
X. Zhou et al. (Eds.): APPT 2003, LNCS 2834, pp. 525–535, 2003. 
© Springer-Verlag Berlin Heidelberg 2003 

TMO-Based Object Group Framework for Supporting 
Distributed Object Management and Real-Time Services 

Chang-Sun Shin, Myoung-Suk Kang, Chang-Won Jeong, and Su-Chong Joo 

School of Electrical, Electronic and Information Engineering, 
Wonkwang University, 

Korea 
{csshin,gnb,mediblue,scjoo}@wonkwang.ac.kr 

Abstract. In this paper, we present a TMO-based object group framework that 
can support the distributed object group management and the real-time 
scheduling services on distributed real-time computing environments. These 
environments have some difficulties for managing lots of distributed objects 
and providing the timing constraints to real-time objects. For simultaneously 
solving these problems, we design a TMO object group framework that can 
manage as a grouping unit of the distributed TMO objects in order to reduce 
their own complicated managements and interfaces among individual objects 
without modifying the ORB itself. The TMO object as real-time object, defines 
the object having real-time property developed from Dream Laboratory at UC 
at Irvine. The TMO object group we suggested contains several components 
reflected the object grouping concepts and real-time service requirements 
analyzed by referring OMG CORBA specifications. To construct our TMO 
object group framework, we designed the TMO object group structure, and 
described the functional class diagram with representing relationships among 
components. We also explained the detailed functional definitions and 
interactions between the components from the following 2 points of views; 
object management service by the Dynamic Binder object for selecting an 
appropriate one out of objects with the same property, and the real-time 
scheduling service by the Scheduler object and the Real-Time Manager object.  
We finally verified the results produced by using the known algorithms like the 
Binding Priority algorithm and the EDF algorithm to see whether a distributed 
object management service and a real-time service can adapt on the suggested 
framework. 

1   Introduction and Related Works 

The modern computing environments have been changing toward the distributed real-
time object computing environments with growing the real-time service requirements 
of practical applications. Though the existing real-time applications largely run as 
simple real-time constraints on a single processor system, nowadays most real-time 
applications, like avionics, widely distributed defense systems and so forth, are 
required to complex time constraints for distributed real-time services. That is, the 
distributed real-time applications might be executed by one or more logically 
distributed objects and required the exacting results by interacting among the 
distributed objects and the timely operation satisfying the real-time constraints[1,2,3].



526         C.-S. Shin et al. 

 

As one of the representative researches that efficiently manage individual objects   
at point of view for distributed object oriented applications, the TINA-C 
(Telecommunications Information Networking Architecture-Consortium) defined the 
TINA[4]. In the TINA specification, distributed applications can be logically 
executed as unit of associated objects, called object group, on multiple systems. 
According to their specification, they have defined only the management specification 
of object group and the distributed functional components.  Nevertheless, they have 
not defined the detailed specification about real-time services in a distributed 
environment yet. 

For compensating the TINA’s weakness, the OMG(Object Management Group) 
specified with CORBA (Common Object Request Broker Architecture) providing the 
standard software specification for improving the flexibility, scalability, reusability 
and etc via objects’ implementation of the distributed environments[5], but it is 
impossible to support the real-time properties for the distributed real-time 
applications. After this, the RT-SIG(Real-Time Special Interest Group) organized by 
the OMG suggested the development of the CORBA specification having the real-
time extensibility(CORBA/RT) for adding the real-time property to CORBA 
specification[6].  It made the distributed real-time environments that depended on the 
special system and/or the operating systems for the real-time services by modifying or 
extending the ORB that is the core of CORBA. In these same times, the Dream 
Laboratory at UCI reported the TMO(Time-triggered Message-triggered Object) 
scheme[9,10]. The TMO object is defined as an object having real-time property 
itself. The TMO object scheme is syntactically a simple and natural but semantically 
powerful extension of conventional object structuring approaches. However, the TMO 
scheme cannot support the concept of object group for real-time scheduling service 
and dynamically an appropriate object selection mechanism from replicated TMO 
objects with the same service property in an object group.  

With following up the TINA and CORBA specifications, and providing both the 
object group management and real-time service on independent framework based on 
CORBA, the Real-Time Object Group(RTOG) model in the distributed environments 
has been researched by our researches[2,7,8]. As you referred our papers, the RTOG 
is developed for supporting the distributed real-time services based on the TINA’s 
object group concepts without modifying the ORB on the standard CORBA. But this 
RTOG model is not enough to address problem of a dynamic object binding service 
among replicated objects that are called objects providing the same service property.  

In this paper, for solving some problems mentioned above which did not studied in 
point of view of the object group, we suggest the TMO object group framework that 
can manage the TMO objects as a unit of the object group on COTS(Commercial Off-
The-Shelf) middleware and provide the execution power of the guaranteed real-time 
services. With given pre-requirements of distributed real-time services, we defined 
the concepts of the TMO object and a structure of the TMO object group. We also 
explained the detailed functional definitions and interactions between components 
from the following 2 points of views; the object management service by the Dynamic 
Binder object for selecting an appropriate one out of objects with the same property, 
and the real-time scheduling service by the Scheduler object and the Real-Time 
Manager object. We finally verified the results executed by using the known 
algorithms like the Binding Priority algorithm and the EDF(Earliest Deadline First) 
algorithm to see whether a distributed object management service and a real-time 
service can adapt on the suggested framework. These algorithms might be altered to 



TMO-Based Object Group Framework        527 

 

others for improving adaptation of our framework. In this paper, the viewpoint of 
performance is out of boundary, because we are interested in mapping a physical 
environment to logical one, our framework, directly at aspect of adaptability. 

2   TMO Object Group 

This section explain the whole of overview of the suggested TMO object group for 
managing individual objects in an object group and guaranteeing the real-time service 
in the distributed systems. The TMO object scheme[9,10] we used in paper developed 
from Dream Laboratory at UC at Irvine. The TMO objects, as service objects 
contained in an object group, are implemented by using this scheme. 

2.1   TMO Object Scheme 

The TMO object is defined as a real-time object having real-time property itself. This 
object scheme is extending the concept of existing service object. Be different from 
the generic object concept, TMO object has additionally an SpM(Spontaneous 
Method) that can be spontaneously triggered by the defined time in an object. Figure 
1 is shown its structure. The TMO object contains its name, an ODS, EAC, AAC, 
SpMs, and SvMs as follows. As stated in [10], the role of each component is 
described like below. 

Name of TMO

ODSS1 ODSS2

Object Data Store(ODS)

SpM1

Deadlines

SpM2

SvM1

Concurrency 
Control

SvM2

Reservation Q

Service Request
Queues

Client
TMO’s

Time-triggered(TT) 
Spontaneous Methods
(SpM’s)

Message-triggered 
Service Methods
(SvM’s)

EAC

AAC

AAC

From SvM’s, SpM’s
“Absolute time

domain”

“Relative time
domain”

Capabilities for accessing
other TMO’s and network
environment incl. Logical
multicast channels, and
I/O devices

Name of TMO

ODSS1 ODSS2

Object Data Store(ODS)

SpM1

Deadlines

SpM2

SvM1

Concurrency 
Control

SvM2

Reservation Q

Service Request
Queues

Client
TMO’s

Time-triggered(TT) 
Spontaneous Methods
(SpM’s)

Message-triggered 
Service Methods
(SvM’s)

EAC

AAC

AAC

From SvM’s, SpM’s
“Absolute time

domain”

“Relative time
domain”

Capabilities for accessing
other TMO’s and network
environment incl. Logical
multicast channels, and
I/O devices

 

Fig. 1. Structure of TMO object scheme 

 ODS(Object Data Store) : Storage of properties and states of the TMO object. 

 EAC(Environment Access Capability) : List of gates to objects to providing 
efficient call-paths to remote object methods, logical communication channels, 
and I/O device interfaces. 

 AAC(Autonomous Activation Condition) : Activation condition for an SpM, 
which defines the time window for the execution of that SpMs. 

 SpM(Spontaneous Method) : A time triggered method which runs in real-time a 
periodic manner. 

 SvM(Service Method) : A message triggered method which responds to external 
service requests. 



528         C.-S. Shin et al. 

 

In details, an ODS is a common object data store being accessed by the SpM and 
the SvM, and both methods could not be accessed it simultaneously. When SpM and 
SvM access the ODS at the same time, the SpM’s priority is higher than the SvM’s 
one. That is, the TMO object is triggered by the BCC(Basic Concurrency 
Constraints). The EAC is responsible for the interface call of the communication 
channels and the I/O devices. The SpM and the SvM are the list of methods, which 
are clearly separated from the existing object. The TMO object can have several 
SpMs and SvMs. In the AAC(Autonomous Activation Condition) that located in the 
first clause of the SpM, we specify the activation time of the SpM, and implement the 
TMO object as the real-time object. The TMO object scheme is going on the lively 
research in the real-time simulation as the military or the transportation applications. 
But it is impossible to check the security for the object access, manage the replicated 
TMO objects with the same property and support the distributed scheduling service of 
several TMO objects globally in a given object group. We intended to solve these 
problems by taking advantage of the TMO object group model we suggested. 

2.2   TMO Object Group Framework 

The TMO object group framework proposed in this paper is a new structure that can 
apply the object group concept being suggested by TINA on COTS middleware. The 
TMO object group is represented by a logical unit that consists of a set of objects to 
manage an object group and a set of TMO objects to execute real-time services.  

Let us explain the components and their functionalities in the TMO object group. 
The major roles of these components are categorized into two kinds of services; the 
object management service and the real-time scheduling service. For supporting the 
object management service, our framework contains several components, such as the 
Group Manager(GM) object, the Security object, the Information Repository object 
and the Dynamic Binder object. And for supporting the real-time scheduling service, 
our framework contains several components, such as the TMO objects, the Real-Time 
Manager(RTM) objects and the Scheduler objects. And the TMO object group may 
contains the replicated TMO objects with the same property and the Sub-TMO object 
groups as a nested inner object group. A nested object group allows encapsulation and 
hierarchical organization. Figure 2 shows the structure of the TMO object group 
framework. 

From this framework, at point of view of a support of the object management 
service, the GM object is totally responsible for managing of all of objects being in an 
object group and returning the unique reference of the requesting TMO object to a 
client. The Security object checks access rights of an object requested by referring the 
access control list(ACL). The Information Repository object stores information such 
as service properties and their references about all of TMO objects existing in an 
object group. The GM object is also responsible for maintaining this information, and 
this will be used for selecting an arbitrary object or an appropriate one out of 
replicated TMO objects. In this procedure, the Information Repository object sends 
their references to the Dynamic Binder object. After then, the Dynamic Binder object 
selects an appropriate object that will be invoked by a client, after referring each 
system’s load information and deadline. For selecting an appropriate one out of the 
replicated TMO objects, we will adopt the known sample algorithm like the binding 
priority algorithm considering system’s workload and network traffic information and 



TMO-Based Object Group Framework        529 

 

the request deadline as inputs to the Dynamic Binder object for calculating binding 
priorities of the replicated TMO objects. This algorithm assigns the binding priorities 
to the replicated objects individually. The GM object finally returns the reference of 
the selected object with the highest priority to a client. In case of binding with a non-
replicated object, it is trivial.  

At point of view of a support of the real-time scheduling service, the RTM object 
takes the calculated service deadline of the TMO object requested over the Scheduler 
object. This basic flow procedure occurred from clients’ request to getting results is 
divided into 3 detailed steps; a service requesting step, a service processing step and a 
result returning step. Each step should be defined the timing constraints itself. 
Considering given timing constraints, the Scheduler object assigns the priority to the 
requesting tasks according to scheduling sequences. For verifying whether the 
Scheduler object can schedule or not in our model, we adopt the EDF scheduling 
algorithm, as an algorithm, to the Scheduler object for deciding the requests’ priority. 
The Figure 3 shows the functional class diagram of the components that organized in 
the TMO object group using the Object Modeling Technique(OMT). 

COMMUNICATION NETWORK

……… ………

other group other group

COTS MIDDLEWARE

GM
Object

GM
Object

RTM
Object

Security
Object

TMO Object Group

Information
Repository

Object

Dynamic
Binder Object

�������� �������� ��������

Sub-TMO Object Group

: Object Management Service : Real-Time Scheduling ServiceGM : Group Manager, RTM : Real-Time Manager : Object Management Service : Real-Time Scheduling ServiceGM : Group Manager, RTM : Real-Time Manager

GM
Object

GM
Object

RTM
Object

Security
Object

Scheduler
Object

Information
Repository

Object

Dynamic
Binder Object

Scheduler
Object

RTM
Object

RTM
Object

RTM
Object

Scheduler
Object

Scheduler
Object

��������

Replicated TMOs

……
Replicated TMOs

……
�������� �������� �������� ��������

 

Fig. 2. Structure of the TMO object group framework 

TMO Object Group Components

TMO Object Group

client_name
request_deadline
predictable_execution_time
CPU_utilization
binding_priority

SecurityObject
client_name
service_name

enter_ACL()
delete_ACL()
check_ACL()

GroupManagerObject
client_name
service_name
request_deadline

enter_objectgroup()
withdraw_objectgroup()
request_ACL_check()
request_object_infoToIRO()
update_object_info()

InformationRepositoryObject
service_name
main_object_ref
duplicate_object_ref

insert_object_info()
delete_object_info()
lookup_object_info()
request_object_referenceToDB()

DynamicBinderObject

insert_request_info()
delete_request_info()
compute_binding_priority()

ObjectManagementServiceComponents

Real-TimeManagerObject
client_name
request_deadline
service_deadline
transfer_time
service_time
client_invocation_time
TMO_invocation_time

predict_deadline_violation()
calcuate_service_deadline()
request_schedulingToScheduler()
request_service_execution()

SchedulerObject
client_name
service_deadline

add_scheduling_inventory()
remove_scheduling_inventory()
execute_scheduling()

TMO
ODSS
deadline
input_value
client_name

SpM()
SvM()
send_execution_completeToGM()
send_execution_completeToRTM()

Real-TimeSchedulingServicesComponents

Sub-TMO ObjectGroup

s
s

s
s

TMO Object Group Components

TMO Object Group

client_name
request_deadline
predictable_execution_time
CPU_utilization
binding_priority

SecurityObject
client_name
service_name

enter_ACL()
delete_ACL()
check_ACL()

GroupManagerObject
client_name
service_name
request_deadline

enter_objectgroup()
withdraw_objectgroup()
request_ACL_check()
request_object_infoToIRO()
update_object_info()

InformationRepositoryObject
service_name
main_object_ref
duplicate_object_ref

insert_object_info()
delete_object_info()
lookup_object_info()
request_object_referenceToDB()

DynamicBinderObject

insert_request_info()
delete_request_info()
compute_binding_priority()

ObjectManagementServiceComponents

Real-TimeManagerObject
client_name
request_deadline
service_deadline
transfer_time
service_time
client_invocation_time
TMO_invocation_time

predict_deadline_violation()
calcuate_service_deadline()
request_schedulingToScheduler()
request_service_execution()

SchedulerObject
client_name
service_deadline

add_scheduling_inventory()
remove_scheduling_inventory()
execute_scheduling()

TMO
ODSS
deadline
input_value
client_name

SpM()
SvM()
send_execution_completeToGM()
send_execution_completeToRTM()

Real-TimeSchedulingServicesComponents

Sub-TMO ObjectGroup

s
s

s
s

 

Fig. 3. Functional class diagram of components in a TMO object group 



530         C.-S. Shin et al. 

 

2.3   Timing Constraints 

To support the object management and the real-time scheduling service at our TMO 
object group, the binding priority algorithm and the EDF algorithm adapting to the 
Dynamic Binder object and the Scheduler object respectively are requiring the timing 
constraints for real-time services. The basic flow procedure obtaining the result 
returned from a request is divided into 3 steps; the service request step, the service 
process step and the result returning step. Each step must have individual timing 
constraint and guarantee the timeliness by explicitly outlining the definitions of 
timing constraints. Therefore, we define five timing constraints with showing Figure 4 
in our study as follows; 
— An invocation time(IT) constraint specifies CIT(Client’s Invocation Time), as a 

time that a client sends a request message to a TMO object and SIT(Service 
TMO’s Invoked Time), as a time that a service TMO object received a request of 
a client.  

— A service time(ST) constraint specifies the relative time for the service execution 
of a TMO object. 

— A transfer time(TT) constraint specifies the relative time required for transferring 
a request from a client to an TMO object(SIT-CIT), or inversely. 

— A service deadline(SD) constraint specifies the absolute time that a TMO object 
completes the service requested. 

— A request deadline(RD) constraint specifies the absolute time that a client 
received a result returning from a TMO object after a client requested a TMO 
object. Here, a RD is the timing constraint that must be guaranteed in a 
distributed real-time application. 

CIT SIT SD RD

Service Requester
(Client Object)

Service Provider
(Service TM O Object) STTT TT

 

Fig. 4. Definition of timing constraint 

From this figure, the timing constraint of each step can be expressed by following 
equations;  

RD � CIT+ST + (2 × TT) + slack time, 
SD � RD – TT, where TT = SIT-CIT and ST = SD – SIT.  

The deadline for service execution(RD) is the sum of the client’s invocation 
time(CIT), the service time(ST), total transfer time(2×TT) and slack time. Here, the 
slack time means a constant as a factor to decide the time of the adequate RD. This 
service deadline(SD) must be smaller than and equal a time value that subtracts 
transfer time(TT) from a client’s request deadline(RD). 

3  Object Management Services 

As we shown in Figure 2, the GM object is a representative of all of objects in a given 
object group. For requesting a service, a client should firstly obtain a reference of the 



TMO-Based Object Group Framework        531 

 

GM object existing in an object group via a Naming Server, and then, request the 
desiring TMO object’s reference to the GM object. To do so, the GM object checks 
access rights of the requesting TMO object from the Security object, and if it is 
possible to be accessed, it continuously requests to the Information Repository object 
for getting TMO object's reference. The Information Repository object searches a 
TMO object's reference from the object table managing objects in a group itself, and 
returns it to the GM object. At this time, if the TMO objects requested are being 
replicated in a given object group, the GM object requests the Dynamic Binder object 
to obtain the reference of an appropriate TMO object by way of the Information 
Repository object. The Dynamic Binder object will be selected an appropriate one out 
of the replicated TMO objects using an arbitrary algorithm. Otherwise, that is, if the 
replicated TMO objects are not existed in a given object group, this algorithm will not 
be needed. Through these procedures, finally the GM object receives the TMO 
object’s reference, and returns one to a client inversely. Figure 5 shows an Event 
Trace Diagram(ETD) for representing the whole management procedures mentioned 
above. We note that the binding priority algorithm is only used as a sample algorithm 
for implementation of the Dynamic Binder object. 

: GroupManager
Object

: SecurityObject : InformationRepository
Object

: DynamicBinder
Object

: Client

1: request_ACL_check( )

2: check_ACL( )

3: request_object_infoToIR( )

4: request_object_referenceToDB( )

8: request_execution_result( )

5: compute_binding_info( )

6: return_object_reference

7: return_object_reference

: GroupManager
Object

: SecurityObject : InformationRepository
Object

: DynamicBinder
Object

: Client

1: request_ACL_check( )

2: check_ACL( )

3: request_object_infoToIR( )

4: request_object_referenceToDB( )

8: request_execution_result( )

5: compute_binding_info( )

6: return_object_reference

7: return_object_reference

 

Fig. 5. The ETD for object management service 

3.1   Dynamic Selection and Binding Service from Replicated TMO Objects 

When two or more TMO objects with the same service property, called replicated 
target object, exist in an object group for supporting service, the least one out of 
replicated TMO objects should be selected and this selected object have to bind to the 
client object. For this reason, the Dynamic Binder object is implemented as an 
algorithm for selecting an appropriate one among replicated TMO objects. Here, we 
explain an example algorithm, called the binding priority algorithm, which describes 
with calculating each object’s binding priority and then selecting an appropriate 
object’s reference.  As input parameters of this algorithm, we use load information of 
systems that objects are located on and the request deadline information of client’s 
task. You do not care of adopting another algorithm as an alternative. In this section, 
we only use the binding priority algorithm for verifying whether the Dynamic Binder 
object in our object group may operate correctly, but not showing the improved 
performance of our framework itself. Let us consider the calculation of binding-
priority. The binding_priorityk for the client’s requestk can calculate by the following 
expression[1,11].  



532         C.-S. Shin et al. 

 

 
 

where 
request_deadline : client’s request deadline, CPU_utilization: CPU utilization rate, c : 

rate constant(0.01) 

 

From above expression we have defined, we can obtain the binding priorities of all 
of replicated TMO objects with the same property. In the dynamic object selection 
and binding procedure, we just allocate client’s request to the TMO object with the 
highest binding-priority out of replicated ones. That is, the client will be received the 
reference of the selected object for binding between a client object and a server 
object. To verify the dynamic selection and binding service in our object management 
services, we show an appropriate example as follows; 

In our framework environment, Let us assume that a sequence of 8 clients’ requests 
continue to arrive to the GM object in an object group for invoking replicated TMO 
objects(TMO1 or TMO2) with the same property and they have already had their 
client names, request deadlines, CPU utilizations of systems in which TMO1 and 
TMO2 are located, and binding-priorities for taking TMO1 or TMO2 services, that 
are the client’s status information. Here, we will not numerically describe the client’s 
status information, like request-deadline(RD), CPU-utilization, and so on. The 
binding-priority will be decided through competitions of clients waiting in Ready 
Queues of TMO1 and TMO2 using the clients’ status information. After finishing the 
dynamic selection and binding service, we can get the results that client c1, c3, c5, c6 
and c8 are bound to TMO1, and c2, c4 and c7 are bound to TMO2. Here, if each 
CPU’s utilization may change due to system overloads, the binding priorities should 
be also changed. Figure 6 shows the binding priorities and the selected binding 
references as results executed by the Dynamic Binder object.  

 

Fig. 6. Results executed by the Dynamic Binder object  

The each component in the TMO object group was designed to object-based 
technology, and implemented by using VisiBroker running on Windows 2K and 
Linux for independently supporting heterogeneous distributed computing 
environments. 

ationCPU_utiliz

c

adlinerequest_de

1
ioritybinding_pr k

0i
i

k +=
∑

=



TMO-Based Object Group Framework        533 

 

4   Real-Time Services 

For supporting real-time service from the TMO object group framework, we use the 
client’s status information described above section. On coming client TMOs’ requests 
into an TMO object group including the desiring target TMO object, each client TMO 
object transmits its own status information to the Real-Time Manager(RTM) object. 
After calculating the service deadline(SD) which a target TMO object should be 
served for a client, the RTM send the calculated SD and the client’s status information 
toward the Scheduler object. The Scheduler object schedules the client’s task, i.e. 
client request by using the Earliest Deadline First(EDF) algorithm. In this section, we 
only use the EDF algorithm for verifying whether the Scheduler object may be 
scheduled correctly, but not interesting in the improved performance of our 
framework itself. The below Figure 7 showed the ETD described interactions among 
the relevant objects for supporting the real-time scheduling service in the TMO object 
group. 

: C lient : TM O : RealT im eM anager
O bject

: SchedulerObject

1: SvM ( )

2: calcuate_service_deadline( )
3: add_scheduling_inventory( )

5: request_serv ice_execution( )

6: return_execution_result( )
7: return_result( )

4: execute_scheduling( )

: C lient : TM O : RealT im eM anager
O bject

: SchedulerObject

1: SvM ( )

2: calcuate_service_deadline( )
3: add_scheduling_inventory( )

5: request_serv ice_execution( )

6: return_execution_result( )
7: return_result( )

4: execute_scheduling( )

 

Fig. 7. The ETD for real-time scheduling service 

According to real-time scheduling procedures, the Scheduler object have to 
immediately execute a task of a client’s request whenever the TMO object stays in the 
idle state. Otherwise, the successive client’s requests have to be piled on the 
Scheduler object's ready queue and waited for taking the guaranteed service until the 
executing task is finished. The Scheduler object is implemented to the EDF algorithm 
with non-preemptive property. According to this algorithm, the highest priority task is 
defined the client’s request with minimum service deadline. The task execution 
priority list will be renewed whenever tasks are arrived or finished. The following 
expression describes making a condition deciding a task priority(TP), given two 
tasks’ service deadlines[12]. 

if SDi < SDi-1  then TPi > TPi-1  

Let us consider the same framework environment given at chapter 3. After 
finishing the dynamic TMO object selection and binding service, like Figure 6.  Client 
c1, c3, c5, c6 and c8 are assigned to TMO1, and client c2, c4 and c7 are assigned to 
TMO2. Here, to verify the real-time scheduling service on our object group 
framework, we show the all of scheduling procedures of TMO1 that are requested by 
c1, c3, c5, c6 and c8. For real-time scheduling, we considered the service 
deadline(SD) which subtracted the transfer time(TT) from client’s request 
deadline(RD) . That is, the RTM object calculates the service deadline(SD) from 
following expression; SD = RD-TT. The RTM object invokes the Scheduler object to 



534         C.-S. Shin et al. 

 

decide the priority level. As a result, the Figure 8 is shown a sequence of their 
executions on window screen, as scheduling execution results(c1, c3, c5, c8 and c6) 
of the Scheduler object on our framework, when TMO1 is requested by the coming 
sequent clients(c1, c3, c5, c6 and c8). 

real-time scheduling

 

Fig. 8. Scheduling results of the Scheduler object for the target object TMO1 

5   Conclusions 

The TMO object group framework proposed in this paper is a logical distributed 
structure that can provide the object group management and the TMO-based real-time 
services on COTS middleware without restricting the real-time CORBA or operating 
systems. For achieving this framework, we described whole of overview of the TMO 
object group, such as the concepts of the TMO object, structuring our model, 
designing the functions, interactions among the components in the object group, and 
implementing the Dynamic Binder object and the Scheduler object for supporting 
dynamic binding and real-time scheduling services. We also described the ETD for 
conveniently showing procedures of the object group management and real-time 
service in our framework. After then, in order to verify executions of the framework 
we constructed, we adopted the known algorithms as implementation of these objects 
described above, while implementing Dynamic Binder object and Scheduler object 
respectively. The algorithms we used are the binding priority algorithm for dynamic 
binding service and the EDF algorithm for real-time scheduling service. For the 
reason we used them, we only use these algorithms for verifying whether our 
framework may operate correctly, but not showing the improved performance of the 
framework itself.  With the execution results obtained from our framework using 
above algorithms, we showed that our framework can be being supported not only the 
dynamic selection and binding service of replicated or non-replicated TMO objects 
from client’s request, but also real-time scheduling service for an arbitrary TMO 
object requested from clients.   

In future, for applying this framework to practical fields, we have a plan to develop 
a prototypical framework that can variously adopt new dynamic binding and real-time 
scheduling strategies to Dynamic Binder object and Scheduler object in an object 
group. After then we will verify the execution power of the distributed real-time 
application on the TMO object group framework via various simulations for 
improving real-time services and convenient distributed object management services.  



TMO-Based Object Group Framework        535 

 

Acknowledgements. The authors wish to acknowledge helpful discussions of the 
TMO Programming Scheme with Professor Kane Kim in UC at Irvine DREAM Lab.  
This work reported here was supported in part by Research funds of Wonkwang 
University and the Brain Korea 21-Project of KRF, 2003. 

References 

1. M. Takemoto: Fault-Tolerant Object on Network-wide Distributed Object-Oriented 
Systems for Future Telecommunications Applications. In IEEE PRFTS (1997) 139–146 

2. W.J. Lee, C.W. Jeong, M.H. Kim, and S.C. Joo: Design and Implementation of An Object 
Group in Distributed Computing Environments. Journal of Electronics & Computer 
Science, Vol. 2, No. 1 (2000) 

3. E.D. Jensen, C.D. Locky, and H. Tokuda: A Time-Driven Scheduling Model for Real-
Time Operating Systems. In Proc. 6th IEEE Real-Time System Symposium (1985) 112–
122 

4. L. Kristiansen, P.Farley, R.Minetti, M. Mampaey, P.F. Hansen, and C.A. Licciardi: TINA 
Service Architecture and Specifications. http://www.tinac.com/specifications 

5. Object Management Group: The Common Object Request Broker: Architecture and 
Specification 2.2. http://www.omg.org/corba/corbaCB.htm (1998) 

6. OMG Real-time Platform SIG: Real-time CORBA A White Paper-Issue 1.0. 
http://www.omg.org/real time/real-time_whitepapers.html (1996) 

7. C.S. Shin, M.H. Kim, Y.S. Jeong, S.K. Han, and S.C. Joo: Construction of CORBA Based 
Object Group Platform for Distributed Real-Time Services. In Proc. 7th IEEE Int'l 
Workshop on Object-oriented Real-time Dependable Systems (WORDS’02) (2002) 229–
302 

8. C.S. Shin, M.S. Kang, Y.S. Jeong, S.K. Han, and S.C Joo: TMO-Based Object Group 
Model for Distributed Real-Time Services. In Proc. IASTED Int'l Conference Networks, 
Parallel and Distributed Processing, and Applications(NPDPA'02) (2002) 178–183 

9. K.H. Kim: Object-Oriented Real-Time Distributed Programming and Support Middleware. 
In Proc. 7th Int'l Conf. on Parallel & Distributed System (2000) 10–20 

10. K.H. Kim, Seok-Joong Kang, and Yuqing Li: GUI Approach to Generation of Code-
Frameworks of TMO. In Proc. 7th IEEE Int'l Workshop on Object-oriented Real-time 
Dependable Systems(WORDS’02) (2002) 17–25 

11. V. Kalogeraki, P.M. Melliar-Smith, and L.E. Moser: Dynamic Scheduling for Soft Real-
Time Distributed Object Systems. In Proc. IEEE 3rd Int'l Symp. on Object-Oriented Real-
Time Distributed Computing (2000) 114–121 

12. John A. Stankovic, Marco Spuri, Krithi Ramamrithm, Giorgio C. Buttazzo: Deadline 
Scheduling for Real-Time Systems. Kluwer Academic Publishers (2002) 31 

13. G.M. Shin, M.H. Kim, and S.C. Joo: Distributed Objects Grouping and Management for 
Supporting Real-Time in CORBA Environments. Journal of The Korea Information 
Processing Society, Vol. 6, No. 5 (1999) 

14. B.T Jun, M. Kim, and S.C Joo: The Construction of QoS Integration Platform for Real-
Time Negotiation and Adaptation Stream in Distributed Object Computing Environments. 
Journal of The Korea Information Processing Society, Vol. 7, No. 11S (2000) 


	Introduction and Related Works
	TMO Object Group
	TMO Object Scheme
	TMO Object Group Framework
	Timing Constraints

	Object Management Services
	Dynamic Selection and Binding Service from Replicated TMO Objects

	Real-Time Services
	Conclusions

