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Abstract. Recent developments in freehand 3D ultrasound (US) have
shown how image registration and speckle decorrelation methods can
be used for 3D reconstruction instead of relying on a tracking device.
Estimating elevational separation between untracked US images using
speckle decorrelation is error prone due to the uncertainty that plagues
the correlation measurements. In this paper, using maximum entropy
estimation methods, the uncertainty is directly modeled from the cali-
bration data normally used to estimate an average decorrelation curve.
Multiple correlation measurements can then be fused within a maximum
likelihood estimation framework in order to reduce the drift in elevational
pose estimation over large image sequences. The approach is shown to be
effective through empirical results on simulated and phantom US data.

1 Introduction

Freehand 3D ultrasound (US) involves integrating the information contained in
2D US images into a 3D model. For this difficult task, the positions of the 2D
images relative to each other must be known. A typical implementation involves
attaching a tracking device to the US probe. Unfortunately, the position tracking
device is often cumbersome to the clinician. Furthermore, the accuracy of the
pose measurements depends on temporal and spatial calibration procedures [9]
which are technically non trivial and often time consuming. This has led to the
development of a position tracking methodology based entirely on image content.
In-plane probe motion can be estimated through standard image registration
techniques. This paper focuses on the estimation of out-of-plane motion from
the elevational decorrelation of US speckle between image frames [AT3ITOI3I6].
A typical framework for estimating the elevational separation between US
images involves a calibration phase where a speckle phantom is scanned at reg-
ular intervals, allowing the construction of a decorrelation curve, depicting the
measured average correlation coefficient between pairs of images separated by
known elevational distances. The shape of this curve is more or less Gaussian,
with width dependent on the elevational beam width of the transducer and the
axial depth at which correlations were measured [I3]. To estimate the distance
between two US image patches, their correlation coefficient is subsequently mea-
sured and the corresponding elevational distance estimate is read off the curve.
This process is subject to error, especially in the nonlinear portions of the curve
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(very high and very low correlations) [I2]. This results in significant large scale
drift error when attempting to estimate the relative positions of a large number
of frames. Large scale accuracy is of paramount importance when measuring the
dimensions of organs from 3D reconstructions of the US data, for instance.

Each pair of frames (not necessarily subsequent) in an US scan provides cor-
relation measurements which can be used for estimating their positions. Recent
work [6] has attempted to reduce the impact of measurement errors by averaging
independent interleaved reconstructions using only correlation measurements ly-
ing on the “well-behaved” (i.e. linear) portion of the decorrelation curve. This
paper presents an alternative approach which allows for more measurements
to be exploited simultaneously, with the goal of further reducing drift error.
Measurement uncertainty is represented by a probabilistic speckle decorrelation
(PSD) model which captures statistical information available at calibration time
but not represented by the average decorrelation curve. The model is used within
a maximum likelihood estimation framework to fuse multiple correlation mea-
surements of arbitrary quality in order to reduce residual uncertainty for the
benefit of additional processing steps such as 3D interpolation. Preliminary re-
sults obtained with parallel frames of simulated and phantom US data show the
approach to be effective at limiting drift error over long image sequences.

The remainder of this paper is structured as follows. Section [ describes the
PSD model. The maximum likelihood data fusion method is presented in section
Finally, the experimental results on simulated and phantom US data are
discussed in section [l

2 Probabilistic Speckle Decorrelation Model

Inspired by the approach taken in [I0], the approach proposed here begins with
the subdivision of the US image into a number of small patches, each having its
own speckle decorrelation model (see figure [[)). This accounts for the variation
of correlation length with axial depth. Moreover, such a subdivision yields as
many correlation measurements per frame pair as there are patches: enough to
estimate yaw and tilt as well as elevational translation.

Fig. 1. The images are divided into non-overlapping patches. Corresponding patches
(e.g. the highlighted patches labeled ¢) in different images are used to build local decor-
relation models and are treated as mini-frames when estimating elevational positions.

Given two correlated random signals X and Y with correlation coefficient pyg,
the sample correlation coefficient of realisations x and y of X and Y, respectively,
of length N is given by
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For multiple realisations of X and Y, the average sample correlation coefficient
should tend towards the nominal value pg. However, the individual sample cor-
relation coefficients will exhibit some variability due to the finite length of the
realisations = and y. This is true of any kind of random signal, including US
image patches. In this case, the length N corresponds to the number of pixels.

The uncertainty intrinsic to correlation measurements can be modeled ex-
plicitly by a probability density function p(p|d,q) relating the sample corre-
lation coefficient p to elevational separation § in patch ¢. Assuming that the
relationship between elevational separation and the nominal correlation coeffi-
cient pg is one-to-one, as depicted by the decorrelation curves used in [4UT3)J6],
p(pld, q) = p(plpo, q). The statistical variability of the sample correlation coeffi-
cient depends on pg, and on the statistical distributions of X and Y.

p(plé, q) can be estimated from data samples acquired by scanning a speckle
phantom at regular distance intervals at calibration time. These are the same
data required to construct decorrelation curves used in related work. While the
decorrelation curve represents the average p as a function of distance, the prob-
ability density function p(p|é, q) also captures higher order statistics of p, such
as variance. Since no theoretical results are available concerning the form of
p(plé, q), it is estimated using a empirical maximum entropy method by Baker [2].

From a set of correlation measurements {p;},7 = 1,...N, acquired between
frames separated by a distance 6 in patch ¢, Baker’s method computes a number
of probability densities from the exponential family given by

(1)

K
pr(pl6, q; 12) = po(p) exp (Ao(u) +y )\k(ﬂ)/’k> : (2)
k=1

where pg is a uniform probability density function over the range D of the data
(here, D = [—1,1]) and p is a vector of the sample moments of the data of order
1 to K. The normalisation constant Ao(u) is given by

K .
Ao(p) = —In /D po(p) exp ZAj(u)p’ dp ¢, (3)

and the parameters \(u) are obtained from the first K sample moments by
solving the system of nonlinear equations

[ PFpo(p) exp (Zfil Aj()p? ) dp
Jp po(p) exp (Zle Aj(ﬂ)ﬁ) dp

K is then selected such that the Akaike information criterion (AIC) [IJ,

= k=1,..,K. (4)

N
AIC =2K =2 "Inpk(p;|8,4; ), (5)

j=1
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is minimised. This application of the AIC encourages model goodness of fit while
discouraging model complexity [2]. Using this method, conditional probability
density functions p(p|d;, q) are obtained from sample correlation coefficients mea-
sured between frames of elevational separation ¢; = jéo at patch ¢, where 6¢ is
the elevational distance between consecutive frames in the calibration scan. The
PSD model is illustrated by an example in figure 2
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Fig. 2. The PSD model for an US image patch ¢ obtained from speckle phantom data.
Each plot is the estimated probability density function p(p|d,q) (vertical axis) of the
correlation coefficient p (horizontal axis) corresponding to elevational separation 6,
with § starting at 0.05 mm and increasing at a rate of 0.05 mm per plot from left to
right and top to bottom.

Given correlation measurement p, the likelihood p(p|6, ¢) for the unknown ele-
vational separation ¢ can be estimated from the PSD model. The model provides
samples of the likelihood at discrete values of ¢ corresponding to the regular in-
tervals used for calibration. Interpolation is used to estimate the log-likelihood
L(p|6,q) = Inp(plé, q) at arbitrary 6.

3 Estimation of Elevational Separations

Consider a set of US images whose relative positions must be estimated. In this
paper, it is assumed that: (1) there is no in-plane probe motion or the images
have been correctly aligned by some registration procedure; (2) the frames do not
intersect; (3) the motion of the probe in the elevational direction is monotonic;
(4) the images are made of fully developed speckle. These assumptions may be
relaxed through the use of complementary algorithms [56] as an add-on to the
proposed drift-reduction scheme. They are adopted here for simplicity, and in
the experimental protocol to minimise the influence of sources of error outside
the control of the proposed method in the analysis of results.

Subdividing the frames in the data set into M patches corresponding to those
used to define the speckle decorrelation model yields M individual US data
sets consisting of “mini-frames” the size of the individual image patches (see
figure[dl). The first problem considered is that of estimating the maximum like-
lihood positions Z;, i = 1,...,n along the elevational direction of n mini-frames
corresponding to patch ¢, with respect to a reference mini-frame with position
Zy = 0. A correlation measurement p;; between mini-frames ¢ and j provides
an uncertain measurement of the elevational separation é;; = |Z; — Z;| between
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them through the log-likelihood L(p;;|6:;, ¢). Enforcing the assumption of motion
monotonicity, the absolute value is dropped and 6;; = Z; — Z;,4 > j. Assuming
mutual independence of measurements given the the configuration of the frames,
the maximum likelihood position vector Z is given by

7* — arg;naXZL(piHZi —Z;,q). (6)

i>7

This is a difficult non-linear optimisation problem for arbitrary L. However, it
was observed the log-likelihood terms in (@) are generally unimodal, suggesting
that a Gaussian approximation of L is both possible and useful. This amounts
to assuming that 6;; = Z; — Z; is Gaussian with mean 6,; = argmaxL(p;;|6i;, q),

i
and variance 02-2]- =-1/ ( dff;‘ L(pijlbij, q)) The approximate solution Z* is
ij
(Zi — Zj — bij)°
7

ZF = argéninz (7)

This simpler optimisation problem was addressed for the context of robot
localisation and can be solved analytically [§]. Re-expressing ([7) in matrix form,

Z* = argmin(§ — HZ)'C™(§ — HZ), (8)
Z

where § is the vector of all distance measurements, H is a matrix consisting
exclusively of 0, 1 and -1 entries expressing the linear relationships between
distances and absolute positions, and C is a diagonal covariance matrix made of
all the o;;. The solution to the problem of (§) is [§]

Z* = HT'Cc'H)'HTC 15, (9)

whose computation is simplified by C being diagonal due to the assumed inde-
pendence of measurement errors. The approach also allows for the computation
of the residual uncertainty in Z, which could eventually be used to embed un-
certainty in tasks such as volume interpolation or re-slicing.

Having obtained an elevational position estimate for each mini-frame, knowing
that all image patches belonging to the same frame of the original data set lie
on a plane provides an additional constraint. This is enforced by calculating the
final position of each full frame as the least squares rigid transformation mapping
the positions of the patch centers from every frame to the first.

4 Experiments

In order to demonstrate the feasibility of the proposed approach with data from a
clinical US scanner, experiments were carried out on both simulated US imagery
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and real US data of a speckle phantom. The simulations were run on a parallel
processing cluster using Field IT [7], with a 3.5 MHz linear transducer scanning
a moving speckle phantom at a depth of 6 cm, and the resulting RF data were
scan converted and log compressed to emulate the action of a clinical US scan-
ner. The real imagery was acquired through a video frame grabber connected to
an Acuson Cypress ultrasound system using a 5 MHz sector probe at a depth
setting of 2.7 cm. The probe was moved using a sub-millimeter positioning device
which approximately restricted motion to the elevational direction. Calibration
scans were obtained for both imaging devices, at intervals of 0.1 mm for the sim-
ulations and 0.05 mm for the phantom data. The simulated images were divided
into 64 patches of 60x60 pixels and the real images were divided into 19 patches
of 50x50 pixels. The log compression was reversed using the technique presented
in [I1].

The PSD method for computing out-of-plane probe motion was applied to 16
different parallel image sequences. A minimum correlation threshold was defined
for each patch such that the lowest 20% of the range of correlation values ob-
served during calibration was cut off. A maximum number of measurements per
frame was determined as the average number of consecutive frames needed to
reach this threshold. This rougly amounts to assuming that variations in probe
velocity are small, and reduces the sensitivity of the method to local variations
in speckle decorrelation rates.

The PSD approach was compared to two base-line methods, both of which
rely only on the average decorrelation curve. The first, nearest neighbour (NN),
consists in positioning each frame relative to its immediate predecessor using only
the correlations between subsequent frames. The second, shifting reference (SR),
consists in positioning each frame using its correlation to a reference frame until
the correlation falls below the minimum value or the maximum number of frames
is exceeded, at which point the last frame positioned becomes the reference. The
thresholds involved are the same as for the PSD method.

The accuracy of the recovered frame positions (which include elevational
translation from a global reference, frame yaw and frame tilt) was measured in
terms of the average RMS error between the inferred 3D positions of the centers
of the image patches and the ground truth. Results are summarised in table 11

Predictably, the NN strategy exhibits poor performance on long sequences
due to the accumulation of large relative error at every frame. The PSD and SR
approaches both did much better, with PSD generally outperforming SR and
relative improvement varying from —4.5% (Sequence 6) to +62.6% (Sequence
11). Detailed results for these two extreme cases are shown in figure B Qualita-
tively, the PSD method yields more stable error in elevation, yaw and tilt over
time, implying that in addition to reducing large scale drift error, the proposed
method improves local accuracy. In the context of 3D volume interpolation,
this should lead to more accurate large scale measurements (within the limita-
tions imposed by the sensorless framework) and better rendition of local tissue
structure.
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Table 1. Average RMS error (mm) for different test image sequences reconstructed
with the proposed PSD approach, the NN approach and the SR approach. The best
result for each sequence is in bold font. The frame positions in the random simulated
sequences were sampled at exponentially distributed intervals with mean 0.15 mm.

Sequence  Type Description RMS error (mm)
PSD NN SR

1 Simulated 178 frame calibration scan 0.038 0.667 0.051
2 Simulated 67 frames 0.3 mm apart 0.087 0.152 0.133
3 Simulated 150 frames 0.15 mm apart 0.059 0.564 0.074
4 Simulated 150 frames 0.15 mm apart 0.066 0.560 0.074
5 Simulated 134 frames 0.05 mm apart 0.036 1.400 0.048
6 Simulated 128 frames, random 0.114 0.606 0.109
7 Simulated 130 frames, random 0.078 0.641 0.099
8 Simulated 123 frames, random 0.105 0.541 0.188
9 Simulated 149 frames, random 0.095 0.757 0.113
10 Simulated 149 frames, random 0.097 0.752 0.113
11 Simulated 134 frames, random 0.104 0.609 0.278
12 Real 101 frame calibration scan 0.036 0.124 0.071
13 Real 111 frames, 0.05 mm apart 0.171 0.196 0.168
14 Real 101 frames, 0.03 mm apart 0.086 0.145 0.100
15 Real 126 frames, 0.04 mm apart 0.165 0.253 0.180
16 Real 201 frames, 0.05 mm apart 0.221 0.515 0.352
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Fig. 3. Error in frame elevational translation, yaw and tilt as a function of frame
number for image sequences 6 (top) and 11 (bottom). The solid line plots the results
for the PSD approach, and the dashed line represents the SR approach.

5 Conclusions

This paper presented a probabilistic model for elevational speckle decorrela-
tion in US imagery which embeds measurement uncertainty into the recovery
of positional information. The model was applied to the task of fusing multiple
correlation measurements obtained from long US image sequences in an attempt
to recover their relative out-of-plane separations. According to the experimental
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results presented in this paper, the approach is promising as it leads to a reduc-
tion of drift compared to methods which only use one correlation measurement
per frame. Future work will investigate the inclusion of tissue models in the pro-
posed probabilistic formulation in order to robustly account for local variations
in scatterer organisation and density in the scanned subject, as well as global
variations which occur outside the context of fully developed speckle [5].
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