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Abstract. The presence of Rician noise in magnetic resonance imaging
(MRI) introduces systematic errors in diffusion tensor imaging (DTI)
measurements. This paper evaluates gradient direction schemes and ten-
sor estimation routines to determine how to achieve the maximum ac-
curacy and precision of tensor derived measures for a fixed amount of
scan time. We present Monte Carlo simulations that quantify the effect
of noise on diffusion measurements and validate these simulation results
against appropriate in-vivo images. The predicted values of the system-
atic and random error caused by imaging noise are essential both for
interpreting the results of statistical analysis and for selecting optimal
imaging protocols given scan time limitations.

1 Introduction

Diffusion tensor MRI (DT-MRI) has become a critical technology for study-
ing white matter in-vivo. In clinical studies, derived tensor measures such as
anisotropy measures or mean diffusivity are commonly used for voxel-wise and
region-based statistical analysis [1]. In order to understand the significance of sta-
tistical analysis, the precision and accuracy of the measurements must be well
understood. DT-MRI is particularly sensitive to error introduced by imaging
noise for two reasons. First, since multiple diffusion-weighted images are needed,
each individual image must be acquired relatively quickly, reducing the signal-
to-noise ratio (SNR) for each image. Secondly, unlike structural MRI where in-
tensities are primarily used to establish contrast between tissue types, DT-MRI
measures quantitative physical properties requiring a more careful evaluation of
noise. This paper both simulates the influence of Rician noise on tensor derived
measures and evaluates the simulation against in-vivo experiments.

Several studies have investigated the effects of noise on tensor measurements
through theory and Monte Carlo simulation [2,3,4]. Jones and Basser showed how
� This work is part of the National Alliance for Medical Image Computing (NA-MIC),

funded by the National Institutes of Health through Grant U54 EB005149. The
authors acknowledge support from the NIMH Silvio Conte Center for Neuroscience
of Mental Disorders MH064065 as well as the National Alliance for Autism Research
(NAAR) and the Blowitz-Ridgeway Foundation.

N. Ayache, S. Ourselin, A. Maeder (Eds.): MICCAI 2007, Part I, LNCS 4791, pp. 10–17, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Quantification of Measurement Error in DTI 11

Rician noise tends to underestimate high values of the apparent diffusion coeffi-
cient (ADC) along gradient directions [5]. Basu, Fletcher, and Whitaker used the
Rician noise model to demonstrate statistical bias and develop a regularization
filter for diffusion-weighted images [6]. Fillard et al. combined a maximum like-
lihood (ML) tensor estimator with a regularization function to jointly smooth
and estimate a tensor field [7]. This paper builds on previous work by combining
a comparison of gradient direction schemes with tensor estimation methods to
study the error in diffusion tensors given noisy image acquisition in a clinical
framework. In this paper we work within the assumption of a single diffusion
tensor model per voxel and do not consider high angular resolution diffusion
imaging (HARDI). Our simulations show that increasing the number of gradient
directions reduces the bias introduced by the orientation of the tensor. Further-
more, we demonstrate the increased variability caused by linear least squares
estimation on sequences with many gradient directions. We also present a novel
validation of the simulation with experiments using in-vivo data.

2 Methods

The estimated diffusion tensor can be understood as a function of observed
diffusion-weighted MR intensities via the Stejskal-Tanner equation

Si = S0 exp
(
−bgiDgT

i

)
. (1)

Diffusion weighted images are acquired by computing the magnitude of the
Fourier transform of a measured k-space signal. Pure Johnson noise in both
the real and and imaginary components of k-space is well-approximated by a
Gaussian distribution, and noise in the magnitude signal Si is well characterized
by a Rician distribution. A noisy measurement R of an underlying signal A in
the diffusion-weighted image is a random variable given by

R =
√

(A + X)2 + Y 2, X, Y ∼ N(0, σ2), (2)

where X and Y are Gaussian random variables. The probability density function
for a Rician random variable R with true intensity A and noise variance σ2 is

f(x|A, σ) =
x

σ2 exp
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−x2 + A2

2σ2

)
I0

(
xA

σ2

)
, (3)

where I0 is the zero-order modified Bessel function of the first kind. The Rician
distribution is equivalent to the Rayleigh distribution when A = 0, and converges
to a Gaussian distribution as σ/A → 0. For low signals the expected value of the
measurement is greater than the true signal, E[R] > A.

The apparent diffusion coefficient (ADC) in a direction gi is measured in a
voxel by the ratio of a baseline signal S0 and an attenuated diffusion-weighted
signal Si. Because Rician random variables with low A have a positive bias, we
are likely to observe a higher signal than the true intensity. Overestimation of an
intensity Si causes an underestimation of diffusion in the direction gi because of
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(a) Aligned (b) Unaligned (c) In-vivo labels

Fig. 1. Example of tensors with principal eigenvector aligned or unaligned with a
gradient direction. Figure 1(c) shows the computed classes in in-vivo experiments.

the exponential decay in the Stejskal-Tanner equation (1). Measurements of low
diffusion have lower attenuation and correspondingly less bias. The tendency to
underestimate high ADC values causes two major challenges for reliable mea-
surements in DTI. First, mean diffusivity is likely to be underestimated for re-
gions with high diffusion. This is a particular problem in the cerebrospinal fluid
(CSF), where the ADC is high in all directions. Secondly, anisotropy can be un-
derestimated depending on the alignment of the principal diffusion direction of
a highly anisotropic tensor with the gradient directions. As shown in Figure 1,
the maximum measured ADC of a highly anisotropic tensor depends on the gra-
dient direction sampling, and the bias in the measured FA value depends on the
orientation of the tensor.

A minimum of six gradient images plus a baseline image are required to es-
timate the parameters of the diffusion tensor. Since diffusion-weighted images
typically have low SNR, acquiring more images than the minimum seven is de-
sirable to improve SNR and obtain more robust measures of diffusivity and
anisotropy. To improve SNR, repetitions of gradient directions can be acquired
and are typically processed by averaging of repetitions on-scanner or offline
where corresponding images are registered and averaged. Alternatively, addi-
tional diffusion-weighted images can be acquired using more gradient directions,
and the additional observations are combined in the tensor estimation. In im-
ages with multiple repetitions of the same gradient direction, the signals are
typically averaged. However, the mean of the signals is a poor estimator of the
true signal A, because of the bias in the Rician distribution. Averaging of the
intensities across repetitions consequently tends to overestimate the signal and
underestimate the ADC in voxels with low SNR.

For gradient schemes with more than the minimal number of gradient di-
rections, several methods exist in the literature for estimating diffusion tensors
from the diffusion-weighted images. The most common approach has been a lin-
ear least squares (LLS) estimator for the tensor parameters β from the log of
the observed signal intensities S with baseline signal S0. The matrix X, which
is Nx6, encapsulates the b-value and gradient directions.

β̂lls = (XT X)−1XT (lnS − ln S0). (4)
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To avoid the re-weighting penalties associated with the log, non-linear least
squares (NLS) estimation optimizes the objective function

fnls(β) = ||S − S0 exp (Xβ) ||2 (5)

on the diffusion-weighted signal. Our implementation uses Levenberg-Marquadt
optimization. Salvador et al. proposed a weighted least squares (WLS) estimator

β̂wls = (XT W2X)−1(XT W2(lnS − ln S0)) (6)

W = Diag(Xβ̂lls) (7)

based on the log Rician probability distribution [8]. Our implementation of this
method uses iterative weight refinement until the tensor values converge.

An ML estimate of the diffusion tensor using the log-likelihood function of the
Rician distribution was proposed by Fillard et al. [7]. We use a similar method
that does not use a spatial regularization term or the log of the tensor matrix.
The ML method explicitly accounts for the noise model and uses an estimate of
the noise level computed from the background of the image. The ML estimation
of tensor parameters is obtained by numerical optimization of the log-likelihood
function

log L(β) =
∑

i

log
(

Si

σ2

)
− S2

i + S2
0e2Xiβ

2σ2 + log
(

I0

(
SiS

2
0e2Xiβ

σ2

))
, (8)

where Xi is a row of the matrix X and N is the number of gradient directions.
Our implementation uses a gradient descent optimizer to maximize the objective
function. We evaluate the different tensor estimation methods across several dif-
ferent gradient sampling schemes using a Monte Carlo framework for simulating
the effect of imaging noise on derived properties.

3 Simulation

Our Monte Carlo simulations compute the distribution of estimated tensors from
the predicted signal of a given true tensor with added Rician noise. The true ten-
sor has a fixed trace of 2.1x10−3mm2/s, which is a typical value for white matter.
Several levels of anisotropy and orientation are simulated. The simulations use a
b-value of 1000 s/mm2, a noise level of σ = 27 estimated from the background
of the image, and a baseline signal of 250.

The simulations show that positive bias of Rician noise at low signal level
can lead to underestimation of FA and trace. Furthermore, the orientation of
the tensor within the gradient fields correlates with the bias, and statistical
comparison of structures with different fiber orientations is potentially biased.
Many common clinical gradient schemes use the minimal six gradient directions
and with these schemes the expected bias depends on the orientation of the fiber
structure within the magnetic field. Figure 2 shows the bias and variability of
the FA and trace of a fixed diffusion tensor as the tensor rotates in space relative



14 C. Goodlett et al.

0 pi/16 pi/8 3*pi/16 pi/4
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

Angle in radians

F
A

 v
al

ue

21x3
6x10
60x1
true value

(a) Angular dependence of FA estimate

0 pi/16 pi/8 3*pi/16 pi/4
1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3
x 10

−3

Angle in radians

T
ra

ce
 v

al
ue

21x3
6x10
60x1
true value

(b) Angular dependence of trace estimate

Fig. 2. The orientation dependence of estimated FA and trace under different sampling
schemes. The horizontal axis ranges from the principal diffusion direction unaligned
with any gradient direction for x = 0 to being perfectly aligned with one of the gradient
directions for a rotation of x = π/4. The noise level is σ = 27 as determined from our
collected data. Notice in the 6 direction scan the difference in mean estimated FA of .04
(5%) between the same tensor orientated at 0 and π/4 radians. Weighted least squares
estimation was used for this simulation.

to a gradient direction. The simulations show that FA is substantially correlated
with orientation. The trace estimate has less bias due to orientation, but the
trace is underestimated in gradient schemes with repeated directions. Figure 3
shows the simulated distribution of FA, trace, and the Frobenius norm of the
difference between the estimated and true tensor using a 60 direction protocol.
Weighted least squares and maximum likelihood perform similarly, while linear
least squares has more variability, non-linear least squares tends to have a lower
estimate of trace.

The simulations demonstrate the bias due to orientation of tensor derived
measures when using protocols with a minimal number of gradient directions.
Furthermore, when protocols with many gradient directions are used linear least
squares estimation can increase variability, and non-linear least squares estima-
tion can underestimate trace. The simulations predict that the minimum error
is introduced by using as many isotropic non-repeated gradient directions as
possible with weighted or ML estimation methods.

4 Experiments and Validation

We acquired test sets of data under different imaging protocols to compare with
the Monte Carlo simulations. Three sets of images of a single healthy adult
volunteer were acquired on a Siemens Allegra 3T head-only scanner. The scan-
ning time for each sequence was approximately 12 minutes. Diffusion weighted
images were acquired with an isotropic resolution of 2x2x2mm resolution and
image size 128x128x39. Three different sequences were used: 6 directions with 10
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Fig. 3. Distribution of estimated values in Monte Carlo simulations of a tensor with
FA=0.8 using 10,000 repetitions and a 60 direction protocol: (a) the Frobenius norm of
the difference between the estimated and true tensor, (b) the estimated trace, and (c)
the estimated FA. The weighted, non-linear, and ML estimation techniques reduce the
variance of estimated FA and decrease the Frobenius norm of the error in the estimated
tensor. Non-linear least squares tends to underestimate the trace.

repetitions, 21 directions with 3 repetitions, and 60 directions with 1 repetition.
All scans were of approximately equal time to demonstrate the trade-off between
image repetition and acquiring more gradient directions. To eliminate bias from
differences in the baseline images, the 14 acquired baseline images were registered
to a T2 atlas using a rigid transformation and normalized mutual information.
The baseline images were averaged to produce a common baseline image. The
transformation from each baseline image to the atlas was also applied to the
diffusion-weighted images in the corresponding set, and the gradient directions
were corrected by the rotation component of the transformation. For sequences
with repeated directions, the corresponding gradient directions were averaged.
The noise level σ was estimated from the background of the images.

A white matter segmentation was created by co-registration of a T1 structural
image to the averaged baseline image and applying a tissue segmentation tool.
A label image was created from the six direction image by identifying voxels
within the white matter segmentation which are highly aligned or highly un-
aligned with the closest gradient direction. The angle for each voxel is given by
θ = arccos(mini(ê1 · gi)), where ê1 is the estimated principal eigenvector. In
the six direction scan nearby gradients are separated by pi/2, and as a result
the maximum angle between the principal eigenvector and the nearest gradient
direction is π/4 so θ ∈ [0, π/4]. The threshold for aligned tensors was θ < π/16
and for unaligned tensors θ > 3π/16. Figure 1(c) shows the labels overlaid on
the FA image.

The difference between the histograms of FA for aligned and unaligned ten-
sors decreases with an increase in the number of gradient directions as shown in
Figure 4. Table 1 lists the mean difference between aligned and unaligned voxels
using different gradient schemes and tensor estimation methods. The experi-
mental results confirm the simulation prediction of underestimated anisotropy
in tensors aligned in the six direction scan, because the difference decreases as
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Fig. 4. The histograms of estimated FA using weighted least squares estimation for
aligned and unaligned tensors with (a) 6 gradient directions with 10 repetitions (b) 21
gradient directions with 3 repetitions and (c) 60 gradient directions with 1 repetition.
Notice the significant reduction in difference between the two histograms as the number
of gradient directions increases, because of a decrease in noise bias. Quantitative results
are given in Table 1.

Table 1. Mean difference of FA values between aligned and unaligned voxels. The
difference between the mean FA decreases with an increase in the number of gradient
directions, confirming the simulation prediction that some of the difference is due to
the choice of gradient sampling. All least squares methods are equivalent in the six
direction scan because an exact solution exists.

6 directions (10 reps) 21 directions (3 reps) 60 directions (1 reps)
LLS: 0.053 0.030 0.019
NLS: 0.053 0.032 0.020
WLS: 0.053 0.032 0.021
ML: 0.045 0.033 0.021

Table 2. Mean and variance of trace values in white matter across gradient sampling
schemes and estimation methods. The six direction scan has the highest estimated
trace. In the 21 and 60 direction scans the non-linear least squares method has a lower
estimate of the trace than the other methods. The maximum-likelihood has the highest
estimate of trace of all the methods.

6 directions (10 reps) 21 directions (3 reps) 60 directions (1 reps)
LLS: 2.373e-03 (7.2071e-08) 2.304e-03 (7.7886e-08) 2.307e-03 (2.2293e-07)
NLS: 2.373e-03 (7.2071e-08) 2.289e-03 (7.7122e-08) 2.235e-03 (2.0839e-07)
WLS: 2.373e-03 (7.2071e-08) 2.307e-03 (7.8263e-08) 2.311e-03 (2.2847e-07)
ML: 2.472e-03 (8.5249e-08) 2.383e-03 (1.0698e-07) 2.326e-03 (2.4044e-07)

the number of gradient direction increases. The experimental estimate of tensor
trace is higher for low directions images, which is different than the simulation
prediction. The difference could be due to the assumption of a single tensor model
in the simulation. We conclude that studies comparing different regions could be
substantially biased by the orientation of the tissue within the magnetic field.
Therefore studies relying on statistical analysis of anisotropy measures should
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use as many gradient directions as possible instead of repeating a minimum
number of gradient directions. The results from the analysis of the in-vivo scans
confirms the results of the simulation experiments.

5 Conclusions

In this paper we have evaluated the magnitude of error in DTI measurements
caused by imaging noise through Monte Carlo simulations and in-vivo experi-
ments. We have shown that low direction schemes introduce a statistical bias
with a clinically relevant magnitude. Furthermore, we have shown that standard
linear least squares tensor estimation introduces additional variability in tensor
estimation. Understanding the magnitude of these two effects is critical for inter-
preting the results of statistical analysis. For new imaging studies these results
indicate that scans with non-repeated isotropic gradient sampling should be pre-
ferred over protocols with a small number of repeated gradient directions, and
that weighted least squares or ML tensor estimation should be preferred. Future
work will extend the analysis to errors which are introduced by EPI distortion,
subject motion, and inter-subject registration.
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