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Abstract. Since its introduction, frequent-pattern mining has been gen-
eralized to many forms, which include constrained data mining. The use
of constraints permits user focus and guidance, enables user exploration
and control, and leads to effective pruning of the search space and effi-
cient mining of frequent patterns. In this paper, we focus on the use of
succinct constraints. In particular, we propose a novel algorithm, called
dyFPS, for dynamic FP-tree based mining of frequent patterns satisfy-
ing succinct constraints. Here, the term “dynamic” means that, in the
middle of the mining process, users are able to modify the succinct con-
straints they specified. In terms of functionality, our algorithm is capa-
ble of handling these modifications effectively by exploiting succinctness
properties of the constraints in an FP-tree based framework. In terms
of performance, the dyFPS algorithm efficiently computes all frequent
patterns satisfying the constraints.

Keywords: Data mining, constraints, succinctness, dynamic changes,
FP-trees

1 Introduction

The problem of mining association rules [1, 2] – and the more general problem of
finding frequent patterns – from large databases has been the subject of numer-
ous studies. Over the past decade, frequent-pattern mining has been generalized
to many forms, which include constrained data mining. The use of constraints
permits users to specify the patterns to be mined according to their intention,
and thereby allowing user focus and guidance. Consequently, the computation is
limited to what interests the users. In addition, constrained mining also enables
user exploration and control. As a result, effective pruning of the search space
and efficient mining of frequent patterns can be achieved.

To handle constraints in the process of mining frequent patterns from large
databases, many different approaches have been proposed. The following are
some examples. Srikant et al. [12] considered item constraints in association
rule mining. Bayardo et al. [4] developed Dense-Miner to mine association rules
with the user-specified consequent meeting “interestingness” constraints (e.g.,
minimum support, minimum confidence, minimum improvement). Garofalakis
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Auxiliary information about items:
Item a b c d e f g

Price 36 12 24 28 20 32 16
Qty 700 300 400 500 800 600 200
Type soda soda snack beer beer beer meat

C1 : min(S.Qty) ≥ 500
C2 : max(S.Price) ≥ 28
C3 : S.Type ⊇ {snack, soda}
C4 : S.Price = 16
C5 : S.Type ⊆ {beer, snack}
C6 : soda ∈ S.Type
C7 : max(S.Price)/avg(S.Price) ≤ 7

Fig. 1. Examples of various classes of constraints

et al. [5] developed SPIRIT to mine frequent sequential patterns satisfying reg-
ular expression constraints. Ng et al. [8, 10] proposed a constrained frequent-
set mining framework within which users can use a rich set of constraints –
including SQL-style aggregate constraints (e.g., C1 and C2 in Fig. 1) and non-
aggregate constraints (e.g., C3, C4, C5 and C6) – to guide the mining process
to find only those rules satisfying the constraints. In Fig. 1, constraint C1 ≡
min(S.Qty) ≥ 500 says that the minimum Qty value of all items in the set S is
at least 500. Constraint C3 ≡ S.Type ⊇ {snack, soda} says that the set S in-
cludes some items whose Type is snack and some items whose Type is soda; con-
straint C4 ≡ S.Price = 16 says that all items in the set S are of Price equal to 16.
Ng et al. also developed the CAP algorithm in the constrained frequent-set min-
ing framework mentioned above. Such an Apriori-based algorithm exploits prop-
erties of anti-monotone constraints and/or succinct constraints to give as much
pruning as possible. Constraints such as C1, ..., C6 in Fig. 1 are succinct because
one can directly generate precisely all and only those itemsets satisfying the con-
straints (e.g., by using a precise “formula”, called a member generating function,
that does not require generation and testing of itemsets not satisfying the con-
straints). For instance, itemsets satisfying constraint C2 ≡ max(S.Price) ≥ 28
can be precisely generated by combining at least one item whose Price ≥ 28 with
some possible optional items (whose Prices are unimportant), thereby avoiding
the substantial overhead of the generate-and-test paradigm. It is important to
note that a majority of constraints in this constrained frequent-set mining frame-
work is succinct; for those constraints that are not succinct, many of them can
be induced to weaker constraints that are succinct! Among the succinct con-
straints in Fig. 1, C1 ≡ min(S.Qty) ≥ 500 is also anti-monotone because any
superset of an itemset violating the constraint (i.e., containing an item whose
Qty < 500) also violates the constraint. Grahne et al. [6] also exploited the anti-
monotone and/or succinct constraints, but they mined valid correlated itemsets.
Pei et al. [11] developed the FIC algorithms, which integrate a tree-based min-
ing framework with constraint pushing. Specifically, to enhance performance,
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FIC uses an extended prefix-tree structure – called Frequent Pattern tree or
FP-tree [7] – to capture the content of the transaction database. The algorithms
exploit the so-called convertible constraints (e.g., C7 in Fig. 1). Leung et al. [9]
exploited succinct constraints, and developed the FPS algorithm to effectively
mine frequent itemsets satisfying succinct constraints. However, their FPS algo-
rithm does not handle dynamic changes to succinct constraints.

It is well-known that data mining is supposed to be a human-centered and
exploratory process. Human involvement is not confined to user focus (i.e., con-
strained mining); it also includes interactive mining. With interactive mining,
users can (i) monitor the mining process and (ii) make change dynamically during
the mining process, and thus having a decisive influence on the mining process.

In this paper, our key contribution is the development of a novel algorithm,
called dyFPS, for dynamic FP-tree based mining of frequent patterns satisfying
succinct constraints. This algorithm can be considered as a non-trivial extension
of the FPS algorithm [9]. In terms of functionality, the dyFPS algorithm allows
users to modify the succinct constraints in the middle of the mining process,
and it handles these modifications very effectively. In terms of performance,
the dyFPS algorithm, like its static counterpart (i.e., the FPS algorithm), is
very efficient because it avoids the generate-and-test paradigm by exploiting
succinctness properties of the constraints in an FP-tree based framework.

This paper is organized as follows. In the next section, relevant background
material is described. Section 3 presents an overview of our proposed dyFPS
algorithm. Section 4 shows the experimental results. Finally, conclusions are
presented in Section 5.

2 Background

In this section, we first give a definition of succinct constraints. We then provide
an overview of the FPS algorithm [9], which is an FP-tree based mining algorithm
for handling succinct constraints.

2.1 Succinct Constraints

Definition 1 (Succinctness [10]). Define satC(Item) to be the set of item-
sets that satisfy the constraint C. With respect to the lattice space consisting of
all itemsets, satC(Item) represents the pruned space consisting of those itemsets
satisfying C. We use the notation 2I to mean the powerset of I.

(a) I ⊆ Item is a succinct set if it can be expressed as σp(Item) for some selec-
tion predicate p, where σ is the selection operator.

(b) SP ⊆ 2Item is a succinct powerset if there is a fixed number of succinct
sets Item1, ..., Itemk ⊆ Item such that SP can be expressed in terms of the
powersets of Item1, ..., Itemk using union and minus.

(c) A constraint C is succinct provided that satC(Item) is a succinct powerset.
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Consider constraint C3 ≡ S.Type ⊇ {snack, soda}. Its pruned space consists
of all those itemsets that contain at least one snack item and at least one soda
item. Let Item1, Item2 and Item3, respectively, be the sets σType=snack(Item),
σType=soda(Item) and σType �=snack ∧ Type �=soda(Item). Then, Item1 contains all
the snack items, Item2 contains all the soda items, and Item3 contains nei-
ther a snack item nor a soda item. Hence, C3 is succinct because its pruned
space satC3(Item) can be expressed as 2Item − 2Item1 − 2Item2 − 2Item1∪Item3 −
2Item2∪Item3 . Although satC3(Item) is a complicated expression involving several
unions and minuses, itemsets satisfying the succinct constraint C3 can be directly
generate precisely (i.e., without generating and then excluding those itemset not
satisfying C3). More specifically, every itemset ν satisfying C3 can be efficiently
enumerated by combining (i) an item from Item1 (i.e., a snack item), (ii) an
item from Item2 (i.e., a soda item), and (iii) some possible optional items from
any of Item1, Item2 and Item3.

Although succinct constraints can be of various forms, they can be catego-
rized into the following subclasses [9], depending on whether or not they are also
anti-monotone:

– SAM constraints. Succinct anti-monotone constraints, such as C1 ≡
min(S.Qty) ≥ 500, C4 ≡ S.Price = 16, C5 ≡ S.Type ⊆ {beer, snack} in
Fig. 1; and

– SUC constraints. Succinct non-anti-monotone constraints, such as C2 ≡
max(S.Price) ≥ 28, C3 ≡ S.Type ⊇ {snack, soda}, C6 ≡ soda ∈ S.Type.

2.2 The FPS Algorithm

Like many FP-tree based algorithms, the FPS algorithm [9] consists of two main
operations: (i) the construction of an FP-tree, and (ii) the growth of frequent
patterns. The FPS algorithm first generates valid items (i.e., items satisfying
succinct constraints) by using a member generating function, and then scans
the transaction database to check the frequency of each valid item. As a result,
valid frequent singleton itemsets can be found. The FPS algorithm then builds
an initial FP-tree, which captures the content of the transaction database. By
using this tree, a projected database can be formed for each valid item X. Here,
an X-projected database is a collection of transactions having X as prefix. By
recursively applying this FP-tree based mining process to each of these pro-
jected databases, valid frequent itemsets can be found. More specifically, suppose
X1, X2, X3, ... are valid items. Then, itemsets containing X1 can be computed
from the {X1}-projected database (and subsequent projected databases having
X1 as prefix), itemsets containing X2 but not X1 can be computed from the
{X2}-projected database, itemsets containing X3 but not X1 or X2 can be com-
puted from the {X3}-projected database, and so on. Therefore, the entire mining
process can be viewed as a divide-and-conquer approach of decomposing both
the mining task and the transaction database according to the frequent patterns
obtained so far. This leads to a focused search of smaller datasets.
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The FPS algorithm consists of two components – FPSam and FPSuc –
for handling SAM and SUC constraints, respectively. The key differences be-
tween these two components are as follows. FPSam divides the domain items
into two groups (i.e., valid and invalid groups). Among the two groups, only
items from the valid group are considered when forming the initial FP-tree
and subsequent projected databases because any frequent itemset satisfying a
SAM constraint is composed of only valid items. For example, any frequent
itemset satisfying C1 ≡ min(S.Qty) ≥ 500 is composed of only items whose
Qty ≥ 500. In contrast, FPSuc divides the domain items into mandatory and
optional groups1. It uses items from the mandatory and optional groups because
any frequent itemset satisfying a SUC constraint is composed of mandatory items
and possibly some optional items. For example, any frequent itemset satisfying
C2 ≡ max(S.Price) ≥ 28 is composed of at least one item whose Price ≥ 28 and
possibly some optional items (whose Prices are unimportant). During the min-
ing process, items are ordered in such a way that mandatory items appear before
optional ones (i.e., all mandatory items appear below any optional ones in the
FP-tree). Projected databases are formed only for the mandatory items, with the
aforementioned item ordering. Consequently, all and only those frequent item-
sets having appropriate mandatory items as prefix can be computed. In other
words, all computed itemsets are valid (i.e., guaranteed to contain mandatory
items and may contain some optional items). While more details can be found
in the work of Leung et al. [9], we use the following example to illustrate an
execution of the (static) FPS algorithm.

Example 1. Consider the following transaction database:

Transaction ID Contents: itemset
t1 {a, b, d}
t2 {a, b, c, d, e, g}
t3 {a, c}
t4 {a, b, c, d, e, g}
t5 {c}

with the auxiliary information from Fig. 1:

Item a b c d e f g

Price 36 12 24 28 20 32 16
Qty 700 300 400 500 800 600 200
Type soda soda snack beer beer beer meat

Let the minimum support threshold be 2 (i.e., 40%). The FPS algorithm first
generates items satisfying the succinct constraint C2 ≡ max(S.Price) ≥ 28 by
1 More precisely, FPSuc divides the domain items into k mandatory groups and one

optional group. Although constraint C3 ≡ {snack, soda} uses two mandatory groups
(one for snack items and another for soda items), most of SUC constraints require
only one mandatory group. For lack of space, we focus on the latter (i.e., k = 1) in
this paper.
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=> {c}, {b}, {e}, {g}

FP-tree for Trans. DB

Fig. 2. The FPS algorithm mines frequent itemsets satisfying SUC constraint C2

using a member generating function, and then scans the transaction database
to check the frequency of each valid items. As a result, it finds valid frequent
singleton itemsets {a} and {d}. Then, FPS builds an initial FP-tree, as shown
in Fig. 2. (The frequency of each item is shown in the figure, e.g., “c:4” in the
tree indicates that the frequency of {c} is 4.) Afterwards, FPS forms a projected
database for each valid item (i.e., items a and d). This FP-tree based mining
process is applied to the {d}-projected database to find all 31 valid frequent
itemsets containing d. Similarly, the mining process is recursively applied to the
{a}-projected database (and projected databases of the supersets of {a}). As a
result, all the 15 valid frequent itemsets containing a but not d are found. ��

3 Handling Dynamic Changes to Succinct Constraints

After reviewing the related work, let us start our discussion on the contribution
of this paper – the development of the dyFPS algorithm. Like FPS, our dyFPS
algorithm consists of two main components: dyFPSam and dyFPSuc for handling
a dynamic change (e.g., a tightening change, a relaxing change) to a SAM con-
straint and a SUC constraint, respectively. Here, we assume that, at any point
in time, there is at most one succinct constraint being modified. Of course, dur-
ing the entire mining process, many different constraints can be changed. The
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base case of our discussion below is on how to deal with changes to the constant
const. When const is modified by the users in the direction of restricting the
new solution space (denoted as Vnew) to be a subset of the old space (denoted
as Vold), we call this a tightening change. Otherwise, whenever the change to
const corresponds to the situation where the new solution space contains the
old space, we call this a relaxing change. For example, if the original succinct
constraint is max(S.Price) ≥ 28, then (i) changing the constant const from 28
to 32 corresponds to a tightening change and (ii) changing const from 28 to 24
corresponds to a relaxing change. Clearly, inserting a new constraint is a special
case of a tightening change, and deleting an old constraint is an extreme case
of a relaxing change. Thus, while our discussion below is confined to changing
the constant const, any other modification (e.g., modifying max(S.Price) ≥ 28
to max(S.Price) ≤ 28) can be dealt with as a pair of constraint deletion and
insertion.

A näıve approach of handling dynamic changes to succinct constraints
is to simply ignore all valid frequent itemsets that have been produced so far
with respect to the old constraint Cold (i.e., ignore all the “processed” itemsets)
and rerun the FPS algorithm again with the new constraint Cnew. Obviously,
this approach can be costly because it does not reuse any “processed” frequent
itemsets satisfying Cold.

Is there any better approach? When computing frequent itemsets satisfying
Cnew, can we reuse some of those “processed” frequent itemsets satisfying Cold?
The answer to these questions is yes. In the remainder of this section, we show
how our dyFPS algorithm pushes the constraints deep inside the mining process
for effective pruning. The algorithm reuses the “processed” itemsets (i.e., valid
frequent itemsets that have been produced with respect to Cold) as much as
possible when mining valid frequent itemsets satisfying Cnew.

3.1 Handling Dynamic Changes to a SAM Constraint

By definition, a tightening change from Cold to Cnew corresponds to a restric-
tion of the old solution space Vold. In other words, the new solution space Vnew

is a subset of Vold. To accommodate Cnew dynamically, the dyFPS algorithm
carries out two main operations as follows:

– For processed frequent itemsets satisfying Cold, check if they still satisfy
Cnew.

– For unprocessed itemsets, dyFPS only generates those satisfying Cnew.

Recall that any frequent itemset ν satisfying a SAM constraint is composed
of only valid items (i.e., items satisfying the constraint individually): ν ⊆ GV

(where GV denotes a set of valid items). For a tightening change, any frequent
itemset ν satisfying Cnew is a subset of GV

new (where GV
new denotes the set of

items satisfying Cnew), which is a subset of GV
old (where GV

old denotes the set of
items satisfying Cold):

ν ⊆ GV
new ⊆ GV

old. (1)
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FP−tree for Trans. DB

Before change

After change
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b:2

d:2

Fig. 3. Handling a dynamic tightening change to a SAM constraint using dyFPSam

Hence, after a SAM constraint is tightened, dyFPSam uses the existing FP-tree
to generate the unprocessed itemsets satisfying Cnew. Specifically, the algorithm
forms projected databases only for unprocessed items satisfying Cnew. When
forming an {X}-projected database for an item X ∈ GV

new, the dyFPSam algo-
rithm excludes all negative delta items (i.e., the items that satisfy Cold but
not Cnew), which can be efficiently enumerated due to succinctness. As a result,
dyFPSam can compute all the valid frequent itemsets (that have not been pro-
cessed before the constraint change). To complete the mining process, dyFPSam
needs to check the validity of all the frequent itemsets that were processed before
the change (i.e., to check whether these itemsets still satisfy Cnew). Example 2
shows how dyFPSam handles a tightening change to a SAM constraint.

Example 2. Consider the same transaction database & minimum support thresh-
old as in Example 1. Suppose a SAM constraint Cold ≡ min(S.Qty) ≥ 300 is
tightened to Cnew ≡ min(S.Qty) ≥ 500 after the {e}-projected database has
been processed (i.e., after dyFPSam computed all 15 itemsets containing e,
such as {e, a}, {e, b}, ..., {e, a, b, c, d}). Then, due to succinctness, the negative
delta items can be efficiently enumerated: items b and c. Therefore, as shown
in Fig. 3, when forming the {d}-projected database, dyFPSam excludes items b
and c from the extracted paths 〈a, b〉:1 and 〈a, c, b〉:2, and builds an FP-tree for
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the {d}-projected database (which contains a:3). Consequently, a valid frequent
itemset {d, a} is computed. Finally, to complete the mining process, dyFPSam
checks all the 15 itemsets containing e (i.e., the “processed” itemsets satisfying
Cold), and finds that all of them satisfy Cnew. ��

We have discussed how dyFPSam handles a dynamic tightening change to a
SAM constraint. In the remainder of this section, let us consider how dyFPSam
handles a dynamic relaxing change to a SAM constraint. In general, a relaxing
change from Cold to Cnew has different and tougher computational requirements
than a tightening change. The reason is that a tightening change leads to the
situation where Vnew ⊆ Vold; so, all that is needed is to verify whether every
itemset ν satisfying Cold also satisfies Cnew. In contrast, for a relaxing change,
this verification is unnecessary because Vnew ⊇ Vold. What is needed, however,
is to compute all the “missing” itemsets (i.e., the itemsets that satisfy Cnew but
were not generated before the constraint was relaxed). Therefore, dyFPS needs
to carry out the following operations:

– For processed itemsets satisfying Cold, no further constraint check is required
because they also satisfy Cnew.

– For unprocessed itemsets, dyFPS generates (i) the remaining itemsets satis-
fying Cold and (ii) those satisfying Cnew but not Cold.

For a relaxing change, any frequent itemset ν satisfying Cnew is a subset of GV
new,

which is a superset of GV
old:

ν ⊆ GV
new, but GV

new ⊇ GV
old. (2)

Hence, after a SAM constraint is relaxed, dyFPSam adds positive delta items
(i.e., items satisfying Cnew but not Cold) to appropriate branches of the tree2.
Then, the algorithm forms projected databases for all unprocessed items satis-
fying Cnew. Again, due to succinctness, these items – as well as positive delta
items – can be efficiently enumerated. The example below shows how dyFPSam
handles a relaxing change to a SAM constraint.

Example 3. Consider the same transaction database & minimum support thresh-
old as in Example 1. Suppose a SAM constraint Cold ≡ min(S.Qty) ≥ 500 is
relaxed to Cnew ≡ min(S.Qty) ≥ 300 after the {e}-projected database has been
processed (i.e., after obtaining itemsets {e, a}, {e, d} and {e, a, d}). Then, due to
succinctness, the positive delta items can be efficiently enumerated: items b and
c. They are added to the appropriate branches of the tree. Afterwards, as shown
in Fig. 4, projected databases are formed for all unprocessed items satisfying
Cnew (e.g., for items d, b and c). Valid frequent itemsets can then be computed
from these projected databases. ��
2 If I/O is a concern, one can keep both valid and invalid items in the tree. By so

doing, positive delta items are already in the tree. This would save a database scan.
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Fig. 4. Handling a dynamic relaxing change to a SAM constraint using dyFPSam

3.2 Handling Dynamic Changes to a SUC Constraint

One can observe from the previous section that dynamic changes to a SAM con-
straint cause the inclusion, or the exclusion, of items from the FP-tree. However,
for dynamic changes to a SUC constraint, the situation is different. A reason is
that, for a SUC constraint, its initial FP-tree contains not only mandatory items
(i.e., items satisfying the constraint C) but also optional items (i.e., items not
satisfying C). Changes to a SUC constraint only cause a change of membership
(e.g., from the mandatory group GM to the optional group GO for the tightening
change, and the opposite for the relaxing change).

Recall that any frequent itemset ν satisfying a SUC constraint is composed
of at least one mandatory item and possibly some optional items:

ν = {X} ∪ β ∪ γ (3)

where (i) X ∈ GM , (ii) β ⊆ GM , and (iii) γ ⊆ GO. So, after a SUC constraint
is tightened, some of the mandatory items become optional (i.e., change their
membership from mandatory to optional). These items are the ones that satisfy
Cold but not Cnew; we denote the group containing these items as GM→O, which
is a subgroup of GM . Similarly, we denote the subgroup of GM that contains
items satisfying both Cnew and Cold (i.e., the unchanged group) as GM→M .

A complication of handling dynamic changes to a SUC constraint is that
effective computation of itemsets satisfying a SUC constraint relies on the item
ordering in the FP-tree. So far, we have only imposed the “inter-group” item
ordering. All items from the mandatory group must come before any items from
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the optional group (i.e., all mandatory items appear below any optional items
in the FP-tree). However, there is no restriction imposed on the “intra-group”
ordering (e.g., no restriction on the ordering of items within GM ). An item be-
longing to GM→M may consistently appear above or below an item belonging to
GM→O in the FP-tree. If dyFPSuc were to apply the usual projection technique,
the algorithm could be incomplete because it could possibly miss some itemsets
containing an item in GM→O.

To ensure completeness, one could reorder the items so that items belonging
to GM→O appear after/above all the items belonging to GM→M . However, this
approach may incur a costly overhead due to node split and/or node merge (i.e.,
the tree reorganization cost). The dyFPSuc algorithm avoids constructing a new
FP-tree by using the existing FP-tree as follows. It forms projected databases
only for items satisfying Cnew. When dyFPSuc forms an {X}-projected database
for an item X, in addition to including all items that are above X (as usual),
dyFPSuc also includes all “unprocessed” items belonging to GM→O that are
below X. Due to succinctness, the items belonging to GM→O can be efficiently
enumerated. Note that this approach gives the same results as those produced
by reordering items, but it avoids the costly overhead. As usual, for a tightening
change, the algorithm needs to check the validity of all the frequent itemsets that
were processed before the change (i.e., to check whether these “processed” item-
sets still satisfy Cnew). To gain a better understanding on how dyFPSuc handles
a tightening change to a SUC constraint, let us consider the following example.

Example 4. Consider the same transaction database & minimum support thresh-
old as in Example 1. Suppose a SUC constraint Cold ≡ max(S.Price) ≥ 20 is
tightened to Cnew ≡ max(S.Price) ≥ 28 after the {e}-projected database has
been processed (i.e., after obtaining all 31 itemsets containing the mandatory
item e, such as {e, a}, {e, b}, ..., {e, a, b, c, d, g}). Then, due to succinctness, items
belonging to GM→O can be efficiently enumerated: items c and e. Therefore, as
shown in Fig. 5, when forming the {d}-projected database, dyFPSuc includes
(i) all the items that are above d and (ii) all the “unprocessed” items belong-
ing to GM→O that are below d. Since item e has already been processed, it is
not included. Then, dyFPSuc forms the {a}-projected database. Here, in addi-
tion to including all the items that are above a (i.e., items b and g), dyFPSuc
also includes all the “unprocessed” items belonging to GM→O that are below
a (i.e., item c). Valid frequent itemsets can then be computed using these pro-
jected databases. Finally, to complete the mining process, dyFPSuc checks all
the 31 itemsets containing e (i.e., the “processed” itemsets satisfying Cold), and
finds that 24 of them satisfy Cnew. ��

A tightening change to a SUC constraint causes some items to change their
membership from mandatory to optional. In contrast, a relaxing change to a
SUC constraint leads to the opposite situation – that is, some items to change
their membership from optional to mandatory.

Since both tightening and relaxing changes cause changes of membership,
their treatment is quite similar, except the following. For a relaxing change, some
optional items become mandatory; thus, dyFPSuc forms projected databases
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Fig. 5. Handling a dynamic tightening change to a SUC constraint using dyFPSuc

in such a way that it gives the same results as those produced by reordering
items (i.e., reordering the items in such a way that mandatory items appear
before/below all the optional items). For lack of space, we do not describe it
further. We use Example 5 to illustrate how dyFPSuc handles a relaxing change
to a SUC constraint.

Example 5. Consider the same transaction database & minimum support thresh-
old as in Example 1. Suppose a SUC constraint Cold ≡ max(S.Price) ≥ 28 is re-
laxed to Cnew ≡ max(S.Price) ≥ 20 after the {d}-projection has been processed
(i.e., after obtaining all 31 itemsets containing d, such as {d, a}, {d, b}, {d, c}, ...,
{d, a, b, c, e, g}). Then, due to succinctness, the optional items (w.r.t. both Cold

and Cnew) can be efficiently enumerated: items b and g. Therefore, as shown in
Fig. 6, dyFPSuc forms the {a}-projected database as usual. When forming the
{e}-projected database, dyFPSuc includes all the items that are above e (i.e.,
items b and c) and all the “unprocessed” optional items that are below e (i.e.,
item g). Similarly, when dyFPSuc forms the {c}-projected database, dyFPSuc
includes all the items that are above c (which is none) and all the “unprocessed”
optional items that are below c (i.e., items b and g). Consequently, valid frequent
itemsets can be computed by using these projected databases. ��
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Fig. 6. Handling a dynamic relaxing change to a SUC constraint using dyFPSuc

4 Experimental Results

The experimental results cited below are based on a transaction database of
100k records with an average transaction length of 10 items, and a domain of
1000 items. The database was generated by the program developed at IBM
Almaden Research Center [3]. Unless otherwise specified, we used a minimum
support threshold of 0.01%. All experiments were run in a time-sharing environ-
ment in a 700 MHz machine. The reported figures are based on the average of
multiple runs. In the experiment, we mainly compared two algorithms that were
implemented in C: (i) dyFPS vs. (ii) Rerun FPS.

Recall that a näıve approach of handling dynamic changes to succinct con-
straints is to simply ignore all valid frequent itemsets that have been produced so
far with respect to the old constraint Cold (i.e., ignore all “processed” itemsets)
and to rerun the FPS algorithm again using the new constraint Cnew. A better
approach is to use our dyFPS algorithm, which reuses all “processed” itemsets.
To evaluate the effectiveness of our algorithm, in this experiment, a SAM con-
straint Cold ≡ max(S.Price) ≤ 10 is tightened to Cnew ≡ max(S.Price) ≤ 8.
The percentage old pct of items having Price ≤ 10 and the percentage new pct of
items having Price ≤ 8 are set in such a way that new pct = old pct − 20%. We
varied old pct from 60% to 80%. The x-axis in Fig. 7(a) shows the percentage x
of itemsets processed before tightening the constraint, and x varied from 10% to
90%. The y-axis shows the total runtime (in seconds) of both algorithms (dyFPS
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Fig. 7. Effectiveness of handling dynamic constraint changes: dyFPS vs. Rerun

and the Rerun FPS). From the graph, it is clear that our dyFPS algorithm always
beats the rerun of FPS, but the extent varies under different situations. When
x is high (i.e., more itemsets are processed), the relative speedup is high. The
reason is that the Rerun FPS ignores all the itemsets produced w.r.t. Cold and
(re-)computes itemsets satisfying Cnew. Hence, when x is high, more itemsets
are generated and ignored by the Rerun FPS. Out of these itemsets (produced
using Cold), many of them satisfy Cnew. The higher the percentage x, the higher
is the number of processed itemsets being ignored! Our dyFPS algorithm, on the
other hand, reuses the processed itemsets. Hence, when x increases, the number
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of processed itemsets needed to be check at the final step of the mining process
increases. However, the time required for checking the validity of these itemsets
is much less than that required for (re-)computing itemsets. This explains why
it is more beneficial to use dyFPS than to rerun FPS – especially when x is high.

While Figure 7(a) shows the results for a tightening change, Figure 7(b) shows
the results for a relaxing change. Specifically, we relaxed a SAM constraint Cold ≡
max(S.Price) ≤ 10 to Cnew ≡ max(S.Price) ≤ 12. The percentage old pct of
items having Price ≤ 10 and the percentage new pct of items having Price ≤ 12
are set in such a way that new pct = old pct + 20%. We varied old pct from
60% to 80%. Again, it is clear from the graph that our dyFPS algorithm always
beats the rerun of FPS. Similar to the tightening case, the Rerun FPS ignores all
the itemsets produced w.r.t. Cold and (re-)computes itemsets satisfying Cnew.
Hence, the higher the percentage x, the higher is the number of itemsets that are
generated and ignored by the Rerun FPS. Here, all of these itemsets (produced
using Cold) satisfy Cnew because Vnew ⊇ Vold for the relaxing change. Thus,
using the Rerun FPS is really a waste of computation! On the other hand, our
dyFPS algorithm reuses all these processed itemsets. After the constraint Cold

is relaxed to become Cnew, our dyFPS algorithm generates (i) the remaining
itemsets satisfying Cold and (ii) those satisfying Cnew but not Cold. This explains
why the runtime of dyFPS is quite steady. Therefore, it is more beneficial to use
dyFPS than to rerun FPS – especially when x is high.

We have also experimented with the following cases: (i) tightened a SUC con-
straint Cold ≡ min(S.Price) ≤ 10 to Cnew ≡ min(S.Price) ≤ 8, and (ii) relaxed
a SUC constraint Cold ≡ min(S.Price) ≤ 10 to Cnew ≡ min(S.Price) ≤ 12.
The results produced are consistent with those for the SAM constraint. Our
proposed dyFPS algorithm outperforms the rerun of FPS. In summary, these
experimental results show the effectiveness of exploiting succinctness properties
of the constraints (e.g., reusing the “processed” itemsets).

5 Conclusions

A key contribution of this paper is to optimize the performance of, and to in-
crease functionality of, a dynamic FP-tree based constrained mining algorithm.
To this end, we proposed (and studied) the novel algorithm of dyFPS. The algo-
rithm efficiently handles dynamic changes to succinct constraints, and effectively
exploits succinctness properties. As a result, the constraints are pushed deep in-
side the mining process, and thereby avoiding algorithm rerun and leading to
effective pruning.

In ongoing work, we are interested in exploring improvements to the dyFPS
algorithm. For example, we are interested in investigating effective technique for
handling dynamic changes to some more sophisticated Boolean combinations of
succinct constraints. Along this direction, an interesting question to explore is
how to extend our dyFPS algorithm to mine frequent patterns satisfying non-
succinct constraints.
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