An Authorization Architecture Oriented to Engineering
and Scientific Computation in Grid Environments

Changqin Huang !2, Guanghua Song"’, Yao Zheng!2, and Deren Chen!

! College of Computer Science, Zhejiang University, Hangzhou, 310027, P. R. China
2 Center for Engineering and Scientific Computation, Zhejiang University,

Hangzhou, 310027, P. R. China
{cghuang, ghsong, vyao.zheng, drchen}@zju.edu.cn

Abstract. Large-scale scientific and engineering computation is normally ac-
complished through the interaction of collaborating groups and diverse hetero-
geneous resources. Grid computing is emerging as an applicable paradigm,
whilst, there is a critical challenge of authorization in the grid infrastructure.
This paper proposes a Parallelized Subtask-level Authorization Service archi-
tecture (PSAS) based on the least privilege principle, and presents a context-
aware authorization approach and a flexible task management mechanism. The
minimization of the privileges is conducted by decomposing the parallelizable
task and re-allotting the privileges required for each subtask. The dynamic au-
thorization is carried out by constructing a multi-value community policy and
adaptively transiting the mapping. Besides applying a relevant management
policy, a delegation mechanism collaboratively performs the authorization
delegation for task management. In the enforcement mechanisms involved, the
authors have extended the RSL specification and the proxy certificate, and have
modified the Globus gatekeeper, jobmanager and the GASS library to allow au-
thorization callouts. Therefore the authorization requirement of an application
is effectively met in the presented architecture.

1 Introduction

Grid Computing [1] emerges as a promising paradigm for coordinating the sharing of
computational and data resource and wide-area distributed computing across organ-
izational boundaries. The sharing of code and data on the grid gives rise to many
great challenges. Grid infrastructure software such as Legion [2] and Globus [3] en-
ables a user to identify and use the best available resource(s) irrespective of resource
location and ownership. However, realizing such a pervasive grid infrastructure pre-
sents many challenges due to its inherent heterogeneity, multi-domain characteristic,
and highly dynamic nature. One critical challenge is providing authentication, au-
thorization and access control guarantees.

Among relevant grid applications, due to the capability of full utilization of many
valuable resources, engineering and scientific computing is suited for being solved in
grid environments. This type of task is commonly either computation-intensive or

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 461-472, 2004.
© Springer-Verlag Berlin Heidelberg 2004

462 C. Huang et al.

data-intensive, the problem granularity is widely large and computational tasks are
often long-lived. It needs be divided into many subtasks, and then be distributed to
many relevant nodes and run in parallel, and the management of subtasks is dynamic.
The issue needs not only fine-grained authorization for resource usage and manage-
ment but also fine-grained authorization for task management to meet the needs of
this type of application.

In this paper, we focus on the security requirements posed by engineering and sci-
entific computation applications in grid. We present the Parallelized Subtask-Level
Service Authorization (PSAS) architecture for fine-grained authorization policies and
enforcement mechanism for both resource usage/management and task management.
The context-aware authorization is exercised by mapping a community member to a
multi-value community policy and adaptive transition, and a delegation mechanism
collaboratively performs task management together with a relevant management
policy. It enforces these mechanisms to enable fine-grained authorization based on
Globus Toolkit version 2.2.

This paper is organized as follows: Section 2 reviews background and related work
in the arena of grid security. In section 3, the proposed authorization architecture and
overall policy are described. Context-aware authorization is presented in Section 4.
Section 5 describes the current implementation of the architecture within Globus.
Finally, conclusions and future work are addressed in Section 6.

2 Backgrounds and Related Work

2.1 Authorization in Grid Middleware

As the rapid advancement of the grid researches and applications, diverse grid mid-
dlewares are widely developed and deployed. At present, there are three main pieces
of grid middlewares, Globus [3], Legion [2], and UNICORE [17]. The Globus toolkit
is the most popular grid environment and the de facto grid standard. However its
current security services are yet poor, for example: use of static user accounts, coarse
granularity, and application dependent enforcement mechanisms. Globus has adopted
the Grid Security Infrastructure (GSI) [5] as the primary authentication mechanism.

GSI defines single sign-on algorithms and protocols, cross-domain authentication

protocols, and temporary credentials called proxy credentials to support hierarchical

delegation [6]. Main weaknesses of the Globus security services are described as
follows:

1. Globus deals with all privileges of subtask irrespective of the privilege difference
among its subtasks. That is, after the simple authentication is exercised, the re-
source allows the task to use all privileges of the user; similarly, so do subtasks run
in parallel. It violates commonly the least privilege principle [7].

2. The issues of the context-aware community policy are not concentrated on, so the
authorization of resource usage and task management is not flexibly characterized
by the community. The scenario is not suited for large-scale wide-area collabora-
tively scientific computation in Virtual organization.

An Authorization Architecture Oriented to Engineering and Scientific Computation 463

3. In Globus, normally, task management is only the responsibility of the users who
have submitted the job. Due to the dynamic environment and the long-lived feature
of engineering and scientific computation, this coarse-grain authorization for task
management cannot meet the need of agile job management in VO.

2.2 Related Work

In recent years, many grid security issues (architectures, policies and enforcement
mechanisms, etc) have been researched. And the related researches are making great
progress. Among many related works, main researches are presented in the following:

I. Foster et al. [5] provide the basis of current grid security: “grid-map” mecha-
nism, mapping grid entities to local user accounts at the grid resources, is a common
approach to authorization. A grid request is allowed if such a mapping exists and the
request will be served with all the privileges configured for the local user account.
Obviously, these authorization and access control mechanisms are not suitable for
flexible authorization decision.

L. Pearlman et al. [8] propose the Community Authorization Service (CAS) archi-
tecture. Based on CAS, resource providers grant access to a community accounts as a
whole, and community administrators then decide what subset of a community’s
rights an individual member will have. Drawbacks of this approach include that en-
forcement mechanism does not support the use of legacy application, that the ap-
proach of limiting the group’s privileges violates the least-privilege principle and that
it does not consider authorization issue of task management.

W. Johnston et al. [9] provide grid resources and resource administrators with dis-
tributed mechanisms to define resource usage policy by multiple stakeholders and
make dynamic authorization decisions based on supplied credentials and applicable
usage policy statements. This system binds user attributes and privileges through
attribute certificates (ACs) and thus separates authentication from authorization. Fine-
grained access decisions are enforced via such policies and user attributes. However,
It does not provide convenience for the use of legacy applications, and does not con-
sider authorization issue of task management.

R. Alfieri et al. [10] present a system conceptually similar to CAS: the Virtual Or-
ganization Membership Service (VOMS), which also has a community centric attrib-
ute server that issues authorization attributes to members of the community. M. Lorch
et al. [11] give the same architecture, called PRIMA. Except that in PRIMA the at-
tributes are not issued by a community server but rather come directly from the indi-
vidual attribute authorities, PRIMA and VOMS have similar security mechanisms.
They utilize expressive enforcement mechanisms and/or dynamic account to facilitate
highly dynamic authorization policies and least privilege access to resources. How-
ever, they do not consider authorization issue of task management, and in their study,
the overhead of authorization management is larger. They only support the creation
of small, transient and ad hoc communities.

Besides the typical paradigms mentioned above, M. Lorch et al. [12] enable the
high-level management of such fine grained privileges based on PKIX attribute cer-

464 C. Huang et al.

tificates and enforce resulting access policies through readily available POSIX operat-
ing system extensions. Although it enables partly the secure execution of legacy ap-
plications, it is mainly oriented to collaborating computing scenarios for small, ad hoc
working groups. G. Zhang et al. [13] present the SESAME dynamic context-aware
access control mechanism for pervasive Grid applications by extending the classic
role based access control (RBAC) [14]. SESAME complements current authorization
mechanisms to dynamically grant and adapt permissions to users based on their cur-
rent context. But, monitoring grid context in time is high-cost. K. Keahey et al. [15]
describe the design and implementation of an authorization system allowing for en-
forcement of fine-grained policies and VO-wide management of remote jobs. How-
ever, it does not specify and enforce community policies for resource usage and man-
agement currently. S. Kim et al. [16] give a WAS architecture to support a restricted
proxy credential and rights management by using workflow. It does not consider the
actual conditions of large-scale task running at many nodes in parallel, the large
overhead of fine-grained division of task and associated authorization confine its
application to a limited area.

3 PSAS Architecture

3.1 PSAS Architecture Overview

PSAS architecture is concerned with the different privilege requirements of subtasks,
user privilege of resource usage and resource policy in virtual community, task man-
agement policy and task management delegation. So PSAS architecture includes three
functional modules and a shared enforcement mechanism as shown in Figure 1.

To minimize privileges of a task, the parallelizable task is decomposed and the
least privileges required for each subtask is re-allotted after analyzing the source
codes of the task. This contribution is described in the part of Subtask-level authoriza-
tion module in the next sub-section. To apply a flexible task management, a delega-
tion mechanism collaboratively performs the authorization delegation for task man-
agement together with a relevant management policy. Its details exist in the part of
Task management authorization module in the next sub-section. A context-aware
authorization approach is another contribution based on PSAS architecture, and it is
presented in Section 4.

3.2 Privilege Management and Overall Authorization Policy

Besides the shared enforcement mechanism, in PSAS, there exist three modules to
implement Privilege management and overall authorization policy: Subtask-level
authorization module, Community authorization module, and Task management au-
thorization module.

An Authorization Architecture Oriented to Engineering and Scientific Computation 465

g’, submit
= p| Parallelize task

g
[}
I e e
i i li licy
credential submit submit policy poliey polcy
L 7
PSAS privilege
analysis module
privilege
needed by
subtask ¥ Community Resource
PSAS server e M\ ~management management
server server
sign ‘ i
Y 5 Y 4
mmunity poli
Co Y polcy Task
Subtask-level server .
rivilege) cace task management Resource policy
P! v (resource usage,tas| delegation server
certificate management)
server
Slllbta‘;k' management
evel delegation
privilege ¥ A y o8
Policy Policy
o for user for user Subtask-level resource
L, PnV{lege < > n?apagermnt policy
combinator privilege RSL
description
request request
Resource policy
PSAS Gatekeeper -t interact decision
client o
apply ass desicion
pas detail
Policy enforcement
Resource utilization,Subtask management by
Jobmanager

Fig. 1. PSAS architecture overview.

Subtask-level authorization module concentrates on minimizing privileges of
tasks by decomposing the parallel task and analyzing the access requirement. To
further conform to the least-privilege principle, a few traditional methods restrict the
privileges via the delegation of users themselves rather than the architecture, more-
over, they only restrict privileges of a whole specific task, not for its constituents
(such as subtask). In engineering and scientific computation application, a task is
commonly large-scale. It need be divided into many subtasks, and then be distributed
to many relevant nodes and run in parallel. Whilst, even though the task is the same,
privileges required for distinct subtasks may differ according to operations of these
subtasks. By the parallelization and analysis of the task, PSAS can obtain the task’s
subtasks and relevant required privileges: subtask-level privilege pair. The privileges
indicate the information about associated subtask required access to resources at cer-
tain nodes. Each task has a subtask-level privilege certificate for recording subtask

466 C. Huang et al.

and privilege pair. An example of this certificate is shown in Figure 2. To prevent
malicious third party from tampering with a subtask-level privilege certificate, a
trusted third party (PSAS server) signs the certificate. To control a subtask’s process
and verify the subtask-level privilege certificate, PSAS client will run during resource
utilization.

Task_main()
{
subtask1(){
(codel)
}
subtask2(){
(code2) Task_main()
} {
task right0
subtaskn(){ subtask] right1;
(coden) subtask? right2;
}
subtaskm(){ subtaskn rightn;
(codem) subtaskm rightim;
}
parallelize{ }
subtask] ;
subtask? ;

subtaskn ;
}
subtaskim;
}

Fig. 2. An example of task and subtask-level privilege certificate.

Subtask-level authorization module contains PSAS privilege analysis module,
PSAS server, privilege combinator (shared by community authorization mechanism)
and PSAS client.

Community authorization module addresses community authorization mecha-
nism for community member. In Globus, “grid-map” mechanism is conducted, but it
is neglected that grid collaboration brings out common rules about privilege for re-
source usage, resource permission, and so forth, which makes grid security fall into
shortage of adequate availability. PSAS architecture imposes similar CAS [8] mecha-
nism with a combination of traditional grid user proxy credential and CAS, as well as
the task management policy is added into the community policy server. Two trusted
third parties (a community management server and a resource management server)
and two policy servers (a community policy server and a resource policy server) are
exercised. A community management server is responsible for managing the policies
that govern access to a community’s resources, and a resource management server is
responsible for managing the policies that govern resource permission to grid users.

An Authorization Architecture Oriented to Engineering and Scientific Computation 467

Two policy servers store the policy for community policy and resource policy respec-
tively. The ultimate privileges of a grid user are formed by the relevant proxy creden-
tial and the policy for this user, and the actual rights need accord with resource policy
by resource policy decision module during policy enforcement. The policy servers are
built or modified by the community administrators or certain specific users.

Community authorization module is composed of a community management
server, a resource management server, a community policy server, a resource policy
server, privilege combinator, and resource policy decision module.

executable = test2

subtask no. all start suspend continue cancel
subtaskl WuWang WuWang WuWang WuWang WuWang
subtask2 e

\/

executable = test2

subtask no. all start suspend continue cancel

subtaskl WuWang WuWang WuWang WuWang WuWang
SiLi

subtask?2

/from:/O=Grid/O=Globus/OU=0U=zju.edu.cn/CN=WuWang/CNType= user
/to:/0=Grid/O=Globus/OU=0U=zju.edu.cn/CN=SiLi/CNType= user
&(action = suspend)(executable = test2)(subtask = subtask1)(directory = /tmp/test2)

Fig. 3. A task management delegation and the relevant change of the subject list.

/0=Grid/O=Globus/OU=0U=zju.edu.ct/CN=WuWang/CNType= user:
&action = start)(executable = test1)(subtask = subtask1)(directory = /tmp/test1)(count<2)
&action = start,suspend,cancel)(executable = test2)(subtask = subtask1)(directory = /tmp/test2)(count<4)

10=Grid/O=Globus/OU=0U=zju.edu.ct/CN=Grid administrator/CNType= group:
&f(action = all)(executable = all)(subtask = all)(directory = /tmp)

Fig. 4. An example of task management description.

Task management authorization module is responsible for managing privilege
of task management, authorization to task management and related works. In dynamic

468 C. Huang et al.

grid environments, there are many long-lived tasks, for which static methods of pol-
icy management are not effective. Users may also start jobs that shouldn't be under
the domain of the VO. Since going through the user who has submitted the original
job may not always be an option, the VO wants to give a group of its members the
ability to manage any tasks using VO resources. This module imposes a community
task management policy and task management delegation to describe rules of task
management, and both of the two mechanisms are beneficial to flexible task man-
agement in an expressive way. A community task management policy denotes the
rules of task management in the whole community, and it is combined into the com-
munity policy server. Task management delegation server records a variety of man-
agement delegation relations among community users. Once the delegation relation is
formed, this task will be able to be managed by the delegate user at its runtime. A
community management server is responsible for authenticating task management
delegation. To keep compatibility with special task management, the subject list only
consists of the owner of the task by default. Figure 3 shows a task management dele-
gation and the change of the subject list for task management privilege to this delega-
tion. Subtask-level privilege management RSL description server produces the task
management description, which is expressed by extending the RSL set of attributes.
An example of task management description is shown in Figure 4.

Task management authorization module includes a community task management
policy, task management delegation server and Subtask-level privilege management
RSL description server.

4 Context-Aware Authorization

Based on the PSAS Architecture, the dynamic authorization is able to complement
with a low overload; meantime, little impact is enforced on grid computation oriented
to scientific and engineering. The main idea is that actual privileges of grid users are
able to dynamically adapt to their current context. This work is similar to the study in
the literature [13]; however, our context-aware authorization is exercised by con-
structing a multi-value community policy. The approach is completed according to
the following steps:

1. Rank the privileges belonging to each item in a traditional community policy. We
divide the privileges of a community member into three sets of privileges: Fat Set,
medium Set and thin Set. Fat Set is rich set with the full privileges of this commu-
nity member, and is suited for the best context at runtime; for example, at some
time, the context is fully authorized nodes with least resources utilized, then the
node will be able to provide its user most privileges. Medium Set is a set of privi-
leges decreased, and Thin Set is the least privilege set for the community member.
When Thin Set is enforced, the subtask belonging to this community member will
use the less resources (i.e. less memory, less CPU cycles, etc) or be canceled.

2. Construct a multi-value community policy. After finishing the above, we must
rebuild the community policy. To keep compatible with the traditional policy, we

An Authorization Architecture Oriented to Engineering and Scientific Computation 469

only add two sub-items below each item, and the two sub-items are inserted for
medium Set and thin Set, respectively. We apply the policy language defined by
the literature [15], and introduce two new tags “$1” and “$2” as the respective be-
ginning statement. An example of a policy of resource usage and task management
is shown in Figure 5. The statement in the policy refers to a specific user, Wu
Wang, and in the first item, it states that he can “start” and “cancel” jobs using the
"test]" executables; The rules also place constraints on the directory “/usr/testl”
and on the count “<4”. In its multi-value community policy, corresponding Fat Set
maps to the first item without the change of privileges, its Medium Set and Thin
Set respectively map to the next two sub-items below the first item, and their au-
thorizations are changed. For instance, in its corresponding Thin Set, the empty
statement prevents him from doing any control using the "testl" executables, the
statement “memory<20” places a constraint of used memory <20M, and the state-
ment “directory=/tmp/test]l” places a constraint of resource usage.

/0=Grid/O=Globus/OU=0U=zju.edu.cn/CN=WuWang/CNType= user:
&(action = start,cancel)(executable = test1)(subtask = subtask1)(directory = /usr/test1)(count<4)
&(action = start,suspend,cancel)(executable = test2)(subtask = subtask2)(directory = /ust/test2)(count<6)

/0=Grid/O=Globus/OU=0U=zju.edu.cn/CN=WuWang/CNType= user:

&(action = start,cancel)(executable = test1)(subtask = subtask1)(directory = /usr/test1)(count<4)

$1(action = cancel)(executable = test1)(subtask = subtask1)(directory = /usr/test1)(count<2)(memory<100)
$2(action =)(executable = test1)(subtask = subtask1)(directory = /tmp/test1)(count<2)(memory<20)
&(action = start,suspend,cancel)(executable = test2)(subtask = subtask2)(directory = /ust/test2)(count<6)
$1(action = start,cancel)(executable = test2)(subtask = subtask2)(directory = /ust/test2)(count<4)
$2(action = cancel)(executable = test2)(subtask = subtask2)(directory = /tmp/test2)(count<2)(memory<20)

Fig. 5. A traditional policy and its corresponding multi-value community policy.

3. The context-aware authorization is conducted via the above multi-value commu-
nity policy at runtime. As shown in Figure 6, the model uses a Context Agent as an
entity to sense the context information. The Transition Controller accepts the trig-
ger from associated Context Agent and makes a decision of transition of privilege
set. In addition to these common policies, the Community Policy Server contains
transition policy, as a rule of state transition, and event policy, as a rule of sense
event. For example, when the memory of hosting node becomes exhausted, the
event notifies Context Agent and let it sense and trigger the Transition Controller.

5 Enforcement Mechanisms

Enforcement of fine-grained access rights is defined as the limitation of operations
performed on resources or tasks/subtasks by a user to those permitted by an authorita-
tive entity. Based on the Globus Toolkit 2.2, PSAS architecture implements the sub-
task-level authorization, flexible task management, and context-aware authorization.

470 C. Huang et al.

Community Policy Server

Common Plicy

Transition Plicy

@ v

Enforce Transition
- Controller

Event Plicy

Trigger
Result

Privileges of a
community Member

Context Agent

Fig. 6. The context-aware authorization model.

To implement task management authorization module, PSAS creates a job man-
agement controller- a component by extending jobmanager in GRAM. When the
jobmanager parses users’ job descriptions, the job management controller parses and
evaluates subtask-level privilege certificate, and makes a decision of certain task
management permission. The job management controller integrates with the jobman-
ager by an authorization callout API. The callout passes the relevant information to
the job management controller, such as the credential of the user requesting a remote
job, the action to be performed (such as start or cancel a job), a unique job identifier,
and the job description expressed in RSL. The job management controller responds
by the callout API with either success or an appropriate authorization error. This call
is made whenever an action needs to be authorized; that is, it happens before creating
a job manager request, and before calls to cancel, query, and signal a running job.
PSAS extends the GRAM protocol to return authorization errors with reasons of au-
thorization denial as well as authorization system failures. All of task management
delegations and community policies are described in complex task management
cases, and they are translated into a RSL regular description by Subtask-level privi-
lege management RSL description server.

To enforce subtask-level authorization module, PSAS employs the proxy certifi-
cate with an extension field in the form of standardized X.509 v2 attribute certifi-
cates, and makes signed subtask-level privilege certificate embedded into the proxy
certificate’s extension field. At the same time, PSAS architecture modifies the Globus
gatekeeper and jobmanager to put subtask-level authorization into practice. For PSAS
client needs to manage a subtask’s process and checks whether the subtask is running
according to the subtask-level privilege certificate, the GASS library is modified to
communicate with PSAS client, and the relevant callout APIs are created. After mu-
tual authentication between a user and a resource, the resource obtains subtask-level
privilege certificate located in the proxy certificate’s extension field. Then the sub-

An Authorization Architecture Oriented to Engineering and Scientific Computation 471

task-level privilege certificate is verified and finds out job identifier. Finally, PSAS
client guarantees a subtask’s process according to the subtask-level privilege certifi-
cate by interacting with GASS.

Community authorization module in PSAS is executed as in CAS [8]. The GSI
delegation feature is extended to support rich restriction policies in order to allow
grantors to place specific limits on rights that they grant. PSAS employs extensions to
X.509 Certificates to carry out restriction policies. However, there exist some differ-
ences between CAS and PSAS in the community authorization module. That is, the
CAS uses restricted proxy credentials to delegate to each user only those rights
granted by the community policy; but the latter regards the ultimate privileges as a
privilege combination of the “restricted proxy credentials” and the subtask-level
privilege certificate. Proxy credentials are separated from identity credentials. The
identity credentials are used for authentication, while the proxy credentials are used
for authorization. That makes the PSAS architecture more flexible. Similar to the
previous cases, the GASS library is modified to implement a policy evaluation, and
the relevant callout functions are designed for call in the Globus gatekeeper. To im-
plement the dynamic context awareness, Context Agent applies a context toolkit de-
scribed in the literature [18].

6 Conclusions and Future Work

In this paper, we propose a Parallelized Subtask-level Authorization Service (PSAS)
architecture to fully secure applications oriented to engineering and scientific comput-
ing. This type of task is generally large-scale and long-lived. It needs to be divided
into many subtasks run in parallel, and these subtasks may require different privi-
leges. The minimization of the privileges is conducted by decomposing the task and
re-allotting the privileges required for each subtask with a subtask-level privilege
certificate. With the aid of Context Agent, a multi-value community policy for re-
source usage and task management enables the context-aware authorization in addi-
tion to separating proxy credentials from identity credentials. The delegation mecha-
nism collaboratively performs the authorization delegation for task management to-
gether with a relevant management policy. To enforce the architecture, the authors
have extended the RSL specification and the proxy certificate and have modified the
Globus gatekeeper, jobmanager and the GASS library to allow authorization callouts.
The authorization requirement of an application is effectively met in the presented
architecture.

At present, the PSAS architecture is only a prototype, and many issues need to be
solved. So we plan, firstly, to improve the PSAS architecture in practice via complex
applications, and secondly, to further study the policy based context-aware authoriza-
tion of resource usage and task management based on performance metrics.

Acknowledgements. The authors wish to thank the National Natural Science Founda-
tion of China for the National Science Fund for Distinguished Young Scholars under
grant Number 60225009. We would like to thank the Center for Engineering and

472 C. Huang et al.

Scientific Compu-tation, Zhejiang University, for its computational resources, with
which the research project has been carried out.

References

1. L Foster, C. Kesselman, and S. Tuecke, The Anatomy of the Grid: Enabling Scalable
Virtual Organizations, International Journal of Supercomputer Applications, 15(3):
pp-200-222, 2001.

2. A. Grimshaw, W. A. Wulf, et al., The Legion Vision of a Worldwide Virtual Machine,
Communications of the ACM, 40(1): 39-45, January 1997.

3. I Foster and C. Kesselman. Globus: a metacomputing infrastructure toolkit, /nternational
Journal of Supercomputer Applications, 11(2): 115-128, 1997.

4. S. Tuecke, et al., Internet X.509 Public Key Infrastructure Proxy Certificate Profile. 2002.

5. L Foster, C. Kesselman, G. Tsudik, S. Tuecke, A Security Architecture for Computational
Grids, Proc. of 5th ACM Conference on Computer and Communications Security Confer-
ence, 1998.

6. L. Kagal, T. Finin, and Y. Peng, A Delegation Based Model For Distributed Trust, IJCAI-
01 Workshop on Autonomy, Delegation, and Control, 2001.

7. J. R. Salzer and M. D. Schroeder, The Protection of Information in Computer Systems,
Proc. of the IEEE, 1975

8. L. Pearlman, V. Welch, et al., A Community Authorization Service for Group Collabora-
tion, Proc. of the 3rd IEEE International Workshop on Policies for Distributed Systems
and Networks, 2002.

9. W. Johnston, S. Mudumbai, et al., Authorization and Attribute Certificates for Widely
Distributed Access Control, Proc. of IEEE 7th International Workshops on Enabling
Technologies: Infrastructures for Collaborative Enterprises, 1998.

10. R. Alfieri, et al., VOMS: an Authorization System for Virtual Organizations, Proc. of the
1st European Across Grids Conference, 2003.

11. M. Lorch, D. B. Adams, et al., The PRIMA System for Privilege Management, Authoriza-
tion and Enforcement in Grid Environments, Proc. of the 4th International Workshop on
Grid Computing, 2003

12. M. Lorch and D. Kafura, Supporting Secure Ad-hoc User Collaboration in Grid Environ-
ments, Proc. of the 3rd IEEE/ACM International Workshop on Grid Computing, 2002.

13. G. Zhang and M. Parashar, Dynamic Context-aware Access Control for Grid Applications,
Proc. of the 4th International Workshop on Grid Computing, 2003.

14. R. Sandhu, E. Coyne, et al., Role-based Access Control Models, Proc. of the 5th ACM
Workshop on Role-Based Access Control, 2000

15. K. Keahey, V. Welch, et al., Fine-Grain Authorization Policies in the Grid: Design and
Implementation, Proc. of thelst International Workshop on Middleware for Grid Comput-
ing, 2003.

16. S. Kim, J, Kim, S. Hong, et al., Workflow-based Authorization Service in Grid, Proc. of
the 4th International Workshop on Grid Computing, 2003.

17. M. Romberg, The UNICORE Architecture: Seamless Access to Distributed Resources,
Proc. of the 8th IEEE International Symposium on High Performance Distributed Com-
puting, 1999.

18. A. K. Dey, G. D. Abowd, The Context Toolkit: Aiding the Development of Context-
Aware Applications, Proc. of Human Factors in Computing Systems: CHI 99, 1999.

	1 Introduction
	2 Backgrounds and Related Work
	2.1 Authorization in Grid Middleware
	2.2 Related Work

	3 PSAS Architecture
	3.1 PSAS Architecture Overview
	3.2 Privilege Management and Overall Authorization Policy

	4 Context-Aware Authorization
	5 Enforcement Mechanisms
	6 Conclusions and Future Work

