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Abstract. Characterization and quantification of diffuse parenchymal
lung disease (DPLD) severity using MDCT, mainly in interstitial lung
diseases and emphysema, is an important issue in clinical research for
the evaluation of new therapies. This paper develops a 3D automated
approach for detection and diagnosis of DPLDs (emphysema, fibrosis,
honeycombing, ground glass).The proposed methodology combines multi-
resolution image decomposition based on 3D morphological filtering, and
graph-based classification for a full characterization of the parenchymal
tissue. The very promising results obtained on a small patient database are
good premises for a near implementation and validation of the proposed
approach in clinical routine.

1 Introduction

Diffuse parenchymal lung diseases (DPLDs) include chronic obstructive lung dis-
ease which is defined by lung destruction (emphysema), and idiopathic interstitial
pneumonias which are characterized by lung infiltrates (ground glass) and fibrosis.

High-resolution computed tomography (HRCT) with 1-mm-thick sections ob-
tained at 10-mm intervals has been widely accepted as the imaging reference
standard for assessing DPLDs. Based on HRCT images, the diagnosis is done by
analysing the different patterns of lung texture, and the severity of the disease
can be evaluated by quotation of the extent of lesions. Nowadays, multidetector
row CT (MDCT) generates isotropic volumetric high-resolution data and allows
contiguous visualization of the lung parenchyma. MDCT tends to replace HRCT
examinations since it allows creating three-dimensional reformatted images of
excellent quality and significance.

Unfortunately, pathology features on the MDCT images sometimes would be
subtle, especially in the early stage, and cause inter-observer variability even
among the experienced radiologists. Hence, computer-aided diagnosis (CAD)
is required for objective quantitative assessment of alterations in the lung [1].
Several studies in the medical and technical literature have addressed the classi-
fication problem of the lung parenchyma. Without claiming an exhaustive anal-
ysis, these studies can be roughly divided into two categories, density-based and
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texture-based. The principle of the density-based analysis is to investigate the
relationship between a defined threshold value and the ratio of the lung tissue
area/volume below this threshold [2]. However, these methods cannot discrimi-
nate between several pathologies of the lung parenchyma occurring at the same
time. In order to solve this problem, Blechschmidt et al. [3] defined an addi-
tional Bulae index which combines density measures with some texture-based
approaches to quantify emphysema with concomitant fibrosis. The texture-based
methods compute several measures in order to describe the CT attenuation char-
acteristics. Then, a classifier (Bayesian, support vector machines, ...), performs
an automated discrimination of the experimented samples. Malone et al. [4] pro-
posed a texture-based approach to evaluate the pulmonary parenchyma from
CT images. They split each image into grids with three block sizes, 4, 8, and 16
pixels, and computed 18 textural features for each block. Xu et al. [5] extended
a run-length encoding method to three-dimensional (3D) data for volumetric
texture analysis. Chabat et al. [6] adopted 13 features for extracting texture in-
formation from CT images. These features can be divided into three categories:
nth order statistical moments, spatial dependence of gray-scale distribution, and
acquisition-length parameters. Recently, Xu et al. [7,8] used 3D texture features
to enhance a previous two-dimensional (2D) classification system, the adaptive
multiple feature method. The new system would be able to consider co-existing
pathologies and to provide a simultaneous classification for differentiating be-
tween emphysema-like tissues found in normal smokers versus non-smokers.

In this paper we develop an original, fully-3D approach for automated de-
tection of DPLDs in MDCT, based on the analysis of low-density patterns of
the lung parenchyma. The proposed approach performs a multiresolution image
data decomposition according to a specific morphological filtering. The result of
the decomposition is synthesized into a hierarchic tree graph which nodes are
analyzed in terms of textural and spatial relationship. Such analysis provides a
classification of the decomposition patterns in normal and DPLD types.

The paper is organized as follows. Section 2 presents the image multiresolution
decomposition scheme, and recalls the 3D morphological filter there considered.
Section 3 describes and illustrates the generation of the descriptive tree graph
and the performed classification analysis. The results are presented and discussed
in Section 4.

2 Multiresolution Decomposition of Image Lung
Parenchyma

Lung parenchyma tissue can be roughly described as a collection of vascularized
structures of tree-like topology and of various calibers decreasing with the sub-
division order and crossing each other, namely the arterial, venous and tracheo-
bronchial trees. From an image analysis point of view, such a multiple crossing,
coupled with the influence of the MDCT acquisition protocol, results in a complex
parenchymal texture which can be described and characterized by the distribution
and the size of the low-density patterns delimited by the vascularized structures.
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Within normal tissue, the low-density patterns have a small size and are uniformly
distributed (Fig. 1(a)). Such patterns change in the case of DPLDs due to tissue
damages. Emphysema is characterized by larger, round-shape patterns of nearly-
constant low gray value, surounded by normal tissue (Fig. 1(b)). The appearance
of emphysema/fibrosis patterns is similar, but their border is of a higher density
than normal tissue. Honeycombing is characterized by agglomerations of several
low-density patterns of similar size and dense thin or thick borders (Fig. 1(c)).
Finally, ground glass tissue “infiltrates” the normal zones with medium-high
opacities (Fig. 1(d)).

(a) Normal tissue. (b) Emphysema.

(c) Fibrosis/honeycombing. (d) Ground glass and emphysema.

Fig. 1. Some examples of MDCT axial images showing the patterns specific of different
lung diseases

The idea exploited in this paper is the possibility to discriminate between
normal and pathologic lung tissues by analyzing the size and distribution of, and
the relationship between the low-density patterns. A one-dimensionnal schematic
representation of the lung tissue, according to the previous remarks, is given in
Fig. 2. Such “relief” representation will be exploited in the following in order to
illustrate the principle of the developed approach.

In order to detect and analyze the different low-density patterns of the lung
texture (local valleys on the lung “relief”, Fig. 2) we have developed an image
multiresolution decomposition scheme based on a 3D morphological filter, the
sup-constrained connection cost introduced in [9]. Such a filter, denoted by RCn

f ,
will affect a function “relief” f : �n → � by “filling in”, at constant level,
all local “basins” of f , of spatial extent smaller than n and disconnected from
larger “basins”. Note that the considered filter do not modify the “basins” shape.
They can be at most flooded if enclosed in larger “basins” of higher “walls”. The



828 C. Fetita et al.

increasing property of RCn
f allows to apply such filter recursively, with increasing

size, in order to progressively select all “basins” of a f “relief”.
The multiresolution decomposition scheme, illustrated in Fig. 3 for 4 levels of

decomposition, exploits the RCn
f properties and builds-up a hierarchic relief of

the lung parenchyma, g : �3 → �, as follows.

Fig. 2. 1-D schematic representation of normal and pathologic lung tissues. The dashed
line symbolizes that a connectivity is possible at that level between the left and the
right sides.

If L denotes the maximum image value of the 3D thorax CT data, ni the
filter size at level i, nj > ni ∀ j > i, and Nmax the maximum filter size, the
decomposition procedure is given by:

g = 0; i = 0;
while (ni ≤ Nmax) do

• extract i − level patterns li =
{

L − ni, if RCni

f − f > 0
0, otherwise

• update g g = max(g, li)
• reiterate f = RCni

f ; i = i + 1
end while

(1)

Finally, the eventual ground glass zones, which cannot be selected with the above
procedure, are included as the lowest level of g. Their segmentation is based on
a gray-scale reconstruction [10] of RCNmax

f with respect to its largest plateaux
and suppression of the high-density thorax cage (Fig. 3).

Fig. 4 shows the corresponding axial cross-section images of the 3D hierar-
chic decomposition obtained with 10 resolution levels for the patients in Fig. 1
(histogram-equalized). Note that the descriptive information is free of high-
density tissues (vessels, thorax cage) and concerns only the lung parenchyma
and the airway structure. A level of such decomposition informs on the size of
the lung patterns at this level and also on a possible pathologic status (isolated
larger patterns could point to disorders like emphysema/fibrosis/honeycombing).
Conversely, patterns extracted at a decomposition level are independent of the
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native data values (for example, in Fig. 3, the 0-level patterns come from both
normal and pathologic tissues).

By combining the information of the lung image decomposition (patterns size,
3D spatial and inter-level relationships) and the corresponding native image den-
sity values, a classification of the lung texture can be more confidently achieved.
For an effective analysis, all this information is gathered in a 3D hierarchic de-
scriptive graph built-up from the multi-level decomposition and presented in the
following section.

Fig. 3. Multiresolution decomposition of the schematic lung relief of Fig. 2

(a) (b) (c) (d)

Fig. 4. Example of multiresolution hierarchic decomposition of data from Fig. 1
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3 Hierarchic Classification of the Lung Tissue

The objective is to obtain a compact, multi-valued description of the lung
parenchyma based on the previous image decomposition and original data in-
formation. We shall show in the following that an information node can be
associated with each pattern extracted at each resolution level of the decom-
position and that a connectivity relationship can be established between such
nodes, providing a descriptive tree graph.

Starting from the hierarchic relief g (Fig. 3), the patterns of a level i can
be reconstructed by means of morphological operations, as follows. Using the
notations of eq. 1:

i = 0;
while (ni ≤ Nmax + 1) do
• extract pattern subset of level i l′i = T L−ni

L−ni
(g) ⊆ li

• reconstruct connected patterns pi = T L−ni

L−ni

(
Rδ

g(l
′
i)

)
• ∀ pi, create a node in the tree graph ti ↔ pi

• update nodes connectivity C {ti, tj}j<i

• reiterate i = i + 1
end while,

(2)

where T b
a denotes the thresholding operator between a and b, Rδ

g(f) the gray-
scale reconstruction by geodesic dilation of f inside g [10], and li the initial
patterns extracted at resolution level i (eq. 1). Note that a reconstructed pattern
pi at resolution level i will always include initial patterns lj of levels j < i, pi ⊇ lj ,
if li and lj are either (partially) overlapping or 3D connected. In this situation,
the associated nodes, ti, tj have a parent-child relationship and a tree graph
results (Fig. 5, see also [12] for a step-by-step 3D illustration).

Each node ti of the descriptive graph carries out information related to 3D
spatial location, resolution level, connected patterns, first order statistics (mean
μ and standard deviation σ) of the native density values within pi pattern, pi

volume (number of voxels), pi fractal dimension computed using box counting
[11], pi relative volume with respect to its “children”.

Fig. 5. Descriptive tree graph of the hierarchic relief g of Fig. 3

The lung parenchyma descriptive tree graph {ti}i is investigated and each
node classified into normal or DPLD tissue according to a set of intuitive rules
established with respect to intrinsic node properties and to those of its hierarchy
[12]. Three significant density classes have been defined for MDCT native data:
low-density (LD) values within [-1000, -950] Hounsfield Units (HU), medium-
density (MD) values within (-950, -765] HU and medium-high density (MHD)
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values within (-765, -450] HU. The main structural properties of DPLDs as de-
scribed in §2 are reflected in the following parameter evaluation: (1) categorize
μ (ti) as LD, MD or MHD; (2) categorize the ti children mean μ

(
{tj}j

)
as

LD, MD, MHD; (3) categorize the mean of the disjoint pattern μ
(
ti \ {tj}j

)
as LD, MD or MHD; (4) evaluate the density dispersion within the pattern:
μ (ti) /σ (ti) ≥ 3.0 denotes a narrow dispersion, otherwise we consider a spread
dispersion; (5) categorize the tissue density in the pattern (close) neighbor-
hood; (6) estimate the pattern compactness according to the fractal dimension:
df (ti) < 2.0 denotes a compact, otherwise “porous”, pattern; (7) evaluate the

pattern relative volume with respect to its “children”
V (ti)−V ({tj}j)

V ({tj}j)
. After clas-

sification, each node is assigned one of the following labels: EM (emphysema),
FHC (fibrosis/honeycombing), GDG (ground glass), N (normal), and the corre-
sponding image pattern is labeled with a comprehensive color code [12].

4 Results and Discussion

The developed classification approach was tested on a MDCT database including
10 patients suspected of DPLD, of which 4 representative cases are illustrated
Fig. 1. Their corresponding classification is illustrated Figs. 6 and 7 both lo-
cally, in axial cross-sections, and globally, by using a volume rendering approach.
Here, the proximal airways are labeled distinctly by means of a region-growing
procedure initiated at the top of the trachea. The pathology detection sensitiv-
ity/specificity were estimated by one experienced radiologist: EM: 94%/80.5%,
FHC: 81.2%/90%, GDG: 97%/95%. Missclassification of EM vs. FHC occured
sometimes (13% EM classed as FHC, 22% FHC classed as EM) which also ex-
plains the low specificity value. This is due to the fact that some high-density
tissues surrounding FHC patterns do not subsist in the hierarchic decomposition
(Fig. 4) and, consequently, they are not considered in classification. Our future
work will take into account such information together with additional features
[8] for a more confident discrimination between various types of DPLDs.

To conclude, the main advances of the proposed approach with respect to
the recent literature [6,7,8] consists in an automatic partitioning of the lung
regions based on multiresolution decomposition and graph description, a fully-3D

(a) (b) (c) (d)

Fig. 6. Example of lung tissue classification of data from Fig. 1 (color plates in [12])
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(a) Data of Fig. 6(b). (b) Data of Fig. 6(c). (c) Data of Fig. 6(d).

Fig. 7. Volume rendering of the lung tissue 3D classification (color plates in [12])

classification of the whole lung and the absence of training/interaction. Further
improvement of the DLPD discrimination rules will be evaluated on a larger
database. Note also that the rule-based pattern classification can be replaced by
a Bayesian, neural network or support vector machines (SVM) approach.
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