
Enhanced Graph Based Genealogical Record
Linkage

Cary Sweet1, Tansel Özyer2, and Reda Alhajj1,3

1 Department of Computer Science, University of Calgary, Calgary, Alberta
2 TOBB Ekonomi ve Teknoloji Üniversitesi, Ankara, Turkey

3 Department of Computer Science, Global University, Beirut, Lebanon
alhajj@cpsc.ucalgary.ca

Abstract. Record linkage is an essential social problem that has re-
ceived considerable attention for over two centuries. With the popularity
of computers, automated systems started to be realized for better record
linkage systems. In this paper, we look at improving the latest tech-
niques in record linkage, from the perspective of genealogy, to obtain
results that require decreased human intervention. The increased benefit
will be measured against the mainstream string and entity comparison
techniques.

1 Introduction

With the Internet being utilized in more homes around the world, information
on the web is becoming more accessible. As a result, the new generation of
genealogy software, which allows the user to load multiple genealogies, search
and merge duplicate individuals, is becoming popular in the current market;
most of it is likely to be on-line and be used interactively. However, the complex
queries for searching are still restricted to the boundaries defined by the software
developer and all have GUI interfaces that run the queries; much of the searching
in genealogy has suffered from the limitation of a GUI interface. So, one of the
objectives of this research work is to allow users to type in a command that will
resemble the English language structure, and return the result from genealogical
database. The major reason for developing this system is to give users the added
flexibility of potential relationships (cousins, ancestries) in the database.

Family history is generally represented by a genetic family tree (also called
a “pedigree”), which shows the past and present members of the family joined
together by a series of links that help in ascertaining their relationship to each
other, and the location, documentation and recording of a family history. An
example of a genetic family tree is shown in Figure 1.

The main idea in using genetic family tree is that it is easy to view and
understand by users. By using chart diagram, users can easily track and transfer
the relationships including sound, video, and text files - along with a wide variety
of graphic formats in the trees. When the multiple records identified reside within
the same family tree, a smaller tree with no duplicates will be produced. When

R. Alhajj et al. (Eds.): ADMA 2007, LNAI 4632, pp. 476–487, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Enhanced Graph Based Genealogical Record Linkage 477

Fig. 1. Example genetic family tree

the identified records reside in two or more disjoint trees, a larger tree will result.
This process is also referred to as duplicate reduction or merge/purge.

Graph-matching [19] is an essential technique in genealogical record linkage
that takes advantage of the hierarchical nature of genealogical data. In the ab-
stract form, trees represent genealogical data whose nodes are the real world
entities and edges are relationships between the entities. A graph-matching al-
gorithm then uses the identified records as focal points and extends to all nodes
that overlap between the trees. The record linkage evaluation will be based on
the extended coverage of the trees.

A set of potentially matching records goes through a ranking stage. At the
record level, attributes of records are compared for corresponding accuracy. The
aggregate ranking of a set of identified records is determined by both these at-
tribute matches and the subsequent node matches. Once all the identified records
have been sorted by ranking, they are grouped into three categories: Linked, Un-
linked and Unknown. Any record that falls into the “Unknown” category will
require manual research to determine which category the record finally belongs.
The decision of which ranking will act as a cutoff is also made manually.

This process seems to be able to produce effective results. Addressed in this
research work are several areas that could be improved upon that would produce
a more user-friendly set of final data. In particular, the following issues are
handled.

– The algorithms used to evaluate the record attributes (names, dates, etc.)
– The calculation of both the entity and aggregate rankings
– Knowing the structure of the overlapping tree
– Using inferred dates in replacement of missing ones
– A smaller and better-organized “Unknown” category would reduce the

amount of time necessary for manual evaluation of the records.

The conducted analysis demonstrate the power of the developed process.
The rest of this paper is organized as follows. Section 2 is a brief overview of

the related work. Section 3 highlights the aspects of the developed data miner
for handling record linkage information. Section 4 reports on the analysis of the
ranking process. Section 5 is summary and conclusions.

478 C. Sweet, T. Özyer, and R. Alhajj

2 Related Work

Record linkage is one of the most essential social problems studied in history,
and several attempts tried to handle the problem from different perspectives,
e.g., [1,3,9,12,16,20] . Heuristics based on matching Soundex codes on names
and exact matching on date and place fields for some event, including birth,
marriage, or death, were the drivers for the first initiatives in record linkage
algorithms. Once a pair of duplicates was linked, additional, less-stringent rules
were used to link related family members. The next milestone in record linkage
could be identified as statistical based on a Fellegi-Sunter algorithm [7,13]. The
weighted features used in the statistical algorithm were based on name and event
information for various world regions.

In general, there are two main areas of interest dealing with genealogical
databases. They are family reconstruction and the work of projects like those
undertaken by the GRANDMA project [8] of the California Mennonite Historical
Society. The Minnesota Population Center [15] is Family reconstruction organi-
zation that is trying to link the records from 5 different censuses ranging from
1860 through 1910. Considering these crosses over approximately 3 generations,
record linkage would be occurring with the new families of the children as well
as within the same family.

Taking multiple genealogical databases and merging them together help pro-
duce a larger, more complete database. The algorithms utilized in this task have
been progressing in their level of complexity. The early attempts involved only
comparing two records [11]. Post-processing rules were used to handle merging
the relationships of the selected records [14]. Current work in this area by the
Family History department involves graph-matching [19,14].

While graph-matching generates accurate results, Wilson’s algorithm [19] fo-
cused on the resultant tree only as a benefit to the merging process. Wilson’s
algorithm also focused on finding only high-ranking matches while building the
tree. This meant that the content of the tree could not be utilized in determining
the ranking of the individuals within the tree. This has been the basic motivation
to conduct the work described in this paper.

3 Developing the Data Miner

The DataMiner project involved the creation of a query language that would be
used to assist in the determination for candidate objects to be merged within
a hierarchical data model. Specifically, a genealogical database usually contains
one or more entries of the same person. In this data model, only the individual,
parents and spouse are used for comparison and ranking purposes. It covers
several stages of the record linkage process.

3.1 Find All the Matching Individuals Within the Database

This involved taking a list of groups where the only grouping criterion was the
first and last names had to match. This list was then manually verified as a

Enhanced Graph Based Genealogical Record Linkage 479

possibility match with secondary and tertiary sources [17,4,5,8,18]. This has
been tested on a database of 22696 persons. While this procedure identified 362
duplicates and 42 potential duplicates as not a match, it did not guarantee that
all matches were found. Great pains were made, however, to ensure that most
reasonable combinations of the 22696 person database were evaluated.

3.2 Query Language

DataMiner has the capability to describe when a field does not contain null.
Previously, when an attribute was placed within the query, the resultant grouping
allowed all the nulls to match one another. To help reduce the level of undesirable
information, the attribute modifier not null was added to the query language.

Date(not null:birth:indiv)
Father modified given(not null)

3.3 Analyze the Ranking Function

It was important to determine the maximum efficiency of the implemented al-
gorithm. This will allow the comparisons with the following enhancements to be
better understood. A hill-climbing algorithm was used to drive the search for the
best values for each attribute that was used within the ranking function. When
analyzing the values for the attributes three interests were being considered:

– The highest level of accuracy for the current algorithm
– List of attributes that had no impact on the outcome of the results
– List of attributes that had the highest impact on the outcome

Attributes of the ranking function. Three relationships were exploited and
the attributes of each person involved were combined to reach a single ranking
value. The relationships were: Current individual, Spouse, Mother and Father.
For each of these the aggregate attributes of name, birth date, baptismal date
and death date were selected. In total, there are 98 attributes (23 for each in-
dividual, plus the 6 for only the spouse, mother and father). New attributes
were added in to determine how they would impact the results. These included:
Entity Comparison results in zero ranking; The individual does not exist; Sex;
Location; First and last name both match; First and last name both do not
match; Year, month and day all match; and Fuzzy logic date matching.

It was previously assumed that Sex and Location would have zero impact on
the results and were removed, for this reason, from the ranking function. Since a
full analysis of the ranking function was identified essential, the basic attributes
of Sex and Location were added to ensure completeness.

Each attribute is counted only once. For instance, if year, month and day all
match, only the full date match attribute is applied to the ranking function. The
individual component evaluations are ignored in this case.

Individual level attributes: These attributes are applied to only the spouse,
mother and father. The individual is assumed to always be involved in the equa-
tion and thus exists with at least a partial match of the name. This assumption

480 C. Sweet, T. Özyer, and R. Alhajj

makes these attributes unnecessary for the ranking of the primary individual
of interest.

Comparison results in a rank of zero. None of the following attributes match
between the individuals of interest. This is useful when a person has married
more than once. The first individual could represent the spouse of the first
marriage, while the second individual could represent the individual of the second
marriage.

The individual does not exist. If an individual were missing both parents, this
situation would be more probable for a match than if both parents existed and
had a very low individual level ranking.

Name and sex attributes

First name and last name. These are the basic constructs for comparing an indi-
vidual. These rankings only apply if only one and both attributes are matched.

Comparison results in a rank of zero. Both the first and last names did not
match. This attribute was added to see what the hill-climbing algorithm would
do with it.

Both match. This attribute gives the capability of enhancing the ranking for a
better than partial match.

Sex. Some names are unisexual, such as Kim. This attribute may play a role in
obtaining better results. This attribute was added to test its significance within
the ranking function. The hill-climbing algorithm was designed with this in mind.

Birth, baptismal and death events

Location. Most of the data does not have locations and some have mixed level of
detail for the same location: Swift Current, Canada; Swift Current, Saskatchewan.
This attribute will help test some of the string comparison functions.

Year, month and day. This set of attributes are processed the same as the name
attributes. Their ranking is applied only if some, but not all, of the attributes
match.

Year, month and day all match. This attribute gives the capability of enhancing
the ranking for a better than partial match.

Fuzzy logic matching. While looking at the data it was determined that there
were several focal points surrounding the perfect date match. There were peaks
at 0, 7, 14, and 21 days as the absolute difference between two entities that were
determined by research to be an exact match.

Calculation of the ranking function. The ranking function is created in
several phases. First, each of the individuals - primary individual, spouse, mother
and father - are evaluated separately by adding the attribute values together.
Each individual is then identified as a percentage of the maximum rank for that

Enhanced Graph Based Genealogical Record Linkage 481

individual. These percentages get one added to them and then are multiplied
together. This gives us an overall ranking for the individual.

All the relationships for that individual are then evaluated. Moving recursively
along the parents, children and spouse lines, the tree is built up with individual
matches. These may be good or bad matches. The only criterion is that both
individuals have the same movement (e.g. both have a father). The ranking for
the tree is the average of all the individuals within the tree. The final ranking
for the individual is obtained by finding out what percentage of the maximum
individual ranking the current individual and multiplying that to the tree ranking
(e.g. 45 % × 450).

Hill-climbing Algorithm. The hill-climbing algorithm looks at marginal
changes to the original ranking and decides which values to keep for all the
different attributes. Each attribute is evaluated over a range of values (0 thru
128). The rank that achieves the highest level of accuracy is kept and the next
attribute is evaluated. Once all the attributes have been evaluated, the algorithm
continues with the first one. This is repeated until the level of accuracy at the
end of evaluating the 98th attribute remains the same.

Evaluating the points 0 thru 128 results in either a convex, concave or linear
curve. Since all of these only have at most one maximum point, a more optimized
algorithm can be employed by using a bisection line search algorithm. Using this
algorithm results in an average of 5 evaluations instead of the original 129.

Determining the accuracy of the current algorithm. Before any modifi-
cation could be made to the algorithms, a baseline level of accuracy had to be
defined.

When the program is run, a list of groups is obtained. Each group of two
individuals is then ranked using the ranking function and the set of ranks con-
figured by the user, or the hill-climbing algorithm. This list of groups will then
be sorted with the highest ranking being first in the list. This sorted list was then
compared against the list of known matches. This comparison had to consider
three things:

1. The first group of 2 should have a higher score than the last group of 2.
This will imply that an incorrect mismatch occurring at the highest likely
duplicate will have a more significant impact than the least likely duplicate.

2. A score of 100% should be theoretically attainable
3. The scoring mechanism should be consistent across differing data sets

The algorithm decided upon has the following attributes:

– The first group has a rank of n. Where n is the total number of matched
records, which were manually identified earlier. In this case: 362

– The last group has a rank of 1
– The total for all the groups is n×(n+1)

2
– For each group that exists within the matched record list, add that group’s

rank to the total

482 C. Sweet, T. Özyer, and R. Alhajj

– Only evaluate the first n groups
– Divide the final total by the maximum total to obtain a percentage of

accuracy

3.4 Date Comparisons

People who are entering dates into data entry system can always make mistakes.
Another discrepancy in dates could arise when changing from the Julian to the
Gregorian calendars. This discrepancy could be anywhere from 10 to 13 days
depending on the country that the data originated from.

(a) Differences within matching data (b) Differences within non-matching
data of almost the same number of
records

Fig. 2. Differences within matching and non-matching

Figure 2(a) shows the results of differences between the dates on the records
that were manually identified as matches (see Section 3.1). Several peaks can
be identified, the tallest peaks occurring at a difference of 7 and 14 and lower
peaks at 1 and 20. Looking at the unmatched data (Figure 2(b)), we can see that
no identifiable peaks exist. For this set of data, another unique characteristic of
the data can be used as a focus for the ranking function. Under normal date
comparisons, these differences could not be utilized. Fuzzy logic along multiple
user-defined focus points helps solve these issues. There are three aspects for
each focal point: 1) Offset from the date of interest (e.g. 14 days); 2) Range that
the fuzzy logic will be applied (e.g. +/-3 days); 3) Type of curve that will be
used: concave, convex, or linear.

Table 1. Example focal points identified from Figure 2(a)

Offset Range Curve
7 2 Concave
14 2 Concave
20 2 Concave

Enhanced Graph Based Genealogical Record Linkage 483

3.5 Entity Comparisons

Entity comparisons always involve weighting the individual evaluations and ob-
taining an aggregate ranking value. Part of this project is to develop an auto-
mated evaluation of the different attributes in the data and obtain ideal weight-
ings for each of the attributes. In this way, we can evaluate the importance of a
death date over a birth date. An important factor for this analysis will be the
availability of the attribute within the data.

Entity comparisons will utilize the graph-matching algorithm [14]. Modifi-
cations to this algorithm will involve Identifying potential matches within the
main database, Fully evaluating all the nodes within the overlapping sub tree,
and Using the final tree ranking to assist in the individual ranking.

Table 2. Highest and lowest Standard Deviations of the attributes

Standard
Deviation

Preferred
Value

Attribute

8.27 0 Father No name given
7.26 0 Father Last Name
5.89 0 Mother No name given
2.68 1 Individual Birth Month
1.97 4 Mother First Name
1.76 0 Father sex
1.62 0 - 15 Father Birth Location
1.48 14 Mother Last Name
1.45 14 Father Both first and last name
1.43 0 Spouse No name given
1.36 0 Father Birth Month
1.20 1 Mother Sex
1.06 6 Individual Birth Year
0 0 – 99 All information regarding Baptism and Death for all individuals
0 0 – 99 The overall rank of the Mother when zero attributes match
0 0 – 99 Individual Both first name and last name match
0 0 – 99 Spouse Birth Location

3.6 Query Analysis

The blocking technique allows the user to define the minimum requirement of
how records will be grouped together for further evaluation and ranking. Some-
times the user will create a blocking definition that creates groups that are larger
than necessary (10 or more records within a single group). Evaluating the group
could result in suggestions being made to the user as to how to make a more
restrictive definition.

By looking at what attributes would match, a histogram can be created that
would say which attributes have a higher success ratio and which ones do not.

484 C. Sweet, T. Özyer, and R. Alhajj

4 Analysis of the Ranking Function

The highest percentage of accuracy achieved was 96.28%. The standard deviation
was used to determine the effect that different values of rank had on an attribute.
Attributes that had standard deviations greater than one were considered highly
influential in the level of accuracy. These attributes fell into two categories: Those
that affected the rank and those that did not. According to Table 2, half of the
attributes had a preferred ranking value of zero. Any value higher than this
adversely affected the level of accuracy for the ranking function. Attributes that
had a standard deviation equal to zero were determined to have no impact on
the level of accuracy. The effect of these attributes was felt more in the ranking
function, where the more attributes matched the higher the probability of a
successful match. It is interesting to note that the highest ranking exists when

Table 3. Attributes with the highest preferred value

Preferred Value Attribute
99 Father not exist
0 - 99 Mother zero rank
98 Mother not exist
81 – 94 Spouse not exist
82 Mother First Name
0 – 99 Individual both first and last name match
97 Individual birth date all matches
94 Spouse both first and last name match
0 – 99 All information regarding Baptism and Death

for all individuals

both the mother and father do not exist and the spouse does. This is one of the
tree structures that might prove to have a higher possibility of a match.

4.1 Further Analysis

The final accuracy of the tree-ranking algorithm with fuzzy dates was 96.56%.
The final ranking for the non-tree algorithm was 94.12%. The main improvement
in the final ranking was due to adding in newly found matches by following
the graph-matching algorithm. Table 4 shows that keeping all the attributes at
the same ranking value, the resulting accuracy is quite diminished compared
to the results obtained from before this project began. The ranking function
analysis, however, was able to converge upon an ideal ranking function more
easily with the new algorithm. This would seem to imply that there are more
optimal ranking functions available by using the new algorithm.

Some attributes should never be used in ranking the data. Father’s last name,
which should always match the primary individual, has a very adverse effect
on the level of accuracy when used. Some attributes do not add value to the
matching process. While the hill-climbing algorithm says that the information

Enhanced Graph Based Genealogical Record Linkage 485

Table 4. Attributes with the highest matches

Initial
Accuracy

Iter.s before Con-
vergence

Matches
Found

Algorithm Fuzzy
Dates

9.55 417 303 Tree Algorithm
focus on tree average

Yes

9.57 421 300 Tree Algorithm
focus on tree average

No

2.77 916 303 Tree Algorithm
focus on tree size

Yes

91.55 955 258 Non-tree algorithm Yes
91.65 1017 254 Non-tree algorithm No

about the baptism and death events can be ignored by the ranking function,
they are still important to help determine which groups are more likely to be a
real match.

Subjectively, we would think that the sex of an individual should have no
bearing on the outcome. For out primary individual the sex attribute had a
standard deviation of 0.26 and a preferred value of three. Odd results like this
only mean that the data entered always has a chance of being incorrect. The
source of the inaccuracy could be the result of the person recording the infor-
mation in the registry, the person transcribing the registry or even the person
reading the transcription and entering the data into the computer. It is because
of these possible sources for errors that any algorithm for genealogical record
linkage should be flexible and unrestricted.

In our quest for producing results that are useful for the user, inaccuracies
can produce unwanted results. These unpredictable results need to be taken into
consideration when creating new algorithms.

The fuzzy dates did not appear to enhance the accuracy of the query process.
It might work better with data that focuses on a specific time and/or location
that a change in calendar occurred.

This proved to be quite effective when the ranking function was not biased
on the size of the tree. At one point, the tree’s rank was the sum of the entities
in the tree. This produced less then desirable results. Once the ranking focused
on the average of the tree’s entities, the hill-climbing algorithm was able to
converge on an optimal solution more quickly. This would imply that there were
more optimal solutions for this new approach to the tree’s ranking. On small
datasets, the hill-climbing algorithm reached an optimal ranking with only one
pass through the data. As the datasets became larger, the number of passes
through the data also became larger.

The focus has been on how a single query could be used to produce the best
possible results. However, the data being considered might be too much for the
computer/user to absorb. Being able to reduce the amount of data returned and
only look at higher quality data can be advantageous. The best way to do this
would be adding an additional attribute to the query. Having a list of attributes
and how they could affect the outcome is very handy.

486 C. Sweet, T. Özyer, and R. Alhajj

Table 5. The larger the number of groups(# of grps), the more iterations required
before convergence(Iter.s Before Conv.)

of pos. grps
found out of
362

of grps
evaluated

of attribs
used out of 98

Iter.s
Before
Conv.

Query

254 267 49 417 modified given,
modified surname,
Date(not null:birth:indiv),
MaxGroups(100000)

279 3446 73 916 modified given,
modified surname,
Date(birth:indiv),
MaxGroups(100000)

354 256943 95 13212 modified given,
modified surname,
MinRank(5000),
MaxGroups(100000)

Table 5 shows that the more initial data that the grouping query obtains, the
longer it takes to obtain a satisfactory result for the ranking function analysis.

5 Summary and Conclusions

This paper discussed the importance of using graph matching in handling record
linkage. As a result of this study, it was found that using a single query over
a large number of data produces good results. However, we found out that we
need to investigate the accuracy of combining the results of multiple queries
running against smaller cross sections of the data. It would be interesting to find
out if combining the results of one phone and one string comparison algorithm
would produce a better result. Strings to be compared include: First name, last
name and location. We also decided to investigate the effect of adding inferred
dates when some, but not all the dates are missing within the tree of individual
being ranked. Focusing on the tree structure can help arrange the unknown
category of records by using probabilistic reasoning. Two individuals have a
high match. The parents, siblings, spouses along the tree structure originating
at these individuals also produce a high probability of a match. It would then
make sense to keep these matches close together. Comparisons could be made
based on spatial closeness.

References

1. Bengtsson, T., Lundh, C.: Name-standardization and automatic family reconsti-
tution. Lund Papers in Economic History. Department of Economic History, Lund
University 29, 1-24 (1993)

2. Bloothooft, G.: Multi-Source Family Reconstruction. History and Computing 7(2),
90–103 (1995)

Enhanced Graph Based Genealogical Record Linkage 487

3. Bouchard, G.: Current issues and new prospects for computerized record linkage
in the province of Québec. Historical Methods 25, 67–73 (1992)

4. Dyck, J., William, H.: Reinlaender Gemeinde Buch (1994)
5. Ens, A., Jacob, E.P., Otto, H.: 1880 Village Census of the Mennonite West Reserve

(1998)
6. Family History Department, CJCLS (2002) http://www.familysearch.org/Eng/

Home/FAQ/faq gedcom.asp
7. Fellegi, I.P., Sunter, A.B.: A Theory for Record Linkage. Journal of the American

Statistical Association 64, 1183–1210 (1969)
8. GRANDMA, Genealogical Project Committee of the California Mennonite Histor-

ical Society, vol. 3 (2000)
9. Jaro, M.A.: Advances in Record-Linkage Methodology as Applied to Matching the

1985 Census of Tampa, Florida. Journal of the American Statistical Association 89,
414–420 (1989)

10. Katz, M., Tiller, J.: Record-linkage for everyman: A semi-automated process. His-
torical Methods Newsletter 5, 144–150 (1972)

11. NeSmith, N.P.: Record Linkage and Genealogical Files. Record Linkage Techniques,
pp. 358–361. National Academy Press, Washington, DC (1997)

12. Nygaard, L.: Name standardization in record linking: An improved algorithmic
strategy. History & Computing 4, 63–74 (1992)

13. Newcombe, H.B., Kennedy, J.M., Axford, S.J., James, A.P.: Automatic Linkage of
Vital Records. Science 130, 954–959 (1959)

14. Quass, D., Paul, S.: Record Linkage for Genealogical Databases. In: ACM SIGKDD
2003 Workshop on Data Cleaning, Record Linkage, and Object Consolidation,
August 2003 (2003)

15. Ruggles, S.: Linking Historical Censuses: A New Approach. In: IMAG Workshop
(2003)

16. Schofield, R.: Automatic family reconstitution - the Cambridge experience. Histor-
ical Methods 25, 75–79 (1992)

17. Unger, H., Martha, M., Ens, A.: Sommerfelder Gemeinde Buch (2004)
18. Unpublished genealogical records Swift Current Gemeinde Buch. vol. 1, 2
19. Wilson, R.: Graph-Based Remerging of Genealogical Databases. In: Provo UT.

Proceedings of the 2001 Family History Technology Workshop, pp. 4–6 (2001)
20. Winkler, W.E.: Advanced Methods of Record Linkage. American Statistical Asso-

ciation. In: Proceedings of the Section of Survey Research Methods, pp. 467–472
(1994)

21. Winchester, I.: The linkage of historical records by man and computer: Techniques
and problems. Journal of Interdisciplinary History 1, 107–124 (1970)

http://www.familysearch.org/Eng/Home/FAQ/faq_gedcom.asp
http://www.familysearch.org/Eng/Home/FAQ/faq_gedcom.asp

	Enhanced Graph Based Genealogical Record Linkage
	Introduction
	Related Work
	Developing the Data Miner
	Find All the Matching Individuals Within the Database
	Query Language
	Analyze the Ranking Function
	Date Comparisons
	Entity Comparisons
	Query Analysis

	Analysis of the Ranking Function
	Further Analysis

	Summary and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

