LOCK-IN EFFECT IN CASCADES
OF CLOCK-CONTROLLED SHIFT-REGISTERS

William G Chambers?) Dieter Gollmann?

DDepartment of Electronic and Electrical Engineering,
King’s College (KQC), Strand,
London WC2R 2LS, United Kingdom

2Fakultat fir Informatik, Universitat Karlsruhe,
Technologie-Fabrik Karlsruhe, Haid-und-Neu-Strasse 7,
7500 Karlsruhe 1, W Germany.

ABSTRACT

Cascaded cryptographic keystream generators as proposed by Gollmann pos-
sess a cryptanalytic weakness termed "lock-in” in this article. If the initial
state has been guessed correctly apart from its phase a decryption cascade can
be set up in which the effects of each stage of the original cascade are
unravelled in reverse order. Once the decryption cascade has "locked in" on
the original cascade, the state of the latter is known, and hence its future out-
put and its output in the remote past. This weakness is studied; its effects are
readily mitigated by taking certain precautions. Lock-in may also be used
constructively as a synchronization technique.

I. INTRODUCTION

Cryptographic binary sequences produced with the aid of shift-registers have
been much studied in the open literature over the last twenty years. An
important parameter is the linear equivalence, which measures the resistance
of a sequence generator to attacks using linear algebra [1, p199]. A good dis-
cussion of ways of increasing the linear equivalence is given by Rueppel [9].

Copyright (c) 1998, Springer-Verlag

332

One method is to use a non-linear function to combine the simultaneous out-
puts of several shift-registers. The use of clock-controlled shift-registers has
also been proposed by several authors [2, §, 12, 13]. Typical of such systems
is a cascade of clock-controlled shift-registers [6]. The periods and linear
equivalences are readily made very large, and the statistical properties of at
least the original versions have been proved to be good [7].

The fact that these systems are readily designed to have a high linear
equivalence and hence be immune against the algebraic attack does not pre-
clude other types of weakness. Thus attacks on sequences produced by non-
linear combining functions have been studied by Siegenthaler [10, 11]. In this
article a weakness which may occur in systems using clock-controlled shift
registers is examined. This weakness can readily be guarded against by taking
suitable precautions; nonetheless the user should be made aware of the possi-
bility, since the weakness is not obvious. Of course this does not guarantee
that there are no other hazards.

The cryptanalytic problem is the following: Assume that an enemy knows
a) the construction of the generator and b) a large number of consecutive bits
of the output, which for the sake of definiteness will be assumed to start at the
beginning of the sequence. Then with limited computing resources can he
deduce the initial setting of the generator, or at least the future output?

II. THE CASCADE GENERATOR

The keystreamn generator proposed in [6] consists of a number of stages, K
say, each like that shown in Fig 1. The main component of each stage is a
clock-controlled cycling register (CR) of length p, this length being the same
for each stage. If regularly clocked (or stepped), CR produces an endless
repetition b™ of the binary sequence b={56(0), b(1), - - - b(p-1)}, where the
b (i) are determined by the initial setting for this stage. (The only restriction
on b is that b™ should have shortest period p. Thus with p=3 the choices b =
{000} and b = {111} are excluded for then b™ has period 1.) The binary input
a, is added (mod 2) to the output of CR to give the output ¢, of this stage,
which then becomes the input of the next. The binary input also causes CR to
be stepped (afterwards) if a,=1, but not if a,=0. The "slight delay" is put in
the figure to emphasise that the step takes place after addition, that is, the rule
is "add then step”. We shall say that the stage uses the sequence b. The
input to the first stage is 111... . The output of the final stage is the output of
the generator.

Copyright (c) 1998, Springer-Verlag

333

The sequences {c,} and {a,} of the stage in Fig 1 are related by
¢,=a,+b (S, ;) mod 2, S,=S,_;+a, mod p, t=0,12,... (1a)
with the initial condition

5_,=0. (1b)

Evidently S, is the sum ZI: a,-mod p. Since it determines where CR has got
t’=0

to in its cycle it will be called the phase of CR. (By a mod p for positive p

we mean the value x satisfying 0<x <p obtained by adding (subtracting) a

suitable integer multiple of p to (from) a.)

A modified system (the "m-sequence cascade") consists of a similar cas-
cade of clock-controlled linear feedback shift registers of length n with primi-
tive feedback polynomials [1, pl87]. The regularly clocked output of such a
register has period p=2"—1, and the sequence {b(0), b(1), - -+ b(p-1)} isa
period of the m-sequence.

The output of a Gollmann cascade of length K has period pX if p is an
odd prime [6]. If p satisfies a further fairly weak condition (that (2/-1) is not
a multiple of p for any j satisfying O<j<p-1) then the linear equivalence is
either pX or pX—1 [6, 4]. Among the small primes 3, 5, 11, 13, 19 and 29
satisfy this condition whereas 7, 17, 23, and 31 do not. In an m-sequence

cascade of length K the period is (2*—1)X and the linear equivalence exceeds
n(2"-1)X-1 (3],

III. THE ATTACK

We now suppose that the stage just described is the final stage of the genera-
tor, so that {c,} is the final output, some of which has been intercepted by the
cryptanalyst X. (How much he needs is considered below.) In the attack to be
described he tries to reverse the transformation from {a,} to {c,} effected by
the final stage. Iteration of this technique should then enable him to "unravel”
the cascade, starting with the final stage.

The reversing transform is carried out as follows: X guesses a sequence
b” and a value §”_,, and then sets

a’,=c,-b’(S',_y) mod 2,8’,=S’,_1+a’, mod p, t=0,12,...)
where the primed quantities are guesses or deductions from guesses. (When

Copyright (c) 1998, Springer-Verlag

334

b’=b and $’_=S_, we find that {a’,}={a,}.) Such a transform may be imple-
mented by a decryption stage (Fig 2) using the sequence b’ with initial phase
’_;- In the case when b°(¢)=b ((s +¢)mod p) for some ¢ we say that b has
been guessed correctly except for phase. (Thus for p=3 there are only two

non-trivial choices for b differing by more than phase.)

We now make Assumption A (to be examined below): Suppose that X
has guessed the sequence b’ correctly except possibly for the phase. Let ¢, in
(2) be the output from (1). We may instead presume that b’=b and that the
initial guess S’_; needed for (2) may be incorrect. Then as the iteration (2)
proceeds the phase S’, may be expected to bounce around in some manner
until it happens to take the correct value S,. Thereafter it will be locked in
into its correct value, so that for all future + we find $’,=S, and a’, =a,.
(Investigations described in Sec 4 indicate that this takes a number of steps
roughly equal to %p? on average.)

When the whole cascade is unravelled, the original input 111... is
recreated. This is how X knows whether he has succeeded. At the same time
he learns the phase of each CR in the generating cascade, not, it is true, at the
start £=0, but at a value of ¢ (¢y say) where it is fairly safe to assume that
lock-in has taken place. Thus the output from the generator after to can be
predicted. It is also possible to work backwards from ¢ to ¢ =0, so that the
initial setting can be deduced. Let us consider (la) as applying to the first
stage of the generator, where X knows the input a, for all + (as 1). Let us
suppose moreover that X knows S, ; for >, Then he may find S, , as
S,-1—a,_y mod p, and so proceed backwards to § _1- Thus the ¢, may also be
found all the way back to the start. But {c,} is the input to the second stage,
and thus the process can be iterated.

Assumption A is now examined. There are situations where it is valid for
every stage without further ado: a) If for ease of manufacture the contents of
each CR are laid down in advance, with the key determining how many steps
are taken by each CR in preparing the initialization, then X knows each CR
except for phase. b) In the m-sequence cascade with registers of length n the
period of each register is p =2"—1. If the feedback polynomial of each stage
is specified in manufacture, the outputs are again known apart from their
phase, since all m-sequences associated with a given primitive feedback poly-
nomial are cyclic shifts of one another [1, p186].

In other cases X has to make a number of trals, in only one of which
Assumption A is valid for every stage. Thus in Gollmann’s cascade with p
prime there are 27 -2 initial settings for CR, and (2”7 —2)/p initial settings
that differ by more than phase. For a cascade of length X the number of

Copyright (c) 1998, Springer-Verlag

v

335

possible trials is thus ((27 —2)/p)X, that is 2X with p =3.

IV. NUMBER OF STEPS NEEDED

In this section the number of steps needed to achieve lock-in is discussed,
firstly just for the final stage, and then for the whole cascade. Assumption A
is taken as valid for every stage. Evidently this number is also the minimum
length of the sequence needed for the attack described in Section 3.

The number of steps needed on average to get a decryption stage (using
the correct sequence apart from phase) to lock-in to the final stage of a cas-
cade can be estimated as follows. The previous stages of the cascade are
regarded as a random binary generator G. The output {a,} of G is then
passed through the final encryption stage E to produce an output {c, } accord-
ing to (1). The sequence {c,} is then passed through the decryption stage D
to produce an output {a’,} according to (2). The stage D uses the same
sequence b as is used by E, but the initial phases may not agree. Until lock-
in is achieved the input to D will be regarded as random, and so the differ-
ence of the phases A, =S, ~S’, behaves as though in the problem of the ran-
dom walk [8, p213], either increasing or decreasing by unity with equal pro-
bability, or staying the same. Initially A, is taken to have any value between
0 and p —1 with equal probability, so that its mean is approximately Y2p.
Lock-in takes place when A, reaches either of the values 0 or p. For a ran-
dom walk to cover a distance d requires a number of steps of the order of d?,
and so in this case we may expect the mean number of steps needed to
achieve lock-in to be of order p2.

This conclusion is borne out for p up to 31 by the more careful treatment
described in the appendix. The mean M, and standard deviation o, of the
number of steps to lock-in for a single stage have been computed for p taking
the prime values from 3 to 31 to give the results shown in Table 1, which lists
the values W', =p, /p? and o', =0, /p2 The results are approximate to about
6 percent for p 219.

Copyright (c) 1998, Springer-Verlag

336

TABLE 1
14 Ky Sy p o) Sy
0.3210 | 0.4669 17 | 0.5365 | 0.6799

0.4997 | 0.6914 19 | 0.52 0.65

7 | 0.5681 | 0.7957 23 | 053 0.66

11 | 0.5645 | 0.7643 29 | 052 0.63

13 | 0.5538 | 0.7317 31 | 051 0.62
Complete lock-in for the whole cascade E, E,, - -- Eg (with K the
number of stages) requires a similar cascade of decryption stages
Dy, D, «++ Dg, with D, having the same sequence as E,. The output

from D, is the input to D,_,. By an iterative argument starting with kK =K it
is evident that once D, has locked in on E, the input to D, _; is the same as
the output from E,_;, and so D,_, can start to lock-in on E,_;. It is conceiv-
able that D,_; might already have started to lock in on E,_; before D, had
locked in properly on E,, but we shall assume that each lock-in starts with
random initial conditions as soon as the previous stage has locked in. Thus
the number of steps needed to achieve over-all lock-in is the sum of K
independent identically distributed random variables, and so its mean is
K ', p? and its standard deviation is K*¢’, p2.

Computer simulations (for p = 3, 5, 11, and 13) bear out these conclu-
sions. The only surprise was that for p = 5, 11 and 13 in about 10% of the
cases D; and D, failed to lock-in. This is presumably because the input
111... to E, can hardly be regarded as random. Although this may be an
embarrassment to the cryptanalyst it is probably not a serious obstacle.

V. USE OF ‘STEP THEN ADD’

It might appear that the arrangement where the "slight delay” of Fig 1 is put
instead at the point X would give a different problem, with @, implicitly
dependent on c,, rather than explicitly as in (2). For then we have

c,=a,+b(S,)mod 2, S, =S,_,+a, mod p. 3)
Appearances are however deceptive, and the inversion may be carried out by

a,=c,—b(S,)mod 2,S,_,=S,—a, mod p, 4)

Copyright (c) 1998, Springer-Verlag

337

where we let t run downwards from some large value N to 0, and all we need
to guess is the initial value Sy. Thus lock-in can be made to occur if the out-
put sequence from (3) is fed backwards into (4).

This suggests that if the cryptographer arranges that a choice between
"add then step” and "step then add" be made for each stage under the control
of the key, then the use of lock-in as a cryptanalytic technique is made more
difficult. It may however be better to spend the additional cryptographic
effort on extending the length of the cascade, with a corresponding increase in
the linear equivalence and the period [6].

VI. GUARDING AGAINST CRYPTANALYSIS BY LOCK-IN

First suppose the validity of Assumption A. Then the length of the bit-string
needed for the attack by lock-in is of the order of S =Kp?, where p is the
length of the cycling sequence b and K is the number of stages in the cas-
cade. Since the decryption involves passing the string through K decryption
stages the computing complexity, that is the number of computing steps
needed, is of the order of C, =K?%p2. If on the other hand Assumption A is
not valid then every possible instance of b has to be tried in each stage and so
the computing complexity is of the order of C =K?p2.((2° -2)/p)X. To give
examples of these values we note that C exceeds 10?! for p =3, K =56, or for
p =11, K =8, with § less than 1000 in both cases.

For an m-sequence cascade we set p =2" -1 where n is the register
length. It may be necessary to use fixed feedback connections, so that
Assumption A is valid. Then we find that C, >10%! for n =34, K =2, or for
n=29, K=59. Huge string-lengths are needed in these cases. We find
§ =5.9x10% and 1.7 x 10" respectively. On the other hand small values of n
would not be safe.

Without Assumption A the attack may be improved by a "meet-in-the-
middle" technique. The encryption cascade is regarded as being in two sec-
tions, of length a at the top and b at the bottom, with a+b=K. Al
(27 -2)? possible initializations of the top section are tried and the initial part
of each sequence thus generated is stored in order, together with the setting
that generated it. All ((27 —2)/p)? initializations of the lower part are used
in a decryption cascade of length b to lock-in on to the sequence to be bro-
ken. Again the output strings are ordered. Then the analyst looks for
matching pairs in the two ordered lists. If a matching pair is found it is

Copyright (c) 1998, Springer-Verlag

338

investigated further. Optimally the two lists should be roughly of the same
size, so that for small values of p the size of b is around two-thirds to three-
quarters of K. This value should perhaps replace K in the above considera-
tions.

VII. USE OF LOCK-IN FOR SYNCHRONIZATION

So far it has been assumed that the cascade is used as a pseudo-random binary
sequence generator, with the all-1’s sequence fed in at the top. Under these
conditions lock-in is a cryptanalytic hazard. However it may be employed
more constructively by the cryptographer. Suppose that the plaintext is fed
into the top of the cascade, and the ciphertext taken from the bottom. Then
the legitimate receiver will use a decryption cascade. Here the key given to
the receiver specifies the contents of each register and Assumption A is cer-
tainly satisfied. Then it is almost certain that the lock-in property ensures the
self-synchronization of the decryption, even if it is not properly synchronized
at any stage. Under these circumstances we would want fairly quick lock-in,
so that short registers (say p =3) would be used in a long cascade (say
K =100). A long cascade is of course vital for security, the effective
keylength being K bits with p =3. The mean time to lock-in with p =3 and
K =100 is about 0.3210% 32X 100=290 steps.

We have also studied the effects of a single-bit error on lock-in. There
are three types of such an error, the alteration, the insertion and the loss of a
bit. Computer simulations (carried out for p =3, 5,7 and 11 with K =31)
suggest that lock-in times after a single-bit error have a distribution very like
that for lock-in starting with random phases. Thus for the cascade with p =3
and K =100 the mean recovery time would be around 290 steps. This is just
over twice the recovery time for a 64-bit block cipher such as DES [1, p267]
used in the cipher-feedback mode {1, p287]. Moreover as far as a cascade
cipher is concemed the loss or insertion of a bit is no worse than the altera-
tion of a bit, whereas for a block cipher such an error causes misalignment of
the blocks, and some method for maintaining synchronization is needed.

Copyright (c) 1998, Springer-Verlag

339

APPENDIX: Number of steps for lock-in of a single stage

We develop further the model of Sec 4 in which a random binary input {a, }
is fed into an encryption stage E using a given sequence b of given least
period p, and the output {c,} generated according to (1) is fed to a decryption
stage D also using b. We find easily computed expressions for the mean and
variance of the number of steps to lock-in for any given b, averaged over the
initial states of D and E. By a random binary sequence {a,} we mean that
the a, are independent identically distributed random variables taking just the
values 0 and 1 with equal probabilities, or equivalently that for any n all
sequences of length n are equally likely. Since the sequences {g,} and {c,}
(for given b and S_)) are in one-to-one reciprocal correspondence it is readily
shown that {c, } is also a random binary sequence in the above sense.

Equations (1a) and (2) may be written as
S, =(c, +b(S,_)) mod 2)+S,_; mod p, (5a)
S’ =((c; +b(8’,_)) mod 2)+S’,_; mod p. (5b)

Lock-in occurs as soon as S, =S’, mod p. The value pair (§,,S’,) specifies
the state of the system at time t. We first show that, starting from any state,
lock-in can take place with non-zero probability after p(p —1) steps. This
result will be used to show that lock-in takes place eventually with probability
one, and it guarantees the convergence of the theory below, as well as the
existence of the mean and variance of the time to lock-in. To do this we sup-
pose that {@, } happens to be the all-ones sequence. Then by (la) S, increases
by 1 on every step (mod p of course). Now suppose that lock-in does not
take place. Then beyond some step ¢, the quantity S’, must keep some fixed
distance 5 ahead (0<s <p), so that §*, =S, +s mod p for t >¢;,. Then from
(5) it follows that b((i +s) mod p)=b (i) for all i such that 0<i <p, and so
b> has a period less than p, in fact the highest common factor of s and p.
This contradicts the assumption that p is the least period. This catching up
needs at most p(p —1) steps. For S, must gain on §’, by at least 1 every
time it goes round the cycle (0, 1,, --- p—1). However §’, cannot be
more than p —1 ahead of S, at the beginning, and hence the result.

To compute the mean and variance we use a state-transition matrix T
whose rows and columns are labelled by states of the system. The
“coalesced” states (with S, =S’,) need not be included among these, and there

Copyright (c) 1998, Springer-Verlag

340

is no need to distinguish between S, and §’,, so the states may be represented

as number pairs (a,b) with 0<a <b <p, the numbers being of course values

of S, and §',. There are altogether %2p(p —1) such states, and they will be

denoted by Greek suffices o, B and v. Let Tg, denote the probability of a

transition from o to . Then we find that 7,20, and that 3T, <1 with
B

YTpgy<1 if o can go to a coalesced state in one step. Let p(t) denote the
8

probability of the system being in the state o at step :. We find
pplt +1)=3Tpapqo(t) or in vector-matrix notation p(t +1)=Tp(¢), so that
o

p(n)=T"p(0). The probability of "no lock-in after n steps" may be written
as P, =e’p(n) where e is the all-ones vector. With a start from any state a,
lock-in takes place with a probability not less than A=2"¢ after Q =p(p — 1)
steps. (The quantity A is the probability that {a,} starts with Q consecutive
1’s.) Now the probability distribution after n steps starting from the state o is
pp=(T")go, s that %(TQ)ga<1-A. Thus for any integer / 20 we find

§(T<’+1>Q Yoo = z(§('r9 Yoy (T, (1 -1) BT)
Y Y

By iteration this is then less than or equal to (1-A)*!, and hence so is each
term in the sum on the left. We are using the fact that all these matrix com-
ponents are non-negative. Thus we find that T" - Q as n - . From this it
follows (by reductio ad absurdum) that the eigenvalues of T are strictly less
than unity in magnitude. This approach may well give a hopelessly pessimis-
tic estimate of the rate of convergence of T" to O, but it is all that is needed
for the theory.

The initial probability distribution will be taken as uniform, with
p(0)=(2/p?)e; this takes account of the possibility of coalescence at the start,
since Py=e’p(0)=1-1/p. The mean time to coalescence is then given by

=X (n+1)P,=Pp.y)
n=0
since a fraction P, —P, ., coalesces at step n +1. Thus we find that
L= 3 P, =(2p? 3 ¢ The=(2pHe'(I-T) le
n=0 n=0

where I is the unit matrix. Here a matrix geometric progression has been
summed, which is possible since all the eigenvalues are less than one in mag-
nitude.

Copyright (c) 1998, Springer-Verlag

{
\

341

In like manner the mean square time to coalescence is given by

v= ¥ (n + 1P, —Py .y
n=0

from which we find
v=Q2/p e’ I+T)YA-T) 2e.

For reasonable values of p (say up to 31) these computations are not too hard.
They involve the solution of linear equations rather than matrix inversions,
and they are assisted by the facts that T is sparse, with all the non-zero ele-
ments equal to %, and that it is a banded matrix if the states are ordered by
increasing separation of the locations.

As an example we consider a case with p=5. The matrix T is then of
size 10x 10. The states used for labelling are preferentially ordered as 01, 12,
23, 34, 04, 02, 13, 24, 03, 14. Here 01 stands for (0, 1) etc. With
b={0,1,1,0,1} the possible transitions a—f are 0102, 12512, 1223,
23524, 3403, 04514, 0212, 02503, 13523, 13514, 2403, 24524,
0303, 03514, 14514, 14502. For these Ty, is ¥5. The other elements of
T are zero.

The final part of the calculation is to average | and v over all possible b
with p specified. These averages are denoted by p, and v,. The standard
deviation ¢, of the lock-in time is given by 0'3=vp -].13. Since for p 219 the
number of instances of b is rather large (being equal to (27 —2)/p), the com-
putations were restricted to averaging over 300 quasi-random choices, giving
an accuracy of a few percent.

Copyright (c) 1998, Springer-Verlag

342
REFERENCES

(1] H Beker, F Piper, Cipher Systems: The Protection of Communications,
(New York: Wiley) 1982

[2] T Beth, F C Piper, "The Stop-and-Go Generator", Advances in Cryptology:
Proceedings of Eurocrypt 84 (T Beth, N Cot, I Ingemarsson, eds)
Lecture Notes in Computer Science 209, 88-92 (Berlin: Springer-
Verlag) 1985

[3] W G Chambers "Clock-controlled Shift Registers in Binary Sequence Gen-
erators”, IEE Proc E, 1988, 135, 17-24

[4] W G Chambers and D Gollmann, "Generators for Sequences with Near-
maximal Linear Equivalence", IEE Proc E, 1988, 135, 67-69

[5] W G Chambers, S M Jennings, "Linear Equivalence of Certain BRM Shift
Register Sequences”, Electronics Letters, 1984, 20, 1018-1019

{6] D Gollmann, "Linear Recursions of Cascaded Sequences" Contributions to
General Algebra 3, Proceedings of the Vienna Conference June
1984 (Verlag Holder-Pichler-Tempsky, Wien 1985 - Verlag B G
Teubner, Stuttgart)

(7] D Gollmann, "Pseudo Random Properties of Cascade Connections of
Clock Controlled Shift Registers" in Advances in Cryptology,
Proceedings of Eurocrypt 84, (ed T Beth, N Cot, I Ingemarsson)
Lecture Notes in Computer Science 209, pp93-98 (Berlin: Springer
Verlag 1985)

[8] A Papoulis, Probability, Random Variables, and Stochastic Processes 2nd
ed, (Singapore: McGraw-Hill) 1984

[91 R A Rueppel, Analysis and Design of Stream Ciphers, (Heidelberg:
Springer-Verlag) 1986

[10] T Siegenthaler, "Correlation Immunity of Nonlinear Combining Functions
for Cryptographic Applications”, IEEE Trans Info Theory, 1984,
IT-30, 776-780

(11} T Siegenthaler, "Decrypting a Class of Stream Ciphers Using Ciphertext
only”, IEEE Trans Computers, 1985, C-34, 81-85

[12] B Smeets, "A Note on Sequences Generated by Clock Controlled Shift
Registers”, Advances in Cryptology: Eurocrypt ’85, (F Pichler ed),
Lecture Notes in Computer Science 219, ppl42-148 (Berlin:
Springer-Verlag) 1986

[13] R Vogel, "On the linear complexity of cascaded sequences”, Advances in
Cryptology: Proceedings of Eurocrypt 84 (T Beth, N Cot, 1
Ingemarsson, eds) Lecture Notes in Computer Science 209, 99-109
(Berlin: Springer-Verlag 1985)

Copyright (c) 1998, Springer-Verlag

343

— CR
——————»t clock
a b(.)
slight
delay Cy
X é

FIG 1: A stage of Gollmann’s cascade, as described in Sec 2. The input bit
a, is added to the output from the cycling register CR to give the output ¢;.
It is also used to clock CR after the addition. In another arrangement (Sec 5)
the "slight delay” is put at X instead, so that CR is clocked before the addi-
tion.

TN clock

slight
delay i Ct

FIG 2: A decryption stage for reversing the transformation accomplished by
the stage in Fig 1. Here the "slight delay” prevents a race round the loop.

Copyright (c) 1998, Springer-Verlag

Copyright (c) 1998, Springer-Verlag

