attribute value random variables (e.g. t1.B), or (2) existence random
variables (e.g. t1.e). Each row in this table indicates the participation
of a random variable in a factor. Since the table is normalized, we also
need to store the “position” of the random variable in the factor.

Note that this schema does not exploit shared factors (factors f2 and f3 are
identical in the above example); they can be easily handled by adding one
additional table.

4. Query Evaluation over Uncertain Data

Having defined our representation scheme, we now move our discussion to
query evaluation. The main advantage of associating possible world seman-
tics with a probabilistic database is that it lends precise semantics to the query
evaluation problem. Given a user-submitted query q (expressed in some stan-
dard query language such as relational algebra) and a database D, the result
of evaluating q against D is defined to be the set of results obtained by evalu-
ating q against each possible world of D, augmented with the probabilities of
the possible worlds. Relating back to our earlier examples, suppose we want
to run the query q =

∏
C(S ⊲⊳B T ). Figure 4.8(a) shows the set of results

obtained from each set of possible worlds, augmented by the corresponding
probabilities depending on which database we ran the query against.

Now, even though query evaluation under possible world semantics is clear
and intuitive, it is typically not feasible to evaluate a query directly using these
semantics. First and foremost among these issues is the size of the result. Since
the number of possible worlds is exponential in the number of random variables
in the database (to be more precise, it is equal to the product of the domain sizes
of all random variables), if every possible world returns a different result, the
result size itself will be very large. To get around this issue, it is traditional to
compress the result before returning it to the user. One way of doing this is to
collect all tuples from the set of results returned by possible world semantics
and return these along with the sum of probabilities of the possible worlds that
return the tuple as a result [14]. In Figure 4.8(a), there is only one tuple that is
returned as a result and this tuple is returned by possible worlds D3, D5 and
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possible query prob. prob. prob. prob.
world result (ind.) (implies) (diff.) (pos.corr.)

D1 ∅ 0.18 0.50 0.30 0.06
D2 ∅ 0.18 0.02 0.06 0.30
D3 {c} 0.12 0 0.20 0.04
D4 ∅ 0.12 0.08 0.04 0.20
D5 {c} 0.12 0 0 0.24
D6 ∅ 0.12 0.08 0.24 0
D7 {c} 0.08 0 0 0.16
D8 ∅ 0.08 0.32 0.16 0

(a)

query Pr(D3) + Pr(D5) + Pr(D7)
result ind. implies diff. pos.corr.

{c} 0.32 0 0.20 0.40

(b)

Figure 4.8. Results running the query
Q

C
(S ⊲⊳B T ) on example probabilistic databases (Fig-

ures 4.4 and 4.5). The query returns a non-empty (and identical) result in possible worlds D3,
D5, and D7, and the final result probability is obtained by adding up the probabilities of those
worlds.
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D7. In Figure 4.8(b), we show the resulting probabilities obtained by summing
across these three possible worlds for each example database.

The second issue is related to the complexity of computing the results of a
query from these first principles. Since the number of possible worlds is very
large for any non-trivial probabilistic database, evaluating results directly by
enumerating all of its possible worlds is going to be infeasible.

To solve this problem, we first make the connection between computing
query results for a probabilistic database and the marginal probability compu-
tation problem for probabilistic graphical models.

Definition 4.1 Given a PGM P = 〈F ,X〉 and a random variable X ∈
X , the marginal probability associated with the assignment X = x, where
x ∈ dom(X), is defined as µ(x) =

∑
x∼x Pr(x), where Pr(x) denotes the

distribution defined by the PGM and x ∼ x denotes a joint assignment to X
whereX is assigned x.

Since each possible world is obtained by a joint assignment to all random
variables in the probabilistic database, there is an intuitive connection between
computing marginal probabilities and computing result tuple probabilities by
summing over all possible worlds. In the rest of this section, we make this con-
nection more precise. We first show how to augment the PGM underlying the
database such that the augmented PGM contains random variables representing
result tuples. We can then express the probability computation associated with
evaluating the query as a standard marginal probability computation problem;
this allows us to use standard probabilistic inference algorithms to evaluate
queries over probabilistic databases.

We first present an example to illustrate the basic ideas underlying our ap-
proach to augmenting the PGM underlying the database given a query, after
that we discuss how to augment the PGM in the general case given any rela-
tional algebra query.

4.1 Example

Consider running the query
∏

C(S ⊲⊳B T ) on the database presented in Fig-
ure 4.4(a). Our query evaluation approach is very similar to query evaluation
in traditional database systems and is depicted in Figure 4.9. Just as in tra-
ditional database query processing, in Figure 4.9, we introduce intermediates
tuples produced by the join (i1 and i2) and produce a result tuple (r1) from the
projection operation. What makes query processing for probabilistic databases
different from traditional database query processing is the fact that we need to
preserve the correlations among the random variables representing the inter-
mediate and result tuples and the random variables representing the tuples they
were produced from. In our example, there are three such correlations that we
need to take care of:
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Figure 4.9. Evaluating
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(S ⊲⊳B T ) on database in Figure 4.4(a).

i1 (produced by the join between s1 and t1) exists or i1.e is true only in
those possible worlds where both s1.B and t1.B are assigned the value
2.

Similarly, i2.e is true only in those possible worlds where both s2.B
and t1.B are assigned the value 2.

Finally, r1 (the result tuple produced by the projection) exists or r1.e is
true only in those possible worlds that produce at least one of i1 or i2
or both.

To enforce these correlations, during query evaluation we introduce inter-
mediate factors defined over appropriate random variables. For our example,
we introduce the following three correlations:

• For the correlation among i1.e, s1.B and t1.B we introduce the factor fi1.e
which is defined as:

fi1.e(i1.e, s1.B, t1.B) =

{
1 if i1.e⇔ ((s1.B == 2) ∧ (t1.B == 2))
0 otherwise

• Similarly, for the correlation among i2.e, s2.B and t1.B we introduce the
factor fi2.e which is defined as:

fi2.e(i2.e, s2.B, t1.B) =

{
1 if i2.e⇔ ((s2.B == 2) ∧ (t1.B == 2))
0 otherwise

• For the correlation among r1.e, i1.e and i2.e, we introduce a factor fr1.e
capturing the or semantics:

fr1.e(r1.e, i1.e, i2.e) =

{
1 if r1.e⇔ (i1.e ∨ i2.e)
0 otherwise
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Figure 4.9 depicts the full run of the query along with the introduced factors.
Now, to compute the probability of existence of r1 (which is what we did in

Figure 4.8 by enumerating over all possible worlds), we simply need to com-
pute the marginal probability associated with the assignment r1.e = true from
PGM formed by the set of factors in the base data and the factors introduced
during query evaluation. For instance, for the example where we assumed
complete independence among all uncertain attribute values (Figure 4.4(b))
our augmented PGM is given by the collection fs1.B, fs2.B, ft1.B, fi1.e, fi2.e
and fr1.e, and to compute the marginal probability we can simply use any of
the exact inference algorithms available in the probabilistic reasoning literature
such as variable elimination [59, 19] or the junction tree algorithm [30].

4.2 Generating Factors during Query Evaluation

Query evaluation for general relational algebra also follows the same basic
ideas. In what follows, we modify the traditional relational algebra operators so
that they not only generate intermediate tuples but also introduce intermediate
factors which, combined with the factors on the base data, provide a PGM that
can then be used to compute marginal probabilities of the random variables
associated with result tuples of interest. We next describe the modified σ, ×,∏

, δ, ∪, − and γ (aggregation) operators where we use ∅ to denote a special
“null” symbol.

Select: Let σc(R) denote the query we are interested in, where c denotes the
predicate of the select operation. Every tuple t ∈ R can be jointly instanti-
ated with values from ×a∈attr(R)dom(t.a). If none of these instantiations
satisfy c then t does not give rise to any result tuple. If even a single in-
stantiation satisfies c, then we generate an intermediate tuple r that maps
attributes from R to random variables, besides being associated with a tu-
ple existence random variable r.e. We then introduce factors encoding the
correlations among the random variables for r and the random variables for
t. The first factor we introduce is fσr.e, which encodes the correlations for
r.e:

fσr.e(r.e, t.e, {t.a}a∈attr(R)) =

{
1 if t.e ∧ c({t.a}a∈attr(R))⇔ r.e
0 otherwise

where c({t.a}a∈attrR) is true if a joint assignment to the attribute value
random variables of t satisfies the predicate c and false otherwise.

We also introduce a factor for r.a, ∀a ∈ attr(R) (where dom(r.A) =
dom(t.A)), denoted by fσr.a. fσr.a takes t.a, r.e and r.a as arguments and
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can be defined as:

fσr.a(r.a, r.e, t.a) =





1 if r.e ∧ (t.a == r.a)
1 if r.e ∧ (r.a == ∅)
0 otherwise

Cartesian Product: Suppose R1 and R2 are the two relations involved in the
Cartesian product operation. Let r denote the join result of two tuples t1 ∈
R1 and t2 ∈ R2. Thus r maps every attribute from attr(R1)∪ attr(R2) to
a random variable, besides being associated with a tuple existence random
variable r.e. The factor for r.e, denoted by f×r.e, takes t1.e, t2.e and r.e as
arguments, and is defined as:

f×r.e(r.e, t1.e, t2.e) =

{
1 if t1.e ∧ t2.e⇔ r.e
0 otherwise

We also introduce a factor f×r.a for each a ∈ attr(R1)∪ attr(R2), and this
is defined exactly in the same fashion as fσr.a. Basically, for a ∈ attr(R1)
(a ∈ attr(R2)), it returns 1 if r.e ∧ (t1.a == r.a) (r.e ∧ (t2.a == r.a))
holds or if r.e ∧ (r.a == ∅) holds, and 0 otherwise.

Project (without duplicate elimination): Let
∏

a(R) denote the operation we
are interested in where a ⊆ attr(R) denotes the set of attributes we want
to project onto. Let r denote the result of projecting t ∈ R. Thus r maps
each attribute a ∈ a to a random variable, besides being associated with

r.e. The factor for r.e, denoted by f
Q
r.e, takes t.e and r.e as arguments, and

is defined as follows:

f
Q
r.e(r.e, t.e) =

{
1 if t.e⇔ r.e
0 otherwise

Each factor f
Q
r.a, introduced for r.a, ∀a ∈ a, is defined exactly as fσr.a, in

other words, f
Q
r.a(r.a, r.e, t.a) = fσr.a(r.a, r.e, t.a).

Duplicate Elimination: Duplicate elimination is a slightly more complex op-
eration because it can give rise to multiple intermediate tuples even if there
was only one input tuple to begin with. Let R denote the relation from
which we want to eliminate duplicates, then the resulting relation after du-
plicate elimination will contain tuples whose existence is uncertain, more
precisely the resulting tuples’ attribute values are known. Any element
from

⋃
t∈R×a∈attr(R)dom(t.a) may correspond to the values of a possible

result tuple. Let r denote any such result tuple whose attribute values are
known, only r.e is not true with certainty. Denote by ra the value of at-
tribute a in r. We only need to introduce the factor f δr.e for r.e. To do this



98 MANAGING AND MINING UNCERTAIN DATA

we compute the set of tuples from R that may give rise to r. Any tuple t
that satisfies

∧
a∈attr(R)(ra ∈ dom(t.a)) may give rise to r. Let yrt be an

intermediate random variable with dom(yrt ) = {true, false} such that
yrt is true iff t gives rise to r and false otherwise. This is easily done by
introducing a factor f δyrt that takes {t.a}a∈attr(R), t.e and yrt as arguments
and is defined as:

f δyrt (y
r
t , {t.a}a∈attr(R), t.e) =

{
1 if t.e ∧∧a(t.a == ra)⇔ yrt
0 otherwise

where {t.a}a∈attr(R) denotes all attribute value random variables of t. We
can then define f δr.e in terms of yrt . f δr.e takes as arguments {yrt }t∈Tr , where
Tr denotes the set of tuples that may give rise to r (contains the assignment
{ra}a∈attr(R) in its joint domain), and r.e, and is defined as:

f δr.e(r.e, {yrt }t∈Tr) =

{
1 if

∨
t∈Tr

yrt ⇔ r.e
0 otherwise

Union and set difference: These operators require set semantics. Let R1 and
R2 denote the relations on which we want to apply one of these two opera-
tors, either R1 ∪R2 or R1 − R2. We will assume that both R1 and R2 are
sets of tuples such that every tuple contained in them have their attribute
values fixed and the only uncertainty associated with these tuples are with
their existence (if not then we can apply a δ operation to convert them to
this form). Now, consider result tuple r and sets of tuples T 1

r , containing
all tuples from R1 that match r’s attribute values, and T 2

r , containing all
tuples from R2 that match r’s attribute values. The required factors for r.e
can now be defined as follows:

f∪r.e(r.e, {t1.e}t1∈T 1
r
, {t2.e}t2∈T 2

r
) =

{
1 if (

∨
t∈T 1

r ∪T
2
r
t.e)⇔ r.e

0 otherwise

f−r.e(r.e, {t1.e}t1∈T 1
r
, {t2.e}t2∈T 2

r
)

=

{
1 if ((

∨
t∈T 1

r
t.e) ∧ ¬(∨t∈T 2

r
t.e))⇔ r.e

0 otherwise

Aggregation operators: Aggregation operators are also easily handled using
factors. Suppose we want to compute the sum aggregate on attribute a of
relation R, then we simply define a random variable r.a for the result and
introduce a factor that takes as arguments {t.a}t∈attr(R) and r.a, and define
the factor so that it returns 1 if r.a == (

∑
t∈R t.a) and 0 otherwise. Thus

for any aggregate operator γ and result tuple random variable r.a, we can
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Figure 4.10. An example query evaluation over a 3-relation database with only tuple uncer-
tainty but many correlations (tuples associated with the same factor are correlated with each
other). The intermediate tuples are shown alongside the corresponding random variables. Tu-
ples l2, . . . , l6 do not participate in the query.

define the following factor:

fγr.a(r.a, {t.a}t∈R) =





1 if r.a == γt∈Rt.a
1 if (r.a == ∅)⇔ ∧

t∈R(t.a == ∅)
0 otherwise

4.3 Query Evaluation as Inference

Given a query and a probabilistic database (and the corresponding PGM),
we can use the procedures described in the previous section to construct an
augmented PGM that contains random variables corresponding to the result
tuples. Computing the result probabilities is simply a matter of evaluating
marginal probability queries over this PGM. We can use any standard exact
or approximate inference algorithm developed in the probabilistic reasoning
community for this purpose, depending on our requirements of accuracy and
speed. Note that the resulting PGM, and hence the complexity of inference,
will depend on the query plan used for executing the query. We revisit this
issue in Section 5.

Figure 4.10 shows the PGM generated when evaluating a multi-way join
query over 3 relations; computing the result tuple probability is equivalent to
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Figure 4.11. PGM constructed for evaluation of countG(σD=α(L)) over the probabilistic
database from Figure 4.10. By exploiting decomposability of count, we can limit the maximum
size of the newly introduced factors to 3 (the naive implementation would have constructed a
5-variable factor).

computing the marginal probability distribution over the random variable r.e.
Similarly, Figure 4.11 shows the PGM constructed in response to an aggregate
query (details below).

4.4 Optimizations

For the above operator modifications, we have attempted to be completely
general and hence the factors introduced may look slightly more complicated
than need be. For example, it is not necessary that fσr.E take as arguments all
random variables {t.a}a∈attr(R) (as defined above), it only needs to take those
t.a random variables as arguments which are involved in the predicate c of
the σ operation. Also, given a theta-join we do not need to implement this
as a Cartesian product followed by a select operation. It is straightforward to
push the select operation into the Cartesian product factors and implement the
theta-join directly by modifying f×r.E appropriately using c.

Another type of optimization that is extremely useful for aggregate compu-
tation, duplicate elimination and the set-theoretic operations (∪ and −) is to
exploit decomposable functions. A decomposable function is one whose re-
sult does not depend on the order in which the inputs are presented to it. For
instance, ∨ is a decomposable function, and so are most of the aggregation op-
erators including sum, count, max and min. The problem with some of the
redefined relational algebra operators is that, if implemented naively, they may
lead to large intermediate factors. For instance, while running a δ operation, if
Tr contains n tuples for some r, then the factor f δr.e will be of size 2n+1. By ex-
ploiting decomposability of ∨ we can implement the same factor using a linear
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number of constant sized (3-argument) factors which may lead to significant
speedups. We refer the interested reader to [50, 60] for more details. The only
aggregation operator that is not decomposable is avg, but even in this case we
can exploit the same ideas by implementing avg in terms of sum and count
both of which are decomposable. Figure 4.11 shows the PGM constructed for
an example aggregate query over the database from Figure 4.10.

Finally, one of the key ways we can reduce the complexity of query eval-
uation is by exploiting recurring (shared) factors. In recent work [53], we
developed a general-purpose inference algorithm that can exploit such shared
factors. Our algorithm identifies and exploits the symmetry present in the aug-
mented PGM to significantly speed up query evaluation in most cases. We
omit the details due to space constraints and refer the reader to [53] for further
details.

5. Related Work and Discussion

Next we briefly discuss some of the closely related concepts in query eval-
uation over probabilistic databases, namely safe plans and lineage. We then
briefly discuss the relationship of our approach to probabilistic relational mod-
els, lifted inference, and scalable inference using databases. We believe most
of these represent rich opportunities for future research.

5.1 Safe Plans

One of the key results in query evaluation over probabilistic databases is the
dichotomy of conjunctive query evaluation on tuple-independent probabilistic
databases by Dalvi and Suciu [14, 15]. Briefly the result states that the com-
plexity of evaluating a conjunctive query over tuple-independent probabilistic
databases is either PTIME or #P-complete. For the former case, Dalvi and Su-
ciu [14] also present an algorithm to find what are called safe query plans, that
permit correct extensional evaluation of the query. We relate the notion of safe
plans to our approach through the following theorem:

Theorem 5.1 When executing a query over a tuple-independent probabilis-
tic database using a safe query plan, the resulting probabilistic graphical

model is tree-structured (for which inference can be done in PTIME).

Note that the dichotomy result presented in [15] reflects a worst-case sce-
nario over all possible instances of a probabilistic database. In other words,
even if a query does not have safe plan, for a specific probabilistic database
instance, query evaluation may still be reasonably efficient. Our approach can
easily capture this because in such cases the resulting PGM will either be tree-
structured or have low tree-width, thus allowing us to execute the query effi-
ciently. One of the important open problems in this area is developing algo-
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rithms for identifying query plans that result in PGMs with low tree-widths for
a given probabilistic database and a given query.

5.2 Representing Uncertainty using Lineage

Several works [26, 58, 6, 48, 49] have proposed using explicit boolean for-
mulas to capture the relationship between the base tuples and the intermediate
tuples. In the Trio system [58, 6], such formulas are called lineage, and are
computed during the query evaluation. The result tuple probabilities are then
computed on demand by evaluating the lineage formulas. In recent work, Re
et al. [49] presented techniques for approximate compression of such lineage
formulas for more efficient storage and query evaluation.

The PGM constructed in our approach can be thought of as a generaliza-
tion of such boolean formulas, since the PGM can represent more complex
relationships than can be captured using a boolean formula. Further, the PGM
naturally captures common subexpressions between the lineage formulas cor-
responding to different result tuples, and avoids re-computation during the in-
ference process. Evaluation of boolean formulas can be seen as a special case
of probabilistic inference, and thus techniques from exact or approximate in-
ference literature can be directly applied to evaluating the lineage formulas
as well. However lineage formula evaluation admits efficient approximation
schemes (e.g. based on polynomial approximation [49]) that may not translate
to general probabilistic graphical models.

5.3 Probabilistic Relational Models

Probabilistic relational models (PRMs) [25, 27] extend Bayesian networks
with the concepts of objects, their properties and relations between them. In a
way, they are to Bayesian networks as relational logic is to propositional logic.
PRMs can also be thought of as a generalization of the probabilistic database
framework that we presented in this chapter, and extending our approach to
transparently and efficiently handle a PRM-based model is one of the important
research directions that we plan to pursue in future. We begin with illustrating
PRMs using a simple example, and then discuss the challenges in integrating
them with our approach.

A PRM contains a relational component that describes the relational schema
of the domain, and a probabilistic component that captures the probabilistic
dependencies that hold in the domain. Figure 4.12 shows a simple example
PRM over a relational schema containing three relations, Author, Paper, and
Review. For simplicity the relationship AuthorOf is modeled as many-to-one
(with a single author per paper), whereas the relationship Reviewed is many-
to-many. Along with the relational schema, a PRM specifies a probabilistic
model over the attributes of the relations. A key difference between Bayesian
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Figure 4.12. A probabilistic relational model defined over an example relational schema. Sim-
ilar to Bayesian networks, the model parameters consist of conditional probability distributions
for each node given its parents.

networks and PRMs is that an attribute in one relation may depend on an at-
tribute in another relation. For example, the quality of a paper may depend on
the properties of the author (as shown in the figure).

When defining a dependence across a many-to-one relationship, a mecha-
nism to aggregate the attribute values must be specified as well. For instance,
the accepted attribute for a paper is modeled as dependent on the mood at-
tribute from the review relation. However a single paper may have multiple
reviews, and we must somehow combine the values of mood attribute from
those reviews; the example PRM uses the MODE of the attribute values for
this purpose.

Now, given a relational skeleton that specifies the primary keys and for-
eign keys for the tuples, the PRM defines a probability distribution over the
attributes of the tuples. Figure 4.13 shows an example of this, with two papers
with keys P1 and P2, both by the author A1. The PRM then specifies a joint
probability distribution over the random variables as shown in the figure. If the
skeleton also specifies the values of some of the attributes, those can be treated
as evidence in a straightforward way.

PRMs can also capture uncertainty in the link structure (i.e., the key-foreign
key dependencies). We refer the reader to [27] for more details.

Conceptually it is straightforward to extend our probabilistic model to allow
the dependences to be defined using a PRM (shared factors is one step in that
direction); the real challenge is doing inference over such models (see below).
We are planning to explore closer integration between these two areas in the
future.
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Figure 4.13. An instance of the example PRM with two papers: P1, P2, with the same author
A1. For P1, we use an explicit random variable for representing the mode of R1.M and R2.M .
No such variable is needed for P2 since it only has one review.

5.4 Lifted Inference

Many first-order machine learning models such as PRMs allow defining
rich, compact probability distributions over large collections of random vari-
ables. Inference over such models can be tricky, and the initial approaches to
inference involved grounding out the graphical model by explicitly creating
random variables (as shown in Figure 4.13) and then using standard inference
algorithms. This can however result in very large graphical models, and can in-
volve much redundant inference (since most of the factors are shared). Lifted
inference techniques aim to address this situation by avoiding propositional-
ization (grounding) as much as possible [45, 46, 17, 55, 41, 53]. Most of
this work assumes that the input is a first-order probabilistic model (such as
a PRM). Poole [46] presents a modified version of the variable elimination
algorithm [59] for this purpose. Braz et al. [17] and Milch et al. [41] present
algorithms that look for specific types of structures in the first-order model, and
exploit these for efficient inference. Singla et al. [55] develop a modified loopy
belief propagation algorithm (for approximate inference) for lifted inference.

As discussed above, in our recent work [53], we developed a general-purpose
lifted inference algorithm for probabilistic query evaluation. Our algorithm
however does not operate on the first-order representation, and we are cur-
rently working on combining our approach with the techniques developed in
the lifted inference literature.

5.5 Scalable Inference using a Relational Database

Finally a very related but at the same time fundamentally different problem
is that of expressing inference tasks as database queries. Consider the Bayesian
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network shown in Figure 4.2, and consider the (inference) task of finding the
marginal probability distribution over income (I). As seen before, this can be
written as:

Pr(I) = ΣL,A,D,E f1(L)f2(A)f3(D)f4(E,A)f5(I, E,D)

If the factors (CPDs) become very large, we might choose to store them as
relations in a database (called functional relations by Bravo et al. [9]). For
example, the relations corresponding to f1 and f5 may have schemas F1(L,
prob), and F5(I, E, D, prob) respectively. Then this inference task can be
written as an SQL query as follows:

select I, sum(F1.prob * F2.prob * F3.prob * F4.prob * F5.prob)
from F1 join F2 join F3 join F4 join F5
group by I

This approach not only enables easy and persistent maintenance of Bayesian
networks, but can also enable significant performance optimizations (we refer
the reader to Bravo et al. [9] for a more detailed discussion).

However note that this approach is only suitable when the number of random
variables is small (i.e. the size of the network is small), since each factor must
be stored as a separate relation. The number of uncertain facts in a probabilistic
database is likely to be very large and continuously changing, and storing each
factor as a different relation would be infeasible in those cases. Second, the
main “query/inference” tasks that need to be supported in the two scenarios
are quite different. In probabilistic databases, the SQL queries operate on the
values of the random variables, concatenating or aggregating them, whereas
inference in Bayesian networks is typically concerned with marginalization
and conditioning. Supporting both types of tasks in a unified manner remains
one of the most important open problems in this area.

6. Conclusions

Graphical models are a versatile tool that have been applied to many database
problems such as selectivity estimation [28, 21, 43, 31], sensor network data
management [23], information extraction [12, 51], data integration [54, 29] to
name a few. In this chapter, we presented a simple and intuitive framework for
managing large-scale uncertain data using graphical models, that allows us to
capture complex uncertainties and correlations in the data in a uniform manner.
We showed how the problem of query evaluation in uncertain databases can be
seen to be equivalent to probabilistic inference in an appropriately constructed
graphical model. This equivalence enables us to employ the formidable ma-
chinery developed in the probabilistic reasoning literature over the years for
answering queries over probabilistic databases. We believe it will also lead to
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a deeper understanding of how to devise more efficient inference algorithms
for large-scale, structured probabilistic models.
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Abstract

This chapter covers the Trio database management system. Trio is a robust
prototype that supports uncertain data and data lineage, along with the standard
features of a relational DBMS. Trio’s new ULDB data model is an extension
to the relational model capturing various types of uncertainty along with data
lineage, and its TriQL query language extends SQL with a new semantics for
uncertain data and new constructs for querying uncertainty and lineage. Trio’s
data model and query language are implemented as a translation-based layer on
top of a conventional relational DBMS, with some stored procedures for func-
tionality and increased efficiency. Trio provides both an API and a full-featured
graphical user interface.
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Introduction

Trio is a new kind of database management system (DBMS): one in which
data, uncertainty of the data, and data lineage are all first-class citizens. Com-
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bining data, uncertainty, and lineage yields a data management platform that
is useful for data integration, data cleaning, information extraction systems,
scientific and sensor data management, approximate and hypothetical query
processing, and other modern applications.

The databases managed by Trio are called ULDBs, for Uncertainty-Lineage
Databases. ULDBs extend the standard relational model. Queries are ex-
pressed using TriQL (pronounced “treacle”), a strict extension to SQL. We
have built a robust prototype system that supports a substantial fraction of the
TriQL language over arbitrary ULDBs. The remainder of this Introduction
briefly motivates the ULDB data model, the TriQL language, and the proto-
type system. Details are then elaborated in the rest of the chapter.

Examples in this chapter are based on a highly simplified “crime-solver”
application, starting with two base tables:

Saw(witness,color,car) contains (possibly uncertain) crime ve-
hicle sightings.

Drives(driver,color,car) contains (possibly uncertain) infor-
mation about cars driven.

We will derive additional tables by posing queries over these tables.

The ULDB Data Model. Uncertainty is captured by tuples that may include
several alternative possible values for some (or all) of their attributes, with
optional confidence values associated with each alternative. For example, if
a witness saw a vehicle that was a blue Honda with confidence 0.5, a red
Toyota with confidence 0.3, or a blue Mazda with confidence 0.2, the sight-
ing yields one tuple in table Saw with three alternative values for attributes
color, car. Furthermore, the presence of tuples may be uncertain, again
with optionally specified confidence. For example, another witness may have
0.6 confidence that she saw a crime vehicle, but if she saw one it was definitely
a red Mazda. Based on alternative values and confidences, each ULDB repre-
sents multiple possible-instances (sometimes called possible-worlds), where a
possible-instance is a regular relational database.

Lineage, sometimes called provenance, associates with a data item infor-
mation about its derivation. Broadly, lineage may be internal, referring to
data within the ULDB, or external, referring to data outside the ULDB, or to
other data-producing entities such as programs or devices. As a simple exam-
ple of internal lineage, we may generate a table Suspects by joining tables
Saw and Drives on attributes color, car. Lineage associated with a value
in Suspects identifies the Saw and Drives values from which it was de-
rived. A useful feature of internal lineage is that the confidence of a value in
Suspects can be computed from the confidence of the data in its lineage
(Section 4). If we generate further tables—HighSuspects, say—by issu-
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ing queries involving Suspects (perhaps together with other data), we get
transitive lineage information: data in HighSuspects is derived from data
in Suspects, which in turn is derived from data in Saw and Drives. Trio
supports arbitrarily complex layers of internal lineage.

As an example of external lineage, table Drives may be populated from
various car registration databases, and lineage can be used to connect the data
to its original source. Although Trio supports some preliminary features for
external lineage, this chapter describes internal lineage only.

TheTriQLQueryLanguage. Section 1.5 specifies a precise generic seman-
tics for any relational query over a ULDB, and Section 2 provides an opera-
tional description of Trio’s SQL-based query language that conforms to the
generic semantics. Intuitively, the result of a relational query Q on a ULDB
U is a result R whose possible-instances correspond to applying Q to each
possible-instance of U . Internal lineage connects the data in result R to the
data from which it was derived, as in the Suspects join query discussed
above. Confidence values in query results are, by default, defined in a standard
probabilistic fashion.

In addition to adapting SQL to Trio’s possible-instances semantics in a
straightforward and natural manner, TriQL includes a number of new features
specific to uncertainty and lineage:

Constructs for querying lineage, e.g., “find all witnesses contributing to
Jimmy being a high suspect.”

Constructs for querying uncertainty, e.g., “find all high-confidence sight-
ings,” or “find all sightings with at least three different possible cars.”

Constructs for querying lineage and uncertainty together. e.g., “find all
suspects whose lineage contains low-confidence sightings or drivers.”

Special types of aggregation suitable for uncertain databases, e.g., “find
the expected number of distinct suspects.”

Query-defined result confidences, e.g., combine confidence values of
joining tuples using max instead of multiplication.

Extensions to SQL’s data modification commands, e.g., to add new al-
ternative values to an existing tuple, or to modify confidence values.

Constructs for restructuring a ULDB relation, e.g, “flatten” or reorganize
alternative values.

The Trio Prototype. The Trio prototype system is primarily layered on top
of a conventional relational DBMS. From the user and application standpoint,
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Figure 5.1. TrioExplorer Screenshot.

the Trio system appears to be a “native” implementation of the ULDB model,
TriQL query language, and other features. However, Trio encodes the uncer-
tainty and lineage in ULDB databases in conventional relational tables, and it
uses a translation-based approach for most data management and query pro-
cessing. A small number of stored procedures are used for specific functional-
ity and increased efficiency.

The Trio system offers three interfaces: a typical DBMS-style API for appli-
cations, a command-line interface called TrioPlus, and a a full-featured graph-
ical user interface called TrioExplorer. A small portion of the TrioExplorer in-
terface is depicted in Figure 5.1. (The screenshot shows a schema-level lineage
graph—discussed in Section 5—for a somewhat more elaborate crime-solver
application than the running example in this chapter.) The Trio prototype is
described in more detail in Section 6.

1. ULDBs: Uncertainty-Lineage Databases

The ULDB model is presented primarily through examples. A more formal
treatment appears in [2]. ULDBs extend the standard SQL (multiset) relational
model with:

1. alternative values, representing uncertainty about the contents of a tuple
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2. maybe (‘?’) annotations, representing uncertainty about the presence of
a tuple

3. numerical confidence values optionally attached to alternatives

4. lineage, connecting tuple-alternatives to other tuple-alternatives from
which they were derived.

Each of these four constructs is specified next, followed by a specification of
the semantics of relational queries on ULDBs.

1.1 Alternatives

ULDB relations have a set of certain attributes and a set of uncertain at-
tributes, designated as part of the schema. Each tuple in a ULDB relation has
one value for each certain attribute, and a set of possible values for the uncer-
tain attributes. In table Saw, let witness be a certain attribute while color
and car are uncertain. If witness Amy saw either a blue Honda, a red Toyota,
or a blue Mazda, then in table Saw we have:

witness (color, car)

Amy (blue,Honda) || (red,Toyota) || (blue,Mazda)

This tuple logically yields three possible-instances for table Saw, one for each
set of alternative values for the uncertain attributes. In general, the possible-
instances of a ULDB relation R correspond to all combinations of alternative
values for the tuples in R. For example, if a second tuple in Saw had four
alternatives for (color,car), then there would be 12 possible-instances
altogether.

Designating certain versus uncertain attributes in a ULDB relation is impor-
tant for data modeling and efficient implementation. However, for presenta-
tion and formal specifications, sometimes it is useful to assume all attributes
are uncertain (without loss of expressive power). For example, in terms of
possible-instances, the Saw relation above is equivalent to:

(witness, color, car)

(Amy,blue,Honda) || (Amy,red,Toyota) || (Amy,blue,Mazda)

When treating all attributes as uncertain, we refer to the alternative values for
each tuple as tuple-alternatives, or alternatives for short. In the remainder of
the chapter we often use tuple-alternatives when the distinction between certain
and uncertain attributes is unimportant.

1.2 ‘?’ (Maybe) Annotations

Suppose a second witness, Betty, thinks she saw a car but is not sure. How-
ever, if she saw a car, it was definitely a red Mazda. In ULDBs, uncertainty
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about the existence of a tuple is denoted by a ‘?’ annotation on the tuple.
Betty’s observation is thus added to table Saw as:

witness (color, car)

Amy (blue,Honda) || (red,Toyota) || (blue,Mazda)
Betty (red,Mazda) ?

The ‘?’ on the second tuple indicates that this entire tuple may or may not be
present (so we call it a maybe-tuple). Now the possible-instances of a ULDB
relation include not only all combinations of alternative values, but also all
combinations of inclusion/exclusion for the maybe-tuples. This Saw table has
six possible-instances: three choices for Amy’s (color,car) times two
choices for whether or not Betty saw anything. For example, one possible-

1.3 Confidences

Numerical confidence values may be attached to the alternative values in a
tuple. Suppose Amy’s confidence in seeing the Honda, Toyota, or Mazda is
0.5, 0.3, and 0.2 respectively, and Betty’s confidence in seeing a vehicle is 0.6.
Then we have:

witness (color, car)

Amy (blue,Honda):0.5 ||(red,Toyota):0.3 ||(blue,Mazda):0.2
Betty (red,Mazda):0.6 ?

Reference [2] formalizes an interpretation of these confidence values in terms
of probabilities. (Other interpretations may be imposed, but the probabilistic
one is the default for Trio.) Thus, if Σ is the sum of confidences for the alter-
native values in a tuple, then we must have Σ ≤ 1, and if Σ < 1 then the tuple
must have a ‘?’. Implicitly, ‘?’ is given confidence (1 − Σ) and denotes the
probability that the tuple is not present.

Now each possible-instance of a ULDB relation itself has a probability, de-
fined as the product of the confidences of the tuple-alternatives and ‘?”s com-
prising the instance. It can be shown (see [2]) that for any ULDB relation:

1. The probabilities of all possible-instances sum to 1.

2. The confidence of a tuple-alternative (respectively a ‘?’) equals the sum
of probabilities of the possible-instances containing this alternative (re-
spectively not containing any alternative from this tuple).

An important special case of ULDBs is when every tuple has only one alter-
native with a confidence value that may be < 1. This case corresponds to the
traditional notion of probabilistic databases.

instance of Saw is the tuples(Amy,blue,Honda), (Betty,red,Mazda),
while another instance is just (Amy,blue,Mazda).
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In Trio each ULDB relation R is specified at the schema level as either with
confidences, in which case R must include confidence values on all of its data,
or without confidences, in which case R has no confidence values. However,
it is permitted to mix relations with and without confidence values, both in a
database and in queries.

1.4 Lineage

Lineage in ULDBs is recorded at the granularity of alternatives: lineage
connects a tuple-alternative to those tuple-alternatives from which it was de-
rived. (Recall we are discussing only internal lineage in this chapter. External
lineage also can be recorded at the tuple-alternative granularity, although for
some lineage types coarser granularity is more appropriate; see [12] for a dis-
cussion.) Specifically, lineage is defined as a function λ over tuple-alternatives:
λ(t) is a boolean formula over the tuple-alternatives from which the alternative
t was derived.

Consider again the join of Saw and Drives on attributes color, car, fol-
lowed by a projection on driver to produce a table Suspects(person).
Assume all attributes in Drives are uncertain. (Although not shown in the
tiny sample data below, we might be uncertain what car someone drives, or
for a given car we might be uncertain who drives it.) Let column ID contain
a unique identifier for each tuple, and let (i, j) denote the jth tuple-alternative
of the tuple with identifier i. (That is, (i, j) denotes the tuple-alternative com-
prised of i’s certain attributes together with the jth set of alternative values
for its uncertain attributes.) Here is some sample data for all three tables, in-
cluding lineage formulas for the derived data in Suspects. For example, the
lineage of the Jimmy tuple-alternative in table Suspects is a conjunction of
the second alternative of Saw tuple 11 with the second alternative of Drives
tuple 21.

Saw

ID witness (color, car)

11 Cathy (blue,Honda) || (red,Mazda)

Drives

ID Drives (driver, color, car)

21 (Jimmy,red,Honda) || (Jimmy,red,Mazda)
22 (Billy,blue,Honda)

23 (Hank,red,Mazda)

?

Suspects

ID person

31 Jimmy

32 Billy

33 Hank

? λ (31,1) = (11,2) ∧ (21,2)
? λ (32,1) = (11,1) ∧ (22,1)
? λ (33,1) = (11,2) ∧ (23,1)



120 MANAGING AND MINING UNCERTAIN DATA

An interesting and important effect of lineage is that it imposes restrictions
on the possible-instances of a ULDB: A tuple-alternative with lineage can be
present in a possible-instance only if its lineage formula is satisfied by the
presence (or, in the case of negation, absence) of other alternatives in the same
possible-instance. Consider the derived table Suspects. Even though there
is a ‘?’ on each of its three tuples, not all combinations are possible. If Jimmy
is present in Suspects then alternative 2 must be chosen for tuple 11, and
therefore Hank must be present as well. Billy is present in Suspects only if
alternative 1 is chosen for tuple 11, in which case neither Jimmy nor Hank can
be present.

Thus, once a ULDB relation R has lineage to other relations, it is possible
that not all combinations of alternatives and ‘?’ choices in R correspond to
valid possible-instances. The above ULDB has six possible-instances, deter-
mined by the two choices for tuple 11 times the three choices (including ‘?’)
for tuple 21.

Now suppose we have an additional base table, Criminals, containing a
list of known criminals, shown below. Joining Suspects with Criminals
yields the HighSuspects table on the right:

Criminals HighSuspects
ID person

41 Jimmy

42 Frank

43 Hank

ID person

51 Jimmy

52 Hank

? λ (51,1) = (31,1) ∧ (41,1)
? λ (52,1) = (33,1) ∧ (43,1)

Now we have multilevel (transitive) lineage relationships, e.g., λ(51, 1) =
(31, 1)∧ (41, 1) and λ(31, 1) = (11, 2)∧ (21, 2). Lineage formulas specify di-
rect derivations, but when the alternatives in a lineage formula are themselves
derived from other alternatives, it is possible to recursively expand a lineage
formula until it specifies base alternatives only. (Since we are not consider-
ing external lineage, base data has no lineage of its own.) As a very simple
example, λ(51, 1)’s expansion is ((11, 2) ∧ (21, 2)) ∧ (41, 1).

Note that arbitrary lineage formulas may not “work” under our model—
consider for example a tuple with one alternative and no ‘?’ whose lineage
(directly or transitively) includes the conjunction of two different alternatives
of the same tuple. The tuple must exist because it doesn’t have a ‘?’, but it can’t
exist because its lineage formula can’t be satisfied. Reference [2] formally de-
fines well-behaved lineage (which does not permit, for example, the situation
just described), and shows that internal lineage generated by relational queries
is always well-behaved. Under well-behaved lineage, the possible-instances
of an entire ULDB correspond to the possible-instances of the base data (data
with no lineage of its own), as seen in the example above. With well-behaved
lineage our interpretation of confidences carries over directly: combining con-
fidences on the base data determines the probabilities of the possible-instances,
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Figure 5.2. Relational Queries on ULDBs.

just as before. The confidence values associated with derived data items are
discussed later in Section 4.

Finally, note that lineage formulas need not be conjunctive. As one ex-
ample, suppose Drives tuple 23 contained Billy instead of Hank, and the
Suspects query performed duplicate-eliminating projection. Then the query
result is:

ID person

61 Jimmy

62 Billy

? λ (61,1) = (11,2) ∧ (21,2)
λ (62,1) = ((11,1) ∧ (22,1)) ∨ ((11,2) ∧ (23,1))

Note that the lineage formula for tuple 62 is always satisfied since one alter-
native of base tuple 11 must always be picked. Thus, there is no ‘?’ on the
tuple.

1.5 Relational Queries

In this section we formally define the semantics of any relational query over
a ULDB. Trio’s SQL-based query language will be presented in Section 2. The
semantics for relational queries over ULDBs is quite straightforward but has
two parts: (1) the possible-instances interpretation; and (2) lineage in query
results.

Refer to Figure 5.2. Consider a ULDB D whose possible-instances are
D1, D2, . . . , Dn, as shown on the left side of the figure. If we evaluate a
query Q on D, the possible-instances in the result of Q should be Q(D1),
Q(D2), . . ., Q(Dn), as shown in the lower-right corner. For example, if a
query Q joins tables Saw and Drives, then logically it should join all of the
possible-instances of these two ULDB relations. Of course we would never
actually generate all possible-instances and operate on them, so a query pro-
cessing algorithm follows the top arrow in Figure 5.2, producing a query result
Q(D) that represents the possible-instances.

A ULDB query result Q(D) contains the original relations of D, together
with a new result relation R. Lineage from R into the relations of D reflects
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the derivation of the data in R. This approach is necessary for Q(D) to repre-
sent the correct possible-instances in the query result, and to enable consistent
further querying of the original and new ULDB relations. (Technically, the
possible-instances in the lower half of Figure 5.2 also contain lineage, but this
aspect is not critical here; formal details can be found in [2].) The example in
the previous subsection, with Suspects as the result of a query joining Saw
and Drives, demonstrates the possible-instances interpretation, and lineage
from query result to original data.

The ULDB model and the semantics of relational queries over it has been
shown (see [2]) to exhibit two desirable and important properties:

Completeness: Any finite set of possible-instances conforming to a sin-
gle schema can be represented as a ULDB database.

Closure: The result of any relational query over any ULDB database
can be represented as a ULDB relation.

2. TriQL: The Trio Query Language

This section describes TriQL, Trio’s SQL-based query language. Except for
some additional features described later, TriQL uses the same syntax as SQL.
However, the interpretation of SQL queries must be modified to reflect the
semantics over ULDBs discussed in the previous section.

As an example, the join query producing Suspects is written in TriQL
exactly as expected:

SELECT Drives.driver as person INTO Suspects

FROM Saw, Drives

WHERE Saw.color = Drives.color AND Saw.car = Drives.car

If this query were executed as regular SQL over each of the possible-instances
of Saw and Drives, as in the lower portion of Figure 5.2, it would produce
the expected set of possible-instances in its result. More importantly, follow-
ing the operational semantics given next, this query produces a result table
Suspects, including lineage to tables Saw and Drives, that correctly rep-
resents those possible-instances.

This section first specifies an operational semantics for basic SQL query
blocks over arbitrary ULDB databases. It then introduces a number of addi-
tional TriQL constructs, with examples and explanation for each one.

2.1 Operational Semantics

We provide an operational description of TriQL by specifying direct evalua-
tion of a generic TriQL query over a ULDB, corresponding to the upper arrow
in Figure 5.2. We specify evaluation of single-block queries:
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SELECT attr-list [ INTO new-table ]

FROM T1, T2, ..., Tn

WHERE predicate

The operational semantics of additional constructs are discussed later, when
the constructs are introduced. Note that in TriQL, the result of a query has
confidence values only if all of the tables in the query’s FROM clause have
confidence values. (Sections 2.8 and 2.9 introduce constructs that can be used
in the FROM clause to logically add confidence values to tables that otherwise
don’t have them.)

Consider the generic TriQL query block above; call it Q. Let schema(Q)
denote the composition schema(T1) ⊎ schema(T2) ⊎ · · · ⊎ schema(Tn) of the
FROM relation schemas, just as in SQL query processing. The predicate
is evaluated over tuples in schema(Q), and the attr-list is a subset of
schema(Q) or the symbol “*”, again just as in SQL.

The steps below are an operational description of evaluating the above query
block. As in SQL database systems, a query processor would rarely execute
the simplest operational description since it could be woefully inefficient, but
any query plan or execution technique (such as our translation-based approach
described in Section 6) must produce the same result as this description.

1 Consider every combination t1, t2, . . . , tn of tuples in T1, T2,. . . , Tn,
one combination at a time, just as in SQL.

2 Form a “super-tuple” T whose tuple-alternatives have schema schema(Q).
T has one alternative for each combination of tuple-alternatives in t1,
t2, . . ., tn.

3 If any of t1, t2, . . . , tn has a ‘?’, add a ‘?’ to T .

4 Set the lineage of each alternative in T to be the conjunction of the al-
ternatives t1, t2, . . ., tn from which it was constructed.

5 Retain from T only those alternatives satisfying the predicate. If
no alternatives satisfy the predicate, we’re finished with T . If any al-
ternative does not satisfy the predicate, add a ‘?’ to T if it is not there
already.

6 If T1, T2,. . . , Tn are all tables with confidence values, then either com-
pute the confidence values for T ’s remaining alternatives and store them
(immediate confidence computation), or set the confidence values toNULL
(lazy confidence computation). See Sections 2.8 and 4 for further discus-
sion.

7 Project each alternative of T onto the attributes in attr-list, gener-
ating a tuple in the query result. If there is an INTO clause, insert T into
table new-table.
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It can be verified easily that this operational semantics produces theSuspects
result table shown with example data in Section 1.4. More generally it con-
forms to the “square diagram” (Figure 5.2) formal semantics given in Section
1.5. Later we will introduce constructs that do not conform to the square dia-
gram because they go beyond relational operations.

Note that this operational semantics generates result tables in which, by
default, all attributes are uncertain—it constructs result tuples from full tuple-
alternatives. In reality, it is fairly straightforward to deduce statically, based
on a query and the schemas of its input tables (specifically which attributes are
certain and which are uncertain), those result attributes that are guaranteed to
be certain. For example, if we joined Saw and Drives without projection,
attribute witness in the result would be certain.

2.2 Querying Confidences

TriQL provides a built-in function Conf() for accessing confidence val-
ues. Suppose we want our Suspects query to only use sightings having
confidence > 0.5 and drivers having confidence > 0.8. We write:

SELECT Drives.driver as person INTO Suspects

FROM Saw, Drives

WHERE Saw.color = Drives.color AND Saw.car = Drives.car

AND Conf(Saw) > 0.5 AND Conf(Drives) > 0.8

In the operational semantics, when we evaluate the predicate over the al-
ternatives in T in step 6, Conf(Ti) refers to the confidence associated with
the ti component of the alternative being evaluated. Note that this function
may trigger confidence computations if confidence values are being computed
lazily (recall Section 2.1).

Function Conf() is more general than as shown by the previous example—
it can take any number of the tables appearing in the FROM clause as arguments.
For example, Conf(T1,T3,T5) would return the “joint” confidence of the
t1, t3, and t5 components of the alternative being evaluated. If t1, t3, and
t5 are independent, their joint confidence is the product of their individual
confidences. If they are nonindependent—typically due to shared lineage—
then the computation is more complicated, paralleling confidence computation
for query results discussed in Section 4 below. As a special case, Conf(*) is
shorthand for Conf(T1,T2,...,Tn), which normally corresponds to the
confidence of the result tuple-alternative being constructed.

2.3 Querying Lineage

For querying lineage, TriQL introduces a built-in predicate designed to be
used as a join condition. If we include predicate Lineage(T1, T2) in the
WHERE clause of a TriQL query with ULDB tables T1 and T2 in its FROM
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clause, then we are constraining the joined T1 and T2 tuple-alternatives to be
connected, directly or transitively, by lineage. For example, suppose we want
to find all witnesses contributing to Hank being a high suspect. We can write:

SELECT S.witness

FROM HighSuspects H, Saw S

WHERE Lineage(H,S) AND H.person = ’Hank’

In the WHERE clause, Lineage(H,S) evaluates to true for any pair of tuple-
alternatives t1 and t2 from HighSuspects and Saw such that t1’s lineage
directly or transitively includes t2. Of course we could write this query directly
on the base tables if we remembered how HighSuspectswas computed, but
the Lineage() predicate provides a more general construct that is insensitive
to query history.

Note that the the Lineage() predicate does not take into account the
structure of lineage formulas: lineage(T1, T2) is true for tuple-alternatives
t2 and t2 if and only if, when we expand t1’s lineage formula using the lineage
formulas of its components, t2 appears at some point in the expanded formula.
Effectively, the predicate is testing whether t2 had any effect on t1.

Here is a query that incorporates both lineage and confidence; it also demon-
strates the “==>” shorthand for the Lineage() predicate. The query finds
persons who are suspected based on high-confidence driving of a Honda:

SELECT Drives.driver

FROM Suspects, Drives

WHERE Suspects ==> Drives

AND Drives.car = ’Honda’ AND Conf(Drives) > 0.8

2.4 Duplicate Elimination

In ULDBs, duplicates may appear “horizontally”—when multiple alterna-
tives in a tuple have the same value—and “vertically”—when multiple tuples
have the same value for one or more alternatives. As in SQL, DISTINCT is
used to merge vertical duplicates. A new keyword MERGED is used to merge
horizontal duplicates. In both cases, merging can be thought of as an additional
final step in the operational evaluation of Section 2.1. (DISTINCT subsumes
MERGED, so the two options never co-occur.)

As a very simple example of horizontal merging, consider the query:

SELECT MERGED Saw.witness, Saw.color FROM Saw

The query result on our sample data with confidences (recall Section 1.3) is:

witness color

Amy blue:0.7 || red:0.3
Betty red: 0.6 ?
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Without merging, the first result tuple would have two blue alternatives with
confidence values 0.5 and 0.2. Note that confidences are summed when hori-
zontal duplicates are merged. In terms of the formal semantics in Section 1.5,
specifically the square diagram of Figure 5.2, merging horizontal duplicates in
the query answer on the top-right of the square corresponds cleanly to merging
duplicate possible-instances on the bottom-right.

A query with vertical duplicate-elimination was discussed at the end of Sec-
tion 1.4, where DISTINCT was used to motivate lineage with disjunction.

2.5 Aggregation

For starters, TriQL supports standard SQL grouping and aggregation fol-
lowing the relational possible-instances semantics of Section 1.5. Consider the
following query over the Drives data in Section 1.4:

SELECT car, COUNT(*) FROM Drives GROUP BY car

The query result is:

ID car count

71 Honda 1 || 2
72 Mazda 1 || 2

λ(71,1) = (22, 1) ∧ ¬ (21, 1)
λ(71,2) = (21, 1) ∧ (22, 1)
λ(72,1) = (23, 1) ∧ ¬ (21, 2)
λ(72,2) = (21, 2) ∧ (23, 1)

Note that attribute car is a certain attribute, since we’re grouping by it. Also
observe that lineage formulas in this example include negation.

In general, aggregation can be an exponential operation in ULDBs (and in
other data models for uncertainty): the aggregate result may be different in ev-
ery possible-instance, and there may be exponentially many possible-instances.
(Consider for example SUM over a table comprised of 10 maybe-tuples. The
result has 210 possible values.) Thus, TriQL includes three additional options
for aggregate functions: a low bound, a high bound, and an expected value;
the last takes confidences into account when present. Consider for example
the following two queries over the Saw data with confidences from Section
1.3. Aggregate function ECOUNT asks for the expected value of the COUNT
aggregate.

SELECT color, COUNT(*) FROM Saw GROUP BY car

SELECT color, ECOUNT(*) FROM Saw GROUP BY car

The answer to the first query (omitting lineage) considers all possible-instances:

color count

blue 1:0.7

red 1:0.54 || 2:0.18
?

?
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The ‘?’ on each tuple intuitively corresponds to a possible count of 0. (Note
that zero counts never appear in the result of a SQL GROUP BY query.) The
second query returns just one expected value for each group:

color ecount

blue 0.7

red 0.9

It has been shown (see [9]) that expected aggregates are equivalent to taking
the weighted average of the alternatives in the full aggregate result (also taking
zero values into account), as seen in this example. Similarly, low and high
bounds for aggregates are equivalent to the lowest and highest values in the
full aggregate result.

In total, Trio supports 20 different aggregate functions: four versions (full,
low, high, and expected) for each of the five standard functions (count, min,
max, sum, avg).

2.6 Reorganizing Alternatives

TriQL has two constructs for reorganizing the tuple-alternatives in a query
result:

Flatten turns each tuple-alternative into its own tuple.

GroupAlts regroups tuple-alternatives into new tuples based on a set of
attributes.

As simple examples, and omitting lineage (which in both cases is a straight-
forward one-to-one mapping from result alternatives to source alternatives),
“SELECT FLATTEN * FROM Saw” over the simple one-tuple Saw table from
Section 1.4 gives:

witness color car

Cathy blue Honda

Cathy red Mazda

?

?

and “SELECT GROUPALTS(color,car) * FROM Drives” gives:

color car person

red Honda Jimmy

red Mazda Jimmy || Hank
blue Honda Billy

?

With GROUPALTS, the specified grouping attributes are certain attributes in
the answer relation. For each set of values for these attributes, the correspond-
ing tuple in the result contains the possible values for the remaining (uncertain)
attributes as alternatives. ‘?’ is present whenever all of the tuple-alternatives
contributing to the result tuple are uncertain.
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FLATTEN is primarily a syntactic operation—if lineage is retained (i.e., if
the query does not also specify NoLineage, discussed below), then there
is no change to possible-instances as a result of including FLATTEN in a
query. GROUPALTS, on the other hand, may drastically change the possible-
instances; it does not fit cleanly into the formal semantics of Section 1.5.

2.7 Horizontal Subqueries

“Horizontal” subqueries in TriQL enable querying across the alternatives
that comprise individual tuples. As a contrived example, we can select from
table Saw all Honda sightings where it’s also possible the sighting was a car
other than a Honda (i.e., all Honda alternatives with a non-Honda alternative
in the same tuple).

SELECT * FROM Saw

WHERE car = ’Honda’ AND EXISTS [car <> ’Honda’]

Over the simple one-tuple Saw table from Section 1.4, the query returns just
the first tuple-alternative, (Cathy,blue,Honda), of tuple 11.

In general, enclosing a subquery in [] instead of () causes the subquery
to be evaluated over the “current” tuple, treating its alternatives as if they are
a relation. Syntactic shortcuts are provided for common cases, such as simple
filtering predicates as in the example above. More complex uses of horizontal
subqueries introduce a number of subtleties; full details and numerous exam-
ples can be found in [11]. By their nature, horizontal subqueries query “across”
possible-instances, so they do not follow the square diagram of Figure 5.2; they
are defined operationally only.

2.8 Query-Defined Result Confidences

A query result includes confidence values only if all of the tables in its FROM
clause have confidence values. To assign confidences to a table T for the pur-
pose of query processing, “UNIFORM T” can be specified in the FROM clause,
in which case confidence values are logically assigned across the alternatives
and ’?’ in each of T ’s tuples using a uniform distribution.

Result confidence values respect a probabilistic interpretation, and they are
computed by the system on-demand. (A “COMPUTE CONFIDENCES” clause
can be added to a query to force confidence computation as part of query exe-
cution.) Algorithms for confidence computation are discussed later in Section
4. A query can override the default result confidence values, or add confidence
values to a result that otherwise would not have them, by assigning values in
its SELECT clause to the reserved attribute name conf. Furthermore, a spe-
cial “value” UNIFORM may be assigned, in which case confidence values are
assigned uniformly across the alternatives and ‘?’ (if present) of each result
tuple.
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As an example demonstrating query-defined result confidences as well as
UNIFORM in the FROM clause, suppose we generate suspects by joining the
Saw table with confidences from Section 1.3 with the Drives table from
Section 1.4. We decide to add uniform confidences to table Drives, and we
prefer result confidences to be the lesser of the two input confidences, instead
of their (probabilistic) product. Assuming a built-in function lesser, we
write:

SELECT person, lesser(Conf(Saw),Conf(Drives)) AS conf

FROM Saw, UNIFORM Drives

WHERE Saw.color = Drives.color AND Saw.car = Drives.car

Let the two tuples in table Saw from Section 1.3 have IDs 81 and 82. The
query result, including lineage, is:

ID person

91 Billy:0.5

92 Jimmy:0.333

93 Hank:0.6

? λ (91,1) = (81,1) ∧ (22,1)
? λ (92,1) = (82,1) ∧ (21,2)
? λ (93,1) = (82,1) ∧ (23,1)

With probabilistic confidences, Jimmy would instead have confidence 0.2.
Had we used greater() instead of lesser(), the three confidence val-
ues would have been 1.0, 0.6, and 1.0 respectively.

With the “AS Conf” feature, it is possible to create confidence values in
a tuple whose sum exceeds 1. (“1.1 AS Conf,” assigning confidence value
1.1 to each result tuple-alternative, is a trivial example.) Although the Trio
prototype does not forbid this occurrence, a warning is issued, and anomalous
behavior with respect to confidence values—either the newly created values,
or later ones that depend on them—may subsequently occur.

2.9 Other TriQL Query Constructs

TriQL contains a number of additional constructs not elaborated in detail in
this chapter, as follows. For comprehensive coverage of the TriQL language,
see [11].

TriQL is a strict superset of SQL, meaning that (in theory at least) every
SQL construct is available in TriQL: subqueries, set operators, like
predicates, and so on. Since SQL queries are relational, the semantics
of any SQL construct over ULDBs follows the semantics for relational
queries given in Section 1.5.

One SQL construct not strictly relational is Order By. TriQL includes
Order By, but only permits ordering by certain attributes and/or the
special “attribute” Confidences, which for ordering purposes corre-
sponds to the total confidence value (excluding ‘?’) in each result tuple.
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In addition to built-in function Conf() and predicate Lineage(),
TriQL offers a built-in predicate Maybe(). In a query, Maybe(T) re-
turns true if and only if the tuple-alternative from table T being evaluated
is part of a maybe-tuple, i.e., its tuple has a ‘?’.

Horizontal subqueries (Section 2.7) are most useful in the FROM clause,
but they are permitted in the SELECT clause as well. For example, the
query “SELECT [COUNT(*)] FROM Saw” returns the number of al-
ternatives in each tuple of the Saw table.

As discussed in Section 2.8, preceding a table T in the FROM clause with
keyword UNIFORM logically assigns confidence values to the tuple-
alternatives in T for the duration of the query, using a uniform distri-
bution. Similarly, “UNIFORM AS conf” in the SELECT clause assigns
confidence values to query results using a uniform distribution. Another
option for both uses is keyword SCALED. In this case, table T (respec-
tively result tuples) must already have confidence values, but they are
scaled logically for the duration of the query (respectively in the query
result) so each tuple’s total confidence is 1 (i.e., ?’s are removed). For
example, if a tuple has two alternatives with confidence values 0.3 and
0.2, the SCALED confidences would be 0.6 and 0.4.

Finally, three query qualifiers, NoLineage, NoConf, and NoMaybe

may be used to signal that the query result should not include lineage,
confidence values, or ?’s, respectively.

3. Data Modifications in Trio

Data modifications in Trio are initiated using TriQL’s INSERT, DELETE,
and UPDATE commands, which are in large part analogous to those in SQL.
Additional modifications specific to the ULDB model are supported by ex-
tensions to these commands. The three statement types are presented in the
following three subsections, followed by a discussion of how Trio incorporates
versioning to support data modifications in the presence of derived relations
with lineage.

3.1 Inserts

Inserting entirely new tuples into a ULDB poses no unusual semantic issues.
(Inserting new alternatives into existing tuples is achieved through the UPDATE
command, discussed below.) Trio supports both types of SQL INSERT com-
mands:

INSERT INTO table-name VALUES tuple-spec

INSERT INTO table-name subquery
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The tuple-spec uses a designated syntax to specify a complete Trio tu-
ple to be inserted, including certain attributes, alternative values for uncertain
attributes, confidence values, and/or ‘?,’ but no lineage. The subquery is
any TriQL query whose result tuples are inserted, together with their lineage
(unless NoLineage is specified in the subquery; Section 2.9).

3.2 Deletes

Deletion also follows standard SQL syntax:

DELETE FROM table-name WHERE predicate

3.3 Updates

In addition to conventional updates, the TriQL UPDATE command supports
updating confidence values, adding and removing ‘?’s, and inserting new al-
ternatives into existing tuples. Consider first the standard SQL UPDATE com-
mand:

UPDATE table-name SET attr-list = expr-list WHERE predicate

This command updates every tuple-alternative satisfying the predicate, set-
ting each attribute in the attr-list to the result of the corresponding ex-
pression in the expr-list.

There is one important restriction regarding the combination of certain and
uncertain attributes. Consider as an example the following command, intended
to rename as “Doris” every witness who saw a blue Honda:

UPDATE Saw SET witness = ’Doris’

WHERE color = ’blue’ AND car = ’Honda’

In the Saw table of Section 1.1, the WHERE predicate is satisfied by some
but not all of the (color,car) alternatives for witness Amy. Thus, it isn’t
obvious whether Amy should be be modified. Perhaps the best solution would
be to convert witness to an uncertain attribute:

(witness,color, car)

(Doris,blue,Honda) || (Amy,red,Toyota) || (Amy,blue,Mazda)

However, Trio treats attribute types (certain versus uncertain) as part of the
fixed schema, declared at CREATE TABLE time. A similar ambiguity can

This command deletes each tuple-alternative satisfying the predicate.
(Deleting a tuple-alternative is equivalent to deleting one alternative for the
uncertain attributes; Section 1.1.) If all alternatives of a tuple are deleted, the
tuple itself is deleted. A special qualifier “AdjConf” can be used to redis-
tribute confidence values on tuples after one or more alternatives are deleted;
without AdjConf, deleted confidence values implicitly move to ‘?.’
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arise if the expression on the right-hand-side of the SET clause for a certain at-
tribute produces different values for different alternatives. Hence, UPDATE
commands are permitted to modify certain attributes only if all references
to uncertain attributes, function Conf(), and predicate Lineage() in the
WHERE predicate, and in every SET expression corresponding to a certain at-
tribute, occur within horizontal subqueries. This restriction ensures that the
predicate and the expression always evaluate to the same result for all alter-
natives of a tuple. For our example, the following similar-looking command
updates every witness who may have seen a blue Honda to be named “Doris”:

UPDATE Saw SET witness = ’Doris’

WHERE [color = ’blue’ AND car = ’Honda’]

To update confidence values, the special attribute conf may be specified
in the attr-list of the UPDATE command. As with query-defined result
confidences (Section 2.8), there is no guarantee after modifying conf that
confidence values in a tuple sum to ≤ 1; a warning is issued when they don’t,
and anomalous behavior may subsequently occur. Finally, the special key-
words UNIFORM or SCALED may be used as the expression corresponding
to attribute conf in the SET clause, to modify confidence values across each
tuple using uniform or rescaled distributions—analogous to the use of these
keywords with “AS Conf” (Sections 2.8 and 2.9).

A variation on the UPDATE command is used to add alternatives to existing
tuples:

UPDATE table-name ALTINSERT expression WHERE predicate

To ensure the predicate either holds or doesn’t on entire tuples, once again
all references to uncertain attributes, Conf(), and Lineage() must occur
within horizontal subqueries. For each tuple satisfying the predicate, alterna-
tives are added to the tuple, based on the result of evaluating the expression.
Like the INSERT command (Section 3.1), the expression can be “VALUES
tuple-spec” to specify a single alternative, or a subquery producing zero or
more alternatives. Either way, the schema of the alternatives to add must match
the schema of the table’s uncertain attributes only. If adding alternatives to an
existing tuple creates duplicates, by default horizontal duplicate-elimination
does not occur, but it can be triggered by specifying UPDATE MERGED. As
with other constructs that affect confidence values, creating tuples whose con-
fidences sum to > 1 results in a warning.

Finally, the following self-explanatory UPDATE commands can be used to
add and remove ?’s. These commands may only be applied to tables without
confidences, and once again, in the predicate all references to uncertain
attributes, Conf(), and Lineage() must be within horizontal subqueries.

UPDATE table-name ADDMAYBE WHERE predicate

UPDATE table-name DELMAYBE WHERE predicate
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3.4 Data Modifications and Versioning

Trio query results include lineage identifying the input data from which the
results were derived. Lineage is not only a user-level feature—it is needed for
on-demand confidence computation, and it is critical for capturing the correct
possible-instances in a query result (Section 1.4).

Suppose we run our Suspects query, store the result, then modifications
occur to some alternatives in table Saw that are referenced by lineage in table
Suspects. There are two basic options for handling such modifications:

(1) Propagate modifications to all derived tables, effectively turning query
results into materialized views.

(2) Don’t propagatemodifications, allowing query results to become “stale”
with respect to the data from which they were derived originally.

Option (1) introduces a variation on the well-known materialized view main-
tenance problem. It turns out Trio’s lineage feature can be used here for broad
applicability and easy implementation of the most efficient known techniques;
see [6].

With option (2), after modifications occur, lineage formulas may contain
incorrect or “dangling” pointers. Trio’s solution to this problem is to introduce
a lightweight versioning system: Modified data is never removed, instead it
remains in the database as part of a previous version. The lineage formula
for a derived tuple-alternative t may refer to alternatives in the current version
and/or previous versions, thus accurately reflecting the data from which t was
derived. Details of Trio’s versioning system and how it interacts with data
modifications and lineage can be found in [6].

4. Confidence Computation

Computing confidence values for query results is one of the most interesting
and challenging aspects of Trio. In general, efficient computation of correct
result confidence values in uncertain and probabilistic databases is known to
be a difficult problem. Trio uses two interrelated techniques to address the
problem:

1. By default, confidence values are not computed during query evaluation.
Instead, they are computed on demand: when requested through one of
Trio’s interfaces, or as needed for further queries. This approach has two
benefits: (a) Computing confidence values as part of query evaluation
constrains how queries may be evaluated, while lazy computation frees
the system to select any valid relational query execution plan. (See [7]
for detailed discussion.) (b) If a confidence value is never needed, its
potentially expensive computation is never performed.
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2. On-demand confidence computation is enabled by Trio’s lineage feature.
Specifically, the confidence of an alternative in a query result can be
computed through lineage, as described below. Furthermore, a number
of optimizations are possible to speed up the computation, also discussed
below.

Suppose a query Q is executed producing a result table T , and consider
tuple-alternative t in T . Assume all tables in query Q have confidence values
(perhaps not yet computed), so t should have a confidence value as well. For-
mally, the confidence value assigned to t should represent the total probability
of the possible-instances of result table T that contain alternative t (recall Sec-
tion 1.3). It has been shown (see [7]) that this probability can be computed as
follows:

1. Expand t’s lineage formula recursively until it refers to base alternatives
only: If λ(t) refers to base alternatives only, stop. Otherwise, pick one ti
in λ(t) that is not a base alternative, replace ti with (λ(ti)), and continue
expanding.

2. Let f be the expanded formula from step 1. If f contains any sets
t1, . . . , tn of two or more alternatives from the same tuple (a possible
but unlikely case), then t1, . . . , tn’s confidence values are modified for
the duration of the computation, and clauses are added to f to encode
their mutual exclusion; details are given in [7].

3. The confidence value for alternative t is the probability of formula f
computed using the confidence values for the base alternatives compris-
ing f .

It is tempting to expand formula λ(t) in step 1 only as far as needed to
obtain confidence values for all of the alternatives mentioned in the formula.
However, expanding to the base alternatives is required for correctness in the
general case. Consider for example the following scenario, where t3, t4, and
t5 are base alternatives.

λ(t) = t1 ∧ t2 λ(t1) = t3 ∧ t4 λ(t2) = t3 ∧ t5
Conf(t3) = Conf(t4) = Conf(t5) = 0.5

Based on the specified confidences, we have Conf(t1) = Conf(t2) = 0.25.
If we computed Conf(t) using t1 ∧ t2 we would get 0.0625, whereas the cor-
rect value expanding to the base alternatives is 0.125. As this example demon-
strates, lineage formulas must be expanded all the way to base alternatives
because derived alternatives may not be probabilistically independent.

Trio incorporates some optimizations to the basic confidence-computation
algorithm just described:
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Whenever confidence values are computed, they arememoized for future
use.

There are cases when it is not necessary to expand a lineage formula all
the way to its base alternatives. At any point in the expansion, if all of the
alternatives in the formula are known to be independent, and their confi-
dences have already been computed (and therefore memoized), there is
no need to go further. Even when confidences have not been computed,
independence allows the confidence values to be computed separately
and then combined, typically reducing the overall complexity. Although
one has to assume nonindependence in the general case, independence
is common and often can be easy to deduce and check, frequently at the
level of entire tables.

We have developed algorithms for batch confidence computation that
are implemented through SQL queries. These algorithms are appropriate
and efficient when confidence values are desired for a significant portion
of a result table.

Reference [7] provides detailed coverage of the confidence-computation prob-
lem, along with our algorithms, optimizations, implementation in the Trio pro-
totype.

5. Additional Trio Features

TriQL queries and data modifications are the typical way of interacting with
Trio data, just as SQL is used in a standard relational DBMS. However, uncer-
tainty and lineage in ULDBs introduce some interesting features beyond just
queries and modifications.

Lineage. As TriQL queries are executed and their results are stored, and ad-
ditional queries are posed over previous results, complex lineage relationships
can arise. Data-level lineage is used for confidence computation (Section 4)
and Lineage() predicates; it is also used for coexistence checks and extra-
neous data removal, discussed later in this section. The TrioExplorer graphical
user interface supports data-level lineage tracing through special buttons next
to each displayed alternative; the textual and API interfaces provide corre-
sponding functionality.

Trio also maintains a schema-level lineage graph (specifically a DAG), with
tables as nodes and edges representing lineage relationships. This graph is
used when translating queries with Lineage() predicates (Section 6.7), and
for determining independence to optimize confidence computation (Section 4).
This graph also is helpful for for users to understand the tables in a database
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and their interrelationships. A schema-level lineage graph was depicted in the
Figure 5.1 screenshot showing the TrioExplorer interface.

Coexistence Checks. A user may wish to select a set of alternatives from
one or more tables and ask whether those alternatives can all coexist. Two
alternatives from the same tuple clearly cannot coexist, but the general case
must take into account arbitrarily complex lineage relationships as well as tuple
alternatives. For example, if we asked about alternatives (11,2) and (32,1) in
our sample database of Section 1.4, the system would tell us these alternatives
cannot coexist.

Checking coexistence is closely related to confidence computation. To check
if alternatives t1 and t2 can coexist, we first expand their lineage formulas to
reference base alternatives only, as in step 1 of confidence computation (Sec-
tion 4). Call the expanded formulas f1 and f2. Let f3 be an additional formula
that encodes mutual exclusion of any alternatives from the same tuple appear-
ing in f1 and/or f2, as in step 2 of confidence computation. Then t1 and t2 can
coexist if and only if formula f1 ∧ f2 ∧ f3 is satisfiable. Note that an equiv-
alent formulation of this algorithm creates a “dummy” tuple t whose lineage
is t1 ∧ t2. Then t1 and t2 can coexist if and only if Conf(t) > 0. This for-
mulation shows clearly the relationship between coexistence and confidence
computation, highlighting in particular that our optimizations for confidence
computation in Section 4 can be used for coexistence checks as well.

ExtraneousDataRemoval. The natural execution of TriQL queries can gen-
erate extraneous data: an alternative is extraneous if it can never be chosen
(i.e., its lineage requires presence of multiple alternatives that cannot coexist);
a ‘?’ annotation is extraneous if its tuple is always present. It is possible to
check for extraneous alternatives and ?’s immediately after query execution
(and, sometimes, as part of query execution), but checking can be expensive.
Because we expect extraneous data and ?’s to be relatively uncommon, and
users may not be concerned about them, by default Trio supports extraneous
data removal as a separate operation, similar to garbage collection.

Like coexistence checking, extraneous data detection is closely related to
confidence computation: An alternative t is extraneous if and only if Conf(t) =
0. A ‘?’ on a tuple u is extraneous if and only if the confidence values for all
of u’s alternatives sum to 1.

6. The Trio System

Figure 5.3 shows the basic three-layer architecture of the Trio system. The
core system is implemented in Python and mediates between the underlying re-
lational DBMS and Trio interfaces and applications. The Python layer presents
a simple Trio API that extends the standard Python DB 2.0 API for database
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Figure 5.3. Trio Basic System Architecture.

access (Python’s analog of JDBC). The Trio API accepts TriQL queries and
modification commands in addition to regular SQL, and query results may be
ULDB tuples as well as regular tuples. The API also exposes the other Trio-
specific features described in Section 5. Using the Trio API, we built a generic
command-line interactive client (TrioPlus) similar to that provided by most
DBMS’s, and the TrioExplorer graphical user interface shown earlier in Fig-
ure 5.1.

Trio DDL commands are translated via Python to SQL DDL commands
based on the encoding to be described in Section 6.1. The translation is fairly
straightforward, as is the corresponding translation of INSERT statements and
bulk load.

Processing of TriQL queries proceeds in two phases. In the translation
phase, a TriQL parse tree is created and progressively transformed into a tree
representing one or more standard SQL statements, based on the data encod-
ing scheme. In the execution phase, the SQL statements are executed against
the relational database encoding. Depending on the original TriQL query,
Trio stored procedures may be invoked and some post-processing may occur.
For efficiency, most additional runtime processing executes within the DBMS
server. Processing of TriQL data modification commands is similar, although
a single TriQL command often results in a larger number of SQL statements,
since several relational tables in the encoding (Section 6.1) may all need to be
modified.

TriQL query results can either be stored or transient. Stored query results
(indicated by an INTO clause in the query) are placed in a new persistent table,
and lineage relationships from the query’s result data to data in the query’s in-
put tables also is stored persistently. Transient query results (no INTO clause)
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are accessed through the Trio API in a typical cursor-oriented fashion, with an
additional method that can be invoked to explore the lineage of each returned
tuple. For transient queries, query result processing and lineage creation oc-
curs in response to cursor fetch calls, and neither the result data nor its lineage
are persistent.
TrioExplorer offers a rich interface for interacting with the Trio system. It

implements a Python-generated, multi-threaded web server using CherryPy,
and it supports multiple users logged into private and/or shared databases. It
accepts Trio DDL and DML commands and provides numerous features for
browsing and exploring schema, data, uncertainty, and lineage. It also enables
on-demand confidence computation, coexistence checks, and extraneous data
removal. Finally, it supports loading of scripts, command recall, and other user
conveniences.

It is not possible to cover all aspects of Trio’s system implementation in
this chapter. Section 6.1 describes how ULDB data is encoded in regular
relations. Section 6.2 demonstrates the basic query translation scheme for
SELECT-FROM-WHERE statements, while Sections 6.3–6.9 describe transla-
tions and algorithms for most of TriQL’s additional constructs.

6.1 Encoding ULDB Data

We now describe how ULDB databases are encoded in regular relational
tables. For this discussion we use u-tuple to refer to a tuple in the ULDB
model, i.e., a tuple that may include alternatives, ‘?’, and confidence values,
and tuple to denote a regular relational tuple.

Let T (A1, . . . , An) be a ULDB table. We store the data portion of T in two
relational tables, TC and TU . Table TC contains one tuple for each u-tuple in T .
TC’s schema consists of the certain attributes of T , along with two additional
attributes:

xid contains a unique identifier assigned to each u-tuple in T .

num contains a number used to track efficiently whether or not a u-tuple
has a ‘?’, when T has no confidence values. (See Section 6.2 for further
discussion.)

Table TU contains one tuple for each tuple-alternative in T . Its schema consists
of the uncertain attributes of T , along with three additional attributes:

aid contains a unique identifier assigned to each alternative in T .

xid identifies the u-tuple that this alternative belongs to.

conf stores the confidence of the alternative, or NULL if this confidence
value has not (yet) been computed, or if T has no confidences.
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Clearly several optimizations are possible: Tables with confidence values can
omit the num field, while tables without confidences can omit conf. If a
table T with confidences has no certain attributes, then table TC is not needed
since it would contain only xid’s, which also appear in TU . Conversely, if T
contains no uncertain attributes, then table TU is not needed: attribute aid is
unnecessary, and attribute conf is added to table TC . Even when both tables
are present, the system automatically creates a virtual view that joins the two
tables, as a convenience for query translation (Section 6.2).

The system always creates indexes on TC .xid, TU .aid, and TU .xid. In
addition, Trio users may create indexes on any of the original data attributes
A1, . . . , An using standard CREATE INDEX commands, which are translated
by Trio to CREATE INDEX commands on the appropriate underlying tables.

The lineage information for each ULDB table T is stored in a separate
relational table. Recall the lineage λ(t) of a tuple-alternative t is a boolean
formula. The system represents lineage formulas in disjunctive normal form
(DNF), i.e., as a disjunction of conjunctive clauses, with all negations pushed
to the “leaves.” Doing so allows for a uniform representation: Lineage is stored
in a single table TL(aid, src aid, src table,flag), indexed on aid and
src aid. A tuple (t1, t2, T2, f ) in TL denotes that T ’s alternative t1 has alter-
native t2 from table T2 in its lineage. Multiple lineage relationships for a given
alternative are conjunctive by default; special values for flag and (occasion-
ally) “dummy” entries are used to encode negation and disjunction. By far the
most common type of lineage is purely conjunctive, which is represented and
manipulated very efficiently with this scheme.

Example. As one example that demonstrates many aspects of the encoding,
consider the aggregation query result from Section 2.5. Call the result table
R. Recall that attribute car is certain while attribute count is uncertain. The
encoding as relational tables follows, omitting the lineage for result tuple 72
since it parallels that for 71.

R C:
xid num car

71 2 Honda

72 2 Mazda

R U:

aid xid count

711 71 1

712 71 2

721 72 1

722 72 2

R L:

aid src aid src table flag

711 221 Drives NULL

711 211 Drives neg

712 211 Drives NULL

712 221 Drives neg

For readability, unique aid’s are created by concatenating xid and alterna-
tive number. The values of 2 in attribute R C.num indicate no ‘?’s (see Sec-
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tion 6.2), and R U.conf is omitted since there are no confidence values. The
remaining attributes should be self-explanatory given the discussion of the en-
coding above. In addition, the system automatically creates a virtual view
joining tables R C and R U on xid.

6.2 Basic Query Translation Scheme

Consider the Suspects query from the beginning of Section 2, first in its
transient form (i.e., without CREATE TABLE). The Trio Python layer trans-
lates the TriQL query into the following SQL query, sends it to the underlying
DBMS, and opens a cursor on the result. The translated query refers to the vir-
tual views joining Saw C and Saw U, and joining Drives C, and Drives U;
call these views Saw E and Drives E (“E” for encoding) respectively.

SELECT Drives_E.driver,

Saw_E.aid, Drives_E.aid, Saw_E.xid, Drives_E.xid,

(Saw_E.num * Drives_E.num) AS num

FROM Saw_E, Drives_E

WHERE Saw_E.color = Drives_E.color AND Saw_E.car = Drives_E.car

ORDER BY Saw_E.xid, Drives_E.xid

Let Tfetch denote a cursor call to the Trio API for the original TriQL query,
and let Dfetch denote a cursor call to the underlying DBMS for the translated
SQL query. Each call to Tfetch must return a complete u-tuple, which may
entail several calls to Dfetch: Each tuple returned from Dfetch on the SQL
query corresponds to one alternative in the TriQL query result, and the set
of alternatives with the same returned Saw E.xid and Drives E.xid pair
comprise a single result u-tuple (as specified in the operational semantics of
Section 2.1). Thus, on Tfetch, Trio collects all SQL result tuples for a single
Saw E.xid/Drives E.xid pair (enabled by the ORDER BY clause in the
SQL query), generates a new xid and new aid’s, and constructs and returns
the result u-tuple.

Note that the underlying SQL query also returns the aid’s from Saw E

and Drives E. These values (together with the table names) are used to con-
struct the lineage for the alternatives in the result u-tuple. Recall that the num
field is used to encode the presence or absence of ‘?’: Our scheme maintains
the invariant that an alternative’s u-tuple has a ‘?’ if and only if its num field
exceeds the u-tuple’s number of alternatives, which turns out to be efficient
to maintain for most queries. This example does not have result confidence
values, however even if it did, result confidence values by default are not com-
puted until they are explicitly requested (recall Section 4). When a “COMPUTE
CONFIDENCES” clause is present, Tfetch invokes confidence computation be-
fore returning its result tuple. Otherwise, Tfetch returns placeholder NULLs for
all confidence values.
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For the stored (CREATE TABLE) version of the query, Trio first issues DDL
commands to create the new tables, indexes, and virtual view that will encode
the query result. Trio then executes the same SQL query shown above, except
instead of constructing and returning u-tuples one at a time, the system directly
inserts the new alternatives and their lineage into the result and lineage tables,
already in their encoded form. All processing occurs within a stored proce-
dure on the database server, thus avoiding unnecessary round-trips between
the Python module and the underlying DBMS.

The remaining subsections discuss how TriQL constructs beyond simple
SELECT-FROM-WHERE statements are translated and executed. All transla-
tions are based on the data encoding scheme of Section 6.1; many are purely
“add-ons” to the basic translation just presented.

6.3 Duplicate Elimination

Recall from Section 2.4 that TriQL supports “horizontal” duplicate-elimi-
nation with the MERGED option, as well as conventional DISTINCT. In gen-
eral, either type of duplicate-elimination occurs as the final step in a query that
may also include filtering, joins, and other operations. Thus, after duplicate-
elimination, the lineage of each result alternative is a formula in DNF (recall
Section 6.1): disjuncts are the result of merged duplicates, while conjunction
within each disjunct represents a tuple-alternative’s derivation prior to merg-
ing; a good example can be seen at the end of Section 1.4. How Trio encodes
DNF formulas in lineage tables was discussed briefly in Section 6.1.

Merging horizontal duplicates and creating the corresponding disjunctive
lineage can occur entirely within the Tfetch method: All alternatives for each
result u-tuple, together with their lineage, already need to be collected within
Tfetch before the u-tuple is returned. Thus, when MERGED is specified, Tfetch
merges all duplicate alternatives and creates the disjunctive lineage for them,
then returns the modified u-tuple.
DISTINCT is more complicated, requiring two phases. First, a translated

SQL query is produced as if DISTINCT were not present, except the result is
ordered by the data attributes instead of xid’s; this query produces a tempo-
rary result T . One scan through T is required to merge duplicates and create
disjunctive lineage, then T is reordered by xid’s to construct the correct u-
tuples in the final result.

6.4 Aggregation

Recall from Section 2.5 that TriQL supports 20 different aggregation func-
tions: four versions (full, low, high, and expected) for each of the five standard
functions (count, min, max, sum, avg). All of the full functions and some of the
other options cannot be translated to SQL queries over the encoded data, and
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thus are implemented as stored procedures. (One of them, expected average,
is implemented as an approximation, since finding the exact answer based on
possible-instances can be extremely expensive [9].) Many of the options, how-
ever, can be translated very easily. Consider table Saw with confidence values.
Then the TriQL query:

SELECT color, ECOUNT(*) FROM Saw GROUP BY car

is translated based on the encoding to:

SELECT color, SUM(conf) FROM Saw_E GROUP BY car

A full description of the implementation of Trio’s 20 aggregate functions can
be found in [9].

6.5 Reorganizing Alternatives

Recall Flatten and GroupAlts from Section 2.6. The translation scheme for
queries with Flatten is a simple modification to the basic scheme in which each
result alternative is assigned its own xid. GroupAlts is also a straightforward
modification: Instead of the translated SQL query grouping by xid’s from the
input tables to create result u-tuples, it groups by the attributes specified in
GROUPALTS and generates new xid’s.

6.6 Horizontal Subqueries

Horizontal subqueries are very powerful yet surprisingly easy to implement
based on our data encoding. Consider the example from Section 2.7:

SELECT * FROM Saw

WHERE car = ’Honda’ AND EXISTS [car <> ’Honda’]

First, syntactic shortcuts are expanded. In the example, [car <> ’Honda’]

is a shortcut for [SELECT * FROM Saw WHERE car<>’Honda’]. Here,
Saw within the horizontal subquery refers to the Saw alternatives in the cur-
rent u-tuple being evaluated [11]. In the translation, the horizontal subquery is
replaced with a standard SQL subquery that adds aliases for inner tables and a
condition correlating xid’s with the outer query:

... AND EXISTS (SELECT * FROM Saw_E S

WHERE car <> ’Honda’ AND S.xid = Saw_E.xid)

S.xid=Saw E.xid restricts the horizontal subquery to operate on the data
in the current u-tuple. Translation for the general case involves a fair amount of
context and bookkeeping to ensure proper aliasing and ambiguity checks, but
all horizontal subqueries, regardless of their complexity, have a direct transla-
tion to regular SQL subqueries with additional xid equality conditions.
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6.7 Built-In Predicates and Functions

Trio has three built-in predicates and functions: Conf() introduced in Sec-
tion 2.2, Maybe() introduced in Section 2.9, and Lineage() introduced in
Section 2.3.

Function Conf() is implemented as a stored procedure. If it has just one
argument T , the procedure first examines the current T E.conf field to see if
a value is present. (Recall from Section 6.1 that T E is the encoded data table,
typically a virtual view over tables TC and TU .) If so, that value is returned.
If T E.conf is NULL, on-demand confidence computation is invoked (see
Section 4); the resulting confidence value is stored permanently in T E and
returned.

The situation is more complicated when Conf() has multiple arguments,
or the special argument “*” as an abbreviation for all tables in the query’s
FROM list (recall Section 2.2). The algorithm for arguments T1, . . . , Tk logi-
cally constructs a “dummy” tuple-alternative t whose lineage is the conjunc-
tion of the current tuple-alternatives from T1, . . . , Tk being considered. It then
computes t’s confidence, which provides the correct result for the current invo-
cation of Conf(T1, . . . , Tk). In the case of Conf(*), the computed values
usually also provide confidence values for the query result, without a need for
on-demand computation.

The Maybe() and Lineage() predicates are incorporated into the query
translation phase. Predicate Maybe() is straightforward: It translates to a
simple comparison between the num attribute and the number of alternatives
in the current u-tuple. (One subtlety is that Maybe() returns true even when
a tuple’s question mark is “extraneous”—that is, the tuple in fact always has
an alternative present, due to its lineage. See Section 5 for a brief discussion.)

Predicate Lineage(T1,T2) is translated into one or more SQL EXISTS

subqueries that check if the lineage relationship holds: Schema-level lineage
information is used to determine the possible table-level “paths” from T1 to T2.
Each path produces a subquery that joins lineage tables along that path, with
T1 and T2 at the endpoints; these subqueries are then OR’d to replace predicate
Lineage(T1,T2) in the translated query.

As an example, recall table HighSuspects in Section 1.4, derived from
table Suspects, which in turn is derived from table Saw. Then predicate
Lineage(HighSuspects, Saw) would be translated into one subquery
as follows, recalling the lineage encoding described in Section 6.1.

EXISTS (SELECT *
FROM HighSuspects_L L1, Suspects_L L2

WHERE HighSuspects.aid = L1.aid

AND L1.src_table = ’Suspects’ AND L1.src_aid = L2.aid

AND L2.src_table = ’Saw’ AND L2.src_aid = Saw.aid )
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6.8 Query-Defined Result Confidences

The default probabilistic interpretation of confidence values in query results
can be overridden by including “expression AS conf” in the SELECT clause
of a TriQL query (Section 2.8). Since Trio’s data encoding scheme uses a
column called conf to store confidence values, “AS conf” clauses simply
pass through the query translation phase unmodified.

6.9 Remaining Constructs

We briefly describe implementation of the remaining TriQL constructs and
features.

Rest of SQL. As mentioned in Section 2.9, since TriQL is a superset
of SQL, any complete TriQL implementation must handle all of SQL.
In our translation-based scheme, some constructs (e.g., LIKE predi-
cates) can be passed through directly to the underlying relational DBMS,
while others (e.g., set operators, some subqueries) can involve substan-
tial rewriting during query translation to preserve TriQL semantics. At
the time of writing this chapter, the Trio prototype supports all of the
constructs discussed or used by examples in this chapter, as well as set
operators UNION, INTERSECT, and EXCEPT.

Order By. Because ordering by xid’s is an important part of the ba-
sic query translation (Section 6.2), ORDER BY clauses in TriQL require
materializing the result first, then ordering by the specified attributes.
When special “attribute” Confidences (Section 2.9) is part of the
ORDER BY list, “COMPUTE CONFIDENCES” (Section 2.8) is logically
added to the query, to ensure the conf field contains actual values, not
placeholder NULLs, before sorting occurs.

UNIFORM and SCALED. The keywords UNIFORM (Section 2.8) and
SCALED (Section 2.9) can be used in a TriQL FROM clause to add or
modify confidences on an input table, or with “AS conf” to specify con-
fidences on the result. The “AS conf” usage is easy to implement within
the Tfetch procedure (Section 6.2): Tfetch processes entire u-tuples one
at a time and can easily add or modify confidence values before returning
them.

UNIFORM and SCALED in the FROM clause are somewhat more com-
plex: Confidence computation for the query result must occur during
query processing (as opposed to on-demand), to ensure result confidence
values take into account the modifier(s) in the FROM clause. (Alterna-
tively, special flags could be set, then checked during later confidence
computation, but Trio does not use this approach.) Special process-
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ing again occurs in Tfetch, which logically adds or modifies confidence
values on input alternatives when computing confidence values for the
query result.

NoLineage, NoConf, and NoMaybe. These TriQL options are all quite
easy to implement: NoLineage computes confidence values for the
query result as appropriate (since no lineage is maintained by which to
compute confidences later), then essentially turns the query result into
a Trio base table. NoConf can only be specified in queries that oth-
erwise would include confidence values in the result; now the result is
marked as a Trio table without confidences (and, of course, does not
compute confidence values except as needed for query processing). Fi-
nally, NoMaybe can only be specified in queries that produce results
without confidences; all ?’s that otherwise would be included in the re-
sult are removed by modifying the num field in the encoding (Section
6.1).

Data modifications and versioning. Recall from Section 3.4 that Trio
supports a lightweight versioning system, in order to allow data modifi-
cations to base tables that are not propagated to derived tables, while still
maintaining “meaningful” lineage on the derived data. Implementation
of the versioning system is quite straightforward: If a ULDB table T is
versioned, start-version and end-version attributes are added to encoded
table TU (Section 6.1). A query over versioned tables can produce a
versioned result with little overhead, thanks to the presence of lineage.
Alternatively, queries can request snapshot results, as of the current or a
past version. Data modifications often simply manipulate versions rather
than modify the data, again with little overhead. For example, deleting
an alternative t from a versioned table T translates to modifying t’s end-
version in TU . Reference [6] provides details of how the Trio system
implements versions, data modifications, and the propagation of modifi-
cations to derived query results when desired.
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Abstract MayBMS is a state-of-the-art probabilistic database management system that
has been built as an extension of Postgres, an open-source relational database
management system. MayBMS follows a principled approach to leveraging the
strengths of previous database research for achieving scalability. This chapter
describes the main goals of this project, the design of query and update language,
efficient exact and approximate query processing, and algorithmic and systems
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1. Introduction

Database systems for uncertain and probabilistic data promise to have many
applications. Query processing on uncertain data occurs in the contexts of data
warehousing, data integration, and of processing data extracted from the Web.
Data cleaning can be fruitfully approached as a problem of reducing uncer-
tainty in data and requires the management and processing of large amounts of
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uncertain data. Decision support and diagnosis systems employ hypothetical
(what-if) queries. Scientific databases, which store outcomes of scientific ex-
periments, frequently contain uncertain data such as incomplete observations
or imprecise measurements. Sensor and RFID data is inherently uncertain.
Applications in the contexts of fighting crime or terrorism, tracking moving
objects, surveillance, and plagiarism detection essentially rely on techniques
for processing and managing large uncertain datasets. Beyond that, many fur-
ther potential applications of probabilistic databases exist and will manifest
themselves once such systems become available.

Inference in uncertain data is a field in which the Artificial Intelligence re-
search community has made much progress in the past years. Some of the
most exciting AI applications, such as using graphical models in biology, be-
long to this area. While a number of papers on uncertain data and probabilistic
databases have been written within the data management research community
over the past decades, this area has moved into the focus of research interest
only very recently, and work on scalable systems has only just started.

TheMayBMS project∗ aims at creating a probabilistic database management
system by leveraging techniques developed by the data management research
community. The MayBMS project is founded on the thesis that a principled ef-
fort to use previous insights from databases will allow for substantial progress
towards more robust and scalable systems for managing and querying large un-
certain datasets. This will have a positive impact on current applications such
as in computational science and will allow for entirely new data management
applications.

Central themes in our research include the creation of foundations of query
languages for probabilistic databases by developing analogs of relational alge-
bra [22, 21] and SQL [6, 8] and the development of efficient query processing
techniques [5, 25, 3, 23, 24, 17]. In practice, the efficient evaluation of queries
on probabilistic data requires approximation techniques, and another impor-
tant goal was to understand which approximation guarantees can be made for
complex, realistic query languages [22, 15].

We have worked on developing a complete database management system
for uncertain and probabilistic data. Apart from data representation and stor-
age mechanisms, a query language, and query processing techniques, our work
covers query optimization, an update language, concurrency control and recov-
ery, and APIs for uncertain data.

MayBMS stands alone as a complete probabilistic database management
system that supports a very powerful, compositional query language for which
nevertheless worst-case efficiency and result quality guarantees can be made.
Central to this is our choice of essentially using probabilistic versions of con-

∗MayBMS is read as “maybe-MS”, like DBMS.
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ditional tables [18] as the representation system, but in a form engineered for
admitting the efficient evaluation and automatic optimization of most opera-
tions of our language using robust and mature relational database technology
[3].

The structure of this chapter is as follows. Section 2 sketches our model
of probabilistic databases. Section 3 outlines desiderata that have guided the
design of our query languages. Section 4 introduces our query algebra and
illustrates it by examples. The section also gives an overview over theoretical
results, in particular on expressiveness, that have been achieved for this alge-
bra. Section 5 introduces U-relations, the representation system of MayBMS.
Section 6 shows how most of the operations of our algebra can be evaluated
efficiently using mature relational database techniques. Moreover, the problem
of efficiently processing the remaining operations is discussed and an overview
of the known results on the (worst-case) complexity of the query algebra is
given. Section 7 presents the query and update language of MayBMS, which
is based on our algebra but uses an extension of SQL as syntax. Section 8
discusses further systems issues. Section 9 concludes.

This chapter is meant to provide an overview over the MayBMS project and
some topics are covered in a sketchy fashion. For details on the various tech-
niques, experiments, and the theoretical contributions, the reader is referred to
the original technical papers on MayBMS that can be found in the references.

2. Probabilistic Databases

Informally, our model of probabilistic databases is the following. The schema
of a probabilistic database is simply a relational database schema. Given such
a schema, a probabilistic database is a finite set of database instances of that
schema (called possible worlds), where each world has a weight (called prob-
ability) between 0 and 1 and the weights of all worlds sum up to 1. In a sub-
jectivist Bayesian interpretation, one of the possible worlds is “true”, but we
do not know which one, and the probabilities represent degrees of belief in
the various possible worlds. Note that this is only the conceptual model. The
physical representation of the set of possible worlds in the MayBMS system is
quite different (see Section 5).

Given a schema with relation namesR1, . . . , Rk. We use sch(Rl) to denote
the attributes of relation schema Rl. Formally, a probabilistic database is a
finite set of structures

W = {〈R1
1, . . . , R

1
k, p

[1]〉, . . . , 〈Rn1 , . . . , Rnk , p[n]〉}
of relations Ri1, . . . , R

i
k and numbers 0 < p[i] ≤ 1 such that

∑

1≤i≤n

p[i] = 1.
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We call an element 〈Ri1, . . . , Rik, p[i]〉 ∈W a possible world, and p[i] its prob-
ability. We use superscripts for indexing possible worlds. To avoid confusion
with exponentiation, we sometimes use bracketed superscripts ·[i]. We call a
relation R complete or certain if its instantiations are the same in all possible
worlds of W, i.e., if R1 = · · · = Rn.

Tuple confidence refers to the probability of the event ~t ∈ R, where R is
one of the relation names of the schema, with

Pr[~t ∈ R] =
∑

1≤i≤n: ~t∈Ri

p[i].

3. Query Language Desiderata

At the time of writing this, there is no accepted standard query language for
probabilistic databases. In fact, we do not even agree today what use cases
and functionality such systems should support. It seems to be proper to start
the query language discussion with the definition of design desiderata. The
following are those used in the design of MayBMS.

1 Efficient query evaluation.

2 The right degree of expressive power. The language should be powerful
enough to support important queries. On the other hand, it should not be
too strong, because expressiveness generally comes at a price: high eval-
uation complexity and infeasibility of query optimization. Can a case be
made that some language is in a natural way a probabilistic databases
analog of the relationally complete languages (such as relational alge-
bra) – an expressiveness yardstick?

3 Genericity. The semantics of a query language should be independent
from details of how the data is represented. Queries should behave in
the same way no matter how the probabilistic data is stored. This is a
basic requirement that is even part of the traditional definition of what
constitutes a query (cf. e.g. [1]), but it is nontrivial to achieve for proba-
bilistic databases [6, 4].

4 The ability to transform data. Queries on probabilistic databases are of-
ten interpreted quite narrowly in the literature. It is the author’s view that
queries in general should be compositional mappings between databases,
in this case probabilistic databases. This is a property taken for granted
in relational databases. It allows for the definition of clean database up-
date languages.

5 The ability to introduce additional uncertainty. This may appear to be
a controversial goal, since uncertainty is commonly considered undesir-
able, and probabilistic databases are there to deal with it by providing
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useful functionality despite uncertainty. However, it can be argued that
an uncertainty-introduction operation is important for at least three rea-
sons: (1) for compositionality, and to allow construction of an uncertain
database from scratch (as part of the update language); (2) to support
what-if queries; and (3) to extend the hypothesis space modeled by the
probabilistic database. The latter is needed to accommodate the results
of experiments or new evidence, and to define queries that map from
prior to posterior probabilistic databases. This is a nontrivial issue, and
will be discussed in more detail later.

The next section introduces a query algebra and argues that it satisfies each
of these desiderata.

4. The Algebra

This section covers the core query algebra of MayBMS: probabilistic world-
set algebra (probabilistic WSA) [6, 22, 21]. Informally, probabilistic world-
set algebra consists of the operations of relational algebra, an operation for
computing tuple confidence conf, and the repair-key operation for introducing
uncertainty. The operations of relational algebra are evaluated individually, in
“parallel”, in each possible world. The operation conf(R) computes, for each
tuple that occurs in relation R in at least one world, the sum of the probabili-
ties of the worlds in which the tuple occurs. The result is a certain relation, or
viewed differently, a relation that is the same in all possible worlds. Finally,
repair-key ~A@P

(R), where ~A, P are attributes of R, conceptually nondetermin-

istically chooses a maximal repair of key ~A. This operation turns a possible
world Ri into the set of worlds consisting of all possible maximal repairs of
key ~A. A repair of key ~A in relation Ri is a subset of Ri for which ~A is a
key. It uses the numerically-valued column P for weighting the newly created
alternative repairs.

Formally, probabilistic world-set algebra consists of the following opera-
tions:

The operations of relational algebra (selection σ, projection π, product
×, union ∪, difference −, and attribute renaming ρ), which are applied
in each possible world independently.

The semantics of operations Θ on probabilistic database W is

[[Θ(Rl)]](W) := {〈R1, . . . , Rk,Θ(Rl), p〉 | 〈R1, . . . , Rk, p〉 ∈W}
for unary operations (1 ≤ l ≤ k). For binary operations, the semantics
is

[[Θ(Rl, Rm)]](W) :=

{〈R1, . . . , Rk,Θ(Rl, Rm), p〉 | 〈R1, . . . , Rk, p〉 ∈W}.
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Selection conditions are Boolean combinations of atomic conditions (i.e.,
negation is permitted even in the positive fragment of the algebra). Arith-
metic expressions may occur in atomic conditions and in the arguments
of π and ρ. For example, ρA+B→C(R) in each world adds up the A and
B values of each tuple of R and keeps them in a new C attribute.

An operation for computing tuple confidence,

[[conf(Rl)]](W) := {〈R1, . . . , Rk, S, p〉 | 〈R1, . . . , Rk, p〉 ∈W}

where, w.l.o.g., P 6∈ sch(Rl), and

S = {〈~t, P : Pr[~t ∈ Rl]〉 | ~t ∈
⋃

i

Ril},

with schema sch(S) = sch(Rl) ∪ {P}. The result of conf(Rl), the
relation S, is the same in all possible worlds, i.e., it is a certain relation.

By our definition of probabilistic databases, each possible world has
nonzero probability. As a consequence, conf does not return tuples with
probability 0.

For example, on probabilistic database

R1 A B
a b
b c

p[1] = .3
R2 A B

a b
c d

p[2] = .2
R3 A B

a c
c d

p[3] = .5

conf(R) computes, for each possible tuple, the sum of the weights of the
possible worlds in which it occurs, here

conf(R) A B P
a b .5
a c .5
b c .3
c d .7

An uncertainty-introducing operation, repair-key, which can be thought
of as sampling a maximum repair of a key for a relation. Repairing a
key of a complete relation R means to compute, as possible worlds, all
subset-maximal relations obtainable from R by removing tuples such
that a key constraint is satisfied. We will use this as a method for con-
structing probabilistic databases, with probabilities derived from relative
weights attached to the tuples of R.

We say that relation R′ is a maximal repair of a functional dependency
(fd, cf. [1]) for relation R if R′ is a maximal subset of R which satisfies
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that functional dependency, i.e., a subset R′ ⊆ R that satisfies the fd
such that there is no relation R′′ with R′ ⊂ R′′ ⊆ R that satisfies the fd.

Let ~A,B ∈ sch(Rl). For each possible world 〈R1, . . . , Rk, p〉 ∈W, let
column B of R contain only numerical values greater than 0 and let Rl
satisfy the fd (sch(Rl)−B)→ sch(Rl). Then,

[[repair-key ~A@B(Rl)]](W) :=
{
〈R1, . . . , Rk, πsch(Rl)−B(R̂l), p̂〉 | 〈R1, . . . , Rk, p〉 ∈W,

R̂l is a maximal repair of fd ~A→ sch(Rl),

p̂ = p ·
∏

~t∈R̂l

~t.B∑
~s∈Rl:~s. ~A=~t. ~A

~s.B

}

Such a repair operation, apart from its usefulness for the purpose implicit
in its name, is a powerful way of constructing probabilistic databases
from complete relations.

Example 6.1 Consider the example of tossing a biased coin twice.
We start with a certain database

R Toss Face FProb
1 H .4
1 T .6
2 H .4
2 T .6

p = 1

that represents the possible outcomes of tossing the coin twice. We turn
this into a probabilistic database that represents this information using
alternative possible worlds for the four outcomes using the query S :=
repair-keyToss@FProb(R). The resulting possible worlds are

S1 Toss Face
1 H
2 H

S2 Toss Face
1 H
2 T

S3 Toss Face
1 T
2 H

S4 Toss Face
1 T
2 T

with probabilities p[1] = p · .4
.4+.6 · .4

.4+.6 = .16, p[2] = p[3] = .24, and

p[4] = .36. �
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Coins Type Count
fair 2

2headed 1

Faces Type Face FProb
fair H .5
fair T .5

2headed H 1

Tosses Toss
1
2

Rf Type
fair

Rdh Type
2headed

Sf.HH Type Toss Face
fair 1 H
fair 2 H

Sf.HT Type Toss Face
fair 1 H
fair 2 T

Sdh Type Toss Face
2headed 1 H
2headed 2 H

pf.HH = 1/6 pf.HT = 1/6 pdh = 1/3

Sf.TH Type Toss Face
fair 1 T
fair 2 H

Sf.TT Type Toss Face
fair 1 T
fair 2 T

pf.TH = 1/6 pf.TT = 1/6

Ev Toss Face
1 H
2 H

Q Type P
fair (1/6)/(1/2) = 1/3

2headed (1/3)/(1/2) = 2/3

Figure 6.1. Tables of Example 6.2.

The fragment of probabilistic WSA which excludes the difference operation
is called positive probabilistic WSA.

Computing possible and certain tuples is redundant with conf:

poss(R) := πsch(R)(conf(R))

cert(R) := πsch(R)(σP=1(conf(R)))

Example 6.2 A bag of coins contains two fair coins and one double-headed
coin. We take one coin out of the bag but do not look at its two faces to
determine its type (fair or double-headed) for certain. Instead we toss the coin
twice to collect evidence about its type.

We start out with a complete database (i.e., a relational database, or a prob-
abilistic database with one possible world of probability 1) consisting of three
relations, Coins, Faces, and Tosses (see Figure 6.1 for all tables used in this
example). We first pick a coin from the bag and model that the coin be either
fair or double-headed. In probabilistic WSA this is expressed as

R := repair-key∅@Count(Coins).

This results in a probabilistic database of two possible worlds,

{〈Coins,Faces, Rf , pf = 2/3〉, 〈Coins, Faces, Rdh, pdh = 1/3〉}.

The possible outcomes of tossing the coin twice can be modeled as

S := repair-keyToss@FProb(R ⊲⊳ Faces× Tosses).
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This turns the two possible worlds into five, since there are four possible out-
comes of tossing the fair coin twice, and only one for the double-headed coin.

Let T := πToss,Face(S). The posterior probability that a coin of type x was
picked, given the evidence Ev (see Figure 6.1) that both tosses result in H, is

Pr[x ∈ R | T = Ev] =
Pr[x ∈ R ∧ T = Ev]

Pr[T = Ev]
.

Let A be a relational algebra expression for the Boolean query T = Ev. Then
we can compute a table of pairs 〈x, Pr[x ∈ R | T = Ev]〉 as

Q := πType,P1/P2→P (ρP→P1(conf(R×A))× ρP→P2(conf(A))).

The prior probability that the chosen coin was fair was 2/3; after taking the
evidence from two coin tosses into account, the posterior probability Pr[the
coin is fair | both tosses result in H] is only 1/3. Given the evidence from the
coin tosses, the coin is now more likely to be double-headed. �

Example 6.3 We redefine the query of Example 6.2 such that repair-key
is only applied to certain relations. Starting from the database obtained by
computing R, with its two possible worlds, we perform the query S0 :=
repair-keyType,Toss@FProb(Faces × Tosses) to model the possible outcomes
of tossing the chosen coin twice. The probabilistic database representing these
repairs consists of eight possible worlds, with the two possible R relations of
Example 6.2 and, independently, four possible S0 relations. Let S := R ⊲⊳ S0.
While we now have eight possible worlds rather than five, the four worlds in
which the double-headed coin was picked all agree on S with the one world
in which the double-headed coin was picked in Example 6.2, and the sum of
their probabilities is the same as the probability of that world. It follows that
the new definition of S is equivalent to the one of Example 6.2 and the rest of
the query is the same. �

Discussion. The repair-key operation admits an interesting class of queries:
Like in Example 6.2, we can start with a probabilistic database of prior proba-
bilities, add further evidence (in Example 6.2, the result of the coin tosses) and
then compute interesting posterior probabilities. The adding of further evi-
dence may require extending the hypothesis space first. For this, the repair-key
operation is essential. Even though our goal is not to update the database, we
have to be able to introduce uncertainty just to be able to model new evidence
– say, experimental data. Many natural and important probabilistic database
queries cannot be expressed without the repair-key operation. The coin tossing
example was admittedly a toy example (though hopefully easy to understand).
Real applications such as diagnosis or processing scientific data involve tech-
nically similar questions.
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Regarding our desiderata, it is quite straightforward to see that probabilistic
WSA is generic (3): see also the proof for the non-probabilistic language in
[6]. It is clearly a data transformation query language (4) that supports pow-
erful queries for defining databases. The repair-key operation is our construct
for uncertainty introduction (5). The evaluation efficiency (1) of probabilistic
WSA is studied in Section 6. The expressiveness desideratum (2) is discussed
next.

An expressiveness yardstick. In [6] a non-probabilistic version of world-
set algebra is introduced. It replaces the confidence operation with an operation
poss for computing possible tuples. Using poss, repair-key, and the operations
of relational algebra, powerful queries are expressible. For instance, the certain
answers of a query on an uncertain database can be computed using poss and
difference. Compared to the poss operation described above, the operation of
[6] is more powerful. The syntax is poss ~A(Q), where ~A is a set of column
names ofQ. The operation partitions the set of possible worlds into the groups
of those worlds that agree on π ~A(Q). The result in each world is the set of
tuples possible inQwithin the world’s group. Thus, this operation supports the
grouping of possible worlds just like the group-by construct in SQL supports
the grouping of tuples.

The main focus of [6] is to study the fragment of (non-probabilistic) WSA
in which repair-key is replaced by the choice-of operation, defined as:

choice-of ~A@P (R) := R ⊲⊳ repair-key∅@P (π ~A,P (R)).

The choice-of operation introduces uncertainty like the repair-key operation,
but can only cause a polynomial, rather than exponential, increase of the num-
ber of possible worlds. This language has the property that query evaluation
on enumerative representations of possible worlds is in PTIME (see Section 6
for more on this). Moreover, it is conservative over relational algebra in the
sense that any query that starts with a certain database (a classical relational
database) and produces a certain database is equivalent to a relational algebra
query and can be efficiently rewritten into relational algebra. This is a non-
trivial result, because in this language we can produce uncertain intermediate
results consisting of many possible worlds using the choice-of operator. This
allows us to express and efficiently answer hypothetical (what-if) queries.

(Full non-probabilistic) WSA consists of the relational algebra operations,
repair-key, and poss ~A. In [21], it is shown that WSA precisely captures second-
order logic. Leaving aside inessential details about interpreting second-order
logic over uncertain databases – it can be done in a clean way – this result
shows that a query is expressible in WSA if and only if it is expressible in
second-order logic. WSA seems to be the first algebraic (i.e., variable and
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quantifier-free) language known to have exactly the same expressive power as
second-order logic.

More importantly for us, it can be argued that this establishes WSA as the
natural analog of relational algebra for uncertain databases. Indeed, while it is
well known that useful queries (such as transitive closure or counting queries,
cf. [1]) cannot be expressed in it, relational algebra is a very popular expres-
siveness yardstick for relational query languages (and query languages that
are as expressive as relational algebra are called relationally complete). Re-
lational algebra is also exactly as expressive as the domain-independent first-
order queries [1], also known as the relational calculus. Second-order logic
is just first-order logic extended by (existential) quantification over relations
(“Does there exist a relation R such that φ holds?”, where φ is a formula).
This is the essence of (what-if) reasoning over uncertain data. For example,
the query of Example 6.2 employed what-if reasoning over relations twice via
the repair-key operation, first considering alternative choices of coin and then
alternative outcomes to coin tossing experiments.

It is unknown whether probabilistic WSA as defined in this chapter can ex-
press all the queries of WSA (with poss ~A). Given the known data complexity
bounds for the two languages (see Section 6) alone, there is no reason to as-
sume that this is not the case. On the other hand, it seems unlikely, and a
mapping from WSA to probabilistic WSA, if it exists, must be nontrivial.

It would be easy to define a sufficiently strong extension of probabilistic
WSA by just generalizing conf to a world-grouping conf ~A operation. In this
chapter, this is not done because we do not know how to obtain any even just
moderately efficient implementation of this operation (or of poss ~A) on succinct
data representations.

5. Representing Probabilistic Data

This section discusses the method used for representing and storing proba-
bilistic data and correlations in MayBMS. We start by motivating the problem
of finding a practical representation system.

Example 6.4 Consider a census scenario, in which a large number of indi-
viduals manually fill in forms. The data in these forms subsequently has to
be put into a database, but no matter whether this is done automatically using
OCR or by hand, some uncertainty may remain about the correct values for
some of the answers. Figure 6.2 shows two simple filled in forms. Each one
contains the social security number, name, and marital status of one person.

The first person, Smith, seems to have checked marital status “single” after
first mistakenly checking “married”, but it could also be the opposite. The
second person, Brown, did not answer the marital status question. The social
security numbers also have several possible readings. Smith’s could be 185 or
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Name:


Marital Status:


Social Security Number:


Name:


Marital Status:


Social Security Number:


(1) single
 (2) married


(3) divorced
 (4) widowed


(1) single
 (2) married


(3) divorced
 (4) widowed


Figure 6.2. Two census forms.

785 (depending on whether Smith originally is from the US or from Europe)
and Brown’s may either be 185 or 186.

In an SQL database, uncertainty can be managed using null values, using a
table

(TID) SSN N M
t1 null Smith null
t2 null Brown null

Using nulls, information is lost about the values considered possible for the
various fields. Moreover, it is not possible to express correlations such as that,
while social security numbers may be uncertain, no two distinct individuals can
have the same. In this example, we can exclude the case that both Smith and
Brown have social security number 185. Finally, we cannot store probabilities
for the various alternative possible worlds. �

This leads to three natural desiderata for a representation system: (*) Ex-
pressiveness, that is, the power to represent all (relevant) probabilistic databases,
(*) succinctness, that is, space-efficient storage of the uncertain data, and (*)
efficient real-world query processing.

Often there are many rather (but not quite) independent local alternatives
in probabilistic data, which multiply up to a very large number of possible
worlds. For example, the US census consists of many dozens of questions for
about 300 million individuals. Suppose forms are digitized using OCR and
the resulting data contains just two possible readings for 0.1% of the answers
before cleaning. Then, there are on the order of 210,000,000 possible worlds,
and each one will take close to one Terabyte of data to store. Clearly, we need
a way of representing this data that is much better than a naive enumeration of
possible worlds.
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Also, the repair-key operator of probabilistic world-set algebra in general
causes an exponential increase in the number of possible worlds.

There is a trade-off between succinctness on one hand and efficient pro-
cessing on the other. Computing confidence conf(Q) of conjunctive queries
Q on tuple-independent databases is #P-hard – one such hard query [13] (in
datalog notation [1]) is Q ← R(x), S(x, y), T (y). At the same time, much
more expressive queries can be evaluated efficiently on nonsuccinct represen-
tations (enumerations of possible worlds) [6]. Query evaluation in probabilistic
databases is not hard because of the presence of probabilities, but because of
the succinct storage of alternative possible worlds! We can still have the goal
of doing well in practice.

Conditional tables. MayBMS uses a purely relational representation sys-
tem for probabilistic databases called U-relational databases, which is based
on probabilistic versions of the classical conditional tables (c-tables) of the
database literature [18]. Conditional tables are a relational representation sys-
tem based on the notion of labeled null values or variables, that is, null values
that have a name. The name makes it possible to use the same variable x in
several fields of a database, indicating that the value of x is unknown but must
be the same in all those fields in which x occurs. Tables with variables are also
known as v-tables.

Formally, c-tables are v-tables extended by a column for holding a local
condition. That is, each tuple of a c-table has a Boolean condition constructed
using “and”, “or”, and “not” from atomic conditions of the form x = c or
x = y, where c are constants and x and y are variables. Possible worlds
are determined by functions θ that map each variable that occurs in at least
one of the local conditions in the c-tables of the database to a constant. The
database in that possible world is obtained by (1) selecting those tuples whose
local condition φ satisfies the variable assignment θ, i.e., that becomes true if
each variable x in φ is replaced by θ(x), (2) replacing all variables y in the
value fields of these tuples by θ(y), and (3) projecting away the local condition
column.

Conditional tables are sometimes defined to include a notion of global con-
dition, which we do not use: We want each probabilistic database to have at
least one possible world.

Conditional tables are a so-called strong representation system: They are
closed under the application of relational algebra queries. The set of worlds
obtained by evaluating a relational algebra query in each possible world repre-
sented by a conditional table can again be straightforwardly represented by a
conditional table. Moreover, the local conditions are in a sense the most natural
and simple formalism possible to represent the result of queries on data with
labeled nulls. The local conditions just represent the information necessary
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to preserve correctness and can also be understood to be just data provenance
information [10].

U-Relational Databases. In our model, probabilistic databases are finite
sets of possible worlds with probability weights. It follows that each variable
naturally has a finite domain, the set of values it can take across all possible
worlds. This has several consequences. First, variables can be considered fi-
nite random variables. Second, only allowing for variables to occur in local
conditions, but not in attribute fields of the tuples, means no restriction of ex-
pressiveness. Moreover, we may assume without loss of generality that each
atomic condition is of the form x = c (i.e., we never have to compare vari-
ables).

If we start with a c-table in which each local condition is a conjunction of
no more than k atomic conditions, then a positive relational algebra query on
this uncertain database will result in a c-table in which each local condition is
a conjunction of no more than k′ atoms, where k′ only depends on k and the
query, but not on the data. If k is small, it is reasonable to actually hard-wire
it in the schema, and represent local conditions by k pairs of columns to store
atoms of the form x = c.

These are the main ideas of our representation system, U-relations. Ran-
dom variables are assumed independent in the current MayBMS system, but
as we will see, this means no restriction of generality. Nevertheless, it is one
goal of future work to support graphical models for representing more corre-
lated joint probability distributions below our U-relations. This would allow
us to represent learned distributions in the form of e.g. Bayesian networks di-
rectly in the system (without the need to map them to local conditions) and run
queries on top, representing the inferred correlations using local conditions.
The latter seem to be better suited for representing the incremental correla-
tions constructed by queries.

One further idea employed in U-relational databases is to use vertical par-
titioning [9, 26] for representing attribute-level uncertainty, i.e., to allow to
decompose tuples in case several fields of a tuple are independently uncertain.

Example 6.5 The set of tables shown in Figure 6.3 is a U-relational database
representation for the census data scenario of Example 6.4, extended by suit-
able probabilities for the various alternative values the fields can take (repre-
sented by table W ). �

Formally, a U-relational database consists of a set of independent random
variables with finite domains (here, x, y, v, w), a set of U-relations, and a
ternary table W (the world-table) for representing distributions. The W table
stores, for each variable, which values it can take and with what probability.
The schema of each U-relation consists of a set of pairs (Vi, Di) of condition
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UR[SSN ] V D TID SSN
x 1 t1 185
x 2 t1 785
y 1 t2 185
y 2 t2 186

UR[M ] V D TID M
v 1 t1 1
v 2 t1 2
w 1 t2 1
w 2 t2 2
w 3 t2 3
w 4 t2 4

UR[N ] TID N
t1 Smith
t2 Brown

W V D P
x 1 .4
x 2 .6

y 1 .7
y 2 .3

v 1 .8
v 2 .2

w 1 .25
w 2 .25
w 3 .25
w 4 .25

Figure 6.3. A U-relational database.

columns representing variable assignments and a set of value columns for rep-
resenting the data values of tuples.

The semantics of U-relational databases is as follows. Each possible world
is identified by a valuation θ that assigns one of the possible values to each
variable. The probability of the possible world is the product of weights of
the values of the variables. A tuple of a U-relation, stripped of its condition
columns, is in a given possible world if its variable assignments are consistent
with θ. Attribute-level uncertainty is achieved through vertical decomposition-
ing, so one of the value columns is used for storing tuple ids and undoing the
vertical decomposition on demand.

Example 6.6 Consider the U-relational database of Example 6.5 and the
possible world

θ = {x 7→ 1, y 7→ 2, v 7→ 1, w 7→ 1}.
The probability weight of this world is .4 · .3 · .8 · .25 = .024. By removing
all the tuples whose condition columns are inconsistent with θ and projecting
away the condition columns, we obtain the relations

R[SSN ] TID SSN
t1 185
t2 186

R[M ] TID M
t1 1
t2 1

R[N ] TID N
t1 Smith
t2 Brown

which are just a vertically decomposed version of R in the chosen possible
world. That is, R is R[SSN ] ⊲⊳ R[M ] ⊲⊳ R[N ] in that possible world. �
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Properties of U-relations. U-relational databases are a complete repre-
sentation system for (finite) probabilistic databases [3]. This means that any
probabilistic database can be represented in this formalism. In particular, it
follows that U-relations are closed under query evaluation using any generic
query language, i.e., starting from a represented database, the query result can
again be represented as a U-relational database. Completeness also implies that
any (finite) correlation structure among tuples can be represented, despite the
fact that we currently assume that the random variables that our correlations are
constructed from (using tuple conditions) are independent: The intuition that
some form of graphical model for finite distributions may be more powerful
(i.e., able to represent distributions that cannot be represented by U-relations)
is false.

Historical Note. The first prototype of MayBMS [5, 7, 25] did not use
U-relations for representations, but a different representation system called
world-set decompositions [5]. These representations are based on factoriza-
tions of the space of possible worlds. They can also be thought of as shallow
Bayesian networks. The problem with this approach is that some selection op-
erations can cause an exponential blowup of the representations. This problem
is not shared by U-relations, even though they are strictly more succinct than
world-set decompositions. This was the reason for introducing U-relations in
[3] and developing a new prototype of MayBMS based on U-relations.

6. Conceptual Query Evaluation, Rewritings, and
Asymptotic Efficiency

This section gives a complete solution for efficiently evaluating a large frag-
ment of probabilistic world-set algebra using relational database technology.
Then we discuss the evaluation of the remaining operations of probabilistic
WSA, namely difference and tuple confidence. Finally, an overview of known
worst-case computational complexity results is given.

Translating queries down to the representation relations. Let rep be
the representation function, which maps a U-relational database to the set of
possible worlds it represents. Our goal is to give a reduction that maps any
positive relational algebra query Q over probabilistic databases represented as
U-relational databases T to an equivalent positive relational algebra query Q
of polynomial size such that

rep(Q(T )) = {Q(Ai) | Ai ∈ rep(T )}
where the Ai are relational database instances (possible worlds).

The following is such a reduction, which maps the operations of positive
relational algebra, poss, and repair-key to relational algebra over U-relational
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representations:

[[R× S]] := π(UR.V D∪US .V D)→V D,sch(R),sch(S)(

UR ⊲⊳UR.V D consistent withUS .V D
US)

[[σφR]] := σφ(UR)

[[π ~BR]] := π
V D, ~B

(R)

[[R ∪ S]] := UR ∪ US
[[poss(R)]] := πsch(R)(UR).

The consistency test for conditions can be expressed simply using Boolean
conditions (see Example 6.8, and [3]). Note that the product operation, applied
to two U-relations of k and l (Vi, Di) column pairs, respectively, returns a
U-relation with k + l (Vi, Di) column pairs.

For simplicity, let us assume that the elements of π〈 ~A〉(UR) are not yet
used as variable names. Moreover, let us assume that the B value column
of UR, which is to provide weights for the alternative values of the columns
sch(R) − ( ~A ∪ B) for each tuple ~a in π〈 ~A〉(UR), are probabilities, i.e., sum
up to one for each ~a and do not first have to be normalized as described
in the definition of the semantics of repair-key in Section 4. The operation
S := repair-key ~A@B(R) for complete relation R is translated as

US := π〈 ~A〉→V,〈(sch(R)− ~A)−{B}〉→D,sch(R)
UR

with
W := W ∪ π〈 ~A〉→V,〈(sch(R)− ~A)−{B}〉→D,B→PUR.

Here, 〈·〉 turns tuples of values into atomic values that can be stored in single
fields.

That is, repair-key starting from a complete relation is just a projection/copying
of columns, even though we may create an exponential number of possible
worlds.

Example 6.7 Consider again the relation R of Example 6.1, which rep-
resents information about tossing a biased coin twice, and the query S :=
repair-keyToss@FProb(R). The result is

US V D Toss Face FProb
1 H 1 H .4
1 T 1 T .6
2 H 2 H .4
2 T 2 T .6

W V D P
1 H .4
1 T .6
2 H .4
2 T .6

as a U-relational database. �
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The projection technique only works if the relation that repair-key is ap-
plied to is certain. However, for practical purposes, this is not a restriction of
expressive power (cf. [21], and see also Example 6.3).

The next example demonstrates the application of the rewrite rules to com-
pile a query down to relational algebra on the U-relations.

Example 6.8 We revisit our census example with U-relations UR[SSN ] and
UR[N ]. We ask for possible names of persons who have SSN 185,
poss(πN (σSSN=185(R))). To undo the vertical partitioning, the query is evalu-
ated as poss(πN (σSSN=185(R[SSN ] ⊲⊳ R[N ]))). We rewrite the query using
our rewrite rules into πN (σSSN=185(UR[SSN ] ⊲⊳ψ∧φ UR[N ])),whereψ ensures
that we only generate tuples that occur in some worlds,

ψ := (UR[SSN ].V = UR[N ].V ⇒ UR[SSN ].D = UR[N ].D),

and φ ensures that the vertical partitioning is correctly undone,

φ := (UR[SSN ].T ID = UR[N ].T ID).
�

Properties of the relational-algebra reduction. The relational algebra
rewriting down to positive relational algebra on U-relations has a number of
nice properties. First, since relational algebra has PTIME (even AC0) data
complexity, the query language of positive relational algebra, repair-key, and
poss on probabilistic databases represented by U-relations has the same. The
rewriting is in fact a parsimonious translation: The number of algebra opera-
tions does not increase and each of the operations selection, projection, join,
and union remains of the same kind. Query plans are hardly more compli-
cated than the input queries. As a consequence, we were able to observe that
off-the-shelf relational database query optimizers do well in practice [3].

Thus, for all but two operations of probabilistic world-set algebra, it seems
that there is a very efficient solution that builds on relational database tech-
nology. These remaining operations are confidence computation and relational
algebra difference.

Approximate confidence computation. To compute the confidence in a
tuple of data values occurring possibly in several tuples of a U-relation, we
have to compute the probability of the disjunction of the local conditions of all
these tuples. We have to eliminate duplicate tuples because we are interested
in the probability of the data tuples rather than some abstract notion of tuple
identity that is really an artifact of our representation. That is, we have to
compute the probability of a DNF, i.e., the sum of the weights of the worlds
identified with valuations θ of the random variables such that the DNF becomes
true under θ. This problem is #P-complete [16, 13]. The result is not the sum
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of the probabilities of the individual conjunctive local conditions, because they
may, intuitively, “overlap”.

Example 6.9 Consider a U-relation with schema {V,D} (representing a
nullary relation) and two tuples 〈x, 1〉, and 〈y, 1〉, with the W relation from
Example 6.5. Then the confidence in the nullary tuple 〈〉 is Pr[x 7→ 1 ∨ y 7→
1] = Pr[x 7→ 1] + Pr[y 7→ 1]− Pr[x 7→ 1 ∧ y 7→ 1] = .82. �

Confidence computation can be efficiently approximated by Monte Carlo
simulation [16, 13, 22]. The technique is based on the Karp-Luby fully
polynomial-time randomized approximation scheme (FPRAS) for counting the
number of solutions to a DNF formula [19, 20, 12]. There is an efficiently
computable unbiased estimator that in expectation returns the probability p of
a DNF of n clauses (i.e., the local condition tuples of a Boolean U-relation)
such that computing the average of a polynomial number of such Monte Carlo
steps (= calls to the Karp-Luby unbiased estimator) is an (ǫ, δ)-approximation
for the probability: If the average p̂ is taken over at least ⌈3 · n · log(2/δ)/ǫ2⌉
Monte Carlo steps, then Pr

[
|p− p̂| ≥ ǫ ·p

]
≤ δ. The paper [12] improves upon

this by determining smaller numbers (within a constant factor from optimal)
of necessary iterations to achieve an (ǫ, δ)-approximation.

Avoiding the difference operation. Difference R − S is conceptually
simple on c-tables. Without loss of generality, assume that S does not con-
tain tuples 〈~a, ψ1〉, . . . , 〈~a, ψn〉 that are duplicates if the local conditions are
disregarded. (Otherwise, we replace them by 〈~a, ψ1 ∨ · · · ∨ ψn〉.) For each
tuple 〈~a, φ〉 of R, if 〈~a, ψ〉 is in S then output 〈~a, φ ∧ ¬ψ〉; otherwise, output
〈~a, φ〉. Testing whether a tuple is possible in the result of a query involving
difference is already NP-hard [2]. For U-relations, we in addition have to turn
φ ∧ ¬ψ into a DNF to represent the result as a U-relation. This may lead to
an exponentially large output and a very large number of ~V ~D columns may
be required to represent the conditions. For these reasons, MayBMS currently
does not implement the difference operation.

In many practical applications, the difference operation can be avoided. Dif-
ference is only hard on uncertain relations. On such relations, it can only lead
to displayable query results in queries that close the possible worlds semantics
using conf, computing a single certain relation. Probably the most important
application of the difference operation is for encoding universal constraints,
for example in data cleaning. But if the confidence operation is applied on top
of a universal query, there is a trick that will often allow to rewrite the query
into an existential one (which can be expressed in positive relational algebra
plus conf, without difference) [22].

Example 6.10 The example uses the census scenario and the uncertain re-
lation R discussed earlier. Consider the query of finding, for each TID ti and



168 MANAGING AND MINING UNCERTAIN DATA

SSN s, the confidence in the statement that s is the correct SSN for the indi-
vidual associated with the tuple identified by ti, assuming that social security
numbers uniquely identify individuals, that is, assuming that the functional de-
pendency SSN → TID (subsequently called ψ) holds. In other words, the
query asks, for each TID ti and SSN s, to find the probability Pr[φ | ψ], where
φ(ti, s) = ∃t ∈ R t.TID = ti ∧ t.SSN = s. Constraint ψ can be thought
of as a data cleaning constraint that ensures that the SSN fields in no two dis-
tinct census forms (belonging to two different individuals) are interpreted as
the same number.

We compute the desired conditional probabilities, for each possible pair of a
TID and an SSN, as Pr[φ | ψ] = Pr[φ∧ψ]/Pr[ψ].Here φ is existential (express-
ible in positive relational algebra) and ψ is an equality-generating dependency
(i.e., a special universal query) [1]. The trick is to turn relational difference
into the subtraction of probabilities, Pr[φ ∧ ψ] = Pr[φ] − Pr[φ ∧ ¬ψ] and
Pr[ψ] = 1 − Pr[¬ψ], where ¬ψ = ∃t, t′ ∈ R t.SSN = t′.SSN ∧ t.T ID 6=
t′.T ID is existential (with inequalities). Thus ¬ψ and φ ∧ ¬ψ are express-
ible in positive relational algebra. This works for a considerable superset of
the equality-generating dependencies [22], which in turn subsume useful data
cleaning constraints, such as conditional functional dependencies [11].

Let R¬ψ be the relational algebra expression for ¬ψ,

π∅(R ⊲⊳TID=TID′∧SSN 6=SSN ′ ρTID→TID′;SSN→SSN ′(R)),

and let S be

ρP→Pφ(conf(R)) ⊲⊳ ρP→Pφ∧¬ψ
(conf(R×R¬ψ))× ρP→P¬ψ

(conf(R¬ψ)).

The overall example query can be expressed as

T := πTID,SSN,(Pφ−Pφ∧¬ψ)/(1−P¬ψ)→P (S).

For the example table R given above, S and T are

S TID SSN Pφ Pφ∧¬ψ P¬ψ
t1 185 .4 .28 .28
t1 785 .6 0 .28
t2 185 .7 .28 .28
t2 186 .3 0 .28

T TID SSN P
t1 185 1/6
t1 785 5/6
t2 185 7/12
t2 186 5/12

Complexity Overview. Figure 6.4 gives an overview over the known
complexity results for the various fragments of probabilistic WSA. Two differ-
ent representations are considered, non-succinct representations that basically
consist of enumerations of the possible worlds [6] and succinct representations:
U-relational databases. In the non-succinct case, only the repair-key operation,
which may cause an exponential explosion in the number of possible worlds,
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Language Fragment Complexity Reference

On non-succinct representations:

RA + conf + possible + choice-of in PTIME (SQL) [22]
RA + possible + repair-key NP-&coNP-hard, [6]

inPNP [21]
RA + possibleQ + repair-key PHIER-compl. [21]

On U-relations:

Pos.RA + repair-key + possible in AC0 [3]
RA + possible co-NP-hard Abiteboul et al. [2]
Conjunctive queries + conf #P-hard Dalvi, Suciu [13]

Probabilistic WSA inP#P [22]

Pos.RA + repair-key + possible
+ approx.conf + egds in PTIME [22]

Figure 6.4. Complexity results for (probabilistic) world-set algebra. RA denotes relational
algebra.

makes queries hard. All other operations, including confidence computation,
are easy. In fact, we may add much of SQL – for instance, aggregations – to
the language and it still can be processed efficiently, even by a reduction of the
query to an SQL query on a suitable non-succinct relational representation.

When U-relations are used as representation system, the succinctness causes
both difference [2] and confidence computation [13] independently to make
queries NP-hard. Full probabilistic world-set algebra is essentially not harder
than the language of [13], even though it is substantially more expressive.

It is worth noting that repair-key by itself, despite the blowup of possible
worlds, does not make queries hard. For the language consisting of positive
relational algebra, repair-key, and poss, we have shown by construction that it
has PTIME complexity: We have given a positive relational algebra rewriting
to queries on the representations earlier in this section. Thus queries are even
in the highly parallelizable complexity class AC0.

The final result in Figure 6.4 concerns the language consisting of the pos-
itive relational algebra operations, repair-key, (ǫ, δ)-approximation of confi-
dence computation, and the generalized equality generating dependencies of
[22] for which we can rewrite difference of uncertain relations to difference of
confidence values (see Example 6.10). The result is that queries of that lan-
guage that close the possible worlds semantics – i.e., that use conf to compute
a certain relation – are in PTIME overall. In [22], a stronger result than just
the claim that each of the operations of such a query is individually in PTIME
is proven. It is shown that, leaving aside a few pitfalls, global approximation
guarantees can be achieved in polynomial time, i.e., results of entire queries in
this language can be approximated arbitrarily closely in polynomial time.

This is a non-obvious result because the query language is compositional
and selections can be made based on approximated confidence values. Clearly,
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in a query σP=0.5(approx.conf(R)), an approximated P value will almost al-
ways be slightly off, even if the exact P value is indeed 0.5, and the selection
of tuples made based on whether P is 0.5 is nearly completely arbitrary. In
[22, 15], it is shown that this is essentially an unsurmountable problem. All
we can tell is that if P is very different from 0.5, then the probability that
the tuple should be in the answer is very small. If atomic selection condi-
tions on (approximated) probabilities usually admit ranges such as P < 0.5 or
0.4 < P < 0.6, then query approximation will nevertheless be meaningful: we
are able to approximate query results unless probability values are very close
or equal to the constants used as interval bounds. (These special points are
called singularities in [22].)

The results of [22] have been obtained for powerful conditions that may use
arithmetics over several approximated attributes, which is important if con-
ditional probabilities have to be checked in selection conditions or if several
probabilities have to be compared. The algorithm that gives overall (ǫ, δ)-
approximation guarantees in polynomial time is not strikingly practical. Fur-
ther progress on this has been made in [15], but more work is needed.

7. The MayBMS Query and Update Language

This section describes the query and update language of MayBMS, which
is based on SQL. In fact, our language is a generalization of SQL on classi-
cal relational databases. To simplify the presentation, a fragment of the full
language supported in MayBMS is presented here.

The representation system used in MayBMS, U-relations, has classical re-
lational tables as a special case, which we will call typed-certain (t-certain)
tables in this section. Tables that are not t-certain are called uncertain. This
notion of certainty is purely syntactic, and cert(R) = πsch(R)(σP=1(conf(R)))
may well be equal to the projection of a U-relation UR to its attribute (non-
condition) columns despite R not being t-certain according to this definition.

Aggregates. In MayBMS, full SQL is supported on t-certain tables. Be-
yond t-certain tables, some restrictions are in place to assure that query evalu-
ation is feasible. In particular, we do not support the standard SQL aggregates
such as sum or count on uncertain relations. This can be easily justified: In
general, these aggregates will produce exponentially many different numerical
results in the various possible worlds, and there is no way of representing these
results efficiently. However, MayBMS supports a different set of aggregate
operations on uncertain relations. These include the computations of expected
sums and counts (using aggregates esum and ecount).

Moreover, the confidence computation operation is an aggregate in the
MayBMS query language. This is a deviation from the language flavor of
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our algebra, but there is a justification for this. The algebra presented earlier
assumed a set-based semantics for relations, where operations such as projec-
tions automatically remove duplicates. In the MayBMS query language, just
like in SQL, duplicates have to be eliminated explicitly, and confidence is nat-
urally an aggregate that computes a single confidence value for each group of
tuples that agree on (a subset of) the non-condition columns. By using aggre-
gation syntax for conf and not supporting select distinct on uncertain
relations, we avoid a need for conditions beyond the special conjunctions that
can be stored with each tuple in U-relations.

All the aggregates on uncertain tables produce t-certain tables.

Duplicate tuples. SQL databases in general support multiset tables, i.e.,
tables in which there may be duplicate tuples. There is no conceptual difficulty
at all in supporting multiset U-relations. In fact, since U-relations are just
relations in which some columns are interpreted to have a special meaning
(conditions), just storing them in a standard relational database management
system (which supports duplicates in tables) yields support for multiset U-
relations.

Syntax. The MayBMS query language is compositional and built from
uncertain and t-certain queries. The uncertain queries are those that produce
a possibly uncertain relation (represented by a U-relation with more than zero
V and D columns). Uncertain queries can be constructed, inductively, from
t-certain queries, select–from–where queries over uncertain tables, the
multiset union of uncertain queries (using the SQL union construct), and
statements of the form:

repair key <attributes> in <t-certain-query>

weight by <attribute>

Note that repair-key is a query, rather than an update statement. The
select–from–where queries may use any t-certain subqueries in the con-
ditions, plus uncertain subqueries in atomic conditions of the form <tuple>

in <uncertain-query> that occur positively in the condition. (That is,
if the condition is turned into DNF, these literals are not negated.)

The t-certain queries (i.e., queries that produce a t-certain table) are given
by

all constructs of SQL on t-certain tables and t-certain subqueries, ex-
tended by a new aggregate

argmax(<argument-attribute>, <value-attribute>)

which outputs all the argument-attribute values in the current
group (determined by the group-by clause) whose tuples have a max-
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imum value-attribute value within the group. Thus, this is the
typical argmax construct from mathematics added as an SQL extension.

select–from–where–group-by on uncertain queries using aggre-
gates conf, esum, and ecount, but none of the standard SQL aggre-
gates. There is an exact and an approximate version of the conf aggre-
gate. The latter takes two parameters ǫ and δ (see the earlier discussion
of the Karp-Luby FPRAS).

The aggregates esum and ecount compute expected sums and counts
across groups of tuples. While it may seem that these aggregates are at least as
hard as confidence computation (which is #P-hard), this is in fact not so. These
aggregates can be efficiently computed exploiting linearity of expectation. A
query

select A, esum(B) from R group by A;

is equivalent to a query

select A, sum(B * P) from R’ group by A;

where R’ is obtained from the U-relation of R by replacing each local con-
dition V1, D1, . . . , Vk, Dk by the probability Pr[V1 = D1 ∧ · · · ∧ Vk = Dk],
not eliminating duplicates. That is, expected sums can be computed efficiently
tuple by tuple, and only require to determine the probability of a conjunction,
which is easy, rather than a DNF of variable assignments as in the case of the
conf aggregate. The ecount aggregate is a special case of esum applied to
a column of ones.

Example 6.11 The query of Example 6.2 can be expressed in the query lan-
guage of MayBMS as follows. Let R be repair key in Coins weight

by Count and let S be

select R.Type, Toss, Face from

(repair key Type, Toss

in (select * from Faces, Tosses)

weight by FProb) S0, R

where R.Type = S0.Type;

It is not hard to see that πToss,Face(S) 6= Ev exactly if there exist tuples
~s ∈ S,~t ∈ Ev such that ~s.Toss = ~t.Toss and ~s.Face 6= ~t.Face. Let C be

select S.Type from S, Ev where

S.Toss = Ev.Toss and S.Face <> Ev.Face;

Then we can compute Q using the trick of Example 6.10 as

select Type, (P1-P2)/(1-P3) as P

from (select Type, conf() as P1 from S group by Type) Q1,
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(select Type, conf() as P2 from C group by Type) Q2,

(select conf() as P3 from C) Q3

where Q1.Type = Q2.Type;

The argmax aggregate can be used to compute maximum-a-posteriori (MAP)
and maximum-likelihood estimates. For example, the MAP coin type
argmaxType Pr[evidence is twice heads ∧ coin type is Type] can be computed
as select argmax(Type, P) from Q because the normalizing factor
(1-P3) has no impact on argmax. Thus, the answer in this example is the
double-headed coin. (See table Q of Figure 6.1: The fair coin has P = 1/3,
while the double-headed coin has P = 2/3.)

The maximum likelihood estimate

argmaxType Pr[evidence is twice heads | coin type is Type]

can be computed as

select argmax(Q.Type, Q.P/R’.P) from Q,

(select Type, conf() as P from R) R’

where Q.Type = R’.Type;

Here, again, the result is 2headed, but this time with likelihood 1. (The fair
coin has likelihood 1/4). �

Updates. MayBMS supports the usual schema modification and update
statements of SQL. In fact, our use of U-relations makes this quite easy. An
insertion of the form

insert into <uncertain-table> (<uncertain-query>);

is just the standard SQL insertion for tables we interpret as U-relations.
Thus, the table inserted into must have the right number (that is, a sufficient
number) of condition columns. Schema-modifying operations such as

create table <uncertain-table> as (<uncertain-query>);

are similarly straightforward. A deletion

delete from <uncertain-table> where <condition>;

admits conditions that refer to the attributes of the current tuple and may use
t-certain subqueries. Updates can be thought of as combinations of deletions
and insertions, but in practice there are of course ways of implementing updates
much more efficiently.



174 MANAGING AND MINING UNCERTAIN DATA

Conditioning. Apart from the basic update operations of SQL, MayBMS
also supports an update operation assert for conditioning, or knowledge
compilation. The assert operation takes a Boolean positive relational algebra
query φ in SQL syntax as an argument, i.e., a select-from-where-union query
without aggregation. It conditions the database using this constraint φ, i.e.,
conceptually it removes all the possible worlds in which φ evaluates to false
and renormalizes the probabilities so that they sum up to one again.

Formally, the semantics is thus

[[assert(φ)]](W) := {(R1, . . . , Rk, p/p0) | (R1, . . . , Rk, p) ∈W,

(R1, . . . , Rk) � φ, p0 =
∑

(R′
1,...,R

′
k
,p)∈W,(R′

1,...,R
′
k
)�φ

p}.

If the condition is inconsistent with the database, i.e., would delete all possible
worlds when executed, the assert operation fails with an error (and does not
modify the database).

Example 6.12 Consider the four possible worlds for the R[SSN ] relation
of the census example.

R[SSN ]1 TID SSN
t1 185
t2 185

R[SSN ]2 TID SSN
t1 185
t2 186

R[SSN ]3 TID SSN
t1 785
t2 185

R[SSN ]4 TID SSN
t1 785
t2 186

To assert the functional dependency R : SSN → TID, which states that
no two individuals can have the same SSN, we can express the functional de-
pendency as a Boolean query Q and execute assert(Q). This deletes the first of
the four worlds and renormalizes the probabilities to sum up to one. �

Knowledge compilation using assert has obvious applications in areas such
as data cleaning, where we may start with an uncertain database and then chase
[1] a set of integrity constraints to reduce uncertainty. The assert operation
can apply a set of constraints to a probabilistic database and materialize the
cleaned, less uncertain database.

The assert operation is at least as hard as exact confidence operation (it is
also practically no harder [23], and essentially the same algorithms can be used
for both problems), but differently from confidence computation, the result
has to be computed exactly and currently there is no clear notion of useful
approximation to a cleaned database.



MayBMS: A System for Managing Large Probabilistic Databases 175

8. The MayBMS System

The MayBMS system has been under development since 2005 and has un-
dergone several transformations. From the beginning, our choice was to de-
velop MayBMS as an extension of the Postgres server backend. Two proto-
types have been demonstrated at ICDE 2007 [7] and VLDB 2007 [8]. Cur-
rently, MayBMS is approaching its first release. MayBMS is open source and
the source code is available through

http://maybms.sourceforge.net

The academic homepage of the MayBMS project is at

http://www.cs.cornell.edu/database/maybms/

Test data generators and further resources such as main-memory implemen-
tations of some of our algorithms have been made available on these Web pages
as well.

We are aware of several research prototype probabilistic database manage-
ment systems that are built as front-end applications of Postgres, but of no
other system that aims to develop a fully integrated system. Our backend is ac-
cessible through several APIs, with efficient internal operators for computing
and managing probabilistic data.

Representations, relational encoding, and query optimization. Our rep-
resentation system, U-relations, is basically implemented as described earlier,
with one small exception. With each pair of columns Vi, Di in the condi-
tion, we also store a column Pi for the probability weight of alternative Di for
variable Vi, straight from the W relation. While the operations of relational
algebra, as observed earlier, do not use probability values, confidence com-
putation does. This denormalization (the extension by Pi columns) removes
the need to look up any probabilities in the W table in our exact confidence
computation algorithms.

Our experiments show that the relational encoding of positive relational al-
gebra which is possible for U-relations is so simple – it is a parsimonious trans-
formation, i.e., the number of relational algebra operations is not increased –
that the standard Postgres query optimizer actually does well at finding good
query plans (see [3]).

Approximate confidence computation. MayBMS implements both an
approximation algorithm and several exact algorithms for confidence com-
putation. The approximation algorithm is a combination of the Karp-Luby
unbiased estimator for DNF counting [19, 20] in a modified version adapted
for confidence computation in probabilistic databases (cf. e.g. [22]) and the
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U V1 D1 V2 D2

x 1 x 1
x 2 y 1
x 2 z 1
u 1 v 1
u 2 u 2

W V D P
x 1 .1
x 2 .4
x 3 .5
y 1 .2
y 2 .8
z 1 .4
z 2 .6
u 1 .7
u 2 .3
v 1 .5
v 2 .5

0.7578

⊗

0.308

⊕

{x, y, z}

1.0

∅

x
.17→ 1

0.52

⊗

x
.47→ 2

0.2

⊕

{y}

1.0

∅

y
.27→ 1

0.4

⊕

{z}

1.0

∅

z
.47→ 1

0.65

⊕

{u, v}

0.5

⊕

u
.77→ 1

1.0

∅

v
.57→ 1

1.0

∅

u
.37→ 2

Figure 6.5. Exact confidence computation.

Dagum-Karp-Luby-Ross optimal algorithm for Monte Carlo estimation [12].
The latter is based on sequential analysis and determines the number of invo-
cations of the Karp-Luby estimator needed to achieve the required bound by
running the estimator a small number of times to estimate its mean and vari-
ance. We actually use the probabilistic variant of a version of the Karp-Luby
estimator described in the book [27] which computes fractional estimates that
have smaller variance than the zero-one estimates of the classical Karp-Luby
estimator.

Exact confidence computation. Our exact algorithm for confidence com-
putation is described in [23]. It is based on an extended version of the Davis-
Putnam procedure [14] that is the basis of the best exact Satisfiability solvers
in AI. Given a DNF (of which each clause is a conjunctive local condition), the
algorithm employs a combination of variable elimination (as in Davis-Putnam)
and decomposition of the DNF into independent subsets of clauses (i.e., sub-
sets that do not share variables), with cost-estimation heuristics for choosing
whether to use the former (and for which variable) or the latter.

Example 6.13 Consider the U-relation U representing a nullary table and
theW table of Figure 6.5. The local conditions ofU are Φ = {{x 7→ 1}, {x 7→
2, y 7→ 1}, {x 7→ 2, z 7→ 1}, {u 7→ 1, v 7→ 1}, {u 7→ 2}}.
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The algorithm proceeds recursively. We first choose to exploit the fact that
the Φ can be split into two independent sets, the first using only the variables
{x, y, z} and the second only using {u, v}. We recurse into the first set and
eliminate the variable x. This requires us to consider two cases, the alternative
values 1 and 2 for x (alternative 3 does not have to be considered because in
each of the clauses to be considered, x is mapped to either 1 or 2. In the case
that x maps to 2, we eliminate x from the set of clauses that are compatible
with the variable assignment x 7→ 2, i.e., the set {{y 7→ 1}, {z 7→ 1}}, and
can decompose exploiting the independence of the two clauses. Once y and z
are eliminated, respectively, the conditions have been reduced to “true”. The
alternative paths of the computation tree, shown in Figure 6.5, are processed
analogously.

On returning from the recursion, we compute the probabilities of the sub-
trees in the obvious way. For two independent sets S1, S2 of clauses with
probabilities p1 and p2, the probability of S1∪S2 is 1− (1−p1) · (1−p2). For
variable elimination branches, the probability is the sum of the products of the
probabilities of the subtrees and the probabilities of the variable assignments
used for elimination.

It is not hard to verify that the probability of Φ, i.e., the confidence in tuple
〈〉, is 0.7578. �

Our exact algorithm solves a #P-hard problem and exhibits exponential run-
ning time in the worst case. However, like some other algorithms for combina-
torial problems, this algorithm shows a clear easy-hard-easy pattern. Outside
a narrow range of variable-to-clause count ratios, it very pronouncedly out-
performs the (polynomial-time) approximation techniques [23]. It is straight-
forward to extend this algorithm to condition a probabilistic database (i.e., to
compute “assert”) [23].

Hierarchical queries. The tuple-independent databases are those proba-
bilistic databases in which, for each tuple, a probability can be given such that
the tuple occurs in the database with that probability and the tuples are uncorre-
lated. It is known since the work of Dalvi and Suciu [13] that there is a class of
conjunctive queries, the hierarchical queries Q, for which computing conf(Q)
exactly on tuple-independent probabilistic databases is feasible in polynomial
time.

In fact, these queries can essentially be computed using SQL queries that
involve several nested aggregate-group-by queries. On the other hand, it was
also shown in [13] that for any conjunctive query Q that is not hierarchical,
computing conf(Q) is #P-hard with respect to data complexity. Dalvi and Suciu
introduce the notion of safe plans that are at once certificates that a query is
hierarchical and query plans with aggregation operators that can be used for
evaluating the queries.
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Dan Olteanu’s group at Oxford has recently extended this work in three
ways, and implemented it in MayBMS [17]. First, the observation is used
that in the case that a query has a safe plan, it is not necessary to use that
safe plan for query evaluation. Instead we can choose our plan from a large
set of possible plans, some of which will be much better and use fewer levels
of aggregation than the canonical safe plans of [13]. Second, a special low-
level operator for processing these aggregations has been implemented, which
reduces the number of data scans needed [17]. Finally, the fact is exploited
that the #P-hardness result for any single nonhierarchical query of [13] only
applies as long as the problem is that of evaluating the query on an arbitrary
probabilistic database of suitable schema. If further information about per-
missible databases is available in the form of functional dependencies that the
databases must satisfy, then a larger class of queries can be processed by our
approach.

Olteanu and Huang [24] have also obtained results on polynomial-time con-
fidence computation on fragments of conjunctive queries with inequalities, us-
ing a powerful framework based on Ordered Binary Decision Diagrams.

Updates, concurrency control and recovery. As a consequence of our
choice of a purely relational representation system, these issues cause surpris-
ingly little difficulty. U-relations are just relational tables and updates are just
modifications of these tables that can be expressed using the standard SQL
update operations. However, finding a suitable programming model and API
for efficiently supporting programming access without exposing the user ap-
plications to internals of the representation system (which will differ among
the various probabilistic DBMS) is a difficult problem. A full statement of this
problem and some first results can be found in [4].

9. Conclusions and Outlook

The aim of the MayBMS system is to be the first robust and scalable prob-
abilistic database system that can be used in real applications. By our choice
of running the entire project as an open-source project with the goal of cre-
ating mature code and serious documentation for developers, we hope to be
able to accelerate progress in the field by making a testbed for new algorithms
available to the research community.

Our possibly most important goal is to extend MayBMS to support continu-
ous distributions. The path towards this goal is clearly sketched by our use of,
essentially, a class of conditional tables for data representation. Our represen-
tations will not be hard to generalize, but some of the advantages of U-relations
will be lost. There will be a need for a special column type “condition” for stor-
ing the more general local conditions needed, which has implications on oper-
ator implementations and will require us to study query optimization closely:
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We will not be able to rely as much on standard query optimizers to produce
good plans as we currently do.

Another major goal is an extensive and careful experimental comparison
of ours versus the graphical models approach, and to understand where the
sweet spots of the two directions lie. More generally, it will be important to
start working on a fair benchmark for probabilistic databases and, ideally, AI
systems, even though it may still be too early to see the full set of dimensions
that the space of systems will have, which is necessary to be able to define a
benchmark that will remain fair and useful for some time.

A final grand goal is a query and update language specification that is a
widely acceptable candidate for a future standard. This will be essential for
wide acceptance of probabilistic databases. We expect our past work on the
foundations of query algebras [6, 22, 21] to be useful in such an effort.
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Abstract Data integration has been an important area of research for several years. In this
chapter, we argue that supporting modern data integration applications requires
systems to handle uncertainty at every step of integration. We provide a formal
framework for data integration systems with uncertainty. We define probabilistic
schema mappings and probabilistic mediated schemas, show how they can be
constructed automatically for a set of data sources, and provide techniques for
query answering. The foundations laid out in this chapter enable bootstrapping
a pay-as-you-go integration system completely automatically.

Keywords: data integration, uncertainty, pay-as-you-go, mediated schema, schema mapping

1. Introduction

Data integration and exchange systems offer a uniform interface to a mul-
titude of data sources and the ability to share data across multiple systems.
These systems have recently enjoyed significant research and commercial suc-
cess [18, 19]. Current data integration systems are essentially a natural exten-
sion of traditional database systems in that queries are specified in a structured
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form and data are modeled in one of the traditional data models (relational,
XML). In addition, the data integration system has exact knowledge of how
the data in the sources map to the schema used by the data integration system.

In this chapter we argue that as the scope of data integration applications
broadens, such systems need to be able to model uncertainty at their core. Un-
certainty can arise for multiple reasons in data integration. First, the semantic
mappings between the data sources and the mediated schema may be approxi-
mate. For example, in an application like Google Base [17] that enables anyone
to upload structured data, or when mapping millions of sources on the deep
web [28], we cannot imagine specifying exact mappings. In some domains
(e.g., bioinformatics), we do not necessarily know what the exact mapping is.
Second, data are often extracted from unstructured sources using information
extraction techniques. Since these techniques are approximate, the data ob-
tained from the sources may be uncertain. Third, if the intended users of the
application are not necessarily familiar with schemata, or if the domain of the
system is too broad to offer form-based query interfaces (such as web forms),
we need to support keyword queries. Hence, another source of uncertainty is
the transformation between keyword queries and a set of candidate structured
queries. Finally, if the scope of the domain is very broad, there can even be
uncertainty about the concepts in the mediated schema.

Another reason for data integration systems to model uncertainty is to sup-
port pay-as-you-go integration. Dataspace Support Platforms [20] envision
data integration systems where sources are added with no effort and the system
is constantly evolving in a pay-as-you-go fashion to improve the quality of se-
mantic mappings and query answering. This means that as the system evolves,
there will be uncertainty about the semanantic mappings to its sources, its me-
diated schema and even the semantics of the queries posed to it.

This chapter describes some of the formal foundations for data integration
with uncertainty. We define probabilistic schema mappings and probabilis-
tic mediated schemas, and show how to answer queries in their presence. With
these foundations, we show that it is possible to completely automatically boot-
strap a pay-as-you-go integration system.

This chapter is largely based on previous papers [10, 6]. The proofs of the
theorems we state and the experimental results validating some of our claims
can be found in there. We also place several other works on uncertainty in data
integration in the context of the system we envision. In the next section, we be-
gin by describing an architecture for data integration system that incorporates
uncertainty.
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2. Overview of the System

This section describes the requirements from a data integration system that
supports uncertainty and the overall architecture of the system.

2.1 Uncertainty in data integration

A data integration system needs to handle uncertainty at three levels.

Uncertain mediated schema: The mediated schema is the set of schema terms
in which queries are posed. They do not necessarily cover all the attributes ap-
pearing in any of the sources, but rather the aspects of the domain that the
application builder wishes to expose to the users. Uncertainty in schema map-
pings can arise for several reasons. First, as we describe in Section 4, if the
mediated schema is automatically inferred from the data sources in a pay-as-
you-go integration system, there will be some uncertainty about the results.
Second, when domains get broad, there will be some uncertainty about how
to model the domain. For example, if we model all the topics in Computer
Science there will be some uncertainty about the degree of overlap between
different topics.

Uncertain schema mappings: Data integration systems rely on schema map-
pings for specifying the semantic relationships between the data in the sources
and the terms used in the mediated schema. However, schema mappings can be
inaccurate. In many applications it is impossible to create and maintain precise
mappings between data sources. This can be because the users are not skilled
enough to provide precise mappings, such as in personal information manage-
ment [11], because people do not understand the domain well and thus do not
even know what correct mappings are, such as in bioinformatics, or because
the scale of the data prevents generating and maintaining precise mappings,
such as in integrating data of the web scale [27]. Hence, in practice, schema
mappings are often generated by semi-automatic tools and not necessarily ver-
ified by domain experts.

Uncertain data: By nature, data integration systems need to handle uncertain
data. One reason for uncertainty is that data are often extracted from unstruc-
tured or semi-structured sources by automatic methods (e.g., HTML pages,
emails, blogs). A second reason is that data may come from sources that are
unreliable or not up to date. For example, in enterprise settings, it is common
for informational data such as gender, racial, and income level to be dirty or
missing, even when the transactional data is precise.

Uncertain queries: In some data integration applications, especially on the
web, queries will be posed as keywords rather than as structured queries against
a well defined schema. The system needs to translate these queries into some
structured form so they can be reformulated with respect to the data sources.
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Figure 7.1. Architecture of a data-integration system that handles uncertainty.

At this step, the system may generate multiple candidate structured queries and
have some uncertainty about which is the real intent of the user.

2.2 System architecture

Given the previously discussed requirements, we describe the architecture of
a data integration system we envision that manages uncertainty at its core. We
describe the system by contrasting it to a traditional data integration system.

The first and most fundamental characteristic of this system is that it is based
on a probabilistic data model. This means that we attach probabilities to:

tuples that we process in the system,

schema mappings,

mediated schemas, and

possible interpretations of keyword queries posed to the system.

In contrast, a traditional data integration system includes a single mediated
schema and we assume we have as single (and correct) schema mapping be-
tween the mediated schema and each source. The data in the sources is also
assumed to be correct.

Traditional data integration systems assume that the query is posed in a
structured fashion (i.e., can be translated to some subset of SQL). Here, we as-
sume that queries can be posed as keywords (to accommodate a much broader
class of users and applications). Hence, whereas traditional data integration
systems begin by reformulating a query onto the schemas of the data sources,
a data integration system with uncertainty needs to first reformulate a keyword
query into a set of candidate structured queries. We refer to this step as keyword
reformulation. Note that keyword reformulation is different from techniques
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for keyword search on structured data (e.g., [22, 1]) in that (a) it does not as-
sume access to all the data in the sources or that the sources support keyword
search, and (b) it tries to distinguish different structural elements in the query in
order to pose more precise queries to the sources (e.g., realizing that in the key-
word query “Chicago weather”, “weather” is an attribute label and “Chicago”
is an instance name). That being said, keyword reformulation should benefit
from techniques that support answering keyword search on structured data.

The query answering model is different. Instead of necessarily finding all
answers to a given query, our goal is typically to find the top-k answers, and
rank these answers most effectively.

The final difference from traditional data integration systems is that our
query processing will need to be more adaptive than usual. Instead of gen-
erating a query answering plan and executing it, the steps we take in query
processing will depend on results of previous steps. We note that adaptive
query processing has been discussed quite a bit in data integration [12], where
the need for adaptivity arises from the fact that data sources did not answer
as quickly as expected or that we did not have accurate statistics about their
contents to properly order our operations. In our work, however, the goal for
adaptivity is to get the answers with high probabilities faster.

The architecture of the system is shown in Figure 7.1. The system contains a
number of data sources and a mediated schema (we omit probabilistic mediated
schemas from this figure). When the user poses a queryQ, which can be either
a structured query on the mediated schema or a keyword query, the system
returns a set of answer tuples, each with a probability. If Q is a keyword
query, the system first performs keyword reformulation to translate it into a
set of candidate structured queries on the mediated schema. Otherwise, the
candidate query is Q itself.

2.3 Source of probabilities

A critical issue in any system that manages uncertainty is whether we have
a reliable source of probabilities. Whereas obtaining reliable probabilities for
such a system is one of the most interesting areas for future research, there is
quite a bit to build on. For keyword reformulation, it is possible to train and
test reformulators on large numbers of queries such that each reformulation re-
sult is given a probability based on its performance statistics. For information
extraction, current techniques are often based on statistical machine learning
methods and can be extended to compute probabilities of each extraction re-
sult. Finally, in the case of schema matching, it is standard practice for schema
matchers to also associate numbers with the candidates they propose (e.g., [3,
7–9, 21, 26, 34, 35]). The issue here is that the numbers are meant only as a
ranking mechanism rather than true probabilities. However, as schema match-
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ing techniques start looking at a larger number of schemas, one can imagine
ascribing probabilities (or estimations thereof) to their measures.

2.4 Outline of the chapter

We begin by discussing probabilistic schema mappings in Section 3. We
also discuss how to answer queries in their presence and how to answer top-k
queries. In Section 4 we discuss probabilistic mediated schemas. We begin by
motivating them and showing that in some cases they add expressive power to
the resulting system. Then we describe an algorithm for generating probabilis-
tic mediated schemas from a collection of data sources.

3. Uncertainty in Mappings

The key to resolving heterogeneity at the schema level is to specify schema
mappings between data sources. These mappings describe the relationship be-
tween the contents of the different sources and are used to reformulate a query
posed over one source (or a mediated schema) into queries over the sources
that are deemed relevant. However, in many applications we are not able to
provide all the schema mappings upfront. In this section we introduce prob-
abilistic schema mappings (p-mappings) to capture uncertainty on mappings
between schemas.

We start by presenting a running example for this section that also motivates
p-mappings (Section 3.1). Then we present a formal definition of probabilistic
schema mapping and its semantics (Section 3.2). Then, Section 3.3 describes
algorithms for query answering with respect to probabilistic mappings and dis-
cusses the complexity. Next, Section 3.4 shows how to leverage previous work
on schema matching to automatically create probabilistic mappings. In the
end, Section 3.5 briefly describes various extensions to the basic definition and
Section 3.6 describes other types of approximate schema mappings that have
been proposed in the literature.

3.1 Motivating probabilistic mappings

Example 7.1 Consider a data source S, which describes a person by her
email address, current address, and permanent address, and the mediated
schema T , which describes a person by her name, email, mailing address,
home address and office address:

S=(pname, email-addr, current-addr, permanent-addr)

T=(name, email, mailing-addr, home-addr, office-addr)

A semi-automatic schema-mapping tool may generate three possible map-

pings between S and T , assigning each a probability. Whereas the three map-
pings all map pname to name, they map other attributes in the source and

the target differently. Figure 7.2(a) describes the three mappings using sets of
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Possible Mapping Prob
{(pname, name), (email-addr, email),

m1 =
(current-addr, mailing-addr), (permanent-addr, home-addr)}

0.5

{(pname, name), (email-addr, email),
m2 =

(permanent-addr, mailing-addr), (current-addr, home-addr)}
0.4

{(pname, name), (email-addr, mailing-addr),
m3 =

(current-addr, home-addr)}
0.1

(a)
pname email-addr current-addr permanent-addr
Alice alice@ Mountain View Sunnyvale
Bob bob@ Sunnyvale Sunnyvale

(b)
Tuple (mailing-addr) Prob

(’Sunnyvale’) 0.9
(’Mountain View’) 0.5

(’alice@’) 0.1
(’bob@’) 0.1

(c)

Figure 7.2. The running example: (a) a probabilistic schema mapping between S and T ; (b) a
source instance DS ; (c) the answers of Q over DS with respect to the probabilistic mapping.

attribute correspondences. For example, mappingm1 maps pname to name,

email-addr to email, current-addr tomailing-addr, and permanent-addr to

home-addr. Because of the uncertainty about which mapping is correct, we

consider all of these mappings in query answering.

Suppose the system receives a query Q composed on the mediated schema
and asking for people’s mailing addresses:

Q: SELECT mailing-addr FROM T

Using the possible mappings, we can reformulate Q into different queries:

Q1: SELECT current-addr FROM S

Q2: SELECT permanent-addr FROM S

Q3: SELECT email-addr FROM S

If the user requires all possible answers, the system generates a single ag-

gregation query based on Q1, Q2 and Q3 to compute the probability of each

returned tuple, and sends the query to the data source. Suppose the data source

contains a tableDS as shown in Figure 7.2(b), the system will retrieve four an-

swer tuples, each with a probability, as shown in Figure 7.2(c).

If the user requires only the top-1 answer (i.e., the answer tuple with the

highest probability), the system decides at runtime which reformulated queries

to execute. For example, after executing Q1 and Q2 at the source, the system
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can already conclude that (‘Sunnyvale’) is the top-1 answer and can skip query

Q3. �

3.2 Definition and Semantics

Schemamappings. We begin by reviewing non-probabilistic schema map-
pings. The goal of a schema mapping is to specify the semantic relationships
between a source schema and a target schema. We refer to the source schema
as S̄, and a relation in S̄ as S = 〈s1, . . . , sm〉. Similarly, we refer to the target
schema as T̄ , and a relation in T̄ as T = 〈t1, . . . , tn〉.

We consider a limited form of schema mappings that are also referred to as
schema matching in the literature. Specifically, a schema matching contains a
set of attribute correspondences. An attribute correspondence is of the form
cij = (si, tj), where si is a source attribute in the schema S and tj is a target
attribute in the schema T . Intuitively, cij specifies that there is a relationship
between si and tj . In practice, a correspondence also involves a function that
transforms the value of si to the value of tj . For example, the correspondence
(c-degree, temperature) can be specified as temperature=c-degree ∗1.8+
32, describing a transformation from Celsius to Fahrenheit. These functions
are irrelevant to our discussion, and therefore we omit them. This class of
mappings are quite common in practice and already expose many of the novel
issues involved in probabilistic mappings and In Section 3.5 we will briefly
discuss extensions to a broader class of mappings.

Formally, relation mappings and schema mappings are defined as follows.

Definition 7.2 (Schema Mapping) Let S̄ and T̄ be relational schemas.
A relation mapping M is a triple (S, T,m), where S is a relation in S̄, T is a
relation in T̄ , andm is a set of attribute correspondences between S and T .
When each source and target attribute occurs in at most one correspondence

inm, we callM a one-to-one relation mapping.
A schema mapping M is a set of one-to-one relation mappings between

relations in S̄ and in T̄ , where every relation in either S̄ or T̄ appears at most
once. �

A pair of instances DS and DT satisfies a relation mapping m if for every
source tuple ts ∈ DS , there exists a target tuple tt ∈ Dt, such that for every
attribute correspondence (s, t) ∈ m, the value of attribute s in ts is the same
as the value of attribute t in tt.

Example 7.3 Consider the mappings in Example 7.1. The source database
in Figure 7.2(b) (repeated in Figure 7.3(a)) and the target database in Fig-

ure 7.3(b) satisfym1. �
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pname email-addr current-addr permanent-addr
Alice alice@ Mountain View Sunnyvale
Bob bob@ Sunnyvale Sunnyvale

(a)
name email mailing-addr home-addr office-addr
Alice alice@ Mountain View Sunnyvale office
Bob bob@ Sunnyvale Sunnyvale office

(b)
name email mailing-addr home-addr office-addr
Alice alice@ Sunnyvale Mountain View office
Bob email bob@ Sunnyvale office

(c)
Tuple (mailing-addr) Prob

(’Sunnyvale’) 0.9
(’Mountain View’) 0.5

(’alice@’) 0.1
(’bob@’) 0.1

(d)

Tuple (mailing-addr) Prob
(’Sunnyvale’) 0.94

(’Mountain View’) 0.5
(’alice@’) 0.1
(’bob@’) 0.1

(e)

Figure 7.3. Example 7.11: (a) a source instance DS ; (b) a target instance that is by-table
consistent with DS and m1; (c) a target instance that is by-tuple consistent with DS and <

m2, m3 >; (d) Qtable(DS); (e) Qtuple(DS).

Probabilistic schema mappings. Intuitively, a probabilistic schema map-
ping describes a probability distribution of a set of possible schema mappings
between a source schema and a target schema.

Definition 7.4 (Probabilistic Mapping) Let S̄ and T̄ be relational
schemas. A probabilistic mapping (p-mapping), pM , is a triple (S, T,m),
where S ∈ S̄, T ∈ T̄ , and m is a set {(m1,Pr(m1)), . . . , (ml,Pr(ml))},
such that

for i ∈ [1, l], mi is a one-to-one mapping between S and T , and for
every i, j ∈ [1, l], i 6= j ⇒ mi 6= mj .

Pr(mi) ∈ [0, 1] and
∑l

i=1 Pr(mi) = 1.

A schema p-mapping, pM , is a set of p-mappings between relations in S̄ and
in T̄ , where every relation in either S̄ or T̄ appears in at most one p-mapping.
�

We refer to a non-probabilistic mapping as an ordinary mapping. A schema
p-mapping may contain both p-mappings and ordinary mappings. Example 7.1
shows a p-mapping (see Figure 7.2(a)) that contains three possible mappings.
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Semantics of probabilistic mappings. Intuitively, a probabilistic schema
mapping models the uncertainty about which of the mappings in pM is the
correct one. When a schema matching system produces a set of candidate
matches, there are two ways to interpret the uncertainty: (1) a single mapping
in pM is the correct one and it applies to all the data in S, or (2) several
mappings are partially correct and each is suitable for a subset of tuples in S,
though it is not known which mapping is the right one for a specific tuple.
Figure 7.3(b) illustrates the first interpretation and applies mapping m1. For
the same example, the second interpretation is equally valid: some people may
choose to use their current address as mailing address while others use their
permanent address as mailing address; thus, for different tuples we may apply
different mappings, so the correct mapping depends on the particular tuple.

We define query answering under both interpretations. The first interpreta-
tion is referred to as the by-table semantics and the second one is referred to as
the by-tuple semantics of probabilistic mappings. Note that one cannot argue
for one interpretation over the other; the needs of the application should dic-
tate the appropriate semantics. Furthermore, the complexity results for query
answering, which will show advantages to by-table semantics, should not be
taken as an argument in the favor of by-table semantics.

We next define query answering with respect to p-mappings in detail and
the definitions for schema p-mappings are the obvious extensions. Recall that
given a query and an ordinary mapping, we can compute certain answers to
the query with respect to the mapping. Query answering with respect to p-
mappings is defined as a natural extension of certain answers, which we next
review.

A mapping defines a relationship between instances of S and instances of T
that are consistent with the mapping.

Definition 7.5 (Consistent Target Instance) LetM = (S, T,m)
be a relation mapping andDS be an instance of S.
An instance DT of T is said to be consistent with DS and M , if for each

tuple ts ∈ DS , there exists a tuple tt ∈ DT , such that for every attribute

correspondence (as, at) ∈ m, the value of as in ts is the same as the value of
at in tt. �

For a relation mappingM and a source instance DS , there can be an infinite
number of target instances that are consistent with DS and M . We denote by
TarM (DS) the set of all such target instances. The set of answers to a query
Q is the intersection of the answers on all instances in TarM(DS).

Definition 7.6 (Certain Answer) Let M = (S, T,m) be a relation
mapping. Let Q be a query over T and letDS be an instance of S.
A tuple t is said to be a certain answer of Q with respect to DS and M , if

for every instanceDT ∈ TarM(DS), t ∈ Q(DT ). �
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By-table semantics: We now generalize these notions to the probabilistic set-
ting, beginning with the by-table semantics. Intuitively, a p-mapping pM de-
scribes a set of possible worlds, each with a possible mapping m ∈ pM . In
by-table semantics, a source table can fall in one of the possible worlds; that is,
the possible mapping associated with that possible world applies to the whole
source table. Following this intuition, we define target instances that are con-
sistent with the source instance.

Definition 7.7 (By-table Consistent Inst.) Let pM = (S, T,m)
be a p-mapping and DS be an instance of S.
An instance DT of T is said to be by-table consistent with DS and pM , if

there exists a mappingm ∈m such that DS and DT satisfym. �

Given a source instance DS and a possible mapping m ∈ m, there can be
an infinite number of target instances that are consistent with DS and m. We
denote by Tarm(DS) the set of all such instances.

In the probabilistic context, we assign a probability to every answer. Intu-
itively, we consider the certain answers with respect to each possible mapping
in isolation. The probability of an answer t is the sum of the probabilities of
the mappings for which t is deemed to be a certain answer. We define by-table
answers as follows:

Definition 7.8 (By-table Ans.) Let pM = (S, T,m) be a p-mapping.
Let Q be a query over T and let DS be an instance of S.
Let t be a tuple. Let m̄(t) be the subset ofm, such that for eachm ∈ m̄(t)

and for each DT ∈ Tarm(DS), t ∈ Q(DT ).
Let p =

∑
m∈m̄(t) Pr(m). If p > 0, then we say (t, p) is a by-table answer

of Q with respect to DS and pM . �

By-tuple semantics: If we follow the possible-world notions, in by-tuple se-
mantics, different tuples in a source table can fall in different possible worlds;
that is, different possible mappings associated with those possible worlds can
apply to the different source tuples.

Formally, the key difference in the definition of by-tuple semantics from
that of by-table semantics is that a consistent target instance is defined by a
mapping sequence that assigns a (possibly different) mapping in m to each
source tuple in DS . (Without losing generality, in order to compare between
such sequences, we assign some order to the tuples in the instance).

Definition 7.9 (By-tuple Consistent Inst.) Let pM = (S, T,m)
be a p-mapping and let DS be an instance of S with d tuples.
An instance DT of T is said to be by-tuple consistent with DS and pM , if

there is a sequence 〈m1, . . . ,md〉 such that d is the number of tuples in DS

and for every 1 ≤ i ≤ d,
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mi ∈m, and

for the ith tuple of DS , ti, there exists a target tuple t
′
i ∈ DT such that

for each attribute correspondence (as, at) ∈ mi, the value of as in ti is
the same as the value of at in t

′
i . �

Given a mapping sequence seq = 〈m1, . . . ,md〉, we denote by Tar seq(DS)
the set of all target instances that are consistent with DS and seq . Note that if
DT is by-table consistent with DS and m, then DT is also by-tuple consistent
with DS and a mapping sequence in which each mapping is m.

We can think of every sequence of mappings seq = 〈m1, . . . ,md〉 as a
separate event whose probability is Pr(seq) = Πd

i=1Pr(mi). (Section 3.5
relaxes this independence assumption and introduces conditional mappings.)
If there are l mappings in pM , then there are ld sequences of length d, and
their probabilities add up to 1. We denote by seqd(pM) the set of mapping
sequences of length d generated from pM .

Definition 7.10 (By-tuple Answer) Let pM = (S, T,m) be a
p-mapping. Let Q be a query over T and DS be an instance of S with d
tuples.

Let t be a tuple. Let seq(t) be the subset of seqd(pM), such that for each
seq ∈ seq(t) and for each DT ∈ Tar seq(DS), t ∈ Q(DT ).
Let p =

∑
seq∈seq(t) Pr(seq). If p > 0, we call (t, p) a by-tuple answer of

Q with respect to DS and pM . �

Example 7.11 Consider the p-mapping pM , the source instance DS , and

the query Q in the motivating example.
In by-table semantics, Figure 7.3(b) shows a target instance that is con-

sistent with DS (repeated in Figure 7.3(a)) and possible mapping m1. Fig-

ure 7.3(d) shows the by-table answers of Q with respect to DS and pM . As
an example, for tuple t =(‘Sunnyvale’), we have m̄(t) = {m1,m2}, so the
possible tuple (‘Sunnyvale’, 0.9) is an answer.

In by-tuple semantics, Figure 7.3(c) shows a target instance that is by-tuple

consistent with DS and the mapping sequence < m2,m3 >. Figure 7.3(e)
shows the by-tuple answers of Q with respect to DS and pM . Note that the
probability of tuple t=(’Sunnyvale’) in the by-table answers is different from

that in the by-tuple answers. We describe how to compute the probabilities in

detail in the next section. �

The set of by-table answers forQwith respect toDS is denoted byQtable(DS)
and the set of by-tuple answers for Q with respect to DS is denoted by
Qtuple(DS).



Uncertainty in Data Integration 197

3.3 Query Answering

This section studies query answering in the presence of probabilistic map-
pings. We start with describing algorithms for returning all answer tuples with
probabilities, and discussing the complexity of query answering in terms of
the size of the data (data complexity) and the size of the p-mapping (mapping
complexity). We then consider returning the top-k query answers, which are
the k answer tuples with the top probabilities.

By-table query answering. In the case of by-table semantics, answering
queries is conceptually simple. Given a p-mapping pM = (S, T,m) and an
SPJ query Q, we can compute the certain answers of Q under each of the
mappings m ∈ m. We attach the probability Pr(m) to every certain answer
under m. If a tuple is an answer to Q under multiple mappings in m, then we
add up the probabilities of the different mappings.

Algorithm BYTABLE takes as input an SPJ query Q that mentions the rela-
tions T1, . . . , Tl in the FROM clause. Assume that we have the p-mapping pMi

associated with the table Ti. The algorithm proceeds as follows.

Step 1: We generate the possible reformulations of Q (a reformulation query
computes all certain answers when executed on the source data) by consid-
ering every combination of the form (m1, . . . ,ml), where mi is one of the
possible mappings in pMi. Denote the set of reformulations by Q′1, . . . , Q

′
k.

The probability of a reformulation Q′ = (m1, . . . ,ml) is Πl
i=1Pr(m

i).

Step 2: For each reformulation Q′, retrieve each of the unique answers from
the sources. For each answer obtained by Q′1 ∪ . . . ∪ Q′k, its probability is
computed by summing the probabilities of the Q′’s in which it is returned.

Importantly, note that it is possible to express both steps as an SQL query
with grouping and aggregation. Therefore, if the underlying sources support
SQL, we can leverage their optimizations to compute the answers.

With our restricted form of schema mapping, the algorithm takes time poly-
nomial in the size of the data and the mappings. We thus have the following
complexity result.

Theorem 7.12 Let pM be a schema p-mapping and let Q be an SPJ query.
Answering Q with respect to pM in by-table semantics is in PTIME in the

size of the data and the mapping. �

By-tuple query answering. To extend the by-table query-answering strat-
egy to by-tuple semantics, we would need to compute the certain answers for
every mapping sequence generated by pM . However, the number of such
mapping sequences is exponential in the size of the input data. The follow-
ing example shows that for certain queries this exponential time complexity is
inevitable.



198 MANAGING AND MINING UNCERTAIN DATA

Tuple (mailing-addr) Pr
(’Sunnyvale’) 0.94

(’Mountain View’) 0.5
(’alice@’) 0.1
(’bob@’) 0.1

(a)

Tuple (mailing-addr) Pr
(’Sunnyvale’) 0.8

(’Mountain View’) 0.8
(b)

Figure 7.4. Example 7.13: (a) Q
tuple
1 (D) and (b) Q

tuple
2 (D).

Example 7.13 Suppose that in addition to the tables in Example 7.1, we
also have U(city) in the source and V(hightech) in the target. The p-mapping

for V contains two possible mappings: ({(city, hightech)}, .8) and (∅, .2).
Consider the following queryQ, which decides if there are any people living

in a high-tech city.

Q: SELECT ‘true’

FROM T, V

WHERE T.mailing-addr = V.hightech

An incorrect way of answering the query is to first execute the following two

sub-queries Q1 and Q2, then join the answers of Q1 and Q2 and summing up

the probabilities.

Q1: SELECT mailing-addr FROM T

Q2: SELECT hightech FROM V

Now consider the source instance D, where DS is shown in Figure 7.2(a),

and DU has two tuples (‘Mountain View’) and (‘Sunnyvale’). Figure 7.4(a)

and (b) show Qtuple1 (D) and Qtuple2 (D). If we join the results of Q1 and Q2,

we obtain for the true tuple the following probability: 0.94 ∗ 0.8 + 0.5 ∗ 0.8 =
1.152. However, this is incorrect. By enumerating all consistent target tables,
we in fact compute 0.864 as the probability. The reason for this error is that

on some target instance that is by-tuple consistent with the source instance, the

answers to both Q1 and Q2 contain tuple (‘Sunnyvale’) and tuple (‘Mountain

View’). Thus, generating the tuple (‘Sunnyvale’) as an answer for bothQ1 and

Q2 and generating the tuple (‘Mountain View’) for both queries are not inde-

pendent events, and so simply adding up their probabilities leads to incorrect

results.

Indeed, it is not clear if there exists a better algorithm to answer Q than by
enumerating all by-tuple consistent target instances and then answering Q on
each of them. �

In fact, it is proved that in general, answering SPJ queries in by-tuple se-
mantics with respect to schema p-mappings is hard.
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Theorem 7.14 Let Q be an SPJ query and let pM be a schema p-mapping.

The problem of finding the probability for a by-tuple answer to Q with respect
to pM is #P-complete with respect to data complexity and is in PTIME with

respect to mapping complexity. �

Recall that #P is the complexity class of some hard counting problems (e.g.
, counting the number of variable assignments that satisfy a Boolean formula).
It is believed that a #P-complete problem cannot be solved in polynomial time,
unless P = NP .

Although by-tuple query answering in general is hard, there are two re-
stricted but common classes of queries for which by-tuple query answering
takes polynomial time. The first class of queries are those that include only a
single subgoal being the target of a p-mapping; here, we refer to an occurrence
of a table in the FROM clause of a query as a subgoal of the query. Relations in
the other subgoals are either involved in ordinary mappings or do not require
a mapping. Hence, if we only have uncertainty with respect to one part of the
domain, our queries will typically fall in this class. The second class of queries
can include multiple subgoals involved in p-mappings, but return the join at-
tributes for such subgoals. We next illustrate these two classes of queries and
query answering for them using two examples.

Example 7.15 Consider rewritingQ in the motivating example, repeated as
follows:

Q: SELECT mailing-addr FROM T

To answer the query, we first rewrite Q into query Q′ by adding the id col-

umn:

Q’: SELECT id, mailing-addr FROM T

We then invoke BYTABLE and generate the following SQL query to com-
pute by-table answers for Q′:

Qa: SELECT id, mailing-addr, SUM(pr)

FROM (

SELECT DISTINCT id, current-addr

AS mailing-addr, 0.5 AS pr

FROM S

UNION ALL

SELECT DISTINCT id, permanent-addr

AS mailing-addr, 0.4 AS pr

FROM S

UNION ALL

SELECT DISTINCT id, email-addr
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AS mailing-addr, 0.1 AS pr

FROM S)

GROUP BY id, mailing-addr

Finally, we generate the results using the following query.

Qu: SELECT mailing-addr, NOR(pr) AS pr

FROM Qa

GROUP BY mailing-addr

where for a set of probabilities pr1, . . . , prn,NOR computes 1−Πn
i=1(1−pri).

�

Example 7.16 Consider the schema p-mapping in Example 7.13. If we re-
viseQ slightly be returning the join attribute, shown as follows, we can answer
the query in polynomial time.

Q’: SELECT V.hightech

FROM T, V

WHERE T.mailing-addr = V.hightech

We answer the query by dividing it into two sub-queries, Q1 and Q2, as

shown in Example 7.13. We can compute Q1 with query Qu (shown in Exam-
ple 7.15) and compute Q2 similarly with a query Q

′
u. We compute by-tuple

answers of Q′ as follows:

SELECT Qu’.hightech, Qu.pr*Qu’.pr

FROM Qu, Qu’

WHERE Qu.mailing-addr = Qu’.hightect

�

Top-K Query Answering. The main challenge in designing the algorithm
for returning top-k query answers is to only perform the necessary reformula-
tions at every step and halt when the top-k answers are found. We focus on
top-k query answering for by-table semantics and the algorithm can be modi-
fied for by-tuple semantics.

Recall that in by-table query answering, the probability of an answer is the
sum of the probabilities of the reformulated queries that generate the answer.
Our goal is to reduce the number of reformulated queries we execute. The
algorithm we describe next proceeds in a greedy fashion: it executes queries
in descending order of probabilities. For each tuple t, it maintains the upper
bound pmax(t) and lower bound pmin(t) of its probability. This process halts
when it finds k tuples whose pmin values are higher than pmax of the rest of
the tuples.
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TOPKBYTABLE takes as input an SPJ query Q, a schema p-mapping pM ,
an instance DS of the source schema, and an integer k, and outputs the top-k
answers in Qtable(DS). The algorithm proceeds in three steps.

Step 1: Rewrite Q according to pM into a set of queries Q1, . . . , Qn, each
with a probability assigned in a similar way as stated in Algorithm BYTABLE.

Step 2: Execute Q1, . . . , Qn in descending order of their probabilities. Main-
tain the following measures:

The highest probability, PMax, for the tuples that have not been gener-
ated yet. We initialize PMax to 1; after executing query Qi and updat-
ing the list of answers (see third bullet), we decrease PMax by Pr(Qi);

The threshold th determining which answers are potentially in the top-k.
We initialize th to 0; after executing Qi and updating the answer list, we
set th to the k-th largest pmin for tuples in the answer list;

A list L of answers whose pmax is no less than th, and bounds pmin and
pmax for each answer in L. After executing query Qi, we update the list
as follows: (1) for each t ∈ L and t ∈ Qi(DS), we increase pmin(t) by
Pr(Qi); (2) for each t ∈ L but t 6∈ Qi(DS), we decrease pmax(t) by
Pr(Qi); (3) if PMax ≥ th, for each t 6∈ L but t ∈ Qi(DS), insert t to
L, set pmin to Pr(Qi) and pmax(t) to PMax.

A list T of k tuples with top pmin values.

Step 3: When th > PMax and for each t 6∈ T , th > pmax(t), halt and return
T .

Example 7.17 Consider Example 7.1 where we seek for top-1 answer. We
answer the reformulated queries in order of Q1, Q2, Q3. After answering Q1,

for tuple (“Sunnyvale”) we have pmin = .5 and pmax = 1, and for tuple
(“Mountain View”) we have the same bounds. In addition, PMax = .5 and
th = .5.
In the second round, we answer Q2. Then, for tuple (“Sunnyvale”) we have

pmin = .9 and pmax = 1, and for tuple (“Mountain View”) we have pmin = .5
and pmax = .6. Now PMax = .1 and th = .9.
Because th > PMax and th is above the pmax for the (“Mountain View”)

tuple, we can halt and return (“Sunnyvale”) as the top-1 answer. �

3.4 Creating P-mappings

We now address the problem of generating a p-mapping between a source
schema and a target schema. We begin by assuming we have a set of weighted
correspondences between the source attributes and the target attributes. These
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weighted correspondences are created by a set of schema matching modules.
However, as we explain shortly, there can be multiple p-mappings that are
consistent with a given set of weighted correspondences, and the question is
which of them to choose. We describe an approach to creating p-mappings that
is based on choosing the mapping that maximizes the entropy of the probability
assignment.

Computing weighted correspondences. A weighted correspondence be-
tween a pair of attributes specifies the degree of semantic similarity between
them. Let S(s1, . . . , sm) be a source schema and T (t1, . . . , tn) be a target
schema. We denote by Ci,j , i ∈ [1,m], j ∈ [1, n], the weighted correspon-
dence between si and tj and by wi,j the weight of Ci,j . The first step is to
compute a weighted correspondence between every pair of attributes, which
can be done by applying existing schema matching techniques.

Although weighted correspondences tell us the degree of similarity between
pairs of attributes, they do not tell us which target attribute a source attribute
should map to. For example, a target attribute mailing-address can be both
similar to the source attribute current-addr and to permanent-addr, so it
makes sense to map either of them to mailing-address in a schema mapping.
In fact, given a set of weighted correspondences, there could be a set of p-
mappings that are consistent with it. We can define the one-to-many relation-
ship between sets of weighted correspondences and p-mappings by specifying
when a p-mapping is consistent with a set of weighted correspondences.

Definition 7.18 (Consistent p-mapping) A p-mapping pM is consis-
tent with a weighted correspondence Ci,j between a pair of source and target
attributes if the sum of the probabilities of all mappings m ∈ pM containing

correspondence (i, j) equals wi,j; that is,

wi,j =
∑

m∈pM,(i,j)∈m

Pr(m).

A p-mapping is consistent with a set of weighted correspondences C if it is
consistent with each weighted correspondence C ∈ C. �

However, not every set of weighted correspondences admits a consistent p-
mapping. The following theorem shows under which conditions a consistent
p-mapping exists, and establishes a normalization factor for weighted corre-
spondences that will guarantee the existence of a consistent p-mapping.

Theorem 7.19 LetC be a set of weighted correspondences between a source
schema S(s1, . . . , sm) and a target schema T (t1, . . . , tn).
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There exists a consistent p-mapping with respect to C if and only if

(1) for every i ∈ [1,m],
∑n

j=1wi,j ≤ 1 and (2) for every j ∈ [1, n],∑m
i=1wi,j ≤ 1.

Let

M ′ = max{maxi{
n∑

j=1

wi,j},maxj{
m∑

i=1

wi,j}}.

Then, for each i ∈ [1,m],
∑n

j=1
wi,j
M ′ ≤ 1 and for each j ∈ [1, n],∑m

i=1
wi,j
M ′ ≤ 1. �

Based on Theorem 7.19, we normalize the weighted correspondences we
generated as described previously by dividing them by M ′; that is,

w′i,j =
wi,j
M ′

.

Generating p-mappings. To motivate our approach to generating p-
mappings, consider the following example. Consider a source schema (A,B)
and a target schema (A′, B′). Assume we have computed the following weighted
correspondences between source and target attributes: wA,A′ = 0.6 andwB,B′ =
0.5 (the rest are 0).

As we explained above, there are an infinite number of p-mappings that are
consistent with this set of weighted correspondences and below we list two:
pM1:

m1: (A,A’), (B,B’): 0.3 m2: (A,A’): 0.3 m3:

(B,B’): 0.2 m4: empty: 0.2

pM2:

m1: (A,A’), (B,B’): 0.5

m2: (A,A’): 0.1

m3: empty: 0.4

In a sense, pM1 seems better than pM2 because it assumes that the similarity
between A and A′ is independent of the similarity between B and B′.

In the general case, among the many p-mappings that are consistent with a
set of weighted correspondences C, we choose the one with the maximum en-
tropy; that is, the p-mappings whose probability distribution obtains the max-
imum value of

∑l
i=1−pi ∗ logpi. In the above example, pM1 obtains the

maximum entropy.
The intuition behind maximum entropy is that when we need to select among

multiple possible distributions on a set of exclusive events, we choose the one
that does not favor any of the events over the others. Hence, we choose the
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distribution that does not introduce new information that we didn’t have apri-
ori. The principle of maximum entropy is widely used in other areas such as
natural language processing.

To create the p-mapping, we proceed in two steps. First, we enumerate
all possible one-to-one schema mappings between S and M that contain a
subset of correspondences in C. Second, we assign probabilities on each of
the mappings in a way that maximizes the entropy of our result p-mapping.

Enumerating all possible schema mappings given C is trivial: for each sub-
set of correspondences, if it corresponds to a one-to-one mapping, we consider
the mapping as a possible mapping.

Given the possible mappingsm1, . . . ,ml, we assign probabilities p1, . . . , pl
tom1, . . . ,ml by solving the following constraint optimization problem (OPT):

maximize
∑l

k=1−pk ∗ log pk subject to:

1 ∀k ∈ [1, l], 0 ≤ pk ≤ 1,

2
∑l

k=1 pk = 1, and

3 ∀i, j :
∑

k∈[1,l],(i,j)∈mk
pk = wi,j .

We can apply existing technology in solving the OPT optimization prob-
lem. Although finding maximum-entropy solutions in general is costly, the
experiments described in [6] show that the execution time is reasonable for a
one-time process.

3.5 Broader Classes of Mappings

In this section we describe several practical extensions to the basic mapping
language. The query answering techniques and complexity results we have
described carry over to these techniques.

GLAVmappings: The common formalism for schema mappings, GLAV (a.k.a.
tuple-generating dependencies), is based on expressions of the form

m : ∀x(ϕ(x)→ ∃yψ(x,y)).

In the expression, ϕ is the body of a conjunctive query over S̄ and ψ is the
body of a conjunctive query over T̄ . A pair of instances DS and DT satisfies

a GLAV mapping m if for every assignment of x in DS that satisfies ϕ there
exists an assignment of y in DT that satisfies ψ.

We define general p-mappings to be triples of the form pGM = (S̄, T̄ ,gm),
where gm is a set {(gmi, P r(gmi)) | i ∈ [1, n]}, such that for each i ∈ [1, n],
gmi is a general GLAV mapping. The definition of by-table semantics for
such mappings is a simple generalization of Definition 7.8 and query answer-
ing can be conducted in PTIME. Extending by-tuple semantics to arbitrary
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GLAV mappings is much trickier than by-table semantics and would involve
considering mapping sequences whose length is the product of the number of
tuples in each source table, and the results are much less intuitive.

Theorem 7.20 Let pGM be a general p-mapping between a source schema

S̄ and a target schema T̄ . Let DS be an instance of S̄. Let Q be an SPJ query
with only equality conditions over T̄ . The problem of computing Qtable(DS)
with respect to pGM is in PTIME in the size of the data and the mapping. �

Complex mappings: Complex mappings map a set of attributes in the source
to a set of attributes in the target. For example, we can map the attribute ad-

dress to the concatenation of street, city, and state.
Formally, a set correspondence between S and T is a relationship between

a subset of attributes in S and a subset of attributes in T . Here, the function
associated with the relationship specifies a single value for each of the target
attributes given a value for each of the source attributes. Again, the actual func-
tions are irrelevant to our discussion. A complex mapping is a triple (S, T, cm),
where cm is a set of set correspondences, such that each attribute in S or T is
involved in at most one set correspondence. A complex p-mapping is of the
form pCM = {(cmi, P r(cmi)) | i ∈ [1, n]}, where

∑n
i=1 Pr(cmi) = 1.

Theorem 7.21 Let pCM be a complex schema p-mapping between schemas

S̄ and T̄ . LetDS be an instance of S̄. LetQ be an SPJ query over T̄ . The data
complexity and mapping complexity of computing Qtable(DS) with respect to
pCM are PTIME. The data complexity of computing Qtuple(DS) with respect
to pCM is #P-complete. The mapping complexity of computing Qtuple(DS)
with respect to pCM is in PTIME. �

Union mapping: Union mappings specify relationships such as both attribute
home-address and attribute office-address can be mapped to address. For-
mally, a union mapping is a triple (S, T, m̄), where m̄ is a set of mappings
between S and T . Given a source relationDS and a target relation DT , we say
DS andDT are consistent with respect to the union mapping if for each source
tuple t and m ∈ m̄, there exists a target tuple t′, such that t and t′ satisfy m. A
union p-mapping is of the form pUM = {(m̄i, P r(m̄i)) | i ∈ [1, n]}, where∑n

i=1 Pr(m̄i) = 1.
Both by-table and by-tuple semantics apply to probabilistic union mappings.

Theorem 7.22 Let pUM be a union schema p-mapping between a source

schema S̄ and a target schema T̄ . Let DS be an instance of S̄. Let Q be a
conjunctive query over T̄ . The problem of computing Qtable(DS) with respect
to pUM is in PTIME in the size of the data and the mapping; the problem

of computing Qtuple(DS) with respect to pUM is in PTIME in the size of the

mapping and #P-complete in the size of the data. �
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Conditional mappings: In practice, our uncertainty is often conditioned. For
example, we may want to state that daytime-phone maps to work-phone with
probability 60% if age≤ 65, and maps to home-phone with probability 90%
if age > 65.

We define a conditional p-mapping as the set cpM = {(pM1, C1), . . . ,
. . . (pMn, Cn)}, where pM1, . . . , pMn are p-mappings, and C1, . . . , Cn are
pairwise disjoint conditions. Intuitively, for each i ∈ [1, n], pMi describes the
probability distribution of possible mappings when condition Ci holds. Con-
ditional mappings make more sense for by-tuple semantics. The following
theorem shows that the complexity results carry over to such mappings.

Theorem 7.23 Let cpM be a conditional schema p-mapping between S̄ and
T̄ . Let DS be an instance of S̄. Let Q be an SPJ query over T̄ . The problem
of computing Qtuple(DS) with respect to cpM is in PTIME in the size of the

mapping and #P-complete in the size of the data. �

3.6 Other Types of Approximate Schema Mappings

There have been various models proposed to capture uncertainty on map-
pings between attributes. [15] proposes keeping the top-K mappings between
two schemas, each with a probability (between 0 and 1) of being true. [16]
proposes assigning a probability for matching of every pair of source and tar-
get attributes. This notion corresponds to weighted correspondences described
in Section 3.4.

Magnani and Montesi [29] have empirically shown that top-k schema map-
pings can be used to increase the recall of a data integration process and
Gal [14] described how to generate top-k schema matchings by combining
the matching results generated by various matchers. The probabilistic schema
mappings we described above are different as they contain all possible schema
mappings that conform to the schema matching results and assigns proba-
bilities to these mappings to reflect the likelihood that each mapping is cor-
rect. Nottelmann and Straccia [32] proposed generating probabilistic schema
matchings that capture the uncertainty on each matching step. The probabilis-
tic schema mappings we create not only capture our uncertainty on results of
the matching step, but also take into consideration various combinations of
attribute correspondences and describe a distribution of possible schema map-
pings where the probabilities of all mappings sum up to 1.

There have also been work studying how to use probabilistic models to cap-
ture uncertainty on mappings of schema object classes, such as DatabasePa-

pers and AIPapers. Query answering can take such uncertainty into consid-
eration in computing the coverage percentage of the returned answers and in
ordering information sources to maximize the likelihood of obtaining answers
early. In the relational model, an object class is often represented using a rela-
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tional table; thus, these probabilistic models focus on mapping between tables
rather than attributes in the tables.

Specifically, consider two object classes A and B. The goal of the prob-
abilistic models is to capture the uncertainty on whether A maps to B. One
method [13] uses probability P (B|A), which is the probability that an in-
stance of A is also an instance of B. Another method [29] uses a tuple <
A,B,R, P >, where R is a set of mutually exclusive relationships between
A and B, and P is a probability distribution over R. The possible relation-
ships considered in this model include equivalent =, subset-subsumption ⊂,
superset-subsumption ⊃, overlapping ∩, disjointness 6 ∩, and incompatibility
6∼.

4. Uncertainty in Mediated Schema

The mediated schema is the set of schema terms (e.g., relations, attribute
names) in which queries are posed. They do not necessarily cover all the at-
tributes appearing in any of the sources, but rather the aspects of the domain
that are important for the integration application. When domains are broad,
and there are multiple perspectives on them (e.g., a domain in science that
is constantly under evolution), then there will be uncertainty about which is
the correct mediated schema and about the meaning of its terms. When the
mediated schema is created automatically by inspecting the sources in a pay-
as-you-go system, there will also be uncertainty about the mediated schema.

In this section we first motivate the need for probabilistic mediated schemas
(p-med-schemas) with an example (Section 4.1). In Section 4.2 we formally
define p-med-schemas and relate them with p-mappings in terms of expressive
power and semantics of query answering. Then in Section 4.3 we describe
an algorithm for creating a p-med-schema from a set of data sources. Finally,
Section 4.4 gives an algorithm for consolidating a p-med-schema into a single
schema that is visible to the user in a pay-as-you-go system.

4.1 P-Med-Schema Motivating Example

Let us begin with an example motivating p-med-schemas. Consider a setting
in which we are trying to automatically infer a mediated schema from a set of
data sources, where each of the sources is a single relational table. In this con-
text, the mediated schema can be thought of as a “clustering” source attributes,
with similar attributes being grouped into the same cluster. The quality of
query answers critically depends on the quality of this clustering. Because of
the heterogeneity of the data sources being integrated, one is typically unsure
of the semantics of the source attributes and in turn of the clustering.

Example 7.24 Consider two source schemas both describing people:
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S1(name, hPhone, hAddr, oPhone, oAddr)

S2(name, phone, address)

In S2, the attribute phone can either be a home phone number or be an

office phone number. Similarly, address can either be a home address or be

an office address.

Suppose we cluster the attributes of S1 and S2. There are multiple ways

to cluster the attributes and they correspond to different mediated schemas.

Below we list a few (in the mediated schemas we abbreviate hPhone as hP,

oPhone as oP, hAddr as hA, and oAddr as oA):

M1({name}, {phone, hP, oP}, {address, hA, oA})

M2({name}, {phone, hP}, {oP}, {address, oA}, {hA})

M3({name}, {phone, hP}, {oP}, {address, hA}, {oA})

M4({name}, {phone, oP}, {hP}, {address, oA}, {hA})

M5({name}, {phone}, {hP}, {oP}, {address}, {hA}, {oA})

None of the listed mediated schemas is perfect. SchemaM1 groups multiple

attributes from S1. M2 seems inconsistent because phone is grouped with

hPhone while address is grouped with oAddress. Schemas M3,M4 and

M5 are partially correct but none of them captures the fact that phone and

address can be either home phone and home address, or office phone and

office address.

Even if we introduce probabilistic schema mappings, none of the listed me-

diated schemas will return ideal answers. For example, using M1 prohibits

returning correct answers for queries that contain both hPhone and oPhone

because they are taken to be the same attribute. As another example, consider

a query that contains phone and address. UsingM3 orM4 as the mediated

schema will unnecessarily favor home address and phone over office address

and phone or vice versa. A system withM2 will incorrectly favor answers that

return a person’s home address together with office phone number. A system

withM5 will also return a person’s home address together with office phone,

and does not distinguish such answers from answers with correct correlations.

A probabilistic mediated schema will avoid this problem. Consider a prob-

abilistic mediated schemaM that includesM3 andM4, each with probability

0.5. For each of them and each source schema, we generate a probabilistic

mapping (Section 3). For example, the set of probabilistic mappings pM for

S1 is shown in Figure 7.5(a) and (b).

Now consider an instance of S1 with a tuple

(’Alice’, ’123-4567’, ’123, A Ave.’,

’765-4321’, ’456, B Ave.’)

and a query
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Possible Mapping Probability
{(name, name), (hP, hPP), (oP, oP),

(hA, hAA), (oA, oA)}
0.64

{(name, name), (hP, hPP), (oP, oP),
(oA, hAA), (hA, oA)}

0.16

{(name, name), (oP, hPP), (hP, oP),
(hA, hAA), (oA, oA)}

0.16

{(name, name), (oP, hPP), (hP, oP),
(oA, hAA), (hA, oA)}

0.04

(a)
Possible Mapping Probability

{(name, name), (oP, oPP), (hP, hP),
(oA, oAA), (hA, hA)}

0.64

{(name, name), (oP, oPP), (hP, hP),
(hA, oAA), (oA, hA)}

0.16

{(name, name), (hP, oPP), (oP, hP),
(oA, oAA), (hA, hA)}

0.16

{(name, name), (hP, oPP), (oP, hP),
(hA, oAA), (oA, hA)}

0.04

(b)
Answer Probability

(’Alice’, ’123-4567’, ’123, A Ave.’) 0.34
(’Alice’, ’765-4321’, ’456, B Ave.’) 0.34
(’Alice’, ’765-4321’, ’123, A Ave.’) 0.16
(’Alice’, ’123-4567’, ’456, B Ave.’) 0.16

(c)

Figure 7.5. The motivating example: (a) p-mapping for S1 and M3, (b) p-mapping for S1 and
M4, and (c) query answers w.r.t. M and pM. Here we denote {phone, hP} by hPP, {phone,

oP} by oPP, {address, hA} by hAA, and {address, oA} by oAA.

SELECT name, phone, address

FROM People

The answer generated by our system with respect to M and pM is shown in

Figure 7.5(c). (As we describe in detail in the following sections, we allow

users to compose queries using any attribute in the source.) Compared with

using one of M2 to M5 as a mediated schema, our method generates better

query results in that (1) it treats answers with home address and home phone

and answers with office address and office phone equally, and (2) it favors

answers with the correct correlation between address and phone number. �
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4.2 Probabilistic Mediated Schema

Consider a set of source schemas {S1, . . . , Sn}. We denote the attributes
in schema Si, i ∈ [1, n], by attr(Si), and the set of all source attributes as A.
That is,A = attr(S1)∪ · · · ∪ attr(Sn). We denote a mediated schema for the
set of sources {S1, . . . , Sn} by M = {A1, . . . , Am}, where each of the Ai’s is
called a mediated attribute. The mediated attributes are sets of attributes from
the sources, i.e., Ai ⊆ A; for each i, j ∈ [1,m], i 6= j ⇒ Ai ∩Aj = ∅.

Note that whereas in a traditional mediated schema an attribute has a name,
we do not deal with naming of an attribute in our mediated schema and allow
users to use any source attribute in their queries. (In practice, we can use the
most frequent source attribute to represent a mediated attribute when exposing
the mediated schema to users.) If a query contains an attribute a ∈ Ai, i ∈
[1,m], then when answering the query we replace a everywhere with Ai.

A probabilistic mediated schema consists of a set of mediated schemas, each
with a probability indicating the likelihood that the schema correctly describes
the domain of the sources. We formally define probabilistic mediated schemas
as follows.

Definition 7.25 (Probabilistic Mediated Schema) Let
{S1, . . . , Sn} be a set of schemas. A probabilistic mediated schema (p-med-
schema) for {S1, . . . , Sn} is a set

M = {(M1, P r(M1)), . . . , (Ml, P r(Ml))}

where

for each i ∈ [1, l],Mi is a mediated schema for S1, . . . , Sn, and for each
i, j ∈ [1, l], i 6= j,Mi andMj correspond to different clusterings of the

source attributes;

Pr(Mi) ∈ (0, 1], and Σl
i=1Pr(Mi) = 1. �

Semantics of queries: Next we define the semantics of query answering with
respect to a p-med-schema and a set of p-mappings for each mediated schema
in the p-med-schema. Answering queries with respect to p-mappings returns a
set of answer tuples, each with a probability indicating the likelihood that the
tuple occurs as an answer. We consider by-table semantics here. Given a query
Q, we compute answers by first answering Q with respect to each possible
mapping, and then for each answer tuple t summing up the probabilities of the
mappings with respect to which t is generated.

We now extend this notion for query answering that takes p-med-schema
into consideration. Intuitively, we compute query answers by first answering
the query with respect to each possible mediated schema, and then for each
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answer tuple taking the sum of its probabilities weighted by the probabilities
of the mediated schemas.

Definition 7.26 (Query Answer) Let S be a source schema andM =
{(M1, P r(M1)), . . . , (Ml, P r(Ml))} be a p-med-schema. Let pM =
{pM(M1), . . ., pM(Ml)} be a set of p-mappings where pM(Mi) is the p-
mapping between S andMi. Let D be an instance of S and Q be a query.
Let t be a tuple. Let Pr(t|Mi), i ∈ [1, l], be the probability of t in the answer

of Q with respect to Mi and pM(Mi). Let p = Σl
i=1Pr(t|Mi) ∗ Pr(Mi). If

p > 0, then we say (t, p) is a by-table answer with respect toM and pM.

We denote all by-table answers by QM,pM(D). �

We say that query answers A1 and A2 are equal (denoted A1 = A2) if
A1 and A2 contain exactly the same set of tuples with the same probability
assignments.

Expressive power: A natural question to ask at this point is whether proba-
bilistic mediated schemas provide any added expressive power compared to
deterministic ones. Theorem 7.27 shows that if we consider one-to-many
schema mappings, where one source attribute can be mapped to multiple me-
diated attributes, then any combination of a p-med-schema and p-mappings
can be equivalently represented using a deterministic mediated schema with
p-mappings, but may not be represented using a p-med-schema with determin-
istic schema mappings. Note that we can easily extend the definition of query
answers to one-to-many mappings as one mediated attribute can correspond to
no more than one source attribute.

Theorem 7.27 (Subsumption) The following two claims hold.

1 Given a source schema S, a p-med-schemaM, and a set of p-mappings

pM between S and possible mediated schemas in M, there exists a

deterministic mediated schema T and a p-mapping pM between S and
T , such that ∀D,Q : QM,pM(D) = QT,pM (D).

2 There exists a source schema S, a mediated schema T , a p-mapping
pM between S and T , and an instance D of S, such that for any p-
med-schema M and any set m of deterministic mappings between S
and possible mediated schemas in M, there exists a query Q such that
QM,m(D) 6= QT,pM (D). �

In contrast, Theorem 7.28 shows that if we restrict our attention to one-to-one
mappings, then a probabilistic mediated schema does add expressive power.

Theorem 7.28 There exists a source schema S, a p-med-schema M, a set

of one-to-one p-mappings pM between S and possible mediated schemas in
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M, and an instance D of S, such that for any deterministic mediated schema
T and any one-to-one p-mapping pM between S and T , there exists a query
Q such that, QM,pM(D) 6= QT,pM (D). �

Constructing one-to-many p-mappings in practice is much harder than con-
structing one-to-one p-mappings. And, when we are restricted to one-to-one
p-mappings, p-med-schemas grant us more expressive power while keeping
the process of mapping generation feasible.

4.3 P-med-schema Creation

We now show how to create a probabilistic mediated schema M. Given
source tables S1, . . . , Sn, we first construct the multiple schemas M1, . . . ,Mp

in M, and then assign each of them a probability.
We exploit two pieces of information available in the source tables: (1) pair-

wise similarity of source attributes; and (2) statistical co-occurrence properties
of source attributes. The former will be used for creating multiple mediated
schemas, and the latter for assigning probabilities on each of the mediated
schemas.

The first piece of information tells us when two attributes are likely to be
similar, and is generated by a collection of schema matching modules. This
information is typically given by some pairwise attribute similarity measure,
say s. The similarity s(ai, aj) between two source attributes ai and aj depicts
how closely the two attributes represent the same real-world concept.

The second piece of information tells us when two attributes are likely to be
different. Consider for example, source table schemas

S1: (name,address,email-address)

S2: (name,home-address)

Pairwise string similarity would indicate that attribute address can be similar
to both email-address and home-address. However, since the first source
table contains address and email-address together, they cannot refer to the
same concept. Hence, the first table suggests address is different from email-

address, making it more likely that address refers to home-address.

Creating Multiple Mediated Schemas: The creation of the multiple medi-
ated schemas constituting the p-med-schema can be divided conceptually into
three steps. First, we remove infrequent attributes from the set of all source at-
tributes; that is, attribute names that do not appear in a large fraction of source
tables. This step ensures that our mediated schema contains only information
that is relevant and central to the domain. In the second step we construct a
weighted graph whose nodes are the attributes that survived the filter of the
first step. An edge in the graph is labeled with the pairwise similarity between



Uncertainty in Data Integration 213

Algorithm 1 Generate all possible mediated schemas.
0: Input: Source schemas S1, . . . , Sn.
Output: A set of possible mediated schemas.

1: Compute A = {a1, . . . , am}, the set of all source attributes;
2: for each (j ∈ [1,m])

Compute frequency f(aj) =
|{i∈[1,n]|aj∈Si}|

n ;
3: Set A = {aj |j ∈ [1,m], f(aj) ≥ θ}; //θ is a threshold
4: Construct a weighted graph G(V,E), where (1) V = A, and (2) for each
aj , ak ∈ A, s(aj , ak) ≥ τ − ǫ, there is an edge (aj , ak) with weight
s(aj , ak);

5: Mark all edges with weight less than τ + ǫ as uncertain;
6: for each (uncertain edge e = (a1, a2) ∈ E)

Remove e fromE if (1) a1 and a2 are connected by a path with only
certain edges, or (2) there exists a3 ∈ V , such that a2 and a3 are connected
by a path with only certain edges and there is an uncertain edge (a1, a3);

7: for each (subset of uncertain edges)
Omit the edges in the subset and compute a mediated schema where

each connected component in the graph corresponds to an attribute in the
schema;

8: return distinct mediated schemas.

the two nodes it connects. Finally, several possible clusterings of nodes in the
resulting weighted graph give the various mediated schemas.

Algorithm 1 describes the various steps in detail. The input is the set of
source schemas creating S1, . . . , Sn and a pairwise similarity function s, and
the output is the multiple mediated schemas in M. Steps 1–3 of the algorithm
find the attributes that occur frequently in the sources. Steps 4 and 5 construct
the graph of these high-frequency attributes. We allow an error ǫ on the thresh-
old τ for edge weights. We thus have two kinds of edges: certain edges, having
weight at least τ + ǫ, and uncertain edges, having weight between τ − ǫ and
τ + ǫ.

Steps 6-8 describe the process of obtaining multiple mediated schemas.
Specifically, a mediated schema in M is created for every subset of the un-
certain edges. For every subset, we consider the graph resulting from omitting
that subset from the graph. The mediated schema includes a mediated attribute
for each connected component in the resulting graph. Since, in the worst case,
the number of resulting graphs is exponential in the number of uncertain edges,
the parameter ǫ needs to be chosen carefully. In addition, Step 6 removes un-
certain edges that when omitted will not lead to different mediated schemas.
Specifically, we remove edges that connect two nodes already connected by
certain edges. Also, we consider only one among a set of uncertain edges that
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Algorithm 2 Assign probabilities to possible mediated schemas.
0: Input: Possible mediated schemas M1, . . . ,Ml and source schemas
S1, . . . , Sn.
Output: Pr(M1), . . . , P r(Ml).

1: for each (i ∈ [1, l])
Count the number of source schemas that are consistent with Mi,

denoted as ci;
2: for each (i ∈ [1, l]) Set Pr(Mi) = ciPl

i=1 ci
.

connect a particular node with a set of nodes that are connected by certain
edges.

Probability Assignment: The next step is to compute probabilities for possi-
ble mediated schemas that we have generated. As a basis for the probability
assignment, we first define when a mediated schema is consistent with a source
schema. The probability of a mediated schema in M will be the proportion of
the number of sources with which it is consistent.

Definition 7.29 (Consistency) LetM be a mediated schema for sources

S1, . . . , Sn. We sayM is consistent with a source schema Si, i ∈ [1, n], if there
is no pair of attributes in Si that appear in the same cluster inM .

Intuitively, a mediated schema is consistent with a source only if it does not
group distinct attributes in the source (and hence distinct real-world concepts)
into a single cluster. Algorithm 2 shows how to use the notion of consistency
to assign probabilities on the p-med-schema.

4.4 Consolidation

To complete the fully automatic setup of the data integration system, we
consider the problem of consolidating a probabilistic mediated schema into a
single mediated schema and creating p-mappings to the consolidated schema.
We require that the answers to queries over the consolidated schema be equiv-
alent to the ones over the probabilistic mediated schema.

The main reason to consolidate the probabilistic mediated schema into a
single one is that the user expects to see a single schema. In addition, consoli-
dating to a single schema has the advantage of more efficient query answering:
queries now need to be rewritten and answered based on only one mediated
schema. We note that in some contexts, it may be more appropriate to show
the application builder a set of mediated schemas and let her select one of them
(possibly improving on it later on).
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Algorithm 3 Consolidate a p-med-schema.
0: Input: Mediated schemas M1, . . . ,Ml.
Output: A consolidated single mediated schema T .

1: Set T = M1.
2: for (i = 2, . . . , l) modify T as follows:
3: for each (attribute A′ in Mi)
4: for each (attribute A in T )
5: Divide A into A ∩A′ and A−A′;
6: return T .

Consolidating a p-med-schema: Consider a p-med-schema M =
{(M1, P r(M1)), . . . , (Ml, P r(Ml))}. We consolidate M into a single me-
diated schema T . Intuitively, our algorithm (see Algorithm 3) generates the
“coarsest refinement” of the possible mediated schemas in M such that every
cluster in any of the Mi’s is equal to the union of a set of clusters in T . Hence,
any two attributes ai and aj will be together in a cluster in T if and only if they
are together in every mediated schema of M. The algorithm initializes T to
M1 and then modifies each cluster of T based on clusters from M2 to Ml.

Example 7.30 Consider a p-med-schemaM = {M1,M2}, whereM1 con-

tains three attributes {a1, a2, a3}, {a4}, and {a5, a6}, and M2 contains two

attributes {a2, a3, a4} and {a1, a5, a6}. The target schema T would then con-
tain four attributes: {a1}, {a2, a3}, {a4}, and {a5, a6}. �

Note that in practice the consolidated mediated schema is the same as the me-
diated schema that corresponds to the weighted graph with only certain edges.
Here we show the general algorithm for consolidation, which can be applied
even if we do not know the specific pairwise similarities between attributes.

Consolidating p-mappings: Next, we consider consolidating p-mappings
specified w.r.t. M1, . . . ,Ml to a p-mapping w.r.t. the consolidated medi-
ated schema T . Consider a source S with p-mappings pM1, . . . , pMl for
M1, . . . ,Ml respectively. We generate a single p-mapping pM between S and
T in three steps. First, we modify each p-mapping pMi, i ∈ [1, l], between S
and Mi to a p-mapping pM ′i between S and T . Second, we modify the proba-
bilities in each pM ′i . Third, we consolidate all possible mappings in pM ′i ’s to
obtain pM . The details are as follows.

1. For each i ∈ [1, l], modify p-mapping pMi: Do the following for every
possible mapping m in pMi:

For every correspondence (a,A) ∈ m between source attribute a
and mediated attribute A in Mi, proceed as follows. (1) Find the
set of all mediated attributes B in T such that B ⊂ A. Call this
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set B. (2) Replace (a,A) in m with the set of all (a,B)’s, where
B ∈ B.

Call the resulting p-mapping pM ′i .

2. For each i ∈ [1, l], modify probabilities in pM ′i : Multiply the proba-
bility of every schema mapping in pM ′i by Pr(Mi), which is the prob-
ability of Mi in the p-med-schema. (Note that after this step the sum of
probabilities of all mappings in pM ′i is not 1.)

3. Consolidate pM ′i ’s: Initialize pM to be an empty p-mapping (i.e., with
no mappings). For each i ∈ [1, l], add pM ′i to pM as follows:

For each schema mapping m in pM ′i with probability p: if m is

in pM , with probability p′, modify the probability of m in pM to
(p+ p′); ifm is not in pM , then add m to pM with probability p.

The resulting p-mapping, pM , is the final consolidated p-mapping. The
probabilities of all mappings in pM add to 1.

Note that Step 2 can map one source attribute to multiple mediated attributes;
thus, the mappings in the result pM are one-to-many mappings, and so typ-
ically different from the p-mapping generated directly on the consolidated
schema. The following theorem shows that the consolidated mediated schema
and the consolidated p-mapping are equivalent to the original p-med-schema
and p-mappings.

Theorem 7.31 (Merge Equivalence) For all queries Q, the answers
obtained by posing Q over a p-med-schema M = {M1, . . . ,Ml} with p-
mappings pM1, . . . , pMl is equal to the answers obtained by posing Q over
the consolidated mediated schema T with consolidated p-mapping pM . �

4.5 Other approaches

He and Chang [21] considered the problem of generating a mediated schema
for a set of web sources. Their approach was to create a mediated schema
that is statistically maximally consistent with the source schemas. To do so,
they assume that the source schemas are created by a generative model applied
to some mediated schema, which can be thought of as a probabilistic medi-
ated schema. The probabilistic mediated schema we described in this chapter
has several advantages in capturing heterogeneity and uncertainty in the do-
main. We can express a wider class of attribute clusterings, and in particular
clusterings that capture attribute correlations. Moreover, we are able to com-
bine attribute matching and co-occurrence properties for the creation of the
probabilistic mediated schema, allowing for instance two attributes from one
source to have a nonzero probability of being grouped together in the medi-
ated schema. Also, the approach for p-med-schema creation described in this
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chapter is independent of a specific schema-matching technique, whereas the
approach in [21] is tuned for constructing generative models and hence must
rely on statistical properties of source schemas.

Magnani et al. [30] proposed generating a set of alternative mediated
schemas based on probabilistic relationships between relations (such as an In-

structor relation intersects with a Teacher relation but is disjoint with a Stu-

dent relation) obtained by sampling the overlapping of data instances. Here
we focus on matching attributes within relations. In addition, our approach
allows exploring various types of evidence to improve matching and we assign
probabilities to the mediated schemas we generate.

Chiticariu et. al. [5] studied the generation of multiple mediated schemas
for an existing set of data sources. They consider multi-table data sources, not
considered in this chapter, but explore interactive techniques that aid humans
in arriving at the mediated schemas.

There has been quite a bit of work on automatically creating mediated
schemas that focused on the theoretical analysis of the semantics of merging
schemas and the choices that need to be made in the process [2, 4, 23, 25, 31,
33]. The goal of these work was to make as many decisions automatically as
possible, but where some ambiguity arises, refer to input from a designer.

5. Future Directions

The investigation of data integration with uncertainty is only beginning.
This chapter described some of the fundamental concepts on which such sys-
tems will be built, but there is a lot more to do.

The main challenge is to build actual data integration systems that incorpo-
rate uncertainty and thereby uncover a new set of challenges, such as efficiency
and understanding what are the common types of uncertainty that arise in data
integration applications, so techniques can be tailored for these cases.

The work we described showed how to create p-mediated schemas and
schema mappings automatically. This is only a way to bootstrap a pay-as-
you-go integration system. The next challenge is to find methods to improve it
over time (see [24] for a first work on doing so). We would also like to incor-
porate multi-table sources, rather than only single-table ones as we described
so far.

Finally, when we have many data sources, the sources tend to be redundant
and contain dependencies (and therefore not offer independent sources of ev-
idence). An important line of work is to discover these dependencies and use
them to provide more precise answers to queries. We are currently exploring
how the formalism and techniques from this chapter can be extended to con-
sider uncertain and interdependent data sources, and how query answering can
be performed efficiently even in the presence of dependencies.
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Abstract The datastream model of computation has proven a valuable tool in developing
algorithms for processing large amounts of data in small space. This survey
examines an extension of this model that deals with uncertain data, called the
probabilistic stream model. As in the standard setting, we are presented with
a stream of items, with no random access to the data. However, each item is
represented by a probability distribution function, allowing us to model the un-
certainty associated with each element. We examine the computation of several
aggregates in the probabilistic stream setting, including the frequency moments
of the stream, average, minimum, and quantiles. The key difficulty in these com-
putations is the fact that the stream represents an exponential number of possible
worlds, and even simple numbers like the length of the stream can be different
in different possible worlds. Obtaining accurate, reliable estimates can be very
non-trivial.

Keywords: probabilistic streams, uncertain data, aggregates

1. Introduction

The amount of data that computers store and process is growing ever larger.
Despite the dramatic increase in the speed of processors, there is still a need for
algorithms that can deal with data extremely efficiently, both in time and space.
To address these needs, the data stream model of computation was proposed.
In this model, we are presented a sequence of items that arrive one at a time.
The algorithm is restricted in its memory use, typically bounded to be poly-
logarithmic in the number of items, so any processing of the items must be
done at the time of arrival; there is no random access. We generally lift the
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restriction of computing exact answers in this context, so the goal of such data
stream is to produce a good approximation while being extremely time and
space efficient. Since such algorithms take a single pass over their inputs, they
clearly are very “database friendly,” and so are quite useful in processing large
data sets. And in some applications, such as sensor networks or packet routing,
there is so much data arriving so quickly that data stream algorithms such as
this are also a practical necessity.

The model of data streaming algorithms has proven to be enormously suc-
cessful in dealing with large amounts of data. But increasingly, systems are
being built that must deal with inherently uncertain information: data that is
approximate, noisy, and incomplete. Thus, researchers have proposed a variant
of the data streaming model that focuses on uncertain data, called probabilistic
streams. In the probabilistic stream model, the items presented are actually
represented by a distribution of possible values, together with a probability
that the item is not actually in the stream. Although it is fairly clear why noisy,
uncertain data would need to be represented as a distribution over possible val-
ues, it may be less obvious why there should be a chance that the item does
not actually exist. However, this problem is ubiquitous. In sensor nets, we
may have spurious shadow readings. In automated data collection, data can
be mis-categorized. In data cleansing, fuzzy tuples may be assigned multiple
values, each with an associated probability. As a simple example, consider the
following.

Example 8.1 We have a database of books, together with their category and
their price. Recently, the type “Fantasy/Sci-Fi” was split into two categories,

and some of the older books have not been relabeled. To cleanse the data, the

database system labels each of these books with both categories, each associ-

ated with some probability. So for instance, Book1 has cost $4.50, and is la-

beled “Fantasy” with associated probability 0.3 and “Sci-Fi” with associated

probability 0.7; Book2 has been properly labeled “Sci-Fi” (with associated

probability 1) at a cost of $6.00. Now, consider a query asking for the average

price of all Sci-Fi books. In this simple example, the algorithm estimating the

average price is presented two items. The first exists (with respect to the query)

only with probability 0.7, and the second exists with probability 1.

Very recently, researchers have been considering problems such as the one
in the above example in a database context. Implicit in some of this work is
a data stream-like model [2, 5, 18]. Here, we focus on the formally defined
probabilistic stream model proposed in [15]. The precise details of this formal
model are given in Section 2.

One of the most salient assumptions of this model is that the stream of items
seen take on their probabilistic values as independent events. That is, the value
of the i-th item seen is independent of the value of the j-th item. This has
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the advantage of a simple representation, understandable semantics, and much
more manageable mathematics. In addition, many intuitive situations can be
well-modeled in this framework.

Of course, we are limiting ourselves somewhat by constraining items to be
independent. There are simple extensions to this model that work when the
data items have limited independence. For example, if the probability distribu-
tion of each data item depends on the same k primitive random variables (to-
gether with an independent random variable that is private to each data item),
then we can rewrite the stream as 2k streams, each with an associated prob-
ability, and each satisfying our original independence assumption. We then
use a data stream algorithm for each stream, combining the results. Of course,
such solutions are not very satisfying, and have very limited applicability. Cur-
rently, however, no work in the probabilistic stream context has improvements
beyond this basic idea.

1.1 Aggregates over probabilistic streams

Throughout this survey, we focus on computing aggregates— such as aver-
age, median, and minimum— over probabilistic streams. We note that there
has also been interesting work on clustering uncertain streams [1], as well as
on processing more complex event queries over streams of uncertain data [19].
However, the focus of this chapter will be simply on aggregate estimation, pri-
marily the work found in [15, 8, 16].

Although the research in those papers deals with aggregates over proba-
bilistic streams, the focus is somewhat different in each. The work of [15, 16]
is motivated by the problem of answering queries over uncertain data in the
OLAP model.∗ They propose the probabilistic stream model of computation
that we use here, and they study a number of aggregates that are useful for a
typical database user. The work of [8] is motivated by continuous data streams,
giving algorithms that capture essential features of the stream, such as quan-
tiles, heavy-hitters, and frequency moments. Of course, there is significant
overlap in the two approaches. Together, these lines of research yield stream-
ing algorithms for a wide range of aggregates.

One of the issues that these papers address is that it is not immediately
obvious what an aggregate like average (AVG) means with respect to uncertain
data. For instance, a probabilistic stream describes many possible worlds, and
the value of AVG in each possible world is different. One vein of research
uses the expected value of the aggregate as the principle value. This decision

∗The OLAP model treats database items as points in a high-dimensional space, in which each dimension
is a hierarchy. So for example, one dimension may refer to Location, which is divided by state, then by
county, then by city. Users may ask queries about specific points (e.g. city = ‘Sunnyvale’) or about regions,
like state, which map to multiple points.
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follows in part due to the work of Burdick, et. al [6, 7], who argue that any
value reported by a database system operating over uncertain data must satisfy
some minimum requirements, which the expected value meets. Of course,
the expectation is also established and well-understood mathematically, which
makes it a more intuitive quantity. The work of [8] additionally studies the
variance of the aggregates (in this case, the frequency moments of the stream).
We formally define these notions, as well as each of the aggregates we study,
in Section 2.

1.2 Organization

This survey is organized as follows. Section 2 defines the model of proba-
bilistic streams, as well as the problems we study A general overview of the
techniques used, some discussion of the results, and a summary of the run-
ning time and space requirements of the algorithms is found in Section 3. We
then turn to some of the details of each algorithm. As a warm-up, Section 3
briefly describes the algorithms for SUM and COUNT. Section 4 discusses
the universal sampling method of [8]. Section 5 deals with the frequency
moments DISTINCT and REPEAT-RATE. Next, we consider quantiles and
heavy-hitters in Section 6. The algorithm for MIN (and MAX) is in Section 7.
Finally, we discuss AVG in Section 8. Section 9 wraps up the survey.

2. The Probabilistic Stream Model

An algorithm in the probabilistic stream model is presented with a sequence
of items, each represented by a probability distribution function (pdf) which
tells what value the item takes. The algorithm is restricted in its memory use,
so as each item arrives, it must process it immediately. There is no random
access of the items.

Formally, a probabilistic stream is a sequence of tuples 〈θ1, θ2, ..., θn〉,
where each tuple θi defines the distribution function of a random variable Xi,
where the domain of Xi is [m] ∪ {⊥}. (Here ⊥ represents the event that the
corresponding item does not exist in the datastream, and we use the notation [k]
to denote the set {1, 2, ..., k}.) For each i ∈ [n], θi is written as at most ℓ pairs
(j, pi(j)) for j ∈ [m]; the value of pi(j) is defined to be 0 for any j not appear-
ing in a pair for θi. The probability of Xi taking on a value j is then defined as
Pr (Xi = j) = pi(j). Further, since Xi takes on the value ⊥ if it does not take
on a value j ∈ [m], we have that Pr (Xi = ⊥) = 1 −∑j pi(j). We assume
that eachXi takes on its value independent of the other random variables. This
corresponds to the popular block-model in probabilistic databases.

For convenience, we will often say that the i-th item appears ifXi 6= ⊥ (and
does not appear, otherwise), and define the expected length to be the number
of i such that Xi 6= ⊥, in expectation. Likewise, we say the i-th item takes
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on value t if Xi = t. Notice that the i-th item (or i-th tuple) always refers to
the i-th tuple of the probabilistic stream, regardless of whether previous items
have taken on the value ⊥ or not.

Throughout, we assume that every pi(j) is representable using O(logm)
space. We will sometimes report the space usage in terms of a number of
registers, each with the ability to hold a single number (which we may assume
is representable in O(logmn) space).

The update time is the time spent processing each pair of the pdf. So, for
example, an update time of O(1) means that the algorithm will spend total
time of O(ℓn) to process a stream of length n with block-size ℓ. Note that we
actually spend O(ℓ) time per item in the stream. Since ℓ is generally a small
constant, this distinction is not crucial.

One might imagine other encodings of the probability distribution functions
(pdfs) for the random variables Xi. Indeed, any compactly representable pdf
would be appropriate for data streaming applications, and much of the follow-
ing work would apply to such variations. However, the above representation
θi works for a wide range of aggregates. In fact, for some aggregates (e.g.,
SUM, COUNT, and AVG), the only value actually needed from the pdf is its
expected value (together with the probability of ⊥). Hence, using just ℓ = 1
tuple is sufficient to compute these aggregate values.

Possible Worlds. It will occasionally be helpful to imagine different real-
izations of the random variables in the probabilistic stream as describing differ-
ent possible worlds. Note, however, that when we consider the stream arising
in a possible world, we ignore all items that evaluated to ⊥, since, in essence,
they do not exist in that world. Hence, it is possible to obtain the same stream
under different realizations of the random variables. Consider the following
simple example.

Example 8.2 Let θ1 = {(1, 1
3)} and θ2 = {(1, 1

7), (2, 2
7)}. Then there are

five possible worlds for the stream 〈θ1, θ2〉: 〈1, 1〉 occurring with probability
1
21 , 〈1, 2〉 occurring with probability 2

21 , 〈1〉 occurring with probability 4
21 + 2

21 ,

〈2〉 occurring with probability 2
21 , and the empty stream 〈〉 occurring with

probability 8
21 . Note that the possible world 〈1〉 can occur under two different

realizations of the random variables in the probabilistic stream.

Given probabilistic stream S, we call each realizable stream of S a grounded
stream, following the notation of [8]. We denote the set of grounded streams
for S by grnd(S). Note that it is a simple matter to calculate the probability
of a given realization of the random variables in S: Let A denote a sequence
a1, a2, ..., an, with ai ∈ [m]∪{⊥} for each i, and let S(A) denote the grounded
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stream obtained by setting each Xi = ai. Then we see

Pr (Xi = ai for all i ∈ [n]) =
∏

i∈[n]

pi(ai)

However, the probability that S actually realizes the grounded stream S(A) is
somewhat different, in general, since there may be more than one setting of the
random variables of S that produce the same grounded stream. Abusing nota-
tion somewhat, let S denote the random variable that describes the realization
of the probabilistic stream. Then

Pr (S = S(A)) =
∑

B:S(B)=S(A)

∏

i∈[n]

pi(bi)

where B is a sequence of values in [m] ∪ {⊥} and bi is the ith element in
sequence B.

2.1 Problem definitions

We first define the general idea of the expectation and variance of an aggre-
gation function. Let f be the aggregation function we wish to compute. Given
a probabilistic stream S, which we again treat as a random variable itself, we
wish to report the expected value of f over the stream, denoted E (f(S)). Like-
wise, for certain applications we may be interested in reporting the variance of
f , taken over the stream, denoted Var (f(S)). Following our earlier-defined
notation, we have

E (f(S)) =
∑

B

f(S(B)) ·
∏

i∈[n]

pi(bi)

Var (f(S)) = E
(
f2(S)

)
− E2 (f(S))

=
∑

B

f2(S(B)) ·
∏

i∈[n]

pi(bi)− E2 (f(S))

where again, B is a sequence of values in [m] ∪ {⊥} and bi is the ith element
in sequence B. Clearly, although the above expressions are correct, they are
evaluated over an exponential number of sequences and are not practical to
compute explicitly. The main goal of aggregate estimation is to approximate
the corresponding expressions as efficiently as possible.

The main aggregates of interest to us are SUM, COUNT, MIN(and
MAX), AVG, the frequency moments Fk for k = 0, 1, 2 (which includes
DISTINCTand REPEAT-RATE), and quantiles including φ-HeavyHitters,
φ-Quantiles, and MEDIAN. The value of SUM, COUNT, MAX, MIN, and
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AVG are each the expected value of their respective deterministic counterpart.
Specifically, SUM is the expected sum of the items in the data stream, COUNT

is the expected number of items (recalling that each item has a probability of
not appearing in the stream), MIN and MAX refer to the expected value of
the smallest item and largest item in the stream, respectively, and AVG is the
expected average over all items appearing in the stream. In symbols,

SUM = E




∑

i∈[n]:Xi 6=⊥

Xi


 COUNT = E




∑

i∈[n]:Xi 6=⊥

1




MAX = E

(
max

i∈[n]:Xi 6=⊥
{Xi}

)
MIN = E

(
min

i∈[n]:Xi 6=⊥
{Xi}

)

AVG = E

(∑
i∈[n]:Xi 6=⊥

Xi∑
i∈[n]:Xi 6=⊥

1

)

Note that AVG, MIN, and MAX are not well-defined in the case that the realized
stream of S is the empty stream; in the case of AVG this causes a division
by 0, and the minimum/maximum of an empty set is not well-defined. For
convenience, we will simply assume that the probability of the empty stream is
0. In [16], the definition is modified to be the expectation given that the stream
is non-empty. All of the work we summarize in this chapter goes through
under either definition, with only minor modifications. Specifically, set ρ =
1/Pr (S is non-empty). Then in each case, the estimate differs only by the
factor ρ.

We give approximations to each of these quantities. For δ ≥ 0, ε > 0,
we say a value Ṽ is an (ε, δ)-approximation to a value V if V (1 − ε) ≤
Ṽ ≤ V (1 + ε) with probability at least 1 − δ, taken over its random coin
tosses. In each of the algorithms for SUM,COUNT,MIN,MAX, and AVG, we
give deterministic algorithms. That is, we discuss algorithms yielding (ε, 0)-
approximations.

2.2 Frequency Moments and Quantiles

Recall the definition of the frequency moment Fk over a sequenceA of data
(with domain [m]): For each t in the domain [m], let ft denote frequency of t,
i.e., the number of times t appears in the sequence. Then

Fk(A) =
∑

t∈[m]

fkt

where 00 is defined to be 0, for convenience. The frequency moments for
k = 0, 1, 2 are of special interest, and often go by other names. The 0th
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frequency moment, F0, is the number of distinct values in the sequence, and we
denote its expected value by DISTINCT. The first frequency moment, F1, is
simply the number of items in the sequence. And F2 is often referred to as the
“repeat-rate;” we denote its expected value by REPEAT-RATE. Again letting
S denote the random variable describing the realization of the probabilistic
stream, we see ft and Fk(S) are themselves random variables as well. Thus,
we have the following definitions.

DISTINCT = E (F0(S))

REPEAT-RATE = E (F2(S))

and COUNT = E (F1(S)), which was also defined earlier. We will also
be interested in the variance of the frequency moments, which we denote
simply as Var (Fk(S)). As above, we will give algorithms yielding (ε, δ)-
approximations to these quantities. However, for these estimates, δ will be
non-zero, meaning that with some probability (according to the random coin
tosses of the algorithm), the algorithm will fail to yield a good estimate. Note
that there is not randomness due to the probabilistic stream, which is actually
specified as a (non-random) set of tuples.

Finally, we will be interested in the quantiles and heavy-hitters of the stream,
which are not so crisply defined in terms of expectation. Rather than find-
ing the expected value of these aggregates, we instead find a value that is
good, in expectation. Specifically, for any probabilistic stream S and value
t ∈ [m], let f̃t = ES (ft). That is, f̃t is the expected number of times that
element t appears, taken over the possible ground streams of S . Notice that∑

t∈[m] f̃t = COUNT. Then, given ε > 0, φ > 0, we say an element s is an
ε-approximation to the φ-Quantiles problem if

(φ− ε)COUNT ≤
s∑

t=1

f̃t ≤ (φ+ ε)COUNT

In the case that φ = 1
2 , we call the φ-Quantiles problem the MEDIAN prob-

lem.
For the ε-approximate φ-HeavyHitters problem, we wish to return all ele-

ments s for which

f̃s ≥ (φ+ ε)COUNT

and no items s for which f̃s ≤ (φ−ε)COUNT. The φ-HeavyHitters problem
is the only problem we consider for which the answer is not a single number.

Abusing notation somewhat, we say that an algorithm for φ-Quantiles

[resp., φ-HeavyHitters] is an (ε, δ)-approximation if, with probability at least
1−δ, it is an ε-approximation to φ-Quantiles [resp., solves the ε-approximate
φ-HeavyHitters problem], as defined in the previous paragraphs.
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3. Overview of techniques and summary of results

Before going into the technical details of the stream algorithms for each
of the aggregates, we give an overview of the general class of techniques
used. Very broadly speaking, researchers studying aggregates over probabilis-
tic streams have used three principle techniques: (1) reducing the probabilistic
stream problem to a deterministic datastream problem, (2) adapting known
datastream algorithms to the probabilistic stream world, and (3) approximat-
ing the mathematical expressions describing the aggregate over probabilistic
streams by simpler expressions that are calculable over datastreams.

We might wonder whether there is a universal method of reducing a prob-
abilistic stream problem to a deterministic one. Currently, no such method is
known that works with high probability and small error. However, there is a
general method based on sampling. Dubbed universal sampling [8], the idea
is to instantiate a sample set of possible worlds described by the probabilistic
stream. We then run, in parallel, standard datastreaming algorithms over each
of these ground streams, which are themselves deterministic streams, and re-
port the median value returned by each of these parallel instances. If we have
an algorithm that estimates a given aggregate over deterministic datastreams,
then this method does yield an algorithm that estimates that same aggregate
over probabilistic streams. In fact, the expected value produced is as good as
the original algorithm’s answer. Unfortunately, the general guarantee on the
variance of this procedure is not necessarily bounded. So, although universal
sampling works for certain problems, it does not give a reliable answer in small
space for every problem. The technical details of this are given in Section 4.

Universal sampling instantiates multiple ground streams based on the dis-
tribution of the probabilistic stream. For specific problems, we can produce
deterministic streams based on the distribution of the probabilistic streams that
capture exactly the needed information for the given problem, but in a much
simpler way. As an example, the probabilistic stream for MEDIAN can be re-
duced to a deterministic stream by repeating each item a number of times equal
to its expected number of appearances, multiplied by some value k [16]. The
median of this new deterministic datastream is then MEDIAN for the proba-
bilistic stream, affected only by the round-off error due to fractional numbers of
appearances. (The larger k, the smaller this round-off error.) The details of this
are given in Section 6. A similar technique is also used for DISTINCT [16].
Here, rather than creating a number of parallel instances of the stream, we in-
tertwine all of the instances into a single stream in such a way that elements
from separate instances are necessarily distinct. Thus, an algorithm estimating
the number of distinct elements over deterministic datastreams will yield an
estimate over probabilistic streams. Note here that rather than running, say ℓ,
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instances of the problem in parallel, we instead run a single algorithm on a
single stream that is ℓ times as long. The reduction is described in Section 5.

We discuss another reduction, which additionally relies on the linearity of
expectation. Estimating both quantiles and heavy-hitters can be done in the
deterministic stream world using count-min sketches, a method first described
by [10]. The count-min sketch allows us to maintain approximate informa-
tion on how many times each element has been seen (even allowing fractional
arrivals). So, by a simple reduction of the stream, we may instead track the
number of arrivals, in expectation; in the above notation, this is simply approx-
imating f̃t for each t. This information is enough to approximate the values for
φ-Quantiles and φ-HeavyHitters [8]. We go through this technique in more
detail in Section 6.

In addition to direct reductions, it sometimes proves useful to adapt tech-
niques from the deterministic stream world to probabilistic streams. In the
case of REPEAT-RATE, also known as the second frequency moment, F2, we
may utilize the celebrated algorithm of Alon, Matias, and Szegedy [3]. Here,
the reduction is not immediate, but the same technique may be modified to
solve the probabilistic stream problem. Rather than maintaining the sum of a
number of hashed values (as in [3]), we instead maintain the expected sum of a
number of hashed values, together with a small correction term. This provides
an unbiased estimator of the REPEAT-RATE, which we can further show has
low variance, thus giving a good solution with high probability. We describe
the solution, based on the work of [16, 8], in Section 5.

For several aggregates, standard reductions do not seem to work. To esti-
mate the value of MIN (or MAX), we must first analyze the expression describ-
ing its value. We then devise datastream algorithms to compute the expression,
based on the work of [15]. In order to produce an algorithm operating in small
space, we further approximate these expressions using a standard binning tech-
nique. This work is described in Section 7.

Another aggregate requiring more in-depth analysis is AVG. Here, we begin
by rewriting the expression for AVG as an integral, using generating function
techniques described by [15]. We then approximate the integrand as a polyno-
mial following [16]; this approximation is highly non-trivial, since the standard
Taylor-series type expansion fails to be a good estimate. The necessary coef-
ficients of the polynomial are maintainable in a datastream fashion, and it is
simple to integrate any polynomial once its coefficients are known. Thus, we
obtain an algorithm for estimating AVG over probabilistic streams.

Techniques for short and long streams. One common feature of many
algorithms over probabilistic streams is that they work differently, depending
on the expected length of the stream. For example, if we knew that the ex-
pected length of a probabilistic stream was very large, the the simple estimate
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SUM/COUNT is a good approximation of AVG. On the other hand, for short
streams, this is a very poor estimate. Note that “short” in this case means the
expected number of items appearing is small. Thus, we may have a stream
with many probabilistic items, each appearing with very small probability. So
simply remembering all the items and constructing an exact solution does not
work in general.

One intuition, which turns out to be true quite often, is that for very long
(in expectation) streams, aggregates taken over the stream tend to look like the
aggregates taken over the “expected value” of the stream. One incarnation of
this is the universal sampling result of [8] shown in Section 4. It shows that
for many aggregation functions, simply sampling a ground stream from the set
of possible streams will produce an aggregate value that is very close to the
expected aggregate value, with high probability.

On the other hand, we sometimes need specific techniques to handle streams
with short expected length. In practice, most items will appear with some
reasonably large probability (e.g. at least 1%). Hence, many streams with short
expected length will also have a small number of items, and exact algorithms
will often work quickly. So many of the techniques we present here that are
tailored to the short-stream case will be of more theoretical interest. Still, in
certain applications where many items appear with very low probability, such
techniques will be necessary to guarantee good approximations.

Approximation and randomization. As is standard in datastreaming
problems, many of the algorithms we describe here will produce approximate
results and utilize randomization. In fact, it is provably impossible to calculate
some of the aggregates we study exactly in small space. Exact computation
of frequency moments is known to take Ω(n) space, even over deterministic
streams, by a simple reduction to the well-known communication complexity
problem of set-disjointness. Indeed, even approximating within 1 + ε over
deterministic streams takes Ω(n1−5/k) for any constant ε [3]; even for non-
constant ε = Ω(n−1/2), approximating any frequency moments takes Ω(1/ε2)
space [20]. Likewise, approximating DISTINCT within 1+ε, even over deter-
ministic streams, must take at least Ω(ε−1) space [4]. Although it is trivial to
compute the average value of a deterministic stream in O(1) space, [15] show
that calculating AVG exactly over a probabilistic stream takes Ω(n) space.

Thus, almost all studied datastream algorithms (in the deterministic stream
world) use random bits and return approximate answers. What is surprising is
that the algorithms for estimating MIN, MAX, and AVG (as well as SUM and
COUNT) are deterministic. Perhaps this can best be explained by the fact that
the corresponding algorithm in the deterministic datastream world for each of
these aggregates is also deterministic. Indeed, each of MIN,MAX, AVG, SUM,
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and COUNT can be computed exactly using O(1) space and no randomness
when the stream has no uncertainty.

A second somewhat surprising aspect is that the error in each of the al-
gorithms is lower than might first be guessed. Indeed, most Chernoff-based
sampling techniques yield something on the order of Ω(1/ε2) space needed
for approximation factor of (1 + ε). The space needed for MIN and MAX

scales with 1/ε, while the space for AVG (as well as SUM and COUNT) is
even less. Again, although these are very attractive features in the algorithm,
they can be traced to the nature of the solutions. Rather than sampling or using
randomness, they depend on deterministic approximations of the basic expres-
sions describing the aggregates we compute. In the case of quantiles (including
MEDIAN) and heavy-hitters, we again see space ofO(1/ε). This can be traced
to the count-min sketch structure that is used.

This reduction in space from O(ε−2) to O(ε−1) is more than academic. For
ε values around 1%, this is a savings of two orders of magnitude, bringing the
datastream algorithms into the realm of the truly practical.

Summary of results. Table 8.1 summarizes the results we discuss.
Not shown in the table are SUM and COUNT, which were first discussed
by [6, 7], but are trivial to compute in O(logmn) space and with no chance
of error. We also do not list the method of universal sampling, which
uses O( 1

ε2
VarG(F (G))

EG(F (G))2
log(1/δ)) grounded stream samples. The entries for

DISTINCT ignore factors in log ε−1 and log logmn. In addition, the update
time is actually the amortized time. The authors of [4] present another algo-
rithm using space O(ε−2 logmn log δ−1) and the same non-amortized update
time (up to log ε−1 and log logmn factors). Also notice that there are two
lines for AVG. We discuss one algorithm here. The other algorithm, which has
faster update time but larger memory consumption, is a simple variant of this.

As we have remarked earlier, most of these algorithms work in time pro-
portional to ε−1, making them useable in practice, even for small ε. The algo-
rithms for the frequency moments need larger ε in order to run in small space
and time over real data.

Warm-up: SUM and COUNT. Before going through each of
the algorithms in detail, we begin with a trivial example. As observed
many times before [6, 7, 15, 16, 8], both SUM and COUNT can be
computed easily, due to linearity of expectation. Specifically, SUM =∑

i∈[n] E (Xi|Xi 6= ⊥) Pr (Xi 6= ⊥) and COUNT =
∑

i∈[n] Pr (Xi 6= ⊥),
essentially treating the value of ⊥ as 0. Clearly, both of these values are com-
putable exactly in datastreaming fashion.

It may be helpful to think of these problems as reducing to the problem of
finding the sum of elements in a deterministic datastream. In the case of SUM,
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Problem Space Update Time Authors

DISTINCT eO((ε−2 + logmn) log δ−1) eO(ε−3 logmn log δ−1) [16]

REPEAT-RATE O(ε−2 logmn log δ−1) O(ε−2 log δ−1) [16, 8]

φ-Quantiles O(ε−1 logmn log δ−1) O(log δ−1) [8]

φ-HeavyHitters O(ε−1 logmn log δ−1) O(log δ−1) [8]

MIN(MAX) O(ε−1 logmn) O(log ℓ) [15]

AVG O(log ε−1 logmn) O(log ε−1) [16]

AVG O(ε−1 logmn) O(1) [16]

Table 8.1. Summary of results. Each algorithm gives an ε-approximation with probability of
failure δ, except for MIN, MAX, and AVG, which all have no chance of failure. Note that the
algorithms for DISTINCT and REPEAT-RATE assume that ℓ = 1 for each block.

the i-th element has value E (Xi|Xi 6= ⊥) ·Pr (Xi 6= ⊥), where for COUNT,
the i-th element has value Pr (Xi 6= ⊥).

4. Universal Sampling

One of the most fundamental questions we might ask about probabilistic
streams is whether we can simply convert them to deterministic streams in
some general fashion, then use a known standard datastream algorithm to solve
the problem. To tackle this, we examine one of the simplest methods we might
try: Since the probabilistic stream describes a distribution over possible worlds,
just pick a possible world from this distribution, and report the value of the
aggregate in this world. We will see that this universal sampling approach is
actually quite reasonable, although the variance is too large for it to be useful
in every situation.

Let F be the aggregate we are computing, and suppose that there is a datas-
tream algorithmA that estimates F over deterministic streams. Sampling from
the space of possible worlds is a simple matter. As each pdf of the probabilistic
stream S arrives, simply choose a value for the corresponding item (or omit it,
if that value is ⊥) according to the pdf. In this way, we choose a grounded
stream G according to the distribution given by S .

Clearly, we obtain an unbiased estimate of EG∈S (F (G)) in this way, and
our variance is VarG∈S (F (G)). Thus, by a standard Chernoff-bound argu-

ment, if choose grounded streams G1, G2, ..., Gk (with k = O( 1
ε2

VarG(F (G))

EG(F (G))2
))

in this way and take the average value of F (Gi), then we estimate
EG∈S (F (G)) within (1 + ε) with constant probability.
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Again, by a standard argument, we can reduce the probability of failure
to δ by repeating the above experiment. Let t = O(log(1/δ)), and let Gij
be a randomly chosen grounded stream for i ∈ [k] and j ∈ [t]. Let F̃j =
1
k

∑
i∈[k] F (Gij), the average value of F taken over the j-th experiment. We

output the median of {F̃1, ..., F̃t}. Note that each value of F (Gij) can be

calculated in parallel, taking a total of O( 1
ε2

VarG(F (G))

EG(F (G))2
log(1/δ)) grounded

streams. Thus, we have the following theorem.

Theorem 8.3 ([8]) Let F be an aggregate function over deterministic

datastreams, and let S be a probabilistic stream. Then for any ε > 0, δ > 0,

we can approximate E (F (S)) using k = O( 1
ε2

VarG(F (G))

EG(F (G))2
log(1/δ)) grounded

stream samples according to S . If we have a streaming algorithm that (ε′, δ′)-
approximates F over deterministic datastreams using space S and update time
T , then this yields a (O(ε + ε′), δ + δ′)-approximation algorithm for F over
probabilistic streams, taking space O(kS) and update time O(kT ).

For a variety of aggregates, it will be the case that VarG∈S (F (G)) <<
EG∈S (F (G)), and universal sampling will give a good estimate. However,
this is not true in general. Further, we will see that for many of the aggregates
we study, we can actually use space much less that O(1/ε2).

A similar technique to the one above works for estimating Var (F (S)).

5. Frequency moments: DISTINCT and REPEAT-RATE

We now examine algorithms for estimating frequency moments F0 and F2.
The technique for F0, or DISTINCT, reduces the probabilistic stream to a sin-
gle deterministic stream (which isO(ε−3 log δ−1) times as long as the original
stream). For F2, or REPEAT-RATE, the technique is a modification of the one
first given in [3]. Note that in the following, we assume that each block has
size ℓ = 1.

5.1 DISTINCT

We first turn to the aggregate DISTINCT, or F0. We describe the reduction
technique from [16]. As with many probabilistic-stream algorithms, we must
consider two cases. In the first case, the value of DISTINCT is at least ε/2. In
the second, DISTINCT is less than ε/2.

In the first case, assume that DISTINCT ≥ ε/2. Given the probabilistic
stream S, we will produce a deterministic stream, as follows:

Set a constant c to be sufficiently large. (We will choose the value of c
momentarily.)
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For each k ∈ [c] and each tuple (j, pi(j)) in the stream, put jc+ k in the
constructed deterministic stream with probability pi(j).

Notice that we have expanded the domain of the elements in the constructed
stream to be [c(m+1)]. Essentially, we have made c separate streams— which
we can see by focusing our our attention to those elements of the constructed
stream that are congruent to k modulo c for each k ∈ [c]. Each of these streams
is one realization of the probabilistic stream, hence the expected value of F0

for the probabilistic stream is also expected to be the F0 value for each of these
streams.

So, we simply estimate the value of F0 for the constructed stream and divide
by c; this is tantamount to taking c separate streams, then taking their average
value of F0. So we see, using standard Chernoff arguments, that for c large
enough, we obtain a good estimate of DISTINCT for the probabilistic stream.
In our case, c = 54ε−3 ln(4/δ) is large enough.

In the second case, we use COUNT to approximate the value of DISTINCT.
In particular, it is clear that COUNT ≥ DISTINCT. Furthermore, it is not
hard to show that if COUNT ≤ ln(1+ε), then (1+ε)COUNT ≤ DISTINCT,
hence COUNT is a (1 + ε) approximation to DISTINCT. Specifically, by
direct calculation we have

DISTINCT =
∑

t∈[m]


1−

∏

i∈[n]

(1− pi(t))




≥ 1−
∏

i∈[n]

pi(⊥) ≥ 1− e−COUNT

≥ (1 + ε)COUNT for COUNT ≤ ln(1 + ε)

On the other hand, we see that if COUNT > ln(1+ε), then DISTINCT ≥ ε/2.
Thus, we have the following. Since there is an algorithm working over
deterministic streams taking space O(ε−2 logmn log δ−1) and update time
O(log ε−1 logmn log δ−1) [4], we have the following.

Theorem 8.4 ([16]) For any ε > 0, δ > 0, there is a probabilistic
stream algorithm for block-size ℓ = 1 that (ε, δ)-approximates DISTINCT,
using space O(ε−2 logmn log δ−1) for the sketch and with update time of
O(ε−3 log ε−1 logmn log2 δ−1).

We note that the paper of [4] also provides an algorithm taking space of
O((ε−2 + logmn) log δ−1) (ignoring log logmn and log ε−1 factors) and ap-
proximately the same update time, in an amortized sense.
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5.2 REPEAT-RATE

In this section, we describe an algorithm to estimate the second-frequency
moment, or REPEAT-RATE, over probabilistic streams. The algorithm, es-
sentially a generalization of the one estimating F2 over deterministic streams
given in [3], was discovering independently by both [8] and [16].

We first sketch the original algorithm of [3], working over deterministic
streams. Let H denote a uniform family of 4-wise independent hash func-
tions, with each h ∈ H mapping elements of [m] to {−1, 1}. That is, for
x1, x2, x3, x4 ∈ [m], the values h(x1), h(x2), h(x3), and h(x4) are indepen-
dent over the random choice of h ∈ H. For a deterministic stream of values
B = b1, b2, ..., bn, the estimator for F2 (with respect to h) is defined to be
Zh(B) = (

∑
i∈n h(bi))

2. It can be shown that Eh (Zh(B)) = F2(B), and that
the variance, Varh (Zh(B)) ≤ 2F2(B)2. We choose O( 1

ε2
) values for h, and

maintain each value Zh in a datastreaming fashion, in parallel. By standard
Chernoff bound arguments, this gives an estimate of F2(B) within (1 + ε) of
the correct value, with constant probability. Again, a standard argument shows
that we can reduce our chance of failure to at most δ by repeating this ex-
periment O(log(1/δ)) times and taking the median value of each experiment,
similarly to the procedure discussed in Section 4. Note that each of these ex-
periments can be done in parallel. Thus, using O(ε−2 log(1/δ)) registers, we
can estimate F2 over a deterministic stream within (1 + ε), with probability at
least (1− δ).

The approach of [8, 16] for probabilistic streams first notes that the ex-
pectation (taken over the possible ground streams that probabilistic stream
S may take on) of the above estimator is itself an unbiased estimator of
REPEAT-RATE over the probabilistic stream. That is, EG∈S (Eh (Zh(G)))
is an unbiased estimator for REPEAT-RATE. In fact, [16] goes further, argu-
ing that many unbiased estimators for deterministic streams can be similarly
augmented to become unbiased estimators for probabilistic streams. Unfortu-
nately, it is not immediate that such estimators are easily calculable, nor that
the variance is reasonably bounded. We now show that for REPEAT-RATE,
that is the case.

Given a probabilistic stream S where the i-th item is either ai with prob-
ability pi or ⊥ otherwise, we again let fj be the random variable describing
the number of occurrences of item j is the realization of S. Likewise, we set
f̃j = ES (fj). Letting h ∈ H be as above, define the following variables:

Uh =
∑

i∈[n]

h(ai)pi =
∑

j∈[m]

h(j)f̃j

Vh =
∑

i∈[n]

pi(1− pi)



Sketching Aggregates over Probabilistic Streams 239

Clearly, Uh and Vh are easy to maintain in a datastreaming fashion. We define

Z̃h = (Uh)
2 + Vh

and claim that Z̃h = EG∈S (Zh).
To this end, we have

Eh

(
Z̃h

)
= E


(
∑

j∈[m]

h(j)f̃j)
2


+

∑

i∈[n]

pi(1− pi)

=
∑

j∈[m]

(f̃j)
2 + Eh



∑

k 6=ℓ

h(k)h(ℓ)f̃kf̃ℓ


+

∑

i∈[n]

pi(1− pi)

=
∑

j∈[m]

(f̃j)
2 +

∑

i∈[n]

pi(1− pi)

where the last line follows from the fact that h(x)2 = 1, and Eh (h(x)) = 0
for any x ∈ [m] (as well as the 2-wise independence of h). Now, by the
summation of variances, we know that VarS (fj) =

∑
i:ai=j

pi(1 − pi). But

VarS (fj) = ES
(
(fj)

2
)
− (f̃j)

2. Hence,

Eh

(
Z̃h

)
=
∑

j∈[m]

(f̃j)
2 +

∑

i∈[n]

pi(1− pi) = ES



∑

j∈[m]

f2
j




= REPEAT-RATE .

We next need to argue that the variance of Z̃h is small. We now use the 4-wise
independence of h, together with the fact that h(x)2 = 1 and Eh (h(x)) = 0
to find

Varh

(
Z̃h

)
= Varh

(
U2
h

)
= Eh

(
U4
h

)
− Eh

(
U2
h

)2

=
∑

j∈[m]

f̃4
j + 3

∑

k 6=ℓ

f̃2
k f̃

2
ℓ − (

∑

j∈[m]

f̃2
j )

2

= 2
∑

k 6=ℓ

f̃2
k f̃

2
ℓ ≤ 2(

∑

j

f̃2
j )2 ≤ 2Eh

(
Z̃h

)2

Thus, using the precise argument as with deterministic streams, we can ap-
proximate REPEAT-RATE within (1 + ε) and probability at least (1 − δ) by
calculating Z̃h for O(ε−2 log(1/δ)) different instances of h. We have the fol-
lowing.
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Theorem 8.5 ([8, 16]) For any ε > 0, δ > 0, there is a proba-
bilistic stream algorithm for block-size ℓ = 1 that (ε, δ)-approximates
REPEAT-RATE, using space O(ε−2 log δ−1 logmn) and taking update time
O(ε−2 log δ−1).

6. Heavy-Hitters, Quantiles, and MEDIAN

We now examine an algorithm of Cormode and Garofalakis [8], which re-
duces the problem of quantile estimation for probabilistic streams to one over
deterministic streams.

In the deterministic setting, Cormode and Muthukrishan [10] provide what
they call count-min sketches (CM-sketches). The CM-sketch algorithm pro-
cesses a deterministic stream of tuples, where the i-th tuple has the form
(ji, ci), ji ∈ [m]. Conceptually, this tells us that the ji-th item from [m] has just
appeared ci more times (although we allow ci to be any positive number, not
just an integer). It is clear that usingm registers, we can track the precise count
for each of the m items. Thus, we can answer questions such as which items
appear most frequently, or a φ-quantile, easily. Amazingly, the CM-sketch
allows us to answer these same questions approximately, using space just
O(1

ε log δ−1 logmn) and update time O(log δ−1), where ε is an approxima-
tion error and δ is the probability that the algorithm fails. Specifically, letCj =∑

i:ji=j
ci. Then for any φ and ε > 0, we can (with probability (1− δ)) report

all items j for which Cj ≥ (φ + ε)
∑

k Ck while simultaneously reporting no
item j for which Cj ≤ (φ − ε)∑k Ck using space O(1

ε log δ−1 logmn) [10]
(i.e. the φ-Heavy hitters problem for deterministic streams). Likewise, for any
φ and ε > 0, we can (with probability (1 − δ)) report an item j for which
(φ− ε)∑k:Ck<Cj

Ck ≤ Cj ≤ (φ+ ε)
∑

k:Ck<Cj
Ck [10] (i.e. the φ-quantile

problem for deterministic streams). In both cases, the datastream algorithm
works without knowing φ. It is a parameter that may be chosen at query time.

Now, consider the heavy hitter problem over a probabilistic stream S of
length n. Recall that for j ∈ [m], we define f̃j = E (|{i ∈ [n]|Xi = j}), and
our goal in the φ-HeavyHitters problem is to return all j ∈ [m] such that

f̃j ≥ (φ+ ε)COUNT

and no j such that f̃j ≤ (φ − ε)COUNT. But notice that as each tuple of the

probabilistic stream arrives, say 〈(j(1)i , p
(1)
i ), . . . , (j

(ℓ)
i , p

(ℓ)
i )〉, we can treat it as

a set of ℓ pairs appearing in a deterministic stream, where p(k)
i plays the role of

ci. Thus we can use the CM-sketch algorithm on the corresponding determin-
istic stream, which produces the answer to the φ-HeavyHitters problem over
probabilistic streams.



Sketching Aggregates over Probabilistic Streams 241

Notice that an analogous argument applies to the φ-Quantiles problem over
probabilistic streams— each pdf can be treated as a set of pairs in a determin-
istic stream. Thus, we have the following result, first shown in [8].

Theorem 8.6 ([8]) Let ε > 0, δ > 0. Given a probabilistic stream

S of length n in which each element takes on a value from [m] ∪ {⊥},
there are datastream algorithms that (ε, δ)-approximate φ-HeavyHitters and
φ-Quantiles for any φ > ε. Both use the same sketch structure, which takes
space O(1

ε log(1/δ) logmn) and requires update time O(log δ−1). The value
of φ may be chosen after the sketch is created.

MEDIAN. Although MEDIAN is a special case of φ-Quantiles with φ =
1
2 , we briefly describe an algorithm proposed in [16], since it illustrates another
reduction of a probabilistic stream to a deterministic stream.

In this case, we produce a deterministic stream in which every item appears
essentially k times the expected number that it appears in the probabilistic
stream. We choose k large enough so that the round-off is sufficiently small.
Specifically, following the technique of [16], let k = ⌈2nε−1⌉, and do the
following:

For each tuple (j, pi(j)) in the probabilistic stream, produce ⌊kpi(j)⌋
items with value j in the deterministic stream.

Note that if items could appear a fractional number of times, then the median of
the resulting deterministic stream would be precisely the median of the prob-
abilistic stream. However, since we need to round to the nearest integer value
for each tuple in the probabilistic stream, we need to ensure that k is large
enough so this error is small. Note that kpi(j) ≥ ⌊kpi(j)⌋ ≥ kpi(j) − 1, so
the accumulated error after n items in the probabilistic stream is still at most
n/k = ε/2. This is enough to guarantee that the algorithm for median over
deterministic streams, such as the one of [14], approximates the probabilistic
stream version of MEDIAN.

7. A Binning Technique for MIN and MAX

We now examine the problem of estimating MIN and MAX over a proba-
bilistic stream. Since the solution to the two problems is entirely analogous,
we focus solely on MIN throughout this section. Recall that the definition of
the problem asks for the expected value of the minimum element of the stream:

MIN = E

(
min

i∈[n]:Xi 6=⊥
{Xi}

)

We will compute an estimate for this value by first analyzing an exact formula-
tion, then using a binning technique to provide an approximation. To this end,
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we now give an exact algorithm using O(m) space, where again, each item in
the probabilistic stream takes on a value from [m]∪{⊥}. Although the original
paper of [15] handles the case where the support of each pdf is size up to ℓ,
here we focus on the case where each item is either ⊥ or a single value from
[m], simply for readability and ease of understanding. That is, the i-th tuple
is represented by 〈ai, pi〉, meaning that Xi = ai or ⊥, and the probability that
Xi = ai is pi. As with the other sections, we will assume that the probability
that the probabilistic stream is empty is 0.

Let Xmin = mini∈[n]Xi, where we treat the value of ⊥ as being m + 1.
Note that Xmin is itself a random variable, and that it takes on a value from
[m], since we assumed that the stream is non-empty. Our goal then is to find
E (Xmin). We will maintain several values incrementally. For each a ∈ [m],
and for r ∈ [n], define the following:

X
(r)
min = min

i∈[r]
Xi where Xi = ⊥ is treated as m+ 1.

P (r)
a = Pr

(
X

(r)
min = a

)

Q(r)
a = Pr

(
X

(r)
min > a

)

Clearly, E
(
X

(r)
min

)
=
∑

a∈[m] P
(r)
a · a+ (m+ 1)Q

(r)
m . The value of Q(r)

a will

be used as a helper variable in computing P (r)
a . In particular, define P (0)

a = 0

and Q(0)
a = 0 for all a ∈ [m]. Then it is straightforward to compute the value

of P (r)
a , given the values of P (r−1)

a and Q(r−1)
a for r ≥ 1. We have

P (r)
a = P (r−1)

a · Pr (Xr ≥ a or Xr = ⊥) +Q(r−1)
a · PrXr = a

Q(r)
a = Q(r−1)

a · Pr (Xr > a or Xr = ⊥)

Note that these values are easy to maintain in a datastreaming fashion. Hence,
using O(m) space, and with update time O(m) per item, we can calculate the
value of E (Xmin) exactly.

However, using the ideas found in [15], we can maintain different values
that allow us to calculate E (Xmin), and which take just O(1) update time per

item. For each a ∈ [m], define the sequences U (·)
a and V (·)

a as follows. Let

U
(0)
a = 0, V (0)

a = 1, and for r > 0, let

U (r)
a = U (r−1)

a +
Pr (Xr = a)

1− Pr (Xr < a)
V (r−1)
a

V (r)
a =

1− Pr (Xr ≤ a)
1− Pr (Xr < a)

V (r−1)
a

Notice that these values are simple to maintain in a datastreaming fashion.
Furthermore, suppose that the r-th tuple is 〈ar, pr〉, so that Pr (Xr = a) = 0
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for all a 6= ar. Hence, U (r)
a = U

(r−1)
a and V (r)

a = V
(r−1)
a for all a 6= ar.

That is, only U (r)
ar and V (r)

ar need to be updated on the r-th item. Thus, we can
maintain each of the values in O(1) update time.

The important point, however, is that we can use these maintained values to
reconstruct the value of E (Xmin). It can be shown via a telescoping product
that

Q(r)
a =

∏

a′≤a

V
(r)
a′

We can show by induction that

P (r)
a = U (r)

a

∏

a′<a

V
(r)
a′

The algebraic details are omitted here. Hence, we have provided a datastream-
ing algorithm working in O(m) memory and taking just O(1) time to update
per item. Note that in order to reconstruct the answer after the stream has
passed, we needO(m) time to calculate the value of E (Xmin). In general, [15]
show that when the pdf has support of size ℓ, there is an algorithm taking time
O(ℓ log ℓ) per pdf, i.e. update time O(log ℓ).

Of course, taking O(m) memory is too space-intensive. We now present
the binning technique described in [15], which provides a (1 + ε) approxi-
mation, using just O(1

ε logm) space. This has the additional advantage that
the technique works even when the support of the pdf is not a finite, dis-
crete set. The technique itself is the standard geometric binning idea: Let
ε > 0, and let the i-th bin refer to the interval [(1 + ε)i, (1 + ε)i+1) for
i = 0, 1, ..., ⌊logm/ log(1 + ε)⌋. Clearly, these bins encompass the set [m],
and there are 1 + ⌊logm/ log(1 + ε)⌋ = O(1

ε logm) of them.
So, we proceed as before, with the following small modification: We treat

every item as though it took on a value (1 + ε)i for some i. Specifically, if
an item takes on value a with a ∈ [(1 + ε)i, (1 + ε)1+i), round a down to
(1 + ε)i. In this way, we have decreased the domain to size O(1

ε logm), and
only produced at error of (1 + ε). Thus, the memory requirements, and the
time to reconstruct the estimate of E (Xmin) are both O(1

ε logm). We have
the following theorem.

Theorem 8.7 ([15]) Let ε > 0. There is a probabilistic stream algorithm
working in memoryO(1

ε logmn), and having update timeO(1), that produces
a (1 + ε)-estimate ofMIN. If the tuples of the probabilistic stream have size ℓ,
then there is an algorithm with the same memory requirements, taking update

time O(log ℓ). In both cases, reconstructing the answer from the sketch takes
O(1

ε logm) time.
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8. Estimating AVG using generating functions

As the final aggregate we consider, we now explore a probabilistic stream
algorithm to estimate the value of AVG. The analysis utilizes the method of
generating functions to produce a mathematical expression that can be approx-
imated in a datastream fashion. Using this expression we show first that esti-
mating AVG by the simple expression SUM/COUNT is actually quite good
when the probabilistic stream is long in expectation. We then turn to a prob-
abilistic stream algorithm that works even when the stream is short. But first,
we discuss the generating function technique.

8.1 Generating functions

The expressions denoting the actual value of various aggregates are gen-
eral sums over an exponential number of terms. This is to be expected: the
number of possible worlds for a given stream is generally exponential in its
length. When this sum takes certain forms, we may use generating functions
to simply it. In the technique we describe here, taken from the work of [16], the
expression becomes the integral of a function that is easy to compute in a datas-
treaming fashion. Thus, we have traded one problem for another. However, as
we see in the next subsection, estimating the value of the integral generated in
the case of AVG can be done quite efficiently.

Let Ui, Vi be random variables for i ∈ [n] such that Ui is independent of Uj
and of Vj for all i 6= j. (It may be the case that Ui and Vi are not independent
of each other.) Define the value RATIO by

RATIO = E

(∑
i Ui∑
i Vi

∣∣∣∣
∑

i

Vi 6= 0

)

The difficulty in estimating RATIO stems from the fact that the denominator is
itself a random variable. In order to address this difficulty, we use generating
functions to remove the denominator. Let

G(x) = E

(∑
i Ui∑
i Vi
· x

P
i Vi

∣∣∣∣
∑

i

Vi 6= 0

)
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Note that G(1) = RATIO and G(0) = 0. Using the fact that differentiation is
a linear operator, we see that

xG′(x) = E




∑

i Ui∑
i Vi
· (
∑

j

Vj)x
P
j Vj

∣∣∣∣∣∣

∑

i

Vi 6= 0





= E

(
(
∑

i

Ui)x
P
j Vj

∣∣∣∣∣
∑

i

Vi 6= 0

)

= E

(
(
∑

i

Ui)x
P
j Vj

)
· 1

Pr (
∑

i Vi 6= 0)

=
∑

i

E
(
Uix

Vi
)∏

j 6=i

E
(
xVj
)
· 1

Pr (
∑

i Vi 6= 0)

where the last line follows from the fact that Ui, Vi are independent of the Vj
for j 6= i. Using the fact that RATIO =

∫ 1
0 G

′(x)dx, we have the following
theorem, proven in [15].

Theorem 8.8 ([15]) Let U1, Vi, and RATIO be defined as above. Then

RATIO =
1

Pr (
∑

i Vi 6= 0)

∫ 1

0

1

x

∑

i

E
(
Uix

Vi
)∏

j 6=i

E
(
xVj
)
dx .

Although we do not provide a general method for evaluating the integral, we
note that the integrand is calculable in a datastreaming fashion, so long as
E
(
Uix

Vi
)

and E
(
xVi
)

are efficiently calculable. In [15], the authors propose
a datastreaming algorithm that estimates the integral using multiple passes. In
the next subsection, we will see a method for estimating the integral in the
special case of AVG. However, this relies on a more technical analysis of the
integral we obtain.

8.2 Estimating AVG

We now apply the techniques of the previous section to derive an expres-
sion for AVG in terms of an integral. In this case, we are given a stream

X1, ..., Xn, and we wish to compute E
(∑

i∈[n]:Xi 6=⊥
Xi/N |N > 0

)
, where

N is the number of Xi 6= ⊥. (Recall that N > 0 with probability 1 for us.)
Hence, we appeal to Theorem 8.8 by defining Ui = Xi forXi 6= ⊥ and Ui = 0
otherwise, and defining Vi = 1 if Xi 6= ⊥ and Vi = 0 otherwise. For conve-
nience, let ai = E (Xi|Xi 6= ⊥). That is, let ai be the expected value of the
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i-th item, given that it is not bottom. Also, let pi = Pr (Xi 6= ⊥). Note that
E
(
Uix

Vi
)

= aipix, while E
(
xVi
)

= pix+ 1− pi. Thus, we see

AVG =

∫ 1

0

∑

i

dx

x
E
(
Uix

Vi
)∏

j 6=i

E
(
xVj
)

=

∫ 1

0

∑

i:Xi 6=⊥

aipi
1

pix+ 1− pi
∏

j

(pjx+ 1− pj)dx

We have the following theorem, first shown in [15].

Theorem 8.9 ([15]) Let S be a probabilistic stream in which the i-th item
is not⊥ with probability pi, and its expected value, given that it is not⊥, is ai.
Further, assume that the probability of S being the empty stream is 0. Then

AVG(S) =

∫ 1

0

∑

i∈[n]

aipi
1− pi + pix

·
∏

j∈[n]

(1− pj + pjx)dx .

A key property of AVG that the above theorem shows is that the only informa-
tion we need about the pdf describing each item is its expected value given that
it is not ⊥ (i.e. ai) and the probability that it is not ⊥ (i.e. pi).

Using Theorem 8.9, Jayram, et. al [15] provide a multipass streaming algo-
rithm to estimate AVG. Denoting the integrand by f(x), their method finds a
set of points 0 = x0, x1, ..., xk = 1 such that f(xi) ≈ (1 + ε)f(xi−1) for each
i ∈ [k]. Since f is increasing, it is then a simple matter to estimate the integral:

∑

i∈[k]

(xi − xi−1)f(xi−1) ≤
∫ 1

0
f(x)dx ≤

∑

i∈[k]

(xi − xi−1)f(xi)

Since the left-hand side and the right-hand side are within (approximately)
(1 + ε) of each other, this shows that they are both within (1 + ε) of the
integral. Note, too, that once the values of xi are known, it is a simple matter
to evaluate f(xi) for each i in a datastreaming fashion. The difficulty, then, is
to find the proper xi values. But note that the xi values satisfy (approximately)
the equality f(xi) = f(0)(1 + ε)i. In one pass, we can calculate f(0), and
hence, we can use binary search to find the xi’s that approximately satisfy the
equality in a logarithmic (in the accuracy of the approximation) number of
steps. Thus, [15] provides a O(log ε−1)-pass algorithm to estimate the value
of the integral from AVG. It is not hard to see that this method generalizes
somewhat, working for any f that is increasing and calculable in one pass.
The total memory requirement is then O(k) registers, and the update time is
also O(k) per item, where k is the number of points xi used in the calculation.
Further, we see that k is the smallest integer such that f(0)(1 + ε)k > f(1),
hence k = O(1

ε log(f(1)/f(0))) = O(1
ε logn).
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Although the method of [15] is fairly general, it requires multiple passes
over the data. In work building on this, [16] produce a single-pass algorithm
working in smaller space and with smaller update time. Their method relies
on a careful analysis of the integral for the specific case of AVG. We now ex-
amine their technique. The first step is rewriting the integral in a more useable
form. Given this new form, we analyze, in the next subsection, the algorithm
that approximates AVG by using SUM/COUNT, showing that if the stream
has sufficiently many items in expectation, then this is a good estimate. Fol-
lowing that subsection, we do a more in-depth analysis to yield an algorithm
for estimating AVG, regardless of the length of the stream.

But first, we rewrite the integral somewhat. Let z = 1 − x, and perform a
change of variable with a little algebra to find the following.

AVG =

∫ 1

0

∏

j∈[n]

(1− pjz)
∑

i∈[n]

aipi
1− piz

dz (8.1)

=

∫ 1

0
g(z)h(z)dz (8.2)

where we define

g(z) =
∏

i∈[n]

(1− piz) , h(z) =
∑

i∈[n]

aipi
1− piz

, and f(z) = g(z)h(z) .

Notice that both g(z) and h(z) are well-defined and easy to compute in a single
pass for z > 0.

One might wonder whether simply estimating the integral by approximating
f(z) would be sufficient. Unfortunately, this approach fails. In fact, it is not
hard to check that the coefficients of the Taylor series expansion about z = 0
grow exponentially. On the other hand, f(z) is most interesting around z = 0.
As we will see shortly, f(z) drops to 0 exponentially as z moves away from 0.

Instead, we will approximate h(z) with a Taylor series expansion, and ap-
proximate the logarithm of g(z) with a Taylor series expansion. We will see in
the coming subsections that the Taylor series, with a little work, will estimate
these functions well. Even so, we will not be quite done. Recall that we need to
evaluate the integral of g(z)h(z), and we have approximated the logarithm of
g(z), hence written g(z) as exp(low-degree polynomial). To overcome this ob-
stacle, we then approximate our approximation of g(z) as a polynomial, which
allows us to integrate.

But first, we turn to the analysis of SUM/COUNT, which will serve as a
warm-up to the more detailed analysis that appears later.
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8.3 Approximating AVG by SUM/COUNT

Following the notation of [16], define P = COUNT. We will show in
this section that if P is sufficiently large, then SUM/COUNT is a good
approximation of AVG. This estimate of AVG was first proposed by [6]
in a non-datastream context, although they did not provide any bounds on
its accuracy. Despite its guarantees for long streams, the simple estimate
SUM/COUNT fails to be a good estimate in many simple cases. For ex-
ample, consider a stream with two items: the first appearing with probability
1 and having value 1 if it appears, the second item appearing with probabil-
ity 10−6 and having value 106 if it appears. The true value of AVG equals
1 · (1− 10−6) + 1

2(106 + 1) · (10−6) ≈ 3
2 , while the value of SUM/COUNT

equals (1 + 106 · 10−6)/(1 + 10−6) ≈ 2.
We now prove that for large P , we have a good approximation. The key

idea throughout will be to estimate the product of terms using exponential ex-
pressions. For example, we have
∫ 1

0

∏

j 6=i

(1− pjz)dz ≤
∫ 1

0
exp(

∑

j 6=i

−pjz)dz ≤
∫ 1

0
exp(−z(P − 1))dz

=

(
exp(−z(P − 1))

−(P − 1)

∣∣∣∣
1

0

=
1

P − 1

Hence, using Equation 8.2, we see

AVG =

∫ 1

0

∑

i∈[n]

aipi
∏

j 6=i

(1− pjz)dz

≤ SUM
1

P − 1
=

SUM

COUNT

(
1 +

1

P − 1

)

For the other direction, we will utilize the inequality 1 − x ≥ (1 − v)x/v

for any x ∈ [0, v]. We again estimate the product of terms using exponential
expressions:

g(z) =
∏

i∈[n]

(1− piz) ≥
∏

i∈[n]

(1− v)piz/v = (1− v)Pz/v

We additionally lower-bound h(z) ≥∑i∈[n] aipi = SUM. Hence, we see that

AVG =

∫ 1

0
g(z)h(z)dz ≥

∫ v

0
SUM · (1− v)Pz/vdz

= SUM

(
(1− v)Pz/v
P
v ln(1− v)

∣∣∣∣∣

v

0

=
SUM

COUNT
· v

ln( 1
1−v )

(1− (1− v)P )
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This last expression is somewhat difficult to work with. Using a Taylor series
expansion, we see that ln( 1

1−v ) ≤ v + v2 for v ∈ (0, 1/2]. We also note that

(1 − v)P ≤ evP . Since we are interested in streams for which P is not small,
we may assume that P ≥ e. Set v = lnP/P . Then continuing, we see

AVG ≥ SUM

COUNT
· v

v + v2
(1− evP ) ≥ SUM

COUNT
· (1− lnP

P
)(1− P )

≥ SUM

COUNT
· (1− 2

lnP

P
)

So we see that AVG is within (1 + O(lnP/P )) of SUM/COUNT (for both
upper and lower bounds). With a little algebra, we arrive at the following
theorem.

Theorem 8.10 ([16]) Let ε < 1, and let S be a probabilistic stream for
which P = COUNT(S) ≥ 4

ε ln(2/ε), and such that the probability that S is
the empty stream is 0. Then

(1− ε) SUM

COUNT
≤ AVG ≤ (1 + ε)

SUM

COUNT

Thus, if the stream is very long, or we are not concerned with the guaranteed
accuracy of the algorithm, the simplistic SUM/COUNT method is quite good.
However, we will see that using a somewhat more complicated method, we can
get much better estimates while still using small space and update time.

As we mentioned earlier, the generating-function method used here allows
us to obtain stronger bounds than one might first guess. In particular, using
a Chernoff-based analysis, one would expect error bounds on the order of
O(1/ε2). The detailed analysis here yields error bounds scaling with 1/ε. For
a reasonable value of ε, say around 1% error, this is two orders of magnitude
improvement.

Estimating AVG for any stream. We now analyze a method of approx-
imating AVG that works even for probabilistic streams whose expected num-
ber of items is very small. Although in this section, we will assume that the
probability of the stream being empty is 0, it is worthwhile to point out that
in the original work of [16], this was not necessarily the case. They allowed
the stream to be empty with some non-zero probability. As mentioned early,
this results in the minor modification of the estimates by multiplying by the
value ρ = 1/Pr (S is non-empty). However, for simplicity, we will restrict
ourselves to the case where S is always non-empty.

The first step in the analysis is to restrict the interval we need to approximate
somewhat. Let z0 = min{1, 1

P ln(2P/ε)}. (Note that since S is never empty,
it must be the case that P ≥ 1. In [16], the authors also consider the case
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P < 1.) We will now argue that
∫ z0
0 f(z)dz is a good approximation to AVG.

To this end, note that f is decreasing, which can be checked by seeing that its
derivative is negative on (0, 1]. Thus, we see for z0 = 1

P ln(2P/ε),

∫ 1

z0

f(z)dz ≤ f(z0)(1− z0) =
∏

i

(1− piz0)
∑

i

aipi
1− piz

(1− z0)

≤ e−Pz0SUM =
ε

2

SUM

COUNT
≤ εAVG

where the last inequality follows from the fact that AVG ≥ 1
2SUM/COUNT

when P ≥ 4 ln 2, as Theorem 8.10 shows.†

Thus, we see that
∫ z0
0 f(z)dz is within (1 − ε) of the actual value of AVG.

So we only need to obtain approximations of g(z) and h(z) that are good on
the interval [0, z0]. As we mentioned earlier, we use the Taylor series expan-
sions for h(z) and ln g(z). We will show that for z0 < 1, these Taylor series
are very good approximations for their respective functions. However, when P
is extremely small, (e.g. P = O(ln(1/ε))), then z0 = 1. In this case, the Tay-
lor series expansions fail to be good approximations near z = 1. To remedy
this, we use the following trick: We remember every (ai, pi) pair for which
pi > θ, for some θ we choose. We then consider the Taylor series expansion
only for those items with pi ≤ θ, ignoring those with large pi. In this case, the
coefficients (which are functions of the pi) will decrease exponentially fast for
higher-degree terms. Thus, this modified Taylor series is again a good approx-
imation to the stream of low-probability items. To obtain an approximation for
the entire stream, we simply combine the Taylor series with the items that we
explicitly remembered. Note that the number of items we remember is rela-
tively small, at most P/θ; once P grows large enough, we know that z0 < 1,
and we no longer have to remember the items. The authors of [16] consider
other θ values, which allow the algorithm to trade off faster update times for
somewhat higher cost in memory. For θ = ε−1/2, the algorithm has just O(1)
update time, while using O(ε−1) registers.

Rather than going through the technical details of this idea, we will assume
throughout the rest of this section that z0 = 1

P ln(2P/ε) < 1/e and set θ =
1/e. We refer the interested reader to [16] for the full proof when z0 is larger,
and for other values of θ.

The algorithm we use maintains several simple values. Define

Pk =
∑

i∈[n]

pki and Ak =
∑

i∈[n]

aip
k
i

†To be somewhat more precise, the proof from the previous section actually shows that SUM/COUNT ≤
2AVG whenever z0 = 1

P
ln(2P/ε) < 1, which is true for us.
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We will maintain Pk and Ak for k = 1, 2, ..., O(ln(1/ε)). Note that maintain-
ing each of these values is straightforward to do in a datastreaming fashion,
in O(1) time. Hence, maintaining all of these values leads to an algorithm
with O(ln(1/ε)) update time per item, with the number of registers equal to
O(ln(1/ε)) as well.

Our goal, again, is to estimate
∫ z0
0 g(z)h(z)dz, where z0 = 1

P ln(2P/ε) <
1/e. We now write the Taylor series expansion for ln g(z) and h(z):

ln g(z) =
∑

i∈[n]

ln(1− piz) = −
∑

i∈[n]

∑

j≥1

(piz)
j

j
= −

∑

j≥0

Pjz
j/j

h(z) =
∑

i∈[n]

aipi
1− piz

=
∑

i∈[n]

aipi
∑

j≥0

(piz)
j =

∑

j≥0

Aj+1z
j

Thus, we define

g̃k0(z) = exp



−
k0∑

j=1

Pjz
j/j



 with k0 = 2 ln(2/ε)

h̃k1(z) =

k1∑

j=0

Aj+1z
j with k1 = ln(2/ε)

Although we omit the technical details here, it is not hard to show that g̃k0(z)
and h̃k1(z) are (1 + ε) approximations of their respective functions. The key
observation in the argument is that zj decreases exponentially in j, since z ≤
z0 < 1/e. (In the case that z0 > 1/e, we instead examine Pj , showing that it
decreases exponentially as well when we consider only items with value less
than θ = 1/e.)

Unfortunately, integrating g̃k0(z) · h̃k1(z) has no closed-form solution. So
we now approximate g̃k0(z) by expanding each exponential term.

g̃k0(z) = exp



−
k0∑

j=1

Pjz
j/j



 =

k0∏

j=0

exp(−Pjzj/j)

=

k0∏

j=1

∑

ℓ≥0

1

ℓ!

(−Pjzj
j

)ℓ

We again omit the details here, but the authors of [16] show that the above
expression can be truncated to obtain a (1 + ε) approximation of g̃k0(z). In
particular, they show the following.

Lemma 8.11 ([16]) Let 0 < ε < 1/2, and define P , Pi, z0, and g̃k0(z) as
above. Further, let k2 be the smallest integer greater than 5 ln(2P/ε). Then
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for P ≥ 1, and z ≤ z0, we have

g̃k0(z) ≤
k0∏

j=1

k2∑

ℓ=0

1

ℓ!

(−Pjzj
j

)ℓ
≤ (1 + ε)g̃k0(z) .

Putting this all together, we see that the algorithm simply needs to maintain the
values Ak, Pk for k = 1, ..., O(log(1/ε)), which can easily be maintained in a
datastreaming fashion. To estimate that value of AVG, we use the expression

∫ z0

0
dz

k1∑

j=0

Aj+1z
j
k0∏

j=1

k2∑

ℓ=0

1

ℓ!

(−Pjzj
j

)ℓ

with k0, k1, k2 as defined above. Notice that the integrand is actually a polyno-
mial, so evaluating the integral is simple once the polynomial is reconstructed.
As we stated earlier, the algorithm uses just O(log ε−1) registers for its sketch,
the values Pk and Ak for k = 1, ..., O(log ε−1). Each register holds a number
representable in O(log ε−1 logmn) bits. Thus, we have the following.

Theorem 8.12 Let ε > 0. There is a probabilistic stream algorithm work-
ing in memoryO(log2 ε−1 log(mn)), and having update timeO(log ε−1), that
produces an (ε, 0)-approximation of AVG. Reconstructing the answer from the
sketch takes O(log3 ε−1 log log ε−1) time.

As previously mentioned, the paper of [16] extends this theorem, additionally
showing that there is a variant of this algorithm working in O(1) update time,
but taking space O(ε−1 logmn). The time to reconstruct the answer from
the sketch is O(ε−1 log2 ε−1). Remarkably, this datastreaming algorithm is
deterministic, so there is no chance of failure.

9. Discussion

This survey examined several techniques for estimating aggregates over
probabilistic streams. For some aggregates, it is possible to directly reduce
the probabilistic stream to a deterministic one and to estimate the aggregate
using known datastreaming algorithms. In the case of REPEAT-RATE, rather
than using a direct reduction, we instead used the ideas of the algorithm for de-
terministic streams. But for aggregates such as MIN and AVG, it was necessary
to analyze the mathematical expressions describing the expectation directly.

The algorithms themselves are surprisingly efficient. For all the aggregates
other than the frequency-moments, both the space of update time of the cor-
responding algorithms are proportional to ε−1 (or better). This is a contrast
to many datastreaming algorithms, which sometimes have Ω(ε−2) or more up-
date time and space requirements. Although in some cases, these lower bounds
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are provable, it still means that the algorithms themselves will be orders of
magnitude slower than ones working with update time O(ε−1). And while
algorithms working with update time O(ε−1) are truly practical in general, al-
gorithms that are significantly slower than this are not always as useful. The
memory requirements are not always stringent in a database context, but they
are sometimes crucial in streaming applications over large networks.

On the theoretical side of things, we would expect a O(ε−2) bound for al-
gorithms using sampling; indeed, these are typically of Chernoff-bound based
analysis. It is remarkable that for all but the frequency moments (which them-
selves have provable lower bounds of Ω(ε−2) for REPEAT-RATE [20] and
Ω(ε−1) for DISTINCT [4]), the algorithms presented for probabilistic streams
beat these bounds.

A second surprise is that several of the algorithms we describe are determin-
istic. Indeed, this is somewhat of a rarity in the datastream literature. These de-
terministic algorithms, for MIN and AVG (and trivially, for SUM and COUNT)
are all based on analysis of the expression describing the expectation. Further,
they are all trivial to compute (deterministically) in the deterministic streaming
world. Nevertheless, it is somewhat counterintuitive that we have deterministic
algorithms for probabilistic streams.

There are several directions for future work. Of course, as we process more
uncertain data, there will be a greater need to understand and produce algo-
rithms for probabilistic streams; any function that is computable over deter-
ministic streams is a potential research problem when mapped to probabilistic
streams. Beyond this, however, there is a deeper question: what can we solve
in the deterministic world that cannot be solved in the uncertain world? The
universal sampling approach of [8] is a move towards answering that question,
showing that there is a procedure for estimating any aggregate over proba-
bilistic streams that can be estimated over deterministic streams— albeit with
potentially large variance. On the negative side, it is known that answering
even conjunctive queries over probabilistic databases is #P -hard [11]. There
is still a great gap in our understanding of efficient algorithms over uncertain
data.
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Abstract The join query is a very important database primitive. It combines two datasets
R and S (R = S in case of a self-join) based on some query predicate into
one set such that the new set contains pairs of objects of the two original sets.
In various application areas, e.g. sensor databases, location-based services or
face recognition systems, joins have to be computed based on vague and un-
certain data. As a consequence, in the recent decade a lot of approaches that
address the management and efficient query processing of uncertain data have
been published. They mainly differ in the representation of the uncertain data,
the distance measures or other types of object comparisons, the types of queries,
the query predicates and the representation of the result. Only a few approaches
directly address join queries on uncertain data. This chapter gives an overview
of probabilistic join approaches. First, it surveys the categories that occur in gen-
eral queries on uncertain data and secondly, it exemplarily sketches some join
approaches on uncertain data from different categories.

Keywords: probabilistic query processing, uncertainty models, similarity join, spatial join

1. Introduction

In many modern application ranges, e.g. spatio-temporal query processing
of moving objects [20], sensor databases [19] or personal identification sys-
tems [57], usually only uncertain data is available. For instance, in the area
of mobile and location-based services, the objects continuously change their
positions such that information about the exact location is almost impossible
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to obtain. An example of a location-based service and in particular of a spa-
tial join is to notify moving people on their cell-phone if one of their friends
enters their vicinity. In the area of multimedia databases, e.g. image or mu-
sic databases, or in the area of personal identification systems based on face
recognition and fingerprint analysis, there often occurs the problem that a fea-
ture value cannot exactly be determined. This uncertain data can be handled
by assigning confidence intervals to the feature values, or by specifying prob-
ability density functions indicating the likelihoods of certain feature values.

A join query combines two datasetsR and S (R = S in case of a self-join)
based on some query predicate into one set such that the new set contains pairs
of objects of the two original sets. Formally,

Definition 9.1 (Join Query) Given two relations R and S and a pred-
icate θ : R × S → {true, false}. A join query on R and S is defined as
follows:

R ⊲⊳θ S = {(r, s) ∈ R× S|θ(r, s) = true}.
In order to join uncertain objects by traditional join methods, a non-uncertain
result of the join predicate is required. However, if a query predicate is applied
to uncertain attributes of uncertain objects, usually no unique answer whether
the query predicate is fulfilled can be given. In this case, the vague information
has to be aggregated in order to make the join predicate evaluable. Obviously,
aggregation goes hand in hand with information loss. For instance, we have no
information about how uncertain the similarity between two uncertain objects
is. Even if we had one, it would be of no use because traditional join algorithms
cannot handle this additional information.

This chapter gives an overview of probabilistic join approaches. They
mainly differ in the representation of the uncertain data, the distance measure
or other types of object comparisons, the types of queries, the query predi-
cates and the representation of the result. First, the following section (Section
2) gives a rough overview of traditional join methods originally defined for
non-uncertain data, but which form an important foundation for several join
approaches defined for uncertain data. Section 3 surveys different uncertainty
models and shows how existing join queries (and queries in general) on un-
certain data can be categorized. Section 4 exemplarily sketches existing proba-
bilistic join approaches on uncertain data which are representatives of different
probabilistic join categories.

2. Traditional Join Approaches

A variety of different algorithms have been proposed for joining relations
in the traditional case where the data is not uncertain. The following section
gives a brief overview over existing approaches and serves as a base for the
generalization to the case of uncertain data.
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Figure 9.1. Order of accessed tuple pairs using the simple Nested-Loop Join

2.1 Simple Nested-Loop Join

The brute-force approach to perform a join on two relations R and S is
called the Simple Nested-Loop Join and works as follows:
The first tuple r of Relation R (R is called the outer relation) is compared
to each tuple s of S (S is the inner relation). Whenever a pair (r, s) satisfies
the join predicate, both tuples are joined and added to the result relation. This
is repeated for each tuple in the outer relation. Figure 9.1 shows, in matrix
notation, the order in which the tuples of both relations are joined. Note that
each tuple in the inner relation has to be loaded |R| times, which is unaccept-
able from a computational point of view, especially when both relations are too
large to fit into the main memory.

Block1(S) Block2(S) Block3(S)1( ) 2( ) 3( )

Block1(R)

Block1(R)

Figure 9.2. Order of accessed blocks and tuples using the Nested-Block-Loop Join. Here,
Relation R is split into two blocks and Relation S is split into three blocks.
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2.2 Nested-Block-Loop Join

The Nested-Block-Loop Join reduces the number of times the inner relation
has to be accessed by dividing the relations into blocks (e.g. pages). Let cblock
be the capacity (in tuples) of a page and cbuffer be the capacity (in number
of pages) of the main memory buffer. Then cbuffer − 1 pages of the outer
relationR are loaded into the main memory and one page of the inner relation
S is loaded and compared to each of the cbuffer − 1 pages. This is repeated
until all pages of R have been processed. Using the Nested-Block-Loop Join,
the inner relation has to be loaded |R|

(cbuffer−1)∗cblock
times. Figure 9.2 shows

the sequence in which tuples and blocks are being processed. Note that this
approach shows the best performance if the join predicate Θ is not known in
advance.

2.3 Sort-Merge-Loop Join

The next algorithm focuses on the evaluation of the Equi-Join, where Θ is
equal to “=”. First of all, both relations R and S are being sorted w.r.t. to
the join attributes. In order to find the pairs of tuples (r, s) ∈ R × S that
have equal join attributes, we can efficiently browse the tuples as shown in
Figure 9.3. Here we exploit the property that, if the join attribute of ri is larger
than the join attribute of sj , we do not have to check any pairs (rk, sj) where
k > i. The reason is that the join attribute of rk is equal or greater than the

Figure 9.3. The figure to the right shows the order in which tuple pairs are joined using the
Sort-Merge-Join for the two sorted relations R and S shown to the left.



Probabilistic Join Queries in Uncertain Databases 261

join attribute of ri and thus larger than the join attribute of sj and, thus, cannot
match the join predicate.

2.4 Other Join Methods

There are a lot of further standard join approaches which are not addressed
here in detail. One class which should be mentioned here are join techniques
which avoid comparing each pair of tuples by using a hash function used on
the join attribute as a filter. These techniques exploit the fact that two join
attributes can only be equal, if their hash key is equal. Finally, refinements
of the filter results are required. Examples are the Hashed-Loop Join and the
Hash-Partitioned Join (GRACE).

2.5 Spatial Join Algorithms

In spatial databases, an important query is the Spatial Join [45]. In its basic
form, a spatial join is a query which, given two sets R and S of spatially
extended objects, finds all pairs consisting of one object ofR and one object of
S for which a spatial predicate is fulfilled. Examples are the distance predicate
and the intersection predicate. Such queries have been studied extensively,
and many efficient techniques exist for answering them [1, 6, 15, 16, 30, 47,
48]. Generally speaking, the spatial join operation is used to combine spatial
objects of two sets according to some spatial property. For example, consider
the spatial relations “Forests” and “Cities” where an attribute in each relation
represents the borders of forests and cities respectively. The query “find all
forests which are in a city” is an example of a spatial join.

Many algorithms designed for classical joins, such as hash-based join algo-
rithms, cannot efficiently be applied to spatial joins. In particular hashing does
not preserve the order of the data and therefore, objects that are close in the
data space are not in the same bucket with high probability.

In spatial applications, the assumption is almost always true that a spatial
index exists on a spatial relation. These indices can be exploited to support
the efficient processing of spatial joins. On the basis of the availability of
indices, spatial join methods operating on two relations can be classified into
three classes:

Class 1: Index on both relations

Class 2: Index on one relation

Class 3: No indices

The following sections give a broad overview of the three classes of join
methods. Note that the following approaches are not limited to spatial data. If
we consider objects with no extension, spatial joins can be adjusted to work
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for similarity joins that are applied to point objects which have been studied
extensively in [10, 31, 11, 12]. This can be achieved by representing each
object as a point in a feature space (vector space) where distance functions are
used to measure the (dis-)similarity between objects.

2.6 Spatial Join using a spatial index structure for both
relations

In [15] and [29], the R-tree [27] and particularly the R*-tree [7] are used as
the underlying spatial access methods for processing spatial joins. Exploiting
the R*-tree allows us to significantly reduce the number of pairs of spatial ob-
jects that need to be tested to check if they match the join condition. Here, it is
assumed that both relations R and S to be joined consist of spatial objects or
point objects of a d-dimensional vector space Rd. Furthermore, it is assumed
that each relation is separately indexed by an R*-tree or another member of
the R-tree family. The central idea of performing the join with R*-trees is to
use the property that directory rectangles form the minimum bounding hyper-
rectangle of the data rectangles in the corresponding subtrees. Thus, if the
rectangles of two directory entries, saymbrR and mbrS , do not match the join
predicate, there will be no pair (mbrr, mbrs) of entries in the corresponding
subtrees matching the join predicate. Otherwise, there might be a pair of en-
tries matching the join predicate in the corresponding subtrees and, thus, both
subtrees corresponding to mbrR and mbrS have to be further evaluated. In
its basic form, an efficient spatial join algorithm is presented in [15]. It starts
from the roots of the trees and traverses simultaneously both of the trees in a
depth-first order. For each qualifying pair of directory rectangles that match
the join predicate, the algorithm follows the corresponding references to the
nodes stored on the next lower level of the trees. Results are found when the
leaf level is reached.

In the context of uncertain objects, this approach is adapted in [22]. Here,
the page regions are used to conservatively approximate the uncertainty of
point objects. In contrast to the original R-tree several uncertainty regions
are assigned to a data/directory page which can be used to prune subtrees ac-
cording to different join confidence thresholds. A more detailed description of
this join technique is given in Section 4.2.0.

2.7 Spatial Join using a spatial index structure on one
relation

In recent years, the main focus was on methods of Class 2 and Class 3. A
simple Class 2 approach is the indexed nested-loop, where each tuple of the
non-indexed relation is used as a query applied to the indexed relation. More
efficient solutions are presented in [47, 46, 43]. These algorithms are based on
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building an index for the non-indexed relation in an efficient way in order to
reduce the problem to the join where both relations are indexed (Class 1).

2.8 Spatial Join using no Spatial-Index Structure

For spatial join algorithms of Class 3, it is assumed that no indices are ini-
tially available. Several partitioning techniques have been proposed which par-
tition the tuples into buckets and then use either hash-based or sweep-line tech-
niques, e.g. the Spatial Hash Join [43], the Partition-Based Spatial Merge Join
(PBSM) [47] or the Scalable Sweeping-Based Spatial Join (SSSJ) [6]. The lat-
ter approaches are adequate for relatively simply shaped 2D objects which can
be well approximated by their minimal bounding boxes. In higher dimensions
however, the minimal bounding box is a rather poor approximation. In order to
use the PBSM or the SSSJ with decomposed objects, some modifications have
to be done, as for instance duplicate elimination. Koudas and Sevcik solve in
[32] the multidimensional join problem by introducing a generalization of the
SSSJ, the Multidimensional Spatial Join (MSJ). The sweep-line technique is
adopted in [42] for join processing on uncertain spatial objects, details can be
found in Section 4.3.

Methods for joining on complex highly resolved spatial data following the
paradigm of multi-step query processing were proposed in [33], [34] and [35].
These join procedures are based on fast filter steps performed on object ap-
proximations. The core of these approaches is a cost-based decomposition
algorithm, building the object approximations in a convenient way for the cor-
responding join process. The concept of using approximated object decompo-
sitions to accelerate a filter step of a multi-step join process was later trans-
ferred to solve the problem of similarity join for uncertain objects as proposed
in [36] (cf. Section 4.2.0).

3. Uncertainty Models and Join Predicates

The problem of modeling uncertain data has been studied extensively in
the literature [2, 25, 26, 41, 50]. In the following section, we show a variety
of approaches that are utilized to model uncertain data, grouped by their data
representation. In the literature three types of uncertainty models are prevalent:

Continuous uncertainty (cf. [13, 14, 18, 19, 21, 22, 36–38]),

discrete uncertainty (cf. [4, 5, 28, 49–53, 56]) and

spatial uncertainty (cf. [17, 24, 39, 41, 55])

The uncertainty models, in particular, specify the representation of the uncer-
tain data and define which comparison operators can be applied to the uncer-
tain data in order to evaluate the join predicates. Additionally, we give a brief
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overview of join query predicates commonly used for uncertain databases, in-
cluding the distance range predicate, the k-nearest-neighbor predicate and the
spatial intersection predicate.

3.1 The Continuous Uncertainty Model

To capture the uncertainty of dynamic entities such as temperature, pressure
and location, a data scheme known as Probabilistic Uncertainty Model was
proposed in [19]. In many applications, uncertain attributes of objects are given
by or can be approximated by a Probabilistic Density Function (pdf). As an
example imagine the situation where the position, direction and speed of a
moving object o on a road network has been measured five minutes ago. Since
the speed of omay have changed since the last measurement, the exact position
of o is unknown. Nonetheless, we can incorporate the information about the
last known position, direction and speed to specify a pdf of the current position
of o. This pdf could be a uniform distribution over the area that o can reach
from its last registered position at maximum speed.

Data Representation. Assume that each object of interest consists of at
least one real-valued attribute a. In this model, a is treated as a continuous
random variable. In [22], it is also assumed that each uncertain attribute value
is mutually independent. The probabilistic representation of a consists of two
components.

Definition 9.2 (Uncertainty Interval) An Uncertainty Interval of
attribute a, denoted by a.U is an interval [a.l, a.r] where a.l, a.r ∈ R, a.r ≥
a.l and a ∈ a.U .

Definition 9.3 (Uncertainty PDF) An Uncertainty PDF of attribute
a denoted by a.f(x), is a probability density function, such that∫ a.r
a.l a.f(x)dx = 1 and a.f(x) = 0 if x 6∈ a.U .

Furthermore, we define the Uncertainty Distribution Function as follows:

Definition 9.4 (Uncertainty Distribution Function) An Un-

certainty Distribution Function of an object attribute a denotes the

probability distribution function a.F (x) =
∫ x
−∞ f(y)dy.

Note that a.F (x) = 0 if x < a.l and a.F (x) = 1 if x > a.r. If a pdf is
used to describe the value of an attribute, then the number of possible attribute
values is infinite.

Comparison Operators. The evaluation of join predicates over the un-
certain object attributes either requires certain predicates defined on the proba-
bilistic similarity distance or requires the definition of probabilistic comparison
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operators that can be directly applied to the uncertain objects. In [22] several
probabilistic boolean comparison operators are defined on pairs (a, b) of un-
certain objects.
The most common comparison comperator is the equality. Since a and b are
represented by continuous functions, the probability of equality between a and
b is zero, and a and b can never be equal. Given that the exact values for
these data items are not known, a user is more likely to be interested in them
being very close in value rather than exactly equal. Based upon this observa-
tion, equality is defined using a parameter, called resolution c that denotes the
distance that a and b may be apart in order to be considered equal.

Definition 9.5 (Equality operator =c) Given a resolution c, oi is
equal to oj with probability

P (a =c b) =

∫ ∞

−∞
a.f(x) · (b.F (x+ c)− b.F (x− c))dx

Using equality, inequality can be defined easily:

Definition 9.6 (Inequality operator 6=c) Given a resolution c, oi is
not equal to oj with probability

P (a 6=c b) = 1−
∫ ∞

−∞
a.f(x) · (b.F (x+ c)− b.F (x−c))dx = 1−P (a =c b)

To address the question “Is a greater than b?”, definitions can be found in [22]
for the

Greater than operator >: oi > oj with probability P (oi > oj) and the

Less than operator <: oi < oj with probability P (oi < oj) = 1 −
P (oi < oj).

These comparison operators return a boolean value in the case of certain
objects and a probability value in the case of uncertain attributes.

Often, distance functions are used to compare objects to each other. A dis-
tance function assigns a distance value to a pair of uncertain objects. Often, this
comparison operator is used to measure the (dis-)similarity between objects
for similarity search applications. In the case of uncertain objects, the distance
between two objects obviously is also uncertain. A frequently used distance
function in the case of uncertainty is the probabilistic distance function as pro-
posed in [36] that describes the probability distribution of all possible distances
between two objects.

Definition 9.7 (Probabilistic Distance Function (cont.)) Let
d : D ×D → IR+

0 be a distance function defined on a pair of objects, and let
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P (a ≤ d(o, o′) ≤ b) denote the probability that d(o, o′) is between a and b.
Then the probabilistic density function fd : D ×D → (IR+

0 → IR+
0 ∪∞) is

called probabilistic distance function.

Since the result of fd is a probability density function, the probability that
two objects have a certain distance c ∈ R to each other is zero. For this
reason, we need the next equation in order to evaluate the distance between
two objects. The probability that the distance between an object o and another
object o′ is at least a and at most b can be computed by

P (a ≤ d(o, o′) ≤ b) =

∫

a≤d≤b
fd(o, o

′) =

∫ ∞

−∞
a.f(x) · (b.F (x+ b)− b.F (x+ a) + b.F (x− a)− b.F (x− b))dx

(9.1)

Note that this probability can also be expressed by means of the boolean com-
parison operator =c as follows:

P (a ≤ d(o, o′) ≤ b) = (o =b o
′)− (o =a o

′)

Other function-based comparison operators can be defined as well. For ex-
ample, uncertain spatial objects may require comparison operators that return
the probability distribution of the spatial cover of two objects (cf. Section
3.2.0).

3.2 The Discrete Uncertainty Model

In this section, we consider the uncertainty of nominal variables such as
weather conditions (e.g., sunshine, rain and snow), age in years or generally
variables in situations where only discrete measurements, e.g. from a sensor,
are given.

Data Representation. The most general approach to model discrete uncer-
tainty is the Possible Worlds Model. In this model, every possible instance (or
possible world) w of the database has a probability c(w). The probability of
the presence of a tuple in the database affects the probability of the presence or
absence of any other tuple and vice-versa. An example of such a database can
be given by considering positions of tigers. Let us assume that a set of possi-
ble positions of male tigers in a wildlife sanctuary is known for each tiger. Of
course, each tiger may only exist at at most one position in a possible world.
Note that possible worlds are mutually exclusive. Additionally, it is known that
male tigers are territorial and the position of a tiger is affected by the presence
of other tigers in its close vicinity. Consequently, there is a mutual dependency
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between the positions of the tigers. This full model respects the mutual depen-
dency of tuples but is deficient in a computational point of view, because the
number of possible worlds increases exponentially in the number of objects in
the database.

For this reason, the ULDB Model (Uncertainty-Lineage Database Model,
also called X-Relation Model), which was first introduced in the TRIO system
[3, 8, 50, 54], is often used instead of the possible world model and extends
the relational database model by utilizing lineage and uncertainty [9]. The
x-relation model is a special form of the possible worlds model where inde-
pendence between objects is assumed. The x-relation semantic allows us to
represent the uncertainty of the attribute values (attribute level uncertainty)
and the presence (existential uncertainty) of an object. Such an object is called
an x-tuple. Each x-tuple consists of one or more alternative tuples representing
the uncertainty of its contents. The uncertainty of the presence of an x-tuple is
represented by the maybe annotation “?”, as proposed in [3]. Independence is
assumed among x-tuples. Each alternative tuple t is given a confidence value
c(t) with the probability that the respective alternative tuple exists. Note that
for each x-tuple x consisting of alternative tuples t ∈ x the following equation
holds:

∑

t∈x

c(t) ≤ 1

Table 9.1 shows an x-relation that contains information about the possible
positions of tigers in a wildlife sanctuary. Here, the first x-tuple describes
the tiger named “Renzy” who may be found at three possible (alternative) lo-
cations. He may be in his cave with a probability of 50% or located at the
water hole and at the hunting grounds with a probability of 20% and 30%, re-
spectively. This x-tuple logically yields three possible instances, one for each
alternative location. Now, we know that a new tiger may have entered the
wildlife sanctuary with a probability of 40%. In this case, it is not certain that
the new tiger exists at all, which is an existential uncertainty, denoted by the
“?” symbol to the right of the name of the tiger in the left column of the cor-
responding x-tuple. Taking into account the four alternatives (including the
alternative of no new tiger) for the position of the new tiger, there are twelve
possible instances of the tiger x-relation. In general, the possible instances of
an x-relation R correspond to all combinations of alternatives for the x-tuples
inR. Note that in this model, the probability of the new tiger being at the water
hole is not affected by the current position of Renzy, due to the independency
assumption.

Comparison Operators. In order to evaluate join predicates on uncertain
data using the possible worlds model, the definition of comparison operators
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Tiger x-relation

NAME POSITION PROBABILITY

Renzy { Renzy’s Den, Waterhole, Hunting Grounds} {50%,20%,30% }
New Tiger ? {Waterhole, Hunting Grounds, The Forest} {10%,10%,20%}

Table 9.1. An x-relation containing x-tuples with possible positions of tigers.

is required. One of the most important comparison operators for the discrete
uncertainty model is the equality operator.

Definition 9.8 (Equality operator =PW (possible worlds))
Let a and b be two uncertain objects with uncertain attributes a.u and b.u.
Let W be the set of possible worlds in the database and c(w ∈ W ) be the
confidence of a possible world. The probability that a.u is equal to b.u is

P (a.u =PW b.u) =
∑

w∈W,a.u=b.u

c(w).

As a consequence, all possible instances of the uncertain database have to be
considered in order to compute the probability of equality between two objects.
Other comparison operators can be treated in the same way. Even if each
object has only two alternatives, the number of possible instances is 2n where
n is the number of objects in the database. Due to the dependency between
objects, no possible world can be pruned. In fact, all possible worlds have
to be enumerated, making the comparison of objects in the possible worlds
model an NP-hard problem. Thus, the following comparison operators use the
x-relation model, which only includes dependencies within, but not between,
x-tuples.

Definition 9.9 (Equality operator =x (x-tuples)) Two uncer-

tain objects a and b represented by x-tuples with uncertain attributes a.u and
b.v are equal with probability

P (a =x b) =
∑

r∈a

∑

s∈b,r.u=s.v

c(r) · c(s).

The probability of two objects being equal is the sum of the probabilities of the
tuples to be equal. Unlike the possible worlds model, other objects do not have
to be considered due to the independency between x-tuples.

Based upon the definition of equality, inequality can be defined as follows:

Definition 9.10 (Inequality operator 6=x (x-tuples)) Two un-

certain objects a and b represented by x-tuples with uncertain attributes a.u



Probabilistic Join Queries in Uncertain Databases 269

and b.v are not equal with probability

P (a 6=x b) = 1−
∑

r∈a

∑

s∈b,r.u=s.v

c(r) · c(s)

The greater than and less than relations can be defined in a similar fashion.

Definition 9.11 (Greater than >x (x-tuples)) Let a and b be two
uncertain objects represented by x-tuples with uncertain attributes a.u and b.v.
The probability of a.u being greater than b.v is

P (a.u >x b.v) =
∑

r∈a

∑

s∈b,r.u>s.v

c(r) · c(s)

Definition 9.12 (Less than <x (x-tuples)) Let a and b be two un-
certain objects represented by x-tuples with uncertain attributes a.u and b.v.
The probability of a.u being less than b.v is

P (a.u <x b.v) =
∑

r∈a

∑

s∈b,r.u<s.v

c(r) · c(s)

Similar to the continuous uncertainty model, distance-based comparison op-
erators can be defined for the discrete uncertainty model. In the x-tuple model,
a distance applied to two uncertain objects or and os returns a set of distance
values, one for each pair of possible instances of or and os each associated
with a probability value.

Definition 9.13 (Probabilistic Distance Set (discrete)) Let o
and o′ be two objects represented by x-tuples. Furthermore, let d : D ×D →
IR+

0 be a distance function, and let P (a ≤ d(o, o′) ≤ b) denote the probability
that the distance d(o, o′) is between a and b. Then, the probabilistic distance
between two uncertain objects o and o′ is a set of distances associated with
their probabilities sd ⊆ IR× [0 . . . 1] as defined as follows:

sd = {(x, p) : IR+
0 × [0 . . . 1]|∀t ∈ a,∀t′ ∈ b, x = d(t, t′) ∧ p = t.c · t′.c}

The Spatial Uncertainty Model. This model refers to objects which
are assumed to have a spatial extension called spatial objects. This object
representation is useful in biomedical and geographical applications. As an
example, consider a satellite image with several buildings. All building objects
are spatially extended because they cover a whole area, not just a single point.
A possible task could be to automatically identify the type of buildings that can
be seen there.

In the x-relation model, tuples belonging to an x-tuple are mutually exclu-
sive. Thus an object contains at most one tuple in a possible world. In contrast
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to that, the Spatial Uncertainty Model assumes independence between possible
tuples of an object, because one object may contain several tuples at the same
time. A spatial uncertainty model is used in [42]. In this model, it is assumed
that the number and the positions of the tuples are certain. Yet, there are two
types of uncertainty:

Uncertainty in the extent of an object: In the example above, which
pixels in the satellite image belong to which building?

Uncertainty in the class of an object: In the example above, a classifier
could decide that there is a 70% probability of a given building being an
airport.

First, a probabilistic description of the extents of the objects is required. In
[40] a probabilistic mask is introduced which gives a probabilistic description
of the uncertain extent of an object:

Definition 9.14 (Probabilistic Mask) A Probabilistic Mask Ma for

an object a is a set of tuples {(~x, pa)} such that each point ~x belongs to a with
probability pa.

Additionally, the objects cannot be identified reliably. Therefore, confidence
values are required to describe the classifier’s estimate of the probability that
an object belongs to a certain class.

Definition 9.15 (Probabilistic Object) A Probabilistic Object a is
a pair (Ma, pMa), where Ma is a’s probabilistic mask and pMa is the confi-

dence value of a’s class.

In order to evaluate the join predicate, a construct which enables us to com-
pare uncertain spatial objects is required. Similar to the boolean comparison
operators defined in Section 3.2.0, score functions are introduced for this type
of objects in [42], which already reflect the probability that the spatial join
predicate is fulfilled.

Definition 9.16 (Point-Level Score) The score s′ called Point-

Level Score between two point objects a = ({( ~xa, pa)}, pMa) and a =
({( ~xb, pb)}, pMb

) is

s′( ~xa, pa, ~xb, pb) = pa · pb · λ · e−λ·d( ~xa, ~xb),

where λ is a positive, domain-specific parameter that determines the relative
importance of probability and distance, and d is a suitable distance function.

Definition 9.17 (Object-Level Score) The score s also called

Object-Level Score between two uncertain spatial objects a = (Ma, pMa) and
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b = (Mb, pMb
) is

s(a, b) = max
( ~xa, pa)
(~xb, pb)

pMa · pMb
· s′( ~xa, pa, ~xb, pb).

Note that the spatial comparison function that is required to evaluate the
spatial join predicate is already included in the score functions. Thereby, the
comparison mainly relates to the distance between the points of the spatial
objects. However, there may exist other comparison operators for uncertain
spatial objects, e.g. probabilistic spatial functions which, similar to the proba-
bilistic distance functions, return a probability density function (pdf) according
to a spatial comparison operator like the volume of the overlap between two
objects.

The next section generalizes the concept of the score defined for a pair of
uncertain objects which reflects the probability that a given join predicate in
connection with a given comparison operator fulfills the join predicate for the
object pair.

3.3 Join Predicates and Score

Given a comparison operator, the probability that a pair of objects satisfies a
join predicate can be formalized as follows. The result of a boolean comparison
operator (=, 6=, <,> etc.) evaluated on uncertain objects directly returns a
probability value which is called score. The same holds for the score defined
for the spatial uncertainty model (cf. Section 3.2.0). If a distance function
(probabilistic distance function, probabilistic spatial function, etc.) is used, a
pdf is returned in the continuous case and a set of score values is returned in
the discrete case. This pdf is used to derive the probability (score) that a given
join predicate is satisfied.

The following section describes two types of join predicates. Here, we con-
centrate on the two most prominent join predicates. An important join predi-
cate is the ε-Range join predicate.

Definition 9.18 (Uncertain ε-Range Join Pred. (cont.))
The probability that two uncertain objects a and b following the

continuous uncertainty model have a score s greater than ε is given
by

s(a, b) = P (d(a, b) < ε) = P (0 ≤ d(a, b) ≤ ε) =

∫ ε

0
fd(a, b)(x)dx

where fd is a probabilistic distance function.

This definition can be easily adjusted to support discrete uncertain data.



272 MANAGING AND MINING UNCERTAIN DATA

Definition 9.19 (Uncertain ε-Range Join Predicate (discr.))
The probability that two uncertain objects a and b (following the discrete
uncertainty model) have a score s greater than ε is given by

s(a, b) = P (d(a, b) < ǫ) = P (0 ≤ d(a, b) ≤ ǫ) =
∑

(d,p)∈sd(a,b)

{
p , if d < ε
0 else

where sd is a probabilistic distance set.

Another important join query predicate is the k-NN predicate. The proba-
bility that an uncertain object b is one of the k nearest neighbors of an uncertain
object a is:

s(a, b) = P (for at least (N − k) objects o : d(or, os) ≤ d(or, o))
The formal definition is given in [37].

There exists a large variety of other join predicates, that can be useful for
certain applications (e.g. Reverse-k-NN, k-closest-pairs) that are not intro-
duced here. Regardless of which join predicate is used, a score value is re-
turned that describes the probability of or and os satisfying the join predicate.

3.4 Probabilistic Join Query Types

The comparison operators and join predicates assign to each pair of objects
(a, b) ∈ R × S a score value. In general, the result of a Probabilistic Join
M(R,S) can be defined as follows:

Definition 9.20 (Probabilistic Join) Given two relations R and S
with uncertain objects. A Probabilistic JoinM(R,S) is a set

M(R,S) = (a, b, s(a, b)) ∈ R× S × [0 . . . 1]

where s(a, b) is the score between two objects a and b w.r.t. a given comparison
operator and join predicate.

In the literature, various types of uncertain join queries are defined which
differ in their result sets. This concerns the join pairs which are finally added
to the result relation J . In [22], two general types of join queries are proposed:
The Probabilistic Join Query (PJQ) and the Probabilistic Threshold Join Query
(PTJQ).

Definition 9.21 (Probabilistic Join Query (PJQ)) Given two re-
lations R and S with uncertain objects and a probabilistic join M(R,S),
a Probabilistic Join Query PJQ(R,S) returns all triples (a, b, s(a, b)) ∈
M(R,S), where s(a, b) > 0, i.e.

PJQ(R,S) = {(a, b, s(a, b)) ∈M(R,S)|s(a, b) > 0}.
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Essentially, a PJQ returns join pairs with a non-zero probability of fulfilling
the join predicate along with the associated probability.

The join condition can be further enforced by raising the confidence bound
of the result candidates. This is realized by the probabilistic threshold join
query (PTJQ), which additionally allows us to specify a confidence threshold
τ . Only join results whose confidence exceeds τ are returned from the query.

Definition 9.22 (Probabilistic Thresh. Join Query (PTJQ))
Given two relations R and S with uncertain objects, a confidence threshold
τ ∈ [0 . . . 1] and a probabilistic join M(R,S), a Probabilistic Threshold
Join Query PTJQ(R,S) returns all triples (a, b, s(a, b)) ∈M(R,S), where
s(a, b) ≥ τ , i.e.

PTJQ(R,S) = {(a, b, s(a, b)) ∈M(R,S)|s(a, b) > τ}.

A PTJQ only returns join pairs that have probabilities higher than τ . Note, that
the score s(a, b) included in the result triple is optional. Since the probability
threshold τ lower bounds the confidences of the results, the exact confidence
values given by the score are often ommitted from the query output (cf. [22]).

Another important type of probabilistic query returns the k best join part-
ners:

Definition 9.23 (Probabilistic Top-k Join Query (PTopkJQ))
Given two relations R and S with uncertain objects and a probabilistic join
M(R,S), a Probabilistic Top-k Join Query PTopkJQ(R,S) returns a set of k
triples (a, b, s(a, b)) ∈M(R,S) with the highest score s(a, b), i.e.

PTopkJQ(R,S) ⊆M(R,S), |PTopkJQ(R,S)| = k,

∀(a, b, s(a, b)) ∈ PTopkJQ(R,S),

∀(a′, b′, s(a′, b′)) ∈ (M(R,S)− PTopkJQ(R,S)) : s(a, b) ≥ s(a′, b′).

Essentially, a PTopkJQ returns the k join pairs with the highest score.
The differences between the probabilistic join queries are illustrated in the

following example.

3.5 Example

To improve the illustration, in this scenario one join relation R is assumed
to have only one uncertain object which is called query object Q. It is joined
with a set of uncertain objects of the other relation S. The scenario is shown
in Figure 9.4. S consists of seven uncertain objects A-G.
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OBJECT P(OBJECT IN ε-RANGE OF Q) P(OBJECT IS 1-NN OF Q)

A 0 0
B 0 0.10
C 0.05 0.05
D 0.15 0.15
E 0.10 0.25
F 0.07 0.15
G 0.20 0.30

Table 9.2. Confidences of different join predicates w.r.t. the join between Q and the other
objects. (cf. example shown in Figure 9.4)

First, we consider the ε-Range predicate. Table 9.2 shows for each uncertain
object the score, which is the probability to be within the ε-Range of Q. These
score values are also depicted in Figure 9.4. The results of the probabilistic
join queries are shown in Table 9.3. First, a PJQ is performed: All objects
except for A and B, which have a score of zero, are part of the result relation
J . If a PTJQ with τ = 10% is issued, objects C and F are dropped, because
their score is less than τ . If a PTop2JQ (PTopkJQ with k = 2) is performed,
only objects D and G are returned, because D and G are the two objects with
the highest score.

Now, we consider the 1-NN predicate. The probabilities of satisfying the
join predicate and the query results are given in the corresponding tables 9.2
and 9.3. Figure 9.4 also shows, for each uncertain object, its score with respect
to the query objectQ. The score is now defined as the probability that an object
is the nearest neighbor of Q. The result of a PJQ contains all objects except
for A, because all objects except for A have a probability greater than zero of
being the nearest neighbor of Q. Note that, even though B is further away
than objects C-G, there exist possible instances of S , in whichB is the nearest
neighbor of Q. A cannot be the nearest neighbor of Q, because the minimum
distance betweenQ andA is larger than the maximum distance betweenQ and
B. Thus, B is definitely closer to Q than A because it is closer to Q in any
possible world. If a PTJQ with τ = 10% is performed, then the result relation
J contains objects B,D,E, F,G and a PTop2JQ results in the objects G and
E.

3.6 Overview of Uncertainty Models and Probabilistic Join
Queries

In the previous section, several uncertainty models are presented. This sec-
tion gives a general overview of probabilistic join queries and the uncertainty
models. First, let us summarize how the uncertainty models can be classified
according to different criteria:
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Figure 9.4. Example of two uncertain object relations S = {A, B, C, D, E, F, G} and R =
{Q} with given scores for the ε-Range join predicate and the 1-NN join predicate.

JOIN PREDICATE ε-RANGE JOIN k-NN JOIN

PJQ (Q, C, 0.05) (Q, B, 0.10)
(Q, D, 0.15) (Q, C, 0.05)
(Q, E, 0.10) (Q, D, 0.15)
(Q, F, 0.07) (Q, E, 0.25)
(Q, G, 0.20) (Q, F, 0.15)

(Q, G, 0.30)

PTJQ (Q, D) (Q, B)
(Q, E) (Q, D)
(Q, G) (Q, E)

(Q, F )
(Q, G)

PTopkJQ (k=2) (Q, G, 0.20) (Q, G, 0.30)
(Q, D, 0.15) (Q, E, 0.25)

Table 9.3. Query results of different probabilistic join queries w.r.t. the different query predi-
cates. (cf. example shown in Figure 9.4)

Classification by data representation (continuous, discrete and spatial)

Classification by the probabilistic query type (PJQ, PTJQ, PTopkJQ,
etc.)
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Others

Figure 9.5. Overview of Uncertainty Models.

Source Prob. Query Type Join Predicate Score Type

Ljosa [42] PTJQ, PTopkJQ ε-Range Spatial Distance
Cheng [22] PJQ, PTJQ ε-Range Similarity Distance

Kriegel [36, 37] PJQ, PTJQ, PTopkJQ ε-Range Similarity Distance
Agrawal [4] PTJQ, PTopkJQ, Other Any Any

Table 9.4. List of publications elaborated in the next section and respective classification of
the uncertainty model. All of these approaches except for Cheng [22] 2006 use a discrete data
representation. In Cheng [22] 2006 a continuous data representation is utilized.

Classification by the join predicate (ε-Range, k-NN, etc.)

Classification by the score function (boolean comparison operator, sim-
ilarity distance, spatial distance etc.).

Figure 9.5 illustrates all possible combinations of the different probabilis-
tic join queries with the different uncertainty models. Table 9.4 gives a brief
overview of the approaches that are elaborated in the following section.
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4. Approaches for Efficient Join Processing on Uncertain
Data

While in the recent decade a lot of approaches that address the organization
and efficient query processing of uncertain data have been published, only a
few approaches directly address join queries on uncertain data. This section
aims at surveying the currently followed research directions concerning joins
on uncertain data. It exemplarily presents the most prominent representatives
of the join categories which are currently of main interest in the research com-
munity. The approaches mainly differ in the representation of the uncertain
data, the distance measures or other types of object comparisons, the types of
queries and query predicates and the representation of the result. They can be
classified into

confidence-based join methods,

probabilistic similarity join methods and

probabilistic spatial join methods.

In the following, these categories are more closely illustrated by selecting con-
crete approaches for efficient join processing on uncertain data.

4.1 Confidence-Based Join Methods

Pure confidence-based join methods are mainly focused on reducing the
search space w.r.t. the confidences of the result tuples of a join query. For the
selection of the candidates to be joined, neither the join-relevant attributes∗ ( 6=
confidence values) of the objects, nor the join predicates are taken into account.

Let us assume that an object o = 〈oid, pos〉 is associated with a confi-
dence value c(o) denoting that the likelihood of the object identified by oid
is currently located at position pos. If we join two relations with objects of
this type, then the results obviously are also associated with confidence val-
ues. For example, if we try to join object oA = 〈A, coord(50, 14)〉 ∈ R
with object oB = 〈B, coord(50, 14)〉 ∈ S with the given confidences c(oA)
and c(oB), the result tuple 〈A,B〉 is associated with a confidence value
P ((cA, cB) ∈ R ⊲⊳ S) which depends on the confidence values of both join
partners oA and oB , i.e. P ((cA, cB) ∈ R ⊲⊳ S) ≤ c(oA) · c(oB). Here, it
is assumed that both objects oA and oB are independent of each other. Based
on the confidences of the join results the probabilistic join queries PJQ, PTJQ
and PTopkJQ can be directly applied (cf. Section 3.4). Furthermore, one can
imagine the following types of join queries [4]:

∗The object attributes that are used to evaluate the join predicate are called the join-relevant attributes. The
confidence values assigned to the attributes are not included.
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(b) Nested-loop-based join with confidence-based pruning (query
type:Threshold)

Figure 9.6. Nested-loop-based Join Approaches.

Sorted: Return result objects sorted by confidence.

Sorted-Threshold: Combination of the Top-k and Sorted approach by
returning result objects with confidence above a threshold τ , sorted by
confidence in descending order.

Confidence-based Threshold Join Queries PTJQ. Agrawal and Widom
propose in [4] efficient confidence-based join approaches for all query types
mentioned above for the possible worlds model (cf. Section 3.2.0). They as-
sume that stored relations provide efficient sorted access by confidence and that
neither join relation fits into main memory. They also assume existential un-
certainty of objects and independence between objects. Note that this approach
can be applied regardless of the join-predicate and the type of score-function.
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Definition 9.24 (Problem Definition) Let R and S be two relations
and let c(o) ∈ [0, 1] be a confidence value assigned to each object o in R and
S which denotes the likelihood that o does exist in the corresponding relation
R or S. Furthermore, let c(j) ∈ [0, 1] be a confidence value assigned to each
tuple j = (r, s) ∈ R× S which denotes the likelihood that both objects r and
s fulfill the join predicate. The problem is to find the join result J = R ⊲⊳Θ S,
whereas the confidence of each result tuple j ∈ J is above a given threshold
value τ .

The approach described in [4] sorts R and S by confidence in descending
order and exploits the fact that, regardless of the join predicate, a tuple (r, s)
can only exist in J if both r and s exist. With the assumption of object in-
dependence, the likelihood that two objects are joined is at most the product
of their confidences. Note, that the assumption of the object independence
can be relaxed if a combining function f : R × S → [0, 1] is used instead
of the product over the object confidences to compute the confidence of the
result tuple. The combining function f() can be any monotonic function, i.e.
f(ri, sj) ≥ f(rk, sl) whenever c(ri) ≥ c(rk) and c(sj) ≥ c(sl). As a con-
sequence, if the combining function applied to r ∈ R and s ∈ S , e.g. the
product of confidences c(r) · c(s), is less than the confidence threshold τ , then
the tuple (r, s) cannot belong to the join result and, thus, can be excluded from
the join in advance. With the assumption that the objects of both relations are
sorted in descending order of their confidences and a monotonic combining
function is used to determine the confidence of the corresponding result tuples
then the probabilistic threshold join query can be accelerated by reducing the
search space of a Nested-Block-Loop Join based query processing (cf. Section
2.2). This approach is illustrated in Figure 9.6. Figure 9.6(a) depicts the ba-
sic Nested-Block-Loop Join approach without confidence-based pruning. Here
every pair of objects has to be tested in order to find all join result tuples. If
confidence-based pruning is applied, then the number of pairs of objects can be
reduced as shown in Figure 9.6(b), where only pairs of objects with a combined
confidence greater than τ are explored.

Confidence-based Top-k Join Queries PTopkJQ. A similar pruning cri-
terion as used for threshold join queries can be used for the probabilistic Top-k
join queries. Remember, the problem of probabilistic Top-k join queries is to
find join results J = R ⊲⊳k S, whereas J contains only the k result tuples
with the highest confidence for a user-defined parameter k (cf. Section 3.4).
The idea of this approach is again to prune the space to be explored using a
threshold as in the previous algorithm. In this case, the threshold to be used is
the confidence value of the kth tuple in the result, i.e., the minimum confidence
value among the Top-k result tuples. Of course, this value is not known at the
start of the algorithm. The approach of [4] uses a priority queue K to maintain
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the current Top-k result set. When a result tuple t is generated with a confi-
dence greater than the confidence of the lowest-confidence result tuple t′ in K,
t′ is replaced by t. When a result tuple t is generated with a confidence equal
or less the lowest confidence result tuple in K, then the current iteration of
the inner relation S may be aborted, because all subsequently generated result
tuples in the current iteration of R have a lower confidence than t.

Confidence-Based Sorted-Threshold Join Queries. In a similar way as
Top-k join queries, sorted and sorted-threshold join queries can be performed.
Sorted-Threshold Join Queries try to find join results J = R ⊲⊳sΘ S, where the
confidence of the existence of a tuple j ∈ J is above a given threshold value
τ and the result is sorted by confidence in descending order. As proposed in
[4] the algorithm explores the same pruned space as in the threshold join case,
but in an order resembling Top-k. The sorted join query is a special case of a
sorted-threshold join query with a threshold τ < 0.

In addition to the join algorithms proposed in [4], bounds on the efficiency
in comparison to other algorithms for the same problem in the same memory-
constrained environment are proven.

4.2 Probabilistic Similarity Joins

The previous section focuses on join processing methods which only reduce
the search space based on the confidence values of the input data, i.e. the
attributes of the objects that the join predicate relates to are not considered.
Knowledge about the attributes that are relevant for the join predicate, e.g. the
positions of the objects, was not incorporated. For example, if we want to
answer a distance range query on an uncertain database, then we want to find
only those pairs of objects fromR and S that are close to each other. However,
the previous approach returns pairs of objects regardless of their distance, as
long as their combined confidence is sufficient.

In general, similarity queries are very selective queries, i.e. only a very
small portion of the candidates satisfies the query predicate. Thus, effective
pruning strategies are very important for an efficient similarity query process-
ing. Therefore, in contrast to the previous section, here we address methods
which additionally take into account whether the join predicate is satisfiable.
In particular, similarity join applications can significantly benefit from pruning
those candidates whose attributes do not likely satisfy the join predicate. In
this way, further exploration of candidates having a very low join probability
can be avoided.

In the following, two approaches for a probabilistic similarity join are pre-
sented. They differ in the type of uncertain object representations used. The
first approach assumes that the uncertainty is represented by continuous prob-
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abilistic density functions (pdf) while the second approach is based on objects
represented by sets of discrete samples of alternative values (cf. Section 3).

Similarity JoinQueries (Continuous UncertaintyModel). In the follow-
ing, we assume that the query relevant attributes of each object are represented
by uncertainty intervals and uncertainty pdfs (cf. Section 3.1.0). Cheng et
al. study in [22] probabilistic similarity joins over uncertain data based on
the continuous uncertainty model. To each uncertain object attribute an un-
certainty interval accomplished by an uncertainty pdf is assigned. The score†

of two uncertain objects, each represented by a continuous pdf, in turn leads
to a continuous pdf representing the similarity probability distribution of both
objects (cf. Section 3.3). In fact, the (probabilistic) similarity distance again
consists of an uncertainty interval and an uncertainty pdf. This way, each join-
pair (a, b) ∈ R×S (join candidate) is associated with a probability, indicating
the likelihood that the two objects a and b are matched according to the given
predicate. In [22], the boolean join predicates introduced in Section 3.1.0 are
used.

The probabilistic predicates defined on pairs of uncertain objects allow to
define probabilistic join queries. In [22], two join queries are proposed: The
Probabilistic Join Query (PJQ) and the Probabilistic Threshold Join Query
(PTJQ). In the sequel, we will explain how the differences between PJQ and
PTJQ are exploited for performance improvement. We note that the use of
thresholds reduces the number of false positives, but it may also result in the
introduction of false negatives. Thus, there is a tradeoff between the number
of false positives and false negatives depending upon the threshold which is
chosen. The reformulation of the join queries with thresholds is also helpful
for improving the performance requirements on the method.
A number of pruning techniques are developed in order to improve the effec-
tiveness of PTJQ processing. These pruning techniques are as follows:

Item-level Pruning: In this case, two uncertain values are pruned with-
out evaluating the probability.

Page-level Pruning: In this case, two pages are pruned without probing
into the data stored in each page.

Index-level Pruning: In this case, the data which is stored in a subtree
is pruned.

†In the context of a similarity join, the score between two objects obviously reflects the similarity between
both objects.
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Item-Level Pruning: The refinement process on item (object) level can be
done by directly computing the join probability P (aΘub) for every pair of
(a, b) ∈ R × S, where Θu is one of the boolean comparison operators in-
troduced in Section 3.1.0. Only those pairs whose score is larger than τ are
retained. For an arbitrary pdf, the join probability P (aΘub) has to be com-
puted with (relatively expensive) numerical integration methods. [22] shows
a set of techniques to facilitate this computation. These methods do not com-
pute P (aΘub) directly. Instead, they establish pruning conditions that can be
checked easily to decide whether (a, b) ∈ R × S satisfies the query predi-
cate. They are applicable to any kind of uncertainty pdf, and do not require
the knowledge of the specific form of P (aΘub). These techniques are labelled
“item-level-pruning”, since pruning is performed based on testing a pair of data
items. For equality and inequality, the following lemma holds:

Lemma 9.25 Suppose a and b are uncertain-valued variables, each de-
scribed by an uncertainty interval a.U = (a.l, a.r) and b.U = (b.l, b.r) and
an uncertainty pdf a.f(x) and b.f(x). Furthermore, let a.U ∩ b.U 6= ∅ and let
la,b,c be max(a.l − c, b.l − c) and ua,b,c be min(a.r + c, b.r + c). Then, the
following inequalities hold:

P (a =c b) ≤
min(a.F (ua,b,c)− a.F (la,b,c), b.F (ua,b,c)− b.F (la,b,c)) (9.2)

P (a 6=c b) ≥
1−min(a.F (ua,b,c)− a.F (la,b,c), b.F (ua,b,c)− b.F (la,b,c)) (9.3)

For the proof of this lemma, see [22]. Figure 9.7 illustrates the upper bounding
filter probability of the join predicate “a =c b”. Obviously, the minimum of
both probabilities Pa and Pb build an upper bound of P (a =c b). It allows to
quickly decide whether a candidate pair (a, b) ∈ R×S should be included into
or excluded from the result, since the uncertainty cumulated density functions
are known and Equations 9.2 and 9.3 can be computed easily. For equality,
the lemma allows to prune away (a, b) if Equation 9.2 is less than the prob-
ability threshold τ and for inequality, (a, b) can immediately be identified as
an answer if Equation 9.3 is larger than τ . For Greater than and Less than
join predicates, similar lower and upper bounds of the probability that the join
predicate is fulfilled can be efficiently computed.

Because the pdfs of the uncertain values are assumed to be known, the above
estimations concerning the join probability allow us to perform a constant-time
check to decide whether the exact value P (aΘub) has to be computed. The
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Figure 9.7. Upper bounding filter probability of the join predicate “a =c b”, i.e. P (a =c b) ≤
min{Pa, Pb}.

problem of this approach is, that the uncertain intervals are used as the only
pruning criterion. Thus, a lot of candidate pairs are generated that are not
actually part of the answer (i.e. their probability is less than τ ). The follow-
ing pruning approach uses both uncertainty intervals and uncertainty pdfs for
pruning, so that a smaller candidate set is produced.

Page-Level Pruning: The idea of this approach is to use a small overhead in
order to facilitate the pruning of uncertain values as first proposed in [23]. The
main idea is to augment some tighter bounds called x-bounds in each node in
an interval R-tree. Each x-bound defines an uncertainty interval that is pre-
calculated based on the properties of the uncertainty pdfs associated with the
entries stored in that node. It describes the uncertainty interval for a page,
such that every uncertain attribute stored in this page must have no more than a
probability of x of being outside the interval. It is also assumed that x-bounds
are “tight”, i.e., the uncertainty interval associated with an x-bound is as small
as possible. Figure 9.8 illustrates a page storing four uncertain attributes, a, b, c
and d. As we can see, a has a probability less than 0.1 of lying to the left of the
left-0.1-bound. Similarly, no object can have a probability above 0.3 of being
outside of the uncertainty interval i2, i.e. outside of the left 0.3-bound and right
0.3-bound. Finally, all the uncertainty intervals must be fully enclosed by the
0-bound, which is the same as the mbr of an index node.

Now given a page B with uncertain values stored in it and with respective
x-bounds. B can be pruned from a range query q with uncertainty interval
[q.l, q.r] and probability threshold τ , if the following statements apply:
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uncertainty interval i1

uncertainty interval i2

left 0.3 bound right 0.3 bound

uncertain object

attribute

right 0.1 bound

left 0.1 bound

a.f(x) b.f(x) c.f(x) d.f(x)

probability

Figure 9.8. Uncertain objects a, b, c and d that are within one page P.

CheckRight There exists a right-x-bound B.right(x) of B, such that
B.right(x) < q.l and x < τ .

CheckLeft There exists a left-x-bound B.left(x) of B, such that
B.left(x) > q.r and x < τ .

Two pages BR and BS of relations R and S are joined in two steps. The
first step uses Checkleft and Checkright on page BS using the 0-bound of
page BR extended with resolution c (cf. Section 3.1.0) to form a range query
with the operator “=c”. In other words, the range query with the interval
[BR.l − c,BR.r + c] is checked against BS using left- and right-x-bounds.
If the first step does not result in pruning the pair (BR, BS), then another test
is performed which exchanges the roles of BR and BS . The range query is
now constructed by using the 0-bound of BS , and tested against the uncer-
tainty bounds in BR.

Index-Level Pruning: Although uncertainty tables can be used to improve
the performance of page-based joins, they do not improve I/O performance,
simply because the pages still have to be loaded in order to read the uncertainty
tables. However, the idea of page-level pruning can be extended to improve I/O
performance, by organizing the pages in a tree structure. An implementation
of uncertainty relations in the index level is the Probability Threshold Index
(PTI) [23], originally designed to answer probability threshold range queries.
It is essentially an interval R-Tree, where each intermediate node is augmented
with uncertainty tables. Specifically, for each child branch in a node, PTI stores
both the mbr and the uncertainty table of each child. To perform the join, the
0-bound of each page from the outer relation is treated as a range query and
tested against the PTI in the inner relation. All pages that are retrieved from
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Figure 9.9. Representation and organization of uncertain objects (discrete uncertainty model)

the PTI are then individually compared with the page from where the range
query is constructed, and the page-level pruning techniques (see the previous
section) can then be used again to reduce computation efforts.

Similarity Join Queries (Discrete Uncertainty Model). Up to now, we
assumed uncertain objects corresponding to the continuous probabilistic un-
certainty model. In the following, we consider uncertain objects represented
according to the discrete probabilistic uncertainty model (cf. Section 3.2).

The first probabilistic similarity join approach based on a discrete uncertain
object representation was proposed by Kriegel et al. [36]. In particular, here,
each uncertain object oi is represented by a set of m points {oi,1, .., oi,m} in a
d-dimensional vector space Rd. Thereby, each point oi,j represents an alter-
native position of oi. Here, it is assumed that each sample point has the same
probability that it matches with the position of the object. For efficiency rea-
sons, they proposed to build k groups of sample points of each object by apply-
ing k-means clustering [44]. Each cluster is then approximated by a minimal
bounding hyper-rectangle. Additionally, all clusters are again approximated by
a minimal bounding hyper-rectangle. For each cluster c of an uncertain object
o, it is assumed that the probability that o matches one of c’s sample points is
known. With the assumptions made above, this probability directly depends on
the number of sample points contained in the cluster. This way, each uncertain
object is approximated at different approximation levels as depicted in Figure
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9.9(a). The multi-level approximations are used to reduce the computational
complexity during join processing. Each approximation is only refined when
required. Therefore, the clustered object representations are stored in an R*-
tree as illustrated in Figure 9.9(b). The data pages of the R*-tree organize the
object cluster representations. Based on this organization of uncertain objects,
a probabilistic distance range join [36] and a nearest-neighbor join analogously
to [37] can be efficiently supported.

Probabilistic Distance Range Join (PTJQ and ε-Range join predicate):
Managing the uncertain objects in R-tree like index structures (cf. Figure

9.9(b)) enables us to carry out a distance-range join based on a parallel R-tree
run as described in Section 2.6. In general, we can use this approach without
any changes regarding the way we use the hierarchical directory structure for
pruning branches in the R-tree. The only difference is on the leaf level where a
probability value is assigned to each object pair. The main idea is to apply first
the object approximations and the cluster approximations in a filter step. Here,
the main difference to non-probabilistic similarity queries is that the filter does
not directly relate to the similarity distances between objects but relates to the
probability that the similarity distance between two objects matches the join
predicate. In order to guarantee no false drops, in the filter step lower and up-
per bounds w.r.t. the join probability, i.e. the probability that a pair of objects
fulfill the join predicate, have to be computed. If the minimal distance between
two uncertain objects oi and oj matches the join predicate, i.e. is smaller or
equal than a given ε-Range, then the probability Pfilter((oi, oj) ∈ R ⊲⊳ S) that
both objects match the join predicate computed in the filter step is estimated
to be 100%. This probability estimation can be refined by taking all pairs of
object cluster representations into account. Assume that oi is represented by n
and oj by m clusters. Let ci,l be a cluster of object oi ∈ R with 1 ≤ l ≤ n
and cj,k a cluster of object oj ∈ S with 1 ≤ k ≤ m. Furthermore, let P (ci,l)
and P (cj,k) be the probabilities that the corresponding objects match one of
the sample points contained in the clusters. Now, we get an upper bound es-
timation of the probability P ((oi, oj) ∈ R ⊲⊳ S) that both objects oi and oj
match the join predicate if we sum up the products P (ci,l) · P (cj,k) for all
pairs of object clusters (ci,l, cj,k) such that the minimal distance between their
representing approximations satisfies the join predicate.

An example is depicted in Figure 9.10. In this example, Pfilter(q, a) =
2
3 ≥ P (q, a) and Pfilter(q, b) = 1

2 ≥ P (q, b), where we assume that all object
clusters contains the same number of object points. For a PTJQ with τ = 0.6
the join candidate (q, b) cannot belong to the result set and, thus, can be pruned,
while candidate (q, a) must be further refined.
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Figure 9.10. Example for a Probabilistic Distance Range Join Query.

Furthermore, in [36] it is shown how the join results with high probability
can be reported very early. By means of a priority based refinement the results
can be efficiently reported in the order of descending probabilities.

Probabilistic Nearest-Neighbor Join (PTJQ and 1-NN join predicate):

Though, to the best of our knowledge, no approach for a probabilistic
(k−)nearest-neighbor join exists, the basic solution is a nested-block-loop
based join (cf. Section 2.2). However, the probabilistic (k-)nearest-neighbor
query approaches, as proposed in [37], can be applied analogously to the in-
dex supported join approach as proposed for the probabilistic distance range
join, because the representations of the uncertain objects and the index based
organization is similar to that of the approach proposed in [36].

Similar to the probabilistic distance range join, the probabilistic nearest-
neighbor join is based on the multi-step query paradigm. In a filter step, the
object and cluster representations are used to compute upper and lower bounds
for the join probability, i.e. the probability that two objects fulfill the join
predicate. These bounds are then used to identify candidates which have to
be refined, i.e. for which the uncertain distance and, thus, the probability that
the candidate pair matches the query predicate, has to be refined. The filter
strategy of a nearest-neighbor query is illustrated in Figure 9.11. In contrast
to the probabilistic distance range join, the refinement w.r.t. an object depends
on the location of the other objects. The distance between an object pair (q, o)
does not have to be refined, if their maximal distance is lower than the minimal
distance between q and all other objects, as illustrated in Figure 9.11(a). Sim-
ilarly, this filter strategy can also be applied at the cluster approximation level
as shown in Figure 9.11(b). Here, the refinement of the distance between the
cluster pair (cq, co) can be saved.
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Figure 9.11. Refinement criterions for uncertain object approximations

4.3 Probabilistic Spatial Join

In general, spatial joins are applied on spatial objects, i.e. objects having a
certain position in space and a spatial extension. Spatial joins are based on spa-
tial predicates that mainly refer to spatial topological predicates, e.g. intersect,
volume of the overlap greater than ε, etc. and distance based predicates, e.g.
distance range and nearest-neighbor predicates (cf. Section 3.3). For uncertain
spatial objects with vague spatial attributes Probabilistic Spatial Joins (PSpJ)
are required. A new look at spatial joins on probabilistic data is mandated by
the large geographical and biomedical image datasets that are becoming avail-
able. For example, one might be interested in automatically identifying bodies
of water and regions of dense population on satellite images. Note that in the
literature often both probabilistic similarity joins and probabilistic spatial joins
are abbreviated by the same term PSJ. To reduce confusion, here, this notation
will remain for the probabilistic similarity join while the term PSpJ denotes
probabilistic spatial join.

An uncertain spatial object consists of a set of points, each associated with
a confidence value which reflects the likelihood that the point belongs to the
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corresponding object (cf. Section 3.2.0). An approach for the PSpJ based on
this uncertainty model is proposed in [42]. Here, the uncertain spatial objects
are composed of primitive volume elements with confidence values assigned
to each of them. The score function is used to evaluate the join predicate for a
pair of uncertain spatial objects. It is defined on a combination of the uncertain
spatial extensions of the objects expressed by the confidences of the spatial
primitives and the pairwise distances between the spatial primitives of both
objects. In particular, the score function s(a, b) defined on the object pair (a, b)
is based on the distance between two volume elements that belong to objects a
and b with high probability and it decays exponentially with increased distance
of both volume elements.

Based on this score function, a Probabilistic Threshold Join Query (PTJQ)
and a Probabilistic Top-k Join Query (PTopkJQ) were proposed (cf. Section
3.4). Here, the proposed join query methods are specific in such a way that
the probabilistic query type is not based on the probability that a certain query
predicate (e.g. the score between two objects is within a given ε-Range) is
fulfilled. Rather, the score function itself returns a confidence value s(a, b) ∈
[0, λ], where λ is a domain specific parameter. This confidence value reflects
the likelihood that the spatial predicate is fulfilled without explicitly specifying
the spatial predicate.

The principal idea of both proposed query algorithms is to transform d-
dimensional object points (volume elements) into a (d+1)-dimensional space,
where the (d+1)th dimension corresponds to a log-space of the object element
confidences. This way, given an object point a.pi of object a, all object points
b.pj of an object b that yield a score s(a, b) > τ above a given τ are within a
triangle‡ as illustrated in Figure 9.12. This geometric construct can be used to
identify true hits and prune candidates that can be identified as true drops. The
join is processed by applying a plane-sweep algorithm that works well for the
one-dimensional case. Similar techniques applied for spatial join processing
are proposed in [6, 47]. In the two-dimensional case, the algorithm can only
be adapted to probabilistic spatial objects in the plane if the distance metric
used for the score value is L1. Like other plane-sweep algorithms, it is not
likely to perform well on high-dimensional data.

5. Summary

In this chapter, a broad overview of diverse probabilistic join processing
methods for uncertain objects is given. First, it formally comprises the most
common uncertainty models used in the existing literature about probabilis-

‡For one-dimensional objects (d = 1) the corresponding geometry forms a triangle. In higher-dimensional
spaces (d > 1) more complex geometries have to be considered, e.g. a pyramid for d = 2.
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Figure 9.12. The score between two points a = 〈xa, pa〉 and b = 〈xb, pb〉 exceeds the thresh-
old τ , as b is inside the triangle that is defined by a. Thus, the score between a and another
point c = 〈xc, pc〉 does not exceed τ , as c is not inside the triangle.

tic query processing with a special focus on probabilistic joins. These models
principally differ in the representation of the uncertain data. We distinguish be-
tween continuous uncertainty representation and discrete uncertainty represen-
tation. Additionally, this survey presents the spatial uncertainty model which is
a special class of uncertainty models. It is defined for extended objects. Here,
the location and extension of the objects are the uncertain attributes. Finally,
the probabilistic evaluation of the join predicate is unified and called the score,
which is defined for each join pair. Principally, the score of a join pair reflects
the likelihood that a given join predicate is fulfilled. While the evaluation of
the join predicate depends on the used object model or uncertainty model, the
score can be applied independently to the probabilistic join evaluation. In this
chapter, three probabilistic join query types are highlighted which are most
commonly used in the literature: The probabilistic join query (PJQ), the prob-
abilistic threshold join query (PTJQ) and the probabilistic Top-k join query
(PTopkJQ). Given two sets of objects, the PTJQ returns all pairs of objects
from both sets which fulfill a given join predicate with a probability above a
given threshold value. The first query type PJQ is a special form of the PTJQ,
where the threshold value is set to zero. The PTopkJQ returns k pairs of objects
with the highest probability that the pairs fulfill the join predicate.

The main part of this chapter exemplarily sketches existing probabilistic
join approaches for uncertain data. These approaches are representatives of
different probabilistic join categories. Since the core of the join approaches
are the pruning strategies used to quickly reduce the candidate set in a filter
step, this chapter concentrates on the different pruning criteria. The presented
join approaches can be classified into confidence-based join, probabilistic sim-
ilarity join and probabilistic spatial join. While the pruning criterion of the
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confidence-based join [4] uses only the confidences of the result tuples in or-
der to prune the candidates, the other approaches additionally incorporate the
join attributes, in particular the similarity and the spatial attributes. The prob-
abilistic similarity join approaches are based on a multi-step query processing
strategy. An index which organizes the uncertain data is exploited in order to
evaluate the join at index level in a filter step. The approach which is based on
continuous uncertainty representations [22] uses conservative approximations
of the uncertain objects which are adjusted to specific uncertainty boundaries.
Contrary, the approach [36], which is based on discrete uncertainty represen-
tations, decomposes the uncertain objects into multiple partitions which are
approximated. These approximations are manageable in a better way and im-
prove the filter selectivity in comparison to single object approximations. The
probabilistic spatial join approach [42] reduces the probabilistic spatial join
problem to a traditional spatial join problem by considering the spatial confi-
dence attributes as additional spatial dimension. This way, plane-sweep tech-
niques can be exploited to solve the probabilistic spatial join problem.
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Abstract As the volume of uncertain data increases, the cost of evaluating queries over
this data will also increase. In order to scale uncertain databases to large data
volumes, efficient query processing methods are needed. One of the key tech-
niques for efficient query evaluation is indexing. Due to the nature of uncertain
data and queries over this data, existing indexing solutions for precise data are
often not directly portable to uncertain data. Even in situations where existing
methods can be applied, it is often possible to build more effective indexes for
uncertain data.

In this Chapter we discuss some of the recent ideas for indexing uncertain
data in support of range, nearest-neighbor, and join queries. These indexes
build on standard well-known indexes such as R-trees and/or signature trees.
In some cases this involves augmenting the standard indexes with extra infor-
mation. Sometimes more robust clustering criteria are required to make such
indexes efficient.
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1. Introduction

As the size of a data collection grows, the cost of executing queries over
the data also increases. In order to scale to large data collections, databases
employ several techniques to curtail the computational cost (and effectively the
time required to produce answers). One of the most effective, and ubiquitous,
tools for reducing query execution cost in traditional databases is indexing. An
index is a data structure that can significantly reduce the amount of data that
needs to be processed when a query is executed. Virtually all existing database
systems support a variety of index structures such as B-Trees, hash indexes,
and R-Trees. Each index structure can be used for certain types of data (e.g.,
B-trees require that the data can be sorted), and query types (e.g., a hash index
only supports exact equality match queries).

Similarly, when dealing with large collections of uncertain data, the cost
of execution of queries is also a concern. Indexing can also be an effective
mechanism for improving query processing cost, however, index structures for
certain (precise) data cannot be directly used for uncertain data. To see why
this is the case, consider for example, the case of a hash index which maps
each data item to one of several buckets by applying a hash function to certain
fields of the data item. In order to speed up an equality search using the hash
index, we first hash the query fields using the same hash function to identify
the bucket which must contain all the data items in our collection that match
the query field. Hence, the query can limit its search to this bucket and ignore
the rest of the buckets, thereby significantly reducing the number of data items
to compare to the search key. With uncertain data, a given data item may have
multiple possible values for some attributes. If we choose to build a hash index
over this attribute how should we handle the multiple values – should a single
data item hash to all the buckets corresponding to each possibility; or a single
bucket? In either case, what happens at query time? What type of search are
we expecting at query time (certainly not an exact match)?

This chapter discusses the following key question: How do we index uncer-
tain data? Two related, and important preliminaries are: what is the nature of
the uncertainty in the data; and what types of queries will be executed? Clearly,
the answers to these preliminary questions impact what types of index struc-
tures are feasible. It should be noted that the availability of an index structure
is only part of the solution to efficient query evaluation – an equally impor-
tant component is a mechanism that will make use of the appropriate index
structure for a given situation. This task is typically handled by the Query Op-
timizer in a database. This chapter does not discuss these issues. Furthermore,
this chapter limits the discussion to probabilistic relational database models for
handling uncertainty in data.
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The nature of uncertainty in data is quite varied, and often depends on the
application domain. Consider the following sample applications.

Example 1. Many data cleaning applications use automated methods to
correct errors in data. Often, in such scenarios there is more than one reason-
able alternative for the corrected value. In the standard relational model, one
is forced to pick one among these alternative, which may lead to incorrect-
ness. An uncertain model can allow multiple choices for an attribute value to
be retained.

Example 2. Measured values in sensor data applications are notoriously
imprecise. An example is an ongoing project at Purdue University that tracks
the movement of nurses in order to study their behavior. Nurses carry RFID
tags as they move around the hospital. Numerous readers located around the
building report the presence of tags in their vicinity. The collected data is
stored centrally in the form “Nurse2 in room6 at 10:10 am”. Each nurse carries
multiple tags. Difficulties arise due to the variability in the detection range of
readers; multiple readers detecting the same tag; or a single tag being detected
repeatedly between two readers (e.g., between room6 and the hallway – is the
nurse in room6 all the time, just that the hallway sensor is detecting his tag or
is she actually moving in and out?). Thus, the application may not be able to
choose a single location for the nurse at all times with 100% certainty.

Example 3. Data collected from sensors (e.g., temperature sensors for
weather, or GPS-based location data from cell phones), there is almost always
some amount of inherent associated uncertainty. In addition, due to resource
limitations such as battery power of sensor and network bandwidth, sensors
only transmit data intermittently. Consequently, it is infeasible for a sensor
database to contain exact value of each sensor at any given point in time. Thus
the traditional model of a single value for a sensor reading is not a natural
fit with this data. Instead, a more appropriate model is one where the sensor
attribute can be represented as a probability distribution reflecting the inherent
uncertainties and interpolation between measurements.

Overall, these kinds of emerging database applications require models
which can handle uncertainty and semantics to define useful queries on such
data.

In response to this need, several research projects have been undertaken
recently (Orion [18], MayBMS [1], Mystiq [7], Trio [25], [21]). These projects
represent a variety of data models. A major choice for each model is whether
to incorporate probability values at the tuple or attribute level. This leads to
two slightly different approaches in modelling and representing uncertain data.
The two models are called tuple uncertainty model and attribute uncertainty
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Car id Problem Probability

Car1 Brake 0.1
Car1 Tires 0.9
Car2 Trans 0.2
Car2 Suspension 0.8

Table 10.1. Example of a relation with x-tuples

Car id Problem

Car1 {(Brake, 0.1), (Tires, 0.9)}
Car2 {(Trans, 0.2), (Suspension, 0.8)}

Table 10.2. Example of a relation with Attribute Uncertainty

model. In addition to capturing uncertainty in the data, the models must define
the semantics of queries over the data. In this regard, virtually all models
have adopted the standard possible worlds semantics. Some of these models
are discussed below in Section 2. Some of the prominent index structures
for uncertain data are discussed next. Section 3 presents index structures for
data with continuous uncertainty. Section 4 discusses index structures for data
with discrete uncertainty. Section 5 deals with indexes for supporting nearest-
neighbor queries.

2. Data Models and Query Semantics

There are two main approaches for modeling uncertain relational data. One
approach (Tuple uncertainty) is to attach a probability value with each tuple –
the probability captures the likelihood of the given tuple being present in the
given relation. The probability values for different tuples are assumed to be
independent of each other, unless some dependency is explicitly given. These
dependencies across tuples can be used to express mutually exclusive alterna-
tives. Such tuples are called x-tuples.

Table 10.1 shows uncertainty information in a table expressed using tuple
uncertainty. The tuples for Car id = Car1 are grouped together in a x-tuple, so
they are mutually exclusive. Thus, Car1 has problems with either Brakes or
Transmission with probability 0.1 and 0.9 respectively.

The second approach (Attribute uncertainty) allows for probability values
at the attribute level. In this approach, a given tuple may have multiple alter-
natives for a given attribute. The alternatives may be a collection of discrete
values with associate probabilities, or a continuous range(s) with a probability
density function (pdf). The actual value of the attribute is a single value taken
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from this distribution. Multiple attributes of the same tuple are independent
unless a joint distribution is provided. Joint distributions can be used to cap-
ture correlations. Table 10.2 shows the uncertain Table 10.1 expressed using
Attribute Uncertainty.

Since, most database indexes are built on a single attribute, the discussion
in this chapter assumes the attribute uncertainty model. It should be noted that
both models are essentially the same, in that they use possible worlds semantics
for probabilistic calculations and for verifying correctness of operations.

2.1 Uncertain Attribute types

Uncertain attributes can be broadly classified into the following types:

Discrete data :: The domain for the attribute is discrete (e.g., integers or city
names). The domain may be ordered (e.g., integers) or not (e.g. colors). ∗

An uncertain discrete value is represented as a set of values with probabil-
ities. The values may or may not be contiguous or ordered. For example,
the color of a car may be red with probability 0.7, or orange with a 0.3
probability: { (red, 0.7), (orange, 0.3) }.

Continuous data: : The domain for the attribute is the set of real numbers in
a given range (e.g. length). An uncertain real-valued attribute is modelled
as a pdf over a contiguous range of values. Apart from contiguity in val-
ues, this data is also ordered. A special case that is common, is that of
multidimensional real-valued attributes (e.g., location). Such data can be
represented as a pdf over a multidimensional region. For example, GPS
devices are known to have a 2-dimensional Gaussian error in the reported
longitude and latitude values, thus a GPS location is best modelled as a
2-dimensional pdf centered at the reported values.

3. Uncertainty Index for Continuous Domains

In this section, we consider index structures for continuous attributes in sup-
port of probabilistic threshold range queries (PTRQ). The dataset is a relation
with a single uncertain attribute A. We are interested in the efficient evaluation
of a range query given by the two end-points of the range: [a, b] and thresh-
old p. The query returns all tuples in the relation for which the probability of
the tuple’s value for attribute A falling in the range [a, b] meets or exceeds the
threshold p.

∗Note that even though it may be possible to define an ordering over this domain (e.g., the alphabetic order-
ing of color names), the lack of order of interest is with respect to queries. If queries are not interested in
retrieving colors based on their names, then the domain is effectively unordered for the purpose of indexing.
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Definition 10.1 Given an uncertain relation R with uncertain attribute

R.u, the probability threshold range query (PTRQ) with parameters ([a, b], p)
returns all the tuples Ri such that the probability Pr(a ≤ Ri.u ≤ b) > p.

Let fi(x) be the pdf that gives the uncertain value of attributeA for Tuple Ti
of the relation. Let [ai, bi] be the uncertainty interval for Ti. A straight-forward
approach to evaluate PTRQ is to retrieve all tuples Ti which overlap with the
query range, and for each compute its probability of falling in the query range
[a,b]. This is given by

pi =

∫ b

a
fi(x)dx

where fi is the PDF of Ai. Only those that exceed the threshold are returned
as the answer to the query. Retrieving all the Ti’s which overlap with the query
interval can be efficiently (in fact optimally) done using interval B-trees [3].

While this solution is able to exploit existing index structures for improving
query performance over uncertain data, it suffers from the following drawback:
what if there are many intervals which overlap with the query interval but with
probability lower than the threshold. In this case, the query unnecessarily re-
trieves these tuples (involves extra I/Os) and computes the corresponding prob-
abilities (involves extra expensive integrations which may also be costly). Is
it possible to prune away many, if not all, of these tuples that do not make it
to the result without checking them individually? The Probability Threshold
Index (PTI) provides one solution to this problem.

3.1 Probability Threshold Indexing

The above problems illustrate the inefficiency of using an interval index to
answer a PTRQ. While the range search is being performed in the interval
index, only uncertainty intervals are used for pruning out intervals which do
not intersect [a, b]. Another piece of important uncertainty information, namely
the uncertainty pdf, has not been utilized at all in this searching-and-pruning
process.

The PTI is a modification of a one-dimensional R-tree, where probability
information is augmented to its internal nodes to facilitate pruning.

To see how the PTI works, let us review how are range query is processed
using a regular R-tree. Consider an R-tree that indexes the uncertain attribute
A: each tuple is indexes using the range of its uncertainty interval ([ai, bi]). The
PTRQ is processed as follows. Starting with the root node, the query interval
[a, b] is compared with the minimum bounding rectangle (MBR) of each child
in the node. If a child node’s MBR does not overlap with the query range, the
entire subtree rooted at that child is pruned from the search. In other words,
any subtree with a zero probability of falling in the query range is pruned. The
key idea of the PTI is to take the pruning one step further by pruning away
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Figure 10.1. Inside an Node Nj , with a 0.2-bound and 0.3-bound. A PTRQ named Q is shown
as an interval.

subtrees that may have a non-zero probability of overlap, but no larger than
the threshold. This is achieved by generalizing the notion of the MBR and
storing extra bounds (called lower-x-bounds and upper-x-bounds) along with
the MBR entries in each node. the query range and the minimum bounding
rectangle (MBR) of the root node of the subtree overlap. Let Nj denote the
jth node of an R-tree, ordered by a pre-order traversal. Denote Mj to be the
MBR of this node. The lower-x-bound and upper-x-bound of Nj is defined as
follows.

Definition 10.2 A lower(upper)-x-bound of node Nj (denoted by

Nj .lb(x) (Nj .ub(x)) is the largest value which guarantees that for any in-
terval [Li, Ui] contained in the subtree rooted at Nj , the probability of being

less that Nj.lb(x(+) is at most x. This is to say, that the following must hold:∫ Nj .lb(x)
Li

fi(y)dy ≤ x and
∫ Ui
Nj .ub(x)

fi(y)dy ≤ x.

Using the definition of a x-bounds, the MBR of an internal node can be
viewed as a pair of lower-0-bound and upper-0-bound, since all intervals in
the node must be fully above the lower-0-bound (lower end of the MBR), and
below the upper-0-bound (upper end of the MBR). Figure 10.1 that illustrates
three children MBRs (u,v,w), in the form of one-dimensional intervals, con-
tained in larger Node Nj . The domain increases from left to right. The 0.2-
bounds and 0.3-bounds for Nj are also shown.

As Figure 10.1 shows, a lower(upper)-x-bound is a value below (above)
which at most x% of any interval in the node can lie. For illustration, the
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uncertainty pdf of u is shown, where we can see that
∫ Nj .lb(0.2)
Lu

fu(x)dx ≤ 0.2,

and
∫ Nj .ub(0.3)
Uu

fu(x)dx ≤ 0.3. For interval v, the constraint on the right-0.3-

bound is
∫ Uv
Nj .rb(0.3)

fv(x)dx ≤ 0.3. Interval w does not crosses either the 0.2-
bound and the 0.3-bound, so it satisfies the constraints of all four x-bounds.

To see the effectiveness of the PTI consider the PTRQ Q with threshold 0.3
and interval as shown in Figure 10.1. Without the aid of the x-bounds, Nj’s
subtree cannot be eliminated from further exploration since it overlaps with Q.
This may involve further I/O and computations costs.

The presence of the x-bounds, however, enables pruning since Q lies to the
right of the right-0.2-bound. Recall that the probability of any interval in the
sub-tree rooted at Nj in the range [Nj.ub(0.2),∞] cannot exceed 0.2. Hence
the probability of any interval overlapping with Q which lies entirely in this
interval cannot exceed 0.2 and thus cannot meet the query’s threshold of 0.3.
Thus the node can be safely pruned away for this query. Compared with the
case where no x-bounds are stored, this represents savings in terms of number
of I/Os and computation time.

In general, node Nj can be pruned away for query Q with interval [a, b] and
threshold p, if the following two conditions hold for any of the lower or upper
x-bounds of the node:

2 p ≥ x

If none of the x-bounds inNj satisfies these two conditions, the node cannot
be pruned and must be examined as with a regular R-tree.

Figure 10.2 illustrates an implementation of a PTI. Its framework is the same
as R-tree, where each internal node stores the MBRs of its children and their
corresponding pointers. In addition, the PTI stores a table Nj .PT for each
child Nj storing the lower and upper bounds for various values of x. Each
entry of Mj .PT is a tuple of the form <left-x-bound, right-x-bound>. To
avoid repeated storage, a global table called TG records the values of x for
x-bounds. The i-th entry of Mj.PT contains the x-bounds for the value of x
stored in the i-th entry of TG. The data items being indexed are uncertainty
intervals and pdfs.

The PTI is a simple idea and is easy to implement. Although the fan-out of a
PTI node is lower than an R-tree node because each entry is larger, the fan-out
only logarithmically affects the height of the tree. Hence, in most cases this
results in increase in height by an additive constant, which only has a minor

1 [a, b] lies below (above) the lower(upper)-x-bound of Nj i.e., either
b < Nj .lb(x) or a > Nj .ub(x) is true, and
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Figure 10.2. Structure of PTI

effect on PTI’s performance. Indeed, its performance illustrates significant
improvements over the R-tree. Although the discussion above was limited to
a single dimension, the idea of the PTI can be easily extended to multiple
dimensions.

3.2 Special Case: Uniform PDFS

For the special case where the pdf for each interval is a uniform distribution,
it is possible to build an indexing using a mapping of intervals to the dual space.
This version of the PTRQ query is called the PTQU problem. As it turns
out, PTRQ is a hard problem to be provably solved even with uniform pdfs.
However, good heuristics can be used for PTQU and they can be extended to
PTQs when pdfs are arbitrary using the idea of PTI from the previous section.
Furthermore, a provably good index for PTQU can exist if the threshold of
probability p is a fixed constant.

3.3 2D mapping of intervals

Let us first explore the impact of the mapping on the data and query
(PTQU) [3]. The mapping converts each interval [x, y] to the point (x, y) in
2D space. Note that, for all intervals, x < y and hence these points all lie in
the region above (and to the left of) the line x = y. Figure 10.3(a) gives the
illustration. A stabbing query is a particular kind of query associated with the
notion of intervals. Given a point c, a stabbing query reports all the intervals
containing point c. A stabbing query [3] for point c is converted to a two-sided
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Figure 10.3. Probabilistic Threshold Queries with Uniform pdf

orthogonal query originating at point (c, c) in this mapping. A range query
(a, b) is just a union of the stabbing queries for all the points from a to b. This
is the same as a two-sided orthogonal query originating at point (b, a).

A PTQU (a, b, p) where 0 < p ≤ 1 now becomes a 3-sided trapezoidal
query as shown in Figure 10.3(b). To see this, consider any point (x, y) (i.e.
interval [x, y]) which satisfies PTQU (a, b, p). There are four main cases:

x ≤ a < b ≤ y:: The query lies within the interval. We simply require that
the query covers a sufficient length of the interval, i.e., b − a ≥ p(y − x).
Therefore point (x, y) is in the region below the line y − x = (b − a)/p.
This line has slope 1.

x ≤ a < y ≤ b:: The query region is on the right of the interval. The amount
of overlap is given by y−a. This condition translates to y(1−p)+xp ≥ a.
This corresponds to the region above the line y(1− p)+xp = a which has
slope −p/(1− p).

a ≤ x < b ≤ y:: The query region is to the left of the interval. This is given
by the region x(1−p)+yp ≤ b. The separating line has slope−(1−p)/p.

a < x < y < b:: The entire interval lies within the query and hence it satisfies
the PTQU for any p.

Thus, the region satisfying the query is given by the intersection of the three
regions (first three) above, which corresponds to an isosceles trapezoid region.
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The fourth side of the region given by line x = y can be essentially considered
redundant since there are no points below (or to the right) of this line. This as
an open side of the trapezoid. Thus, under the 2D mapping, PTQU becomes a
3-sided trapezoidal query.

A simple index based on 2-D mapping. The above properties can be used
to construct a simple R-tree based index for answering PTQU queries. The
intervals are mapped to 2D points which are indexed using an R-tree. PTQU
queries are converted to the corresponding trapezoids, which are evaluated as
range queries against each page of R-tree (at any level). An entire subtree of
the R-tree can be pruned if its bounding box has no overlap with the trapezoidal
region for the query.

Even under this simplification of uniform pdfs, this problem is hard to solve
theoretically. The problem is related to half-space queries, simplex queries or
wedge queries in 2-D geometry. No efficient index exists and in fact some
lower bounds on these problems suggest that the PTQU problem might also be
hard to solve.

In any case, [10] does show that theoretical optimality is possible if the
threshold of the query is fixed apriori before building the index. This can be
obtained by novel use of 3-sided query index [2].

3.4 Join Queries

In this section, we briefly discuss how the concept of PTI indexing can be
used to do answer join queries over uncertain data. First we present the defi-
nitions and semantics of join queries over uncertain data. Then we show how
some of the standard join techniques can be combined with PTI indexing for
efficient query processing.

Let us focus on one dimensional uncertain data. Later, we shall briefly dis-
cuss how this can be extended to multiple dimensions. For attribute a, let
a.f(x) denote its pdf function and a.F (x) denote the corresponding cdf (cu-
mulative density function). Let a.l and a.u denote the lower boundary and
upper boundary of the uncertainty interval.

Given this, we can define:

Definition 10.3 The probability that uncertain attribute a is greater than
b is given by

P (a > b) =

∫ b.u

max(a.l,b.l)
a.f(x)b.F (x)dx+ 1− a.F (b.u) a.l ≤ b.u < a.u

=

∫ a.u

max(a.l,b.l)
a.f(x)b.F (x)dx b.l ≤ a.u ≤ b.u
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Definition 10.4 Given a resolution parameter c, the probability a is equal
to b (within distance c) is given by

P (a =c b) =

∫ ∞

−∞
a.f(x).(b.F (x+ c)− b.F (x− c))dx

.

The limits in the above definition can be made more restrictive than −∞
to ∞ by observing the positions of their uncertainty intervals. Note that the
resolution parameter c is needed to obtain a non-zero probability answer in the
continuous case.

These definitions can also be used to compare uncertain attribute a to single
certain value v ∈ R. For example, P (a =c v) = a.F (v+ c)− a.F (v− c) and
P (a > v) = 1− a.F (v).

We now define the extension of probabilistic threshold queries to join
queries. Let R and S be two relations having an uncertain attribute a.

A simple way to evaluate such a join query is to take an interval join based
approach [13]. We take each pair of uncertainty intervals and decide whether
to evaluate the integral based on whether the uncertainty intervals of these two
attributes overlap or not. Now, instead of evaluating a costly integral operation
for each pair, we may be able to prune-in or prune-out a given pair based on
the probability threshold p.

We take an example of Greater than queries. In this case, we can say that

1 If a.l ≤ b.r < a.r, P (a > b) ≥ 1− a.F (b.r).

2 If a.l ≤ b.l ≤ a.r, P (a > b) ≤ 1− a.F (b.l).

It is much easier to check the above inequalities rather than evaluating the
entire integral. Based on these bounds on probability we prune-out or prune-
in certain pairs of attributes. These kinds of rules can be developed for other
operators also. This kind of pruning is called item-level pruning.

The concept of item-level pruning can be taken further to page level pruning
and also to index level pruning by using x-bounds as in PTI indexing. Say, one
of the relations S in join is indexed using PTI. Now for each tupleR.a from R,
we can quickly prune-away the items in S by searching and traversing through
the index on S. When we are at a certain node in the PTI based R-tree, we can
in many cases conclude based on the x-bounds that no item in the subtree of
that node will satisfy the join query with R.a

Definition 10.5 Given an uncertainty comparator θu ( for example =c, >,
<, 6=c ) a Probabilistic Threshold Join Query (PTRQ) returns all tuples

(Ri, Sj) such that P (Ri.aθuSj.a) > p, where p ∈ [0, 1] is the probability
threshold.
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In many cases, it is worthwhile to index both the relations using PTI. The
item-level pruning rule can be used to derive page-level pruning rules. Some-
times just by comparing the x-bounds of page r with page s we can conclude
that no tuple indexed by page r will join with any tuple in page s. Details of
these pruning rules can be found in [9].

Given item-level and page-level (and also index-level) pruning rules, these
techniques can be applied to derive uncertain versions of standard Indexed
Nested Loop Join (INLJ) and Block Nested Loop Join (BLNJ) algorithms. It
is shown in [9] that different pruning strategies at various levels gives consid-
erable performance gains in terms I/Os and number of integration operations.

3.5 Multi-dimensional Indexing

So far we have mainly focussed on continuous uncertain data in one di-
mension. The techniques there can be extended to handle multidimensional
uncertain data also. One of the fundamental difference comes from the ab-
sence of well-defined cumulative density function (cdf) in this case. Here, the
range queries involve a range defined by a hyper-rectangle. All objects that
have more than a threshold probability mass within this hyper rectangle are to
be reported.

The approach of [24] involves constructing CDF functions along each
dimension. An R∗-tree like index is used, augmented with (left and right)
x-bounds along each dimension similar to the PTI. These x-bounds define
smaller hyper-rectangles compared to bounding boxes. Whenever the query
region does not overlap with this smaller hyper-rectangle, the object can be
pruned. Similar to the one dimensional case this pruning can be taken at page
level and various levels in the index.

4. Uncertainty Index for discrete domains

Uncertainty in categorical data is commonplace in many applications, in-
cluding data cleaning, database integration, and biological annotation. In such
domains, the correct value of an attribute is often unknown, but may be selected
from a reasonable number of alternatives. Current database management sys-
tems do not provide a convenient means for representing or manipulating this
type of uncertainty. Two indexing structures for efficiently searching uncertain
categorical data were proposed in [22] – one based on the R-tree and another
based on an inverted index structure. Before we go into details of the indexing
structures, we will discuss the data model and probabilistic queries supported
by them.
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Make Location Date Text Problem

Explorer WA 2/3/06 · · · {(Brake, 0.5), (Tires, 0.5)}
Camry CA 3/5/05 · · · {(Trans, 0.2, (Suspension, 0.8)}
Civic TX 10/2/06 · · · {(Exhaust, 0.4), (Brake, 0.6)}

Caravan IN 7/2/06 · · · {(Trans, 1.0)}

Table 10.3. Example of Uncertain Relation with an Uncertain Discrete Attribute

4.1 Data Model and Problem Definition

Under the categorical uncertainty model [5], a relation can have attributes
that are allowed to take on uncertain values. For the sake of simplicity, we
limit the discussion to relations with a single uncertain attribute, although the
model makes no such restriction. The uncertain attributes are drawn from cate-
gorical domains. We shall call such an attribute an uncertain discrete attribute
(UDA). Let R.a be a particular attribute in relation R which is uncertain. R.a
takes values from the categorical domain D. Let D = {d1, d2, ..., dN}, then
t.a is given by the probability distribution Pr(t.a = di). Thus, t.a can be
represented by a probability vector t.a = 〈p1, p2, ..., pN 〉.

Table 10.3 is for a CRM application with UDA attribute Problem. The
Problem field is derived from the Text field in the given tuple using a text
classifier. A typical query on this data would be to report all the tuples which
are highly likely to have a brake problem (i.e., Problem = Brake). For-
mally we define UDA as follows.

Definition 10.6 Given a discrete categorical domain D = {d1, .., dN},
an uncertain discrete attribute (UDA) u is a probability distribution over D.
It can be represented by the probability vector u.P = 〈p1, ..., pN 〉 such that
Pr(u = di) = u.pi.

Given an element di ∈ D, the equality of u = di is a probabilistic event. The
probability of this equality is given by Pr(u = di) = pi. The definition can
be extended to equality between two UDAs u and v under the independence
assumption as follows:

Definition 10.7 Given two UDAs u and v, the probability that they are
equal is given by Pr(u = v) =

∑N
i=1 u.pi × v.pi.

This definition of equality is a natural extension of the usual equality op-
erator for certain data. Analogous to the notion of equality of value is that
of distributional similarity. Distribution similarity is the inverse of distribu-
tional divergence, which can be seen as a distance between two probability
distributions. We consider the following distance functions between two dis-
tributions:
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L1:: L1(u, v) =
∑N

i=1 |u.pi − v.pi|. This is the Manhattan distance between
two distributions.

L2:: L2(u, v) =
√∑N

i=1(u.pi − v.pi)2. This is the Euclidean distance be-
tween two distributions.

KL(u, v):: KL(u, v) =
∑N

i=1 u.pi log(u.pi/v.pi). This is Kullback-Leibler
(KL) divergence based on cross entropy measure. This measure comes
from information theory. Unlike the above two, this is not a metric. Hence
it is not directly usable for pruning search paths but can be used for clus-
tering in an index [19].

We next define the queries over the UDAs:

Definition 10.8 Probabilistic equality query (PEQ): Given a UDA q, and
a relation R with a UDA a, the query returns all tuples t from R, along with
probability values, such that the probability value Pr(q = t.a) ≥ 0.

Often with PEQ there are many tuples qualifying with very low proba-
bilities. In practice, only those tuples which qualify with sufficiently high
probability are likely to be of interest. Hence the following queries are more
meaningful: (1) equality queries which use probabilistic thresholds [5], and (2)
equality queries which select k tuples with the highest probability values.

Definition 10.9 Probabilistic equality threshold query (PETQ): Given a
UDA q, a relation R with UDA a, and a threshold τ , τ ≥ 0. The answer to the
query is all tuples t from R such that Pr(q = t.a) ≥ τ .

Analogous to PETQ, we define the top-k query PEQ-top-k, which returns
the k tuples with the highest equality probability to the query UDA. Here a
number k is specified (instead of the threshold τ and the answer to the query
consists of k tuples from PEQ whose equality probability is the highest.

Having defined the data model and the queries over this data, we next dis-
cuss the two indexing structures we proposed in [22].

4.2 Probabilistic Inverted Index

Inverted indexes are popular structures in information retrieval [4]. The
basic technique is to maintain a list of lists, where each element in the outer
list corresponds to a domain element (i.e. the words). Each inner list stores the
ids of documents in which the given word occurs, and for each document, the
frequencies at which the word occurs.

Traditional applications assume these inner lists are sorted by document id.
We introduce a probabilistic version of this structure, in which we store for
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Figure 10.4. Probabilistic Inverted Index

each value in a categorical domain D a list of tuple-ids potentially belonging
to D. Along with each tuple-id, we store the probability value that the tuple
may belong to a given category. In contrast to the traditional structure, these
inner lists are are sorted by descending probabilities. Depending on the type of
data, the inner lists can be long. In practice, these lists (both inner or outer) are
organized as dynamic structures such as B-trees, allowing efficient searches,
insertions, and deletions.

Figure 10.4 shows an example of a probabilistic inverted index. At the base
of the structure is a list of categories storing pointers to lists, corresponding
to each item in D that occurs in the dataset. This is an inverted array stor-
ing, for each value in D, a pointer to a list of pairs. In the list di.list cor-
responding to di ∈ D, the pairs (tid, p) store tuple-ids along with probabil-
ities, indicating that tuple tid contains item di with probability p. That is,
di.list = {(tid, p)|Pr(tid = di) = p > 0}. Again, we sort these lists in order
of descending probabilities.

To insert/delete a tuple (UDA) tid in the index, we add/remove the tuple’s
information in tuple-list. To insert it in the inverted list, we dissect the tuple
into the list of pairs. For each pair (d, p), we access the list of d and insert pair
(tid, p) in the B-tree of this list. To delete, we search for tid in the list of d and
delete it.

Next we describe search algorithms to answer the PETQ query given a
UDA q and threshold τ . Let q = 〈(di1 , pi1), (di2 , pi2), ..., (dil , pil)〉 such that
pi1 ≥ pi2 ≥ ... ≥ pil . We first describe the brute force inverted index search
which does not use probabilistic information to prune the search. Next we shall
describe three heuristics by which the search can be concluded early. The three
methods differ mainly in their stopping criteria and searching directions. De-
pending on the nature of queries and data, one may be preferable over others.

Inv-index-search:. This follows the brute-force inverted index based
lookup. For all pairs (dij , pij ) in q, we retrieve all the tuples in the list cor-
responding to each d. Now, from these candidate tuples we match with q to
find out which of these qualify more than the threshold. This is a very sim-
ple method, and in many cases when these lists are not too big and the query
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Figure 10.5. Highest-prob-first Search for q = 〈(d3, 0.4), (d8, 0.2), (d6, 0.1)〉.

involves fewer dij , this could be as good as any other method. However, the
drawback of this method is that it reads the entire list for every query.

Highest-prob-first:. Here, we simultaneously search the lists for each dij ,
maintaining in each dij .list a current pointer of the next item to process (see
Figure 10.5). Let p′ij be the probability value of the pair pointed by the current
pointer in this list. At each step, we consider the most promising tuple-id. That
is, among all the tuples pointed by current pointers, move forward in that list
of dj where the next pair (tid, p′ij ) maximizes the value p′ijpij . The process
stops when there are no more promising tuples. This happens when the sum
of all current pointer probabilities scaled by their probability in query q falls
below the threshold, i.e. when

∑l
j=1 p

′
ij
pij < τ . This works very well for

top-k queries when k is small.

Row Pruning:. In this approach, we employ the naive inverted index
search but only consider lists of those items in D whose probability in query q
is higher than threshold τ . It is easy to check that a tuple, all of whose items
have probability less than τ in q, can never meet the threshold criteria. For
processing top-k using this approach, we can start examining candidate tuples
as we get them and update the threshold dynamically.

Column Pruning:. This approach is orthogonal to the row pruning. We
retrieve all the lists which occur in the query. Each of these lists is pruned by
probability τ . Thus, we ignore the part of the lists which have probability less
than the threshold τ . This approach is more conducive to top-k queries.

The correctness of our stopping criteria is established by the following
lemma. This applies to all three of the above cases.

Lemma 10.10 Let the query q = {(dij , pij )|1 ≤ j ≤ l} and threshold τ .
Let p′ij be probability values such that

∑l
j=1 pijp

′
ij
< τ . Then, any tuple tid
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which does not occur in any of the dij .list with probability at least p
′
ij
, cannot

satisfy the threshold query (q, τ).

Proof: For any such tuple tid, tid.pij ≤ p′ij . Hence,
∑l

j=1 pij tid.pij < τ .
Since q only has positive probability values for indices ij’s, Pr(q = tid) < τ .

In many cases, the random access to check whether the tuple qualifies per-
forms poorly as against simply joining the relevant parts of inverted lists. Here,
we use rank-join algorithms with early-out stopping [14, 16]. For each tuple
so far encountered in our search, we maintain its lack parameter – the amount
of probability value required for the tuple, and which lists it could come from.
As soon as the probability values of required lists drop below a certain bound-
ary such that a tuple can never qualify, we discard the tuple. If at any point
the tuple’s current probability value exceeds the threshold, we include it in the
result set. The other tuples remain in the candidate set. A list can be discarded
when no tuples in the candidate set reference it. Finally, once the size of this
candidate set falls below some number (predetermined or determined by ratio
to already selected result) we perform random accesses for these tuples.

4.3 Probabilistic Distribution R-tree

In this subsection, we describe an alternative indexing method based on the
R-tree [15]. In this index, each UDA u is stored in a page with other similar
UDAs which are organized as a tree.

We now describe our structure and operations by analogy to the R-tree.
We design new definitions and methods for Minimum Bounding Rectangles
(MBR), the area of an MBR, the MBR boundary, splitting criteria and inser-
tion criteria. The concept of distributional clustering is central to this index. At
the leaf level, each page contains several UDAs (as many as fit in one block)
using the aforementioned pairs representation. Each list of pairs also stores the
number of pairs in the list. The page stores the number of UDAs contained in
it. Figure 10.6 shows an example of a PDR-tree index.

Each page can be described by its MBR boundaries. The MBR boundary
for a page is a vector v = 〈v1, v2, ..., vN 〉 in RN such that vi is the maximum
probability of item di in any of the UDA indexed in the subtree of the current
page.

We maintain the essential pruning property of R-trees; if the MBR boundary
does not qualify for the query, then we can be sure that none of the UDAs
in the subtree of that page will qualify for the query. In this case, for good
performance it is essential that we only insert a UDA in a given MBR if it is
sufficiently tight with respect to its boundaries. There are several measures for
the “area" of an MBR, the simplest one being theL1 measure of the boundaries,



Indexing Uncertain Data 317

009 201

(0,0.4,0.7) (0,0.2,0.9)

(0,0.3,0.7) (0,0.4,0.6) (0,0.1,0.9) (0,0.2,0.8)

Free Space: ... Count: 2

Bound. Vec:

Children:

Free Space: ... Count: 2

Bound. Vec:

Tuple_ids:

Count: 2Free Space: ...

Bound. Vec:

Tuple_ids:765 418

Figure 10.6. Probabilistic Distribution R-tree

which is
∑N

i=1 vi. Our methods are designed to minimize the area of any MBR.
Next, we describe how insert, split and PETQ are performed.

Insert(u). To insert a UDA into a page, we first update its MBR informa-
tion according to u. Next, from the children of the current page we pick the
best page to accommodate this new UDA. The following criteria (or their com-
bination) are used to pick the best page: (1) Minimum area increase: we pick
a page whose area increase is minimized after insertion of this new UDA; (2)
Most similar MBR: we use distributional similarity measure of u with MBR
boundary. This makes sure that even if a probability distribution fits in an MBR
without causing an area increase, we may not end up having too many UDAs
which are much smaller in probability values. Even though an MBR bound-
ary is not a probability distribution in the strict sense, we can still apply most
divergence measures described earlier.

Split( ). There are two alternative strategies to split an overfull page: top-
down and bottom-up. In the top-down strategy, we pick two children MBRs
whose boundaries are distributionally farthest from each other according to the
divergence measures. With these two serving as the seeds for two clusters,
all other UDAs are inserted into the closer cluster. In the bottom-up strategy,
we begin with each element forming an independent cluster. In each step the
closest pair of clusters (in terms of their distributional distance) are merged.
This process stops when only two clusters remain. An additional consideration
is to create a balanced split, so that two new nodes have a comparable number
of objects. No cluster is allowed to contain more that 3/4 of the total elements.
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PETQ(q, τ ). Given the structure, the query algorithm is straightforward.
We do a depth-first search in the tree, pruning by MBRs. If an MBR qualifies
for the query, i.e., if 〈〈c.v, q〉〉 ≥ τ , our search enters the MBR, else that branch
is pruned. At the leaf level, we evaluate each UDA in the page against the
query and output the qualifying ones. For top-k queries, we need to upgrade
the threshold probability dynamically during the search. The following lemma
proves the correctness of the pruning criteria.

Lemma 10.11 Consider a node c in the tree. If 〈〈c.v, q〉〉 < τ then no UDA
stored under the subtree of c qualifies for the threshold query (q, τ ).

Proof: Consider any UDA u stored in the subtree of c. Since an MBR bound-
ary is formed by taking the point-wise maximum of its children MBR bound-
aries, we can show by induction that u.pi ≥ c.v.pi and qi ≥ 0 for any i,
〈〈u, q〉〉 < 〈〈c.v, q〉〉 < τ . Thus, u cannot qualify.

Both indexing techniques were implemented and the performance results for
both real and synthetic datasets were presented in [22]. Both the index struc-
tures were shown to have good scalability with respect to dataset and domain
size.

5. Indexing for Nearest Neighbor Queries

This section discusses indexing of uncertain data for another important class
of queries: nearest-neighbor queries. Researchers have proposed several ap-
proaches for this problem. We will briefly review them here. The first defini-
tion of nearest neighbor queries was given by Cheng et. al [8]. It captures the
probability that a given uncertain attribute is the nearest neighbor of a query
point.

Definition 10.12 Given a query point q and a pdf-attribute ai, ai is a near-
est neighbor of q if there exist x such that dist(q, ai) ≤ x and for all other
tuples in the relation with attributes aj , dist(q, aj) > x. For uncertain (pdf)
attributes this is a probabilistic event. The probability P inn that ai is the near-
est neighbor of q is equal to

∫
x Pr[(x ≤ dist(q, ai) ≤ x + dx) ∩ (∀j 6=

i, dist(q, aj) ≥ x+ dx)]

In many scenarios, independence is assumed across different tuples. In
such cases, the probability P inn is given by

∫
x Pr[(x ≤ dist(q, ai) ≤ x +

dx)]Πj 6=iPr[dist(q, aj) ≥ x+ dx].
Given this, we can define nearest neighbor queries as follows:

Definition 10.13 Given a query point q and a set of objectsO1, O2, ..., On
with uncertain pdf attributes, a probabilistic nearest neighbor query (PNN)

returns a pair (Oi, P
i
nn), i.e., tuples augmented with their probabilities of being

the nearest neighbor.
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Two related definitions to PNN which are widely used are PNN-topk and
PNNT:

Definition 10.14 Given a query point q and a number k, PNN-topk returns
k objectsOi’s such that their correspondingP

i
nn are the k topmost probabilities

(of being the nearest neighbor) among all the objects.

Definition 10.15 Given a query point q and a probability threshold t,
PNNT returns all the objects Oi’s such that their P

i
nn ≥ t.

In these definitions, P inn for a given object, depends on all other objects in
the database. Hence, this is very complicated to evaluate. This is the most
natural definition on which many researchers have worked.

Cheng et al [11] present a simple pruning based approach for this problem.
Given a query point q, the sphere of non-zero probability is first calculated.
This is computed using the shortest radius x from q that encloses an entire
object (along with its bounding intervals). Once this is calculated, only the ob-
jects whose uncertainty region overlaps with this sphere need to be considered.
The rest can be pruned away. A regular R-tree based index can be used for this
purpose. Once the candidate set of pdfs are obtained, brute-force processing
is done to find out all the P inn values for each of these objects. This simple
pruning strategy can yield good results.

Ilyas et al [6] present a more holistic approach to the nearest-neighbor prob-
lem. With a focus on the top-k version of this problem, they first use an index
to prune away irrelevant objects. The relevant candidates are evaluated in order
of the shortest distance (in the bounding box) from the query point. As these
objects are processed, the radius of interest grows. At each intermediate stage
upper and/or lower bounds on the probability of each object being the nearest-
neighbor are computed. These bounds are used to prune irrelevant objects.
The stopping criteria used in this work are experimentally shown to effectively
reduce the number of expensive probability computations performed. Their
approach significantly gains over [11] in the number of integration operations,
although not as much in the I/O cost of objects retrieved from the index. Thus
their approach is more on search-optimization on top of the indexing cost.

A similar work has been done by Qi et al [20] where they consider PNNT,
the threshold version of these queries. Their approach relies on augmenting
an R-tree based index using two types of probability bounds stored within the
entries for each node: (i) Absence Probability bounds (AP); and (ii) Maximum
Probability bounds (MP). Their approach also handles the case of partial pdfs
(objects which have a non-zero probability of not being in the database), which
occur very often in uncertain database systems [18]. The AP bound captures
the probability that there are none of the objects is present in a given region
of the subtree. The MP bound captures the maximum probability for any one
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object being present in a given region of the subtree. These bounds enable
effective pruning at various levels in the R-tree index. The probability bounds
are calculated and updated as objects are encountered which yields effective
pruning based on probabilities in addition to the distance based pruning. Thus
the number of objects retrieved is less than with indexes which do not store
this information. This directly leads to I/O savings and fewer objects being
inspected.

Ljosa et al [17] gave a formal framework for summarizing the probability
information at various levels of an index. They consider a slightly different
definition of nearest neighbors. In most approaches to computing NN, it is
costly to calculate probabilities since the probability for a particular object is
dependent on all other overlapping objects. To overcome this drawback, they
define the notion of expected nearest neighbors (ENN) to a query point q which
is independent of other objects. The expected distance for each objectOi from
query point q is defined as follows.

Definition 10.16 Given a query point q and an object Oi, the expected
distance is obtained as Edist(q,Oi) =

∫
x x.Pr[x ≤ dist(q,Oi) ≤ x+ dx].

Given the expected distanceEdist, it easy to define expected nearest neigh-
bor (ENN) and also subsequently k-ENN as follows:

Definition 10.17 Given a query point q,the K-ENN query returns all k ob-
jects Oi’s having smallest values of Edist(q,Oi).

Note that since this definition relies only on the distance function, it is pos-
sible to define k nearest neighbors easily. This differs from the notion of top-k
probabilities for being the first nearest neighbors (1-NN) considered above.

The main contribution of [17] is a framework to summarize the probability
histograms using piecewise approximations. Their approximation scheme also
generalizes to (and can be summarized at) various levels in the index. They
show how to use this information to efficiently answer the ENN queries.

Going back to our definition of PNNs, a simple but very elegant model has
been proposed by Dai et al [12]. They limit objects to existentially uncer-
tain data points. Here each uncertain object Oi is simply a point with exis-
tence probability pi associated with it. Although this model is subsumed by
Qi et. al (since they can also handle partial pdfs) the simplicity of their data
model allows more efficient indexing. They show how to augment 2-D R-trees
with probability information so that bounds can be computed during the index
search. They also show how these simple probability bounds can be taken as
the third dimension in R-tree indexing. As with all R-tree based approaches
the insert/split heuristics have to account for the probability values to have
meaningful clusters under a subtree note giving effective pruning.
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A somewhat different definition of nearest neighbor queries is considered
by Singh et al [23]. These are called nearest neighbor based on thresholds.

Definition 10.18 Given a query point q and a probability threshold p, the
threshold distance distt(q,Oi) is defined as radius r from q which overlaps
with Oi to an extent that probability of Oi being within the sphere is p.

Although this is not the focus of their paper, they show how their summary
statistics can be used to compute a distance r from the query point q which will
suffice to have k qualifying neighbors. Then, a PTRQ is executed with range
parameters (q − r, q + r). The output tuples can be ranked by their distances.
This gives k-nearest neighbors similar to Ljosa et al.
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UNCERTAIN SPATIOTEMPORAL DATA
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Abstract Uncertain data are abundant in numerous spatiotemporal applications providing
location-based services. This chapter will first review these applications and
explain why uncertainty is inherent, sometimes even intended, in their underly-
ing data. Then, we will address two classical spatial queries: range search and
nearest neighbor retrieval. We will see that the presence of uncertainty requires
extending the traditional definitions of both queries, and thus, also invalidates
the conventional algorithms designed for precise databases. We will survey the
existing the variations of both queries specifically formulated on uncertain data.
Finally, the algorithms for efficiently processing these queries will also be dis-
cussed.

Keywords: Spatiotemporal, uncertain, range search, nearest neighbor, probability threshold-
ing

1. Introduction

A spatiotemporal database [15, 24, 29] manages a large number of mov-
ing objects such as human beings, vehicles, aircrafts, typhoons, wild-life ani-
mals, and so on. It plays an imperative role in numerous applications including
location-based services, fleet/flight control, weather analysis and forecasting,
zoology study, etc. In these contexts, the location of an object is captured
using a positioning technology, e.g., GPS, cellular triangulation, location sens-
ing, etc. These locations are sent to a database server, which organizes them in
appropriate ways for supporting different analytical tasks efficiently.

Uncertainty is an inherent issue in spatiotemporal applications. Specifically,
the database typically does not have the exact locations of the objects, but in-
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stead, must estimate their locations using probabilistic methods. Usually, un-
certainty arises from three sources: measurement imprecision, location-update
policy, and privacy preservation. Next, we will look at these issues in detail.

Measurement imprecision. People are now able to track the locations of
moving objects with much better precision, owing to the tremendous im-
provements in positioning techniques in the past decade. Nevertheless,
all these techniques are still subject to errors, as nicely summarized in
[34]. For instance, even in open air, using GPS to pinpoint a location
may incur an error ranging from 10 to 300 meters. The latest WiFi tech-
nology has better accuracy but still suffers from an error up to 50 meters.
As an example of commercial products, Google Maps allows a mobile
phone user to identify her/his present location, but always associates the
location with an error up to 200 meters.

It is rather unlikely that the positioning error would be significantly re-
duced in near future. There are two reasons. First, upgrading the hard-
wares of positioning infrastructures (e.g., satellites for GPS) is extremely
expensive, and lacks commercial motivation. Second, the current accu-
racy already satisfies the needs of most applications in practice, when
combined with proper database techniques for tackling uncertainty, such
as those discussed in this book.

Location-update policy. In a location-based service such as a traffic con-
trol system, each moving object (e.g., a vehicle) is required to report its
location periodically to a central server through wireless networks. Due
to the bandwidth constraint, however, the system cannot afford to collect
object locations at all timestamps. Hence, there is a tradeoff between
how accurately the server can store objects’ locations and the network
overhead incurred.

To achieve a good tradeoff, there have been significant research efforts
[31–33] on developing effective update policies, which are a protocol
determining when an object is supposed to send in its new location. One
simple, yet effective, policy is dead-reckoning [33]. Specifically, an ob-
ject must transmit its current location, only if it deviates from its last
reported location by more than a distance ε, which is a system param-
eter. Accordingly, the database knows that currently an object o can be
anywhere in an uncertainty circle that centers at its last updated location
x, and has radius ε. A smaller ε promises higher precision in location
recording, but entails larger transmission overhead.

Privacy preservation. In the above scenarios, uncertainty is not desired,
but is inevitable due to equipment limitations or economy concerns. In
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some applications, however, uncertainty may even be introduced inten-
tionally to distort locations moderately in order to preserve individual
privacy [2, 10, 11, 21]. For example, a mobile phone company is able
to pinpoint its customers’ locations using cellular triangulation. It is
possible that the company may want to outsource these locations to an
external agent to provide location-based services, such as environment
tracking (e.g., update the UV index in the place of a customer to her/his
phone), mobile advertising (e.g., alert a customer if s/he is near a cos-
metic shop), friend connection (e.g., notify a customer whenever a friend
is around), and so on. However, as the external agent may not be autho-
rized to acquire customers’ exact positions, the phone company must
convert a location to a fuzzy form before outsourcing it.

One possible method to fulfill this purpose is spatial cloaking [21] based
on k-anonymity [25, 27]. Specifically, for each customer, the phone
company finds a cloak rectangle that covers her/his location, as well
as the locations of k−1 other customers, where k is a system parameter.
Then, the phone company outsources only the rectangle, instead of the
customer’s precise location. Location privacy is protected, because the
external service provider only knows that the customer is inside a rectan-
gle, but not her/his concrete position. Clearly, a greater k offers stronger
privacy preservation, but leads to larger cloak rectangles that may in turn
result in poorer location-based services.

The first step to cope with uncertainty is to formulate an uncertainty region
o.ur for each object o, which is guaranteed to cover the object’s real location.
For example, o.ur can be the uncertainty circle under dead-reckoning, or the
cloak rectangle in preserving location privacy. When o.ur is large, however, it
may be too fuzzy for the underlying applications. In this case, a common rem-
edy is to model the object’s current location with a probabilistic distribution
function (pdf), denoted as o.pdf(·). More formally, o.pdf(x) equals 0 for any
location outside o.ur, and it satisfies

∫

x∈o.ur
o.pdf(x)dx = 1 (11.1)

for the locations in o.ur. The simplest o.pdf(·) describes the uniform distribu-
tion. This distribution is most reasonable when the database has no additional
knowledge about the object. In some cases, the database may be able to justify
other distributions. For example, in GPS, it would be reasonable to assume that
o.pdf(·) follows a normal distribution whose mean is at the measured position.

Sometimes o.pdf(·) may not even be any regular probabilistic distribu-
tion, but instead, can be arbitrarily complex. For example, consider Fig-
ure 11.1 where x represents the last updated location of a vehicle o under
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x

Figure 11.1. An example of irregular object pdf

dead-reckoning, and ε is the maximum permissible deviation from the vehi-
cle’s current position to x. The circle is the uncertainty circle o.ur of o. The
segments represent the road network where the vehicle is allowed to navigate.
In other words, o.pdf(x) has non-zero values only at positions x in the part
of the network inside the circle. Accurately representing a complicated pdf
may be space consuming. For example, to capture the o.pdf(·) in Figure 11.1,
we would have to store the underlying road network as well. An alternative
approach is to approximate o.pdf(·) using a histogram, which as shown in Fig-
ure 11.1 imposes a grid over the uncertainty circle o.ur. Shaded are the cells
of the histogram that intersect at least one road segment. Each shaded cell
is associated with a non-zero value equal to the probability that o appears in
it. The white cells are associated with zeros. Apparently, the resolution of
the grid provides an easy way to control the space consumption and quality of
approximating o.pdf(·).

As in traditional spatial databases, range search and nearest neighbor (NN)
retrieval are also the two most important queries on uncertain spatiotemporal
objects. Given a search region rq , a range query retrieves all the objects that
fall in rq . For example, find all the vehicles in the downtown area. Given
a query point pq, on the other hand, an NN query returns the object whose
distance to pq is the smallest. For instance, find the taxi nearest to the Empire
State building. A direct extension is k nearest neighbor search, which, instead
of retrieving the nearest object, extracts the k objects nearest to pq .

In the presence of uncertainty, we need to interpret the query results more
carefully. For example, given a range query rq , an object o may have an uncer-
tainty region that partially intersects rq. In this case, we cannot claim for sure
whether o satisfies or does not satisfy the query. Instead, o may qualify the
query with a certain probability. Similarly, given an NN query pq , each object
also has a qualification probability, corresponding to the likelihood that it is the
NN of pq. In practice, a user may be interested in only those objects that may
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satisfy the query with high probability. This motivates probability thresholding
search [7], which specifies a probability threshold tq , and returns only objects
with qualification probabilities at least tq. Evidently, qualification probabilities
depend on objects’ pdfs, and are absent in traditional spatiotemporal databases
dealing with precise data. As a result, the algorithms in precise spatiotemporal
databases are no longer applicable to process probability thresholding queries.

The rest of the chapter will discuss the previous solutions to probability
thresholding queries, focusing on range search and nearest neighbor retrieval
in Sections 2 and 3, respectively. It is worth mentioning that although spa-
tiotemporal applications provide the original motivation for this chapter, the
techniques we cover are in fact applicable to general multidimensional uncer-
tain data.

2. Range Search

Following the discussion earlier, we model an uncertain object o with a
probability density function o.pdf(·), and an uncertainty region o.ur. We con-
sider that the pdfs of different objects are mutually independent, and various
objects can have totally different pdfs. For example, an object may have a
pdf describing a uniform distribution, another could follow a Gaussian dis-
tribution, and yet another could possess an irregular distribution that can be
described only by a histogram as in Figure 11.1. Furthermore, the uncertainty
region of an object does not have to be convex, or can even be broken into mul-
tiple pieces. For instance, an object may appear inside two separate buildings,
but not on the roads between the buildings.

2.1 Query Definitions

Let S be a set of uncertain objects. Given a region rq, and a value tq ∈
(0, 1], a nonfuzzy probability thresholding range query returns all the objects
o ∈ S such that Prrange(o, rq) ≥ tq , where Prrange(o, rq) is the appearance
probability of o in rq , and is computed as

Prrange(o, rq) =

∫

rq∩o.ur
o.pdf(x)dx. (11.2)

To illustrate, the polygon in Figure 11.2a shows the uncertainty region o.ur
of an object o, and the rectangle corresponds to a query region rq . If the pos-
sible location of o uniformly distributes inside o.ur, Prrange(o, rq) equals the
area of the intersection between o.ur and rq , i.e., the hatched region.

In nonfuzzy range search, the search region rq is unique and has no uncer-
tainty. Sometimes, we may want to explore the vicinity of an uncertain object.
For example, a user may wish to find all the cabs that are within 1 kilometers
from the cab with license plate NY3056 with at least 50% probability, where
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Figure 11.2. Range search on uncertain data

the query object (i.e., the cab NY3056) is also uncertain. This motivates fuzzy
range search.

Formally, let S be a set of uncertain objects, and q be an uncertain object that
does not belong to S. Given a distance threshold εq, and a value tq ∈ (0, 1], a
fuzzy probability thresholding range query returns all the objects o ∈ S such
that Prfuzzy(o, q, εq) ≥ tq , where Prfuzzy(o, q, εq) is the probability that o
and q have distance at most εq . If we regard o and q as random variables
obeying pdfs o.pdf(x) and q.pdf(x) respectively, then

Prfuzzy(o, q, εq) = Pr{dist(o, q) ≤ εq} (11.3)

Since o and q are independent, Equation 11.3 can be re-written as

Prfuzzy(o, q, εq) =

∫

x∈q.ur
q.pdf(x) · Prrange(o,⊙(x, εq))dx. (11.4)

where Prrange(·, ·) is given in Equation 11.2, and ⊙(x, εq) is a circle that
centers at point x and has radius εq .

As an example, the left and right polygons in Figure 11.2b demonstrate
the uncertainty regions of a data object o and a query object q. The fig-
ure also shows two ⊙(x, εq), when x lies at point A and B, respectively.
Again, for simplicity, assume that o.pdf follows a uniform distribution in-
side o.ur. The area of the upper (lower) hatched region equals the probability
Prrange(o,⊙(x, εq)) for o and q to have a distance at most εq , when q is lo-
cated at x = A (B). In order to calculate Prfuzzy(o, q, εq), (conceptually)
we must examine the Prrange(o,⊙(x, εq)) of all x ∈ q.ur. Note that the for-
mulation of fuzzy search is independent of the distance metric employed. For
example, under L∞, ⊙(x, εq) is a square whose centroid falls at x and has a
side length 2εq .
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In the sequel, we will refer to Prrange(o, rq) and Prfuzzy(o, q, εq) simply
as the qualification probability of o, when the query type is clear from the
context.

2.2 Filter and Refinement

For both nonfuzzy and fuzzy range search, it can be rather expensive to
calculate the qualification probability of an object. There are two reasons.
First, as shown in Equations 11.2 and 11.4, such calculation requires solv-
ing multidimensional integrals, which is known to be a time consuming pro-
cess, especially when the integral region and integrated function are complex.
Note that this problem is particularly serious for fuzzy queries, because Equa-
tion 11.4 essentially has two layers of multidimensional integrals, noticing that
Prrange(o,⊙(x, εq)) needs to be unfolded into an integral similar to Equa-
tion 11.2. The second reason behind the large cost of assessing qualification
probabilities is that an object’s pdf may be in the form of a histogram (c.f.
Figure 11.1), which must reside in the disk, and hence, its retrieval incurs I/Os.

A similar situation was also encountered in range search in a spatial database
of polygonal objects. In that case, verifying whether an object intersects the
search region is expensive as it needs to fetch the object’s polygon from the
disk, which can occupy a large number of pages. The filter refinement frame-
work is introduced to reduce the query cost dramatically in this situation. The
framework contains a filter step followed by a refinement step. The filter step
first uses efficient operations to quickly compute a candidate set, which is
much smaller than the underlying database, and is guaranteed to be a super
set of the final result. In other words, any object outside the candidate set
can be safely ignored. Then, the refinement step examines each object in the
candidate set to verify whether it indeed satisfies the query.

Range search on uncertain data [3, 28, 30] also follows the filter refinement
framework, in order to minimize the number of qualification probability evalu-
ations. To achieve this, the filter step has two missions. First, it needs to prune
as many nonqualifying objects as possible. Second, it also needs to validate
as many qualifying objects as possible. The refinement step performs the ex-
pensive qualification probability evaluation, only if an object can be neither
pruned nor validated.

The rest of this section will explain the rationales behind the algorithms in
[3, 28, 30] for solving nonfuzzy and fuzzy range search. As we will see, a
crucial concept underlying this technique is probabilistically constrained rect-
angle (PCR). We note that in the literature PCR has also appeared under a
different name of p-bound [3].
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2.3 Nonfuzzy Range Search

A probabilistically constrained region (PCR) of an object o depends on a
parameter c ∈ [0, 0.5]. We denote it as o.pcr(c). It is a d-dimensional rect-
angle, obtained by pushing, respectively, each face of o.mbr inward, until the
appearance probability of o in the area swept by the face equals c. Figure 11.3a
illustrates the construction of a 2D o.pcr(c), where the polygon represents the
uncertainty region o.ur of o, and the dashed rectangle is the MBR of o, denoted
as o.mbr. The o.pcr(c), which is the grey area, is decided by 4 lines l[1]+, l[1]−,
l[2]+, and l[2]−. Line l[1]+ has the property that, the appearance probability of
o on the right of l[1]+ (i.e., the hatched area) is c. Similarly, l[1]− is obtained
in such a way that the appearance likelihood of o on the left of l[1]− equals
c. It follows that the probability that o lies between l[1]− and l[1]+ is 1 − 2c.
Lines l[2]+ and l[2]− are obtained in the same way, except that they horizontally
partition o.ur.

PCRs can be used to prune or validate an object, without computing its accu-
rate qualification probability. Let us assume that the grey box in Figure 11.3a
is the o.pcr(0.1) of o. Figure 11.3b shows the same PCR and o.mbr again,
together with the search region rq1 of a nonfuzzy range query q1 whose proba-
bility threshold tq1 equals 0.9. As rq1 does not fully contain o.pcr(0.1), we can
immediately assert that o cannot qualify q1. Indeed, since o falls in the hatched
region with probability 0.1, the appearance probability of o in rq1 must be
smaller than 1 − 0.1 = 0.9. Figure 11.3c illustrates pruning the same object
with respect to another query q2 having tq2 = 0.1. This time, o is disqualified
because rq2 does not intersect o.pcr(0.1) (the pruning conditions are different
for q1 and q2). In fact, since rq2 lies entirely on the right of l[1]+, the appearance
probability of o in rq2 is definitely smaller than 0.1.

The second row of Figure 11.3 presents three situations where o can be
validated using o.pcr(0.1), with respect to queries q3, q4, q5 having probability
thresholds tq3 = 0.9, tq4 = 0.8, and tq5 = 0.1, respectively. In Figure 11.3d
(or Figure 11.3f), o must satisfy q3 (or q5) due to the fact that rq3 (or rq5) fully
covers the part of o.mbr on the right (or left) of l[1]−, which implies that the
appearance probability of o in the query region must be at least 1− 0.1 = 0.9
(or 0.1), where 0.1 is the likelihood for o to fall in the hatched area. Similarly,
in Figure 11.3e, o definitely qualifies q4, since rq4 contains the portion of o.mbr
between l[1]− and l[1]+, where the appearance probability of o equals 1−0.1−
0.1 = 0.8.

The queries in Figures 11.3d-11.3f share a common property: the projection
of the search region contains that of o.mbr along one (specifically, the vertical)
dimension. Accordingly, we say that those queries 1-cover o.mbr. In fact, val-
idation is also possible, even if a query 0-covers o.mbr, namely, the projection
of the query area does not contain that of o.mbr on any dimension. Next, we
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(a) Constructing a PCR of o (b) Pruning (tq1 = 0.9) (c) Pruning (tq2 = 0.1)

(d) Validating (tq3 = 0.9, (e) Validating (tq4 = 0.8, (f) Validating (tq5 = 0.1,

1-covering) 1-covering) 1-covering)

(g) Validating (tq6 = 0.8, (h) Validating (tq7 = 0.7, (i) Validating (tq8 = 0.6,

0-covering) 0-covering) 0-covering)

Figure 11.3. Pruning/validating with a 2D probabilistically constrained rectangle

illustrate this using the third row of Figure 11.3, where the queries q6, q7, q8
have probability thresholds tq6 = 0.8, tq7 = 0.7, and tq8 = 0.6, respectively.

In Figure 11.3g, o is guaranteed to qualify q6, since rq6 covers entirely the
part of o.mbr outside the hatched area. Observe that the appearance probabil-
ity of o in the hatched area is at most 0.2. To explain this, we decompose the
area into three rectangles ABCD, DCEF , BCGH , and denote the probabil-
ities for o to lie in them as ρABCD, ρDCEF , and ρBCGH , respectively. By the
definition of l[1]−, we know that ρABCD + ρDCEF = 0.1, whereas, by l[2]+,
we have ρABCD + ρBCGH = 0.1. Since ρABCD, ρDCEF , and ρBCGH are
nonnegative, it holds that ρABCD + ρDCEF + ρBCGH ≤ 0.2. This, in turn,
indicates that o falls in rq6 with probability at least 0.8. With similar reasoning,
it is not hard to verify that, in Figure 11.3h (Figure 11.3i), the appearance prob-
ability of o in the hatched area is at most 0.3 (0.4), meaning that o definitely
satisfies q7 (q8).
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2.4 Fuzzy Range Search

We have shown that PCRs enable efficient pruning/validating for nonfuzzy
queries. Next, we will see that PCRs can do the same for fuzzy queries.
Recall that, given an uncertain object q, a distance value εq, and a prob-
ability threshold tq , a fuzzy range query finds all the objects o satisfying
Prfuzzy(o, q, εq) ≥ tq , where Prfuzzy(o, q, εq) is given in Equation 11.4.
Evaluation of Equation 11.4 is usually costly, especially if q, o, or both have
irregular uncertainty regions and pdfs. Our objective is to prune or validate o
without going through the expensive evaluation. The subsequent analysis as-
sumes that the distance metric employed is the L∞ norm. Nevertheless, our
discussion can be extended to the L2 norm in a straightforward manner.

Let us consider a query q1 with probability threshold tq1 = 0.5. Assume that
we have already calculated q1.pcr(0.3) and o.pcr(0.3), which are the left and
right grey boxes in Figure 11.4a, respectively. The dashed rectangleABCD is
the MBR (denoted as q1.mbr) of the uncertainty region of q1. Squares r1 and
r2 are two L∞ circles whose radii equal the parameter εq1 of q1 (the function-
alities of r1 and r2 will be clarified later). By examining only q1.mbr and the
two PCRs, we can assert that Prfuzzy(o, q1, εq1) is at most 0.42, and hence,
o can be safely eliminated. To explain this, we need to cut ABCD into two
disjoint rectangles EBCF and AEFD, and rewrite Equation 11.4 as:

Prfuzzy(o, q1, εq1) =∫

x∈EBCF
q1.pdf(x) · Prrange(o,⊙(x, εq1))dx+

∫

x∈AEFD
q1.pdf(x) · Prrange(o,⊙(x, εq1))dx. (11.5)

where⊙(x, εq1) is a square that centers at point x, and has a side length of 2εq1 .
Observe that, for any x ∈ EBCF , Prrange(o,⊙(x, εq1)) must be bounded by
0.7, due to the fact that⊙(x, εq1) does not fully cover o.pcr(0.3). For example,
r1, which is the ⊙(x, εq1) for x = B, does not fully cover o.pcr(0.3). On the
other hand, for any x ∈ AEFD, Prrange(o,⊙(x, εq1)) never exceeds 0.3,
because ⊙(x, εq1) does not intersect o.pcr(0.3). For instance, r2, which is the
⊙(x, εq1) for x = G, is disjoint with o.pcr(0.3). As a result,

Prfuzzy(o, q1, εq1)

≤ 0.7

∫

x∈EBCF
q1.pdf(x)dx+ 0.3

∫

x∈AEFD
q1.pdf(x)dx

= 0.7× 0.3 + 0.3× 0.7 = 0.42. (11.6)
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q1

q2

(a) Pruning o (tq = 0.5) (b) Validating o (tq = 0.3)

Figure 11.4. Pruning/validating with PCRs for fuzzy queries (under the L∞ norm)

Let q2 be another query with probability threshold tq2 = 0.3. The left and
right grey boxes in Figure 11.4b demonstrate q2.pcr(0.3) and o.pcr(0.3), re-
spectively, whereas the larger and smaller dashed rectangles capture q2.mbr
and o.mbr, respectively. Squares r1 and r2 are again two L∞ circles whose
radii equal the parameter εq2 of q2. Based on the above information, we can
claim that Prfuzzy(o, q2, εq2) ≥ 0.3, and hence, o can be validated. To clar-
ify this, we again divide q2.mbr into rectangles EBCF and AEFD, and
scrutinize Equation 11.4. Here, for any x ∈ EBCF , Prrange(o,⊙(x, εq2))
is 1, because ⊙(x, εq2) necessarily contains o.mbr (r1 illustrates an exam-
ple of ⊙(x, εq2) for x = E). However, when x distributes in AEFD,
Prrange(o,⊙(x, εq2)) may drop to 0, as is exemplified by r2, which is the
⊙(x, εq2) for x = G. It follows that

Prfuzzy(o, q1, εq1) ≥ 1 ·
∫

x∈EBCF
q1.pdf(x)dx+ 0

∫

x∈AEFD
q1.pdf(x)dx

= 1× 0.3 + 0× 0.7 = 0.3. (11.7)

In the above examples, we “sliced" q.mbr into two rectangles for pruning
and validating. In fact, stronger pruning/validation effects are possible by per-
forming the slicing more aggressively. Assume that, instead of 0.5, the query
q1 in Figure 11.4a has a lower tq1 = 0.4. Hence, o can no longer be dis-
qualified as described with Inequality 11.5 (as 0.42 > tq1). However, we can
actually derive a tighter upper bound 0.33 of Prfuzzy(o, q1, εq1), and thus, still
eliminate o. For this purpose, we should divide q.mbr into three rectangles
EBCF , IEFJ , and AIJD as in Figure 11.5a, which repeats the content of
Figure 11.4a, except for including o.mbr (i.e., the right dashed box). Accord-
ingly:
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q1

q2

(a) Pruning o (tq = 0.4) (b) Validating o (tq = 0.4)

Figure 11.5. Enhanced pruning/validating for fuzzy queries with more “slices" (under the L∞

norm)

Prfuzzy(o, q1, εq1) =∫

x∈EBCF
q1.pdf(x)·Prrange(o,⊙(x, εq1))dx+

∫

x∈IEFJ
q1.pdf(x)·Prrange(o,⊙(x, εq1))dx+

∫

x∈AIJD
q1.pdf(x) · Prrange(o,⊙(x, εq1))dx. (11.8)

As analyzed earlier with Figure 11.4a, for any point x ∈ EBCF ,
Prrange(o,⊙(x, εq1)) ≤ 0.7, whereas, for any point x ∈ IEFJ ⊂ ABCD,
Prrange(o,⊙(x, εq1)) ≤ 0.3. Furthermore, notice that, given any point
x ∈ AIJD, Prfuzzy(o, q1, εq1) is always 0, because ⊙(x, εq1) is disjoint with
o.mbr. For instance, rectangle r3 is the ⊙(x, εq1) when x lies at H; evidently,
it is impossible for o to appear in r3. Therefore,

Equation 11.7

≥ 0.7

∫

x∈EBCF
q1.pdf(x)dx+ 0.3

∫

x∈IEFJ
q1.pdf(x)dx+

0

∫

x∈AIJD
q1.pdf(x)dx

= 0.7× 0.3 + 0.3× 0.4 + 0× 0.3 = 0.33. (11.9)

Similarly, suppose that the query q2 in Figure 11.4b has a probability thresh-
old tq2 = 0.4, in which case o cannot be confirmed as a qualifying object with
Inequality 11.6. Next, we will use Figure 11.5b, where the grey and dashed
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rectangles have the same meaning as in Figure 11.4b, to derive a new lower
bound 0.42 of Prfuzzy(o, q2, εq2), which thus validates o.

Let us break q2.mbr into rectangles EBCF , IEFJ , and AIJD.
Then, Prfuzzy(o, q2, εq2) can be represented as Equation 11.7. Follow-
ing the analysis that led to Inequality 11.6, we know that, for x ∈
EBCF , Prfuzzy(o, q2, εq2) = 1, and, for x ∈ AIJD, (obviously)
Prfuzzy(o, q2, εq2) ≥ 0. The new observation here is that, for x ∈ IEFJ ,
Prfuzzy(o, q2, εq2) ≥ 0.3, since⊙(x, εq2) always fully covers the hatched area
in Figure 11.5b, which is the part of o.mbr on the left of o.pcr(0.3). Rectangle
r3 shows an example of⊙(x, εq2) when x = H . By the above reasoning, o has
a probability of at least 0.3 to lie in r3. Therefore,

Equation 11.7

≥ 1

∫

x∈EBCF
q1.pdf(x)dx+ 0.3

∫

x∈IEFJ
q1.pdf(x)dx+

0

∫

x∈AIJD
q1.pdf(x)dx

= 1× 0.3 + 0.3× 0.4 + 0× 0.3 = 0.42. (11.10)

2.5 Indexing

The above discussion provides the basic intuition as to how PCRs can be
utilized to prune and validate an object. Based on this idea, Tao et al. [28, 30]
propose the U-tree for indexing multidimensional uncertain objects. Specifi-
cally, for each object o, the U-tree stores a small number of PCRs o.pcr(p) at
several values of p, called the catalog values. The same set of catalog values
are used for all objects. These PCRs are then organized in an R-tree manner
into a balanced structure. Given a query, it may be possible to prune the entire
subtree of an intermediate entry by utilizing the information stored in the entry
[30], thus saving considerable I/Os. In [30], Tao et al. propose an analytical
model that can be applied to choose the optimal number of catalog values to
achieve the best query performance.

Besides PCRs and the U-tree, nonfuzzy range search has also been ad-
dressed using other techniques. Ljosa and Singh [20] suggest that higher ef-
ficiency of range search may be possible by working with objects cumulative
probability functions (cdf), as opposed to their pdfs. Motivated by this, they
develop a method to approximate an arbitrary cdf with a piecewise linear func-
tion. This method leads to the APLA-tree, which is able to solve 1D range
queries efficiently. In 2D space, Ljosa and Singh [20] propose to approximate a
cdf as the product of two 1D cdfs, one for each dimension. This may work well
for axis-independent pdfs such as uniform and normal distributions. However,
for the other pdfs, especially irregular pdfs as in Figure 11.1, the approxima-
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Figure 11.6. Illustration of calculating an NN probability

tion may have poor quality, which in turn may significantly compromise the
efficiency of the APLA-tree.

Bohm et al. [1] propose the Gause-tree to index uncertain objects whose
pdfs are all normal distributions. Each normal distribution is described by a
mean µ and a variance σ. Treating (µ, σ) as a 2D point, the Gause-tree can
be regarded as a 2D R-tree on the resulting (µ, σ) of all objects. Bohm et
al. [1] show that effective pruning is possible at the intermediate levels of the
Gause-tree to quickly discard the subtrees that cannot contain any qualifying
object.

3. Nearest Neighbor Retrieval

In this section, we discuss the existing solutions to NN search on uncertain
multidimensional data. Our analysis will use the same modeling of uncertain
objects as in the previous section. Specifically, each object o is represented by
an uncertainty region o.ur and a probability density function o.pdf(·).

3.1 Query Definition

Let S be a set of uncertain objects. Given a query point pq , a probability
threshold tq ∈ (0, 1], a probability thresholding nearest neighbor query finds
all objects o ∈ S satisfying Prnn(o, pq) ≥ tq, where Prnn(o, pq) is the NN
probability of o. Specifically, Prnn(o, pq) is calculated as:

Prnn(o, pq) =

∫

x∈o.ur
o.pdf(x) · Prnn(o, pq|o = x)dx (11.11)

where Prnn(o, pq|o = x) is the probability that o is the NN of pq by being at
point x. This is also the probability that all the other objects in S are outside
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the circle ⊙(pq, ‖x, pq‖) that centers at pq and has radius equal to the distance
‖x, pq‖ between x and pq . We refer to Prnn(o, pq) as the qualification proba-
bility of object o.

To illustrate, consider Figure 11.6 where the polygons represent the uncer-
tainty regions of three objects o1, o2, o3. To calculate the NN probability
Prnn(o1, pq) of o1, conceptually we need to compute the Prnn(o, pq|o = x)
for all locations x in the uncertainty region of o1. Assume that x is the black dot
as shown in Figure 11.6. The circle is⊙(pq, ‖x, pq‖). Let u (v) be the probabil-
ity that o2 (o3) appears in the left (right) shaded area. Then, Prnn(o, pq|o = x)
equals u · v.

3.2 Query Processing

Cheng et al. [5] develop an algorithm for solving probability thresholiding
NN search following the filter refinement framework. The filter step retrieves
a candidate set where every object has a non-zero NN-probability. In other
words, all objects outside the candidate set have no chance of being the NN of
the query point pq, and therefore, do not need to be considered. The refinement
step simply calculates the NN-probabilities of all the objects in the candidate
set according to Equation 11.11.

To illustrate the filter step, let us define two metrics. Given an uncertainty
region ur, letmindist(pq, ur) be the shortest distance between the query point
pq and any point on the boundary of ur. Conversely, let maxdist(pq, ur) be
the longest distance. For example, given point pq and the uncertainty region
o.ur as shown in Figure 11.6a,mindist(pq, o.ur) equals the length of segment
pqA, and maxdist(pq, o.ur) equals that of segment pqB.

The filter step identifies a minmax circle and selects all objects whose un-
certainty regions intersect the circle. Specifically, the minmax circle is a circle
that centers at the query point pq , and its radius r equals the smallest maxdist
from pq to the uncertainty regions of all objects, namely:

r = min
o∈S

maxdist(pq, o.ur). (11.12)

As an example, consider that the dataset S has 4 objects o1, o2, ..., o4 whose
uncertainty regions are presented in Figure 11.7b. Then, the radius r of the
minmax circle is determined by the maxdist between pq and o2.ur, as all other
objects have greater maxdist to pq. Figure 11.7b shows the minmax circle in
dashed line. The uncertainty regions of all the objects except o4 intersect the
circle. Hence, the candidate set is {o1, o2, o3}. It is easy to see that o4 cannot
be the NN of pq, because o2 definitely is closer to pq, regardless of where o2
and o4 are located in their uncertainty regions. We refer to this method as the
minmax algorithm.
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q

(a) Mindist and maxdist (b) Retrieval of the candidate set

Figure 11.7. Illustration of the filter step
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Figure 11.8. Illustration of calculating an NN probability

Kriegel et al. [17] develop another solution which assumes discrete pdfs.
Specifically, the probability density function o.pdf(·) of an object o is defined
by a set of instances, each of which is a point, and is associated with a prob-
ability. Formally, let o.s be the number of instances of o, and denote them as
o[1], o[2], ..., o[o.s]. The probability associated with instance o[i] (1 ≤ i ≤ s)
is o.pdf(o[i]). The probabilities of all the instances must sum up to 1, namely:

o.s∑

i=1

o.pdf(o[i]) = 1. (11.13)

Figure 11.8 provides an example with four objects A, B, C, and D. Except
D, which has only one instance, all other objects have two instances each,
i.e., A.s = B.s = C.s = 2 and D.s = 1. For instance, the first (second)
instance A[1] (A[2]) of A carries a probability 0.4 (0.6), indicating that A may
be located at A[1] (A[2]) with 40% (60%) chance.

Note that discrete pdfs still fit into the modeling of uncertain objects we
have been using. In particular, for an object o with a discrete o.pdf(·), its un-
certainty region o.ur is not a continuous area, but instead, a set of o.s points
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corresponding to the instances of o. The minmax algorithm described ear-
lier with Figure 11.7 can also be applied to perform NN search on discrete
pdfs. Specifically, the filter step first decides the minmax circle as the circle in
Figure 11.8, and retrieves the candidate set {A,B,C}. D is not a candidate
because it has no instance in the circle. Then, the refinement step calculates
the NN-probabilities of A, B, C from their instances.

In terms of indexing, discrete pdfs provide an important flexibility that con-
tinuous pdfs do not have. That is, the instances of an object can be stored in
different parts of a data structure, as opposed to a continuous pdf that must be
stored as a whole. It turns out that such a flexibility permits the development
of an incremental algorithm [8, 17] that is faster than the minmax algorithm.
Incremental assumes that the instances of all objects are indexed by an R-

tree. It invokes the best first algorithm [12] to retrieve the instances in ascend-
ing order of their distances to the query point pq . During the retrieval, for
every object such that at least one of its instances has been seen, Incremental
maintains both a lower bound and an upper bound of the NN-probability of the
object. Once the lower bound reaches the probability threshold tq, the object
is returned as a result. On the other hand, as soon as the upper bound drops
below tq , the object is pruned.

Let us use the example in Figure 11.8 to demonstrate the algorithm, as-
suming that the probability threshold tq equals 0.4. A[1] is the first instance
retrieved, since it is nearest to the query point pq . At this moment, we know
that A has at least 40% probability to be the NN of pq . This is because A has
40% chance to be located at A[1], and when it does, no other object can be
closer to pq. Hence, incremental reports A as a result. The next two instances
fetched are B[1] and C[1]. The algorithm terminates here by claiming that
there is no more result. In particular, now we can assert that B has at most
0.33 probability to be the NN. To see this, note that B can be the NN only un-
der two events: (i) A is not at A[1], and B is at B[1]; (ii) A is not at A[1], C is
not atC[2], andB is at an instance that has not been found yet. Event (i) occurs
with 0.3 probability, which is the product of the probability 0.6 of A 6= A[1]
and the probability 0.5 of B = B[1]. Event (ii) occurs with 0.03 probability,
which is the product of the probability 0.6 of A 6= A[1], the probability 0.1 of
C 6= C[1], and the probability 0.5 of B 6= B[1]. Similarly, we can also claim
that the NN-probability of C is at most 0.2, and the NN-probability of any ob-
ject other than A, B, C is at most 0.18. Therefore, incremental concludes that
no more result is possible.

3.3 Variations of Nearest Neighbor Retrieval

Cheng et al. [4] observe that, in practice, a user may tolerate some small
error in objects’ qualification probabilities. Specifically, even if an object’s
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qualification probability may be lower than the probability threshold tq , it is
still acceptable, as long as it is not much lower. Motivated by this, Cheng et
al. [4] proposed the constrained nearest neighbor query. Specifically, given
a query point pq, a probability threshold tq , and a tolerance threshold ∆q,
a constrained nearest neighbor query returns a set of objects o whose NN-
probabilities must be at least tq − ∆q . Such a query can be processed faster
than a conventional probability thresholding NN query, because once we know
that an object’s NN-probability has a lower bound at least tq − ∆q , we can
immediately return the object, without having to calculate the NN-probability
more precisely.

Recall that our discussion of range search addresses both a nonfuzzy and a
fuzzy version. Adapting the taxonomy to NN retrieval, the NN query we have
been analyzing is nonfuzzy because the query point pq is a precise location.
Similarly, we can also define fuzzy NN search. Specifically, let S be a set of
uncertain objects. Given an uncertain object q and a probability threshold tq , a
fuzzy NN query retrieves all objects o ∈ S satisfying Prfnn(o, q) ≥ tq. Here,
Prfnn(o, q) is the probability that o is the NN of q, and can be obtained as:

Prfnn(o, q) =

∫

pq∈q.ur
q.pdf(pq) · Prnn(o, pq)dpq (11.14)

where Prnn(·, ·) is given in Equation 11.11. In [17], Kriegel et al. extend the
incremental algorithm described earlier to solve fuzzy NN queries, utilizing an
interesting idea of clustering the instances of an object into small groups.

Furthermore, the minmax algorithm [5] can also be easily extended
to fuzzy NN retrieval. Towards this, given an uncertain object o, let
mindist(o.ur, q.ur) be the shortest distance of any two points in o.ur and
q.ur, respectively. Conversely, let maxdist(o.ur, q.ur) be the longest dis-
tance. In the filter step, we first decide a value r, which is the minimum of the
maxdist of all objects:

r = min
o∈S

maxdist(o.ur, q.ur). (11.15)

Then, we create a candidate set including all the objects o satisfying
mindist(o.ur, q.ur) ≤ r. Finally, the refinement step calculates the quali-
fication probability of each object by Equation 11.14.

So far our discussion has focused on single nearest neighbor search. It ap-
pears that k nearest neighbor retrieval on uncertain multidimensional data has
not been specifically studied yet. Nevertheless, there has been considerable
work [9, 13, 19, 26, 35] on top-k search on uncertain data. Conventionally,
when the dataset contains only precise objects, a top-k query retrieves the k
objects that minimize a certain preference function. Interestingly, a kNN query
can be regarded as a form of top-k search, where the preference function is the
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distance between an object and the query point. On uncertain data, several vari-
ations of top-k retrieval have been proposed. Next, we adapt those variations
to kNN search on uncertain objects.

For simplicity, we first consider discrete pdfs. Let S be a set of n objects
o1, o2, ..., on. The probability density function oi.pdf(·) of each object oi
(1 ≤ i ≤ n) has non-zero values at oi.s instances oi[1], oi[2], ..., oi[oi.s].
This is equivalent to say that the location of oi has oi.s options, each chosen
with a probability determined by oi.pdf(·). The options of different objects
are independent. Imagine we randomly choose an option for every object fol-
lowing its pdf. As each option is a point, the n options translate to a set W of
n points. This W is a possible configuration of the objects’ actual locations.
This configuration occurs with a probability Pr(W ) that equals the product of
the probabilities of all options.

Reasoning with W is much easier. In particular, it is a precise dataset with
n points, because we have fixed the location of every object to one of its in-
stances. Hence, it is unambiguous which k points fromW are the k NNs of the
query point pq . Use kNN(W ) to denote an ordered set of those k NN, sorted
in ascending order of their distances to pq . Call kNN(W ) the kNN-set ofW .
Apparently, as W occurs with probability Pr(W ), kNN(W ) is the real kNN
result also with probability Pr(W ).

The above discussion gives an enumeration approach to tackle uncertainty.
Essentially we simply enumerate all the possible configurations, and derive
the kNN result for every configuration. Next, we can decide what we want by
summarizing all these configurations in a statistical manner. Many decisions
are possible, and they lead to different versions of uncertain kNN search. Next,
we describe three of them, corresponding to three formulations of uncertain
top-k retrieval proposed in [13, 26].

U-topk-NN. It is possible for two different configurations W1 and W2 to
have the same kNN-set, i.e., kNN(W1) = kNN(W2). In other words,
the aggregated probability of a kNN-set Sknn should be the sum of the
probabilities of all configurations W such that kNN(W ) = Sknn. U-
topk-NN returns the kNN-set with the largest aggregated probability.

U-kRanks-NN. Sometimes a user may want to know which object has the
highest probability of being the NN of pq. Also, independently, which
object has the highest probability of being the second NN of pq. Simi-
larly for the 3rd, ..., and up to the k-th NN. U-topk-NN returns exactly
this information. Specifically, given an object o and a value of i ∈ [1, k],
its iNN-probability equals the sum of the probabilities of all configura-
tions W where o is the i-th NN of pq. U-topk-NN returns the objects
with the greatest 1NN-, 2NN-, ..., kNN-probabilities, respectively. Note
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Figure 11.9. NN retrieval by expected distances

that these objects are not necessarily different. It is possible for the same
object to have the greatest iNN-probability for multiple values of i.

Probabilistic topk-NN. In some cases, a user may not be interested in
the ordering of the k NNs. Instead, s/he may care about only whether
an object is in the kNN set. Motivated by this, given an object o, we
can define its kNN-probability to be the sum of the probabilities of all
configurations W where o belongs to the kNN-set kNN(W ). Given a
probability threshold tq, probabilistic topk-NN search returns all objects
whose kNN-probabilities are at least tq .

The above queries are adapted fromU-topk [26],U-kRanks [26], and proba-
bilistic top-k [13] respectively. In [13, 26], the authors also provide algorithms
for solving these top-k problems. Those algorithms, as well as their improved
versions [35], can be modified to solve the above kNN problems as well. It
is worth mentioning that, in the literature, a configuration W in our earlier
discussion is often termed a possible world.

Finally, it is worth mentioning that NN search on uncertain data can also be
performed based on objects’ expected distances to the query point pq. Specifi-
cally, given an uncertain object o with uncertainty region o.ur and probability
density function o.pdf(·), its expected distance to pq equals

∫

x∈o.ur
o.pdf(x) · ‖x, pq‖dx. (11.16)

Thus, we may simply return the object with the smallest expected distance
[20]. This approach has two advantages. First, for many regular pdfs such
as uniform and normal distributions, expected distances effectively reflect the
relative superiority of objects. Second, extension to kNN search is trivial.

Not surprisingly, for non-regular pdfs, the expected distance is not a reliable
indicator of the quality of an object. To understand this, consider Figure 11.9,
which shows the possible instances of objects A, B, and C. Intuitively, A is
the best object, because it is almost sure (i.e., with 99% probability) to be the
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NN of pq (A is atA[1] with 99% likelihood, andA[1] is nearer to pq than all the
instances of B and C). However, A has a large expected distance, because its
instance A[2] is faraway from q. In fact, without affecting the NN-probability
of A, we can arbitrarily increase the expected distance of A, by pushing A[2]
sufficiently away from pq.

4. Summary

We started this chapter by reviewing the applications that require manage-
ment of uncertain spatiotemporal data. It is clear that the presence of uncer-
tainty introduces numerous issues that do not exist in conventional precise spa-
tiotemporal databases. This creates the opportunity of formulating novel query
types that extend the traditional queries by taking uncertainty into account.
We discussed the existing formulations of uncertain range search and nearest
neighbor retrieval. A major difference between these queries and their counter-
parts on precise data is that, a query on uncertain data should avoid retrieving
objects with low qualification probabilities. This is usually achieved by either
specifying a probability threshold, or returning only the few objects with the
largest qualification probabilities. We also surveyed the known algorithms for
answering uncertain queries, and elaborated their underlying ideas.

Although our discussion focuses on range search and nearest neighbor re-
trieval due to their vast importance in practice, we note that other types of
queries have also been studied on uncertain multidimensional data. For exam-
ple, in the context of privacy preservation, Mokbel et al. [21] and Kalnis et al.
[14] analyze how to use cloaked rectangles to answer range and NN queries
conservatively. Lian and Chen [18] investigate the group nearest neighbor
query [22]. Kriegel et al. [16] and Cheng et al. [6] propose algorithms for
probabilistic spatial joins. Xu and Jacobsen [34] consider the problem of con-
tinuously monitoring of n-body constraints on uncertain objects. Pei et al.
[23] study probabilistic skylines, and Lian and Chen [19] discuss the related
problem of bichromatic skylines [9].
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Abstract Interest in XML databases has been expanding rapidly over the last few years.
In this chapter, we will study the problem of incorporating probabilistic infor-
mation into XML databases. First we will consider the sources of probabilistic
XML data. We will then describe the initial attempts in using XML tags to rep-
resent simple uncertainty in text and XML data. After that, we will describe
Zhao et al’s framework of Semi-structured Probabilistic Objects (SPOs), which
uses semi-structured data to describe probabilistic data. Next, we will describe
Nierman and Jagadish’s proposal of ProTDB which considers uncertainty in the
structure of XML data with limited probabilistic distribution in point probabil-
ity. Finally we will see how Hung et al.’s PXML and PIXML models handle
uncertain structures with arbitrary distributions (in point probability and inter-
val probability), which also provide a set of algebraic operations, queries, and
aggregate operators.

Keywords: Probabilistic XML, probabilistic semistructure database, algebra, aggregate, in-
terval probability

1. Introduction

Over the last few years, there has been considerable interest in Extensible
Markup Language (XML) databases. A proliferation of semi-structured data
models has been proposed [1–4], along with associated query languages [5,
6] and algebras [7, 8]. XML is a simple but very flexible markup language
derived from SGML, which is now mainly used for exchange, transmission
and manipulation of data on the web [9]. XML tags are not predefined, which
means that it gives users flexibility to define their own tags according to their
domains and applications.
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XML has the advantage of not placing hard constraints on the structure
of the data. Nowadays, data is more often generated in XML for easier data
transmission and manipulation over the web. Since an XML instance specifies
deterministic relationships between objects, in cases where we would also like
to avoid hard constraints on the object-level structure, it is necessary to have
a model for applications in some domains to represent, store and manipulate
uncertainty over the relationships between objects.

This uncertainty is necessary when relationships between objects and values
for attributes of objects are not known with absolute certainty. For example,
this occurs when the sensor inputs are noisy. This provides new challenges on
how to manipulate and maintain such new kinds of database systems.

2. Sources of Uncertainty in XML Data

A common source for this uncertainty comes when a semi-structured repre-
sentation is constructed from a noisy input source: uncertainty in sensor read-
ings, information extraction using probabilistic parsing of input sources and
image processing all may result in a semi-structured instance in which there
is uncertainty. Another source for this uncertainty comes from the need to
represent nondeterministic processes using a semi-structured model. In this
case, it may be desirable to represent the distribution over possible substruc-
tures explicitly, rather than forcing a particular choice. Examples where this
may hold include biological domains, manufacturing processes and financial
applications.

There are numerous applications for which a probabilistic XML data model
is quite natural and for which a query language that supports probabilistic in-
ference provides important functionality. Probabilistic inference supports ca-
pabilities for predictive and ‘what-if’ types of analysis. For example, consider
the use of a variety of predictive programs[10] for the stock market. Such pro-
grams usually return probabilistic information. If a company wanted to export
this data into an XML format, they would need methods to store probabilis-
tic data in XML. The financial marketplace is a hotbed of both predictive and
XML activity (e.g. the FIX standard for financial data is XML based). There is
the same need to store probabilistic data in XML for programs that predict ex-
pected energy usage and cost, expected failure rates for machine parts, and in
general, for any predictive program. Another useful class of applications where
there is a need for probabilistic XML data is image processing programs that
process images (automatically) using image identification methods and store
the results in an XML database. Such image processing algorithms often use
statistical classifiers[11] and often yield uncertain data as output. If such in-
formation is to be stored in an XML database, then it would be very useful to
have the ability to automatically query this uncertain information. Another im-
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portant application is in automated manufacturing monitoring and diagnosis.
A corporate manufacturing floor may use sensors to track what happens on the
manufacturing floor. The results of the sensor readings may be automatically
piped to a fault diagnosis program that may identify zero, one, or many pos-
sible faults with a variety of probabilities on the space of faults. When such
analysis is stored in a database, there is a natural need for probabilities.

In addition to these types of applications, the NSIR system for searching
documents at the University of Michigan[12] returns documents based along
with probabilities. Search engines such as Google return documents relevant
to a user query but not return answers to user questions. NSIR is an architec-
ture that augments existing search engines to support natural language ques-
tion answering. NSIR takes some probabilistic approaches (such as probabilis-
tic phrase reranking (PPR) using proximity and question type features) to the
stages of passage extraction, phrase extraction, and answer ranking. Queries
with appropriate follow-up questions are repeatedly submitted to NSIR in or-
der to populate a probabilistic XML databases used in [13].

Likewise, Nierman, et al. point out the use of probabilistic semi-structured
databases in scientific areas such as protein chemistry[13]. Experimental er-
rors in scientific data are common due to the measurement impreciseness of
the equipments. One challenge in proteomics is to analyze the production of
different proteins under different conditions. To identify a protein, different
tools with varying degrees of reliability may be used. It is crucial to the ana-
lysts how to effectively and efficiently model the identity of a protein (and its
degree of certainty) in a model.

3. Modeling Uncertainty using Tags

The initiative of the guidelines of Text Encoding Initiative (TEI)[14] is to
provide an effective representation of features in a text which need to be identi-
fied explicitly for facilitating the processing of the text by computer programs.
The guidelines include a set of markers (or tags) which may be inserted in
the electronic representation of the text so as to mark the text structure and
other textual features. Following the ratification of XML recommendation in
1998 and its rapid adoption, the TEI Consortium was formed in 2001 to revise
both the text and the DTDs of the scheme of TEI in a way which supported
XML unambiguously. One particular item addressed is to indicate that some
encoded text are uncertain, and to indicate who is responsible for the markup
of the electronic text. The guidelines provide three methods of recording this
uncertainty.[15]

The first method to record uncertainty is to attach a note (using tag <note>)
to the element or location about which is uncertain. In the following para-
graph, for example, it might be uncertain whether “Essex” should be marked
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as a place name or a personal name, since both could be possible in the given
context:
Elizabeth went to Essex. She had always liked

Essex.

The following shows how uncertainty is recorded using <note>.
<persName>Elizabeth</persName> went to

<placeName id="p1"> Essex</placeName>. She had

always liked <placeName id="p2">

Essex</placeName>.

<note type="uncertainty" resp="MSM" target="p1

p2">

It is not clear here whether <mentioned> Essex

</mentioned> refers to the place or to the

nobleman. If the latter, it should be tagged as

a personal name. -MSM</note>

In spite of its relative simplicity, this technique cannot convey the nature
and degree of uncertainty systematically and thus is not suitable for automatic
processing. The <certainty> element may be used to record uncertainty
in a more structured way for at least simple automatic processing,

The following example uses <certainty> element to indicate the ele-
ment in question (target = "p1"), where (i) the locus attribute indi-
cates what aspect of the markup we are uncertain about (in this case, whether
we have used the correct element type), (ii) the degree attribute records the
degree of confidence, and (iii) the assertedValue attribute provides an
alternative choice of generic identifier (in this case <persName>).
Elizabeth went to

<placeName id="p1">Essex</placeName>.

<!- 60% chance that P1 is a placename,

40% chance a personal name. ->

<certainty target="p1" locus="#gi"

desc="probably a placename, but possibly not"

degree="0.6"/>

<certainty target="p1" locus="#gi"

assertedValue="persName"

desc="may refer to the Earl of Essex"

degree="0.4"/>

Furthermore, conditional probability can be represented using given at-
tribute. For example, in the sentence “Elizabeth went to Essex; she had always
liked Essex,” we may feel there is a 60 percent chance it means the county,
and a 40 percent chance it means the earl. Additionally, we think that the two
occurrences of the word should agree with each other, i.e., there is no chance
at all that one occurrence refers to the county and one to the earl.
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Elizabeth went to <placeName id="p1">

Essex</placeName>. She had always liked

<placeName id="p2">Essex</placeName>.

<!- 60% chance that P1 is a placename,

40% chance a personal name. ->

<certainty id="cert-1" target="p1" locus="#gi"

desc="probably a placename, but possibly not"

degree="0.6"/>

<certainty id="cert-2" target="p1" locus="#gi"

desc="may refer to the Earl of Essex"

assertedValue="persName" degree="0.4"/>

<!- 60% chance that P2 is a placename,

40% chance a personal name.

100% chance that it agrees with P1. ->

<certainty target="p2" locus="#gi" given="cert-1"

desc="if P1 is a placename, P2 certainly is"

degree="1.0"/>

<certainty target="p2" locus="#gi"

assertedValue="persName" given="cert-2"

desc="if p1 refers to the Earl of Essex,

so does P2" degree="1.0"/>

The usage of <certainty> tag in TEI Guidelines is an early initiative to
bring uncertainty and XML together. However, their motivation is to mark the
text structure. Although XML tags are used, the underlying data structure is
still a plain text. Thus, it does not make a good use of the flexibility and power
of XML to represent semi-structured data. A better example is the work of
Ustunkaya et al.[16]. They proposed to represent uncertainty using attribute
FuzzyPredicate to relate the fuzzy (possible) values of XML elements.
For example, the following represents an image to have a color of red or green:
<ProductInfo>

<book>

<image>

<colors>

<color FuzzyPredicate="OR">red</color>

<color FuzzyPredicate="OR">blue</color>

</colors>

</image>

...

</book>

</ProductInfo>

A range of values can be represented by some specific tags to denote the
minimum and maximum values like the following:
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ω: S1
DA P
A 0.4
B 0.1
C 0.2
F 0.3

ω: S2
DA LY P
A A 0.01
A B 0.02
A C 0.2
A F 0.01
B A 0.05
B B 0.12
... ... ...
F C 0.03
F F 0.01

ω: S3
city: Lexington
job: Managerial

DA LY P
A A 0.01
A B 0.02
A C 0.2
A F 0.01
B A 0.05
B B 0.12
... ... ...
F C 0.03
F F 0.01

ω: S4
city: Lexington
job: Managerial

DA LY P
A A 0.01
A B 0.02
A C 0.2
A F 0.01
B A 0.05
B B 0.12
... ... ...
F C 0.03
F F 0.01

SE = B
DR ∈ { A, B }

Figure 12.1. Different types of probabilistic information to be stored in the database for risk
analysis applications (from left to right: single variable (Driver Age (DA)) probability distribu-
tion, joint probability distribution of two variables (Drive Age (DA) and License Years (LY)),
joint probability distribution with context (city and job), and conditional joint probability distri-
bution with context (given the condition specified on variables SE and DR).[17]

<ProductInfo>

<book>

<minPrice>$12.92</minPrice>

<maxPrice>$80.00</maxPrice>

</book>

</ProductInfo>

Using XML tags to represent semi-structured data with uncertainty will be
described in later section.

4. Modeling Uncertainty using Semi-structured Data

In the work of Zhao et al.[17], a model was proposed that allows probabilis-
tic information to be stored using semi-structured databases. It was the first to
deal with probabilities and semi-structured data. They pioneered the integra-
tion of probabilities and semi-structured data by introducing a semi-structured
model to support storage and querying of probabilistic information in flexible
forms such as (i) a simple interval probability distribution, (ii) a joint interval
probability distribution, or (iii) a simple or joint conditional interval proba-
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bility distribution. Their model allows us to use an object (semi-structured
probabilistic object or SPO) to represent the probability table of one or more
random variables, the extended context and the extended conditionals. Intu-
itively, contexts provide information about when a probability distribution is
applicable. The formal definition of a SPO is as follow:

Definition 12.1 A Semi-structured Probabilistic Object (SPO) S is defined
as a tuple S =< T, V, P,C, ω >, where

T is the context of S and provides supporting information for a proba-
bility distribution. It includes the known values of certain parameters,

which are not considered to be random variables by the application.

V is a set of random variables that participate in S and determine the
probability distribution described in S. We require that V 6= ∅.
P is the probability table of S. If only one random variable participates,
it is a simple probability distribution table; otherwise the distribution

will be joint. A probability table may be complete, when the information

about the probability of every instance is supplied, or incomplete.

C is the conditional of S. A probability table may represent a distribu-
tion, conditioned by some prior information. The conditional part of its

SPO stores the prior information in one of two forms: “random variable

u has value x” or “the value of random variable u is restricted to a
subset X of its values”.

ω is a unique identifier when S is inserted into the database.

For example, in Figure 12.1, the rightmost table illustrates a SPO where
(from top to bottom) (i) T states the context (city is Lexington and race is
Asian), (ii) V specifies the two random variables (Drive Age (DA) and License
Years (LY)), (iii) P shows the joint probability table with the last column P
containing the probability of each possible combination of values of DA and
LY, (iv) C indicates the conditional (SE = B,DR ∈ {A,B}).

Zhao et al. also developed an elegant algebra and a prototype implemen-
tation to query databases of such SPOs. The resulting algebra called Semi-
structured Probabilistic Algebra (SP-Algebra) contains three standard set op-
erations (union, intersection, difference) and extends the definitions of standard
relational operations (selection, projection, Cartesian product and join). A new
operation called conditionalization[18] is also defined which returns the con-
ditional probability distributions of input SPOs.

The SPO model appears to be similar to PXML described in the later sec-
tion but in fact it is quite different. An SPO itself can be represented in a
semi-structured way, but its main body is just a flat table. It cannot show the
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semi-structured relationship among variables. Only contexts (but not random
variables) are represented in a semi-structured form. Contexts are "regular re-
lational attributes", i.e., the context provides already known information when
the probability distribution is given on real "random variables". Detailed com-
parison will be found in later section.

5. Modeling Uncertainty in XML with Independent or
Mutually Exclusive Distribution in Point Probability

More recently, Nierman and Jagadish developed a framework called
ProTDB to extend the XML data model to include probabilities[13]. Their
approach addresses the several modeling challenges of XML data: due to its
structure, due to the possiblility of uncertainty association at multiple granu-
larities, and due to the possibility of missing and repeated sub-elements. They
demonstrated to manage probabilistic XML data extracted from the web us-
ing a natural language analysis system NSIR. Since there are many possible
sources of error in the query processing, NSIR returns multiple possible an-
swers, each with a probability. A probabilistic XML database was generated
by repeatedly submitting queries. Examples of queries and answers include:

What is the name of the President of the United States?

– George Bush (0.7); George W. Bush (0.4); Bill Clinton (0.2)

How old is Bill Clinton?

– 55 (0.3)

They consider several issues in the representation of uncertainty in XML
data. Instead of a probability associated with a tuple as in a probabilistic
relational model, a probability is associated with an element or even an at-
tribute value in ProTDB model. A probability associated with an element
is treated as the existential probability that the state of the world includes
this element and the sub-tree rooted at it. More formally, each node is de-
pendent upon its root to node chain. Each probability p on an element in
the XML document is assigned conditioned on the fact that the parent ele-
ment exists, i.e., if the parent exists, then the element’s probability equals
p; when the parent does not exist, then the element’s probability equals 0.
Consider a chain A ← B ← C from root A. The following probabili-
ties are assigned to nodes A, B and C: Prob(A), P rob(B|A), P rob(C|B).
To obtain Prob(B), the probability that B exists in some state of the world,

we can use Bayes’ formula: Prob(B|A) =
Prob(A|B)× Prob(B)

Prob(A)
. How-

ever, a parent must exist if its children exist, so Prob(A|B) = 1. Therefore,
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Prob(B) = Prob(B|A) × Prob(A). By default, all probabilities between
nodes not in an ancestor-descendant chain are independent. However, it also
allows sibling nodes to be specified as “mutually-exclusive”.

XML DTD’s are extended to use a Prob attribute for each element. To
enable the use of this attribute, for each element:
<!ELEMENT elementName ...>, the DTD should contain the follow-

ing:
<!ATTLIST elementName Prob CDATA "1.0">.
The DTD should also define the distribution (Dist) and value (Val) ele-

ments as follows:
<!ELEMENT Dist (Val+)>

<!ATTLIST Dist type (independent

| mutually-exclusive) "independent">

<!ELEMENT Val (#PCDATA)>

<!ATTLIST Val Prob CDATA "1">

For a leaf element curElement (i.e., it contains only text, or #PCDATA),
its original definition in the DTD:
<!ELEMENT curElement (#PCDATA)>

will be changed to:
<!ELEMENT curElement (#PCDATA|Dist)>

For non-leaf element curElement, two changes will be made to the DTD:

1 Change the element definition from: <!ELEMENT curElement

(prev-def)> to: <!ELEMENT curElement ((prev-def)|

Dist)> (where prev-def is the original definition of curElement)

2 and add this element’s previous definition to the Val construct:
<!ELEMENT Val (X)> to be:
<!ELEMENT Val (X | (prev-def))>

The following shows a fragment of an XML document for input to ProTDB
system[13].
1.<countries>

2. <country Prob=’.9’>

3. <countryName>United States</countryName>

4. <coordinates Prob=’.9’>

5. <latitude>

6. <direction>North</direction>

7. <degrees Prob=’.8’>38</degrees>

8. <minutes>00</minutes>

9. </latitude>

10. <longitude>

11. <direction>West</direction>

12. <degrees>97</degrees>
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13. </longitude>

14. </coordinates>

15. <government>

16. <independenceDay Prob=’.85’>07/04/1776

17. </independenceDay>

18. <chiefOfState>

19. <Dist type="mutually-exclusive">

20. <Val Prob=’.5’>

21. <title Prob=’.75’>President</title>

22. <name>

23. <Dist>

24. <Val Prob=’.4’>George W. Bush</Val>

25. <Val Prob=’.7’>George Bush</Val>

26. </Dist>

27. </name>

28. <age>

29. <Dist type="mutually-exclusive">

30. <Val Prob=’.2’>54</Val>

31. <Val Prob=’.35’>55</Val>

32. <Val Prob=’.1’>56</Val>

33. <Val Prob=’.15’>77</Val>

34. </Dist>

35. </age>

36. <spouse>

37. <Dist type="mutually-exclusive">

38. <Val Prob=’.5’>Laura Welch</Val>

39. <Val Prob=’.2’>Barbara Pierce</Val>

40. </Dist>

41. </spouse>

42. </Val>

43. <Val Prob=’.2’>

44. <title Prob=’.65’>President</title>

45. <name>Bill Clinton</name>

46. <age Prob=’.3’>55</age>

47. </Val>

48. </Dist>

49. </chiefOfState>

50. </government>

51. </country>

52.

53. <country>

54. <countryName>Uruguay</countryName>
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55. ...

56. </country>

57.</countries>

Figure 12.2. Three pattern trees[13]

As a query language, they use a variation of their earlier work on the TAX
algebra for XML[8] and use pattern trees. Figure 12.2 shows three examples
of pattern trees[13]. The “pc” on the edge means “parent-child” relationship.
TAX queries include single node queries (e.g., Figure 12.2(a)), conjunctive
queries (e.g., Figure 12.2(b, c)) and disjunctive queries. The output of a query
is a set of subtrees (matching data trees), each with a global probability (the
probability that this subtree exists). Figure 12.3 shows the matching data trees
and associated global probabilities for the queries in Figure 12.2[13].

6. Formal Model of Probabilistic Semi-structured Data
with Arbitrary Probabilistic Distributions

In this section, we describe a probabilistic XML (PXML) model for proba-
bilistic semi-structured data[19]. The advantage of this approach is that it sup-
ports a flexible representation that allows the specification of a wide class of
distributions over semi-structured instances. There are two semantics provided
for the model, where the semantics are probabilistically coherent. Next, the re-
lational algebra was extended to handle probabilistic semi-structured data. Ef-
ficient algorithms were developed for answering queries that use this algebra.
Furthermore, aggregate operators were considered for PXML data and provide
two semantics[20]. First, in the ordinary semantics, answers to PXML aggre-
gate queries are defined using the potentially huge number of such compatible
instances. It is shown how probabilistic XML instances can be directly manip-
ulated without the exponential blowup. This method is shown to be correct for
most aggregate queries which are important and useful. The second semantics
is the expected semantics, which returns the expected value of the answer in
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Figure 12.3. Data trees matching the query pattern trees in Figure 12.2[13]

the ordinary semantics. In [20], a series of experiments were described that
implement the algebraic operations, and both exact and approximate aggregate
operations – these experiments validate the utility of this approach. We will
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Figure 12.4. A semi-structured instance for a bibliographic domain.

also have a comparison among PXML, SPO and ProTDB and an introduction
of PIXML (an interval probability version of PXML).

6.1 Motivating Examples

Here we provide two applications as our motivating examples used to illus-
trate the PXML model, semantics, algebra, query and aggregate operators.

A Bibliographical Application. As our first running example, we will
use a bibliographic application. This example is rather simple, but we assume
it will be accessible to all readers. In this case, we assume that the uncer-
tainty arises from the information extraction techniques used to construct the
bibliography. Consider a citation index such as Citeseer [21] or DBLP [22].
In Citeseer, the indexes are created by crawling the web, and operations in-
clude parsing postscript and PDF documents. Often, there will be uncertainty
over the existence of a reference (have we correctly identified a bibliographic
reference?), the type of the reference (is the reference a conference paper, a
journal article or a book?), the existence of subfields of the reference such as
author, title and year, the identity of the author (does Hung refer to Edward
Hung or Sheung-lun Hung or many other tens of authors with “Hung” as their
last names or first names?). In such environments, uncertainty abounds.

Semi-structured data is a natural way to store such data because for an ap-
plication of this kind, we have some idea of what the structure of data looks
like (e.g. the general hierarchical structure alluded to above). However, semi-
structured data models do not provide support for uncertainty over the rela-
tionships in an instance. In this section, we will extend this model to naturally
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store the uncertainty that we have about the structure of the instance as well.
Besides, we will see how our algebraic operations and query mechanisms can
answer the following questions:

1 We want to know the authors of all books but we are not interested in the
institutions of the authors or the titles of books. However, we want to
keep the result in the way that further enquiries (e.g., about probabilities)
can be made on it.

2 Now we know that a particular book surely exists. What will the updated
probabilistic instance become?

3 We have two probabilistic instances (e.g., the information were collected
by two different systems) about books of two different areas and we want
to combine them into one.

4 We want to know the probability that a particular author exists.

A Surveillance Application. Consider a surveillance application where a
battlefield is being monitored. Image processing methods are used to classify
objects appearing in images. Some objects are classified as vehicle convoys
or refugee groups. Vehicle convoys may be further classified into individual
vehicles, which may be further classified into categories such as tanks, cars, ar-
mored personnel carriers. However, there may be uncertainty over the number
of vehicles in a convoy as well as the categorization of a vehicle. For example,
image processing methods often use Bayesian statistical models[11] to capture
uncertainty in their identification of image objects. Further uncertainty may
arise because image processing methods may not explicitly extract the identity
of the objects. Semi-structured data is a natural way to store such data because
for a surveillance application of this kind, we have some idea of what the struc-
ture of data looks like (e.g. the general structure described above). However,
the above example demonstrates the need for a semi-structured model to store
uncertain information in uncertain environments.

Aggregate queries are natural queries for users to ask in such applications.
To date, we are aware of no formal model of aggregate computations in prob-
abilistic XML databases. Examples of queries that users may wish to ask in-
clude: How many convoys are there (in some collection of images)? How

many tanks are there in total? On the average, how many tanks are there in a

convoy? What is the ratio of the total number of tanks to the total number of

trucks? In more complex examples, there are many other important queries. If
convoys include an estimate of the number of soldiers per vehicle, we may be
interested in the total number (sum) of soldiers. We may also be interested in
the average number of soldiers per convoy, the average number of soldiers per
tank, etc.
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6.2 Probabilistic Semi-structured Data Model

In this section, we introduce the probabilistic semi-structured data (PXML)
model. We first review the definition of a semi-structured data model. We then
introduce the syntax of PXML followed by the semantics of PXML.

Semi-structured Data Model. We start by recalling some simple graph
concepts.

Definition 12.2 Let V be a finite set (of vertices), E ⊆ V × V be a set (of
edges) and ℓ : E → L be a mapping from edges to a set L of strings called
labels. The triple G = (V,E, ℓ) is an edge labeled directed graph.

Definition 12.3 Suppose G = (V,E, ℓ) is any rooted, edge-labeled di-
rected graph. For o ∈ V :

The children children(o) of o is the set {o′ | (o, o′) ∈ E}.
The parents of o, parents(o), is the set {o′ | (o′, o) ∈ E}.
The descendants of o is the set des(o) = {o′ |
there is a directed path from o to o′ in G}, i.e., o’s descendants
include o’s children as well as children of o’s descendants.
The non-descendants of o is the set non-des(o) = {o′|o′ ∈ V ∧ o′ /∈
des(o) ∪ {o}}, i.e., all vertices except o’s descendants are o’s non-
descendants.
We use lch(o, l) to denote the set of children of o with label l. More
formally,

lch(o, l) = {o′ | (o, o′) ∈ E ∧ ℓ(o, o′) = l}.
A vertex o is called a leaf iff children(o) = ∅.

It is important to note that our graphs are not restricted to trees— in fact, the
above definition allows cycles. However, in our probabilistic semi-structured
data model, we will restrict attention to directed acyclic graphs.

Definition 12.4 A semi-structured instance S over a set of objects O, a
set of labels L, and a set of types T , is a 5-tuple S = (V,E, ℓ, τ, val) where:

1 G = (V,E, ℓ) is a rooted, directed graph where V ⊆ O, E ⊆ V × V
and ℓ : E → L;

2 τ associates a type in T with each leaf object o in G.
3 val associates a value in the domain dom(τ (o)) with each leaf object o.

We illustrate the above definition through an example from the bibliographic
domain.

Example 12.5 Figure 12.4 shows a graph representing a part of the bib-
liographic domain. The instance is defined over the set of objects O =
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{R,B1, B2, B3, T1, T2, A1, A2, A3, I1, I2}. The set of labels is L =
{book, title, author, institution}. There are two types, title-type and
instition-type, with domains given by: dom(title-type) = {VQDB,Lore} and
dom(institution-type) = {Stanford,UMD}. The graph shows that the rela-
tionships between the objects in the domain and the types and values of the

leaves.

The PXML Probabilistic Data Model. In this section, we develop the
basic syntax of the PXML probabilistic data model. However, before defining
the important concept of a probabilistic instance, we need some intermediate
concepts.

A central notion that allows us to provide coherent probabilistic semantics is
that of a weak instance. A weak instance describes the objects that can occur in
a semi-structured instance, the labels that can occur on the edges in an instance
and constraints on the number of children an object might have. We will later
define a probabilistic instance to be a weak instance with some probabilistic
attributes.

Definition 12.6 A weak instance W with respect to O, L and T is a 5-
tupleW = (V, lch, τ, val, card) where:

1 V ⊆ O.
2 For each object o ∈ V and each label l ∈ L, lch(o, l) specifies the set
of objects that may be children of o with label l. We assume that for
each object o and distinct labels l1, l2, lch(o, l1) ∩ lch(o, l2) = ∅. (This
condition says that two edges with different labels cannot lead to the

same child).
3 τ associates a type in T with each leaf vertex.
4 val associates a value in dom(τ(o)) with each leaf object o.
5 card is mapping which constrains the number of children with a given

label l. card associates with each object o ∈ V and each label l ∈ L, an
integer-valued interval card(o, l) = [min,max], where min ≥ 0, and
max ≥ min. We use card(object, l).min and card(object, l).max to
refer to the lower and upper bounds respectively.

A weak instance implicitly defines, for each object and each label, a set of
potential sets of children. Consider the following example.

Example 12.7 Consider a weak instance with V =
{R,B1, B2, B3, T1, T2, A1, A2, A3, I1, I2}. We may have

lch(R, book) = {B1, B2, B3} indicating that B1 and B2 are possible
book-children of R. Likewise, we may have lch(B1, author) = {A1, A2}. If
card(B1, author) = [1, 2], then B1 can have between one and two authors.
The set of possible author-children of B1 is thus {{A1}, {A2}, {A1, A2}}.
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Likewise, if card(A1, institution) = [1, 1] then A1 must have exactly one
(primary) institution.

We formalize the reasoning in the above example below.

Definition 12.8 SupposeW = (V, lch, τ, val, card) is a weak instance and
o ∈ V and l is a label. A set c of objects in V is a potential l-child set of o
w.r.t. the above weak instance iff:

1 If o′ ∈ c then o′ ∈ lch(o, l) and
2 The cardinality of c lies in the closed interval card(o, l).

We use the notation PL(o, l) to denote the set of all potential l-child sets of o.

As PL(o, l) denotes the set of all potential child sets of o with labels l, we
can define the set of all potential child sets of owith any labels as the following.

Definition 12.9 SupposeW = (V, lch, τ, val, card) is a weak instance and
o ∈ V . A potential child set of o is any set Q of subsets of V such that

Q =
⋃
H where H is a hitting set∗ of {PL(o, l) | (∃o′)o′ ∈ lch(o, l)}. We use

potchildren(o) to denote the set of all potential child sets of o w.r.t. a weak
instance.

Once a weak instance is fixed, potchildren(o) is well defined for each o. We
will use this to define the weak instance graph below. We will need this in our
definition of a probabilistic instance.

Definition 12.10 Given a weak instance W = (V, lch, τ, val, card), the
weak instance graph, GW = (V,E), is a graph over the same set of nodes
V , and for each pair of nodes o and o′, there is an edge from o to o′ iff ∃c ∈
potchildren(o) such that o′ ∈ c.

Before we define a probabilistic instance, let us first introduce the notion
of a local probability model for a set of children of an object. We adopt the
framework of classical probability theory so that the sum of the probabilities
of all potential child sets equals 1.

Definition 12.11 Suppose W = (V, lch, τ, val, card) is a weak instance.
Let o ∈ V be a non-leaf object. An object probability function (OPF for

short) for o w.r.t. W is a mapping ω : potchildren(o) → [0, 1] such that OPF
is a legal probability distribution, i.e., Σc∈potchildren(o)ω(c) = 1.

∗Suppose S = {S1, . . . , Sn} where each Si is a set. A hitting set for S is a set H such that (i) for all
1 ≤ i ≤ n, H ∩ Si 6= ∅ and (ii) there is no H′ ⊂ H satisfying condition (i).
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Definition 12.12 Suppose W = (V, lch, τ, val, card) is a weak instance.
Let o ∈ V be a leaf object. A value probability function (VPF for short)

for o w.r.t. W is a mapping ω : dom(τ(o)) → [0, 1] such that VPF is a legal
probability distribution, i.e., Σv∈dom(τ(o))ω(v) = 1.

An object probability function provides the model theory needed to study
a single non-leaf object (and its children) in a probabilistic instance to be de-
fined later. It defines the probability of a set of children of an object existing
given that the parent object exists. Thus it is the conditional probability for
a set of children to exist, under the condition that their parent exists in the
semi-structured instance. Similarly, the value probability function provides
the model theory needed to study a leaf object, and defines a distribution over
values for the object.

Definition 12.13 Suppose W = (V, lch, τ, val, card) is a weak instance.
A local interpretation is a mapping ℘ from the set of objects o ∈ V to local
probability functions. For non-leaf objects, ℘(o) returns an OPF, and for leaf
objects, ℘(o) returns a VPF.

Intuitively, a local interpretation specifies, for each object in the weak instance,
a local probability function.

Definition 12.14 A probabilistic instance I is a 6-tuple I =
(V, lch, τ, val, card, ℘) where:

1 W = (V, lch, τ, val, card) is a weak instance and
2 ℘ is a local interpretation.

A probabilistic instance consists of a weak instance, together with a probability
associated with each potential child of each object in the weak instance.

Example 12.15 Figure 12.5 shows a very simple probabilistic instance. The
setO of objects is the same as in our earlier PXML example. The figure shows

the potential lch of each object; for example, lch(B1, author) = {A1, A2}.
The cardinality constraints are also shown in the figure; for example, object B1

can have 1 to 2 authors and 0 to 1 titles. The tables on the right of Figure 12.5

show the local probability models for each of the objects. The tables show the

probability of each potential child of an object. For example, if B2 exists, the

probability A1 is one of its authors is 0.8.

The components O,L,T of a probabilistic instance are identical to those
in a semi-structured instance. However, in a probabilistic instance, there is
uncertainty over:

The number of sub-objects of an object o;
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o l lch(o, l)

R book {B1, B2, B3}
B1 title {T1}
B1 author {A1, A2}
B2 author { A1, A2, A3}
B3 title {T2}
B3 author {A3}
A1 institution {I1}
A2 institution {I1, I2}
A3 institution {I2}

o l card(o, l)

R book [ 2,3 ]
B1 author [ 1,2 ]
B1 title [ 0,1 ]
B2 author [ 2,2 ]
B3 author [ 1,1 ]
B3 title [ 1,1 ]
A1 institution [ 0,1 ]
A2 institution [ 1,1 ]
A3 institution [ 1,1 ]

c ∈ potchildren(R) ℘(R)(c)

{B1, B2} 0.2
{B1, B3} 0.2
{B2, B3} 0.2

{B1, B2, B3} 0.4

c ∈ potchildren(B1) ℘(B1)(c)

{A1} 0.3
{A1, T1} 0.35

{A2} 0.1
{A2, T1} 0.15
{A1, A2} 0.05

{A1, A2, T1} 0.05

c ∈ potchildren(B2) ℘(B2)(c)

{A1, A2} 0.4
{A1, A3} 0.4
{A2, A3} 0.2

c ∈ potchildren(B3) ℘(B3)(c)

{A3, T2} 1.0

c ∈ potchildren(A1) ℘(A1)(c)

{} 0.2
{I1} 0.8

c ∈ potchildren(A2) ℘(A2)(c)

{I1} 0.5
{I2} 0.5

c ∈ potchildren(A3) ℘(A3)(c)

{I2} 1.0

Figure 12.5. A probabilistic instance for the bibliographic domain.

The identity of the sub-objects.
The values of the leaf objects.

This uncertainty is captured through the function ℘(o). We may define
℘(o) more compactly, in the case where there are some symmetries or in-
dependence constraints that can be exploited in the representation. For ex-
ample, if the occurrence of each category of labeled objects is independent,
then we can simply specify a probability for each subset of objects with the
same label and compute the joint probability as the product of the individ-
ual probabilities. For instance, if the existence of author and title objects is
independent, then we only need to specify a distribution over authors and a
distribution over titles. Furthermore, in some domains it may be the case that
some objects are indistiguishable. For example in an object recognition sys-
tem, we may not be able to distinguish between vehicles. Then if we have
two vehicles, vehicle1 and vehicle2, and a bridge bridge1 in a scene S1, we
may not be able to distinguish between a scene that has a bridge1 and ve-
hicle1 in it from a scene that has bridge1 and vehicle2 in it. In this case,
℘(S1)({bridge1, vehicle1}) = ℘(S1)({bridge1, vehicle2}). The semantics
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of the model we have proposed is fully general, in that we can have arbitrary
distributions over the sets of children of an object. However in the case where
there is additional structure that can be exploited, we plan to allow compact
representations of the distributions and make use of the additional structure
effectively when answering queries.

6.3 Semantics

In this section, we develop a semantics for probabilistic semi-structured
databases. We can use a PXML model to represent our uncertainty about
the world as a distribution over possible semi-structured instances. A prob-
abilistic instance implicitly is shorthand for a set of (possible) semi-structured
instances—these are the only instances that are compatible with the informa-
tion we do have about the actual world state which is defined by our weak in-
stance. We begin by defining the notion of the set of semi-structured instances
that are compatible with a weak instance.

Definition 12.16 Let S = (VS , E, ℓ, τS , valS) be a semi-structured in-
stance over a set of objects O, a set of labels L and a set of types T and let
W = (VW , lchW , τW , valW , card) be a weak instance. S is compatible with
W if the root ofW is in S and for each o in VS:

o is also in VW .
If o is a leaf in S, then o is also a leaf in W , τS(o) = τW(o) and and
valS(o) ∈ τS(o).
If o is not a leaf in S then
– For each edge (o, o′) with label l in S, o′ ∈ lchW(o, l),
– For each label l ∈ L, let k = |{o′|(o, o′) ∈ E ∧ ℓ(E) = l}|, then
card(o, l).min ≤ k ≤ card(o, l).max.

We use D(W) to denote the set of all semi-structured instances that are
compatible with a weak instance W . Similarly, for a probabilistic instance
I = (V, lchI , τI , valI , card, ℘), we use D(I) to denote the set of all semi-
structured instances that are compatible with I’s associated weak instance
W = (V, lchI , τI , valI , card).

We now define a global interpretation based on the set of a compatible in-
stances of a weak instance.

Definition 12.17 Consider a weak instance W = (V, lch, τ, val, card). A
global interpretation P is a mapping from D(W) to [0, 1] such that
ΣS∈D(W)P(S) = 1.

Intuitively, a global interpretation is a distribution over the set of semi-
structured instances compatible with a weak instance.
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Recall that a local interpretation defines the local semantics of an object. In
addition, it enables us to define the global semantics for our model. First we
must impose an acyclicity requirement on the weak instance graph. This is
required to ensure that our probabilistic model is coherent.

Definition 12.18 Let W = (VW , lchW , τW , valW , card) be a weak in-
stance. W is acyclic if its associated weak instance graph GW is acyclic.

We do not restrict our probabilistic instance to be trees. For example, the
probabilistic instance in Figure 12.5 whose weak instance graph shown in Fig-
ure 12.4 is an acyclic graph.

Given a probabilistic instance I over an acyclic weak instanceW , the prob-
ability of any particular instance can be computed from the OPF and VPF
entries corresponding to each object in the instance and its children. We are
now going to define the relationship between the local interpretation and the
global interpretation.

Definition 12.19 Let ℘ be local interpretation for a weak instance W =
(V, lch, τ, val, card). Then P℘ returns a function defined as follows: for any
instance S ∈ D(W), P℘(S) =

∏
o∈S ℘(o)(childrenS(o)), where if o is not a

leaf inW , then childrenS(o) = {o′|(o, o′) ∈ E}, i.e., the set of children of o in
instance S; otherwise, childrenS(o) = valS(o), i.e., the value of o in instance
S .

In order to use this definition for the semantics of our model, we must first
show that the above function is in fact a legal global interpretation.

Theorem 12.20 Suppose ℘ is a local interpretation for a weak instance
W = (V, lch, τ, val, card). Then P℘ is a global interpretation forW .

Example 12.21 Consider S1 in Figure 12.6 and the probabilistic semi-
structured instance from Figure 12.5.

P (S1) = P (B1, B2 | R) P (A1, T1 | B1)P (A1, A2 | B2) P (I1 | A1) P (I1 | A2)

= 0.2 · 0.35 · 0.4 · 0.8 · 0.5 = 0.00448

An important question is whether we can go the other way: from a global in-
terpretation, can we find a local interpretation for a weak instanceW(V, lch, τ,
val, card)? It turns out that we can if the global interpretation can be factored in
a manner consistent with the structure constraints imposed byW(V, lch, τ, val,
card). One way to ensure this is to impose a set of independence constraints
on the distribution P .

Definition 12.22 SupposeP is a global interpretation andW = (V, lch, τ,
val, card) is a weak instance. P satisfies W iff for every non-leaf object
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Figure 12.6. Some of semi-structured instances compatible with the probabilistic instance in
Figure 12.5.

o ∈ V and each c ∈ potchildren(o) (and for every leaf object o ∈ V and

each c ∈ dom(τ(o))), it is the case that P(c|non-desW(o)) = P(c) where
non-desW(o) are the nondescendants of o in the weak instance graph GW .

In other words, given that o occurs in the instance, the probability of any
potential children c of o is independent of the nondescendants of o in the in-
stance.

Furthermore, given a global interpretation that satisfies a weak instance, we
can find a local interpretation associated with it in the following manner:

Definition 12.23 ( D̃ operator) Suppose c ∈ potchildren(o) for some
non-leaf object o† and suppose P is a global interpretation. ωP,o, is defined as
follows.

ωP,o(c) =
ΣS∈D(W)∧o∈S ∧ childrenS(o)=cP(S)

ΣS∈D(W)∧o∈SP(S)
.

Then, D̃(P) returns a function defined as follows: for any non-leaf object o,
D̃(P)(o) = ωP,o.

Intuitively, we construct ωP,o(c) as follows. Find all semi-structured in-
stances S that are compatible withW and eliminate those for which o’s set of

†For leaf objects, c ∈ dom(τ(o)) and childrenS(o) = val(o) in the formula.
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children is not c. The sum of the (normalized) probabilities assigned to the re-
maining semi-structured instances by P is assigned to c by the OPF‡ ωP,o(c).
By doing this for each object o and each of its potential child sets, we get a
local interpretation.

Theorem 12.24 Suppose P is a global interpretation for a weak instance
W = (V, lch, τ , val, card). Then D̃(P) is a local interpretation forW .

6.4 PXML Algebra and Comparison with Previous Work

In [19], an algebra was also proposed to support querying probabilistic semi-
structured data. In addition, efficient algorithms for answering these queries
were described and implemented for evaluation. Relational algebra is based
on relation names and attribute names while PXML algebra is based on proba-
bilistic instance names and path expressions. The definition of path expressions
is a variation of the standard definition [5].

Definition 12.25 An edge sequence is a sequence l1. . . . .ln, where the li’s
are labels of edges. A path expression p = r.l1. . . . .ln is an object (oid) r,
followed by a (possibly empty) edge sequence l1. . . . .n; p denotes the set of
objects that can be reached via the sequence of edges with labels l1. . . . .n.

A path expression is used to locate objects in an instance. We say o ∈ p iff
there is a path p to reach o. For example, in the example instance in Figure 12.4,
A2 ∈ R.book.author because there is a path from R to reach A2 through a
path that is labeled book.author.

In the PXML algebra, a set of operators were defined: projection (ancestor
projection, descendant projection, and single projection), selection, and cross
product (join can be defined in terms of these operations in the standard way).
Finally a probabilistic point query was also proposed, similar to the ProTDB
query in [13].

The SPO model in [17] appears to be similar to PXML described in the later
section but in fact it is quite different. An SPO itself can be represented in a
semi-structured way, but its main body is just a flat table. It cannot show the
semi-structured relationship among variables. Only contexts (but not random
variables) are represented in a semi-structured form. Contexts are "regular re-
lational attributes", i.e., the context provides already known information when
the probability distribution is given on real "random variables". In contrast,
PXML model allows data to be represented in a truly semi-structured manner.
The syntax and semantics of the model were modified by introducing cardi-
nality and object probability functions to demonstrate the uncertainty of the

‡VPF for leaf objects; note that for the rest of this section, when we mention OPF, it is also true for the case
of VPF.
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number and the identity of objects existing in possible worlds. Every possible
world is a semi-structured instance compatible with the probabilistic instance.
The representation of a possible world (semi-structured instance) is the same
as the one widely accepted nowadays. However, the model of Dekhtyar et al.
cannot do this. Their model also requires random variables to have distinct
variable names (or edge labels) (in PXML model, they are the children con-
nected to their parents with the same edge label). Consequently, their model
cannot allow two or more variables with the same variable names (no matter
their values are the same or different) in a single possible world. Their model
also cannot capture the uncertainty of cardinality. On the other hand, PXML

model can represent their table. For each random variable, define a set of chil-
dren (with the possible variable values) connected to their parent with the same
edge label (set as the variable name). The cardinality associates with the par-
ent object with each label is set to [1, 1] so that each random variable can have
exactly one value in each possible world. The extended context and extended
conditionals in SPO can be represented by two subtrees with corresponding
edge labels and values connected to the parent object.

ProTDB proposed by Nierman and Jagadish[13] is similar in spirit to PXML

– however there are a few important differences. In ProTDB, independent con-
ditional probabilities are assigned to each individual child of an object (i.e.,
independent of the other children of a node); PXML supports arbitrary dis-
tributions over sets of children. Furthermore, dependencies are required to
be tree-structured in ProTDB, whereas PXML allows arbitrary acyclic depen-
dency models. In the other words, their answers are correct under the assump-
tion of conditional independence and under the condition that the underlying
graph is tree-structured. Thus the PXML data model subsumes the ProTDB
data model. In addition, it was proved that the semantics of PXML is proba-
bilistically coherent. Another important difference is in the queries supported.
There is no direct mapping among PXML algebra and ProTDB query language.
For example, in ProTDB’s conjunctive query, given a query pattern tree, they
return a set of subtrees (with some modified node probabilities) from the given
instance, each with a global probability. There is no direct mapping between
their conjunctive query and PXML’s ancestor projection because the former
finds subtrees matching the pattern tree, while the latter uses a path expres-
sion. Each of former subtrees is restricted to match the query pattern tree and
has a fixed structure while the output of PXML is a probabilistic instance which
implicitly includes many possible structures. Strictly speaking, ProTDB’s out-
put (a set of instances, each with a global probability) is not the same kind as
the input (one instance, with a global probability = 1 by definition). Besides,
they don’t have operators like Cartesian product in PXML model, which is
fundamental for other important operators like join.
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o l lch(o, l)

I1 convoy { convoy1, convoy2 }
convoy1 tank { tank1, tank2 }
convoy2 truck { truck1 }

o τ(o) val(o)

tank1 tank-type T-80
tank2 tank-type T-72
truck1 truck-type rover

o l card(o, l)

I1 convoy [1,2]
convoy1 tank [ 1,1 ]
convoy2 truck [ 1,1 ]

c ∈ potchildren(I1) ℘(I1)(c)

{ convoy1} 0.3
{ convoy2} 0.2

{ convoy1, convoy2} 0.5

c ∈ potchildren(convoy1) ℘(convoy1)(c)

{ tank1} 0.4
{ tank2} 0.6

c ∈ potchildren(convoy2) ℘(convoy2)(c)

{ truck1} 1

Figure 12.7. A probabilistic instance for the surveillance domain.
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Figure 12.8. (a) The graph structure of the probabilistic instance in Figure 12.7. (b) The set of
semi-structured instances compatible with the probabilistic instance in Figure 12.7.

6.5 Probabilistic Aggregate Operations

In this section, we consider another useful class of PXML operations, oper-
ations that use aggregates. We will use as a running example the surveillance
application introduced earlier. Consider the probabilistic instance shown in
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Figure 12.7 and its associated graph shown in Figure 12.8(a). In the follow-
ing we will define the declarative semantics of aggregate queries. Answering
aggregate queries in PXML raises three important issues:

Possible-worlds answer: Consider a query that wishes to count the
number of objects in all convoys in probabilistic instance I1. This prob-
abilistic instance has five compatible semi-structured instances marked
as S1, . . . , S5 in Figure 12.8. Each of these instances has between 1
and 2 objects - as a consequence, we may want to return the set {1, 2}
indicating that the answer to the count query is not known precisely, but
is either 1 or 2, together with the probability that it is one (0.5 in the
example) and the probability that it is 2 (also 0.5 in the example).

Expected answer: Alternatively, we could use the statistical notion of
expected value. In this case, we always return one count for any count
query. We multiply the number of objects in S1 (i.e. 2) by the probability
of S1 (i.e. 0.5× 0.4× 1 = 0.2) and add this to the number of objects in
S2 (i.e. 2) by the probability of S2 (i.e., 0.5× 0.6× 1 = 0.3) and so on.
In the above example, we would return the answer 1.5 as the expected
value.

Form of the answer: Instead of just given a “bland” answer to an aggre-
gate query such as 1.5, we may want to return a probabilistic instance.
The advantage of returning a probabilistic instance as output is that this
can be the subject of further querying.

As the answers in both semantics above depend upon finding the answer
to an aggregate query in a semi-structured instance, a formal definition of ag-
gregates for semi-structured instances was given in [20]. It was then extended
to the case of the possible world aggregates and then to the case of expected
aggregates. The last two are defined in a global sense, i.e., they are defined
by working globally on the set of compatible instances. However, this is very
expensive in practice as the set of compatible instances may be huge. For the
majority of important aggregate operators, it is possible that we can work in a
local manner, i.e., we work directly on the probabilistic instance itself to obtain
the results.

In short, in the ordinary semantics, for every non-leaf object o, the CP algo-
rithm is proposed to compute the results of aggregate function applied on ev-
ery possible combination of possible aggregate values computed at o’s children
and also computes the corresponding probabilities of such results. However,
in practice, we do not want to execute a probabilistic aggregate operation by
applying the aggregate operator on all compatible instances. The idempotent-
distributive property of a large class of aggregate operators allows us to exe-
cute the probabilistic aggregate operation locally on every non-leaf objects in a
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bottom-up manner. Examples of such aggregate operators include count, sum,
min and max. The worse case time complexity increases with the actual to-
tal number of possible aggregate values. In practice, it may be large or small,
depending on the application domain, the instance and the aggregate operator
used. However, if it is unreasonably large, we can use pruning techniques to
reduce the size. For example, we can set a threshold such that when a proba-
bility table T is passed up, values with probability smaller than the threshold
are pruned. Another method is to keep the h most probable values in the prob-
ability table. In addition, a hybrid of the above two and other pruning methods
can be used. Since the effect of pruning techniques depends on the applica-
tion domain, the instance, the aggregate operator used and the thresholds used,
users are advised to fine tune their pruning methods according to the desired
performance of their applications.

In the expectation semantics, for every non-leaf object o, the SE algorithm
was proposed to compute the expected result of aggregate function applied on
every possible combination of expected values computed at o’s children.

6.6 Modeling Interval Uncertainty in Semi-structured
Data

In [23, 24], PXML model was extended so that interval probabilities are used
instead of point probabilities to represent uncertainty. Two alternative formal
semantics for the Probabilistic Interval XML (PIXML) model were provided: a
declarative (model-theoretic) semantics, and an operational semantics that can
be used for computation. In the W3C formal specification of XML, an instance
is considered as an ordered rooted tree in which cycles can possibly appear[25].
In [23, 24], an instance is assumed to be an acyclic graph - this assumption will
be needed to provide a coherent semantics to PIXML databases. An operational
semantics was also provided that is provably correct for a queries over a large
class of probabilistic instances called tree-structured instances.

Interval Probabilities. An extension to handle interval probabilities is
useful because almost all statistical evidence involves margins of error. For
instance, when a statistical estimate says that something is true with probability
95% with a ±2% margin of error, then this really corresponds to saying the
event’s probability lies in the interval [0.93, 0.97]. Likewise, using intervals
is valuable when one does not know the relationship between different events.
For example, if we know the probabilities of events e1, e2 and want to know
the probability of both of them holding, then we can, in general, only infer an
interval for the conjunction of e1, e2 ([26, 27]) unlesswe know something more
about the dependencies or lack thereof between the events. Furthermore, it is
also natural for a human judgement to be expressed as an interval probability
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rather than an exact point probability. For example, a human expert may say
that the vehicle in a picture is likely a tank. If he or she is asked to indicate a
probability, he or she may feel difficulty to give a point probability (say, 60%),
but he or she may feel more natural to give an interval probability (say, 40% to
70%), which also reflects the nature of uncertainty. An extreme case is [0, 1]
(i.e., “0% to 100%”) which indicates that we have no information about the
probability or likeliness of an event.

Below I quickly review definitions and give some important theorems for
interval probabilities. Given an interval I = [x, y] I will often use the notation
I.lb to denote x and I.ub to denote y.

An interval function ι w.r.t. a set S associates, with each s ∈ S, a closed
subinterval [lb(s), ub(s)] ⊆ [0, 1]. ι is called an interval probability function
if
∑

s∈S lb(s) ≤ 1 and
∑

s∈S ub(s) ≥ 1. A probability distribution w.r.t. a set
S over an interval probability function ι is a mapping P : S → [0, 1] where

1 ∀s ∈ S, lb(s) ≤ P(s) ≤ ub(s), and

2 Σs∈SP(s) = 1.

Lemma 12.26 For any set S and any interval probability function ι w.r.t. S,
there exists a probability distribution P(S) which is compatible with ι.

It may be noted that among the possible distributions, there has been work
such as [28] to find the one with maximum entropy. An interval probability
function ι w.r.t. S is tight iff for any interval probability function ι′ w.r.t. S
such that every probability distribution P over ι is also a probability distri-
bution over ι′, ι(s).lb ≥ ι′(s).lb and ι(s).ub ≤ ι′(s).ub where s ∈ S. If
every probability distribution P over ι′ is also a probability distribution over ι,
then we say that ι is the tight equivalent of ι′. A tightening operator, tight,
is a mapping from interval probability functions to interval probability func-
tions such that tight(ι) produces a tight equivalent of ι. The following result
(Theorem 2 of [29]) tells us that we can always tighten an interval probability
function.

Theorem 12.27 [29, Theorem 2] Suppose ι, ι′ are interval probability func-
tions over S and tight(ι′) = ι. Let s ∈ S. Then:

ι(s) =

2
4max

0
@ι′(s).lb, 1−

X

s′∈S∧s′ 6=s

ι′(s′).ub

1
A ,min

0
@ι′(s).ub, 1−

X

s′∈S∧s′ 6=s

ι′(s′).lb

1
A

3
5 .

For example, we can use the above formula to check that the interval proba-
bility functions in Figure 12.5 are tight. Throughout the rest of this section,
unless explicitly specified otherwise, it will be assumed that all interval proba-
bility functions are tight.
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The PIXML Data Model. In probabilistic XML, we have uncertainty
because we do not know which of various possible semi-structured instances
is “correct.” Rather than defining a point probability for each instance, we
will use interval probabilities to give bounds on the probabilities for structure.
In this section, we will first define a probabilistic interval semi-structured in-
stance. Details of its model theoretic semantics can be found in [23, 24].

Recall the definitions of a weak instance, a potential l-child set, a potential
child set, a weak instance graph, an object probability function (OPF) and a
local interpretation. A probabilistic semi-structured instance defined in previ-
ous section uses a local interpretation to map a set of OPFs to non-leaf objects
for the point probabilities of children sets. Here, a probabilistic interval semi-
structured instance uses ipf for a similar purpose; however, instead of point
probabilities, interval probabilities are used in ipf.

Definition 12.28 A probabilistic instance I is a 6-tuple I =
(V, lch, τ, val, card, ipf) where:

1 W = (V, lch, τ, val, card) is a weak instance and

2 ipf is a mapping which associates with each non-leaf object o ∈ V ,
an interval probability function ipf w.r.t. potchildren(o), where c ∈
potchildren(o) and ipf(o, c) = [lb, ub].

Intuitively, a probabilistic instance consists of a weak instance, together with
probability intervals associated with each potential child set of each object in
the weak instance. Similarly, given a probabilistic instance, we can obtain its
weak instance graph from its corresponding weak instance.

Example 12.29 Figure 12.9 shows a very simple probabilistic instance.§

The set O of objects is {I1, convoy1, convoy2, tank1, tank2, truck1}. The
first table shows the legal children of each of the objects, along with their

labels. The cardinality constraints are shown in the third table; for example

object I1 can have from one to two convoy-children. The tables on the right of
Figure 12.9 shows the ipf of each potential child of I1, convoy1 and convoy2.

Intuitively, ipf(I1, {convoy1}) = [0.2, 0.4] says that the probability of having
only convoy1 is between 0.2 and 0.4.

In [24], we also proposed a query language to query such probabilistic in-
stances. We then provided an operational semantics that is proven to be sound
and complete.

§Here we only show objects with non-empty set of children.
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o l lch(o, l)

I1 convoy { convoy1, convoy2 }
convoy1 tank { tank1, tank2 }
convoy2 truck { truck1 }

o τ(o) val(o)

tank1 tank-type T-80
tank2 tank-type T-72
truck1 truck-type rover

o l card(o, l)

I1 convoy [1,2]
convoy1 tank [ 1,1 ]
convoy2 truck [ 1,1 ]

c ∈ potchildren(I1) ipf(I1, c)

{ convoy1} [ 0.2, 0.4 ]
{ convoy2} [ 0.1, 0.4 ]

{ convoy1, convoy2} [ 0.4, 0.7 ]

c ∈ potchildren(convoy1) ipf(convoy1, c)

{ tank1} [ 0.2, 0.7 ]
{ tank2} [ 0.3, 0.8 ]

c ∈ potchildren(convoy2) ipf(convoy2, c)

{ truck1} [ 1, 1 ]

Figure 12.9. A probabilistic instance for the surveillance domain.

7. Summary

As XML is used more widely to represent textual sources, multimedia
sources, biological and chemical applications, Nierman and Jagadish[13] have
argued eloquently for the need to represent uncertainty and handle probabilis-
tic reasoning in semi-structured data of applications like information retrieval
and protein chemistry applications. There are many other applications ranging
from image surveillance applications to the management of predictive infor-
mation.

After the initial attempt of using XML tages to model uncertainty, re-
searchers began to develop different models to combine uncertainty and
semistructure data, e.g., SPOs (Zhao et al.[17]), ProTDB (Nierman and Ja-
gadish[13]), PXML (Hung et al.[19]) and PIXML (Hung et al.[23, 24]).

For the last two new probabilistic semi-structured data models, PXML

and PIXML models, a formal theory was developed for probabilistic semi-
structured data. While graph models of semi-structured data are augmented to
include probabilistic information, point probabilities are used in PXML and in-
terval probabilities are used in PIXML. Algebraic operations and queries were
proposed, with efficient processing techniques implemented. The declarative
semantics and the soundness and completeness results are the first of their kind.

Two formal models for probabilistic aggregates (the possible-worlds seman-
tics and the expectation semantics) were then introduced[20]. Though these
semantics are declaratively defined over a large space of “compatible” semi-
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structured instances, it is able to find a succinct way of representing them and
manipulating them.

From using XML tags to represent uncertainty in text, to developing models
in representing uncertain structures in XML databases, it has been shown the
on-going efforts of researchers taken in advancing the power and flexibility of
modeling and querying such probabilistic semi-structured data.
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Abstract

In this chapter, we will study the clustering problem for uncertain data. When
information about the data uncertainty is available, it can be leveraged in order
to improve the quality of the underlying results. We will provide a survey of
the different algorithms for clustering uncertain data. This includes recent al-
gorithms for clustering static data sets, as well as the algorithms for clustering
uncertain data streams.

Keywords: Clustering, Stream Clustering, k-means, density-based clustering

1. Introduction

Many data sets which are collected often have uncertainty built into them. In
many cases, the underlying uncertainty can be easily measured and collected.
When this is the case, it is possible to use the uncertainty in order to improve
the results of data mining algorithms. This is because the uncertainty provides
a probabilistic measure of the relative importance of different attributes in data
mining algorithms. The use of such information can enhance the effectiveness
of data mining algorithms, because the uncertainty provides a guidance in the
use of different attributes during the mining process. Some examples of real
applications in which the uncertainty may be used are as follows:

In many cases, imprecise instruments may be used in order to collect the
data. In such cases, the level of uncertainty can be measured by prior
experimentation.
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In many cases, the data may be imputed by statistical methods. In other
cases, parts of the data may be generated by using statistical methods
such as forecasting. In such cases, the uncertainty may be inferred from
the methodology used in order to perform the forecasting.

Many privacy-preserving data mining techniques use agglomeration of
underlying records in order to create pseudo-records. For example, in
many surveys, the data is presented as a collection in order to pre-
serve the underlying uncertainty. In other cases, perturbations [7] may
be added to the data from a known probability distribution. In such
cases, the uncertainty may be available as an end result of the privacy-
preservation process. Recent work [5] has explicitly connected the prob-
lem of privacy-preservation with that of uncertain data mining.

The problem of uncertain data has been studied in the traditional database lit-
erature [9, 26], though the issue has seen a revival in recent years [2, 5, 10, 13,
15, 16, 24, 30–32]. The driving force behind this revival has been the evolution
of new hardware technologies such as sensors which cannot collect the data in
a completely accurate way. In many cases, it has become increasingly possible
to collect the uncertainty along with the underlying data values. Many data
mining and management techniques need to be carefully re-designed in order
to work effectively with uncertain data. This is because the uncertainty in the
data can change the results in a subtle way, so that deterministic algorithms
may often create misleading results [2]. While the raw values of the data can
always be used in conjunction with data mining algorithms, the uncertainty
provides additional insights which are not otherwise available. A survey of
recent techniques for uncertain data mining may be found in [1].

The problem of clustering is a well known and important one in the data
mining and management communities. Details of a variety of clustering algo-
rithms may be found in [21, 20]. The clustering problem has been widely stud-
ied in the traditional database literature [19, 22, 33] because of its applications
to a variety of customer segmentation and data mining problems. The presence
of uncertainty significantly affects the behavior of the underlying clusters. This
is because the presence of uncertainty along a particular attribute may affect
the expected distance between the data point and that particular attribute. In
most real applications, there is considerable skew in the uncertainty behavior
across different attributes. The incorporation of uncertainty into the cluster-
ing behavior can significantly affect the quality of the underlying results. An
example is illustrated in [23] in which uncertainty was incorporated into the
clustering process in an application of sales merchandising. It was shown that
this approach significantly improves the quality of the underlying results.
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Figure 13.1. Density Based Profile with Lower Density Threshold

In this chapter, we will provide a survey of clustering algorithms for uncer-
tain data. The main algorithms known for the case of uncertain data are as
follows:

Density-basedMethod: A density-based method for uncertain data was
proposed in [24]. This is referred to as the FDBSCAN algorithm. This
approach modifies the DBSCAN algorithm to the case of uncertain data.
An alternative method modifies the OPTICS algorithm to the case of
uncertain data [25]. This is referred to as the FOPTICS algorithm.

The K-means algorithm has been modified for the case of uncertain data
[29]. This is referred to as the UK-means algorithm.

The problem of clustering uncertain data has been extended to the case
of data streams [3]. For this purpose, we extend the micro-clustering
approach [6] to the case of data streams.

In this chapter, we will provide a detailed discussion of each of the above
algorithms for uncertain data. This chapter is organized as follows. In the next
section, we will discuss density-based clustering algorithms for uncertain data.
In section 3, we will discuss the UK-means algorithm for clustering uncertain
data. Section 13.3 discusses streaming algorithms for clustering uncertain data.
Section 5 discusses approximation algorithms for clustering uncertain data.
Section 6 contains the conclusions and summary.

2. Density Based Clustering Algorithms

The presence of uncertainty changes the nature of the underlying clus-
ters, since it affects the distance function computations between different data
points. A technique has been proposed in [24] in order to find density based
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Figure 13.2. Density Based Profile with Higher Density Threshold

clusters from uncertain data. The key idea in this approach is to compute un-
certain distances effectively between objects which are probabilistically spec-
ified. The fuzzy distance is defined in terms of the distance distribution func-
tion. This distance distribution function encodes the probability that the dis-
tances between two uncertain objects lie within a certain user-defined range.
Let d(X,Y ) be the random variable representing the distance between X and
Y . The distance distribution function is formally defined as follows:

Definition 13.1 Let X and Y be two uncertain records, and let p(X, Y )
represent the distance density function between these objects. Then, the prob-

ability that the distance lies within the range (a, b) is given by the following
relationship:

P (a ≤ d(X, Y ) ≤ b) =

∫ b

a
p(X,Y )(z)dz (13.1)

Based on this technique and the distance density function, the method in [24]
defines a reachability probability between two data points. This defines the
probability that one data point is directly reachable from another with the use
of a path, such that each point on it has density greater than a particular thresh-
old. We note that this is a direct probabilistic extension of the deterministic
reachability concept which is defined in the DBSCAN algorithm [17]. In the
deterministic version of the algorithm [17], data points are grouped into clus-
ters when they are reachable from one another by a path which is such that
every point on this path has a minimum threshold data density. To this ef-
fect, the algorithm uses the condition that the ǫ-neighborhood of a data point
should contain at leastMinPts data points. The algorithm starts off at a given
data point and checks if the ǫ neighborhood contains MinPts data points. If
this is the case, the algorithm repeats the process for each point in this clus-
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ter and keeps adding points until no more points can be added. One can plot
the density profile of a data set by plotting the number of data points in the ǫ-
neighborhood of various regions, and plotting a smoothed version of the curve.
This is similar to the concept of probabilistic density estimation. Intuitively,
this approach corresponds to the continuous contours of intersection between
the density thresholds of Figures 13.1 and 13.2 with the corresponding den-
sity profiles. The density threshold depends upon the value of MinPts. Note
that the data points in any contiguous region will have density greater than the
threshold. Note that the use of a higher density threshold (Figure 13.2) results
in 3 clusters, whereas the use of a lower density threshold results in 2 clus-
ters. The fuzzy version of the DBSCAN algorithm (referred to as FDBSCAN)
works in a similar way as the DBSCAN algorithm, except that the density
at a given point is uncertain because of the underling uncertainty of the data
points. This corresponds to the fact that the number of data points within the
ǫ-neighborhood of a given data point can be estimated only probabilistically,
and is essentially an uncertain variable. Correspondingly, the reachability from
one point to another is no longer deterministic, since other data points may lie
within the ǫ-neighborhood of a given point with a certain probability, which
may be less than 1. Therefore, the additional constraint that the computed
reachability probability must be greater than 0.5 is added. Thus, this is a gener-
alization of the deterministic version of the algorithm in which the reachability
probability is always set to 1.

Another related technique discussed in [25] is that of hierarchical density
based clustering. An effective (deterministic) density based hierarchical clus-
tering algorithm is OPTICS [8]. We note that the core idea in OPTICS is
quite similar to DBSCAN and is based on the concept of reachability distance
between data points. While the method in DBSCAN defines a global density
parameter which is used as a threshold in order to define reachability, the work
in [25] points out that different regions in the data may have different data den-
sity, as a result of which it may not be possible to define the clusters effectively
with a single density parameter. Rather, many different values of the density
parameter define different (hierarchical) insights about the underlying clusters.
The goal is to define an implicit output in terms of ordering data points, so that
when the DBSCAN is applied with this ordering, once can obtain the hierarchi-
cal clustering at any level for different values of the density parameter. The key
is to ensure that the clusters at different levels of the hierarchy are consistent
with one another. One observation is that clusters defined over a lower value
of ǫ are completely contained in clusters defined over a higher value of ǫ, if the
value of MinPts is not varied. Therefore, the data points are ordered based
on the value of ǫ required in order to obtain MinPts in the ǫ-neighborhood.
If the data points with smaller values of ǫ are processed first, then it is assured
that higher density regions are always processed before lower density regions.
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This ensures that if the DBSCAN algorithm is used for different values of ǫ
with this ordering, then a consistent result is obtained. Thus, the output of the
OPTICS algorithm is not the cluster membership, but it is the order in which
the data points are processed. We note that that since the OPTICS algorithm
shares so many characteristics with the DBSCAN algorithm, it is fairly easy to
extend the OPTICS algorithm to the uncertain case using the same approach
as that was used for extending the DBSCAN algorithm. This is referred to as
the FOPTICS algorithm. Note that one of the core-concepts needed to order
to data points is to determine the value of ǫ which is needed in order to obtain
MinPts in the corresponding neighborhood. In the uncertain case, this value
is defined probabilistically, and the corresponding expected values are used to
order the data points.

3. The UK-means and CK-means Algorithms

A common approach to clustering is the k-means algorithm. In the k-means
algorithm, we construct clusters around a pre-defined number of cluster cen-
ters. A variety of distance functions may be used in order to map the points
to the different clusters. A k-means approach to clustering uncertain data was
studied in the context of moving object data [29]. In the case of moving ob-
jects, the actual locations of the objects may change over time as the data is
reported intermittently. Thus, the position of a vehicle could be an arbitrary or
circle region which uses the reported location as its center and has a size which
is dependent upon the speed and direction of the vehicle. A probability density
function could be used to model the probability of presence of the vehicle at a
given location at a particular time.

The UK-means clustering approach is very similar to the K-means clus-
tering approach, except that we use the expected distance from the data’s un-
certainty region to the representative of the candidate cluster to which it is
assigned. Clearly, a key challenge is the computation of the expected distances
between the data points and the centroids for the k-means algorithm. A natural
technique for computing these expected distances is to use Monte-carlo sam-
pling, in which samples for the data points are used in order to compute the
uncertain distances. This approach can be very expensive because a large num-
ber of samples may be required in order to compute the distances accurately.
Clearly, some kind of pruning is required in order to improve the efficiency of
the approach.

The idea here is to use branch-and-bound techniques in order to minimize
the number of expected distance computations between data points and clus-
ter representatives. The broad idea is that once an upper bound on the mini-
mum distance of a particular data point to some cluster representative has been
quantified, it is necessary to to perform the computation between this point
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and another cluster representative, if it can be proved that the corresponding
distance is greater than this bound. In order to compute the bounds, the min-
imum bounding rectangle for the representative point for a cluster region is
computed. The uncertain data point also represents a region over which the
object may be distributed. For each representative cluster, its minimum bound-
ing rectangle is used to compute the following two quantities with respect to
the uncertain data point:

The minimum limit on the expected distance between the MBR of the
representative point and the uncertain region for the data point itself.

The maximum limit on the expected distance between the MBR of the
representative point and the uncertain region for the data point itself.

These upper and lower bound computations are facilitated by the use of the
Minimum Bounding Rectangles in conjunction with the triangle inequality.
We note that a cluster representative can be pruned, if its maximum limit is
less than the minimum limit for some other representative. The approach is
[29] constructs a k-d tree on the cluster representatives in order to promote
an orderly pruning strategy and minimize the number of representatives which
need to be accessed. This approach is used to design an efficient algorithm for
clustering uncertain location data.

A different approach called the CK-means algorithm was presented in [27].
It was observed in [27] that the pruning effectiveness of the technique in [29]
is not guaranteed. Therefore, the technique is [27] proposes a simple formula
for expected distance computations, so that the cost of the computations can
be considerably reduced. The effective result is that it is possible to perform
the clustering on the uncertain data with the use of the traditional k-means
algorithm, while producing the same result as the UK-means algorithm.

4. UMicro: Streaming Algorithms for Clustering
Uncertain Data

In this section, we will introduce UMicro, the Uncertain MICROclustering
algorithm for data streams. We will first introduce some additional notations
and definitions. We assume that we have a data stream which contains d di-
mensions. The actual records in the data are denoted by X1, X2, . . . XN . . ..
We assume that the estimated error associated with the jth dimension for data
point Xi is denoted by ψj(Xi). This error is defined in terms of the stan-
dard deviation of the error associated with the value of the jth dimension of

Xi. The corresponding d-dimensional error vector is denoted by ψ(Xi). Thus,
the input to the algorithm is a data stream in which the ith pair is denoted by

(Xi, ψ(Xi)).
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We note that many techniques in the uncertain data management literature
[12] work with the assumption that the entire probability density function is
available. We make the more modest assumption that the standard error of in-
dividual entries is available. In many real applications, this is a more realistic
assumption for data mining purposes, since complete probability distributions
are rarely available, and are usually inserted only as a modeling assumption.
The interpretation of this error value can vary with the nature of the data min-
ing application. For example, in a scientific application in which the measure-
ments can vary from one observation to another, the error value is the stan-
dard deviation of the observations over a large number of measurements. In
a k-anonymity based data (or incomplete data) mining application, this is the
standard deviation of the partially specified (or imputed) fields in the data.

We will develop a method for clustering uncertain data streams with the use
of a micro-clustering model. The micro-clustering model was first proposed
in [33] for large data sets, and subsequently adapted in [6] for the case of
deterministic data streams. We will see that the uncertainty in the underlying
data significantly affects the quality of the clusters with methods that use such
error information.

In order to incorporate the uncertainty into the clustering process, we need
a method to incorporate and leverage the error information into the micro-
clustering statistics and algorithms. As discussed earlier, it is assumed that
the data stream consists of a set of multi-dimensional records X1 . . .Xk . . .
arriving at time stamps T1 . . . Tk . . .. Each Xi is a multi-dimensional record
containing d dimensions which are denoted by Xi = (x1

i . . . x
d
i ). In order to

apply the micro-clustering method to the uncertain data mining problem, we
need to also define the concept of error-based micro-clusters. We define such
micro-clusters as follows:

Definition 13.2 An uncertain micro-cluster for a set of d-dimensional
points Xi1 . . . Xin with time stamps Ti1 . . . Tin and error vectors

ψ(Xi1) . . . ψ(Xin) is defined as the (3 · d + 2) tuple (CF2x(C), EF2x(C),
CF1x(C), t(C), n(C)), wherein CF2x(C), EF2x(C), and CF1x(C) each
correspond to a vector of d entries. The entries in EF2x(C) correspond to the
error-based entries. The definition of each of these entries is as follows:

• For each dimension, the sum of the squares of the data values is main-
tained in CF2x(C). Thus, CF2x(C) contains d values. The p-th entry of
CF2x(C) is equal to∑n

j=1(x
p
ij

)2. This corresponds to the second moment of

the data values along the p-th dimension.
• For each dimension, the sum of the squares of the errors in the data val-

ues is maintained in EF2x(C). Thus, EF2x(C) contains d values. The p-th
entry of EF2x(C) is equal to∑n

j=1 ψp(Xij )
2. This corresponds to the sum of

squares of the errors in the records along the p-th dimension.
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• For each dimension, the sum of the data values is maintained inCF1x(C).
Thus, CF1x(C) contains d values. The p-th entry of CF1x(C) is equal to∑n

j=1 x
p
ij
. This corresponds to the first moment of the values along the p-th

dimension.

• The number of points in the data is maintained in n(C).
• The time stamp of the last update to the micro-cluster is maintained in

t(C).
We note that the uncertain definition of micro-clusters differs from the deter-
ministic definition, since we have added an additional d values corresponding
to the error information in the records. We will refer to the uncertain micro-
cluster for a set of points C by ECF (C). We note that error based micro-
clusters maintain the important additive property [6] which is critical to its use
in the clustering process. We restate the additive property as follows:

Property 4.1 Let C1 and C2 be two sets of points. Then all non-temporal
components of the error-based cluster feature vector ECF (C1 ∪ C2) are given
by the sum of ECF (C1) and ECF (C2).
The additive property follows from the fact that the statistics in the individual
micro-clusters are expressed as a separable additive sum of the statistics over
individual data points. We note that the single temporal component t(C1∪C2) is
given by max{t(C1), t(C2)}. We note that the additive property is an important
one, since it ensures that it is easy to keep track of the cluster statistics as
new data points arrive. Next we will discuss the process of uncertain micro-
clustering.

4.1 The UMicro Algorithm: Overview

The UMicro algorithm works using an iterative approach which maintains
a number of micro-cluster centroids around which the clusters are built. It is
assumed that one of the inputs to the algorithm is nmicro, which is the number
of micro-clusters to be constructed. The algorithm starts off with a number of
null clusters and initially creates new singleton clusters, to which new points
are added subsequently. For any incoming data point, the closest cluster cen-
troid is determined. The closest cluster centroid is determined by using the
expected distance of the uncertain data point to the uncertain micro-clusters.
The process of expected distance computation for the closest centroid is tricky,
and will be subsequently discussed. Furthermore, for the incoming data point,
it is determined whether it lies within a critical uncertainty boundary of the
micro-cluster. If it lies within this critical uncertainty boundary, then the data
point is added to the micro-cluster, otherwise a new micro-cluster needs to be
created containing the singleton data point. In order to create a new micro-
cluster, it must either be added to the current set of micro-clusters, or it needs
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Algorithm UMicro(Number of Clusters: nmicro)
begin

S = {};
{ S is the current set of micro-cluster
statistics. S contains at most nmicro
elements }
repeat

Receive the next stream point X;
{ Initially, when S is null, the computations below
cannot be performed, and X is simply
added as a singleton micro-cluster to S }

Compute the expected similarity of X to the closest
micro-clusterM in S;

Compute critical uncertainty boundary ofM;
if X lies inside uncertainty boundary
add X to statistics ofM
else

add a new micro-cluster to S containing singleton
point X;
if |S| = nmicro + 1 remove the least recently

updated micro-cluster from S;
until data stream ends;
end

Figure 13.3. The UMicro Algorithm

to replace one of the older micro-clusters. In the initial stages of the algorithm,
the current number of micro-clusters is less than nmicro. If this is the case, then
the new data point is added to the current set of micro-clusters as a separate
micro-cluster with a singleton point in it. Otherwise, the new data point needs
to replace one of the older micro-clusters. For this purpose, we always replace
the least recently updated micro-cluster from the data set. This information
is available from the temporal time stamp in the different micro-clusters. The
overall framework for the uncertain stream clustering algorithm is illustrated
in Figure 13.3. Next, we will discuss the process of computation of individual
subroutines such as the expected distance or the uncertain boundary.

4.2 Computing Expected Similarity

In order to compute the expected similarity of the data point X to the cen-
troid of the cluster C, we need to determine a closed form expression which is
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expressed only in terms of X and ECF (C). We note that just as the individual
data points are essential random variables with a given error, the centroid Z of
a cluster C is also a random variable. We make the following observation about
the centroid of a cluster:

Lemma 13.3 Let Z be the random variable representing the centroid of clus-
ter C. Then, the following result holds true:

E[||Z||2] =
d∑

j=1

CF1(C)2j/n(C)2 +
d∑

j=1

EF2(C)j/n(C)2 (13.2)

Proof: We note that the random variableZj is given by the current instantiation
of the centroid and the mean of n(C) different error terms for the points in
cluster C. Therefore, we have:

Zj = CF1(C)j/n(C) +
∑

X∈C

ej(X)/n(C) (13.3)

Then, by squaring Zj and taking the expected value, we obtain the following:

E[Z2
j ] = CF1(C)2j/n(C)2 +

+2 ·
∑

X∈C

E[ej(X)] · CF1(C)j/n(C)2 +

+E[(
∑

X∈C

ej(X))2]/n(C)2

Now, we note that the error term is a random variable with standard deviation
ψj(·) and zero mean. ThereforeE[ej ] = 0. Further, since it is assumed that the
random variables corresponding to the errors of different records are indepen-
dent of one another, we have E[ej(X) · ej(Y )] = E[ej(X)] · E[ej(Y )] = 0.
By using these relationships in the expansion of the above equation we get:

E[Z2
j ] = CF1(C)2j/n(C)2 +

∑

X∈C

E[ej(X)2]/n(C)2

= CF1(C)2j/n(C)2 +
∑

X∈C

ψj(X)2/n(C)2

= CF1(C)2j/n(C)2 +EF2(C)j/n(C)2

By adding the value of E[Z2
j ] over different values of j, we get:

E[||Z||2] =
d∑

j=1

CF1(C)2j/n(C)2 +
d∑

j=1

EF2(C)j/n(C)2 (13.4)
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This proves the desired result.
Next, we will use the above result to directly estimate the expected distance

between the centroid of cluster C and the data point X . We will prove the
following result:

Lemma 13.4 Let v denote the expected value of the square of the distance be-
tween the uncertain data point X = (x1 . . . xd) (with instantiation (x1 . . . xd)
and error vector (ψ1(X) . . . ψd(X)) and the centroid of cluster C. Then, v is
given by the following expression:

v =
d∑

j=1

CF1(C)2j/n(C)2 +
d∑

j=1

EF2(C)j/n(C)2 +
d∑

j=1

x2
j +

+

d∑

j=1

(ψj(X))2 − 2

d∑

j=1

xj · CF1(C)j/n(C)

Proof: Let Z represent the centroid of cluster C. Then, we have:

v = E[||X − Z||2]
= E[||X||2] + E[||Z||2]− 2E[X · Z]

= E[||X||2] + E[||Z||2]− 2E[X] ·E[Z](indep. of X and Z)

Next, we will analyze the individual terms in the above expression. We note
that the value of X is a random variable, whose expected value is equal to its
current instantiation, and it has an error along the jth dimension which is equal
to ψj(X). Therefore, the expected value of E[||X||2] is given by:

E[||X||2] = (E[X])2 +

d∑

j=1

(ψj(X)2

=
d∑

j=1

x2
j +

d∑

j=1

(ψj(X))2

Now, we note that the jth term of E[Z] is equal to the jth dimension of the
centroid of cluster C. This is given by the expression CF1(C)j/n(C), where
CF1j(C) is the jth term of the first order cluster component CF1(C). There-
fore, the value of E[X] ·E[Z] is given by the following expression:

E[X] ·E[Z] =
d∑

j=1

xj · CF1(C)j/n(C) (13.5)
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The results above and Lemma 13.3 define the values of E[||X||2], E[||Z||2],
and E[X · Z]. Note that all of these values occur in the right hand side of the
following relationship:

v = E[||X||2] + E[||Z||2]− 2E[X] · E[Z] (13.6)

By substituting the corresponding values in the right hand side of the above
relationship, we get:

v =
d∑

j=1

CF1(C)2j/n(C)2 +
d∑

j=1

EF2(C)j/n(C)2 +
d∑

j=1

x2
j +

+
d∑

j=1

(ψj(X))2 − 2
d∑

j=1

xj · CF1(C)j/n(C)

The result follows.
The result of Lemma 13.4 establishes how the square of the distance may

be computed (in expected value) using the error information in the data point
X and the micro-cluster statistics of C. Note that this is an efficient computa-
tion which requires O(d) operations, which is asymptotically the same as the
deterministic case. This is important since distance function computation is
the most repetitive of all operations in the clustering algorithm, and we would
want it to be as efficient as possible.

While the expected distances can be directly used as a distance function, the
uncertainty adds a lot of noise to the computation. We would like to remove
as much noise as possible in order to determine the most accurate clusters.
Therefore, we design a dimension counting similarity function which prunes
the uncertain dimensions during the similarity calculations. This is done by
computing the variance σ2

j along each dimension j. The computation of the
variance can be done by using the cluster feature statistics of the different
micro-clusters. The cluster feature statistics of all micro-clusters are added to
create one global cluster feature vector. The variance of the data points along
each dimension can then be computed from this vector by using the method
discussed in [33]. For each dimension j and threshold value thresh, we add
the similarity value max{0, 1 − E[||X − Z||2j ]/(thresh ∗ σ2

j )} to the com-
putation. We note that this is a similarity value rather than a distance value,
since larger values imply greater similarity. Furthermore, dimensions which
have a large amount of uncertainty are also likely to have greater values of
E[||X − Z||2j ], and are often pruned from the computation. This improves the
quality of the similarity computation.
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4.3 Computing the Uncertain Boundary

In this section, we will describe the process of computing the uncertain
boundary of a micro-cluster. Once the closest micro-cluster for an incoming
point has been determined, we need to decide whether it should be added to the
corresponding micro-clustering statistics, or whether a new micro-cluster con-
taining a singleton point should be created. We create a new micro-cluster, if
the incoming point lies outside the uncertainty boundary of the micro-cluster.
The uncertainty boundary of a micro-cluster is defined in terms of the stan-
dard deviation of the distances of the data points about the centroid of the
micro-cluster. Specifically, we use t standard deviations from the centroid of
the cluster as a boundary for the decision of whether to include that particular
point in the micro-cluster. A choice of t = 3 ensures a high level of certainty
that the point does not belong to that cluster with the use of the normal distri-
bution assumption. Let W be the centroid of the cluster C, and let the set of
points in it be denoted by Y1 . . . Yr. Then, the uncertain radius U is denoted as
follows:

U =
r∑

i=1

d∑

j=1

E[||Yi −W ||2j ] (13.7)

The expression on the right hand side of the above Equation can be evaluated
by using the relationship of Lemma 13.4.

4.4 Further Enhancements

The method for clustering uncertain data streams can be further enhanced
in several ways:

In many applications, it is desirable to examine the clusters over a spe-
cific time horizon rather than the entire history of the data stream. In
order to achieve this goal, a pyramidal time frame [6] can be used for
stream classification. In this time-frame, snapshots are stored in differ-
ent orders depending upon the level of recency. This can be used in order
to retrieve clusters over a particular horizon with very high accuracy.

In some cases, the behavior of the data stream may evolve over time.
In such cases, it is useful to apply a decay-weighted approach. In the
decay-weighted approach, each point in the stream is a weighted by a
factor which decays over time. Such an approach can be useful in a
number of scenarios in which the behavior of the data stream changes
considerably over time. In order to use the decay-weighted approach,
the key modification is to define the micro-clusters with a weighted sum
of the data points, as opposed to the explicit sums. It can be shown that
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such an approach can be combined with a lazy-update method in order
to effectively maintain the micro-clusters.

Recently, this method has also been extended to the case of projected clus-
tering of uncertain data streams [4]. The UPStream algorithm simultaneously
computes the projected dimensions and the assignment of data points to clus-
ters during the process. The case of high dimensional data is much more chal-
lenging, since it requires us to determine the relevant projected dimensions in
the presence of uncertainty. Details may be found in [4].

5. Approximation Algorithms for Clustering Uncertain
Data

Recently, techniques have been designed for approximation algorithms for
uncertain clustering in [14]. The work in [14] discusses extensions of the k-
mean and k-median version of the problems. Bi-criteria algorithms are de-
signed for each of these cases. One algorithm achieves a (1+ǫ)-approximation
to the best uncertain k-centers with the use of O(k · ǫ−1 · log2(n)) centers. The
second algorithm picks 2k centers and achieves a constant-factor approxima-
tion.

A key approach proposed in the paper [14] is the use of a transformation
from the uncertain case to a weighted version of the deterministic case. We
note that solutions to the weighted version of the deterministic clustering prob-
lem are well known, and require only a polynomial blow-up in the problem
size. The key assumption in solving the weighted deterministic case is that
the ratio of the largest to smallest weights is polynomial. This assumption is
assumed to be maintained in the transformation. This approach can be used in
order to solve both the uncertain k-means and k-median version of the prob-
lem.

6. Conclusions and Summary

In this chapter, we discussed new techniques for clustering uncertain data.
The uncertainty in the data may either be specified in the form of a probability
density function or in the form of variances of the attributes. The specification
of the variance requires less modeling effort, but is more challenging from a
clustering point of view. The problem of clustering is significantly affected
by the uncertainty, because different attributes may have different levels of
uncertainty embedded in them. Therefore, treating all attributes evenly may
not provide the best clustering results. This chapter provides a survey of the
different algorithms for clustering uncertain data. We discuss extensions of the
density-based approach as well as aK-means approach for clustering. We also
discussed a new method for clustering uncertain data streams.
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Applications to Classification and Outlier Detection
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Abstract In this chapter, we will examine a general density-based approach for handling
uncertain data. The broad idea is that implicit information about the errors can
be indirectly incorporated into the density estimate. We discuss methods for
constructing error-adjusted densities of data sets, and using these densities as in-
termediate representations in order to perform more accurate mining. We discuss
the mathematical foundations behind the method and establish ways of extend-
ing it to very large scale data mining problems. As concrete examples of our
technique, we show how to apply the intermediate density representation in or-
der to accurately solve the classification and outlier detection problems. This ap-
proach has the potential in constructing intermediate representations as a broad
platform for data mining applications.

Keywords: Density Transforms, Uncertain Data, Classification, Outlier Detection

1. Introduction

While data collection methodologies have become increasingly sophisti-
cated in recent years, the problem of inaccurate data continues to be a challenge
for many data mining problems. This is because data collection methodologies
are often inaccurate and are based on incomplete or inaccurate information.
For example, the information collected from surveys is highly incomplete and
either needs to be imputed or ignored altogether. In other cases, the base data
for the data mining process may itself be only an estimation from other un-
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derlying phenomena. In many cases, a quantitative estimation of the noise in
different fields is available. An example is illustrated in [12], in which error-
driven methods are used to improve the quality of retail sales merchandising.
Many scientific methods for data collection are known to have error-estimation
methodologies built into the data collection and feature extraction process.
Such data with error estimations or probabilistic representations of the under-
lying data are referred to as uncertain data [2]. We summarize a number of
real applications, in which such error information can be known or estimated
a-priori:

When the inaccuracy arises out of the limitations of data collection
equipment, the statistical error of data collection can be estimated by
prior experimentation. In such cases, different features of observation
may be collected to a different level of approximation.

In the case of missing data, imputation procedures can be used [15] to
estimate the missing values. If such procedures are used, then the statis-
tical error of imputation for a given entry is often known a-priori.

Many data mining methods are often applied to derived data sets which
are generated by statistical methods such as forecasting. In such cases,
the error of the data can be derived from the methodology used to con-
struct the data.

In many applications, the data is available only on a partially aggregated
basis. For example, many demographic data sets only include the statis-
tics of household income over different localities rather than the precise
income for individuals.

The results of data mining are often subtly dependent upon the errors in the
data. For example, consider the case illustrated in Figure 14.1. In this case, we
have illustrated a two dimensional binary classification problem. It is clear that
the errors along dimension 1 are higher than the errors along dimension 2. In
addition to a test example X, we have illustrated two training examples Y and
Z, whose errors are illustrated in the same figure with the use of oval shapes.
For a given test example X , a nearest neighbor classifier would pick the class
label of data point Y . However, the data point Z may have a much higher
probability of being the nearest neighbor to X than the data point Y . This is
because the data point X lies within the error boundary of Z. It is important
to design a technique which can use the relative errors of the different data
points over the different dimensions in order to improve the accuracy of the
data mining process.

Thus, it is clear that the failure to use the error information in data min-
ing models can result in a loss of accuracy. In this chapter, we will discuss a
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Figure 14.1. Effect of Errors on Classification

general and scalable approach to uncertain data mining with the use of multi-
variate density estimation. We will show that density estimation methods
provide an effective intermediate representation, which captures information
about the noise in the underlying data. The density estimate can be leveraged
by designing an algorithm which works with error-adjusted densities rather
than individual data points. As a specific example, we will discuss the case
of the classification problem. As we will see, only a few minor modifications
to existing methods are required in order to apply the method a density based
representation of the data. In general, we expect that our approach can be used
for a wide variety of data mining applications which use density estimation as
an intermediate representation during the analytical process.

In order to improve the scalability of our technique, we show how to use a
compression approach in order to generalize it for very large data sets. This
goal is achieved by developing a density estimation process which works with
(error-adjusted) micro-clusters in the data. The statistics of these error-adjusted
micro-clusters are used to compute a kernel function which can be used to es-
timate the density in a time proportional to the number of micro-clusters. Fur-
thermore, since the micro-clusters are stored in main memory, the procedure
can be efficiently applied to very large data sets, even when the probability den-
sities need to re-computed repeatedly in different subspaces during the mining
process.

This chapter is organized as follows. In the next section, we will discuss the
method of density based estimation of uncertain data sets. In section 3, we will
discuss the application of the procedure to the problem of classification. We
will show how to use the error estimates in order to gain additional information
about the data mining process. In section 4, we will discuss the application of
the method to the outlier detection problem. Section 5 contains the conclusions
and summary.

2. Kernel Density Estimation with Errors

We will first introduce some additional notations and definitions. We as-
sume that we have a data set D, containing N points and d dimensions. The
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Figure 14.2. Effect of Errors on Clustering

actual records in the data are denoted by X1, X2, . . . XN . We assume that the
estimated error associated with the jth dimension for data point Xi is denoted
by ψj(Xi). The interpretation of this error value can vary with the nature of the
data mining application. For example, in a scientific application in which the
measurements can vary from one observation to another, the error value is the
standard deviation of the observations over a large number of measurements.
In a k-anonymity based data (or incomplete data) mining application, this is
the standard deviation of the partially specified (or imputed) fields in the data.
Even though the error may be defined as a function of the field (or dimension)
in most applications, we have made the most general assumption in which the
error is defined by both the row and the field. This can be the case in many ap-
plications in which different parts of the data are derived from heterogeneous
sources.

The idea in kernel density estimation [17] is to provide a continuous esti-
mate of the density of the data at a given point. The value of the density at a
given point is estimated as the sum of the smoothed values of kernel functions
K ′h(·) associated with each point in the data set. Each kernel function is asso-
ciated with a kernel width h which determines the level of smoothing created
by the function. The kernel estimation f(x) based onN data points and kernel
function K ′h(·) is defined as follows:

f(x) = (1/N) ·
N∑

i=1

K ′h(x−Xi) (14.1)

Thus, each discrete point Xi in the data set is replaced by a continuous func-
tion K ′h(·) which peaks at Xi and has a variance which is determined by the
smoothing parameter h. An example of such a distribution would be a gaussian
kernel with width h.

K ′h(x−Xi) = (1/
√

2π · h) · e−(x−Xi)2/(2h2) (14.2)

The overall effect of kernel density estimation is to convert the (discrete) data
set into a continuous density estimate by replacing each data point with a
smoothed “bump”, whose width is determined by h. The density distribution
at a given coordinate is equal to the sum of the contributions of all the “bumps”
represented by the data points. The result is a continuous distribution in which
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the random artifacts are suppressed and the density behavior provides a global
overview of the dense as well as sparsely populated regions of the data. The es-
timation error depends upon the kernel width hwhich is chosen in a data driven
manner. A widely used rule for approximating the bandwidth is the Silverman
approximation rule [17] for which h may be chosen to be 1.06 · σ · N−1/5,
where σ2 is the variance of the N data points. It has been shown [17] that for
most smooth functions K ′h(·), when the number of data points goes to infinity,
the estimator f(x) asymptotically converges to the true density function f(x),
provided that the width h is chosen using the above relationship. For the d-
dimensional case, the kernel function is chosen to be the product of d identical
kernels Ki(·), each with its own smoothing parameter hi.

The presence of errors can change the density estimates because of the dif-
ferent levels of error in different entries or fields. For example a data point or
field with very large error should affect the density estimation of its locality
to a smaller extent than one which contains small errors. When estimations of
such errors are available, it is desirable to incorporate them into the estimation
process. A direct way of doing so is to adapt the kernel function so that the
measurement errors are taken into account during the calculation of the den-
sity distribution. Correspondingly, we define the following error-based kernel
Q′h(x−Xi, ψ(Xi) function, which depends both upon the error as well as the
values of the underlying data points.

Q′h(x−Xi, ψ(Xi) = (1/
√

2π · (h+ ψ(Xi))) · e
−(x−Xi)

2

(2·(h2+ψ(Xi)
2)) (14.3)

The overall effect of changing the kernel function is that the width of the band-
width along the corresponding dimension is increased by ψ(Xi). The intuition
behind this choice of modifying the kernel is to adjust the contributions of the
kernel function for a point depending upon its (error-based) probability density.
Note that in the limiting case, when there are a large number of data points N ,
the value of the bandwidth h goes to zero, and this kernel function has a gaus-
sian distribution with standard error exactly equal to the standard error of the
data point. Conversely, the error-based kernel function converges to the stan-
dard kernel function when the value of the error ψ(Xi) is 0. Therefore, in these
boundary cases, the direct error-based generalization of the kernel function has
a probability distribution with the same standard error as the data point. It is
also clear that in the limiting case of a large number of data points, (when the
bandwidth h tends to zero by the Silverman rule) the kernel function reflects
the errors in each data point accurately. As in the previous case, the error-based
density at a given data point is defined as the sum of the error-based kernels
over different data points. Therefore, we define the error based density fQ at
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point x as follows:

fQ(x, ψ(Xi)) = (1/N) ·
N∑

i=1

Q′h(x−Xi, ψ(Xi)) (14.4)

As in the previous case, we can easily generalize the definition to the multi-
dimensional case. Specifically, the error for the jth dimension is denoted by
ψj(Xi). The overall kernel function is defined as the product of the kernel
function for the different dimensions.

Our aim is to use the joint probability densities over different subspaces
in order to design data mining algorithms. This is much more general than
the univariate approach for privacy preserving data mining discussed in [6],
and is applicable to a much wider range of error-based and privacy-preserving
approaches, since it does not require the probability distribution of the noise
in the data. This joint probability density may need to be repeatedly computed
over different subsets of dimensions for particular data mining problems. If the
data set is too large to maintain in main memory, we need to perform repeated
passes over the data for the computation of the density over different subsets
of dimensions.

Since this option does not scale very well for large data sets, we need to
develop methods to condense the data points into a smaller number of pseudo-
points, but with slightly larger error. Such an approach is easily implementable
for larger data sets, since the pseudo-points can be maintained in main memory
for the computation of the density over different subsets of dimensions. How-
ever, this requires us to modify the method of computation of the error-based
densities using micro-clusters [5] instead of individual data points.

2.1 Scalability for Large Data Sets

The method can be generalized to very large data sets and data streams. In
order to generate the approach to very large data sets, we condense the data into
a smaller number of micro-clusters. While the concept of micro-clustering has
been discussed in [5, 18], our aim in this chapter is to modify and leverage it for
error-based density estimation. In order to achieve this goal, we need to discuss
how the error-based density may be computed using micro-cluster statistics
instead of individual data points. Our first step is to define the micro-clusters
in the data as suggested in [5]. However, since the work in [5] does not use
errors, the definition of a micro-cluster needs to be modified correspondingly.

It is assumed that the data stream consists of a set of multi-dimensional
records X1 . . .Xk . . . arriving at time stamps T1 . . . Tk . . .. Each Xi is a
multi-dimensional record containing d dimensions which are denoted byXi =
(x1
i . . . x

d
i ).
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We will first begin by defining the concept of error-based micro-clusters
more precisely.

Definition 14.1 A micro-cluster for a set of d-dimensional points
Xi1 . . . Xin with time stamps Ti1 . . . Tin is defined as the (3 · d + 1) tu-
ple (CF2x(C), EF2x(C), CF1x(C), n(C), wherein CF2x(C), EF2x(C), and
CF1x(C) each correspond to a vector of d entries. The definition of each of
these entries is as follows:

• For each dimension, the sum of the squares of the data values is main-
tained in CF2x(C). Thus, CF2x(C) contains d values. The p-th entry of
CF2x(C) is equal to∑n

j=1(x
p
ij

)2.

• For each dimension, the sum of the squares of the errors in the data values
is maintained in EF2x(C). Thus, EF2x(C) contains d values. The p-th entry
of EF2x(C) is equal to∑n

j=1 ψp(Xij )
2.

• For each dimension, the sum of the data values is maintained inCF1x(C).
Thus, CF1x(C) contains d values. The p-th entry of CF1x(C) is equal to∑n

j=1 x
p
ij
.

• The number of points in the data is maintained in n(C).

We will refer to the micro-cluster for a set of points C by CFT (C). As in
[18], this summary information can be expressed in an additive way over the
different data points. This makes it very easy to create and maintain the clusters
using a single pass of the data. The actual maintenance of the micro-clusters
is a variation of the approach discussed in [5]. In this variation, we maintain
the micro-cluster statistics for the q different centroids. These q centroids are
chosen randomly. Each incoming data point is always assigned to its closest
micro-cluster centroid using a nearest neighbor algorithm, and is never allowed
to create a new micro-cluster. This is different from [5] in which a new micro-
cluster is created whenever the incoming data point does not naturally fit in a
micro-cluster. Similarly, clusters are never discarded as in [5]. This is required
to ensure that all data points are reflected in the micro-cluster statistics. In
addition, it is necessary to take the errors into account during the computation
of the micro-cluster statistics. Consider the example illustrated in Figure 14.2
in which we have shown the error behavior of data point X by an elliptical
error region. While the data point X is closer to centroid 2, it is more likely
to belong to the cluster corresponding to centroid 1. This is because the error
behavior of the data point is skewed in such a way that it would have been more
likely to coincide with centroid 1 simply because of an error in measurement.
Thus, we need to adjust for the errors corresponding to the different dimensions
during the distance calculations. Thus, let us consider the data point X and
centroid c = (c1 . . . cd). Then, the distance dist(Y , c) between data point
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Y = (Y1 . . . Yd) and c is given by the following relationship:

dist(Y , c) =

d∑

j=1

max{0, (Yj − cj)2 − ψj(Y )2} (14.5)

We note that this is an error-adjusted variation of the Euclidean distance met-
ric. The error adjustment ensures that the dimensions which have large errors
do not contribute significantly to the distance function. If the true distance
along a particular dimension j is less than the average error ψj(Y ), then the
value of the error-adjusted distance is defined to be zero. Therefore, we use a
distance function which reflects the best-case scenario along each dimension.
Such an approach turns out to be more effective for noisy data sets in high
dimensionality [3].

The aim of the micro-clustering process is to compress the data so that the
resulting statistics can be held in main memory for repeated passes during the
density estimation process over different subspaces. Therefore, the number of
micro-clusters q is defined by the amount of main memory available. Given
the large memory sizes available even on modest desktop hardware today, this
corresponds to thousands of micro-clusters for data sets containing hundreds of
dimensions. This means that a high level of granularity in data representation
can be maintained. This level of granularity is critical in using the micro-
clustering as a surrogate for the original data.

Each micro-cluster is subsequently used as a summary representation in or-
der to compute the densities over different subspaces. The key is to design a
kernel function which adapts to the variance of the data points within a cluster
as well as their errors. At the same time, the kernel function should be com-
putable using only the micro-cluster statistics of the individual clusters. The
first step is to recognize that each micro-cluster is treated as a pseudo-point
with a new error defined both by the variance of the points in it as well as
their individual errors. Thus, we need to compute the error of the pseudo-point
corresponding to a micro-cluster. For this purpose, we assume that each data
point X in a micro-cluster is a mutually independent observation with bias
equal to its distance from the centroid and a variance equal to the error ψ(X).
Therefore, the true error φ(X, C)2 of the data point X assuming that it is an
instantiation of the pseudo-observation corresponding to the micro-cluster C is
given by:

φj(X, C)2 = biasj(X, C)2 + ψj(X)2 (14.6)

Here φj(X,C) refers to the error in the jth dimension. We note that this
result follows from the well known statistical relationship that the true error
is defined by the squared sum of the bias and the variance. Once we have
established the above relationship, we can use the independence assumption
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to derive the overall error for the micro-cluster pseudo-point in terms of the
micro-cluster summary statistics:

Lemma 14.2 The true error ∆(C) for the pseudo-observation for a micro-
cluster C = {Y1 . . . Yr} is given by the relationship:

∆j(C) =
r∑

i=1

φj(Yi, C)2
r

=
CF2xj (C)

r
−
CF1xj (C)2

r2
+
EF2j(C)

r
(14.7)

Proof: These results easily follow from Equation 14.6. By averaging the re-
sults of Equation 14.6 over different data points, we get:

r∑

i=1

φj(Yi, C)2/r =
r∑

i=1

biasj(Yi, C)2/r +
r∑

j=1

ψj(Yi)
2/r (14.8)

We will now examine the individual terms on the right hand side of Equation
14.8. We first note that the value of

∑r
i=1 biasj(Yi, C)2/r corresponds to the

variance of the data points in cluster C. From [18], we know that this corre-
sponds toCF2xj (C)/r−CF1xj (C)2/r2. It further follows from the definition of

a micro-cluster that the expression
∑r

j=1 ψj(Yi)
2/r evaluates to EF2j(C)/r.

By substituting the corresponding values in Equation 14.8, the result follows.
The above result on the true error of a micro-cluster pseudo-observation can

then be used in order to compute the error-based kernel function for a micro-
cluster. We denote the centroid of the cluster C by c(C). Correspondingly, we
define the kernel function for the micro-cluster C in an analogous way to the
error-based definition of a data point:

Q′h(x− c(C),∆(C) = (1/
√

2π · (h+ ∆(C))) · e−
(x−Xi)

2

(2·(h2+∆(C)2)) (14.9)

As in the previous case, we need to define the overall density as a sum of the
densities of the corresponding micro-clusters. The only difference is that we
need to define the overall density as the weighted sum of the corresponding
kernel functions. Therefore, if the data contains the clusters C1 . . . Cm, then we
define the density estimate at x as follows:

fQ(x,∆(C)) = (1/N) ·
m∑

i=1

n(Ci) ·Q′h(x− c(Ci),∆(Xi)) (14.10)

The density estimate is defined by the weighted estimate of the contributions
from the different micro-clusters. This estimate can be used for a variety of
data mining purposes. In the next section, we will describe one such applica-
tion.
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Algorithm DensityBasedClassification(Test Point: x,
Accuracy Threshold: a);

begin

C1 = {1, . . . d};
for each dimension S in C1 and label lj

compute A(x, S, lj);
L1 is the set of dimensions in C1

for which for some j ∈ {1 . . . k}
A(x, S, lj) > a;

i=1;
while Li is not empty
begin

Generate Ci+1 by joining Li with L1;
for each subset S of dimensions in Ci+1

and class label lj compute A(x, S, lj);
Li+1 is the set of dimensions in Ci+1

for which for some j ∈ {1 . . . k} we
have A(x, S, lj) > a;

i = i+ 1;
end;

L = ∪iLi;
N = {};
while L is not empty
begin

Add set with highest local accuracy in L to N ;
Remove all sets in L which overlap with sets in N ;
end;
report majority class label in N ;
end

Figure 14.3. Density Based Classification of Data

3. Leveraging Density Estimation for Classification

We note that error-based densities can be used for a variety of data mining
purposes. This is because the density distribution of the data set is a surrogate
for the actual points in it. When joint distributions over different subspaces
are available, then many data mining algorithms can be re-designed to work
with density based methods. Thus, the key approach to apply the method to
an arbitrary data mining problem is to design a density based algorithm for the
problem. We further note that clustering algorithms such as DBSCAN [9] and
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many other data mining approaches work with joint probability densities as
intermediate representations. In all these cases, our approach provides a direct
(and scalable) solution to the corresponding problem. We further note that
unlike the work in [6], which is inherently designed to work with univariate
re-construction, our results (which are derived from only simple error statistics
rather than entire distributions) are tailored to a far wider class of methods. The
joint probability distribution makes it easier to directly generate error-based
generalizations of more complex methods such as multi-variate classifiers.

In this chapter, we will discuss such a generalization for the classification
problem [8, 11]. We define the notations for the classification problem as fol-
lows: We have a data set D containing a set of d-dimensional records, and k
class labels which are denoted by l1 . . . lk. The subset of the data correspond-
ing to the class label li is denoted by Di. In this chapter, we will design a den-
sity based adaptation of rule-based classifiers. Therefore, in order to perform
the classification, we need to find relevant classification rules for a particular
test instance. The challenge is to use the density based approach in order to
find the particular subsets of dimensions that are most discriminatory for a par-
ticular test instance. Therefore, we need to find those subsets of dimensions
in which the instance-specific local density of the data for a particular class
is significantly higher than its density in the overall data. The first step is to
compute the density over a subset of dimensions S. We denote the density at a
given point x, subset of dimensions S, and data set D by g(x, S,D). The pro-
cess of computation of the density over a given subset of dimensions is exactly
similar to our discussion of the full dimensional case, except that we use only
the subset of dimensions S rather than the full dimensionality.

The first step in the classification process is to pre-compute the error-based
micro-clusters together with the corresponding statistics. Furthermore, the
micro-clusters are computed separately for each of the data sets D1 . . .Dk and
D. We note that this process is performed only once as a pre-processing step.
Subsequently, the compressed micro-clusters for the different classes are used
in order to generate the accuracy density estimates over the different subspaces.
The statistics of these micro-clusters are used in order to compute the densi-
ties using the relations discussed in the previous section. However, since the
densities need to be computed in an example-specific way, the density calcu-
lation is performed during the classification process itself. The process of data
compression makes the density computation particularly efficient for large data
sets. We also note that in order to calculate the density over a particular sub-
space, we can use Equations 14.9, and 14.10, except that we only need to apply
them to a subspace of the data rather than the entire data dimensionality.

In order to construct the final set of rules, we use an iterative approach in
which we find the most relevant subspaces for the classification process. In
order to define the relevance of a particular subspace, we define its density
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based local accuracy A(x, S, li) as follows:

A(x, S, li) =
|Di| · g(x, S,Di)
|D| · g(x, S,D)

(14.11)

This dominant class dom(x, S) at point x is defined as the class label with the
highest accuracy. Correspondingly, we have:

dom(x, S) = argmaxiA(x, S, li) (14.12)

In order to determine the most relevant subspaces, we perform a bottom up
methodology to find those combinations of dimensions which have high accu-
racy for a given test example. We also impose the requirement that in order
for a subspace to be considered in the set of (i + 1)-dimensional variations,
at least one subset of it needs to satisfy the accuracy threshold requirements.
We impose this constraint in order to facilitate the use of a roll-up technique
in our algorithm. In most cases, this does not affect the use of the technique
when only lower dimensional projections of the data are used for the classifi-
cation process. In the roll-up process, we assume that Ci is a set of candidate
i-dimensional subspaces, and Li is a subset of Ci, which have sufficient dis-
criminatory power for that test instance. We iterate over increasing values of
i, and join the candidate set Li with the set L1 in order to determine Ci+1. We
find the subspaces inCi+1 which have accuracy above a certain threshold (sub-
ject to the additional constraints discussed). In order to find such subspaces, we
use the relationships discussed in Equations 14.11 and 14.12. Thus, we need
to compute the local density accuracy over each set of dimensions in Ci+1

in order to determine the set Li+1. We note that this can be achieved quite
efficiently because of the fact that the computations in Figure 14.11 can be
performed directly over the micro-clusters rather than the original data points.
Since there are significantly fewer number of micro-clusters (which reside in
main memory), the density calculation can be performed very efficiently. Once
the accuracy density for each subspace in Ci+1 has been computed, we retain
only the dimension subsets for which the accuracy density is above the thresh-
old a. This process is repeated for higher dimensionalities until the set Ci+1 is
empty. We assume that the final set of discriminatory dimensions are stored in
L = ∪iLi.

Finally, the non-overlapping sets of dimensions with the highest accuracy
above the pre-defined threshold of a are used in order to predict the class
label. In order to achieve this goal, we first determine the subspace of di-
mensions with the highest local accuracy. Then, we repeatedly find the next
non-overlapping subset of dimensions with the highest level of accuracy un-
til all possibilities are exhausted. The majority class label from these non-
overlapping subsets of dimensions are reported as the relevant class label. We
note that we do not necessarily need to continue with the process of finding
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Figure 14.4. Outlier Detection Issues with Uncertain Data

the next overlapping subspace repeatedly until all possibilities are exhausted.
Rather, it is possible to terminate the process after finding at most p non-
overlapping subsets of dimensions.

This kind of approach can in fact be generalized to any data mining approach
which use probability densities instead of individual data points. Many data
mining algorithms can be naturally extended from point based processing to
density based processing in order to apply this kind of approach. This is useful
in order to leverage this methodology in general and practical settings. The
overall algorithm is illustrated in Figure 14.3.

4. Application of Density Based Approach to Outlier
Detection

A key problem in data mining is that of outlier detection. The problem of
outlier detection has been widely studied in the data mining community [4,
7, 16, 14]. The addition of noise to the data makes the problem far more
difficult from the perspective of uncertainty. In order to explore this point
further, we have illustrated a 2-dimensional data set in Figure 14.4. We have
also illustrated two points in the data set along with the corresponding contours
of uncertainty. If we did not use the uncertainty behavior across the different
attributes, we would be more likely to label X as an outlier, since it seems
further away from the data set. However, in reality, the data point Y is much
closer to being an outlier, since the corresponding contours do not overlap with
the dense regions in the data. The important point to be noted here is that the
relative uncertainty in the different attributes over a given record is important
to use in the process of determination of the outlier-like behavior of a given
record. In general, a higher level of uncertainty of a given record can result in
it behaving like an outlier, even though the record itself may not be an outlier.

Another problem with outlier detection techniques is that an increase in di-
mensionality results in difficulty in identification of outliers in the full dimen-
sional case. This is because a full dimensional data set is inherently sparse,
and therefore every pair of points may be approximately equidistant from one
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another. In such cases, the data points do not cluster very well, and every
point behaves like an outlier [4]. This problem is much greater in the case of
uncertain data because of the additional noise associated with the uncertainty.
The noise associated with the uncertainty reduces the clustering behavior of
the data set with increasing dimensionality and uncertainty. In many cases, the
only way to effectively discover an outlier is to examine subspaces of the data
in order to determine regions in which the density of the data is abnormally
low. We will use such a subspace exploration process in combination with
density estimation in order to determine the outliers in the underlying data.

4.1 Outlier Detection Approach

We will first define some notations and definitions in order to facilitate fur-
ther description. Let us assume that the database D contains N records. The
ith record in the database contains d dimensions, and is denoted by Xi. It is
also assumed that each dimension of a record has a probability density func-
tion (pdf) associated with it. The probability density function for the record
Xi along the jth dimension is denoted by hji (·). Thus, the mean value of hi(·)
is Xi. It is also assumed that the standard deviation of hji (·) along the jth
dimension is ψj(Xi).

The outlier detection algorithm relies on the fact that an outlier in high di-
mensional space shows up in a region of abnormally low density in at least
one subspace of the data. Therefore, the outlier detection algorithm constructs
a density estimate of the underlying data in various subspaces and uses these
density estimates in order to determine the outliers in the data. We note that
the presence of the uncertainty in the data affects how the density estimate is
constructed. Data points and attributes with less uncertainty tend to be more
concentrated in their contribution to the density estimate of the data. In a later
section, we will explain how the density estimate of the data is constructed
efficiently. First, we will discuss the outlier algorithm assuming that the den-
sity estimate is available. Since the uncertainty affects the approach to outlier
detection, we need a definition of the outlier detection problem, which takes
such uncertainty into account. In order to achieve this goal, we will define a
sequence of terms and notations.

First, we will define the η-probability of a given data point. This defines the
probability that a data point lies in a region with (overall data) density at least η.
Since the data pointXi is itself uncertain, the probability density of the overall
data set will vary along the contour of its uncertainty. The η-probability may
be estimated by integrating the probability density function of the data point
over those regions of overall data density which are greater than η.
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Definition 14.3 The η-probability of a data pointXi is defined as the prob-

ability that the uncertain data point lies in a region with (overall data) density

at least η.

We note that the η-probability of a data point can be computed in any sub-
space of the data. Clearly, the lower the η-probability, the less likely that the
data point lies in a dense region. Such a point is an outlier. We note that
the probability that a given data point lies in a region with density estimate at
least η can be determined by integrating the density estimate of the probabil-
ity density function of the data point over regions with probability density at
least η. Consider the subspace S which is defined∗ by a subset of dimensions
J = {1 . . . r}. Let the density function of the overall data set over the subspace
J and coordinates (x1 . . . xr) be given by G(x1 . . . xr). Then, the probability
pi that the uncertain data point Xi lies in region with data density at least η is
given by the following:

pi =

∫

G(x1...xr)≥η
πrj=1h

j
i (xj)dxj (14.13)

We note that the value of pi is hard to compute exactly, but we will show that
it can be estimated quite accurately. In order for the data point Xi to be an
outlier, this value of pi needs to be less than a user-defined parameter δ. This
ensures that the data point has low probability of lying in a dense region of
the data, even after the uncertainty in the position of the point is taken into
account. Such a point is referred to as a (δ, η)-outlier.

Definition 14.4 We will define an uncertain data point Xi to be a (δ, η)-
outlier, if the η-probability of Xi in some subspace is less than δ.

Next, we will discuss the overall algorithm for outlier detection.

4.2 Subspace Exploration for Outlier Detection

The overall algorithm for outlier detection uses a roll-up approach in which
we test the outlier-like behavior of data points in different subspaces. The
algorithm uses as input the parameters δ and η which define the outlier-like
behavior of the data points. In addition, the maximum dimensionality r of the
subspaces is input to the algorithm. In order for the parameter η to have the
same significance across different subspaces, we normalize the data, so that
the standard deviation along each dimension is one unit.

The overall algorithm for outlier detection is illustrated in Figure 14.5. The
algorithm works by using a bottom up enumeration approach in which it tests

∗We can assume without loss of generality that J = {1 . . . r} by re-ordering the dimensions appropriately.
We have used J = {1, . . . r} for notational convenience only.



422 MANAGING AND MINING UNCERTAIN DATA

Algorithm DetectOutlier(Data: D, Parameters: η, δ
MaximumDim: r);

begin

O = {};
C1 = All 1-dimensional candidates;
i=1;
while (Ciis not null) and (i <= r)
begin

Determine if any data point in D −O
is a (δ, η)-outlier with respect to
subspaces in Ci and add corresponding point
to O;
Ci+1 = Ci ⊕ C1;
{ The sign ⊕ corresponds to dimensional
concatenation of each element of Ci with
those dimensions of C1 which are not
already included in the corresponding subspace
element in Ci; }
i = i+ 1;
end

end

Figure 14.5. Outlier Detection Algorithm

the possibility that the different points in the data are outliers. In order to
do so, it successively appends dimensions to candidate subspaces, and tests
whether different data points are outliers in these subspaces. The algorithm
starts off with the outlier set O set to null. The set Ci denotes the candidate
set of subspaces which are used for testing the possibility of a given data point
being an outlier. The algorithm uses the concept of (δ, η)-outlier in order to test
whether a given data point is an outlier. In the event that a data point is indeed
an outlier it is added to O, and we move on to testing subspaces of the next
higher dimension. This process continues until either Ci is null, or we have
exhausted all subspaces of dimensionality up to r. We note that this approach
requires two subroutines which can be significantly difficult to implement:

We need to determine whether a given data point is a (δ, η)-outlier. Note
that such a determination requires the computation of the integral in
Equation 14.13, which can be quite difficult to estimate. Therefore, we
will design a technique to estimate the integral in an efficient and accu-
rate way with the use of probabilistic sampling.
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We need repeated density estimation in different subspaces over the en-
tire data set. This can be extremely expensive, if it is not implemented
carefully. We will use a cluster-based compression approach in order to
improve the efficiency of the density estimation process.

5. Conclusions

This chapter presents a framework for performing density based mining of
uncertain data. The density-based framework constructs an intermediate repre-
sentation of the data which can be leveraged for a variety of problems. In this
chapter, we discuss the application of this technique to the problems of clus-
tering and outlier detection. The method can typically be used for any problem
which use intermediate density representations for the underlying data set. A
natural direction of research would be generalize this technique to a wide vari-
ety of closely related problems in the data mining field.
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Abstract Uncertain data sets have become popular in recent years because of advances in
recent years in hardware data collection technology. In uncertain data sets, the
values of the underlying data sets may not be fully specified. In this chapter, we
will discuss the frequent pattern mining for uncertain data sets. We will show
how the broad classes of algorithms can be extended to the uncertain data set-
ting. In particular, we will discuss the candidate generate-and-test algorithms,
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hyper-structure algorithms and the pattern growth based algorithms. One of our
insightful and interesting observations is that the experimental behavior of differ-
ent classes of algorithms is very different in the uncertain case as compared to the
deterministic case. In particular, the hyper-structure and the candidate generate-
and-test algorithms perform much better than the tree-based algorithms. This
counter-intuitive behavior compared to the case of deterministic data is an im-
portant observation from the perspective of frequent pattern mining algorithm
design in the case of uncertain data. We will test the approach on a number of
real and synthetic data sets, and show the effectiveness of two of our approaches
over competitive techniques.

Keywords: Uncertain Data, Association Rule Mining, Frequent Pattern Mining

1. Introduction

In recent years, the problem of mining uncertain data sets has gained impor-
tance because of its numerous applications to a wide variety of problems [3,
13–16, 11, 19, 22, 24, 27]. This is because data collection methodologies are
often inaccurate and are based on incomplete or inaccurate information. For
example, sensor data sets are usually noisy and lead to a number of challenges
in processing, cleaning and mining the data. Some techniques for adaptive
cleaning of such data streams may be found in [20]. In many cases, estima-
tions of the uncertainty in the data are available from the methodology used to
measure or reconstruct the data. Such estimates may either be specified in the
form of error variances [3] or in the form of probability density functions [14].

The problem of frequent pattern mining of uncertain data is often encoun-
tered in privacy-preserving data mining applications [17] in which the presence
or absence of different items is tailored with the use of a probabilistic model.
In other applications, the transactions may be constructed based on future ex-
pected behavior, and may therefore be probabilistic in nature. In some cases,
the transaction data may be constructed from surveys which are inherently in-
complete, and the corresponding values may be probabilistically modeled. In
general, a variety of online methods exist [26] to estimate missing data values
along with the corresponding errors.

In recent years, a number of data mining problems have been studied in the
context of uncertain data. In particular, the problems of indexing, clustering,
classification and outlier detection [3–5, 7, 14, 22, 23, 28, 33] have been stud-
ied extensively in the context of uncertain data. While traditional data mining
algorithms can be applied with the use of mean values of the underlying data,
it has been observed [3] that the incorporation of uncertainty information into
the mining algorithm significantly improves the quality of the underlying re-
sults. The work in [34] studies the problem of frequent item mining, though
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the work is restricted to the problem of mining 1-items in the data. The general
problem of frequent pattern mining has also been studied in a limited way in
[32, 33], and a variety of pruning strategies are proposed in order to speed up
the Apriori algorithm for the uncertain case. A number of algorithms have also
been proposed for extending the FP-growth algorithm [25, 6] to the uncertain
case. This chapter will provide a comparative study of the study of the problem
of frequent pattern mining in a comprehensive way. The chapter will study the
different classes of algorithms for this case, and will provide a comprehensive
study of the behavior of different algorithms in different scenarios. One ob-
servation from our extensions to the uncertain case is that the respective algo-
rithms do not show similar trends to the deterministic case. For example, in the
deterministic case, the FP-growth algorithm is well known to be an extremely
efficient approach. However, in our tests, we found that the extensions of the
candidate generate-and-test as well as the hyper-structure based algorithms are
much more effective in cases in which the uncertainty probabilities are high.
In such cases, many pruning methods, which work well for the case of de-
terministic algorithms introduce greater overheads from their implementation
than the advantages gained from using them. This is because the extensions of
some of the algorithms to the uncertain case are significantly more complex,
and require different kinds of trade-offs in the underlying computations. For
example, the maintenance of probabilistic information can introduce additional
overhead.

This chapter is organized as follows. The next section defines the uncertain
version of the problem. In Section 3 we will discuss the extension of Apriori-
style algorithms to the uncertain version of the problem. In Section 4, we
will discuss the extension of set-enumeration based algorithms. In Section 5,
we explore how to extend two popular pattern growth based algorithms, H-
mine and FP-growth to the uncertain case. Section 6 presents the experimental
results. Section 7 studies the problem of frequent item mining with a more
general probabilistic model: the possible worlds model. The conclusions and
summary are discussed in section 8.

2. Frequent Pattern Mining of Uncertain Data Sets

In this section, we will discuss frequent pattern mining for uncertain data
sets. We will first introduce some additional notations and definitions. We as-
sume that we have a database D containing N transactions. We assume that
the total number of unique items is d, and each item is denoted by a unique
index in the range of {1 . . . d}. In sparse databases, only a small number of
items have a nonzero probability of appearing in a given transaction. Let us
assume that the ith transaction in database D contains ni items with non-zero
probability. Let us assume that the items in the ith transaction are denoted by
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ji1 . . . j
i
ni . Without loss of generality, we can assume that these items are in

sorted order. We assume that the probability of the ith item being present in
transaction T is given by p(i, T ). Thus, in the uncertain version of the prob-
lem, the item may be present in the transaction T with the above-mentioned
probability.

First, we will define the frequent pattern mining problem. Since the trans-
actions are probabilistic in nature, it is impossible to count the frequency of
itemsets deterministically. Therefore, we count the frequent itemsets only in
expected value. In order to do so, we need to count the expected probability
of presence of an itemset in a given transaction. Let s(I) be the support of
the itemset I . This support can only be counted in probabilistic value. The
expected support of an itemset I is defined as follows:

Definition 15.1 The expected support of itemset I is denoted by E[s(I)],
and is defined as the sum of the expected probabilities of presence of I in each
of the transactions in the database.

The problem of frequent itemset mining is defined in the context of uncer-
tain databases as follows:

Definition 15.2 An itemset I is said to be frequent when the expected sup-
port of the itemset is larger than the user-defined thresholdminsup.

Note that the expected number of occurrences of the itemset I can be
counted by summing the probability of presence of the itemsets in the dif-
ferent transactions in the database. The probability of the presence of itemset
I in a given transaction can be computed using the relationship below.

Observation 2.1 The expected probability of the itemset I occurring in a
given transaction T is denoted by p(I, T ) and is the product of the correspond-
ing probabilities. Therefore, we have the following relationship:

p(I, T ) =
∏

i∈I

p(i, T ) (15.1)

Next, we will discuss how broad classes of algorithms can be generalized
to the uncertain version of the problem. First, we will discuss the candidate
generate-and-test algorithms.

3. Apriori-style Algorithms

These are algorithms which use the candidate generate-and-test paradigm
for frequent pattern mining. These can be join-based [8] or set-enumerations
based [1]. The conventional Apriori algorithm [8] belongs to this category.
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The Apriori algorithm uses a candidate generate-and-test approach which uses
repeated joins on frequent itemsets in order to construct candidates with one
more item. A key property for the correctness of Apriori-like algorithms is the
downward closure property. We will see that the downward-closure property
is true in the uncertain version of the problem as well.

Lemma 15.3 If a pattern I is frequent in expected support, then all subsets
of the pattern are also frequent in expected support.

Proof: Let J be a subset of I. We will first show that for any transaction T ,
p(J, T ) ≥ p(I, T ). Since J is a subset of I , we have:

p(I, T )

p(J, T )
=
∏

i∈I−J

p(i, T ) ≤ 1 (15.2)

This implies that p(J, T ) ≥ p(I, T ). Summing this over the entire database
D, we get:

∑

T∈D

p(J, T ) ≥
∑

T∈D

p(I, T ) (15.3)

E[s(J)] ≥ E[s(I)] (15.4)

Equation 15.4 above can be derived from Equation 15.3 by using the fact
that the values on the left hand and right hand side correspond to the expected
support values of J and I respectively.

The maintenance of the downward closure property means that we can con-
tinue to use the candidate-generate-and-test algorithms without the risk of los-
ing true frequent patterns during the counting process. In addition, pruning
tricks (such as those discussed in Apriori) which use the downward closure
property can be used directly. Therefore the major steps in generalizing candi-
date generate-and-test algorithms are as follows:

All steps for candidate generation using joins and in pruning with the
downward closure property remain the same.

The counting procedure needs to be modified using Observation 2.1.

3.1 Pruning Methods for Apriori-Style Algorithms

We note that a variety of techniques can be used to further improve the
pruning power of Apriori-style algorithms. A key feature that can be used in
order to improve the pruning power is the presence of items with low existential
probabilities. We note that since the support counts on the transactions use the
product of the probabilities, items with low existential probabilities add very
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little to the support count. For example, consider the case when the support
threshold is 1%, and an item has existential probability of 0.01% in a given
transaction. The use of this item during the support counting is not very useful
for mining purposes.

As the percentage of items with low existential probabilities increases, The
fraction of such insignificant increments to the support counts of candidate
itemsets increases. Therefore, the work in [32] trims these items during the
support counting process. A specific probability threshold is used in order
to trim the items. This trimming threshold is set to be marginally above the
minimum support threshold. It uses a smart error estimation method in order
to determine the potential error caused by this trimming process. Thus, at the
end of the process, the method can prune many candidate itemsets, but there are
also some potentially frequent itemsets, in which it is not clear whether or not
they are frequent as a result of the errors caused by the trimming. Therefore,
the method in [32] uses a final patch up phase in which the true support counts
of these potentially frequent itemsets are computed in order to determine which
of the itemsets are truly frequent.

The technique in [32] works well when the frequencies of the underlying
items follow a bimodal distribution. In a bimodal distribution, the items fall
into one of two categories. The first category of items have very high exis-
tential probability, and the second category of items have very low existential
probability. In such cases, it is possible to pick the trimming threshold ef-
fectively. However, it is much more difficult to find an appropriate trimming
threshold in the case where the existential probabilities of the different items
are more uniform. In order to deal with such situations, a decremental pruning
technique was proposed in [33].

The decremental pruning technique exploits the statistical characteristics of
existential probabilities to gradually reduce the set of candidate itemsets. The
key idea is to estimate the upper bounds of candidate itemset supports pro-
gressively after each database transaction is processed. If a candidate itemset’s
upper bound falls below the support threshold, then it is immediately pruned.
Consider an itemset X for which the support is being estimated and let X ′ be
any subset of X . We denote the decremental counter Se(X,X ′, k) as an upper
bound on the value of the support after k transactions t1 . . . tk have been pro-
cessed. We denote the probability of item x in transaction ti by Pti(x). The
counter Se(X,X ′, k) is defined as follows:

Definition 15.4 Consider a database D with |D transactions t1 . . . t|D|.
Let the support of item x in transaction ti be denoted by Pti(x). For any non-
empty X ′ ⊂ X , k ≥ 0, the value of the decremental counter Se(X,X

′, k) is
defined as an upper bound on the expected support of X after k transactions
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t1 . . . tk have been processed. Specifically, we have:

Se(X,X
′, k) =

k∑

i=1

πxinXPti(X) +

|D|∑

i=k+1

πxinXPti(X) (15.5)

The fact that Se(X,X ′, k) is an upper bound is easy to observe, because the
first expression

∑k
i=1 πxinXPti(X) is an exact expected support for the first k

transactions, whereas the second expression is an upper bound on the expected
support by setting the probabilities of all items inX−X ′ to 1. One observation
is that as more transactions are processed (or the value of k increases), the
upper bound Se(X,X

′, k) reduces. Once this upper bound falls below the
threshold support, the itemset X can be dropped from consideration.

We note that any subset X ′ can be used for pruning purposes. The use of
a larger subsets provides better pruning power, but also increases the space-
and time-overhead in maintaining these decremental counters. Of course there
are an exponential number 2|X| − 2 possibilities for the counters, and it is
not possible to maintain all of them. Therefore, a number of techniques are
proposed in [33] for picking and using these counters effectively. The two
methods for picking and leveraging the decremental counters are as follows:

Aggregate by Singletons: In this case, only the aggregate counts of fre-
quent singletons are maintained. In [33] an additional inductive relation-
ship has been proposed to efficiently update the decremental counters.

Common Prefix Method: In this case, the decremental counts of item-
sets with a common prefix are aggregated. It is assumed that the items
follow and certain ordering and prefixes are computed with respect to
this ordering. Only decremental counters are maintained for those sub-
sets X ′ of X , which are also prefixes of X . As in the case of single-
tons, an inductive relationship has been proposed to efficiently update
the decremental counters.

For more details of the two techniques discussed above and the inductive rela-
tionship to update the counters, we refer the reader to [33]. It has been shown
in [33] that this technique improves the pruning effectiveness of the Apriori al-
gorithm. We note however, that such techniques are effective only when there
are a substantial number of items with low existential probabilities. When this
is not the case, the use of such an approach can be counter-productive, since
the additional overhead incurred for implementing the pruning approach can
be greater than the advantages gained from pruning. In [6], the effect of using
such pruning strategies has been studied for the case of high existential prob-
abilities. It has been shown in [6] that in such cases, the more straightforward
extension of the Apriori algorithm is more efficient than the variations [33]



434 MANAGING AND MINING UNCERTAIN DATA

with such pruning strategies. Some of these results will be presented in the
comparison study in section 6 of this chapter.

4. Set-Enumeration Methods

Similar techniques can be used in order to extend set-enumeration based
methods. In set-enumeration based methods, we construct the candidates by
building the set enumeration-tree [30] or lexicographic tree. A number of re-
cent algorithms belong to this category. These include the MaxMiner algo-
rithm [9], the DepthProject algorithm [1], the TreeProjection algorithm [2]
and MAFIA [12]. These methods typically use top-down tree-extension in
conjunction with branch validation and pruning using the downward closure
property. Different algorithms use different strategies for generation of the tree
in order to obtain the most optimum results. Since the set-enumeration based
algorithms are also based on the downward closure property, they can be eas-
ily extended to the uncertain version of the problem. The key modifications to
set-enumeration based candidate generate-and-test algorithms are as follows:

The tree-extension phase uses the ordering of the different items in order
to construct it in top-down fashion. The tree extension phase is exactly
the same as in candidate generate-and-test algorithms.

The counting of frequent patterns uses Observation 2.1.

In the event that transactions are projected on specific branches of the
tree (as in [1, 2]), we can perform the projection process, except that we
need to retain the probabilities of presence of specific items along with
the transactions. Also note that the probabilities for the items across dif-
ferent transactions need to be maintained respectively, even if the trans-
actions are identical after projection. This is because the probabilities
of the individual items will not be identical after projection. Therefore
each projected transaction needs to be maintained separately.

The pruning of the branches of the tree remains identical because of the
downward closure property.

We note that set-enumeration algorithms are conceptually quite similar to the
join-based algorithms, except that the candidates are enumerated differently.

5. Pattern Growth based Mining Algorithms

There are also some popular algorithms for mining frequent patterns which
are based on the pattern growth paradigm. Among these methods, the H-
mine [29] and FP-growth [18] algorithms are two representative ones. Their
main difference lies in the data representation structures. FP-growth adopts a
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prefix tree structure while H-mine uses a hyper-linked array based structure.
We will see that the use of such different structures have a substantially differ-
ent impact in the uncertain case as compared to the deterministic case. Next,
we will discuss the extension of each of these algorithms to the uncertain case
in some detail.

c
0
.
7
 d
0
.
8
 e
0
.
7
 g
0
.
6


a
0
.
8
 c
0
.
7
 d
0
.
6
 e
0
.
9


a
0
.
8
 c
0
.
7
 d
0
.
8


a
0
.
7
 d
0
.
6
 e
0
.
8
 g
0
.
8


a
 c
 d
 e
 g


2
.
3
2
.
1
2
.
8
2
.
4
1
.
4
H
e
a
d
e
r

t
a
b
l
e
 
H


H
y
p
e
r
-
l
i
n
k
e
d

a
r
r
a
y


Figure 15.1. H-Struct

5.1 Extending the H-mine algorithm

The H-mine algorithm proposed in [29] adopts a hyper-linked data struc-
ture called H-struct. Similar to FP-growth, it is a partition-based divide-and-
conquer method. Initially, H-mine scans the input database once to find the
frequent items. The infrequent items are removed from the database. The
frequent items left in each input transaction are sorted according to a cer-
tain global ordering scheme. The transformed database is stored in an array
structure, where each row corresponds to one transaction. During the mining
process, there always exists a prefix itemset (denoted by P , which is initially
empty). H-mine needs to construct a header table which records the starting
places of the projected transactions. By following the links in the header table,
H-mine can locate all the projected transactions and find the locally frequent
items by scanning the projected transactions. The locally frequent items with
respect to the prefix P can be used to extend P to longer prefix itemsets.

As the hyper-linked array structure used in H-mine is not in a compressed
form, it is relatively easy to extend the H-struct for mining frequent itemsets
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from uncertain data. As described in [29], each frequent item in a transac-
tion is stored in an entry of the H-struct structure with two fields: an item id
and a hyper-link. In addition, the probability p(i, T ) of the presence of item
i in transaction T is maintained. Figure 15.1 shows an example of an ex-
tended H-struct structure∗. With the extended H-struct structure there are two
ways to mine frequent itemsets with the current prefix P . The first approach
is to maintain the expected probability p(P, T ) of prefix P occurring in each
projected transaction T in memory. As the probability of the presence of lo-
cally frequent item i in transaction T is recorded in the extended H-struct, it is
straightforward to compute the expected support of the new itemset of P ∪{i},
E[s(P ∪ {i})], according to Observation 2.1 and Definition 15.1. However,
the expected support of prefix P with respect to each conditional transaction
needs to be maintained until all the locally frequent items with respect to prefix
P have been processed. This may cost significant memory and may also lead
to deterioration in the internal caching behavior of the algorithm.

In order to avoid maintaining the expected probability of prefix P with
respect to each projected transaction T , p(P, T ), we have another approach
for computing it on the fly. As H-mine adopts the pseudo-projection method,
each original input transaction is stored in the H-struct. By scanning the sub-
transaction before the projected transaction of prefix P , we can find the prob-
ability of each item in P . Thus, p(P, T ) can be computed according to Ob-
servation 2.1. In a similar way, E[s(P ∪ {i})] can be computed according to
Observation 2.1 and Definition 15.1. In this chapter, we adopt the second ap-
proach for computing the expected support of the current prefix itemsetP . This
is because the use of on-the-fly computations reduces the space-requirements
of the technique. The reduced space-requirements also indirectly improve the
locality of the caching behavior of the underlying computations. This leads to
improved efficiency of the overall algorithm.

5.2 Extending the FP-growth Algorithm

FP-growth [18] is one of the most popular frequent itemset mining algo-
rithms which are based on the pattern growth paradigm. It adopts a prefix
tree structure, FP-tree, to represent the database (or conditional databases). As
FP-tree is a compressed structure, it poses several challenges when we try to
adapt the FP-growth algorithm for uncertain data sets. These challenges are as
follows:

In the original FP-tree structure, each node has a ‘count’ entry which
records the number of transactions containing the prefix path from the

∗Note that the second row of the header table in the H-struct structure stores the sum of item probabilities
for each locally frequent item.
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root node to this node. For uncertain data, if we just store in a node the
sum of item probabilities with respect to the transactions containing the
prefix path, we will no longer be able to determine the probability of the
presence of an item in each transaction. Thus, there is an irreversible
loss of information in the uncertain case with the use of a compressed
structure. Thus, we need to find a different and efficient way to store the
item probabilities without losing too much information.

The original FP-growth algorithm mines frequent itemsets by searching
the tree structure in a bottom up manner. The computation of the support
of a given prefix path is quite straightforward. Its support is simply the
support of the lowest node of the path. However, for uncertain data, the
expected support of a given prefix path should be computed according
to Definition 15.1. As we no longer know the mapping among the item
probabilities and the transactions, it is impossible to compute the exact
expected support of a given prefix according to Definition 15.1.

Since it is impossible to determine the exact expected support of each
frequent itemset based on the FP-tree structure, we may need to first
mine all the candidate itemsets, and then remove the infrequent item-
sets by checking the original database. The process of determining such
infrequent itemsets efficiently can be quite difficult in the uncertain case.

There are two extreme solutions to adapt the FP-tree structure for uncertain
data mining. Let us denote the FP-tee built from uncertain data by UFP-tree.
The first one is to store (in each node) the sum of item probabilities with respect
to the transactions containing the prefix path from the root to it. The UFP-tree
built in this way is as compact as the original FP-tree. However, it cannot
even be used to compute the the upper bound or lower bound of the expected
support of an itemset, because it loses information with respect to the distinct
probability values for different transactions. Another extreme solution is to
split a node into m nodes if the item in this node has m distinct probability
values. In this case, we can compute the exact expected support. On the other
hand, the UFP-tree built in this way consumes a lot of memory.

In this work, we adopt a compromise by storing a subset of the probabilities
for the item in each node. These probabilities are selected using clustering,
and are stored as floating point numbers. This method does not consume too
much memory, and we will show that it allows us to compute an upper bound
on the expected support of any itemset. We then compute a set of candidate
frequent itemsets based on this upper bound. This set of candidates provides
us a superset of the complete set of real frequent itemsets. Any remaining false
positives will then need to be removed by scanning the input database. Next,
we will discuss the adaptation of different steps of the FP-growth algorithm to
the uncertain case.
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Construction of the UFP-tree. The process of constructing the UFP-
tree for uncertain data is very similar to the construction of the FP-tree for
deterministic data sets. The main difference lies in the information stored in
each node. The UFP-tree is built using the following steps. First, the database
is scanned to find the frequent items and to generate a support descending item
list. Then, the transactions are read one by one, and the infrequent items are
pruned. The remaining frequent items are sorted according to the frequent item
list. The re-ordered transactions are inserted into the UFP-tree.

As discussed earlier in this chapter, each node of the UFP-tree stores a sum-
mary of the probabilities of the non-zero probability items in those transactions
which share the same prefix path in clusters. We partition the probabilities into
a set of k clusters. The corresponding parameters created for the ith cluster by
the partitioning are represented by ci and mi (1 ≤ i ≤ k), where ci denotes
the maximum probability value in the ith cluster and mi is the number of item
probabilities in the ith cluster. We assume that c1 > c2 > . . . > ck. The rea-
son that we store the maximum probability value in each cluster instead of the
center of the cluster (i.e., the average value of all the item probabilities in this
cluster) is to make sure that the support computed from the summary is no less
than the true support. In Section 5.2.0, we will introduce a method to compute
an upper bound on the true support based on the cluster information stored in
each node. Besides the global UFP-tree construction from the database, condi-
tional UFP-trees are generated from the global UFP-tree. Therefore, there are
two different situations which need the data summarization in the construction
process. We will discuss the solutions separately under the two situations.

There are several clustering and data summarization methods available for
our task. The choice of the proper method should consider two factors. The
first is memory usage. This also indirectly affects the performance since lower
memory consumption results in better internal caching behavior on most ma-
chines. Since there could be a large number of nodes in the UFP-tree, the sum-
marization of the probabilities in each node should be as concise as possible in
order to reduce memory consumption. The trade-off is that greater conciseness
leads to lower precision. In the mining process, we compute the upper bound
of the support of each itemset according to the summarization of probabilities
stored in each node. We use this to compute the candidate frequent itemsets. If
the precision of the summarization is too low, the difference between the upper
bound and the true support will be large and a large number of false positives
may be generated. This will increase the memory and space requirements for
the elimination process of the false positives. Clearly, the tradeoff needs to
be carefully exploited in order to optimize the performance of the underlying
algorithm.

This problem is closely related to that of building V-optimal histograms [21]
for time-series data. It is however not natural to apply the V-optimal technique
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to this situation. During the construction of the UFP-tree, the transactions are
read sequentially, and the item probabilities corresponding to a certain node
will typically arrive in neither ascending nor descending order. In order to
apply the V-optimal algorithm to this set of probabilities (which are floating
point numbers) in each node, we would need to sort these numbers in ascending
or descending order, and this is time consuming. Furthermore, the time and
space complexities of the complete V-optimal method areO(n2·k) andO(n·k)
respectively. Because of the expensive behavior of the V-optimal method, we
decided to use k-means clustering instead. However, if we store all the item
probabilities associated with each node before applying k-means clustering
during the UFP-tree construction process, it will consume too much memory
and will be too expensive for large data sets.

Therefore, we used a different approach by using a modified version of the
k-means algorithm. First, we partition the range of the probabilities of items
into φ parts in equal width, where φ is chosen to be significantly larger than
k. We store the maximum probability value and the number of distinct item
probabilities in each part. After we have all the transactions inserted into the
UFP-tree, we then cluster these stored information by k-means.

As mentioned earlier, there are two points in the pattern mining process
in which we need to compute the data summarizations. The first relates to
the construction of the global UFP-tree. We have discussed the first situation
above. The second is the construction of conditional UFP-trees during the
mining process. We will discuss this second situation at this point. Suppose
we begin to mine the frequent itemsets with prefix item ‘g’. By computing
the expected support of size 2-itemsets containing ‘g’ with the method dis-
cussed in Section 5.2.0, we could find the locally frequent items. Then, we
traverse each path in the global UFP-tree linking the node with a label ‘g’ to
the root to extract the locally frequent items and the corresponding distribu-
tion information of the item probabilities stored in each node along the path.
This forms a conditional transaction. Here we give such an example of a con-
ditional transaction, which contains three items and corresponds to 30 input
transactions: {(a, ((0.6, 5), (0.7, 5), (0.8, 20))), (b, ((0.8, 10), (0.9, 20))), (e,
((0.7, 20), (0.88, 10)))}. Next, we insert each conditional transaction into the
conditional UFP-tree with respect to the item ‘g’. Note that the number of
probabilities of each item equals 30. This is the number of the probabilities
in the node ‘g’ at the bottom of the corresponding path. This also means that
there are 30 input transactions containing ‘g’ in this path. Notice that we need
to merge the clusters after all the transactions are inserted in the conditional
UFP-tree in order to keep a limited number of entries in each node. Thus is
also done with the k-means clustering algorithm.
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Computation of Support Upper Bounds. In order to mine all the fre-
quent itemsets, we first need to mine all the potentially-frequent itemsets using
the information stored in each node. As mentioned earlier, the precise support
of an itemset cannot be computed directly from the UFP-tree because of the
information loss during compression. However, it is possible to compute an
upper bound on the support. It is clear that the number of item probabilities in
each node along any tree path may vary considerably. Let the number of item
probabilities in the last node of a path be denoted by n (namely, the number of
transactions containing the path is n). We should take out n largest probabil-
ities in each node along the prefix path from this last node up to the root, and
this is an easy task since the item probabilities are summarized in the clusters.
For example, suppose all the item probabilities in each tree node are grouped
into three clusters (i.e., k=3), and the cluster information in the last node N
of a given path P is {(c1=0.95, m1=2), (c2=0.9, m2=2), (c3=0.8, m3=1)}.
That is, the last node contains five item probabilities. Let N

′
be any node

along the path P , and its cluster information be {(c′1=0.98, m
′

1=3), (c
′

2=0.91,
m

′

2=1), (c
′

3=0.85, m
′

3=2)}. The five largest item probabilities inN
′

are 0.98,
0.98, 0.98, 0.91, and 0.85, respectively. The process of computing an upper
bound on the expected support of an itemset I with respect to a prefix path P
is shown in Algorithm 5.2.0.

Note that an itemset I may be contained in multiple prefix paths, and we
can compute an upper bound of the expected support of itemset I with respect
to each of these prefix paths. The sum of the upper bounds with respect to
these prefix paths must form an upper bound of itemset I . We will prove that
the output of Algorithm 5.2.0 is an upper bound on the expected support of the
itemset with respect to path P .

Lemma 15.5 Given an itemset I, when |I| = 2, the support computed ac-
cording to algorithm 5.2.0 is an upper bound of the expected support of I with
respect to path P .
Proof: Suppose the number of item probabilities in the last node of pathP is

n, that is,
∑k

i=1m|I|i = n. Let us denote the two tree nodes corresponding to
the two items in I w.r.t. path P by a and b, the top n largest item probabilities
in node a by a1≥a2≥. . .≥an, and the top n largest item probabilities in node
b by b1≥b2≥. . .≥bn. We will prove the lemma using mathematical induction.
(1) Let n=2. Since (a1 − a2)(b1 − b2)≥0 holds, we have

a1b1 + a2b2 ≥ a1b2 + a2b1

Therefore, the lemma holds when n = 2.
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Computation of an upper bound on the expected support of an itemset I
w.r.t. prefix path P

Input: The cluster information stored in each node along path P corre-
sponding to I , (ci1, mi1), (ci2, mi2), . . ., (cik, mik), i=1, 2, . . ., |I|, and
ci1>ci2>. . .>cik holds.

Output: An upper bound of the expected support of itemset I w.r.t. path
P , E(s(I)|P )

Initialization:

E(s(I)|P )=0;

C1←c11, C2←c21, . . ., C|I|←c|I|1;

M1←m11, M2←m21, . . ., M|I|←m|I|1;

Method: Repeat the following steps below until no item probability in
the last node of the path corresponding to itemset I is left.

– E(s(I)|P )=E(s(I)|P )+C1×C2×. . .×C|I|×m, where m =
min(M1, M2, ...,M|I|);

– M1←M1 −m, M2←M2 −m, . . ., M|I|←M|I| −m;

– For i ∈ [1, |I|] do

if Mi=0

Suppose Ci=cij (where 1≤j <k), then

Ci←ci(j+1) and Mi←mi(j+1);

(2) Assume the induction base that when n=k,
∑k

i=1 aibi is an upper bound.
Next, let n=k+1, we will find the maximum sum of products. Let bk+1 multiply

at, 1≤t≤k, under the assumption above we know that the maximum sum of
products of the k numbers left is (

∑t−1
i=1 aibi +

∑k+1
i=t+1 aibi−1). Furthermore,
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we have:

k+1∑

i=1

aibi − (
t−1∑

i=1

aibi + atbk+1 +
k+1∑

i=t+1

aibi−1)

= (atbt + at+1bt+1 + at+2bt+2 + . . . ak+1bk+1)−
(atbk+1 + at+1bt + at+2bt+1 + . . .+ ak+1bk)

= at+1(bt+1 − bt) + at+2(bt+2 − bt+1) + . . .

+ ak+1(bk+1 − bk) + at(bt − bk+1)

≥ at(bt+1 − bt) + at(bt+2 − bt+1) + . . .

+ at(bk+1 − bk) + at(bt − bk+1)

= at(bk+1 − bt) + at(bt − bk+1) = 0

then, we derive that when n=k+1,
∑k+1

i=1 aibi is an upper bound of the sum of
the products.

(3) Since when |I| = 2 the output of Algorithm 5.2.0 is
∑n

i=1 aibi, the expected
support computed following the steps in Algorithm 5.2.0 must be an upper

bound.

Corollary 15.6 Given two groups of n (∀n, n > 0) floating-point numbers
sorted in decreasing order, cij (∀ i, p, q, 1 ≤ i ≤ 2, if 1 ≤ p < q ≤ n, then

cip≥ciq holds),
∑x

j=1

∏2
i=1 cij is the largest among all the sums of x products,

where 1 ≤ x ≤ n.
Proof:It can be directly derived from the proof of Lemma 15.5 when x=n.

For any possible set of x products which are constructed from the two groups
of n floating-point numbers, denoted by s1, s2,...sx, we can always find an-
other set of x products which are constructed from the two groups of the
first x floating-point numbers, denoted by s

′

1, s
′

2, ..., s
′

x, such that sl≤s
′

l (∀l,
1 ≤ l ≤ x). That is, (

∑x
j=1 sj) ≤(

∑x
j=1 s

′

j). In addition, according to the

proof of Lemma 15.5 we know that (
∑x

j=1

∏2
i=1 cij)≥(

∑x
j=1 s

′

j) holds. Thus,

we have (
∑x

j=1

∏2
i=1 cij) ≥(

∑x
j=1 sj), which means

∑x
j=1

∏2
i=1 cij is the

largest among all the sums of x products, where 1 ≤ x ≤ n.

Theorem 15.7 Given m groups of n (∀n, n > 0) floating-point numbers
sorted in decreasing order, cij (∀ i, p, q, 1 ≤ i ≤ m, if 1 ≤ p < q ≤ n,
then cip≥ciq holds),

∑x
j=1

∏m
i=1 cij is the largest among all possible sums of

x products, where 1 ≤ x ≤ n.
Proof: We prove the theorem using mathematical induction.

1. According to Corollary 15.6, we know that it is true whenm = 2.
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2. We assume, whenm = k, the theorem holds.
3. We will derive from the above assumption that when m=k+1,∑x

j=1

∏m
i=1 cij is still the largest among all possible sums of x products, where

1≤x≤n. Let the (k+1)-th group of n floating-point numbers be c(k+1)1 ≥
c(k+1)2 ≥ . . . ≥ c(k+1)n. As c(k+1)1, c(k+1)2, . . . , and c(k+1)x are among the

top x largest values in the (k+1)-th group of n floating-point numbers, one of
the largest values of the sum of x products constructed from the k+1 groups
of n floating numbers must be in the form of c(k+1)1s1 + c(k+1)2s2 + . . . +

c(k+1)xsx, where si=
∏k
j=1 zij , zij∈{cj1, cj2, . . . , cjn}.

If we use s
′

y to denote
∏k
i=1 ciy, we have:

x∑

j=1

m∏

i=1

cij = c(k+1)1s
′

1 + c(k+1)2s
′

2 + . . .+ c(k+1)xs
′

x

and s
′

1 ≥ s
′

2 ≥ . . . ≥ s
′

x must hold.

In addition, we also have:

c(k+1)1s
′

1 + c(k+1)2s
′

2 + . . .+ c(k+1)xs
′

x−
(c(k+1)1s1 + c(k+1)2s2 + . . .+ c(k+1)xsx)

= (s
′

1 − s1)(c(k+1)1 − c(k+1)2)+

[(s
′

1 − s1) + (s
′

2 − s2)](c(k+1)2 − c(k+1)3) + ...+

[(s
′

1 − s1) + (s
′

2 − s2) + ...+ (s
′

x − sx)]c(k+1)x

= (s
′

1 − s1)(c(k+1)1 − c(k+1)2)+

[(s
′

1 + s
′

2)− (s1 + s2)](c(k+1)2 − c(k+1)3) + ...+

[(s
′

1 + s
′

2 + ...+ s
′

x)− (s1 + s2 + ...+ sx)]c(k+1)x

According to our assumption, ∀l ≤ x, (
∑l

i=1 s
′

i −
∑l

i=1 si)≥0 holds, and

as (c(k+1)l − c(k+1)(l+1))≥0 also holds, we get that (
∑x

j=1 c(k+1)js
′

j −∑x
j=1 c(k+1)jsj)≥0. Therefore, when m=k+1,

∑x
j=1

∏m
i=1 cij is still the

largest among all possible sums of x products, where 1 ≤ x ≤ n.

Corollary 15.8 The output of Algorithm 5.2.0 must be an upper bound of
the expected support of itemset I (|I|≥2) w.r.t. prefix path P .
Proof: There are |I| nodes in the path P which correspond to the |I| items

in I , and each node maintains k clusters. The cluster information of the last
node in path P is represented by ci(mi), i=1. . .k, and we let n=

∑k
j=1mi.

We can then sort the n item probabilities in the last node in descending order.
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For each of the other |I|−1 nodes, we can extract its top n largest item prob-
abilities and sort them in descending order. In this way, we get |I| groups of
n item probabilities, denoted by zij , where 1≤i≤|I|, 1≤j≤n, and ∀ p, q, if
p < q, zip≥ziq. According to the computation process of Algorithm 5.2.0 we
know that the output of Algorithm 5.2.0 equals

∑n
j=1

∏|I|
i=1 zij . According to

Theorem 15.7, we have that it is an upper bound of the expected support of

itemset I w.r.t. prefix P .

Mining Frequent Patterns with UFP-tree. We used two different ap-
proaches for the mining process with UFP-tree. One is the recursive pattern
growth approach introduced in [18]. The other is the one described in [31],
which constructs a conditional UFP-tree for each frequent item, and then mines
frequent itemsets in each conditional tree. In the following, we will explain the
two mining methods in detail.

Assume that the frequent item list in support-descending order is
{e, a, c, d, g}. The process of recursively constructing all-level conditional
UFP-trees is as follows. First, the algorithm mines frequent itemsets con-
taining g. Second, it mines frequent itemsets containing d but not g. Third,
it mines frequent itemsets containing c but neither d nor g. This pattern is
repeated until it mines frequent itemsets containing only e. When we are min-
ing frequent itemsets containing item d, we first compute the upper bound of
the expected support of each itemset (e.g., (e, d), (a, d), and(c, d)) with the
method described in Section 5.2.0, and form the locally frequent item list in
support descending order (e.g., {c, e}). Next, the algorithm traverses the UFP-
tree by following the node-links of item d again to get the locally frequent
itemset information in each path which forms a conditional transaction. We
insert the conditional transaction into the conditional UFP-tree with respect to
item d. After that, we will repeat the above steps to this conditional UFP-tree
of item d, which is the same as the depth-first search in [18].

As we have seen from Observation 2.1, the expected probability of an item-
set in a given transaction is defined as the product of the corresponding proba-
bilities. This suggests that the expected support of an itemset decreases quickly
when its length increases. While the algorithm proposed in [31] is designed for
the deterministic case, we observe that it avoids recursively constructing con-
ditional FP-trees, and can therefore make good use of the geometric decrease
in the calculations of the expected support of itemsets. This is our rationale for
specifically picking the frequent itemset mining algorithm introduced in [31].
It constructs a one-level conditional FP-tree for each frequent item. After we
have found the locally frequent items for each conditional FP-tree, we do not
reorder the items, but we follow the global frequent item list. The reason for
doing so is for the generation of the trie tree. The algorithm in [31] also adopts
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the popular divide-and-conquer and pattern growth paradigm. Suppose the lo-
cally frequent items with respect to the prefix item ‘g’ are {e, a, c, d}. The
algorithm in [31] computes the itemsets containing ‘d’ first, then computes
those containing ‘c’ but no ‘d’, then those containing ‘a’ but no ‘c’ nor ‘d’, and
those containing ‘e’ only at the end. Then, the algorithm proceeds to generate
itemsets of increasing size sequentially, until the set of locally frequent items
becomes empty.
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Figure 15.2. An example of a trie tree

Determining Support with a Trie Tree. As mentioned above, the item-
sets mined so far are just candidate frequent itemsets and may not be really
frequent. In order to determine the real support of each candidate itemset, we
store the candidate frequent itemsets in a trie tree structure which is suitable
to search and locate an itemset. Figure 15.2 shows an example of a trie tree,
which contain a total of 14 nodes including the root node. Each path from the
root to a certain node represents an itemset, thus the trie tree in Figure 15.2
stores 13 itemsets. We can also see that along each path from the root to a leaf,
the indices of the items are sorted in decreasing order, and the child nodes of
each node are also sorted in decreasing order. This arrangement of the items in
the trie tree facilitates the search and locating of an itemset.

In order to obtain the exact support of these candidate itemsets stored in the
trie tree, we need to read in the transactions one by one, find the candidate
itemsets contained in each transaction and calculate the support according to
Definition 15.1 and Observation 2.1. Similar to [10], when we deal with a
transaction, we maintain two indices, one is for the transaction, the other points
to the node of the trie tree. The entire process is an index moving process. The
index for the trie tree is moved to find the item pointed by the index for the
transaction, and then the index for the transaction is moved to the next item.
Once an itemset is found to be contained in a transaction, its expected support
is summed according to Definition 15.1 and Observation 2.1. This process
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continues until the transaction index reaches the last item in the transaction or
the trie tree index reaches the last node of the tree.

5.3 Another Variation of the FP-growth Algorithm

Another variation of the FP-tree algorithm (known as UF-Tree) has been
proposed in [25]. Each node in the UF-Tree stores the following (i) An item
(ii) its expected support, and (iii) the number of occurrences with such expected
support for an item. In order to construct the UF-Tree, the algorithm scans the
database once, and accumulates the expected support of each item. It finds all
frequent items and sorts them in descending order of the accumulated expected
support. The algorithm then scans the database a second time, and inserts
each transaction into the UF-Tree in similar fashion as the construction of the
FP-Tree. The main difference is that the new transaction is merged with a
child (or descendent) node of the root of the UF-Tree (at the highest support
level) only if the same item and the same expected support exist in both the
transaction and the child (or descendent) nodes. Such a UF-Tree possesses
the nice property that the occurrence count of a node is at least the sum of the
occurrence counts of its child (or descendent) nodes. The frequent patterns can
be mined from the UF-Tree by keeping track of the expected supports of the
itemsets, when forming the projected database for the different itemsets. These
expected supports can then be leveraged in order to find the frequent patterns.
A number of improvements have also been proposed in [25] in order to improve
the memory consumption and performance of the underlying algorithm.

6. A Comparative Study on Challenging Cases
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Figure 15.5. Runtime Comparison on T40I10D100K

In this section, we present the performance study for the extended classical
frequent pattern mining algorithms of Apriori, H-mine, and FP-growth. The
results for the low-existential probability case are well known and presented in
[32, 33]. We will study the more difficult case of high-existential probabilities
and show that the results are quite different in this case than those presented in
[32, 33]. This is because the overhead from the use of pruning techniques is
greater in this case than the advantages gained from using the approach. In the
following we will denote these revised algorithms by UApriori, UH-mine, and
UFP-growth, respectively. We will compare their performance with the state-
of-the-art frequent itemset mining algorithm for uncertain data sets, which is
the DP approach proposed in chapter [33]. We implemented one of the DP
methods proposed in [33] and denote it by UCP-Apriori. The UCP-Apriori
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Figure 15.7. Memory Comparison on kosarak

integrates a pruning method called CP with the Apriori frequent itemset mining
framework. The experiments were conducted on a machine with 2.66GHz
CPU and 2G main memory installed. The operating system is GNU/Linux.

Four data sets were used in the experiments. The first two datasets, Con-
nect4 and kosarak, are real datasets which were downloaded from the FIMI
repository.† The Connect4 data is a very dense data set with 67,000 relatively
coherent transactions, and each transaction contains 43 items. kosarak is a
really sparse data set containing 990,980 transactions. The other two data
sets, T40I10D100K and T25I15D320k, were generated using the IBM syn-

†URL: http://fimi.cs.helsinki.fi/data/
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Figure 15.8. Memory Comparison on T40I10D100K

thetic data set generator‡ which was discussed in the Apriori paper [8]. These
two data sets contain 100,000 and 320,000 transactions respectively. Accord-
ing to the notation discussed in [8], the parameters used for generating data
sets include T (for the average transactions), I (for the maximum potential
items per transaction), and D (for the number of transactions in the data set).
For example, the data set T25I15D320k has an average transaction size of 25,
an average maximal potentially frequent itemset size of 15, and 320K records.
In Connect4 and T40I10D100K, there are numerous long frequent itemsets,
while in kosarak the short frequent itemsets dominate the majority. As the sup-
port threshold goes down, Connect4, kosarak and T40I10D100K all contain a
large number of long frequent itemsets as well as some short ones. Thus, the
choice of different data sets was designed to test the algorithms in different
scenarios.

We note that these are deterministic data sets. In order to obtain uncertain
data sets, we introduced the uncertainty to each item in these data sets. We
allocated a relatively high probability to each item in the data sets in order
to allow the generation of longer itemsets. We assume that the uncertainty
of those items follows the normal distribution N(µ, σ). The value of µ was
independently and randomly generated in the range of [0.87, 0.99] for each
item in each transaction, while the value of σ was generated in the same way
but in the range of [1/21, 1/12]. We generated a number between 0 and 1 for
every item according to its randomly given distribution.

As discussed in Section 5.2.0, we implemented two variants of the UFP-
growth algorithm for uncertain data mining. In the following we denote the

‡URL: http:miles.cnuce.cnr.it/∼palmeri/datam/DCI/datasets.php.
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variant of UFP-growth which recursively constructs all levels of conditional
UFP-trees on uncertain data by UFP-tree, while we denote the other one which
only constructs the first-level UFP-trees by UCFP-tree. In the experiments, we
ran these algorithms under different support levels to compare their efficiency
for data sets Connect4, kosarak, and T40I10D100K.

6.1 Performance Comparison

In the following, we illustrate the performance comparison of the five algo-
rithms in terms of runtime and memory consumed on three data sets of Con-
nect4, kosarak, and T40I10D100K, with varying support thresholds. In the
uncertain case, memory consumption is an especially important resource be-
cause of the additional information about probabilistic behavior which needs to
be stored. In resource-constrained hardware, memory-consumption may even
decide the range in which a given algorithm may be used. In such cases, mem-
ory consumption may be an even more important measure than running time.
Therefore, we will test the memory consumption in addition to efficiency. Fig-
ures 6 to 15.4 illustrate the runtime comparison results, while Figures 15.5 to
15.7 show the memory usage comparison on these three data sets. We will see
that different algorithms provide the best performance with the use of different
measures. Our broad observation is that UH-mine is the only algorithm which
performs robustly for all measures over all data sets, whereas the variations of
candidate generate-and-test also perform quite well, especially in terms of run-
ning time. This would suggest that UH-mine is the most practical algorithm to
use in a wide variety of scenarios.

Connect4 is a dense data set. Figures 6 and 15.5 show the runtime and mem-
ory consumption of UApriori, UCP-Apriori, UH-mine, UFP-tree, and UCFP-
tree on this data set. UApriori and UH-mine provide the fastest performance
at different support thresholds, whereas UH-mine provides the best memory
consumption across all thresholds. Thus, the UH-mine algorithm performs
robustly on both measures. UFP-tree and UCFP-tree are the slowest. UCP-
Apriori [33] is slower than our version of the Apriori algorithm, which is de-
noted by UApriori. This is because the method for candidate pruning in UCP-
Apriori algorithm is not very efficient and only introduces additional overhead,
unless the uncertainty probabilities are set too low as in [33]. However, low
uncertainty probabilities are an uninteresting case, since the data will no longer
contain long frequent patterns (because of the multiplicative behavior of prob-
abilities and its impact on the expected support), and most algorithms will
behave efficiently. It is particularly interesting that the uncertain extension of
most deterministic algorithms can perform quite well, whereas the extensions
to the well known FP-Tree algorithms do not work well at all. We traced the
running process of UFP-tree and UCFP-tree and found that considerable time
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is spent on the last step of eliminating false positives. Furthermore, in most
paths in the UFP-tree, the probabilistic information for thousands of transac-
tions need to be stored, and the concise behavior of the deterministic case is
lost. It is this concise behavior which provides the great effectiveness of this
technique in the deterministic case, and the loss of this property in the prob-
abilistic case is an important observation from the perspective of algorithmic
design. In comparison to the UFP-tree, the UCFP-tree does not need to build
all levels of conditional UFP-trees recursively, and it only needs to mine all fre-
quent itemsets in one-level of conditional UFP-tree. Thus, it performs better
than UFP-tree.

An important resource in the uncertain case is memory consumption. This
is more important in the uncertain case as compared to deterministic data, be-
cause of the additional requirements created by probabilistic data. Therefore,
in resource constrained hardware, memory-consumption can even dictate the
range within which a given algorithm may be used. Figure 15.5 illustrates the
comparison of the memory consumption on Connect4. In this case, the behav-
ior of UH-Mine is significantly superior to the other algorithms. As UApriori
needs to store a large number of candidate itemsets, UApriori consumes more
memory than UH-mine which outputs those mined frequent itemsets on the
fly. Connect4 is a relatively coherent data set, and so it is more likely for
transactions to share the same prefix path when inserting into the UFP-tree.
Thus, it gets the highest compression ratio among all the data sets. However,
because the UFP-tree stores uncertainty information, its memory consumption
is greater than UApriori. Furthermore, as the support threshold goes down,
it generates too many candidate itemsets. This leads to the sharp increase of
memory usage.

Data set kosarak is sparse and therefore, the tree like enumeration of the
underlying itemsets show a bushy structure. As shown in figure 15.3, both
UApriori and UH-mine perform very well on the kosarak data set. In figure
15.3, the Y-axis is in logarithmic scale. UCP-Apriori runs slightly slower than
UApriori. UFP-tree and UCFP-tree do not scale well with the decrease of the
support threshold. For data set kosarak, the UFP-tree is also bushy and large.
When the support is 0.0003, UCFP-tree costs too much time on kosarak for the
reason that the one-level conditional UFP-trees are still large. For UFP-trees,
too many recursively constructed conditional UFP-trees and the large number
of false positives consume too much memory.

Figure 15.6 shows the comparison of memory consumed by these algo-
rithms on kosarak. As the support threshold decreases, the UFP-trees con-
structed become large and candidate itemsets generated for UFP-tree and
UCFP-tree increase quickly, and thus the memory usage increases fast. For
UApriori, the memory consumed for storing candidate frequent itemsets in-
creases rapidly and surpasses UH-mine which only holds the H-struct when
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the support threshold becomes relatively low. The UH-mine maintains its ro-
bustness in terms of memory consumption across all datasets, and this is a
particularly important property of the algorithm.

Data set T40I10D100K is a synthetic data set containing abundant mixtures
of short itemsets and long itemsets. Thus, it is a good data set for testing the
behavior of the algorithms when the itemsets cannot be perfectly characterized
to show any particular pattern. In this case, the UH-mine is significantly supe-
rior to all algorithms both in terms of running time and memory usage. We find
that as the support threshold decreases, the gap between UH-mine and UApri-
ori becomes quite large. We note that since the Y -axis in Figure 15.4 is in a
logarithm scale of 5, the performance difference between the two algorithms is
much greater than might seem visually. As shown in Figure 15.7, the memory
cost for UApriori running on T40I10D100K increases dramatically when the
support threshold decrease below 0.6%. That is because the number of fre-
quent itemsets increases rapidly with reduction in support. UCP-Apriori is a
little slower than UApriori and they consumes similar volume of memory.

According to our experiments on Connect4, kosarak and T40I10D100K
data sets, UApriori and UH-mine are both efficient in mining frequent item-
sets. Both algorithms run much faster than UFP-tree and UCFP-tree, especially
when the support threshold is pretty low. However, with the support level de-
creases, the number of frequent itemsets increases exponentially, which results
in sharp increase of the memory cost. UH-mine is the only algorithm which
shows robustness with respect to both efficiency and memory usage. The rea-
son that the FP-growth algorithm is not suitable to be adapted to mine uncertain
data sets lies in compressed structure which is not well suited for probabilistic
data. UCP-Apriori [33] runs a little slower than UApriori on the three data sets.
The memory cost for UCP-Apriori is almost the same as that for UApriori, and
therefore UApriori is a more robust algorithm that UCP-Apriori on the whole.

6.2 Scalability Comparison

To test the scalability of UApriori, UH-mine, UFP-tree, and UCFP-tree
with respect to the number of transactions, we used the synthetic data set
T25I15D320k. It contains 320,000 transactions and a random subset of these
is used in order to test scalability. The support threshold is set to 0.5%. The
results in terms of running time and memory usage are presented in Figures
15.9 and 15.10 respectively.

Figure 15.9 shows that all these algorithms have linear scalability in terms
of running time against the number of transactions varying from 20k to 320k.
Among them, UH-mine, UApriori, and UCP-Apriori have much better perfor-
mance than UFP-tree and UCFP-tree, and among all the algorithms, H-mine
has the best performance. For example, when the number of transactions is
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Figure 15.9. Scalability Comparison in terms of runtime

20k, the running times for UH-mine, UApriori, UCP-Apriori, UFP-tree, and
UCFP-tree are 1 second, 2.41 seconds, 2.58 seconds, 10.76 seconds, and 16.49
seconds, respectively.

 0

 10

 20

 30

 40

 50

 20  40  80  160  320

m
e
m

o
ry

(i
n
 %

 o
f 

2
G

)

Number of Transactions(K)

UCP-Apriori
UApriori

UH-mine
UFP-tree

UCFP-tree

Figure 15.10. Scalability Comparison in terms of Memory

In Figure 15.10, all algorithms shows linear scalability in terms of memory
usage. The curves denoted for UFP-tree and UCFP-tree almost coincide, and
so do the curves denoted for UApriori and UCP-Apriori. Both UApriori and
UH-mine scale much better than UFP-tree and UCFP-tree. UH-mine algorithm
scales better than any of the algorithms. Thus, the UH-mine algorithms shows
the best scalability both in terms of running time and memory usage.
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7. Generalization to the Possible Worlds Model

The frequent pattern mining algorithms discussed in the previous section
considered the case of transactions in which each item has an independent
probability of being present or absent in a transaction. While this scenario can
be useful in a variety of settings, a more power model is the possible worlds
model in which the probability of presence or absence of items in a given tuple
can influence one another. The cost of using this more powerful model is that
we have a more limited functionality in terms of the information we can dis-
cover from the data. Unlike all the algorithms discussed in previous sections,
we can only determine frequent 1-items in the data. Thus, this is a different
model for representation of uncertain transactions which is more powerful in
some ways and less powerful in others.

In this model, instead of transactions, we have a set of x-tuples. Each x-
tuple consists of a bag of items with mutually exclusive probabilities of pres-
ence. For any item t and x-tuple T , we assume that the probability of presence
of t in T is p(t, T ). Furthermore, T can contain at most one time. The prob-
ability that T contains exactly one item is given by

∑
t∈T p(t, T ) ≤ 1. The

uncertain data is specified by using a bunch of x-tuples denoted by T1 . . . Tm.
It is assumed that the behavior among different x-tuples is independent of one
another. By using different kinds of specifications of T1 . . . Tm, it is possible
to simulate a variety of real-world scenarios. While this makes the specifi-
cation problem more general, we note that each x-tuple can contain a final
probabilistic instantiation only one item. A possible world W corresponds to
a combination of instantiations of the different x-tuples. The probability of a
particular world is given by the product of the probabilities of the correspond-
ing x-tuples. Note that an item can be present multiple times in the data, since
it can be drawn from multiple x-tuples. Furthermore, the size of the database
may also vary since some of the x-tuples may contribute no item at all.

As in the case of frequent pattern mining it is possible to compute the ex-
pected frequency of presence of a given item. We can define an item to be a φ-
expected heavy hitter, if its expected multiplicity exceeds φ times the expected
size of the database. However, the computation of expected frequency seems
to ignore the internal structure of the data. For example, an item may not have
very high multiplicity, but may be present in the database a certain number of
times with very high probability because of how the tuples are structured. In
order to provide greater generality to the queries, we can define probabilistic
heavy-hitters with the use of a multiplicity parameter φ as well as a proba-
bilistic parameter τ . The use of two parameters provides greater generality in
exploring different scenarios.
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Definition 15.9 An item t is said to be a (φ, τ)-heavy hitter, if its multi-
plicity is at least a fraction φ with probability at least τ across all possible
worlds.

The work in [34] presents two different algorithms. The first algorithm is an
offline algorithm which runs in polynomial time and uses dynamic program-
ming. The second algorithm works on data streams and uses sampling. The
offline algorithm creates the two dimensional tableBt[i, j] for the item t. Thus,
the algorithm is designed as a verification algorithm to the binary problem of
whether or not the item t is a (φ, τ )-heavy hitter. The entryBt[i, j] denotes the
probability that the item t appears i times in the first j x-tuples of the database.
We note that Bt[i, j] can be expressed inductively in terms of Bt[i, j − 1] and
Bt[i − 1, j − 1] depending upon whether or not the jth item is t. This forms
the dynamic programming recursion. Similarly, we can also compute Bt[i, j]
which computes the probability that any item other than t occurs i times in the
first j x-tuples of the database. Then, for a database containingm x-tuples, the
overall probability L can can be computed as follows:

L =

m∑

i=1

Bt[i,m]




⌊(1−φ)/φ⌋·i∑

j=1

Bt[j,m]



 (15.6)

We note that the overall algorithm requires O(m2) space and time. Note that
since we may need to use this approach for each item, this may lead to a fairly
large running time, when tested across the unverse of n items. The work in
[34] also proposes a pruning condition which provides an upper bound to the
probability that the item occurs in a fraction φ of the database. This allows us
to exclude many items as (φ, τ )-heavy hitters. This dramatically speeds up the
algorithm. We refer the reader to [34] for details of this speedup, as well as the
details of the techniques used for streaming algorithms.

8. Discussion and Conclusions

In this chapter, we study the problem of frequent patten mining of uncertain
data sets. We present several algorithms for frequent pattern mining proposed
by other authors, and also present some novel extensions. We note that the
uncertain case has quite different trade-offs from the deterministic case because
of the inclusion of probability information. As a result, the algorithms do
not show similar relative behavior as their deterministic counterparts. This
is especially the case when most of the items of high relative frequencies of
presence.

As mentioned in [18], the FP-growth method is efficient and scalable, es-
pecially for dense data sets. However, the natural extensions to uncertain data
behave quite differently. There are two challenges to the extension of the FP-
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tree based approach to the uncertain case. First, the compression properties
of the FP-Tree are lost in the uncertain case. Second, a large number of false
positives are generated, and the elimination of such candidates further affects
the efficiency negatively.

As shown in our experiments, UH-mine and UApriori algorithms are effi-
cient and scalable on mining frequent itemsets for uncertain data sets. UH-
mine is an algorithm which divides the search space and employs the pattern-
growth paradigm, which can avoid generating a large number of candidate
itemsets. Both UCP-Apriori [33] and UApriori are extended from the well-
known Apriori algorithm. The UCP-Apriori algorithm applies a candidate
pruning method during the mining process. According to our performance
study, the pruning method proposed for UCP-Apriori results in greater over-
head than the efficiency it provides in the most challenging scenarios where
uncertainty probabilities are high and long patterns are present. The UH-mine
algorithm is especially useful, because it uses the pattern growth paradigm, but
does so without using the FP-tree structure which does not extend well to the
uncertain case. This also reduces the memory requirements drastically. The
UH-mine algorithm proposed in this chapter provides the best trade-offs both
in terms of running time and memory usage.
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