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Abstract. This paper describes a research work in which we study the possibil-
ity of applying genetic algorithms to the extraction of musical patterns in mono-
phonic musical pieces. Each individual in the population represents a possible
segmentation of the piece being analysed. The goal is to find a segmentation that
allows the identification of the most significant patterns of the piece. In order to
calculate an individual’s fitness, all its segments are compared among each other.
The bigger the area occupied by similar segments the better the quality of the
segmentation.

1 Introduction

In artificial intelligence, it is common to name the process of identifying the most mean-
ingful patterns occurring in some piece of data as pattern extraction. An important
branch of this investigation area is dedicated to the problem of identifying the most
meaningful patterns in data that can be represented as strings of symbols. This is a
problem of great relevance in areas like molecular biology, finance or music. In the
particular case of music, the identification of these patterns is crucial for tasks like, for
example, analysis, interactive on-line composition or music retrieval [1].

In previous work done in this area ([2—4]) the musical piece to be analysed can
be almost exhaustively scanned, so that all the existing patterns are identified. After
that, some criteria are applied so that the most meaningful patterns can be identified.
While this may be an effective procedure, we think that it is reasonable to investigate
the possibility of identifying the most meaningful patterns existing in one musical piece
without searching the entire space of its segments.

This paper describes a research work in which we study the application of genetic
algorithms to the extraction of musical patterns in monophonic musical pieces. The two
main reasons for choosing genetic algorithms to this type of problems are: the search
capacity already demonstrated by these algorithms in very complex problems; the possi-
bility of representing individuals as possible segmentations of the piece being analysed.
This way, if we guide the search such that segmentations with the most meaningful pat-
terns are favoured, at the end it will not be necessary to do extra processing. Since until
now we have been more concerned with the question of “how can this be done?” and
with “does it solve the problem?” than with “how fast it is”, this paper will not cover
aspects related to time performance.
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We start, in Section 2 by describing the prototype system we developed, named
EMPE (Evolutionary Musical Pattern Extractor). In Section 3 we show the results
obtained in some experiments that we have done. Finally, in Section 4 we draw some
conclusions and indicate some future steps in our research.

2 EMPE Description

EMPE uses a genetic algorithm to discover the most significant patterns existing in a
musical piece. It receives the piece to be analysed as an argument and returns a segmen-
tation of that piece.

2.1 The Genetic Algorithm

Genetic algorithms are parallel and stochastic search algorithms inspired by the evo-
lution theory and molecular biology, which allow the evolution of a set of potential
solutions to a problem. In our approach, we use is a typical genetic algorithm, although
with some changes. It starts by randomly creating an initial population P(0) of size n of
potential solutions to the problem (each one represents a segmentation of the piece be-
ing analysed; see Section 2.2). Then, it evaluates this population using a fitness function
that returns a value for each individual indicating its quality as a solution to the problem.

After these two steps it proceeds iteratively while a stop condition is not met. In
each iteration, the first step consists of the creation of a new population PI(t), also of
size n, by stochastically selecting the best individuals from P(?), the current population.
Among the several existing selection methods, we use the tournament selection method
[5], with tournament size of 5. After the selection step, a new population P2(?) is created
by stochastically applying genetic operators to the individuals of PI(z). The genetic
operators we use are classical two-point crossover and classical mutation [5]. After the
application of genetic operators we introduce another step that, while not being a new
one, doesn’t make part of typical genetic algorithms. It consists of the application of
another type of operators, usually called learning operators [6], to some individuals of
P2(t). This step is inspired by the fact that the performance of biological organisms can
be improved during their lifetime through learning processes. In artificial systems, some
common differences between genetic and learning operators are: genetic operators have
a predefined probability of being applied to any individual, while learning operators are
usually applied only to a small randomly chosen set of individuals; learning operators,
differently from genetic operators, are usually deterministic and are sequentially and
repeatedly applied to each chosen individual during a fixed number of iterations or until
their application stops improving the individual’s fitness. The learning operators used
in our algorithm will be described in section 2.5.

In the last step of the cycle, the modified P2(t) becomes P(z+1), whose individuals
are then evaluated using the already mentioned fitness function. Finally, after the search
process is terminated the learning operators are applied to the best individual found, so
that some last improvements can be made.

2.2 Individual’s Representation

In EMPE, each individual stands for a segmentation of the piece being analysed, i.e., it
consists on a sequence of segments in which the piece can be divided. 1 illustrates how
individuals are represented and how they must be interpreted.



116 Carlos Grilo and Amilcar Cardoso

noterep. C F G E D F A G C FG E
chromatic intervals rep. 5 2 -3 -2 3 4 - -F 85 2 -3

|o|n|o|1|o|o|o|1|o|o|0| + 02 M6l [810]

Fig. 1. A sequence of chromatic intervals and an individual representing a segmentation of it

As we can see in this figure, each individual consists of a binary string. All indi-
viduals of the population have the same length, equal to the number of intervals of the
piece to be analysed (although in 2 we only show information relative to pitch, we actu-
ally represent musical pieces as sequences of tuples chromatic_interval, duration_ratio).
The i-th digit of the binary string corresponds to the i-th interval of the piece. Segments
simply correspond to “0” sequences, being the “1” s to represent intervals that, being
between segments, do not belong to any. Following this interpretation, the individual
of Fig. 1 corresponds to the interval segments sequence “5, 2, -3, 3, 4, -2 5, 2, -3”,
equivalent to the note segments sequence “C, F, G, E,D,F, A, G,C,E G, E”.

Due to practical reasons, before the learning operators application step, we convert
individuals into a representation of the type “[l, r,] ... [l, r,]”, where [I; r;] stands
for the i-th segment of the piece, and 1; and r; represent, respectively, the left and right
limits of that segment. This type of representation, besides being a more understandable
one, has the advantage of allowing an easier access to segment limits, which among
other things, facilitates the evaluation process. Thus, in practice we have two types of
representation: one we refer to as the genotype, on which genetic operators are applied,
and another we refer to as the phenotype, into which individuals are converted before
the learning operators application step. In order to facilitate the reading, in the rest of
the paper we will use preferably the phenotype representation instead of the genotype
one.

In EMPE, as we allow the user to define upper and lower limits to segments’ length
through, respectively, parameters min_seg_len and max_seg_len, it may happen that the
application of genetic operators generates individuals with segments that violate these
limits. In order to correct these situations, all individuals resulting from the application
of genetic operators are submitted to the following correction procedure: if a too small
segment occurs, concatenate it with the next segment (this is done easily by changing
the “1” between the two segments by a “0”); if a too big segment occurs, divide it in
two equal length segments.

2.3 Fitness Evaluation

Individuals, as described in the previous section, do not say anything about which seg-
ments are patterns. This information is attached to each individual during the evaluation
process in the form of relations between segments, as we will now see. The fitness of an
individual is calculated by comparing all its segments among each other. If the distance
between two segments is less than a given value, they are considered similar and a re-
lation between them is created. If this is not the case, no relation is created and the two
segments are not considered as similar. Every time a relation is created, the difference
value between the two segments is attached to it. In Fig. 2 we show an individual and
the relations that are created as a result of this process (in this case, just one). Each rela-
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Fig. 2. An individual representing a segmentation of a musical excerpt and the relations created
as a result of the evaluation process
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tion is represented by a structure (seg-_pos, segz_pos, dif), where seg| _pos and seg»_pos
are the ordinal positions of the two segments (we consider that the first segment’s posi-
tion is 0) and dif is the difference between them. Although, from the genetic algorithm
point of view, relations aren’t part of individuals, it is obvious that this information is
essential for the appreciation of the merit each individual has. Thus, whenever possible,
in the rest of the paper individuals will be followed by the relations existing between
their segments.

The goal of the system is to find an individual for which the sum of the length of
the segments participating in relations is the maximum possible and for which de sum
of the differences attached to all the created relations is the minimum possible. Stated
another way, the goal is to find an individual that maximizes the following function

m m
flx)=ax Zd(reli) +bx Zarea(s,-)
i=1 i=i
where x is the individual to be evaluated, a is a negative constant, b is a positive
constant, m is the number of relations created as a consequence of the segment com-
parison process, d(rel;) is the difference attached to relation rel; calculated with the
Wagner-Ficher algorithm [7], n is the number of segments of x, and

ri =1I; + 1, if segment s; makes part of at least one relation,
area(s;) = .
0, if not

is the length of each segment participating in at least one relation (the length of each
segment is summed only once, even if it participates in more than one relation). The
Wagner-Ficher algorithm measures the distance between two strings by the number of
operations of insertion, deletion and substitution needed to transform one into the other.
The difference value between two segments, under which they are considered similar,
was defined empirically as 5, if the smaller segment has length greater than 20, and
as 1/4th of the smaller segment length, if not. We admit that more work is needed to
choose the appropriate values.

Besides the difference between two segments, another aspect that can prevent the
creation of a relation between them is their length. Actually, we allow the definition
of a minimum value to the segments length — which we call min_pat_len — under
which a segment cannot be considered similar to any other segment. This doesn’t mean,
however, that segments with a length less than min_pat_len cannot exist (the parameters
that actually bound segments length are min_seg_len and max_seg_len). The existence of
the min_pat_len parameter allows us to define that, for example, in the first segmentation
of the piece being analysed, only the bigger patterns can be identified, although small
rests, which are segments that don’t participate in any relation, can coexist with these
patterns in the segmentation.
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Fig. 3. First learning operator application example
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Fig. 4. Second learning operator application example

A last word about evaluation: in the present version of the system, segments are
only compared in their original form. This does not mean, however, that they cannot
be also compared, for example, in their retrograde or inverted form. In fact, this will be
one of the next steps we will take in improving the system.

2.4 Learning Operators

In the learning operators application step, four operators are applied to a small randomly
chosen set of individuals. These operators are applied iteratively to each chosen individ-
ual until it is not possible to improve its fitness. At the end of each cycle the correction
procedure described above is applied in order to correct possible invalid situations, but
now at the phenotype level. This operation can, however, deteriorate the individual’s
fitness to a level worst than it had before the learning process. Consequently, the mod-
ifications done by the operators and the correction procedure only acquire a definitive
character if at the end of the process an effective improvement is achieved. If this is
the case, the individual’s genotype is updated in order to reflect the modifications done
at the phenotype level. We will now describe the four operators used in the learning

process. _ o o
The first operator does the same thing to all limits between segments: first, it tries

to shift the limit to the left the more units it can, which means that it stops once this
implies a decrease in the individual’s fitness. When this happens, it tries the same thing,
but now to the right. Figure 3 illustrates the shifting in one unit to the left of the limit
between the first and the second segments of an individual.

The second operator consists just in concatenating all the individual’s consecutive
rests. This operator, as the one we will describe next, was initially conceived with the
single purpose of simplifying individuals’ structure. However, its application can also
cause an improvement in the individual’s fitness since it is possible that it leads to the
creation of new relations in which the new segments participate. Figure 4 illustrates
this situation.

The third operator is better described through an example. Consider the musical ex-
cerpt of figure 5, which has an AXA structure. The individual allows the identification
of all recurrent existing material, but it has a clearly more complicated structure than
needed (ABCXABC). The purpose of this operator consists on the detection of these sit-
uations and on the simplification of individuals if this does not imply a fitness decrease.
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Fig. 5. Third learning operator application exampl

It can also be viewed as a bias for segmentations with longer patterns. Thus, although
the fitness function does not state any preference for longer patterns this preference
exists and is expressed through this operator.

The fourth operator is similar to the first one, but it operates simultaneously on the
limits of segments that together participate in one relation. Consider, for example, that
there exists a relation between segments /I, r, [ and [, ry]. This operator starts by trying
do shift the left limit of both segments to the left, resulting in the new segments [/-1
1] and [Iy-1 ry ] (these modifications imply that the limits of adjacent segments are also
modified). This procedure is repeated while it does not decrease the individual’s fitness.
When this happens, the operator tries to shift left limits to the right the more positions
it can. After left limits are treated, the same procedure is applied to the segments’ right
limits, but now, first to the right and then to the left.

2.5 Further Segmentations

It is consensual that almost all musical pieces have a hierarchical structure. This means
that they are composed of bigger related segments that are also decomposable into
smaller ones. In EMPE, further segmentations are done by first choosing some of the
segments identified in the previous segmentation and then applying the same segmen-
tation process to a “new musical piece” composed by these segments.

Although segment classification is not a central goal of our work, the problem of
deciding which segments must be chosen to make part of the “new piece” to be analysed
can be seen as the one of choosing the most representative segment - the prototype -
of each segment class existing in the musical piece being analysed. The classification
algorithm we used, which we will not describe in this paper due to lack of space, is
rather rudimentary, being one of the main aspects we must improve in the future. One
of its characteristics is that similarity relations between segments are considered as
transitive, which is not true. This means that, if segment s is similar to s», and s> to
s3, then all the three will belong to the same class, even if s; and s3 are not similar.
However, this was not a problem in all the experiments we have done, since in none of
them a class was created to which two dissimilar segments belonged.

After the classification process, we must decide which of the segments of each class
is its prototype. This decision is taken in the following way: if the class has just one
segment, then that segment is its prototype; if it has two segments, choose the smaller of
the two segments; if the class has more than two segments, its prototype is the segment
to which the sum of the differences between it and the other segments of the class is
smaller.



120 Carlos Grilo and Amilcar Cardoso

I | \ ™ P , o] L L =
== —— t T = —t——T—f1 —+ —+ =
3 —F — f - f f f
b '
8. \ . , . P~ < . - o \ ]
N T —— } } T s e e — } T
-;iJ-J;; J;iiiii--'\-ii-iiiddgidiii--
36
dl dl b

Fig. 6. “Maria muoter reindi mait”

The “new piece” to be analysed is created juxtaposing the chosen segments by the
order they appear in the original piece. Between each two segments a special interval
is inserted with the purpose of preventing, in the next segmentation, the creation of
segments that are not sub-segments of the previously identified ones. This is achieved
by placing a 1 in all individuals’ genotype positions corresponding to special intervals
and by prohibiting genetic and learning operators from modifying them.

3 Experimentation

In this section, we show the results obtained after some experiments done with the
troubadour songs “Maria muoter reini mait” (Fig. 6) and “Kalenda Maya”(Fig. 9),
used by Ruwet in [8] to exemplify his analysis procedure. In these figures, we also
show what segments this author identified. We have done 30 runs for each piece and,
in each run, we used populations of 100 individuals evolving during 100 generations
(the termination criterion is the number of generations since it is impossible to know, in
advance, what is the fitness value corresponding to the best segmentation). The proba-
bility of applying crossover and mutation operators was defined, respectively, as 70%
and 1%. In each generation, only one individual was submitted to the learning process.
Values used for weights a and b of the fitness function were, respectively, -2 and 1.
Parameters max_seg_len and min_seg_len were defined, respectively, as half the length
of the piece and 2. Finally, parameter min_pat_len was defined as 10% of the length of
the piece in the first segmentation and 2 in the second.

3.1 “Maria Muoter Reinii Mait”

In the first segmentation of this piece, all the best individuals generated in each of the
30 runs have a structure identical to the one depicted in figure 7, which corresponds to
the first segmentation done by Ruwet. We can, thus, say that EMPE has no difficulty in
discovering the higher-level structure of this piece.

The second segmentation was done using an interval sequence constructed from
segments identified in the first segmentation. This sequence is composed by segments
[36 39] and [71 88] (respectively, segments A’ and B) by this order. Individuals equal
to the one depicted in figure 8, which nearly correspond to the second segmentation
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Fig. 7. Best individuals generated in the first segmentation of “Maria muoter reinfl mait”
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Fig. 8. Best individuals generated in the second segmentation of “Maria muoter reinfi mait”

done by Ruwet, were generated in 21 of the 30 runs. The only differences are that
segments ¢ and d are both divided in two. However, it is only possible to identify the
three occurrences of segment d1 by dividing them.

3.2 Kalenda Maya

In the first segmentation of this piece, 20 runs resulted in individuals with the same
structure of the one in figure 10.

As is possible to confirm in this figure, these individuals’ first four segments cor-
respond to the first four segments identified by Ruwet. In order to explain the configu-
ration of these individuals’ last four segments we must first turn our attention into the
two segments Ruwet identifies as D and D’. The difference between them, calculated
with the Wagner-Ficher algorithm, is equal to 6, which is greater than %th of the length
of segment D, the smaller of the two segments. This means that, even if an individual
had two segments corresponding to segments D and D’, no relation would be created
between them during the evaluation process.

Given the impossibility of associating segment D and D’ through a similarity re-
lation, what does the genetic algorithm? Following the fitness function, it tries to find
segments that lead to a bigger portion of covered area with the minimum possible dif-
ferences between related segments. In order to achieve this, after the first four segments,
it divides the rest of the piece in another four segments, two of which are equal (seg-
ments 4 and 6 in 10 These two segments, constituted by two occurrences of segment
¢ plus the common beginning of segments D and D’, are, after the two occurrences of
segment A, the two bigger identical segments of the piece. This way of doing things
is, in fact, consistent with Ruwet’s analysis procedure: “first try to identify the bigger
identical segments existing in the piece”.

In the second segmentation of this piece, the interval sequence that was analysed
was composed by segments [0 20], [44 52], [64 73], [75 77] and [71 88] by this order.
Figure 11 depicts the structure of the 18 best individuals generated in the 30 runs done.
These individuals, besides the two occurrences of segment c, allow the identification of
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Fig. 9. “Kalenda Maya”
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Fig. 11. Best individuals generated in the second segmentation of “Kalenda Maya”

the similarity between the beginning of segments A and B/B’ (segments 0 and 5 in the
figure), and the similarity between two sub-segments of A (segments 2 and 3).

4 Conclusions and Future Work

In this paper we have presented a genetic algorithms based approach to musical pattern
extraction. In the first phase of this research work we have been more engaged with the
question of how this type of algorithms can be used to effectively solve the problem
without worrying about complexity issues. The experiments we have done allow us to
think that, in fact, this approach is a viable one (besides ““ Maria muoter rein{i mait” and
“Kalenda Maya”, we have done experiments with some others pieces as, for example,
Debussy’s “Syrinx”, with also good results).

Our future work will comprise two types of tasks: some in which the goal will be
to increase the quality of the generated segmentations, as well as the probability of
generating them, and some in which the goal will be to study and, if possible, reduce
the algorithm’s complexity (each run for the first segmentation of the two pieces used in
this paper took approximately 0.4 seconds in a AMD Athlon XP 1.54 GHz). Some ideas
for the first set of tasks are: the utilization of more music oriented distance measures
such as the ones described in [2] or [9]; the comparison of segments in their retrograde
and inverse form; the utilization of a better classification algorithm. In what concerns
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to complexity, it can be reduced if we avoid the comparison of two segments more than
once. This may happen because it is almost certain that, during the search process, two
or more individuals will have some common segments. We think that a data structure
similar to the one used in [2] may help avoiding this repetition. The challenge with this
method will be to maintain space complexity to reasonable levels.

References

e

Rolland, P.Y, Ganascia J.G.: Musical Pattern Extraction and Similarity Assessment. In E. M.
Miranda (Ed.), Readings in Music and Artificial Intelligence, Harwood Academic (2000) 115
-144

Rolland, P.Y.: Discovering Patterns in Musical Sequences. In Journal of New Music Research,
28, n° 4 (1999) 334-350

Cambouropoulos, E.:Towards a General Computational Theory of Musical Structure. PhD
Thesis, University of Edinburgh (1998)

Meredith, D., Wiggins, G. A., Lemstrom, K.: Pattern Induction and Matching in Polyphonic
Music and Other Multi-dimensional Datasets. Proceedings of the Sth World Multi-Conference
on Systemics, Cybernetics and Informatics (SCI2001), Volume X (2001) 61-66

Mitchell, M.: An Introduction to Genetic Algorithms, MIT Press (1996)

Pereira, F.:Estudo das Interagdes entre Evolucdo e Aprendizagem em Ambientes de
Computagdo Evoluciondria. PhD Thesis, Universidade de Coimbra (2002)

Stephen, G.:String Search. Technical Report, School of Electronic Engineering Science, Uni-
versity College of North Wales (1992)

Ruwet, N.: Langage, Musique, Poésie.Editions du Seuil, Paris (1972)

Perttu, S.:Combinatorial Pattern Matching in Musical Sequences. Master’s Thesis, University
of Helsinki, Series of Publications, C-2000-38(2000)



	1 Introduction
	2 EMPE Description
	2.1 The Genetic Algorithm
	2.2 Individual’s Representation
	2.3 Fitness Evaluation
	2.4 Learning Operators
	2.5 Further Segmentations

	3 Experimentation
	3.1 “Maria Muoter Reinû Maît”
	3.2 KalendaMaya

	4 Conclusions and Future Work
	References

