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Abstract. In this paper we examine the combinatorial requirements of
topology-transparent transmission schedules for channel access in mobile
ad hoc networks. We formulate the problem as a combinatorial question
and observe that its solution is a cover-free family. The mathematical
properties of certain cover-free families have been studied extensively. In-
deed, we show that both existing constructions for topology-transparent
schedules (which correspond to orthogonal arrays) give a cover-free fam-
ily. However, a specific type of cover-free family — called a Steiner system
— supports the largest number of nodes for a given frame length. We then
explore the minimum and expected throughput for Steiner systems of
small strength, first using the acknowledgement scheme proposed earlier
and then using a more realistic model of acknowledgements. We contrast
these results with the results for comparable orthogonal arrays, indi-
cating some important trade-offs for topology-transparent access control
protocols.

1 Introduction

In any network based on a shared broadcast channel, the means by which access
to the channel is controlled has a fundamental impact on the overall network
performance. While these networks include satellites and local area networks,
our interest is in mobile ad hoc networks (MANETs). A MANET is a collection
of mobile wireless nodes. What distinguishes a MANET from other wireless
networks is that it self-organizes without the aid of any centralized control or any
fixed infrastructure. Since the radio transmission range of each node is limited,
it may be necessary to forward over multiple hops in order for a packet to reach
its destination (as such, MANETS have also been called multi-hop and packet-
radio networks). This also offers the opportunity for concurrent transmissions
when nodes are sufficiently separated. The challenge in medium access control
(MAC) protocols for MANETS is to find a satisfactory trade-off between the two
objectives of minimizing delay and maximizing throughput.

Of the myriad of access control techniques, our focus is on topology- transpar-
ent approaches. Unlike topology-dependent protocols, which recompute access
whenever the network topology changes, a topology-transparent protocol acts in-
dependently of topology change. One class of protocols which may be viewed as
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topology-transparent is the contention based MAC protocols. Contention based
approaches achieve high throughput with a reasonable expected delay but with
poor worst-case delay. With increasing interest in multi-media applications, the
delay characteristics of contention based MAC protocols do not appear adequate
to provide the necessary quality-of-service (QoS) support. While there have been
some efforts to make such protocols QoS-aware, in each case the delay guarantee
remains probabilistic [II2114].

TDMA is an example of a scheduled access control protocol that is triv-
ially topology-transparent. More sophisticated schemes for generating topology-
transparent transmission schedules [2J10] depend on two design parameters: N,
the number of nodes in the network, and D, the maximum node degree. This
creates complex trade-offs between the design parameters and the delay and
throughput characteristics of the resulting schedules. For example, while it is
often possible to construct schedules that are significantly shorter than TDMA,
if the actual node degree exceeds D, the delay guarantee is lost. More exactly,
the delay becomes probabilistic rather than deterministic. While the question
of what should be done if the protocol fails is important (see [3l16] for some
alternatives), we will not address this problem here.

In [I6], we observed that existing topology-transparent transmission sched-
ules are instances of orthogonal arrays, and we explored the consequences of this
observation on throughput. In this paper we go one step further, looking more
carefully at the combinatorial requirements of topology-transparent transmission
schedules. This allows us to formulate the problem as a combinatorial question
and observe that its solution is a cover-free family. Certain cover-free families
have been studied extensively, and rather than derive new mathematical results,
we instead show how to use existing results for our application. Our first obser-
vation shows that an orthogonal array gives a cover-free family. We then show
that a specific type of cover-free family, called a Steiner system, supports the
largest number of nodes for a given frame length. We then explore the minimum
and expected throughput for Steiner systems of small strength, first using the
acknowledgement scheme proposed earlier and then using a more realistic model
for acknowledgements. We contrast these results with the results for comparable
orthogonal arrays, indicating some important trade-offs for topology-transparent
protocols.

The rest of this paper is organized as follows. Section [2] first examines the
combinatorial requirements of a topology-transparent transmission schedule, and
shows that a cover-free family satisfies the requirements. We also show how
cover-free families relate both to orthogonal arrays, and to Steiner systems. In
Section[3, we study the selection of parameters of the Steiner system depending
on the performance objective of interest. We consider both minimum and ex-
pected throughput using an acknowledgment scheme proposed earlier. As well,
we introduce a more realistic acknowledgement model and study the resulting
frame throughput. We produce our results as a function of neighbourhood size
and density, to explore the sensitivity of the actual node degree to the design
parameter. Lastly, in Section ] we summarize and conclude.
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2 Cover-Free Families, Orthogonal Arrays,
and Steiner Systems

Rather than starting with the existing constructions for topology-transparent
transmission schedules, let us instead begin anew by turning the problem of
generating a topology-transparent transmission schedule into a combinatorial
question. Assume that time is divided into discrete units called slots and frames
are a fixed number n of slots. Suppose that each node i,1 < i < N, in the
network is assigned a transmission schedule S; = $183...s, with n slots (i.e.,
one frame). If s; = 1,1 < j < n, then a node may transmit in the slot j,
otherwise it is silent (and could receive).

In designing a topology-transparent transmission schedule with design pa-
rameters N, the number of nodes in the network and D, the maximum node
degree, we are interested in the following combinatorial property. For each node,
we want to guarantee that if a node ¢ has at most D neighbours its schedule S;
guarantees a collision-free transmission to each neighbour.

Let us treat each schedule S; as a subset T; on {1,2,...,n} by assigning the
elements of the subset to correspond to the positions in the schedule, i.e., j € T;
if s; =1in S;, 7 =1,...,n (in essence, S; is the characteristic vector of the
set T;). Now, the combinatorial problem to ask is for each node i to be given a
subset T; with the property that the union of D or fewer other subsets cannot
contain T;. Expressed mathematically, if T}, j = 1,..., D, are D neighbours of ¢
(T; # T;), then we require that

D

UTj 3T

Jj=1

This is precisely a D cover-free family. These are equivalent to disjunct matrices
[6] and to certain superimposed codes [7]; see [5].

Let us first observe that the existing constructions for topology-transparent
transmission schedules [2J10] which, as we showed in [I6] correspond to an or-
thogonal array, give a cover-free family.

2.1 An Orthogonal Array Gives a Cover-Free Family
Let V be a set of v symbols, usually denoted by 0,1,...,v — 1.

Definition 1. A k x v* array A with entries from V is an orthogonal array
with v levels and strength t (for some t in the range 0 < t < k) if every t x v
subarray of A contains each t-tuple based on V exactly oned as a column. We
denote such an array by OA(t, k,v).

Table [0 shows an example from [9] of an orthogonal array of strength two
with v = 4 levels, ie., V = {0,1,2,3}. Pick any two rows, say the third and
the fourth. Each of the sixteen ordered pairs (x,y),z,y € V appears the same
number of times, once in this case.

! Here, we assume the index \ = 1.
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Table 1. Orthogonal array OA(2,4,4).

0000111122223333
0123012301230123
0123103223013210
0132320123101023

In our application, each column gives rise to a transmission schedule. Each
column intersects every other in fewer than ¢ positions. For example, the first
and the eighth column intersect in no positions, while the first and the second
column intersect in a zero in the first position.

The importance of this intersection property is as follows. Select any column.
Since any of the other columns can intersect it in at most ¢ — 1 positions, any
collection of D other columns has the property that our given column differs
from all of these D in at least k — D(t — 1) positions. Provided this difference
is positive, the column therefore contains at least one symbol appearing in that
position, not occurring in any of the D columns in the same position. In our
application this means that at least one collision-free slot to each neighbour
exists when a node has at most D neighbours. Thus, as long as the number of
neighbours is bounded by D, the delay to reach each neighbour is bounded, even
when each neighbour is transmitting. Clearly, the orthogonal array gives a D
cover-free family.

Many techniques are known for constructing orthogonal arrays, usually clas-
sified by the essential ideas that underlie them. There is a classic construction
based on Galois fields and finite geometries; both Chlamtac and Faragé [2] and
Ju and Li [T0] use this construction implicitly though neither observed that they
were constructing an orthogonal array. They both employ OA(t,v,v)’s when
v is a prime power. They therefore restrict attention to the case when k& = v
(forcing all frame lengths to be v? unnecessarily), and indeed by not permitting
that £ > v they do not obtain the best delay guarantees. The restriction of v
to prime powers is also not required, as orthogonal arrays exist for these cases,
e.g., OA(2,7,12), but k is not as large as v in general.

In the same way that allowing different parameters for orthogonal arrays
allows more flexibility in the corresponding schedules, relaxing the parameters
further and asking for a cover-free family allows more flexibility yet.

2.2 Steiner Systems

Cover-free families have been studied extensively, most frequently with the ob-
jective of maximizing the number of sets in the family. In our application, this
corresponds to maximizing the number of nodes, so this is certainly a parameter
of interest.

There is a celebrated result of Erdos, Frankl, and Fiiredi [8] that established
bounds on the size of a cover-free family (see also, [I3I15] and Theorem 7.3.9 in
[6]). Specifically, they established that the extreme value on the size, if achiev-
able, is realized by a Steiner system. Hence in terms of the application, for a
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Table 2. Steiner system S(2,4,13).

0000111223345
1246257364789
385a46b57689a
9c7ba8cb9cabec

given number of nodes and a given maximum number of neighbours, Steiner
systems achieve the shortest frame length of all cover-free families. Thus, they
provide not only a solution to our problem, but indeed the best solution in terms
of frame length.

Definition 2. Given three integers t,k,v such that 2 <t < k < v, a Steiner
system S(t, k,v) is a v-set V together with a family B of k-subsets of V' (blocks)
with the property that every t-subset of V' is contained in exactly one block.

Table 2] shows an example from [] of a Steiner system on the 13-set V =

{0,1,...,9,a,b,c} together with a family of ;Ezjg = 1312 _ 13 4 subsets of V
(the columns). This Steiner system has the property that every 2-subset of V,
{z,y},x,y € V,x # y is contained in exactly one column.

While a substantial amount is known about the existence of Steiner systems,
in general their existence is not settled [4]. As with orthogonal arrays, there are
constructions from finite fields.

Reasons that Steiner systems are of interest for constructing topology- trans-
parent transmission schedules include:

1. Steiner systems admit shorter schedules than orthogonal arrays. This is im-
portant since in addition to achieving high throughput, the delay bound is
improved. We discuss this issue at length in Section B}

2. Steiner systems are denser than orthogonal arrays. They can support a larger
number of nodes for a given schedule (frame) length.

3 Steiner System Parameter Trade-Offs

The essential difference between the existing constructions of topology- trans-
parent schedules is in the selection of parameters. In [2], the focus is on frame
length while in [10] the focus is on throughput.

In [2], an OA(t,v,v) is found for the first v* > N, ¢t > 2, where v is a
prime power. In the paper, the interest is in minimizing the frame (or schedule)
length in order to minimize delay. The parameters are selected to find a schedule
provably shorter than TDMA.

In [10], it is argued that the parameters chosen satisfy the condition on delay
but do not maximize minimum throughput. In particular, it is possible to achieve
higher minimum throughput at the expense of longer frame length. They select
an OA(t,v,v) where v = 2(t — 1)D if VN < 2(t — 1)D, and v = v/N otherwise.
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Intuitively, while Chlamtac and Faragé [2] strive to get one free slot per frame,
Ju and Li [T0] aim to get many free slots per frame.

In both studies, however, the figure of merit is minimum throughput mea-
sured as number of free slots within a frame divided by frame length. To employ
such an analysis, a transmitting node must be able to transmit multiple differ-
ent packets within a frame. How does it decide to transmit a “new” packet? In
this environment, it is expected that collisions occur, and topology-transparency
dictates that the collisions cannot be anticipated. Hence an acknowledgement
scheme is needed. Both schemes based on orthogonal arrays can transmit in two
consecutive slots, and indeed must send different packets in these slots to achieve
the minimum throughput in their analyses. Both propose an acknowledgement
scheme that involves instantaneous acknowledgment of successful receipt with-
out lengthening the slot. Naturally, this is an optimistic assumption to facilitate
the analysis. However, the analysis can be misleading if it leads us to seek many
free slots in a frame without an acceptable (realistic) acknowledgment scheme.
For purposes of comparison, we consider the throughput measures employed in
[2I10/16]. We also adopt a more conservative approach.

We consider a more realistic model for acknowledgements. Rather than a slot
by slot acknowledgement, we assume we can piggyback an acknowledgement onto
a packet sent from the destination. In the worst case, this might require that the
sender wait an entire frame. Hence we define frame throughput as the throughput
achievable on a per frame basis. This properly incorporates the length of the
schedule in the throughput calculation.

In this section we investigate three questions:

1. What is the probability of a successful transmission in a frame?
2. What is the expected throughput?
3. What is the expected frame throughput?

All are functions of the number of active transmitters among the neighbours
of a node.

Consider a situation with sender & and receiver R. Let S be a schedule
for sender & and T1,...,Tp_1 be the subsets that correspond to the schedules
of the other active neighbours of R (here, we assume the worst case, when all
neighbours are transmitting). Let Tp be the subset corresponding to the schedule
for R, and assume that R is also active.

The probability of successful transmission within a frame is just the proba-
bility that S has a slot that does not appear in 171, ...,Tp. Expected throughput
then, is the expected number of such slots. The frame throughput is the expected
number of slots over the frame length. This effectively normalizes the expected
throughput by frame length allowing easier comparison between Steiner systems.

We derive these measures analytically but present the derivations elsewhere.
The most complex derivation is for expected throughput. We did this for sched-
ules that correspond to orthogonal arrays in [16]. This formulation may be used
as a basis to derive expected throughput for schedules that correspond to Steiner
systems.
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S(2,k,v) Throughput S(2,k,v) Throughput vs. TDMA
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Fig. 1. Expected throughput for (a) S(2, k, v); and (b) versus TDMA, for k = 3,6,9, 12.

3.1 Numerical Results

The results in this section were obtained using Maple [11], a mathematical soft-
ware package.

Figure [dl(a) plots the expected throughput for S(2,k,v) for k = 3,6,9,12
as a function of the number of neighbours. In each of the following cases,
N =v(v—-1)/k(k —1). For k = 3, v = 7,13,19,25 are considered for N =
7,26,57,100 number of nodes, respectively. For k = 6, v = 31,61,91,121 are
considered for N = 31,122,273,484 number of nodes, respectively. For k = 9,
v = 73,145,217,289 are considered for N = 73,290,651, 1156 number of nodes,
respectively. Finally, for £k = 12, v = 133, 265,397,529 are considered for N =
133,530,1191, 2116 number of nodes, respectively. In the figure, the y-intercept
is given by k/v, and so the curve with the highest y-intercept has the short-
est frame length (k = 3, v = 7). Successive curves with lower y-intercept have
successively longer frame length. The shorter the frame, the faster the expected
throughput drops to zero. As well, the expected throughput is much more sen-
sitive to changes in neighbourhood size.

In Fig.[[l(b), we plot the expected throughput for S(2, k,v) for k = 3,6,9,12
over the throughput of TDMA with the same frame length, as a function of the
number of neighbours. For example, now the curve with the highest y-intercept
is k = 12, v = 529. This Steiner system supports 2116 nodes, so the expected
frame throughput is % = % -2116 = 48. In other words, in the best case, this
Steiner system has expected throughput that is 48 times that of TDMA with the
same frame length. When the ratio of expected throughput to the corresponding
TDMA is taken, the curve on the left essentially inverts position on the right.
This means that longer frames with more opportunities to transmit are better
than shorter frames with fewer opportunities to transmit from the perspective
of throughput.

Figure 2[a) plots the more conservative frame throughput for S(2, k,v) for
k = 3,6,9,12 as a function of neighbourhood size, for the same v’s as in the
previous figure. Now, the y-intercepts correspond to 1/v rather than k/v. Again,
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Fig. 2. Frame throughput for (a) S(2,k,v); and (b) versus TDMA, for k£ = 3,6,9,12.

the curves with a shorter frame length have a more pronounced drop than curves
with longer frame length. As well, curves with the same k value now show a
guarantee (i.e., are horizontal) for up to k neighbours, after which the guarantee
degrades.

In Fig. RIb), we plot the ratio of frame throughput for S(2,k,v) for k =
3,6,9, 12 over the throughput of TDMA for the same frame length as a function
of neighbourhood size, for the same v’s as given earlier. Now, we see that the
best possible throughput is 11/% = N/v which is 4,3,2,1 for increasing values
of v. Again, the slot guarantee is evident. That is, the curves are horizontal
for neighbourhood sizes less than or equal to k and the degrade as the neigh-
bourhood increases. The degradation is slower for the longer frames. The curves
whose maximum expected frame throughput equals one correspond to orthog-
onal arrays OA(2,v,v). Hence it is plainly evident that schedules constructed
from Steiner systems are much denser than those constructed from orthogonal
arrays, with the potential to yield much higher throughput.

Figure Bla) plots minimum throughput for S(2,k,v) for k = 3,6,9,12 as a
function of neighbourhood size for the same values of v as given earlier. Here,
the y-intercept is k/v (the same as in Fig. [l), however now the z-intercept is
k and is the same for each value of v. This results in the curves dropping to
zero much more quickly than in Fig. [l A curiosity is that the four segments
that correspond to the maximum minimum throughput correspond to S(2, k, v)
where the smallest frame length v for the given k provides a range of neighbours
over which it provides the best minimum throughput. That is, S(2,3,7) and
S(2,12,133) are better over a larger range of neighbours than are S(2,6,31) and
S5(2,9,73).

Figure 3(b) plots the ratio of minimum throughput for S(2,k,v) for k =
3,6,9,12 over TDMA with the same frame length as a function of neighbourhood
size for the same v’s. Again we see that the curves invert order when the ratio

is considered. Specifically, the curve with the highest y-intercept is S(2,12,529)

since this is given by % as in Fig. [ However the z-intercept now corresponds
to k as on the figure on the left. Now, the largest v for each k provides the best

minimum throughput relative to TDMA.
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Fig. 3. Minimum throughput for (a) S(2,k,v); and (b) versus TDMA, for k =
3,6,9,12.
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Fig. 4. Minimum frame throughput for (a) S(2,k,v); and (b) versus TDMA, for k =
3,6,9,12.

Again, we look at frame throughput, this time the minimum value, in Fig. @]
(for the same k’s and v’s). Not surprisingly, the minimum frame throughput is
lower than when using the more optimistic acknowledgement model. The main
difference between this figure and Fig. [ is the x-intercepts. Here, they corre-
spond to k, clearly showing that with minimum frame throughput, once the
neighbourhood exceeds the design parameter, all guarantees are lost immedi-
ately. This is also true for the ratio of minimum frame throughput over TDMA
with the same frame length (b). This figure also shows that the minimum frame
throughput is essentially constant for each k as long as the design parameter is
satisfied.

Figure Ml shows us something very important, in addition. Larger Steiner
systems give us a minimum frame throughput substantially better than TDMA
when the neighbourhood is within the bound. This is in stark constrast with the
schemes in [2[10]; they never outperform TDMA on minimum frame throughput
when orthogonal arrays of strength two are used.

Figure[dlis different from all other figures in that it plots expected throughput
versus density of the neighbourhood. That is, the z-axis is the percentage of
nodes that are neighbours — these are not absolute values, and represent much
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Fig. 5. Throughput versus density for (a) S(2,k,v); and (b) versus TDMA, for k =
3,6,9,12.

larger neighbourhood sizes in general. The reason that the curves are jagged is
that the closest integer value is taken as the percentage of neighbours, i.e., we do
not consider fractional numbers of neighbours. While the figure shows S(2, k, v)
for k = 3,6,9,12, only the first three values of v for each k are shown since
the computations are highly memory and compute intensive. The y-intercepts
are the same as in Fig.[Il As a function of neighbourhood density, the expected
throughput (a) is more well-behaved than as a function of neighbourhood size.
When the ratio of expected throughput to TDMA throughput is considered
versus neighbourhood density (b) the curves drop more rapidly as the density
increases more rapidly than a linear function.

Finally, Fig. [6l once again plots expected throughput versus neighbourhood
size for three Steiner systems that support the same number of nodes, namely
N = 651 and one orthogonal array that supports a number very close to that
(625). Specifically from the top down, the curves correspond to S(2,3,63),
S5(2,9,217), S(2,26,651) and OA(2,26,25). First, we see that the last two curves
are essentially indistinguishable from each other. That is, for all intents and
purposes, the S(2,26,651) and OA(2,26,25) give the same performance but the
Steiner system supports more nodes. The Steiner system with shorter frame
length gives better expected throughput until the neighbourhood is about 20,
at which point the curves all cross. Its performance also degrades more rapidly
with increasing neighbourhood size.

4 Summary and Conclusions

In this paper, we stepped back and examined anew the combinatorial proper-
ties of topology-transparent schedules. The properties were found to correspond
precisely to D cover-free families, where D is a design parameter indicating
maximum number of neighbours.

Studies of several Steiner systems show the following general trends. Steiner
systems admit shorter schedules (frames) than previous cosntructions based on
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Fig. 6. Expected throughput for Steiner systems for 600-700 nodes.

orthogonal arrays. This is significant for delay sensitive applications such as
multi-media. Since Steiner systems are also more dense, they support more nodes
for a given frame length and hence achieve higher throughput. While shorter
schedules give the best minimum and expected throughput, they also degrade
faster as the design parameter D is exceeded. That is, longer schedules are more
robust to changes in neighbourhood size. Another general observation is that the
Steiner systems that yield longer schedules achieve higher ratios on minimum and
expected throughput when compared to TDMA schedules of the same length.

We have characterized the types of solutions topology-transparent transmis-
sion schedules require as cover-free families. Using this, along with a more re-
alistic acknowledgement model, we plan to investigate the issue of what to do
when the schedule fails due to node mobility causing the design parameter on
neighbourhood size to be exceeded. This, together with simulations using mobil-
ity models are required to determine how such scheduled topology-transparent
protocols compare to contention based protocols.
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