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Abstract. In recent years, data streams have become ubiquitous in a
variety of applications because of advances in hardware technology. Since
data streams may be generated by applications which are time-changing
in nature, it is often desirable to explore the underlying changing trends
in the data. In this paper, we will explore and survey some of our recent
methods for change detection. In particular, we will study methods for
change detection which use clustering in order to provide a concise un-
derstanding of the underlying trends. We discuss our recent techniques
which use micro-clustering in order to diagnose the changes in the un-
derlying data. We also discuss the extension of this method to text and
categorical data sets as well community detection in graph data streams.

1 Introduction

The results of many data stream mining applications such as clustering and clas-
sification [3,6,23] are affected by the changes in the underlying data. In many
applications, change detection is a critical task in order to understand the nature
of the underlying data. In many applications, it is desirable to have a concise
description of the changes in the underlying data [1,2,9,14,15,23]. This can then
be leveraged in order to make changes in the underlying task. A natural choice
for creating concise descriptions of the change is the method of clustering. In
this paper, we will examine a number of our recent techniques for change diag-
nosis of streams which utilize clustering as an approach. In particular, we will
examine the method of micro-clustering, which can be used to examine changes
in quantitative, categorical, or text data. We will also examine the technique of
community detection in graph data streams.

The fast nature of data streams results in several constraints in their ap-
plicability to data mining tasks. For example, it means that they cannot be
re-examined in the course of their computation. Therefore, all algorithms need
to be executed in only one pass of the data. Clustering is a natural choice for
summarizing the evolution of most kinds of data streams [3,23], since it pro-
vides a conduit for summarization of the data. These summaries can be used
for a variety of tasks which depend upon the change diagnosis. We note that a
different method for change diagnosis is discussed in [1], which provides visual
summaries of the changing trends in the data. This can be very helpful for a
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variety of data mining tasks. In other applications in which the change needs to
be reported in the context of a particular kind of segmentation, it is also helpful
to use clustering for summarization methods. This paper will concentrate on
such techniques.

One important fact about change detection applications is that most users
apply these techniques only in the context of user-specific horizons. For example,
a business analyst may wish to determine the changes in the data over a period
of days, months, or years. This creates a natural challenge since a data stream
does not allow the natural flexibility of re-examining the previous portions of
the data. In this context, the use of clustering in conjunction with a pyramidal
time frame can be very useful. The concept of the pyramid time frame has been
discussed in [3], and turns out to be very useful for a number of applications.

The methods discussed in this paper are applicable to a wide variety of data
types such as text, categorical data, and quantitative data. We will discuss the
algorithms and methods in detail for each case. We will also discuss the extension
of the method to graph data streams and the use of the technique for community
detection and evolution.

This paper is organized as follows. In the next section, we will discuss the
overall stream summarization framework, and its use for quantitative change
detection. We will also provide a specific example of an intrusion detection ap-
plication. In section 3, we will discuss how the technique can be used for text and
categorical data. In section 4, we will discuss the use of the method for commu-
nity detection and evolution. Section 5 discusses the conclusions and summary.

2 Micro-clustering and Quantitative Change Detection

The method of micro-clustering uses an extension of the cluster feature method
discusses in [26]. Since data streams have a temporal component, we also need
to keep track of the time stamps of arriving data points. In addition, we need to
store the data periodically in a systematic way in order to access it later for the
purposes of change diagnosis. Therefore, the data needs to be saved periodically
on disk. A key issue is the choice of time periods over which the data should be
saved. n this section, we will discuss both issue.

In order to store the current state of the clusters, we use a summary statistical
representation which are referred to as microclusters [3]. The summary informa-
tion in the microclusters is used by an offline component which is dependent
upon a wide variety of user inputs such as the time horizon or the granularity of
clustering. In order to define the micro-clusters, we will introduce a few concepts.
It is assumed that the data stream consists of a set of multi-dimensional records
X1 . . . Xk . . . arriving at time stamps T1 . . . Tk . . .. Each Xi is a multi-dimensional
record containing d dimensions which are denoted by Xi = (x1

i . . . xd
i ).

We will first begin by defining the concept of microclusters and pyramidal
time frame more precisely.

Definition 1. A microcluster for a set of d-dimensional points Xi1 . . . Xin with
time stamps Ti1 . . . Tin is the (2 · d + 3) tuple (CF2x, CF1x, CF2t, CF1t, n),
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wherein CF2x and CF1x each correspond to a vector of d entries. The definition
of each of these entries is as follows:

• For each dimension, the sum of the squares of the data values is maintained
in CF2x. Thus, CF2x contains d values. The p-th entry of CF2x is equal to∑n

j=1(x
p
ij

)2.
• For each dimension, the sum of the data values is maintained in CF1x.

Thus, CF1x contains d values. The p-th entry of CF1x is equal to
∑n

j=1 xp
ij
.

• The sum of the squares of the time stamps Ti1 . . . Tin is maintained in CF2t.
• The sum of the time stamps Ti1 . . . Tin is maintained in CF1t.
• The number of data points is maintained in n.

We note that the above definition of microcluster maintains similar summary
information as the cluster feature vector of [26], except for the additional infor-
mation about time stamps. We will refer to this temporal extension of the cluster
feature vector for a set of points C by CFT (C). We note that the micro-clusters
have a number of properties such as the additivity property, and the linear update
property which makes them particularly suited to data streams:

– The additivity property ensures that it is possible to compute the micro-
cluster statistics over a specific time horizon in order to determine the nature
of the changes in the data.

– The linear update property is a direct consequence of the additivity property.
Since each additional point can be incorporated into the cluster statistics by
using additive operations pver the different dimensions, it ensures that the
time required to maintain micro-cluster statistics increases linearly with the
number of data points and dimensionality. This is an important property,
since it ensures that the micro-cluster statistics are efficiently updateable.

Since recent data is more relevant than historical data, it is desirable to use a
layered approach to saving the data at specific snapshots. For this purpose, we
divide the snapshots into different orders, which follow the below rules:

– Snapshots of order i are stored at time intervals which are divisible by αi.
– The last α + 1 snapshots of order i are always stored.

We make the following observations about this pattern of storage:

• For a data stream, the maximum order of any snapshot stored at T time
units since the beginning of the stream mining process is logα(T ).

• For a data stream the maximum number of snapshots maintained at T time
units since the beginning of the stream mining process is (α + 1) · logα(T ).

• For any user specified time window of h, at least one stored snapshot can be
found within 2 · h units of the current time.

While the first two facts are easy to confirm, the last needs to be validated
explicitly. A proof of the last point is provided in [3]. We also note that the bound
(α + 1) · logα(T ) is an upper bound, since there is some overlapping between
snapshots of different orders. In practice, only one copy of the snapshots need
be maintained when there is overlap between snapshots of different orders.
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The maintenance of snapshots is a fairly straightforward task. We only need to
maintain the micro-cluster statistics dynamically, and update the cluster centers
when necessary. In each iteration, we determine the closest micro-cluster center
and assign the incoming data point to it. The cluster statistics are updated using
this incoming data point. Because of the additivity property, this is a straight-
forward operation. The detailed clustering maintenance algorithm is discussed
in [3]. Once the cluster statistics have been updated, we can periodically store
them using the pyramidal time frame. The stored snapshots can then be used in
order to determine the summary of the data evolution.

In the work of [1] and [12], the problem of change detection has been stud-
ied from the point of view of understanding how the data characteristics have
changed over time. However, these papers do not deal with the problem of study-
ing the changes in clusters over time. In the context of the clustering problem,
such evolution analysis also has significant importance. For example, an analyst
may wish to know how the clusters have changed over the last quarter, the last
year, the last decade and so on. For this purpose, the user needs to input a few
parameters to the algorithm:

• The two clock times t1 and t2 over which the clusters need to be compared.
It is assumed that t2 > t1. In many practical scenarios, t2 is the current
clock time.

• The time horizon h over which the clusters are computed. This means that
the clusters created by the data arriving between (t2 − h, t2) are compared
to those created by the data arriving between (t1 − h, t1).

Another important issue is that of deciding how to present the changes in the
clusters to a user, so as to make the results appealing from an intuitive point of
view. We present the changes occurring in the clusters in terms of the following
broad objectives:

• Are there new clusters in the data at time t2 which were not present at
time t1?

• Have some of the original clusters been lost because of changes in the be-
havior of the stream?

• Have some of the original clusters at time t1 shifted in position and nature
because of changes in the data?

• Find the nature of the changes in the clusters at time t1 till the time t2.
• Find all the transient clusters from t1 to time t2. The transient clusters are

defined as those which were born after time t1, but expired before time t2.

We note that the micro-cluster maintenance algorithm maintains the idlists
which are useful for tracking cluster information. The first step is to compute
N (t1, h) and N (t2, h) as discussed in the previous section. Therefore, we divide
the micro-clusters in N (t1, h) ∪ N (t2, h) into three categories:

• Micro-clusters in N (t2, h) for which none of the ids on the corresponding
idlist are present in N (t1, h). These are new micro-clusters which were cre-
ated at some time in the interval (t1, t2). We will denote this set of micro-
clusters by Madded(t1, t2).
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• Micro-clusters in N (t1, h) for which none of the corresponding ids are present
in N (t2, h). Thus, these micro-clusters were deleted in the interval (t1, t2).
We will denote this set of micro-clusters by Mdeleted(t1, t2).

• Micro-clusters in N (t2, h) for which some or all of the ids on the correspond-
ing idlist are present in the idlists corresponding to the micro-clusters in
N (t1, h). Such micro-clusters were at least partially created before time t1,
but have been modified since then. We will denote this set of micro-clusters
by Mretained(t1, t2).

The macro-cluster creation algorithm is then separately applied to each of
this set of micro-clusters to create a new set of higher level clusters. The macro-
clusters created from Madded(t1, t2) and Mdeleted(t1, t2) have clear significance
in terms of clusters added to or removed from the data stream. The micro-
clusters in Mretained(t1, t2) correspond to those portions of the stream which
have not changed very significantly in this period. When a very large fraction
of the data belongs to Mretained(t1, t2), this is a sign that the stream is quite
stable over that time period. In many cases, the clusters in Mretained could
change significantly over time. In such cases, we can utilize the statistics of the
underlying data in order to calculate the shift in the corresponding centroid.
This shift can be determined by computing the centroid of Mretained(t1, t2),
and comparing it to S(t1).

The process of finding transient clusters is slightly more complicated. In this
case, we find the micro-clusters at each snapshot between t1 and t2. Let us denote
this set by U(t1, t2). This is the universal set of micro-clusters between t1 and t2.
We also find the micro-clusters which are present at either t1 or t2. This set is
essentially equivalent to N (t1, t1)∪N (t2, t2). Any micro-cluster which is present
in U(t1, t2), but which is not present in N (t1, t1) ∪ N (t2, t2). In other words, we
report the set U(t1, t2) − N (t1, t1) − N (t2, t2) as the final result.

We also tested the micro-clustering method for evolution analysis on the net-
work intrusion data set in [3]. This data set was obtained from the UCI ma-
chine learning repository [27]. First, by comparing the data distribution for t1 =
29, t2 = 30, h = 1 CluStream found 3 micro-clusters (8 points) in Madded(t1, t2),
1 micro-cluster (1 point) in Mdeleted(t1, t2), and 22 micro-clusters (192 points) in
Mretained(t1, t2). This shows that only 0.5% of all the connections in (28, 29) dis-
appeared and only 4% were added in (29, 30). By checking the original data set,
we find that all points in Madded(t1, t2) and Mdeleted(t1, t2) are normal connec-
tions, but are outliers because of some particular feature such as the number of
bytes of data transmitted. The fact that almost all the points in this case belong
to Mretained(t1, t2) indicates that the data distributions in these two windows
are very similar. This happens because there are no attacks in this time period.

More interestingly, the data points falling into Madded(t1, t2) or Mdeleted(t1, t2)
are those which have evolved significantly. These usually correspond to newly ar-
rived or faded attacks respectively. Here are two examples: (1) During the period
(34, 35), all data points correspond to normal connections, whereas during (39, 40)
all data points belong to smurf attacks. By applying our change analysis procedure
for t1 = 35, t2 = 40, h = 1, it shows that 99% of the smurf connections (i.e., 198
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connections) fall into two Madded(t1, t2) micro-clusters, and 99% of the normal
connections fall into 21 Mdeleted(t1, t2) micro-clusters. This means these normal
connections are non-existent during (39, 40); (2) By applying the change analysis
procedure for t1 = 640, t2 = 1280, h = 16, we found that all the data points during
(1264, 1280) belong to one Madded(t1, t2) micro-cluster, and all the data points in
(624, 640) belong to one Mdeleted(t1, t2) micro-cluster. By checking the original
labeled data set, we found that all the connections during (1264, 1280) are smurf
attacks and all the connections during (624, 640) are neptune attacks. In general,
the micro-clustering method may be used to perform concise summarization and
evolution analysis of data streams. This methodology can also be extended to cat-
egorical data. We discuss this method in the next section.

3 Change Detection for Text and Categorical Data

The problem of change detection for text data has been studied in [22], whereas
some techniques for summarization of categorical data have been proposed in
[16]. In this paper, we will use summarization as a tool for comprehensive change
detection of text and categorical data. As in the case of quantitative data, we
need to maintain a statistical representation of the summary structure of the
data. We will refer to such groups as cluster droplets. This is analogous to the
summary cluster feature statistics or micro-cluster statistics stored in [3,26]. We
will discuss and define the cluster droplet differently for the case of text and
categorical data streams respectively. For generality, we assume that a weight
is associated with each data point. In some applications, this may be desirable,
when different data points have different levels of importance, as in th ecase of a
temporal fade function. First, we will define the cluster droplet for the categorical
data domain:

Definition 2. A cluster droplet D(t, C) for a set of categorical data points C at
time t is referred to as a tuple (DF2, DF1, n, w(t), l), in which each tuple
component is defined as follows:

– The vector DF2 contains
∑

i∈{1...d},j∈{1,...d},i�=j vi · vj entries. For each pair
of dimensions, we maintain vi · vj values. We note that vi is number of
possible categorical values of dimension i and vj is the number of possible
values of dimension j. Thus, for each of the vi · vj categorical value pairs i
and j, we maintain the (weighted) counts of the number of points for each
value pair which are included in cluster C. In other words, for every possible
pair of categorical values of dimensions i and j, we maintain the weighted
number of points in the cluster in which these values co-occur.

– The vector DF1 contains
∑d

i=1 vi entries. For each i, we maintain a weighted
count of each of the vi possible values of categorical attribute i occurring in
the cluster.

– The entry n contains the number of data points in the cluster.
– The entry w(t) contains the sum of the weights of the data points at time t.

We note that the value w(t) is a function of the time t and decays with time
unless new data points are added to the droplet D(t).
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– The entry l contains the time stamp of the last time that a data point was
added to the cluster.

We note that the above definition of a droplet assumes a data set in which each
categorical attribute assumes a small number of possible values. (Thus, the value
of vi for each dimension i is relatively small.) However, in many cases, the data
might actually be somewhat sparse. In such cases, the values of vi could be
relatively large. In those instances, we use a sparse representation. Specifically,
for each pair of dimensions i and j, we maintain a list of the categorical value
pairs which have non-zero counts. In a second list, we store the actual counts
of these pairs. In many cases, this results in considerable savings of storage
space. For example, consider the dimension pairs i and j, which contain vi and
vj possible categorical values. Also, let us consider the case when bi ≤ vi and
bj ≤ vj of them have non-zero presence in the droplet. Thus, at most bi · bj

categorical attribute pairs will co-occur in the points in the cluster. We maintain
a list of these (at most) bij < bi · bj value pairs along with the corresponding
counts. This requires a storage of 3 · bij values. (Two entries are required for
the identities of the value pairs and one is required for the count.) We note that
if the number of distinct non-zero values bi and bj are substantially lower than
the number of possible non-zero values vi and vj respectively, then it may be
more economical to store 3 · bij values instead of vi ·vj entries. These correspond
to the list of categorical values which have non-zero presence together with the
corresponding weighted counts. Similarly, for the case of DF1, we only need to
maintain 2 · bi entries for each dimension i.

Next, we consider the case of the text data set which is an example of a
sparse numeric data set. This is because most documents contain only a small
fraction of the vocabulary with non-zero frequency. The only difference with the
categorical data domain is the way in which the underlying cluster droplets are
maintained.

Definition 3. A cluster droplet D(t, C) for a set of text data points C at time t
is defined to as a tuple (DF2, DF1, n, w(t), l). Each tuple component is defined
as follows:

– The vector DF2 contains 3 · wb · (wb − 1)/2 entries. Here wb is the number
of distinct words in the cluster C. For each pair of dimensions, we maintain
a list of the pairs of word ids with non-zero counts. We also maintained the
sum of the weighted counts for such word pairs.

– The vector DF1 contains 2 · wb entries. We maintain the identities of the
words with non-zero counts. In addition, we maintain the sum of the weighted
counts for each word occurring in the cluster.

– The entry n contains the number of data points in the cluster.
– The entry w(t) contains the sum of the weights of the data points at time t.

We note that the value w(t) is a function of the time t and decays with time
unless new data points are added to the droplet D(t).

– The entry l contains the time stamp of the last time that a data point was
added to the cluster.
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The concept of cluster droplet has some interesting properties that will be use-
ful during the maintenance process. These properties relate to the additivity
and decay behavior of the cluster droplet. As in the case of quantitative micro-
clustering, it is possible to perform the cluster droplet maintenance using an
incremental update algorithm. The methodology is examining the evolving clus-
ters can also be extended to this case. Details are discussed in [5] with an example
of its application to text and market basket data sets.

4 Online Community Evolution in Data Streams

In this section, we discuss the problem of detecting patterns of interaction among
a set of entities in a stream environment. Examples of such entities could be a set
of businesses which interact with one another, sets of co-authors in a dynamic
bibliography data base, or it could be the hyperlinks from web pages. In each of
these cases, the interaction among different entities can rapidly evolve over time.
A convenient way to model the entity interaction relationships is to view them
as graphs in which the nodes correspond to entities and the edges correspond
to the interactions among the nodes. The weights on these edges represent the
level of the interaction between the different participants. For example, in the
case when the nodes represent interacting entities in a business environment, the
weights on the edges among these entities could represent the volume of business
transactions. A community of interaction is defined to be a set of entities with
a high degree of interaction among the participants.

The problem of finding communities in dynamic and evolving graphs been
discussed in [10,11,17,19,20,21,24,25]. Since most of the current techniques are
designed for applications such as the web, they usually assume a gradually evolv-
ing model for the interaction. Such techniques are not very useful for a fast stream
environment in which the entities and their underlying relationships may quickly
evolve over time. In addition, it is important to provide a user the exploratory
capability to query for communities over different time horizons. Since individual
points in the data streams cannot be processed more than once, we propose a
framework which separates out the offline exploratory algorithms from the online
stream processing part. The online stream processing framework creates sum-
maries of the data which can then be further processed for exploratory querying.
Therefore, as in the case of micro-clustering, we focus on the use of an Online
Analytical Processing (OLAP) approach for providing offline exploratory capa-
bilities to users in performing change detection across communities of interest
over different time horizons.

Some examples of exploratory queries in which a user may be interested are
as follows:

(1) Find the communities with substantial increase in interaction level in the
interval (t − h, t). We refer to such communities as expanding communities.
(2) Find the communities with substantial decrease in interaction level in the
interval (t − h, t) We refer to such communities as contracting communities.
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(3) Find the communities with the most stable interaction level in the interval
(t − h, t).

We note that the process of finding an emerging or contracting community
needs to be carefully designed in order to normalize for the behavior of the
community evolution over different time horizons. For example, consider a data
stream in which two entities n1 and n2 share a high level of interaction in the
period (t − h, t). This alone does not mean that the interaction level between n1
and n2 is stable especially if these entities had a even higher level of interaction in
the previous period (t−2·h, t−h). Thus, a careful model needs to be constructed
which tracks the behavior of the interaction graph over different time horizons
in order to understand the nature of the change. In he next subsection we will
discuss the process of online summarization of data streams, and leveraging this
process for the purpose of data stream mining.

4.1 Online Summarization of Graphical Data Streams

In this subsection, we will discuss the overall interaction model among the dif-
ferent entities. We will also discuss the process of online summarization of the
data stream. This interaction model is stored as a graph G = (N, A), in which
N denotes the set of nodes, and A denotes the set of edges. Each node i ∈ N
corresponds to an entity. The edge set A consists of edges (i, j), such that i and j
are nodes drawn from N . Each edge (i, j) represents an interaction between the
entities i and j. Each edge (i, j) also has a weight wij(t) associated with it. This
weight corresponds to the number of interactions between the entities i and j.
For example, when the interaction model represents a bibliography database, the
nodes could represent the authors and the weights on the edges could represent
the number of publications on which the corresponding authors occur together
as co-authors. As new publications are added to the database the corresponding
weights on the individual edges are modified. It is also possible for new nodes
to be added to the data as new authors are added to the original mix. In this
particular example, the weight on each edge increases by one, each time a new
co-authorship relation is added to the database. However, in many applications
such as those involving business interaction, this weight added in each iteration
can be arbitrary, and in some cases even negative.

In order to model the corresponding stream for this interaction model, we
assume that a current graph G(t) = (N(t), A(t)) exists which represents the
history of interactions at time t. At time (t + 1) new additions may occur to the
graph G(t). Subsequently, each new arrival to the stream contains two elements:

– An edge (i, j) corresponding to the two entities between whom the interac-
tion has taken place.

– An incremental weight δwij(t) illustrating the additional interaction which
has taken place between entities i and j at time t.

We refer to the above pair of elements as representative of an interaction event.
We note that the nodes i, j, or the edge (i, j) may not be present in N(t) and
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A(t) respectively. In such a case, the node set N(t) and edge set A(t) need to
be modified to construct N(t + 1) and A(t + 1) respectively. In the event that
a given edge does not exist to begin with, the original weight of (i, j) in G(t) is
assumed to be zero. Also, in such a case, the value of the edge set A(t + 1) is
augmented as follows:

A(t + 1) = A(t) ∪ {(i, j)} (1)

In the event that either the nodes i or j are not present in N(t), the corresponding
node set needs to be augmented with the new node(s). Furthermore, the weight
of the edge (i, j) needs to be modified. If the edge (i, j) is new, then the weight
of edge (i, j) in G(t+1) is set to δwij . Otherwise, we add the incremental weight
δwij to the current weight of edge (i, j) in G(t). Therefore, we ave:

wij(t + 1) = wij(t) + δwij(t) (2)

We assume that the set of interaction events received at time t are denoted by
E(t). In each iteration, the stream maintenance algorithm adds the interaction
events in E(t) to G(t) in order to create G(t + 1). We refer to the process of
adding the events in E(t) to G(t) by the ⊕ operation. Therefore, we have:

G(t + 1) = G(t) ⊕ E(t) (3)

At each given moment in time, we maintain the current graph of interactions
G(t) in main memory. In addition, we periodically store the graph of interactions
on disk. We note that the amount of disk storage available may often be limited.
Therefore, it is desirable to store the graph of interactions in an efficient way
during the course of the stream arrival. We will refer to each storage of the
graph of interactions at a particular moment as a frame. Let us assume that the
storage limitation for the number of frames is denoted by S. In this case, one
possibility is to store the last S frames at uniform intervals of t′. The value of S
is determined by the storage space available. However, this is not a very effective
solution, since it means that a history of larger than S · t′ cannot be recalled.

One solution to this problem is to recognize that frames which are more stale
need not be stored at the same frequency as more recent frames. Let tc be the
current time, and tmin be the minimum granularity at which 0th tier snapshots
are stored. We divide the set of S frames into θ = log2(tc/tmin) tiers. The ith tier
contains snapshots which are separated by a distance of tmin ·2i−1. For each tier,
we store the last S/θ frames. This ensures that the total storage requirement
continues to be S. Whenever it is desirable to access the state of the interaction
graph for the time t, we simply have to find the frame which is temporally
closest to t. The graph from this temporally closest frame is utilized in order to
approximate the interaction graph at time t. The tiered nature of the storage
process ensures that it is possible to approximate recent frames to the same
degree of (percentage) accuracy than less recent frames. While this means that
the (absolute) approximation of stale frames is greater, this is quite satisfactory
fir a number of real scenarios. We make the following observations:

Lemma 1. Let h be a user-specified time window, and tc be the current time.
Then a snapshot exists at time ts, such that h/(1+θ/S) ≤ tc − ts ≤ (1+θ/S) ·h.
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Proof. This is an extension of the result in [6]. The proof is similar.

In order to understand the effectiveness of this simple methodology, let us con-
sider a simple example in which we store (a modest number of) S = 100, 000
frames for a stream over 10 years, in which the minimum granularity of storage
tmin is 1 second. We have intentionally chosen an extreme example (in terms
of the time period of the stream) together with a modest storage capability in
order to show the effectiveness of the approximation. In this case, the number
of tiers is given by θ = log2(10 ∗ 365 ∗ 24 ∗ 3600) ≈= 29. By substituting in
Lemma 1, we see that it is possible to find a snapshot which is between 99.97%
and 100.03% of the user specified value.

In order to improve the efficiency of edge storage further, we need to recognize
the fact that large portions of the graph continue to be identical over time.
Therefore, it is inefficient for the stream generation process to store the entire
graph on disk in each iteration. Rather, we store only incremental portions of
the graph on the disk. Specifically, let us consider the storage of the graph G(t)
for the ith tier at time t. Let the last time at which an (i + 1)th tier snapshot
was stored be denoted by t′. (If no snapshot of tier (i + 1) exists, then the value
of t′ is 0. We assume that G(0) is the null graph.) Then, we store the graph
F (t) = G(t) − G(t′) at time t. We note that the graph F (t) contains far fewer
edges than the original graph G(t). Therefore, it is more efficient to store F (t)
rather than G(t). Another observation is that a snapshot for the ith tier can be
reconstructed by summing the snapshots for all tiers larger than i.

Lemma 2. We assume that the highest tier is defined by m. Let ti be the time
at which the snapshot for tier i is stored. Let ti+1, ti+2 . . . tm be the last time
stamps of tiers (i + 1) . . .m (before ti) at which the snapshots are stored. Then
the current graph G(ti) at the time stamp ti is defined as follows:

G(ti) =
m∑

j=i

F (tj) (4)

Proof. This result can be proved easily by induction. We note that the definition
of F (·) implies that:

G(ti) − G(ti+1) = F (ti)
G(ti+1) − G(ti+2) = F (ti+1)

. . .

G(tm−1) − G(tm) = F (tm−1)
G(tm) − 0 = F (tm)

By summing the above equations, we obtain the desired result.

The above result implies that the graph at a snapshot for a particular tier can
be reconstructed by summing it with the snapshots at higher tiers. Since there
are at most θ = log2(S/tmin) tiers, it implies that the graph at a given time can
be reconstructed quite efficiently in a practical setting.
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4.2 Offline Construction and Processing of Differential Graphs

In this subsection, we will discuss the offline process of generating differential gra-
phs and their application to the evolution detection process. The differential graph
is generatedover a specific timehorizon (t1, t2) overwhich theuserwould like to test
the behavior of the data stream. The differential graph is defined over the interval
(t1, t2) and is defined as a fraction of the interactions over that interval by which
the level of interaction has changed during the interval (t1, t2). In order to generate
the differential graph, we first construct the normalized graph at the times t1 and
t2. The normalized graph G(t) = (N(t), A(t)) at time t is denoted by G(t), and
contains exactly the samenode and edge set, butwithdifferentweights. LetW (t) =∑

(i,j)∈A wij(t) be the sum of the weights over all edges in the graphG(t). Then, the

normalized weight wij(t) is defined as wij(t)/W (t). We note that the normalized
graph basically comprises the fraction of interactions over each edge.

Let t′1 be the last snapshot stored just before time t1 and t′2 be the snapshot
stored just before time t2. The first step is to construct the graphs G(t′1) and
G(t′2) at time periods t′1 and t′2 by adding the snapshots at the corresponding
tiers as defined by Lemma 2. Then we construct the normalized graph from the
graphs at times t′1 and t′2. The differential graph is constructed from the nor-
malized graph by subtracting out the corresponding edge weights in the original
normalized graphs. Therefore, the differential graph ΔG(t′1, t

′
2) basically con-

tains the same nodes and edges as G(t′2), except that the differential weight
Δwij(t′1, t′2) on the edge (i, j) is defined as follows:

Δwij(t′1, t
′
2) = wij(t′2) − wij(t′1) (5)

In the event that an edge (i, j) does not exist in the graph G(t′1), the value
of wij(t′1) is assumed to be zero. We note that because of the normalization
process, the differential weights on many of the edges may be negative. These
correspond to edges over which the interaction has reduced significantly during
the evolution process. For instance, in our example corresponding to a publica-
tion database, when the number of jointly authored publications reduces over
time, the corresponding weights in the differential graph are also negative.

Once the differential graph has been constructed, we would like to find clusters
of nodes which show a high level of evolution. It is a tricky issue to determine
the subgraphs which have a high level of evolution. A natural solution would
be find the clustered subgraphs with high weight edges. However, in a given
subgraph, some of the edges may have high positive weight while others may
have high negative weight. Therefore, such subgraphs correspond to the entity
relationships with high evolution, but they do not necessarily correspond to en-
tity relationships with the greatest increase or decrease in interaction level. In
order to find the community of interaction with the greatest increase in inter-
action level, we need to find subgraphs such that most interactions within that
subgraph have either a high positive or high negative weight. This is a much
more difficult problem than the pure vanilla problem of finding clusters within
the subgraph ΔG(t′1, t

′
2).
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4.3 Finding Evolving Communities

In this section, we will define the algorithm for finding evolution clusters in the
interaction graph based on the user defined horizon. The process of finding the
most effective clusters is greatly complicated by the fact that some of the edges
correspond to an increase in the evolution level, whereas other edges correspond
to a decrease in the evolution level. The edges corresponding to an increase in in-
teraction level are referred to as the positive edges, whereas those corresponding
to a reduction in the interaction level are referred to as the negative edges.

We design an algorithm which can effectively find subgraphs of positive or
negative edges by using a partitioning approach which tracks the positive and
negative subgraphs in a dynamic way. In this approach, we use a set of seed
nodes {n1 . . . nk} in order to create the clusters. Associated with each seed ni

is a partition of the data which is denoted by Ni. We also have a bias vector
B which contains |N | entries of +1, 0, or −1. The bias vector is an indicator
of the nature of the edges in the corresponding cluster. The algorithm utilizes
an iterative approach in which the clusters are constructed around these seed
nodes. The overall algorithm is illustrated in Figure 1. As illustrated in Figure
1, we first pick the k seeds randomly. Next, we enter an iterative loop in which
we refine the initial seeds by performing the following steps:

– We assign each nodes to one of the seeds. The process of assignment of an
entity node to a given seed node is quite tricky because of the fact that
we would like a given subgraph to represent either increasing or decreasing
communities. Therefore, we need to choose effective algorithms which can
compute the distances for each community in a different way. We will discuss
this process in detail slightly later. We note that the process of assignment
is sensitive to the nature of the bias in the node. The bias in the node could

Algorithm FindEvolvingCommunities(Graph: (N, A),
EdgeWeights: Δwij(t1, t2), NumberOfClusters: k);

begin
Randomly sample nodes n1 . . . nk as seeds;
Let B be the bias vector of length |N |;
Set each position in B to 0;
while not(termination criterion) do

begin
(N1 . . . Nk) =AssignNodes( N , B, {n1 . . . nk});
B =FindBias(N1 . . . Nk);
(N ′

1 . . . N ′
k) = RemoveNodes(N1 . . . Nk);

{ Assume that the removed nodes are null partitions }
(n1 . . . nk) =RecenterNodes(N1 . . . Nk);
end

end

Fig. 1. Finding Evolving Communities
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represent the fact that the cluster seeded by that node is likely to become
one of the following: (1) An Expanding Community (2) A Contracting Com-
munity (3) Neutral Bias (Initial State). Therefore, we associate a bias bit
with each seed node. This bias bit takes on the values of +1, or −1, de-
pending upon whether the node has the tendency to belong to an expanding
or contracting community. In the event that the bias is neutral, the value
of that bit is set to 0. We note that an expanding community corresponds
to positive edges, whereas a contracting community corresponds to negative
edges. The process of assignment results in k node sets which are denoted
by N1 . . . Nk. In the assignment process,we compute the distance of each
seed node to the different entities. Each entity is assigned to its closest seed
node. The algorithm for assignment of entities to seed nodes is denoted by
AssignNodes in Figure 1.

– Once the assignment step has been performed, we re-assess the bias of that
seed node. This is denoted by FindBias in Figure 1. The overall approach
in finding the bias is to determine whether the interactions in the commu-
nity attached to that seed node represent expansion or contraction. We will
discuss the details of this algorithm slightly later. The bias bit vector B is
returned by this procedure.

– Some of the seed nodes may not represent a coherent community of interac-
tion. These seed nodes may be removed by the community detection algo-
rithm. This process is achieved by the algorithm RemoveNodes. The new set
of nodes is denoted by N ′

1 . . . N ′
k. We note that each N ′

i is either Ni or null
depending upon whether or not that node was removed by the algorithm.

– The final step is to re-center the seeds within their particular subgraph. The
re-centering process essentially reassigns the seed node in a given subgraph
N ′

i to a more central point in it. In the event that N ′
i is a null partition, the

recentering process simply picks a random node in the graph as the corre-
sponding seed. Once the recentering process is performed, we can perform
the next iteration of the algorithm. The recentering procedure is denoted by
RecenterNodes in Figure 1. The new set of seeds n1 . . . nk are returned by
this algorithm.

4.4 Subroutines for Determination of the Communities

In the afore-mentioned discussion, we described the overall procedure for finding
the communities of interaction. In this section, we will discuss the details of the
subroutines which are required for determination of these communities. We will
first discuss the procedure AssignNodes of Figure 1. The process of assigning the
nodes to each of the centroids requires the use of the bias information stored in
the bias nodes. Note that if a seed node has positive bias, then it needs to be
ensured that the other nodes which are assigned to this seed node are related to
it by positive interactions. The opposite is true if the bias on the seed node is
negative. Finally, in the case of nodes with neutral bias, we simply need to find a
path with high absolute interaction level. In this case, the positivity or negativity
of the sign matters less than the corresponding absolute value. In order to achieve
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this goal, we define a bias sensitive distance function f(n1, n2, b) between two
nodes n1 and n2 for the bias bit b. For a given path P in the graph ΔG(t1, t2),
we define the average interaction level w(P ) as the sum of the interaction levels
on P divided by the number of edges on P . Therefore, we have:

w(P ) =
∑

(i,j)∈P

Δwij(t1, t2)/|P | (6)

We note that a path with high average positive weight corresponds to a set
of edges with increasing level of interaction. This can also be considered an
expanding community. The opposite is true of a path with high average negative
weight, which corresponds to a contracting community. Therefore, the value of
w(P ) is equal to the weight of the path divided by the number of edges on that
path. We also define the average absolute average interaction level w+(P ) as
follows:

w+(P ) =
∑

(i,j)∈P

|Δwij(t1, t2)|/|P | (7)

Note that the absolute interaction level does not have any bias towards a
positive or negative level of interaction. Once we have set up the definitions
of the path weights, we can also define the value of the interaction function
f(n1, n2, b). This interaction function is defined over all possible pairs of nodes
(n1, n2).

f(n1, n2, b) = Most positive value of w(P ) ∀ paths
P between n1 and n2 if b = 1
Modulus of most negative value of w(P )
∀ P between n1 and n2 if b = −1
Largest value of w+(P ) ∀ paths
P between n1 and n2 if b = 0

We note that the above interaction function is defined on the basis of the
sum of the interaction values over a given path. In some cases, this interaction
function can provide skewed results when the path lengths are long. This could
result in less effective partitioning of the communities. A different interaction
function is defined as the minimum interaction on the path between two entities.
However, the bias of the corresponding centroid on that path is used in order
to define the interaction function. This minimum interaction w(P ) is defined as
follows:

w(P ) =min(i,j)∈P max{Δwij(t1, t2), 0}
if b = 1

max(i,j)∈P min{Δwij(t1, t2), 0}
if b = −1

min(i,j)∈P |Δwij(t1, t2)|
if b = 0
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We note that the above mentioned function simply finds the minimum (absolute)
weight edge of the corresponding sign (depending on the bias) between the two
nodes. The corresponding interaction function f(n1, n2, b) is defined in the same
way as earlier. Henceforth, we will refer to the two above-defined functions as
the average-interaction function and minimum interaction function respectively.
In the latter case, the interaction distance corresponds to the interaction on
the weakest link between the two nodes. As our experimental results will show,
we found the minimum function to be slightly more robust than the average
interaction function.

During the assignment phase, we calculate the value of the function f(ni, n, b)
from each node ni to the seed node n using the bias bit b. Each node ni is as-
signed to the seed node n with the largest absolute value of the above-mentioned
function. This process ensures that nodes are assigned to seeds according to their
corresponding bias. The process of computation of the interaction function will
be discussed in some detail slightly later.

Next, we determine the bias of each seed node in the procedure FindBias. In
order to do so, we calculate the bias-index of the community defined by that seed
node. The bias index of the community Ni is denoted by I(Ni), and is defined
as the edge-weight fraction of the expanding portion of Ni. In order to do, so
we divide the positive edge weights in the community by the total absolute edge
weight in the same community. Therefore, we have:

I(Ni) =

∑
(p,q)∈Ni

max{0, Δwpq(t1, t2)}
∑

(p,q)∈Ni
|Δwpq(t1, t2)|

(8)

We note that the bias index is 1 when all the edges in the community corre-
sponding to increasing interaction, and is 0 when all the edges correspond to
reducing interaction. Therefore, we define a threshold t ∈ (0, 0.5). If the value of
I(Ni) is less than t then the bias bit is set to -1. Similarly, if the value of I(Ni)
is larger than 1 − t, the bias bit is set to 1. Otherwise, the bias bit is set to zero.

Once the bias bits for the nodes have been set, we remove those seeds which
have very few nodes associated with them. Such nodes usually do not corre-
spond to a coherent community of interaction. This procedure is referred to as
RemoveNodes. Thus, each set of nodes Ni is replaced by either itself or a null
set of nodes. In order to implement this step, we use a minimum threshold on
the number of nodes in a given partition. This threshold is denoted by mnt.
All partitions with less than mnt entities are removed from consideration, and
replaced by the null set.

The last step is to recenter the nodes within their corresponding partition.
This denoted by the procedure RecenterNodes in Figure 1. The process of re-
centering the nodes requires us to use a process in which the central points
of subgraphs are determined. In order to recenter the nodes, we determine the
node which minimizes the maximum distance of any node in the cluster. This is
achieved by computing the distance of all points in the cluster starting at each
node, and finding the minimax distance over these different values. The process
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of recentering helps to adjust the centers of the nodes in each iteration such that
the process of partitioning the community sets becomes more effective over time.

4.5 Approximating Interaction Distances Among Nodes

The only remaining issue is to discuss the methodology for determining the
interaction distances among nodes. We would like our algorithm to be general
enough to find the maximum interaction distance for general functions. It is
important to understand that the problem of finding the maximum interaction
distance between two nodes is NP-hard.

Observation 4.1. The problem of determining the maximum interaction dis-
tance between two nodes is NP-hard for arbitrary interaction functions.

This observation is easily verified by observing that the problem of finding the
longest path in a graph is NP-hard [7]. Since the particular case of picking the
interaction function as the edge weight is NP-hard, the general problem is NP-
hard as well.

However, it is possible to approximate the interaction distance of a maximum
length using dynamic programming. Let wnt

ij be the maximum interaction dis-
tance between two nodes using at most t nodes on that path. Let P t

ik be the
maximum length path between i and k using t edges. Let PS⊕

ikj denote the
path obtained by concatenating P t

ik with the edge (k, j). Then, we define wnt
ij

recursively as follows:

wn0
ij = 0;

wnt+1
ij = maxk{wnt

ij , w(PS⊕
ikj)}

We note that this dynamic programming algorithm does not always lead to an
optimal solution in the presence of cycles in the graph [7]. However, for small
values of t, it approximates the optimal solution well. This is because cycles
are less likely to be present in paths of smaller length. It is also important
to understand that if two entities are joined only by paths containing a large
number of edges, then such pairs of entities should not be regarded as belonging
to the same community. Therefore, we imposed a threshold maxthresh on the
maximum length of the (shortest interaction distance) path between two nodes
for them to belong to the same community. For a pair of nodes in which the
corresponding path length was exceeded, the value of the interaction distance
is set to 0. In [4], we have tested the method extensively over a number of real
and synthetic data sets. These results show that the technique is scalable and
provides insights about significantly evolving communities in the data stream.

5 Conclusions and Summary

In this paper, we examined the application of clustering for change diagnosis
and detection in data streams. We showed how clustering can be used in or-
der to determine summaries of the underlying change in the data. The overall
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framework is motivated by the micro-clustering technique [3], which provides a
summary of the data for future change diagnosis. This summary can be used for
text and categorical data, as well as community evolution in data streams. Such
information has considerable value in a number of applications which require a
clear understanding of the underlying data.
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