
Lecture Notes in Computer Science 5482
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Carlos Cotta Peter Cowling (Eds.)

Evolutionary
Computation
in Combinatorial
Optimization

9th European Conference, EvoCOP 2009
Tübingen, Germany, April 15-17, 2009
Proceedings

13

Volume Editors

Carlos Cotta
Universidad de Málaga, Dept. de Lenguajes y Ciencias de la Computación
ETSI Informática, Campus Teatinos, 29071 Málaga, Spain
E-mail: ccottap@lcc.uma.es

Peter Cowling
University of Bradford, Department of Computing
Bradford BD7 1DP, UK
E-mail: p.i.cowling@bradford.ac.uk

Cover illustration: "You Pretty Little Flocker" by Alice Eldridge (www.ecila.org
and www.infotech.monash.edu.au/research/groups/cema/flocker/flocker.html)

Library of Congress Control Number: Applied for

CR Subject Classification (1998): F.1, F.2, G.1.6, G.2.1, J.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-01008-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-01008-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12651580 06/3180 5 4 3 2 1 0

Preface

Metaheuristics have been shown to be effective for difficult combinatorial opti-
mization problems appearing in a wide variety of industrial, economic, and scien-
tific domains. Prominent examples of metaheuristics are evolutionary algorithms,
tabu search, simulated annealing, scatter search, memetic algorithms, variable
neighborhood search, iterated local search, greedy randomized adaptive search
procedures, ant colony optimization, and estimation of distribution algorithms.
Problems solved successfully include scheduling, timetabling, network design,
transportation and distribution, vehicle routing, the travelling salesman problem,
packing and cutting, satisfiability, and general mixed integer programming.

EvoCOP began in 2001 and has been held annually since then. It is the first
event specifically dedicated to the application of evolutionary computation and
related methods to combinatorial optimization problems. Originally held as a
workshop, EvoCOP became a conference in 2004. The events gave researchers an
excellent opportunity to present their latest research and to discuss current de-
velopments and applications. Following the general trend of hybrid metaheuris-
tics and diminishing boundaries between the different classes of metaheuristics,
EvoCOP has broadened its scope in recent years and invited submissions on any
kind of metaheuristic for combinatorial optimization.

This volume contains the proceedings of EvoCOP 2009, the 9th European
Conference on Evolutionary Computation in Combinatorial Optimization. It
was held in Eberhard Karls Universität Tübingen, Germany, April 15-17, 2009,
jointly with EuroGP 2009, the 12th European Conference on Genetic Program-
ming, EvoBIO 2009, the 7th European Conference on Evolutionary Computa-
tion, Machine Learning and Data Mining in Bioinformatics, and EvoWorkshops
2009, which consisted of the following 12 individual workshops: 6th European
Workshop on the Application of Nature-Inspired Techniques for Telecommu-
nication Networks and Other Parallel and Distributed Systems; First Euro-
pean Workshop on Nature-Inspired Methods for Environmental Issues; Third
European Workshop on Evolutionary Computation in Finance and Economics;
First European Workshop on Bio-inspired Algorithms in Games; 5th European
Workshop on Bio-Inspired Heuristics for Design Automation, 11th European
Workshop on Evolutionary Computation in Image Analysis and Signal Pro-
cessing; Third European Workshop on Interactive Evolution and Humanized
Computational Intelligence; 7th European Workshop on Evolutionary and Bi-
ologically Inspired Music, Sound, Art and Design; Second European Workshop
on Bio-inspired Algorithms for Continuous Parameter Optimization; 4th Eu-
ropean Graduate Student Workshop on Evolutionary Computation; 6th Euro-
pean Workshop on Evolutionary Algorithms in Stochastic and Dynamic En-
vironments; and Third European Workshop on Evolutionary Computation in
Transportation and Logistics. Since 2007, all these events have been grouped

VI Preface

under the collective name EvoStar, and constitute Europe’s premier co-located
meetings on evolutionary computation.

Accepted papers of previous EvoCOP editions were published by Springer
in the series Lecture Notes in Computer Science (LNCS – Volumes 2037, 2279,
2611, 3004, 3448, 3906, 4446, 4972).

EvoCOP Submitted Accepted Acceptance Rate
2001 31 23 74.2%
2002 32 18 56.3%
2003 39 19 48.7%
2004 86 23 26.7%
2005 66 24 36.4%
2006 77 24 31.2%
2007 81 21 25.9%
2008 69 24 34.8%
2009 53 21 39.6%

The rigorous, double-blind reviewing process of EvoCOP 2009 resulted in a
strong selection among the submitted papers; the acceptance rate was 39.6%.
Each paper was reviewed by at least three members of the international Pro-
gram Committee. All accepted papers were presented orally at the conference
and are included in this proceedings volume. We would like to acknowledge the
members of our Program Committee, to whom we are very grateful for their
thorough work. EvoCOP 2009 contributions consist of new algorithms together
with important new insights into how well these algorithms can solve prominent
test problems from the literature or real-world problems.

We would like to express our sincere gratitude to the two internationally
renowned invited speakers, who gave the keynote talks at the conference: Stuart
Hameroff, Professor Emeritus Departments of Anesthesiology and Psychology
and Director, Center for Consciousness Studies, The University of Arizona, USA,
and Peter Schuster, Institute of Theoretical Chemistry at Universität Wien and
President of the Austrian Academy of Sciences.

The success of the conference resulted from the input of many people to
whom we would like to express our appreciation. The local organizers, led by
Marc Ebner, from Wilhelm Schickard Institute for Computer Science at Univer-
sität Tübingen, have done an extraordinary job for which we are very grateful.
Also grateful thanks for local support from Andreas Zell, Chair of Computer
Architecture at the Wilhelm Schickard Institute for Computer Science, Univer-
sität Tübingen, and Peter Weit, Vice Director of the Seminar for Rhetorics at
the New Philology Department, Universität Tübingen. Thanks also to Tübingen
Info Office (especially Marco Schubert) for local tourism and information, and to
the German Research Foundation (DFG) for financial support for the EvoStar
conference.

We thank Marc Schoenauer from INRIA in France for continued assistance in
providing the MyReview conference management system. Thanks are also due to

Preface VII

Jennifer Willies and the Centre for Emergent Computing at Edinburgh Napier
University, UK for administrative support and event coordination. Last, but not
least, we would like to thank Jens Gottlieb, Jano van Hemert, and Günther
Raidl for their hard work and dedication in past editions of EvoCOP, which
contributed to making this conference one of the reference events in evolutionary
computation and metaheuristics.

April 2009 Carlos Cotta
Peter Cowling

Organization

EvoCOP 2009 was organized jointly with EuroGP 2009, EvoBIO 2009, and
EvoWorkshops 2009.

Organizing Committee

Chairs Carlos Cotta, Universidad de Málaga, Spain

Peter Cowling, University of Bradford, UK

Local Chair Marc Ebner, Universität Tübingen, Germany

Publicity Chair Ivanoe de Falco, ICAR, National Research Council of Italy,
Italy

EvoCOP Steering Committee

Carlos Cotta Universidad de Málaga, Spain
Peter Cowling University of Bradford, UK
Jens Gottlieb SAP AG, Germany
Jano van Hemert University of Edinburgh, UK
Günther Raidl Vienna University of Technology, Austria

Program Committee

Adnan Acan Middle East Technical University, Ankara,
Turkey

Hernán Aguirre Shinshu University, Nagano, Japan
Enrique Alba Universidad de Málaga, Spain
Mehmet Emin Aydin University of Bedfordshire, UK
Ruibin Bai University of Nottingham, UK
Thomas Bartz-Beielstein Cologne University of Applied Sciences,

Germany
Christian Bierwirth University of Bremen, Germany
Maria Blesa Universitat Politècnica de Catalunya, Spain
Christian Blum Universitat Politècnica de Catalunya, Spain
Peter Brucker University of Osnabrück, Germany
Rafael Caballero University of Málaga, Spain
Pedro Castillo Universidad de Granada, Spain
Konstantin Chakhlevitch City University, UK
Carlos Coello Coello National Polytechnic Institute, Mexico
Carlos Cotta Universidad de Málaga, Spain
Peter Cowling University of Bradford, UK

X Organization

Bart Craenen Napier University, UK
Keshav Dahal University of Bradford, UK
Karl Doerner Universität Wien, Austria
Marco Dorigo Free University of Brussels, Belgium
Jeroen Eggermont Leiden University Medical Center,

The Netherlands
Anton V. Eremeev Omsk Branch of Sobolev Institute of

Mathematics, Russia
Richard F. Hartl University of Vienna, Austria
Antonio J. Fernández Universidad de Málaga, Spain
Francisco Fernández

de Vega University of Extremadura, Spain
Bernd Freisleben University of Marburg, Germany
José Enrique Gallardo University of Málaga, Spain
Jens Gottlieb SAP, Germany
Walter Gutjahr University of Vienna, Austria
Jin-Kao Hao University of Angers, France
Geir Hasle SINTEF Applied Mathematics, Norway
Juhos István University of Szeged, Hungary
Mario Köppen Kyushu Institute of Technology, Japan
Graham Kendall University of Nottingham, UK
Joshua Knowles University of Manchester, UK
Jozef Kratica University of Belgrade, Serbia
Arne Løkketangen Molde College, Norway
Rhyd Lewis Cardiff University, UK
Andrea Lodi University of Bologna, Italy
José Antonio Lozano University of the Basque Country, Spain
Vittorio Maniezzo University of Bologna, Italy
Dirk C. Mattfeld Technische Universität Braunschweig,

Germany
Barry McCollum Queen’s University Belfast, UK
Juan Julián Merelo University of Granada, Spain
Daniel Merkle University of Southern Denmark, Denmark
Peter Merz Technische Universität Kaiserslautern,

Germany
Martin Middendorf Universität Leipzig, Germany
Julian Molina University of Málaga, Spain
Jose Marcos Moreno University of La Laguna, Spain
Pablo Moscato The University of Newcastle, Australia
Christine L. Mumford Cardiff University, UK
Nysret Musliu Vienna University of Technology, Austria
Gabriela Ochoa University of Nottingham, UK
Francisco J. B. Pereira Universidade de Coimbra, Portugal
Jakob Puchinger Arsenal Research, Vienna, Austria
Günther Raidl Vienna University of Technology, Austria

Organization XI

Marcus Randall Bond University, Queensland, Australia
Marc Reimann Warwick Business School, UK
Andrea Roli Università degli Studi di Bologna, Italy
Michael Sampels Université Libre de Bruxelles, Belgium
Marc Schoenauer INRIA, France
Marc Sevaux Université de Bretagne-Sud, France
Christine Solnon University Lyon 1, France
Giovanni Squillero Politecnico di Torino, Italy
Thomas Stützle Université Libre de Bruxelles, Belgium
El-ghazali Talbi Université des Sciences et Technologies de

Lille, France
Kay Chen Tan National University of Singapore, Singapore
Jorge Tavares MIT, USA
Jano van Hemert University of Edinburgh, UK

Table of Contents

A Critical Element-Guided Perturbation Strategy for Iterated Local
Search . 1

Zhipeng Lü and Jin-Kao Hao

A Genetic Algorithm for Net Present Value Maximization for Resource
Constrained Projects . 13

Mario Vanhoucke

A Hybrid Algorithm for Computing Tours in a Spare Parts
Warehouse . 25

Matthias Prandtstetter, Günther R. Raidl, and Thomas Misar

A New Binary Description of the Blocks Relocation Problem and
Benefits in a Look Ahead Heuristic . 37

Marco Caserta, Silvia Schwarze, and Stefan Voß

A Plasmid Based Transgenetic Algorithm for the Biobjective Minimum
Spanning Tree Problem . 49

Śılvia M.D. Monteiro, Elizabeth F.G. Goldbarg, and
Marco C. Goldbarg

A Tabu Search Algorithm with Direct Representation for Strip
Packing . 61

Jean-Philippe Hamiez, Julien Robet, and Jin-Kao Hao

An ACO Approach to Planning . 73
Marco Baioletti, Alfredo Milani, Valentina Poggioni, and Fabio Rossi

An Artificial Immune System for the Multi-Mode Resource-Constrained
Project Scheduling Problem . 85

Vincent Van Peteghem and Mario Vanhoucke

Beam-ACO Based on Stochastic Sampling for Makespan Optimization
Concerning the TSP with Time Windows . 97

Manuel López-Ibáñez, Christian Blum, Dhananjay Thiruvady,
Andreas T. Ernst, and Bernd Meyer

Binary Exponential Back Off for Tabu Tenure in Hyperheuristics 109
Stephen Remde, Keshav Dahal, Peter Cowling, and Nic Colledge

Diversity Control and Multi-Parent Recombination for Evolutionary
Graph Coloring Algorithms . 121

Daniel Cosmin Porumbel, Jin-Kao Hao, and Pascale Kuntz

XIV Table of Contents

Divide-And-Evolve Facing State-of-the-Art Temporal Planners during
the 6th International Planning Competition . 133

Jacques Bibai, Marc Schoenauer, and Pierre Savéant

Exact Solutions to the Traveling Salesperson Problem by a
Population-Based Evolutionary Algorithm . 145

Madeleine Theile

Finding Balanced Incomplete Block Designs with Metaheuristics 156
David Rodŕıguez Rueda, Carlos Cotta, and Antonio J. Fernández

Guided Ejection Search for the Job Shop Scheduling Problem 168
Yuichi Nagata and Satoshi Tojo

Improving Performance in Combinatorial Optimisation Using Averaging
and Clustering . 180

Mohamed Qasem and Adam Prügel-Bennett

Iterated Local Search for Minimum Power Symmetric Connectivity in
Wireless Networks . 192

Steffen Wolf and Peter Merz

Metropolis and Symmetric Functions: A Swan Song 204
Lars Kaden, Nicole Weicker, and Karsten Weicker

Robustness Analysis in Evolutionary Multi-Objective Optimization
Applied to VAR Planning in Electrical Distribution Networks 216

Carlos Barrico, Carlos Henggeler Antunes, and Dulce Fernão Pires

Staff Scheduling with Particle Swarm Optimisation and Evolution
Strategies . 228

Volker Nissen and Maik Günther

University Course Timetabling with Genetic Algorithm: A Laboratory
Excercises Case Study . 240

Zlatko Bratković, Tomislav Herman, Vjera Omrčen,
Marko Čupić, and Domagoj Jakobović

Author Index . 253

A Critical Element-Guided Perturbation
Strategy for Iterated Local Search

Zhipeng Lü and Jin-Kao Hao

LERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers, France
zhipeng.lui@gmail.com, hao@info.univ-angers.fr

Abstract. In this paper, we study the perturbation operator of Iterated
Local Search. To guide more efficiently the search to move towards new
promising regions of the search space, we introduce a Critical Element-
Guided Perturbation strategy (CEGP). This perturbation approach con-
sists of the identification of critical elements and then focusing on these
critical elements within the perturbation operator. Computational exper-
iments on two case studies—graph coloring and course timetabling—give
evidence that this critical element-guided perturbation strategy helps re-
inforce the performance of Iterated Local Search.

Keywords: iterated local search, perturbation operator, critical
element-guided perturbation, graph coloring, course timetabling.

1 Introduction

Local search based metaheuristics are known to be an effective technique for
solving a large number of constraint satisfaction and combinatorial optimiza-
tion problems [14]. However, they may sometimes be trapped into a poor local
optimum and it becomes extremely difficult to jump out of it even with more
computing efforts. Therefore, diversification mechanisms play an important role
in designing such kinds of algorithms.

In order to obtain a tradeoff between intensification and diversification in lo-
cal search metaheuristics, many kinds of high-level diversification mechanisms
have been proposed in the literature to avoid the search to fall into local optima.
Typical examples include tabu list in Tabu Search [11], random acceptance cri-
teria in Simulated Annealing, perturbation operator in Iterated Local Search
[16], multiple neighborhoods in Variable Neighborhood Search [12] and so on. In
particular, it is of significance to utilize low-level problem specific knowledge for
constructing strong diversification mechanisms.

In this paper, we study the main diversification mechanism of Iterated Local
Search (ILS) [16], i.e., the perturbation operator. ILS is a popular metaheuristic
which is mainly composed of two basic components: one is a local search proce-
dure and the other is a perturbation operator. When a local optimum solution
cannot be improved any more using the local search, a perturbation operator
is employed to produce a new solution, from which a new round of local search

C. Cotta and P. Cowling (Eds.): EvoCOP 2009, LNCS 5482, pp. 1–12, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 Z. Lü and J.-K. Hao

starts. It is desirable that the perturbation should be able to guide the search
to a promising region of the search space.

As for other components of an ILS procedure, it is useful to integrate problem
specific knowledge to make a perturbation operator informative and effective.
One fundamental question is then what kind of problem knowledge should be
used in the design of an effective perturbation operator.

In this paper, we put forward that the structure of the local optimum solution
found so far itself can be used for constructing the perturbation operator. For
this purpose, we introduce a new perturbation strategy, called Critical Element-
Guided Perturbation (CEGP) for Iterated Local Search (Section 2). We illustrate
this on two typical hard combinatorial optimization problems—graph coloring
(Section 3) and course timetabling (Section 4), showing its importance in the
design of a powerful ILS algorithm.

2 Critical Element-Guided Perturbation (CEGP)

Iterated Local Search can be described by a simple computing schema (see Sec-
tion 2.3 for a general template). A fundamental principle of ILS is to exploit
the tradeoff between diversification and intensification. Intensification focuses
on optimizing the objective function as far as possible within a limited search
region while diversification should be able to drive the search to explore new
promising regions of the search space.

The diversification mechanism of ILS—perturbation operator—has two aims:
one is to jump out of the local optimum trap just visited; the other is to lead
the search procedure to a new promising region. A commonly-used perturbation
operator is to destruct partially the previous local optimum solution in a random
way, not necessarily guided by an evaluation function [16]. Zhang and Sun used
the idea of estimation of distribution algorithms to construct perturbation, which
combines global statistical information and the location information of good
individual solutions for generating new trial solutions [20]. However, we think
that the solution structure of the previously obtained local optimum itself can
be used in the design of more intelligent and informative perturbation operators.

2.1 CEGP Procedure

For the two purposes just mentioned previously, one more elaborated perturbation
should take into account the specific problem structure. Given a local optimum so-
lution obtained by the local search procedure, if one can identify the contribution
of each element to the cost function or constraint violations, then it is reasonable
that a perturbation by changing the values of these critical elements would be
helpful to jump out of local optimum trap. In its simplest form, an element can
be a decision variable. For example, in the knapsack problem, an element might
be an object while in university course timetabling problem, an element can be a
lecture of a course.

Generally speaking, our critical element-guided perturbation strategy is com-
posed of three phases: 1. Scoring : give each element a score; 2. Selection : choose

A Critical Element-Guided Perturbation Strategy 3

a certain number of highly-scored elements; 3.Perturbing : randomly perturb the
solution using the chosen critical elements.

In order to score an element ei in the Scoring phase, it is indispensable to
define a scoring function and its parameters. Generally, the parameters include
the current element ei and those elements which are strongly related to ei. More
formally, an element ei can be scored as Score(ei) = h(ei, êi), where êi are the
elements set related to ei and h(·) is a scoring function. For a specific problem,
in order to score an element ei, it is necessary to define its related elements set
êi and the appropriate scoring function h(·) according to the problem specific
knowledge. We will show two examples in Sections 3.5 and 4.4.

The Selection phase consists of choosing a certain number of elements ac-
cording to their scores. For the Selection phase, it is implemented in an adaptive
and random way, i.e., the higher score an element has, the more possibly this
element is chosen. Note that this selection procedure is problem independent as
shown in Algorithm 1 line 6.

After a certain number of critical elements are chosen, the Perturbing phase
randomly perturbs the chosen elements. The perturbation operator can employ
the moves in the local search procedure or quite different moves. In Sections 3.5
and 4.4, we respectively use these two kinds of perturbation operators.

2.2 CEGP Framework

Given a general constraint satisfaction and optimization problem (CSOP) [19]
and a local optimum solution, the proposed critical element-guided perturbation
operator is described in Algorithm 1, where φ is a positive real number and in
this paper we empirically set φ ∈ [1.5, 3.0]. One observes that the value of φ
determines the intensity of the selection procedure: the larger the value of φ is,
the higher is the possibility that the high-score elements are selected. Note that
the commonly-used random perturbation is a special case of our CEGP strategy
with φ = 0. In this case, the selection probability becomes P (k) = 1/n. On the
other hand, setting φ =∞ will select always the first η elements.

Algorithm 1. Critical Element-Guided Perturbation Strategy
1: Input: a local optimum solution s
2: Output: a perturbed solution s′

3: Scoring: score each element ei, i = 1, . . . , n: Score(ei) = h(ei, êi)
4: sort all the elements in a non-increasing order according to their scores
5: determine a perturbation strength η
6: Selection: randomly select η elements to be perturbed. The rth critical element

is selected according to the following probability:

P (r) = r−φ/
n

∑

i=1

i−φ (1)

7: Perturbing: randomly perturb the selected η elements
8: get a perturbed solution s′

4 Z. Lü and J.-K. Hao

It should be noted that the scoring method (Algorithm 1, line 3) is essential in
the CEGP strategy. It must be combined with low level problem specific knowl-
edge, as shown in Sections 3.5 and 4.4. In addition, the perturbation strength η
should also be determined according to the given problem.

2.3 ILS with CEGP

Iterated local search starts with an initial solution and performs local search until
a local optimum is found. Then, the current local optimum solution is perturbed
and another round of local search is performed to the perturbed solution. The
perturbation procedure is implemented by the CEGP strategy just described
above. Finally, an acceptance criterion is used to decide whether the new local
optimum solution is accepted as the initial solution for the next run of local
search. Algorithm 2 shows the pseudocode of CEGP-based ILS. The detailed
description of the general ILS procedure can be found in [16].

Algorithm 2. Iterated Local Search with CEGP Strategy
1: s0 ← Initial Solution
2: s′ ← Local Search(s0)
3: repeat
4: s∗ ← Critical Element-Guided Perturbation(s′)
5: s∗

′ ← Local Search(s∗)
6: s′ ← Acceptance Criterion(s∗

′
,s

′
)

7: until stop condition met

In order to implement the CEGP strategy for a given problem, we just need to
define what an element ei is, how the related elements of each ei are identified,
how the scoring function is designed and what is the perturbation moves for
the chosen elements. In the following two sections, we show two case studies of
applying the ILS algorithm with the proposed CEGP strategy to two difficult
problems—graph coloring and course timetabling.

3 Case Study 1: Graph Coloring

3.1 Problem Description

Given an undirected graph G = (V, E) with a set V of n vertices and an edge
set E as well as the number of colors to be used k, a legal k-coloring of graph
G is a partition of V into k independent sets where an independent set is a
subset of nonadjacent vertices of G. In a formal way, let ci be the color of
vertex vi (ci ∈ [1, k], i = 1, . . . , n), a legal k-coloring of graph G is a coloring
C = {c1, . . . , cn} such that ∀{vi, vj} ∈ E, ci �= cj .

Graph coloring aims at finding the smallest k for a given graph G (the chro-
matic number χG of G) such that G has a legal k-coloring.

A Critical Element-Guided Perturbation Strategy 5

3.2 General Solution Procedure

The graph coloring problem can be solved from the point of view of constraint
satisfaction by solving a series of k-coloring problems. We starts from an initial
number of k colors (k = |V | is certainly sufficient) and solve the k-coloring
problem. As soon as the k-coloring problem is solved, we decrease k by setting
k to k-1 and solve again the k-coloring problem. This process is repeated until
no legal k-coloring can be found.

3.3 Initial Solution and Evaluation Function

For a k-coloring problem with a given k, we generate an initial solution by means
of a greedy algorithm presented in [10]. It can be considered as an improved
version of the famous DSATUR algorithm [2]. Note that this greedy heuristic
generally generates an illegal k-coloring.

Once an initial solution is obtained where each vertex has been assigned a
color, our CEGP-based ILS algorithm is used to minimize the number of edges
having both endpoints with a same color (or the conflict number). Therefore,
our evaluation function is just the number of conflicts f(C) such that

f(C) =
∑

{vi,vj}∈E

δij (2)

where

δij =
{

1, if ci = cj ;
0, otherwise. (3)

Accordingly, any coloring C with f(C) = 0 corresponds to a legal k-coloring
which presents a solution to the k-coloring problem.

3.4 Local Search Procedure

In this paper, we employ the Tabu Search algorithm presented in [8] as our
local search procedure. This TS algorithm is an improved version of the TABU-
COL algorithm in [13]. Here a neighborhood of a given configuration is ob-
tained by changing the color ci of a conflicting vertex vi to another color cj

(cj �= ci), denoted by (vi, cj). The cost deviation of the move (vi, cj) is denoted
by Δf(vi,cj)(C). More details can be found in [8].

For the tabu list, once a move (vi, cj) is performed, vertex vi is not allowed
to receive again the color ci for the next tt iterations. The tabu tenure tt is
empirically determined by tt = f + random(10) where f is the conflict number
of the current solution and random(10) takes a random number in {1, . . . , 10}.
The stop condition of our tabu search is just the maximal number of iterations
during which the best solution has not been improved. In this work, we set this
number to be 1,000,000 for all the tested instances.

6 Z. Lü and J.-K. Hao

3.5 Perturbation

Once the local search procedure stops with a local optimum solution, a Critical
Element-Guided Perturbation operator is performed to reconstruct the obtained
local optimum solution. Given the general CEGP strategy described in Section
2, one just needs to know how to score each vertex (element) and what is the
perturbation operator for the chosen vertices.

Let us first consider the Scoring phase. For a vertex (an element) vi, its
related element set v̂i is defined as the set of vi’s adjacent vertices, i.e., v̂i =
{vj |{vi, vj} ∈ E}. Based on v̂i, the following three sets can be derived:

V 1
i = {vj |vj ∈ v̂i, ci = cj} (4)

V 2
i = {vj|vj ∈ v̂i, |V 1

j | > 0} (5)

Ki = {cj|cj �= ci, Δf(vi,cj)(C) = 0} (6)

Given these notations, the score of a vertex vi is calculated as:

Score(vi) = h(vi, v̂i) = ω1 · |V 1
i |+ ω2 · |V 2

i |+ ω3 · |Ki| (7)

where ω1, ω2 and ω3 are the associated weights for these three kinds of scores
and we set empirically ω1 = 5 and ω2 = ω3 = 1 respectively.

In the above formulations, |V 1
i | denotes the total number of vertices conflicting

with vertex vi: |V 1
i | = 0 means that vertex vi is conflict-free while |V 1

i | > 0
implies that vertex vi is conflicting. |V 2

i | denotes the number of vi’s adjacent
vertices which themselves are conflicting. It is easy to observe that V 1

i is a subset
of V 2

i . The larger |V 1
i | and |V 2

i | are, the higher score vertex vi has. The rationale
behind this is that a conflicting vertex should naturally change its color while
the vertex adjacent to a number of conflicting vertices should also be recolored
since it would be impossible for the conflicting vertex to become conflict-free in
the next round of the local search if its adjacent vertices are not reassigned.

Furthermore, it is reasonable to give a higher priority to a vertex with a large
number of side walks, where a side walk of vertex vi denotes a move (vi, cj)
(cj �= ci) that will not change the total cost function, i.e., Δf(vi,cj)(C) = 0. |Ki|
represents the number of side walks for vertex vi. Note that changing the color
of a vertex having a large number of side walks will not worsen the solution
quality to a large extent, thus the reassignment of these vertices might help the
search to jump out of local optimum solution while keeping the solution quality
at a good level.

Once all the vertices are scored in accordance with Eq. (7), they are sorted
in a decreasing order according to their scores. The perturbation strength is
empirically determined by η = 0.33 · n + random(100). We observed that a
weaker perturbation strength did not allow the search to escape from the local
optima. According to Eq. (1) in Algorithm 1, η vertices are randomly chosen.
After that, we remove all these η vertices and reassign them using the greedy
heuristic as shown in Section 3.3. This is the Perturbing phase in our CEGP
strategy. Thus, a perturbed solution is obtained, from which a new round of
local search starts.

A Critical Element-Guided Perturbation Strategy 7

3.6 Experimental Results and Comparisons

To evaluate the efficiency of this CEGP-based ILS algorithm, we carry out ex-
periments on a set of 23 non-trivial DIMACS coloring benchmarks. We contrast
the results of our CEGP-based ILS algorithm with the uniformly random per-
turbation strategy (URP) in order to highlight the impact of the CEGP strat-
egy. To make the comparison as fair as possible, the only difference between
URP-based and CEGP-based ILS algorithms is that the perturbed vertices are
selected in a blindly uniform way with the URP strategy, as described in Section
2.2. Moreover, we compare our coloring results with those of some best perform-
ing reference algorithms. Our algorithm is run on a PC with 3.4GHz CPU and
2.0Gb RAM. To obtain our computational results, the total CPU time limit for
each instance is limited to 8 hours. Note that the time limit for the reference
algorithms is from several hours to several tens of hours.

Table 1 gives our computational results. Column 2 presents the best known k∗

ever reported in the literature. Columns 3 and 4 give the results of the CEGP-
based and URP-based ILS algorithms respectively, together with the CPU time
in minutes (in brackets). Columns 5 to 11 give the results of seven reference al-
gorithms, including four local search algorithms [1,3,6,13] as well as three hybrid
algorithms [7,8,9].

One finds that the CEGP-based ILS algorithm obtains smaller k than the
URP-based ILS algorithm for 4 out of 23 instances while larger k for only 1
instance, which would suggest the effectiveness of the proposed CEGP strategy.
Furthermore, the CEGP-based ILS algorithm obtains comparable results with
these famous reference algorithms.

Table 1. Computational results of CEGP-based ILS algorithm on graph coloring
problem

ILS Local Search Algorithms Hybrid Algorithms
Instances k∗ CEGP(t) URP(t) [1] [3] [6] [13] [7] [8] [9]
dsjc250.5 28 28 (1) 28 (2) — 28 28 — 29 28 28
dsjc500.1 12 12 (1) 12 (1) 12 12 13 — — — 12
dsjc500.5 48 48 (76) 48 (98) 49 49 50 51 49 48 48
dsjc500.9 126 126 (10) 126 (16) 127 126 127 — — — 126
dsjc1000.1 20 21 (3) 21 (4) 20 — 21 — — 20 20
dsjc1000.5 83 87 (35) 88 (29) 89 89 90 94 84 83 84
dsjc1000.9 224 224 (46) 225 (32) 228 — 226 — — 224 224

r125.5 36 36 (6) 36 (8) — — 36 — — — —
r250.5 65 65 (4) 65 (4) 66 — 66 — 69 — —

r1000.1c 98 98 (7) 98 (6) 98 — 98 — — — —
r1000.5 234 253 (38) 252 (51) 249 — 242 — — — —

dsjr500.1c 85 85 (14) 85 (19) 85 — — — — — 86
dsjr500.5 122 125 (29) 125 (38) 126 124 — — 130 — 127
le450 15c 15 16 (1) 16 (1) 15 15 — 18 15 15 15
le450 15d 15 15 (24) 15 (34) 15 15 — 18 15 — 15
le450 25c 25 25 (28) 26 (1) 25 26 — — 25 26 26
le450 25d 25 25 (34) 26 (1) 25 26 — — 25 — 26

flat300 26 0 26 26 (3) 26 (3) — 26 26 32 26 — 26
flat300 28 0 28 30 (18) 30 (15) 28 31 31 32 33 31 31
flat300 50 0 50 50 (6) 50 (8) 50 — 50 — 90 — 50
flat300 60 0 60 60 (10) 60 (17) 60 — 60 — 90 — 60
flat300 76 0 82 87 (46) 87 (69) 88 — 89 93 84 83 84

latin square 10 98 100 (37) 100 (34) — — — — — — 104

8 Z. Lü and J.-K. Hao

4 Case Study 2: Course Timetabling

The course timetabling problem consists of scheduling all lectures of a set of
courses into a weekly timetable, where each lecture of a course must be assigned a
period and a room in accordance with a given set of constraints. In this problem,
all hard constraints must be strictly satisfied and the weighted soft constraint
violations should be minimized. In this paper, we study the curriculum-based
course timetabling problem (CB-CTT), which is one of the three topics of the
second international timetabling competition (ITC–2007)1.

4.1 Problem Description

In the CB-CTT problem, a feasible timetable is one in which all lectures are
scheduled at a timeslot and a room, such that the hard constraints H1-H4 (see
below) are satisfied. In addition, a feasible timetable satisfying the four hard
constraints incurs a penalty cost for the violations of the four soft constraints
S1-S4 (see below). Then, the objective of CB-CTT is to minimize the weighted
soft constraint violations in a feasible solution. The four hard constraints and
four soft constraints are:

• H1. Lectures: Each lecture of a course must be scheduled in a distinct period
and a room.
• H2. Room occupancy: Any two lectures cannot be assigned in the same

period and the same room.
• H3. Conflicts: Lectures of courses in the same curriculum or taught by the

same teacher cannot be scheduled in the same period, i.e., no period can
have an overlapping of students nor teachers.
• H4. Availability: If the teacher of a course is not available at a given period,

then no lectures of the course can be assigned to that period.
• S1. Room capacity: For each lecture, the number of students attending

the course should not be greater than the capacity of the room hosting the
lecture.
• S2. Room stability: All lectures of a course should be scheduled in the

same room. If this is impossible, the number of occupied rooms should be as
few as possible.
• S3. Minimum working days: The lectures of a course should be spread

into the given minimum number of days.
• S4. Curriculum compactness: For a given curriculum, a violation is

counted if there is one lecture not adjacent to any other lecture belong-
ing to the same curriculum within the same day, which means the agenda of
students should be as compact as possible.

1 http://www.cs.qub.ac.uk/itc2007/

A Critical Element-Guided Perturbation Strategy 9

4.2 Initial Solution, Search Space and Evaluation Function

Starting from an empty timetable, we generate first an initial feasible solution by
means of a greedy graph coloring heuristic. We simply mention that for all the 21
competition instances, this greedy heuristic can easily obtain feasible solutions.
Once a feasible timetable that satisfies all the hard constraints is reached, our
ILS algorithm is used to minimize the soft constraint violations while keeping
hard constraints satisfied. Therefore, the search space of our algorithm is limited
to the feasible timetables. The evaluation function of our algorithm is just the
weighted soft constraint violations as defined for the ITC–2007.

4.3 Local Search Procedure

For this problem, we use a Tabu Search algorithm with two distinct neigh-
borhoods defined by two moves denoted as SimpleSwap and KempeSwap. Sim-
pleSwap move consists in exchanging the hosting periods and rooms assigned to
two lectures of different courses while a KempeSwap move produces a new feasi-
ble assignment by swapping the period labels assigned to the courses belonging
to two specified Kempe chains. Our Tabu Search algorithm explores these two
neighborhoods in a token-ring way. More details about these neighborhoods and
the TS algorithm are given in [17].

4.4 Perturbation

For the Scoring phase of this problem, an element is just one lecture of a
course and the related elements of a lecture are the lectures involved in the
calculation of the lecture’s soft constraint violations. When the current TS phase
terminates with a local optimum solution, the scoring function of a lecture is just
the weighted sum of soft constraint violations involving the lecture.

Then, all the lectures are ranked in a decreasing order according to their scores
and a number of lectures are randomly selected in accordance with
Eq. (1). Finally, the Perturbing phase consists of randomly selecting a se-
ries of SimpleSwap or KempeSwap moves involving the chosen lectures. Thus, a
perturbed solution is obtained from which a new round of Tabu Search starts.

4.5 Experimental Results

In this section, we report computational results on the set of 21 competition
instances using two formulations of the CB-CTT problem [4]. The first formu-
lation is previously studied by Di Gaspero et al in [5] and the second one is just
the topic of the ITC–2007. Like in Section 3.5, we contrast the results of our
CEGP-ILS algorithm with that of URP-ILS. We also compare our results with
the best known results obtained by other algorithms from the literature. To ob-
tain our computational results, each instance is solved 100 times independently
and each ILS run is given a maximum of 2,000,000 local search steps.

Table 2 shows the best results of the CEGP-based and URP-based ILS al-
gorithms on the 21 competition instances for both formulations as well as the

10 Z. Lü and J.-K. Hao

Table 2. Computational results and comparison on the 21 course timetabling compe-
tition instances

Old Formulation ITC-2007 Formulation
Instance best CEGP(t) URP(t) [4] [15] best CEGP(t) URP(t) [4] [15] [18]
comp01 4 4 (0) 4 (0) 4 — 5 5 (0) 5 (0) 5 — 5
comp02 24 20 (35) 22 (28) 24 — 33 29 (64) 35 (52) 56 33 35
comp03 39 38 (29) 40 (20) 39 — 66 66 (35) 68 (28) 79 — 66
comp04 18 18 (36) 18 (48) 18 — 35 35 (9) 35 (13) 38 — 35
comp05 240 219 (8) 224 (4) 240 — 298 292 (3) 310 (5) 316 — 298
comp06 16 18 (72) 20 (60) 25 16 37 37 (99) 38 (112) 55 — 37
comp07 3 3 (28) 3 (36) 7 3 7 13 (67) 14 (75) 26 — 7
comp08 20 20 (18) 21 (12) 22 20 38 39 (51) 41 (40) 42 — 38
comp09 59 54 (42) 56 (50) 59 — 99 96 (29) 102 (38) 104 99 100
comp10 2 3 (15) 4 (17) 6 2 7 10 (14) 14 (10) 19 — 7
comp11 0 0 (0) 0 (0) 0 — 0 0 (0) 0 (0) 0 — 0
comp12 241 239 (45) 242 (31) 241 — 320 310 (42) 315 (61) 342 — 320
comp13 33 32 (24) 32 (17) 36 33 60 59 (70) 60 (78) 72 60 61
comp14 28 27 (34) 28 (38) 29 28 51 51 (66) 51 (48) 57 51 53
comp15 39 38 (14) 38 (19) 39 — 70 68 (156) 69 (145) 79 — 70
comp16 21 16 (95) 18 (76) 21 — 28 23 (171) 30 (176) 46 28 30
comp17 41 34 (42) 36 (48) 41 — 70 69 (47) 72 (68) 88 — 70
comp18 37 34 (21) 34 (38) 37 — 75 65 (125) 68 (118) 75 — 75
comp19 33 32 (70) 33 (52) 33 — 57 57 (164) 57 (143) 64 — 57
comp20 14 11 (16) 11 (9) 14 — 17 22 (146) 30 (130) 32 17 22
comp21 56 52 (31) 53 (46) 56 — 89 93 (82) 96 (70) 107 — 89

previous best known results available in the literature. The average CPU time
for our CEGP-ILS and URP-ILS algorithms is also indicated in brackets (in
minutes). The reference algorithms include the tabu search algorithm in [4], the
integer programming algorithm in [15] and the hybrid algorithm in [18]. Inter-
estingly, these reference best known results are from a web site maintained by
the organizers of ITC–2007 (track 3)2, which provides a complete description
about the CB-CTT problem and the continuously updated best known results
uploaded by researchers (the column “best” in Table 2).

From Table 2, one easily observes that the CEGP-based ILS algorithm reaches
quite competitive results. First of all, it performs better than the URP-based ILS
algorithm for the majority of the 21 competition instances and no worse result
is observed for any instance. In order to testify the influence of the proposed
CEGP perturbation operator, we performed a 95% confidence t-test to compare
CEGP-ILS with URP-ILS for both formulations. We found that for 13 (respec-
tively 15) out of the 21 instances of the old formulation (respectively ITC-2007
formulation), the difference of the computational results obtained by CEGP-ILS
and URP-ILS is statistically significant. In addition, the CEGP-based ILS al-
gorithm improves the previous best known solutions for 14 and 9 out of the 21
instances respectively for the two formulations, showing the strong search power
of the CEGP-based ILS algorithm.

5 Conclusion and Discussion

The purpose of this paper is to investigate the diversification scheme of Iter-
ated Local Search. To this end, we proposed a general Critical Element-Guided
2 http://tabu.diegm.uniud.it/ctt/index.php

A Critical Element-Guided Perturbation Strategy 11

Perturbation strategy for jumping out of local optimum solution. The essential
idea of this perturbation strategy lies in identifying the critical elements in the
local optimum solution and adaptively perturbing the solution using these criti-
cal elements. This perturbation approach provides a mechanism for diversifying
the search more efficiently compared with the commonly-used uniformly random
perturbation strategy.

An ILS algorithm with this CEGP strategy was tested on two case studies—
graph coloring and course timetabling, showing clear improvements over
the traditional blindly uniform perturbation strategy. The results also show that
the CEGP-based ILS algorithm competes well with other reference algorithms
in the literature.

The practical effectiveness of this strategy depends mainly on the problem-
specific scoring method and the perturbation moves that will be performed. For
constrained problems, the score for each element can be simply based on the
number of violations involved. For optimization problems, such as Job Shop
Scheduling (JSS) and TSP problems, the problem-specific knowledge must be
explored in order to score each element. For JSS, the elements in the bottleneck
machine or the critical path should reasonably have high scores. For TSP, the
scores for elements might be marked according to the tour length involved.

To conclude, we believe that the Critical Element-Guided Perturbation strat-
egy helps design high performance ILS algorithm. At the same time, it should be
clear that for a given problem, it is indispensable to realize specific adaptations
by considering problem-specific knowledge in order to obtain high efficiency.

Acknowledgment

The authors would like to thank the anonymous referees for their helpful com-
ments. This work was partially supported by “Angers Loire Métropole” and the
Region of “Pays de la Loire” within the MILES and RADAPOP Projects.

References

1. Blöchliger, I., Zufferey, N.: A graph coloring heuristic using partial solutions and a
reactive tabu scheme. Computers and Operations Research 35(3), 960–975 (2008)

2. Brélaz, D.: New methods to color the vertices of a graph. Communications of the
ACM 22(4), 251–256 (1979)

3. Chiarandini, M., Stützle, T.: An application of iterated local search to graph col-
oring. In: Johnson, D.S., Mehrotra, A., Trick, M.A. (eds.) Proceedings of the Com-
putational Symposium on Graph Coloring and its Generalizations, Ithaca, New
York, USA, pp. 112–125 (2002)

4. De Cesco, F., Di Gaspero, L., Schaerf, A.: Benchmarking curriculum-based course
timetabling: Formulations, data formats, instances, validation, and results. In: Pro-
ceedings of the 7th PATAT Conference (2008),
http://tabu.diegm.uniud.it/ctt/DDS2008.pdf

5. Di Gaspero, L., Schaerf, A.: Neighborhood portfolio approach for local search
applied to timetabling problems. Journal of Mathematical Modeling and Algo-
rithms 5(1), 65–89 (2006)

http://tabu.diegm.uniud.it/ctt/DDS2008.pdf

12 Z. Lü and J.-K. Hao

6. Dorne, R., Hao, J.K.: Tabu search for graph coloring, T-colorings and set Tcolor-
ings. In: Voss, S., Martello, S., Osman, I.H., Roucairol, C. (eds.) Meta-Heuristics:
Advances and Trends in Local Search Paradigms for Optimization, ch. 6, pp. 77–92.
Kluwer, Dordrecht (1998)

7. Fleurent, C., Ferland, J.A.: Object-oriented implementation of heuristic search
methods for graph coloring, maximum clique, and satisfiability. In: Johnson, D.S.,
Trick, M.A. (eds.) DIMACS Series in Discrete Mathematics and Theoretical Com-
puter Science, vol. 26, pp. 619–652. American Mathematical Society, Providence
(1996)

8. Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. Journal
of Combinatorial Optimization 3(4), 379–397 (1999)

9. Galinier, P., Hertz, A., Zufferey, N.: An adaptive memory algorithm for the K-
colouring problem. Discrete Applied Mathematics 156(2), 267–279 (2008)

10. Glover, F., Parker, M., Ryan, J.: Coloring by tabu branch and bound. In: Johnson,
D.S., Trick, M.A. (eds.) DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, vol. 26, pp. 285–307. American Mathematical Society, Provi-
dence (1996)

11. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Boston (1997)
12. Hansen, P., Mladenović, N.: Variable neighborhood search: principles and applica-

tions. European Journal of Operational Research 130, 449–467 (2001)
13. Hertz, A., De Werra, D.: Using tabu search techniques for graph coloring. Com-

puting 39(4), 345–351 (1987)
14. Hoos, H.H., Stützle, T.: Stochastic local search: foundations and applications. Mor-

gan Kaufmann, San Francisco (2004)
15. Lach, G., Lübbecke, M.E.: Curriculum based course timetabling: optimal solutions

to the udine benchmark instances. In: Proceedings of the 7th PATAT Conference
(2008), http://www.math.tu-berlin.de/~luebbeck/papers/udine.pdf

16. Lourenco, H.R., Martin, O., Stützle, T.: Iterated local search. In: Glover, F.,
Kochenberger, G. (eds.) Handbook of Meta-heuristics, pp. 321–353. Springer, Hei-
delberg (2003)

17. Lü, Z., Hao, J.K.: Adaptive tabu search for course timetabling. European Journal
of Operational Research (2009), doi:10.1016/j.ejor.2008.12.007

18. Müller, T.: ITC2007 solver description: A hybrid approach. In: Proceedings of the
7th PATAT Conference (2008), http://www.unitime.org/papers/itc2007.pdf

19. Tsang, E.: Foundations of constraint satisfaction. Academic Press, London (1993)
20. Zhang, Q., Sun, J.: Iterated local search with guided mutation. In: Proceedings of

IEEE Congress on Evolutionary Computation, pp. 924–929 (2006)

http://www.math.tu-berlin.de/~luebbeck/papers/udine.pdf
http://www.unitime.org/papers/itc2007.pdf

C. Cotta and P. Cowling (Eds.): EvoCOP 2009, LNCS 5482, pp. 109–120, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Binary Exponential Back Off for Tabu Tenure in
Hyperheuristics*

Stephen Remde, Keshav Dahal, Peter Cowling, and Nic Colledge

MOSAIC Research Group, University of Bradford, Bradford, BD7 1DP, United Kingdom
{s.m.remde,p.i.cowling,k.p.dahal,n.j.colledge}@bradford.ac.uk

http://mosaic.ac/

Abstract. In this paper we propose a new tabu search hyperheuristic which
makes individual low level heuristics tabu dynamically using an analogy with
the Binary Exponential Back Off (BEBO) method used in network communica-
tion. We compare this method to a reduced Variable Neighbourhood Search
(rVNS), greedy and random hyperheuristic approaches and other tabu search
based heuristics for a complex real world workforce scheduling problem. Paral-
lelisation is used to perform nearly 155 CPU-days of experiments. The results
show that the new methods can produce results fitter than rVNS methods and
within 99% of the fitness of those produced by a highly CPU-intensive greedy
hyperheuristic in a fraction of the time.

1 Introduction

Hyperheuristics [1] [2] reflect problem knowledge using a number of (usually simple)
low level heuristics (LLHs) and objective measure(s). The hyperheuristic uses infor-
mation about the performance of each low level heuristic (CPU time and objective
measures) to determine which low level heuristics to apply at each decision point. The
hypothesis of the hyperheuristic method is that some combination of these low level
heuristics will prove effective in escaping any poor quality local optimum/basin of
attraction [1]. However, the method which decides which low level heuristics to
choose needs not be problem specific, and hence a single hyperheuristic method can
work generally across many problem models and instances. In some cases low level
heuristics are parameterised, or composed by “multiplying” together components [3]
[4], which can give rise to hundreds or even thousands of heuristics [5]. In such a
case, deciding in reasonable time which heuristics to use may be difficult. However,
there is evidence that having such a rich selection of low level heuristics may yield
better results for complex problems in the long run [4].

In collaboration with Trimble we look at a workforce scheduling problem, which is
a resource constrained scheduling problem similar to but more complex than many
other well-studied scheduling problems such as the Resource Constrained Project
Scheduling Problem (RCPSP) [6] and job shop scheduling problem [7]. Trimble

* This work was funded by EPSRC and Trimble under an EPSRC CASE studentship, made

available through the Smith Institute for Industrial Mathematics and System Engineering.

110 S. Remde et al.

develops scheduling solutions for very large, complex mobile workforce scheduling
problems in a variety of industries, particularly telecommunications and utilities.

The workforce scheduling problem that we consider consists of four main compo-
nents: Tasks, Resources, Skills and Locations. Each Task has a location and a value
which indicates priority relative to other tasks. Resources are engineers and large
pieces of equipment. They are mobile, travelling at a variety of speeds to geographi-
cally dispersed task Locations. Tasks and resources have time windows, and each
time window has an associated cost per unit time (which models customer inconven-
ience, overtime etc.). Tasks require a pre-specified quantity of certain skills. Each
resource possesses one or more of these skills and a competence level which models
the resources speed at executing the skill. A major source of complexity in our prob-
lem arises since a task’s duration is unknown until resources are assigned to it. In this
paper, the fitness of a schedule is given by a single weighted objective function [3], f
= SP - 4SC - 2TT, where SP is the sum of the priority of scheduled tasks, SC is the
sum of the time window costs in the schedule (both resource and task) and TT is the
total amount of travel time. This objective is to maximise the total priority of tasks
scheduled while minimising travel time and cost. The weights in this expression are
sensible in a large class of the problems encountered in practice.

Using the hyperheuristic framework of [3], we create more low level heuristics and
implement a new tabu based hyperheuristic with dynamic tabu tenures designed with
large neighbourhoods in mind. HyperRandom and HyperGreedy heuristics from [3]
try significant numbers of bad low level heuristics and hence waste CPU time, which
may be highly significant for complex instances requiring CPU-hours or -days to
solve. Analysis of the low level heuristics used in the HyperGreedy method showed
that 26.4% of the low level heuristics were never used and 51.2% of the low level
heuristics were used less than one percent of the time. An approach which more ag-
gressively prunes poor low level heuristics could result in large CPU savings in this
case, with little or no impact on solution quality. This impact would increase with
increasing numbers of low level heuristics.

The method we propose is a tabu based hyperheuristic with dynamically adapting
tabu tenures designed for very large neighbourhoods. In a variety of computer net-
works, binary exponential back off or truncated binary exponential back-off is a ran-
domized protocol for regulating transmission on a multiple access broadcast channel
[8]. This algorithm is used to spread out repeated retransmissions of the same block of
data and to increase overall efficiency. Data needs to be retransmitted when a colli-
sion occurs. This happens when two (or more) computers try to transmit information
on the same medium (a wire, a wireless frequency, etc) at the same time. When a
computer transmits information, it also “listens” to see whether received information
is what has been transmitted. If it detects anomalies it assumes that there is interfer-
ence (probably from another computer trying to transmit at the same time). When a
collision occurs, the computer will increase its backoff value by 1, and wait a random
amount of time between 0 and 2backoff-1 before trying to retransmit. If the transmission
is successful, the back off value is reset to 0, otherwise the back-off value is increased
by 1 again and the process is repeated. Truncated binary exponential back-off [9]
works in a similar way, but also sets a ceiling on the maximum back-off time. This is
the industry standard for many computer networks including Ethernet.

 Binary Exponential Back Off for Tabu Tenure in Hyperheuristics 111

Binary exponential back off seems like a promising approach to adjust individual
tabu tenures in a tabu-search hyperheuristic [10] or metaheuristic, where the
neighbourhood size is large. For low level heuristics that perform poorly, the tabu
tenure would increase exponentially with each poor application and thus minimise
wasted CPU time. For low level heuristics that perform badly at the start of the search
and well at the end, little time would be wasted at the start but when the low level
heuristic starts performing well, it will not be penalised for doing badly at the start.
This could focus a very large set of low level heuristics down to a smaller set of low
level heuristics which are effective at a particular point in the search.

This paper is structured as follows: we present related work in section 2 and pro-
pose our new hyperheuristic approach in section 3. In section 4 we empirically inves-
tigate the new technique and compare it to Variable Neighbourhood Search, Greedy,
Random and Tabu based heuristics in terms of solution quality and computational
time. We present conclusions in section 5.

2 Related Work

The workforce scheduling problem we study is complex and [3] proposes a method to
break down this problem by splitting it into smaller parts and solving each part using
exact enumerative approaches. These smaller parts are the combination of a method to
select a task and a method to select resources, including time, for the task. Reduced
Variable Neighbourhood Search (rVNS) [11] and hyperheuristics are then used to de-
cide the order in which to solve them. Analysis of results for the CPU-intensive Hy-
perGreedy show that the success of the hyperheuristics was due to there being a rich
set of low level heuristics and not just a “silver bullet”. However, a lot of time was
wasted trying bad low level heuristics.

Many hyperheuristic approaches have been investigated, based on generalisation of
metaheuristic methods, including early work in [12] where a genetic algorithm
evolves a chromosome which determined how jobs were scheduled in open shop
scheduling. Learning approaches based on the “choice function” were considered in
[13,14], where an estimate of how well a low level heuristic is likely to perform is
used to decide which low level heuristic to choose next. Related tabu search hyper-
heuristics [10] are discussed in detail later. In [15] simulated annealing is used to
decide whether to accept the solution resulting from a randomly applied low level
heuristic. [16] uses a Genetic Algorithm to evolve good sequences of low level heu-
ristics. [4] use a method called step by step reduction (SSR) and Warming Up (WU)
approach to reduce the number of low level heuristics and show that SSR produced
better results. SSR removes bad heuristics early on, but, unlike the method in this pa-
per, does not allow the reintroduction of these heuristics later in the search.

Tabu Search [10] can be used to make undesirable moves unusable for a certain
number of iterations (the tabu tenure). This is usually used to stop poorly performing
moves being tried in succession or to stop the undoing of good moves. The optimal
duration of a tabu tenure has been tested in several papers and it is most likely a func-
tion of the neighbourhood size and the problem size [17]. Random tabu tenures are
used in [18] where a move is made tabu for a period randomly chosen between 1 and
the maximum tabu tenure and was found to be superior to fixed tabu tenures. Much
work has been done on Tabu Search and related choice function methods [1].

112 S. Remde et al.

Several papers have investigated tabu-based and related choice function [13] based
hyperheuristics. [19] uses a simple tabu mechanism where good and bad low level
heuristics are made tabu for a fixed tabu tenure. A small number of low level heuris-
tics are used (13) with short tabu tenures (1-4 iterations) and good results are obtained
in a large amount of CPU time. This is extended in [20] where the low level heuristic
is repeated until no further improvements can be found before being made tabu and
random tabu tenures are utilised. Random tabu tenures provide results of similar qual-
ity to those with fixed tenure equal to the expected random tenure on the two problem
instances they consider. The repeated application of a low level heuristics does not
increase solution quality considerably. [10] uses a ranking system for non tabu low
level heuristics. When a non-tabu low level heuristic performs well its rank is in-
creased, when it doesn’t make a positive change its rank is decreased and the low
level heuristic is put in the tabu list on a first in first out basis. If it makes a negative
change the tabu list is emptied. At each iteration the low level heuristic with the high-
est rank that is not tabu is used. The number of low level heuristics is again small, and
the maximum size of the tabu list is between 2 and 4. [5] use a tabu hyperheuristic to
manage a large set (95) of low level heuristics. The hyperheuristic allows the use of
tabu low level heuristics if it makes the best improvement (and then stops the low
level heuristic from being tabu). If no improving low level heuristics are available, a
non improving non tabu low level heuristic is used and made tabu. Fixed tabu tenures
of 10, 30, 60 and 100 and adaptive tabu tenures are investigated, but results provide
no clear advantage of using adaptive tabu tenures over fixed ones.

3 Hyperheuristic Approaches

Papers such as [3] [4] generate possible LLHs by considering separately (1) selecting
a task to be scheduled and (2) allocating potential resources (including time) for that
task. The task selector chooses a task and the resource allocator assigns resources for
each skill required by the task, so that the total number of LLHs is the number of task
selectors multiplied by the number of resource allocators. Fig. 1 shows an example of
this. The task selector has chosen Task 8 (which requires Skill 5 and Skill 4). The
resource allocator has chosen Ra or Rb for Skill 5 and Ra or Rc for Skill 4. The differ-
ent combinations are then tried and the best one is accepted (Rb, Ra).

In [3] resource selectors order the resources by their competency at the skill (as
more competent resources can complete the task quicker) and then pick a range of
these resources (Top 5, Top 10, etc). In addition to these approaches, here we add
more low level heuristics in an attempt to yield better results, by improving the likeli-
hood of there being at least one good LLH in every situation. Table 1 describes the
new resource allocators. Combining each of the 9 task selector with each of the 27
resource allocators gives a total of 243 Low Level Heuristics. Note that for this prob-
lem it is usually better to choose a group of uniformly poor competence resources for
a task (so that they complete at about the same time) rather than a heterogeneous set
(where fast, effective, resources have to wait for slower resources to finish when they
could be completing other tasks).

 Binary Exponential Back Off for Tabu Tenure in Hyperheuristics 113

Fig. 1. The dotted subset of resources possessing the required skill is chosen by a Resource
Selector. The assignment (Ra, Rb) is chosen as the best insertion.

Table 1. New Resource Selectors

Name Description
Deviation x Resources complete a skill in a time dependent upon their competence.

This selector attempts to find resources that will complete the different
skills of task in the same amount of time by selecting resources with com-
petencies that deviate x={50%, 25%, 12.5%, 6.25%} from the task’s skill
requirement.

xth Quarter This picks the x={1,2,3,4} quarter of task ranked by skill. Unlike the “Top
x” task selectors, the number chosen is proportionate to the number of
resources who can do the task.

xth Eighth This picks the x={1…8} eighth of task ranked by skill.
Dynamic x This selector picks larger sets of resources for the skills requiring more

effort and less to those requiring less effort. It will create x={10, 50, 100,
1000} combinations when enumerating the resulting sets.

All Resources Considers all possible resources (and hence is very slow).

The hyperheuristic HyperRandom, selects at random a Low Level Heuristic (i.e. a

(task order, resource selector) pair) to use at each iteration and applies it if the appli-
cation will result in a positive improvement. This continues until no improvement has
been found for a certain number of iterations. HyperGreedy evaluates all the Low
Level Heuristics at each iteration and applies the best if it makes an improvement.
This continues until no improvement is found. As might be expected, HyperGreedy is
very CPU-intensive, and generates good quality results, but is inefficient. For exam-
ple, over one quarter of the low level heuristics were never applied in experimental
trials [3] and over half of them were only applied once.

Here we propose a tabu based hyperheuristic with dynamically adapting tabu ten-
ures designed for very large neighbourhoods, inspired by the binary exponential back-
off algorithm used in networking [8]. We use an analogous backing off method to
exponentially increase the tabu tenure of low level heuristics which repeatedly yield

Ra

Rc

Skill 5

Skill 4

Ra

Rb
(Ra,Rc)

(Rb,Ra)

(Rb,Rc)

100

300

-50

∆ fitness

Task 2

114 S. Remde et al.

no improvements, meaning the time between trials of bad heuristics gets exponen-
tially greater. The heuristic is given in fig. 2. We use two methods to decide which of
the low level heuristics, which were tried, to back off (those “deemed bad”):

1) “Best x”: only the best x improving low level heuristics are not backed off.
2) “Prop x”: all non improving low level heuristics and those improving low level

heuristics not in the top x% of the range of the fitness are backed off.

Define:
backoff_min is the minimum backoff value (we choose 4)
LLHi is Low level heuristic i
tabui is the Tabu value of LLHi (0≤ Tabui≤Backoffi)
backoffi is the backoff value of LLHi (Backoff_min≤ Backoffi)
Eligible = {LLHi: tabui=0}
Δ(S,LLHi) is the change in the objective function which would result from applying

low level heuristic LLHi to solution S.
apply(S,LLHi) is the new solution we get after applying low level heuristic LLHi to

solution S.

Initialise:
create an initial solution S (often the solution S is the empty solution).
for all i:
 backoffi ← backoff_min
 choose tabui uniformly at random in {0,1,2,…, backoffi}
Iterate:

 while (Eligible ≠ {})
 bestΔ = 0
 for each low level heuristic LLHi∈Eligible
 if Δ(S,LLHi) > 0
 backoffi ← backoff_min
 if Δ(S,LLHi) > bestΔ
 bestΔ ← Δ(S,LLHi)
 besti ← i
 else
 if LLHi is “deemed bad” (see text)
 backoffi ← 2 * backoffi

 choose tabui uniformly at random in {0,1,2,…, backoffi}
 for each low level heuristic LLHi ∉ Eligible

 tabui ← tabui – 1
 if bestΔ > 0
 S ← apply(S,LLHbesti)

Terminate:
 for each low level heuristic LLHi
 if Δ(S,LLHi) > 0
 S ← apply(S,LLHbesti)
 go to Iterate

Fig. 2. The Binary Exponential Back Off (BEBO) hyperheuristic

 Binary Exponential Back Off for Tabu Tenure in Hyperheuristics 115

4 Computational Experiments

We compare several hyperheuristic methods (rVNS, HyperGreedy, HyperGreedy-
More, HyperRandom, HyperRandomMore, 9 BEBO “Best x”, 7 BEBO “Prop x”,
and 15 “standard” Tabu Hyperheuristics) ten times on five different problem in-
stances and averaged the 50 results. The five problem instances require the scheduling
of 400 tasks using 100 resources over one day using five different skills. Tasks re-
quire between one and three skills and resources possess between one and five skills.
The problems reflect realistic problems Trimble have identified and are generated
using the problem generator used in [21]. The complexity of dealing with these real-
world problem instances mean that these experiments require over 155 CPU days to
complete, so they were run in parallel on 88 cores of 22 identical 4 core 2.0 GHz Ma-
chines. Implementation was in C# .NET under Windows.

rVNS is best rVNS method taken from [3]. HyperRandom and HyperRandomMore
are the random hyperheuristics from [3] with the latter including the additional low
level heuristics introduced in this paper. HyperGreedy and HyperGreedyMore are the
greedy hyperheuristics from [3] with the latter including the additional low level heu-
ristics introduced in this paper. HyperGreedyMore will be the benchmark for all the
tests as this is the most CPU-intensive approach and produces the best result.

The BEBO hyperheuristics are described in the above section. We try both of the
proposed back-off methods with various sets of parameters. We also compare with a
“standard” Tabu hyperheuristic, setting the tabu tenure to t=5, 7, 10, 25, 50 each time
a low level heuristic is tried and fails to give an improvement. We also investigate
different methods of deciding which LLHs to make tabu. TabuBest y t=x signifies that
all but the top y improving low level heuristics will not be made tabu with tenure x at
each iteration. This is similar to the method used in [10] however we experiment with
larger tabu tenures as we use more low level heuristics. We also investigated making
all non improving low level heuristics tabu however the results for these were very
poor in terms of CPU time (as nearly all of the low level heuristics make a positive
improvement early in the search even if this improvement is very small) and these
results are not reported below. In addition to these fixed tenures, we try random ten-
ures as used in [20]: rTabu Best y t=x is similar to Tabu Best y t=x, but with a random
tenure between 0 and x each time a low level heuristic is made tabu.

The results are presented in Table 2. We see that the availability of additional
LLHs significantly improves the performance of HyperGreedyMore relative to Hy-
perGreedy and HyperRandomMore relative to HyperRandom. The best BEBO
method in terms of fitness is BEBO Best 20, which is also one of the slowest since it
maintains a relatively large set of Eligible low level heuristics. Even so, the worst
performing hyperheuristic BEBO Best 1 got a result 97.64% as good as HyperGree-
dyMore in only 18.52% of the CPU time. Unsurprisingly, the size of the set of heuris-
tics considered bad appears to determine the trade-off between solution quality and
time reduction, although the reduction in solution quality is modest given the large
reduction in CPU time. In all cases, randomisation improved tabu search, further sup-
porting previous work [18]. The fastest “standard” tabu hyperheuristic rTabu was not
as quick as the fastest BEBO method and also resulted in poorer quality solutions.
The best rTabu hyperheuristic (in terms of solution quality) took much more CPU
time than BEBO methods which gave similar quality.

116 S. Remde et al.

Table 2. Fitness and Time of the tested hyperheuristic

Method
Average
Fitness

Average
Time (s)

Fitness % of
HyperGreedyMore

Time % of
HyperGreedyMore

rVNS 21974.9 19.3 88.21% 0.25%
HyperRandom 19326.7 18.5 77.58% 0.24%
HyperGreedy 22084.0 233.0 88.65% 2.98%
HyperRandomMore 20553.8 176.3 82.51% 2.26%
HyperGreedyMore 24911.3 7807.2 100.00% 100.00%
BEBO Best 1 24324.6 1446.1 97.64% 18.52%
BEBO Best 2 24588.6 1775.4 98.70% 22.74%
BEBO Best 3 24774.3 2043.6 99.45% 26.18%
BEBO Best 4 24693.9 2077.5 99.13% 26.61%
BEBO Best 5 24734.6 2209.5 99.29% 28.30%
BEBO Best 10 24782.8 2572.5 99.48% 32.95%
BEBO Best 15 24869.3 2825.4 99.83% 36.19%
BEBO Best 20 24993.8 3150.9 100.33% 40.36%
BEBO Best 25 24927.1 3261.1 100.06% 41.77%
BEBO Prop 0.01% 24756.3 2341.1 99.38% 29.99%
BEBO Prop 0.05% 24737.2 2260.3 99.30% 28.95%
BEBO Prop 0.1% 24670.5 2295.6 99.03% 29.40%
BEBO Prop 0.5% 24753.3 2434.1 99.37% 31.18%
BEBO Prop 1% 24685.3 2278.6 99.09% 29.19%
BEBO Prop 5% 24543.7 2453.7 98.52% 31.43%
BEBO Prop 10% 24429.5 2507.3 98.07% 32.12%
rTabu Best 5 t=5 24420.5 4818.5 98.03% 61.72%
rTabu Best 5 t=7 24307.0 4151.0 97.57% 53.17%
rTabu Best 5 t=10 24121.2 3572.1 96.83% 45.75%
rTabu Best 5 t=25 23976.3 2663.8 96.25% 34.12%
rTabu Best 5 t=50 22872.2 2271.5 91.81% 29.10%
rTabu Best 10 t=5 24415.1 5305.6 98.01% 67.96%
rTabu Best 10 t=7 24459.0 4834.1 98.18% 61.92%
rTabu Best 10 t=10 24235.2 4251.3 97.29% 54.45%
rTabu Best 10 t=25 24149.5 3448.7 96.94% 44.17%
rTabu Best 10 t=50 24014.8 3047.5 96.40% 39.03%
Tabu Best 5 t=5 18104.2 2641.1 72.67% 33.83%
Tabu Best 5 t=7 19141.0 2577.4 76.84% 33.01%
Tabu Best 5 t=10 19364.5 2419.1 77.73% 30.99%
Tabu Best 5 t=25 18714.3 1968.9 75.12% 25.22%
Tabu Best 5 t=50 19139.1 1784.8 76.83% 22.86%
Tabu Best 10 t=5 20085.0 3443.8 80.63% 44.11%
Tabu Best 10 t=7 19246.5 3028.4 77.26% 38.79%
Tabu Best 10 t=10 19648.4 2675.3 78.87% 34.27%
Tabu Best 10 t=25 20143.4 2534.1 80.86% 32.46%
Tabu Best 10 t=50 20087.3 2351.1 80.64% 30.12%

To see how the time reduction scales with the number of low level heuristics, Hy-

perGreedy and Best 10 experiments were repeated 10 times with randomly chosen
subsets of low level heuristics. The results, shown in fig. 3, compare BEBO Best 10
with HyperGreedy with different numbers of low level heuristics. We can see that
fitness of the two approaches remains very close (none of the results for BEBO Best
10 dropped below 99.3% of the HyperGreedy fitness). As the number of low level
heuristics decreases, the time savings for BEBO Best 10 reduce. When 80 or 90% of

 Binary Exponential Back Off for Tabu Tenure in Hyperheuristics 117

heuristics have been removed, results are erratic (since the small set of low level heu-
ristics is not guaranteed to be rich enough to yield good results). In this case BEBO
Best 10 deals better with the erratic nature and produces better fitness that Hyper-
Greedy on average.

Fig. 3. Graph showing the relative performance of BEBO Best 10 to HyperGreedyMore with
different neighborhood sizes

Fig. 4. Graph showing the relative performance of each hyperheuristic without resetting com-
pared to the performance of using the same hyperheuristic with resetting

When the search finds no positive moves in the Eligible set of low level heuristics
the tabu tenures of the low level heuristics are reset and all low level heuristics are
tried again. This is potentially a waste of time, if after resetting and trying all the low
level heuristics again no improvement is found. To see the impact this has on fitness
and CPU time, the methods were tried with and without the reset. Fig 4 shows the
relative performance of each hyperheuristic without resetting compared to the per-
formance of using the same hyperheuristic with resetting in terms of time and fitness.

118 S. Remde et al.

Here 100% would denote that not resetting was equally as good as resetting – since all
values are below 100%, and some are well below 100% these results indicate that
resetting is essential, and its effects on the time used are modest.

Fig. 5. Graph showing the fitness against CPU time of the BEBO Best 20 and HyperGreedy-
More heuristics

Fig. 6. Graph showing the Tabu Tenure and Back off of a two different low level heuristics
over the iterations of the search

 Binary Exponential Back Off for Tabu Tenure in Hyperheuristics 119

Fig. 5 shows the difference in the evolution of fitness through time for BEBO Best
20 and HyperGreedy More. The curve for BEBO Best 20 stays well ahead of the cor-
responding curve for HyperGreedy More, until very late in the search process. There
is good evidence here of the efficiency savings resulting from exponential back-off,
which waste far less function calls to poor LLHs.

Fig. 6 shows how the BEBO tabu tenures change over the search for two typical
low level heuristics with very different properties. The plot shows Backoffi and Tabui
at each iteration of a BEBO Best 20 run for LLH0 and LLH23. LLH0 is used towards the
end of the search and as we can see, BEBO is very efficient only trying the low level
heuristic about 7 times in the first 150 iterations. Later in the search LLH0 maintains a
low back-off value, and produces useful solution improvements. LLH23 performs well
at the beginning of the search but after about 96 iteration it no longer serves a useful
purpose. Hence fig. 6 clearly shows the back off value and the tabu tenure increasing
so that little time is wasted with the low level heuristic later in the search. These be-
haviours are typical of the BEBO approach, as is the (less interesting, and very com-
mon) behaviour where a consistently poor heuristic is called only rarely right
throughout the search.

5 Conclusions

This paper investigates the use of Binary Exponential Back-Off (as used in computer
and telecommunications networks) to set the tabu tenure for low level heuristics in a
hyperheuristic framework. The approach has been empirically tested on a complex,
real-world workforce scheduling problem. The results have shown the potential of the
new method to generate good solutions much more quickly than exhaustive (greedy)
approaches and standard tabu approaches. In particular, the benefits of the approach
increase with increasing neighbourhood size (i.e. with an increased number of low
level heuristics). Binary Exponential Back-Off is able to produce results very close to
a highly CPU intensive greedy heuristic which investigates a much larger set of low
level heuristics at each iteration, in terms of fitness, and is able to do so in a fraction
of the CPU time. BEBO performs much better than “standard” fixed and random tabu
tenure hyperheuristics. Different method for deciding which heuristics to back off
were tested, since adjusting the number of low level heuristics backed off determines
the trade-off between CPU time used and solution quality. We have shown that modi-
fying the number of low level heuristics backed off may be used to adjust the search
and trade off time available against solution quality.

In principle our exponential back-off methods could be used in any tabu implemen-
tation with large neighbourhoods, which provides a promising possible direction for
further research.

References

1. Chakhlevitch, K., Cowling, P.I.: Hyperheuristics: Recent Developments. Metaheuristics.
In: Cotta, C., Sevaux, M., Sorensen, K. (eds.) Adaptive and Multilevel. Studies in Compu-
tational Intelligence, vol. 136, pp. 3–29. Springer, Heidelberg (2008)

2. Burke, E., et al.: Hyper-Heuristics: An Emerging Direction in Modern Search Technology.
In: Handbook of Metaheuristics, pp. 457–474. Springer, Heidelberg (2003)

120 S. Remde et al.

3. Remde, S., Cowling, P., Dahal, K., Colledge, N.: Exact/Heuristic Hybrids using rVNS and
Hyperheuristics for Workforce Scheduling. In: Proc. Evolutionary Computation in Combi-
natorial Optimization. LNCS, vol. 4464, pp. 188–197. Springer, Heidelberg (2007)

4. Chakhlevitch, K., Cowling, P.I.: Choosing the Fittest Subset of Low Level Heuristics in a
Hyperheuristic Framework. In: Raidl, G.R., Gottlieb, J. (eds.) EvoCOP 2005. LNCS,
vol. 3448, pp. 23–33. Springer, Heidelberg (2005)

5. Cowling, P.I., Chakhlevitch, K.: Hyperheuristic for managing a large collection of low
level heuristics to schedule personnel. In: Proc. of the 2003 IEEE Congress on Evolution-
ary Computation (CEC 2003), pp. 1214–1221. IEEE Press, Los Alamitos (2003)

6. Kolisch, R., Hartmann, S.: Experimental Investigations of Heuristics for RCPSP: An Up-
date. European Journal Of Operational Research 174(1), 23–37 (2006)

7. Pinedo, M., Chao, X.: Operations scheduling with applications in manufacturing and ser-
vices. McGraw-Hill, New York (1999)

8. Metcalfe, R.M., Boggs, D.R.: Ethernet: Distributed Packet Switching for Local Computer
Networks. Coms. of the ACM 19(5), 395–404 (1976)

9. Kwak, B.J., Song, N.O., Miller, L.E.: Performance Analysis of Exponential Backoff. IEE-
ACM Transactions on Networking 13(2), 343–355 (2005)

10. Burke, E.K., Kendall, G., Soubeiga, E.: A tabu-search hyperheuristic for timetabling and
rostering. Journal of Heuristics 9(6), 451–470 (2003)

11. Mladenovic, N., Hansen, P.: Variable neighborhood search. Computers & Operational Re-
search 24(11), 1097–1100 (1997)

12. Fang, H., Ross, P., Corne, D.: A Promising Hybrid GA/Heuristic Approach for Open-Shop
Scheduling Problems. In: 11th European Conf. on Artificial Intelligence (1994)

13. Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a sales
summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 176–190.
Springer, Heidelberg (2001)

14. Nareyek, A.: Choosing search heuristics by non-stationary reinforcement learning. Applied
Optimization 86, 523–544 (2003)

15. Bai, R., Kendall, G.: An Investigation of Automated Planograms Using a Simulated An-
nealing Based Hyper-heuristics. In: Proc. of The Fifth Metaheuristics Int. Conference
(MIC 2003), Kyoto International Conference Hall, Kyoto, Japan (August 2003)

16. Kendal, G., Han, L., Cowling, P.: An Investigation of a Hyperheuristic Genetic Algorithm
Applied to a Trainer Scheduling Problem. In: CEC, pp. 1185–1190. IEEE Press, Los
Alamitos (2002)

17. Laguna, M., Marti, R., Campos, V.: Intensification and Diversification with elite tabu
search solutions for the linear ordering problem. Computers & Operations Re-
search 26(12), 1217–1230 (1999)

18. Rolland, E., Schilling, D.A., Current, J.R.: An efficient tabu search procedure for the p-
median problem. European Journal of Operational Research 96, 329–342 (1996)

19. Kendal, G., Modh Hussain, N.: An investigation of a tabu search based hyper heuristic for
examination timetabling. In: Proc. MISTA, pp. 309–328. Springer, Heidelberg (2005)

20. Kendall, G., Mohd Hussain, N.: Tabu search hyperheuristic approach to the examination
timetabling problem at the University of Technology MARA. In: Proc. of the 5th Int.
Conf. on Practice and Theory of Automated Timetabling, pp. 199–217 (2004)

21. Cowling, P., Colledge, N., Dahal, K., Remde, S.: The Trade Off between Diversity and
Quality for Multi-objective Workforce Scheduling. In: Gottlieb, J., Raidl, G.R. (eds.)
EvoCOP 2006. LNCS, vol. 3906, pp. 13–24. Springer, Heidelberg (2006)

Diversity Control and Multi-Parent
Recombination for Evolutionary Graph Coloring

Algorithms

Daniel Cosmin Porumbel1, Jin-Kao Hao1, and Pascale Kuntz2

1 LERIA, Université d’Angers, 2 Bd Lavoisier, 49045 Angers, France
2 LINA, Polytech’Nantes, rue Christian Pauc, 44306 Nantes, France

Abstract. We present a hybrid evolutionary algorithm for the graph
coloring problem (Evocol). Evocol is based on two simple-but-effective
ideas. First, we use an enhanced crossover that collects the best color
classes out of more than two parents; the best color classes are selected
using a ranking based on both class fitness and class size. We also in-
troduce a simple method of using distances to assure the population
diversity: at each operation that inserts an individual into the popula-
tion or that eliminates an individual from the population, Evocol tries
to maintain the distances between the remaining individuals as large as
possible. The results of Evocol match the best-known results from the
literature on almost all difficult DIMACS instances (a new solution is
also reported for a very large graph). Evocol obtains these performances
with a success rate of at least 50%.

1 Introduction

The graph coloring problem is one of the first problems proved to be NP-complete
in the early 70’s. It has a very simple formulation: label the vertices of a graph
with the minimum number of colors such that no adjacent vertices share the same
color. Many other problems and practical applications can be reduced to graph
coloring: scheduling and timetabling problems, frequency assignment in mobile
networks, register allocation in compilers, air traffic management, to name just
a few.

The second DIMACS Implementation Challenge [13] introduced a large set
of graphs for benchmarking coloring algorithms that has been extensively used
since 1996. The most popular coloring algorithms belong to three main solution
approaches: (i) sequential construction (very fast methods but not particularly
efficient), (ii) local search methods (many different techniques [1, 2, 9, 11, 12,
15] can be found in the literature), and (iii) the population-based evolutionary
methods that traditionally dominate the tables with the best results [4, 6, 7, 8,
14, 15].

We present in this work-in-progress paper a new hybrid evolutionary algorithm
(Evocol) that makes contributions in two directions: the recombination operator
(Section 3) and the population diversity control (Section 4). The recombination

C. Cotta and P. Cowling (Eds.): EvoCOP 2009, LNCS 5482, pp. 121–132, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

122 D.C. Porumbel, J.-K. Hao, and P. Kuntz

operator picks up the best color classes out of many (and surely diverse) parents;
the classes are ranked according to their fitness and size. The diversity control
uses a set-theoretic distance measure between colorings to strictly control which
individuals are inserted or deleted from the population. As such, it keeps the
distances between the population individuals as large as possible and it per-
manently guarantees global diversity. The resulting algorithm is quite simple
and lightweight, as it incorporates no important additional elements. However,
it obtains very competitive results (Section 5), with plenty of room for further
improvement.

2 Problem Statement and Generic Hybrid Algorithm

Given a graph G(V, E), the graph coloring problem requires finding the mini-
mal number of colors χ (the chromatic number) such that there exists a vertex
coloring (using χ colors) with no adjacent vertices of the same color (with no
conflicts). One could determine the chromatic number by iteratively solving the
following k-coloring problem: given a number of colors k ≥ χ, find a k-coloring
(a coloring using k colors) without conflicts. This method starts with a suffi-
ciently large k (e.g. k = |V | is surely enough) and iteratively decrements k each
time the corresponding k–coloring problem is solved. The k–coloring problem
becomes increasingly difficult until the algorithm can no longer solve it.

A common coloring representation consists in a function I : V → {1, 2, · · · , k},
usually encoded as an array of colors I = [I(1), I(2), . . . , I(|V |)]. While we also
encoded this representation in our programs, it is very useful to interpret a
coloring as a vertex set partition.

Definition 1. (Partition representation) A k-coloring I of V is denoted by a
partition {I1, I2, . . . , Ik} of V —i.e. a set of k disjoint subsets (color classes) of
V covering V such that ∀x ∈ V , x ∈ Ii ⇔ I(x) = i.

We say that I is an individual (a candidate solution for a k-coloring problem); Ii

is the color class i induced by the coloring I, i.e. the set of vertices having color
i in I. This partition based definition is particularly useful to avoid symmetry
issues arising from the color based encoding. As such, it is used for the crossover
operator (see Section 3) and also to define a meaningful distance between color-
ings (see Section 4.1). Moreover, I is a legal or conflict-free coloring (a solution)
if and only no color class of I contains adjacent vertices.

Definition 2. (Conflict number and fitness function) Given an individual I, we
call conflict (or conflicting edge) any edge having both ends in the same class. The
set of conflicts is denoted by C(I) and the number of conflicts (i.e. |C(I)|—also
referred to as the conflict number of I) is the fitness function f(I). A conflicting
vertex is a vertex v ∈ V , for which there exists an edge {v, u} in C(I).

In this paper, we deal with the k-coloring problem as an optimization problem:
given a pair (G, k), our algorithm searches the search space (call it Ω) for a
k-coloring I∗ such that f(I∗) = Minf(I); if f(I∗) = 0, a legal coloring is found.

Diversity Control and Multi-Parent Recombination 123

2.1 General Design of the Evolutionary Algorithm

The generic algorithmic template of Evocol shares some basic ideas with other
evolutionary algorithms from the graph coloring literature [2, 4, 6, 7, 8, 14, 15],
but we enriched the traditional template with new features: (i) the possibility
to combine n ≥ 2 parents to generate an offspring, (ii) the possibility to reject
an offspring if it does not fit some diversity criteria (with respect to the existing
individuals). To be specific, the skeleton of Evocol is presented in Algorithm 1.
The stopping condition is either to find a legal coloring or to reach a predefined
time limit. In our experiments, most of the CPU time is spent by the local search
operator. Depending on the graph, a time limit is equivalent to a limit on the
number of local search iterations—which is a constant multiple of the number
of crossovers (step 2.A.2 and 2.A.3 are always performed together).

Algorithm 1. Evocol: Evolutionary Hybrid Algorithm for Graph Coloring

Input: the search space Ω
Result: the best configuration ever found
1. Initialize (randomly) parent population Pop = (I1, I2, . . . , I|Pop|)
2. While a stopping condition is not met

A. For i = 1 to p (p = number of offspring)
Repeat
1. (I1, I2, . . . , In)=SelectParents(Pop,n) /* n ≥ 2 */
2. Oi =Crossover(I1, I2, . . . In)
3. Oi =LocalSearch(Oi,maxIter)

Until AcceptOffspring(Pop,Oi)
B. Pop=UpdatePopulation(Pop,O1, O2, . . . , Op)

The performance of Evocol closely depends on several independent compo-
nents, most notably: the crossover operator (function Crossover), the popu-
lation management (functions AcceptOffspring and UpdatePopulation),
and the local search algorithm. The SelectParents and LocalSearch pro-
cedures are quite classical and we only briefly describe them.

The parent selection simply consists in choosing n different individuals uni-
formly at random from the population. Such a selection favors diversity of the
chosen parents in comparison with the roulette wheel or tournament selection
that favors the selection of the fittest individuals.

The LocalSearch procedure is an improved version of a classical Tabu
Search algorithm for graph coloring: Tabucol [12]. Basically, this algorithm itera-
tively moves from one coloring to another by modifying the color of a conflicting
vertex until either a legal coloring is found, or a predefined number of iterations
(i.e. maxIter = 100000) is reached. Each performed move (or color assignment)
is marked Tabu for a number of iterations referred to as the Tabu tenure T�;
in this manner, Tabucol cannot re-perform a move that was already performed
during the last T� iterations.

124 D.C. Porumbel, J.-K. Hao, and P. Kuntz

Numerous versions of this algorithm can be found in the literature, and one
of the most notable differences between them lies in the way they set the Tabu
tenure. In our case, T� = α ∗ f(C) + random(A) +

⌊

M
Mmax

⌋

, where α, A and
Mmax are predefined parameters, M is number of the last consecutive moves
that kept the fitness function constant, random(A) is a random integer in [1..A].
Concerning the parameters values, we use: α = 0.6, A = 10 (as previously
published in [7]), and Mmax = 1000. The last term is a new reactive component
only introduced to increment T� after each series of Mmax iterations with no
fitness variation. This situation typically appears when the search process is
completely blocked cycling on a plateau; an extended Tabu list can more easily
trigger the search process diversification that is needed in this case.

3 New Multi-Parent Crossover

As already indicated in [4,7], effective graph coloring crossovers can be designed
by considering a coloring as a partition of V (Definition 1). Here, we propose a
Multi-Parent Crossover (MPX) for k-coloring that collects in the offspring the
best color classes from several parents. To formally define the notion of “best
class”, each class in each parent receives a score based on two criteria: (i) the
number of conflicts (generated only by the class vertices) and (ii) the size of the
class. Note that, in comparison with other crossovers in the literature, MPX also
takes into account the class conflict number.

The MPX operator (see Algorithm 2) actually searches (Steps 2.A and 2.B)
for the largest class among those with the minimum class conflict number (i.e.
minimum number of conflicting edges in the class). After assigning the class
to the offspring (Step 2.C), it chooses the next best class and repeats. At each
step, all class scores are calculated only after erasing the vertices that already
received a color in the offspring (Step 2.A.1). It stops when k colors classes
are assigned and a simple greedy procedure then fills any remaining unassigned
vertex (Step 3).

The only risk of this crossover is to inherit most classes only from one parent,
especially if there is a (very fit) parent whose classes “eclipse” the others. How-
ever, the similarity between the offspring and the parents is implicitly checked
afterward by the AcceptOffspring procedure (see Section 4.2) that rejects
the offspring if it is too similar to any existing individual.

The complexity of MPX is O(k2 × n × |Ij
i |

2

) where |Ij
i | is the average class

size and n is the number of parents—the term k2 × n is due to the three

For/Foreach loops in step 2 and |Ij
i |

2

is due to step 2.A.2. Since |Ij
i | is

about |V |
k , this complexity is roughly equivalent to O(|V |2×n). In our practical

case n = 3, and thus, the crossover takes much less time than the maxIter =
100000 ≥ |V |2 iterations of the local search procedure (in which, each iteration
takes at least O(|V |)).

Notice that the authors of [5] report multi-parent crossover for the 3-coloring
problem. Contrary to MPX, their crossover operates on an order-based

Diversity Control and Multi-Parent Recombination 125

Algorithm 2. The multi-parent crossover MPX

Input: parents I1, I2, . . . , In

Result: offspring O
1. O =empty, i.e. start with no vertex color assigned
2. For currentColor= 1 To k

A. Foreach parent Ii ∈ {I1, I2, . . . , In}
Foreach color class Ij

i in Ii

1. Remove from Ij
i all vertices already assigned in O

2. conflicts = |{(v1, v2) ∈ Ij
i × Ij

i : (v1, v2) ∈ E}|
3. classSize = |Ij

i |
4. score[Ij

i] = conflicts×|V |-classSize
B. Set (i∗, j∗) = argmin(i,j)score[Ij

i]

C. Foreach v ∈ Ij∗
i∗

O[v] =currentColor
3. Foreach unassigned v ∈ O

O[v] =a color that generates the least number of conflicts

representation of colorings. Experimental results are reported on two small ran-
dom graphs of 90 vertices.

4 Population Management

It is well known that the population diversity is a key element of an effective
evolutionary algorithm [7, 16]. In fact, a low diversity constitutes a stopping
condition for numerous practical algorithms—it usually indicates a premature
convergence on poor solutions. By using a distance metric on the search space,
Evocol strictly controls diversity with two mechanisms:

– It rejects a new offspring if it is too close to an existing individual of the
population;

– It introduces a diversity criterion in the selection of the individuals to be
eliminated (diversity-based replacement strategy).

4.1 Search Space Distance Metric

Let us first describe the distance metric on which the diversity control is based.
We define the distance function between individuals IA and IB using the parti-
tion coloring representation (see Definition 1). As such, we view two colorings as
two partitions of V and we apply the following set-theoretic partition distance
(call it d): the minimum number of elements that need to be moved between
classes of the first partition so that it becomes equal to the second partition.
This distance was defined several times since the 60’s and the currently used
computation methodology was first described in the 80’s (see [3], or, more re-
cently [10]); it was also already used for graph coloring [7, 9].

126 D.C. Porumbel, J.-K. Hao, and P. Kuntz

The distance d(IA, IB) is determined using the formula d(IA, IB) = |V | −
s(IA, IB), where s denotes the (complementary) similarity function: the
maximum number of elements in IA that do not need change their class in order
to transform IA into IB . This similarity function reflects a structural similarity:
the better the IA classes can be mapped to the IB classes, the higher the value
of s(IA, IB) becomes; in case of equality, this mapping is an isomorphism and
s(IA, IB) is |V |. Both the distance and the similarity take values between 0 and
|V | and this is why we usually report them in terms of percentages of |V |.

To compute these values, we define the k × k matrix S with elements Sij =
|Ii

A ∩ Ij
B|; thus, s can be determined by solving a classical assignment problem:

find a S assignment (i.e. a selection of S cells with no two cells on the same row or
column) so that the sum of all selected cell values is maximized. This assignment
problem is typically solved with the Hungarian algorithm of complexity O(k3)
in the worst case. However, in our practical application, there are very few
situations requiring this worst-case time complexity. We did not observe any
significant slow-down caused by distance computations; the most time consuming
procedure is still the local search.

4.2 Offspring Reject Mechanism

As we are committed to maintaining population diversity, we insert an offspring
in the population only if its distance to each existing individual is greater than a
predefined threshold; denote it by R. Consequently, if an offspring O is situated
at a distance of less than R from an individual I, the AcceptOffspring pro-
cedure (see Algorithm 1) either (i) rejects O or, (ii) directly replaces I with O if
f(O) ≤ f(I) (i.e. if O is better than I). However, in both cases, a new offspring
is generated by starting with the parent selection—see the Repeat-Until loop
in step 2.A of Algorithm 1.

The only delicate issue in the application of this simple mechanism is to
determine a suitable R value. Let us denote by SR(I) the closed sphere of radius
R centered at I, i.e. the set of individuals I ′ ∈ Ω such that d(I, I ′) ≤ R. If
I is a local minimum, an appropriate value of R should imply that all other
local minima from SR(I) share important color classes with I, i.e. they bring no
new information into the population (or they are structurally related to I). We
have to determine the maximum value of R such that all local minima, that are
structurally unrelated to I, are situated outside SR(I).

Since all individuals in the population are local minima obtained with Tabu
Search, we determine R from an analysis of its exploration path. Consider this
classical scenario: start from an initial local minima I0, and let Tabu Search visit
a sequence of neighboring colorings as usually; we denote by I0, I1 ,I2, . . . IN all
visited individuals satisfying f(Ii) ≤ f(I0) (∀i ∈ [1..N]). After recording all
these individuals up to N = 40000, we computed the distance for each pair
(Ii, Ij) with 1 ≤ i, j ≤ N and we constructed a histogram to show the number
of occurrences of each distance value.

This histogram directly showed that the distribution of the distance value is
bimodal, with numerous occurrences of small values (around 5%|V |) and of some

Diversity Control and Multi-Parent Recombination 127

much larger values. This provides evidence that the I ′is are arranged in distant
groups of close points (clusters); the large distances correspond to inter-cluster
distances and the small ones to intra-cluster distances. If we denote a “cluster
diameter” by Cd, we can say that Cd varies from 7%|V | to 10%|V | depending on
the graph, such that: (i) there are numerous pairs (i, j) such that d(Ii, Ij) < Cd,
(ii) there are very few (less than 1%) pairs (i, j) such that Cd < d(Ii, Ij) < 2Cd

and, (iii) there are numerous occurrences of some larger distance values.
To determine a good value of R, it is enough to note that any two local minima

situated at a distance of more than 10%|V | (approximately the highest possible
Cd value) are not in the same cluster—because (ideally) they have some different
essential color classes. We assume that this observation holds on all sequences
of colorings visited by Tabu Search and we set the value of R to 10%|V | for all
subsequent runs.

4.3 Diversity-Based Replacement Strategy

The UpdatePopulation procedure determines which existing individual is
eliminated for each offspring that needs to be inserted. While most previous
algorithms take into account only the fitness values of the population (e.g. by
replacing the least fit individual), we also take interest into the population diver-
sity. To control diversity, this procedure encourages the elimination of individuals
that are too close to some other individuals; in this manner, it gets rid of small
distances in the population.

Generally speaking, the procedure (see Algorithm 3 bellow) selects two very
close individuals that candidate for elimination and only the least fit of them is
eliminated. The first candidate C1 is chosen by a random function using some
fitness-based guidelines (via the AcceptCandidate function). The second can-
didate C2 is chosen by introducing the following diversity criterion: C2 is the
closest individual to C1 respecting the same fitness-based guidelines as C1.

The AcceptCandidate function makes a distinction between the first half
of the population (the individuals with a fitness value lower than the median),
the second half of the population and the best individuals. As such, this func-
tion always accepts a candidate Ci for elimination if Ci belongs to the second
half, but it accepts Ci only with 50% probability if Ci belongs to the first half.
Only the best individual is fully protected; it can never become a candidate for
elimination—unless there are too many best individuals (more than half of the
population) in which case any individual can be eliminated. As such, the role
of the first half of the population is to permanently keep a sample of the best
individuals ever discovered. The first half of the population stays quite stable in
comparison with the second half that is changing very rapidly.

5 Experimental Results

The experimental studies are carried out on the most difficult instances from
the well-known DIMACS Benchmark [13]: (i)dsjcA.B—classical random graphs

128 D.C. Porumbel, J.-K. Hao, and P. Kuntz

Algorithm 3. The replacement (elimination) function

Input: population Pop = (I1, I2, . . . , I|Pop|)
Result: the individual to be eliminated
1. Repeat

C1 = RandomIndividual(Pop)
Until AcceptCandidate(C1) (fitness-based acceptance)

2. minDist = maximum possible integer
3. Foreach I ∈ Pop− {C1}

If d(I,C1) <minDist
If AcceptCandidate(I)
• minDist = d(I,C1)
• C2 = I

4. If f(C1) < f(C2)
Return C2

Else
Return C1

with unknown chromatic numbers (A denotes |V | and B denotes the density),
(ii)le450.25c and le450.25d—the most difficult ”Leighton graphs” with |V | =
450 and χ = 25 (they have at least one clique of size χ), (iii)flat300.28 and
flat1000.76—the most difficult ”flat” graphs with χ denoted by the last num-
ber (generated by partitioning the vertex set in χ classes, and by distributing
the edges only between vertices of different classes), (iv) r1000.1, r1000.5 and
dsjr500.5—random geometric graphs, generated by picking points (vertices) uni-
formly at random in the square and by adding edges between each two vertices
situated within a certain distance, (v) C2000.5—a very large graph (2.000 ver-
tices and 1.000.000 edges).

We report in Table 1 the general results1 obtained by Evocol with the following
settings: |Pop| = 15 (population size), n = 3 (number of parents), p = 3 (num-
ber of offspring constructed each generation), maxIter = 100000 (the maximum
number of iterations of the Tabu Search procedure), R = 10%|V | (the sphere
radius, the minimum imposed distance between two individuals in the popula-
tion). For each important value of k, this table reports the success rate over 10
independent runs (Column 3), the average number of generations required to
solve each problem (Column 4), the average number of crossovers (Column 5)
and the average CPU time in seconds (last column). The reported times are
measured on a 2.8GHz Xeon processor using the C++ programming language
compiled with the −O3 optimization option (gcc version 4.1.2 under Linux).

The total number of local search iterations is in close relation with the number
of crossovers because the local search procedure (with maxIter = 100000) is
applied once for each crossover. The algorithm performs at least p = 3 crossovers
per generation, but it can perform many more (e.g. for the dsjc500.1 instance)

1 The best colorings reported in this paper are publicly available at: www.info.univ-
angers.fr/pub/porumbel/graphs/evocop/

Diversity Control and Multi-Parent Recombination 129

Table 1. The results of Evocol with a CPU time limit of 5 hours. The algorithm finds
most of the best known solutions with a success rate of more than 50% (see Column
3)—the minimal value of k for which a solution was ever reported in the literature (i.e.
k∗) is given in the parentheses of Column 1.

Graph (best known k) k successes/runs generations crossovers time[s]
dsjc250.5 (K∗ = 28) 28 10/10 9 33 20
dsjc500.1 (K∗ = 12) 12 10/10 96 1573 928
dsjc500.5 (K∗ = 48) 48 10/10 258 827 1428
dsjc500.9 (K∗ = 126) 126 10/10 222 985 1804
dsjc1000.1 (K∗ = 20) 20 8/10 301 3350 4688
dsjc1000.5 (K∗ = 83) 84 10/10 274 839 4729

83 6/10 798 2722 13251
dsjc1000.9 (K∗ = 224) 225 10/10 268 857 4328

224 8/10 500 1702 8487
le450.25c (K∗ = 25) 26 10/10 1 3 2

25 7/10 1102 8232 5690
le450.25d (K∗ = 25) 26 10/10 1 3 2

25 5/10 650 4479 3152
flat300.28.0 (K∗ = 28) 31 10/10 16 56 44
flat1000.76.0 (K∗ = 82) 83 10/10 261 802 4539

82 5/10 583 1940 9956
r1000.1c (K∗ = 98) 98 7/10 80 1939 4591
r1000.5 (K∗ = 234) 248 10/10 326 1088 5368

247 8/10 524 1836 8698
246 7/10 448 1417 7497
245 3/10 682 2242 11049

dsjr500.5 (K∗ = 122) 125 10/10 265 1207 1764
124 6/10 612 3113 4508

C2000.5 (K∗ = 153) 152 5/5 380 1163 27262a

151 4/5 433 1368 32520a

a Only for this very large graph, we used an exceptional time limit of 10 hours.

if many offspring are rejected by the AcceptOffspring procedure—see more
discussions in the next section.

6 Discussion

In this section, we investigate the algorithm evolution, placing a special emphasis
on the number of parents (in the recombination) and on the diversity control.
Figure 1 compares the running profile of Evocol (i.e. the graph of the function
t
→ f∗(t), where t is the time and f∗(t) is the best known fitness value at
time t) for different values of the number of parents n. We first notice that
the two-parent recombination (n = 2) always gives poor results in comparison
with any value n > 2. This confirms that the multi-parent recombination has
more potential; however, it seems more difficult to determine which is the exact
optimum number of parents. We set n = 3 in this paper because this is the most
stable choice: it always produces reasonable results on all graphs—the choice
n = 7, even if it seems surprisingly competitive on some random instances, has
great difficulties in solving the Leighton graphs.

130 D.C. Porumbel, J.-K. Hao, and P. Kuntz

0 1000 2000 3000 4000 5000 6000

0
5

15
25

DSJC1000.5, K=85

Time (seconds)

Fi
tn

e
ss

 f

0 1000 2000 3000 4000 5000 6000

0
5

10
15

DSJC1000.5, K=86

Time (seconds)

Fi
tn

e
ss

 f

0 1000 2000 3000 4000 5000 6000

0
1

2
3

4
5

Le450.25, K=25

Time (seconds)

Fi
tn

e
ss

 f

Fig. 1. The running profile (i.e. the evolution of the fitness of the best individual in
the population) for several values of the number of parents: 3 parents (red, continuous
line), 5 parents (magenta, with long dashes), 7 parents (blue, with normal dashes), 2
parents (black, with very long dashes)

The population management also plays a very important role in the evo-
lution of the algorithm. In all situations from Figure 1 where the 7-parent
crossover operator is not effective, we observed that the AcceptOffspring
procedure rejects a very large proportion of the offspring. Table 1 shows im-
portant information on this issue: if we denote by g the number of genera-
tions and by c the number of crossovers, the number of rejected offspring is
c − 3g. As such, the probability to reject an offspring can vary from 0 (e.g. for
G = flat1000.76 and k = 83, we obtain c−3g

c = 802−3×261
802 ≈ 0.02) to 90% (e.g.

for G = r1000.1 c−3g
c = 1939−3×80

1939 ≈ 0.88). In the cases where the offspring re-
jection rate is high, the population management accounts for the most important
performance gain.

Diversity Control and Multi-Parent Recombination 131

7 Conclusions

We described a new hybrid evolutionary algorithm (Evocol) that distinguishes it-
self from other population-based heuristics by introducing a strict population di-
versity control and by employing a multi-parent recombination operator (MPX).
Compared with six state-of-the-art algorithms from the literature (see Table 2),
the results of Evocol are very encouraging. Evocol finds most of the best-known
colorings with at least 50% success rate (see also Table 1, column 3).

Table 2. Comparison of the best values of k for which a legal coloring is found by
Evocol (Column 3) and by the best algorithms (Columns 4-9). Column 2 reports
the chromatic number (? if unknown) and the best k for which a solution was ever
reported.

Graph χ, k∗ Evocol VSS PCol ACol MOR GH MMT
[11] [1] [8] [15] [7] [14]
2008 2008 2008 1993 1999 2008

dsjc250.5 ?, 28 28 − − 28 28 28 28
dsjc500.1 ?, 12 12 12 12 12 12 − 12
dsjc500.5 ?, 48 48 48 49 48 49 48 48
dsjc500.9 ?, 126 126 127 126 126 126 − 127
dsjc1000.1 ?, 20 20 20 20 20 21 20 20
dsjc1000.5 ?, 83 83 87 88 84 88 83 83
dsjc1000.9 ?, 224 224 224 225 224 226 224 225
le450.25c 25, 25 25 26 25 26 25 26 25
le450.25d 25, 25 25 26 25 26 25 26 25
flat300.28 28, 28 31 28 28 31 31 31 31
flat1000.76 76, 82 82 86 87 84 89 83 82

r1000.1c ?, 98 98 − 98 − 98 − 98
r1000.5 ?, 234 245 − 247 − 241 − 234

dsjr500.5 ?, 122 124 125 125 125 123 − 122
C2000.5 ?, 153a 151 − − − 165 − −

a This graph was colored with k = 153 [6] by first removing several independent sets.

Indeed, for 11 out of the 15 difficult graphs, Evocol matches the previously
best results: only for 3 DIMACS instances the results of Evocol are worse. For
the largest graph C2000.5, it is remarkable that Evocol manages to find a 151-
coloring (i.e. with 2 colors less than the best coloring known today) with a 4/5
success rate within 10 hours —for such a large instance, other algorithms might
need several days. Note that for most unlisted DIMACS instances, all modern
algorithms report the same k because these instances are not difficult; they can
be easily colored by Evocol using the same number of colors k reported by most
algorithms (like in the case k = 12 for dsjc500.1).

The general principles behind Evocol are quite simple and natural; moreover,
its practical implementation only consists in relatively lightweight programming
procedures. Nevertheless, it can quite quickly find the best known k-colorings
and leaves plenty of room for further development.

132 D.C. Porumbel, J.-K. Hao, and P. Kuntz

Acknowledgments. This work is partially supported by the CPER project ”Pôle
Informatique Régional” (2000-2006) and the Régional Project MILES (2007-
2009). We thank the referees for their useful suggestions and comments.

References

1. Blöchliger, I., Zufferey, N.: A graph coloring heuristic using partial solutions and a
reactive tabu scheme. Computers and Operations Research 35(3), 960–975 (2008)

2. Costa, D., Hertz, A., Dubuis, C.: Embedding a sequential procedure within an
evolutionary algorithm for coloring problems in graphs. Journal of Heuristics 1(1),
105–128 (1995)

3. Day, W.H.E.: The complexity of computing metric distances between partitions.
Mathematical Social Sciences 1, 269–287 (1981)

4. Dorne, R., Hao, J.K.: A new genetic local search algorithm for graph coloring. In:
Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS,
vol. 1498, pp. 745–754. Springer, Heidelberg (1998)

5. Eiben, A.E., Raué, P.E., Ruttkay, Z.: Genetic algorithms with multi-parent recom-
bination. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS,
vol. 866, pp. 78–87. Springer, Heidelberg (1994)

6. Fleurent, C., Ferland, J.A.: Genetic and hybrid algorithms for graph coloring. An-
nals of Operations Research 63(3), 437–461 (1996)

7. Galinier, P., Hao, J.K.: Hybrid Evolutionary Algorithms for Graph Coloring. Jour-
nal of Combinatorial Optimization 3(4), 379–397 (1999)

8. Galinier, P., Hertz, A., Zufferey, N.: An adaptive memory algorithm for the k-
coloring problem. Discrete Applied Mathematics 156(2), 267–279 (2008)

9. Glass, C.A., Pruegel-Bennett, A.: A polynomially searchable exponential neigh-
bourhood for graph colouring. Journal of the Operational Research Society 56(3),
324–330 (2005)

10. Gusfield, D.: Partition-distance: A problem and class of perfect graphs arising in
clustering. Information Processing Letters 82(3), 159–164 (2002)

11. Hertz, A., Plumettaz, A., Zufferey, N.: Variable space search for graph coloring.
Discrete Applied Mathematics 156(13), 2551–2560 (2008)

12. Hertz, A., Werra, D.: Using tabu search techniques for graph coloring. Comput-
ing 39(4), 345–351 (1987)

13. Johnson, D.S., Trick, M.: Cliques, Coloring, and Satisfiability: Second DIMACS
Implementation Challenge. DIMACS series in Discrete Mathematics and Theoret-
ical Computer Science, vol. 26. American Mathematical Society, Providence (1996)

14. Malaguti, E., Monaci, M., Toth, P.: A Metaheuristic Approach for the Vertex
Coloring Problem. INFORMS Journal on Computing 20(2), 302 (2008)

15. Morgenstern, C.: Distributed coloration neighborhood search. In: [13], pp. 335–358
16. Sörensen, K., Sevaux, M.: MA—PM: Memetic algorithms with population man-

agement. Computers and Operations Research 33(5), 1214–1225 (2006)

C. Cotta and P. Cowling (Eds.): EvoCOP 2009, LNCS 5482, pp. 13–24, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Genetic Algorithm for Net Present Value Maximization
for Resource Constrained Projects

Mario Vanhoucke1,2

1 Ghent University, Faculty of Economics and Business Administration,
Tweekerkenstraat 2, 9000 Ghent, Belgium

2 Vlerick Leuven Gent Management School, Operations & Technology Management Centre,
Reep 1, 9000 Ghent, Belgium

mario.vanhoucke@ugent.be

Abstract. In this paper, we present a new genetic algorithm for the resource-
constrained project scheduling problem with discounted cash flows and investi-
gate the trade-off between a project’s net present value and its corresponding
makespan. We consider a problem formulation where the pre-specified project
deadline is not set as a hard constraint, but rather as a soft constraint that can be
violated against a certain penalty cost. The genetic algorithm creates children
from parents taken from three different populations, each containing relevant
information about the (positive or negative) activity cash flows. We have tested
various parent selection methods based on four crossover operators taken from
literature and present extensive computational results.

1 Introduction

Since the introduction of cash flows in project scheduling problems by [16], the
maximization of the net present value (npv) has gained increasing attention through-
out the literature. The majority of the contributions assume a completely deterministic
project setting, in which all relevant problem data (project activities, activity dura-
tions, the various cash flows, etc.) are assumed to be known. Numerous efforts aim at
providing exact or heuristic solutions to the project scheduling problem under various
types of resource constraints, using a rich variety of assumptions with respect to net-
work representation (activity-on-the-node versus activity-on-the-arc), cash flows
patterns (positive and/or negative cash flows; event-oriented or activity-based; time-
dependent and –independent cash flows; single-mode versus multi-mode formula-
tions; etc…), and resource constraints (capital constrained; different resource types;
materials considerations; time/cost trade-offs). In addition, a number of efforts focus
on the simultaneous determination of both the amount and timing of payments, known
as the so-called payment scheduling problem. For a recent extensive review of the
literature and a categorization of the solution procedures, we refer the reader to [12].

This paper presents a genetic algorithm to solve the single-mode resource-
constrained project scheduling problem with discounted cash flows (RCPSPDC),
which is an extension of the basic RCPSP within the presence of renewable resources
with a constant availability and where no activity pre-emption is allowed. This prob-
lem formulation aims at the construction of a resource feasible schedule subject to a

14 M. Vanhoucke

pre-specified (hard or soft) project deadline while maximizing the total net present
value of the (positive or negative) activity cash flows. We present a genetic algorithm
and investigate the relation between a project’s net present value and its correspond-
ing total duration or makespan, by testing the algorithm on a large and very diverse
set of problem instances.

In the remainder of this paper, we represent a project by an activity-on-the-node
network G = (N, A) where the nodes in the set N represent the project activities and
the arcs of set A the finish-start precedence relations with a time-lag of zero. The
activities are numbered from a dummy start node 0 to a dummy end node n + 1. Each
activity i has a duration di and its performance involves a series of cash flow pay-
ments and receipts throughout this duration. When cfit denotes the pre-specified cash
flow of activity i in period t of its execution, a terminal value ci upon completion can
be calculated by compounding cfit to the end of the activity as

∑ =
−= i i

d

t

td
iti ecfc

1

)(α with α the discount rate. Since we assume that all activity cash

flows occur at predefined time points during execution of the corresponding activity,
we exclude more general problem formulations with, for example, progress payments,
time-dependent cash flows or payments associated with events. If the non-negative
integer variable si represents the starting time of activity i, its discounted value at the

beginning of the project is)(ii ds
iec +−α . Each activity requires rik units of renewable

resource k which is available for the project within ak units.
Most RCPSPDC problems have been formulated within the presence of a hard pre-

specified project deadline. In this case, each project mush finish on or before this pre-
specified project deadline δn+1, and there is no violation possible whatsoever. This
problem formulation can be represented as m,1|cpm,δn+1,cj|npv following the classifi-

cation scheme of [7] or as PS|prec|∑ jCF
jC β following the classification scheme of

[3] and is known to be NP-hard. In the current paper, we relax this constraint and
allow a project deadline violation at a certain penalty cost. This allows the investiga-
tion of a trade-off between a project’s best net present value and its corresponding
makespan, which may be smaller than, equal to or larger than the pre-specified dead-
line. In literature, only a few research papers deal with the trade-off between cash
flow optimization and project makespan. An iterative forward/backward scheduling
algorithm has been proposed by [18] based on the principle of [8] which simultane-
ously optimizes the project duration and the net present value. This iterative for-
ward/backward generation scheme has been extended by [14] with a local constraint
based analysis which evaluates the resource and precedence constraints in determin-
ing the necessary sequence of conflicting activities fighting for the same resources.
Likewise, [13] use an iterative forward/backward scheduling algorithm while optimiz-
ing a project’s net present value and tardiness.

A conceptual formulation for the RCPSPDC considered in this paper can be given
as follows:

 Maximize)1(

1

1

0
1

)(1)1(++−

=

−

=
+

+− +∑ ∑ +− j
n

i

v

j

j
n

ds
i

nii erpec δαα (1)

 A Genetic Algorithm for Net Present Value Maximization 15

Subject to

 jii sds ≤+ Aji ∈∀),((2)

∑
∈

≤
)(tSi

kik ar k = 1, …, K and t = 1, …, max(sn+1,δn+1) (3)

 11 ++ ≤− nn vs δ (4)

where S(t) denotes the set of activities in progress in period]t - 1, t].
Eq. (1) maximizes the net present value of the project. A project’s total net present

value consists of the discounted value of all activity cash flows, decreased with the
unit penalty cost pn+1 ≥ 0 which increases at a penalty rate r for each additional period
that the project finishes later than the negotiated project deadline δn+1. Eq. (2) takes
the finish-start precedence relations with a time-lag of zero into account. The renew-
able resource constraints are satisfied thanks to eq. (3). Eq. (4) imposes a soft
pre-specified deadline to the project with a extra slack variable v allowing project
deadline violations.

The reader should note that the objective function of Eq. (1) optimizes both the net
present value and the project makespan, and can therefore be considered as a multi-
objective optimisation model. Recent state-of-the-art work on multi-objective optimi-
sation can be found in [1].

2 Genetic Algorithm

A genetic algorithm is a population based improvement heuristic in which an initial
set of solutions is gradually improved during the search process. In the project sched-
uling literature, an improvement heuristic does not operate directly on a schedule, but
on some indirect schedule representation (i.e. a schedule represented in a particular
way) which can be transformed into a project schedule using a schedule generation
scheme. The representation of a schedule can be done in various ways, among which
the random key (RK) and the activity list (AL) representation are the most common
ones [10]. In our genetic algorithm, we rely on a random key representation to repre-
sent each solution (i.e. schedule) as a point in a Euclidian space, so that mathematical
operations can be performed on its components during the child generation method.
For a critical discussion and the comparative analyses of the (dis)advantages of
the RK and AL representation, see [6]. A schedule generation scheme transforms
the encoded representation of a schedule into a resource feasible schedule following
the pre-defined principles of the scheme, among which the serial and the parallel
schedule generation schemes are the most widely known [9]. In our current manu-
script, we rely on the schedule generation approach of [21]. This generation scheme
aims at the construction of a resource feasible schedule and is a combination of the
well-known serial schedule generation scheme and an adapted version of the bi-
directional forward/backward generation scheme [17], and has been tested on a large
and diverse instance set under various conditions. Consequently, the constructed
schedules of our genetic algorithm have the following characteristics:

16 M. Vanhoucke

 The project schedule might end before, on or behind the pre-specified project
deadline: although the generation scheme approach aims at the construction of a
schedule that ends on or before the negotiated project deadline, it might fail to
meet the pre-specified project deadline (due to e.g. tight resources), and hence, a
project schedule with a longer makespan might be constructed.

 The objective function is the maximization of the net present value: the
generation scheme approach combines forward and backward steps, to incor-
porate the basic idea of the net present value maximization for positive and
negative cash flows.

 After each schedule generation, information from the obtained schedule is used
to transform the random key RK into a standardized random key (SRK) in order
to fulfil the topological order condition [20]. To that purpose, the genetic algo-
rithm replaces the original RK values by the starting times of each activity to
obtain the SRK values.

The algorithmic details of the different components of the genetic algorithm can be
represented by the following the pseudo-code:

 Algorithm Genetic Algorithm
 Initialize pool of random solutions
 Construct three populations
 While Stop Criterion not met
 Parent selection method
 Child generation method
 Fitness evaluation method
 Mutation method
 Update population
 End While

Initialize pool of random solutions. The algorithm creates an initial pool of solution
elements by randomly generating random key (RK) vectors and constructing the cor-
responding schedule using the generation approach presented in [21].

Construct three populations. The algorithm creates three different populations con-
taining solutions ranked according to its corresponding total net present value of
(a subset of) its activities, as follows:

 Population 1 contains solution elements ranked according to decreasing values
of the net present value of the activities with a positive cash flow. Since the net
present value of all positive cash flows is always positive, we refer to this popu-
lation set as set P+.

 Population 2 contains solution elements ranked according to decreasing (nega-
tive) net present values of the negative cash flow activities. This population set
is referred to as set P-.

 Population 3 contains solution elements ranked according to decreasing values
for the total net present value of the project (taking all activities with positive
and negative cash flows into account). Since this set contains the best solutions
for each generation run, we refer to this set as set Pb.

 A Genetic Algorithm for Net Present Value Maximization 17

Note that the net present values of solutions from set P+ and set P- are only calculated
on a subset of activities, without taking the penalty cost into account. The net present
values for solutions of the set Pb, on the contrary, are calculated for all project activi-
ties, decreased with a penalty cost when violating the project deadline.

Parent selection method. The parent selection method can consist of various solution
elements from identical and/or different subpopulations. In the algorithm, we have
implemented the parent selection based on selections of the three population sets as
given in Fig. 1. The set Pb consists of the |Pb| best solutions for each generation run,
and plays a central role in the parent selection method. Each population element
(i.e. the father) of this set is combined with three other randomly selected solution
elements (i.e. the mothers): (a) one solution element from the set P-, (b) one from the
set P+ and (c) one solution element from the same set as the father solution element
(Pb). Moreover, the algorithm also considers the combination of all solutions elements
from P- and P+, as shown in Fig. 1(d). In the computational results section, we test
alternative parent selection combinations and show that the selection approach of
Fig. 1 outperforms all others.

P- Pb P+

(a) (b)
(c)

Solution 1

Solution 2

Solution |P-|

(d)

Solution |Pb| Solution |P+|

Solution 1 Solution 1

Fig. 1. The parent selection method with a central population set Pb

Child generation method. The exchange of information between two parent
solutions based on a crossover operators results in child solutions and (hopefully)
improves the quality of both parents. In our genetic algorithm, we have implemented
and tested four different crossover operators, as follows:

The two-point crossover operator randomly selects two crossover points c1 ∈ [0,
Cmax / 2] and c2 ∈]Cmax / 2, Cmax] with Cmax the minimum of the makespans of both
parents. Two child solutions are constructed by exchanging all SRK values between
c1 and c2 between the parents. Activities that are not subject to a change are modified
in order to preserve the relative ranking of these activities. More precisely, they get an
SRK value equal to its original SRK value plus (minus) a large constant when its
original value is higher (lower) than c2 (c1).

The electromagnetic crossover operator is based on the principles proposed by [2]
and follows the law of Coulomb. The crossover operator calculates a charge as the
relative difference in objective functions between the two parent solutions compared
to the difference between the objectives of both parents to the best population element
of the subpopulation of each parent. Next, a force is calculated based on the calcu-
lated charges such that the parent solution with the lowest net present value is moved

18 M. Vanhoucke

towards the better parent. This attraction mechanism of the forces results in a modifi-
cation of (a subset of) the RK values of the parent solution with the lowest net present
value towards the other parent, and is a simplification of the attraction/repulsion
mechanism originally proposed by [2]. Details about the specific implementation of
the operators can by found in [5], who have successfully implemented the electro-
magnetic algorithm to solve the resource-constrained project scheduling problem.

The RUR based crossover operator calculates two crossover points t1 and t2 for the
mother solution based on resource information from the father solution, and runs as
follows: First, the algorithm calculates the resource utilization ratio (RUR) of the
father for each time instance t as the the average resource use for all activities active
at that time instance. Second, the algorithm calculates a time window [t1, t2[∈ [0,
Cmax] with a given randomly selected length l for which the sum of the RUR is maxi-
mal and with Cmax the minimal makespan of the father. Finally, the crossover operator
copies the father RK values of all activities starting in the interval [t1, t2[of the mother
solution, while the RK values of the remaining activities are copied from the mother.
This crossover operator is an adapted version of the peak crossover operator [19] and
has been implemented by [4] for the resource-constrained project scheduling problem.

The cash flow crossover operator combines information from both parents into a
single child solution based on the sign of the cash flows, and has been implemented in
two versions according to the origin of the subpopulation, as follows:

• Combination of two solutions within a population: the crossover operator scans all
SRK values of the father and the mother and copies the lowest (largest) SRK value
in to the child solution when the cash flow of the corresponding activity is positive
(negative). This approach aims at combining the best characteristics from two so-
lution elements and has been implemented in the scatter search algorithm of [21].

• Combination of two solutions from two separate populations: the crossover opera-
tor combines good elements from parents from different populations into a single
child solution. The good elements are defined as the RK values for the positive
(negative) cash flow activities for population set (P+) and P-. Hence, a combination
between P+ and P- results in a child for which all positive cash flow activities have
an RK value copied from P+ while the negative cash flow activities have an RK
value copied from P-. A child constructed from parents taken from P+ and Pb have
all RK values from P+ for the positive cash flow activities while the remaining RK
values come from Pb.

Fitness evaluation method. the net present value of the generated child solution is
calculated after construction of a resource-feasible schedule with the generation ap-
proach presented in the subroutine “Initialize pool of random solutions”. When the
project makespan exceeds the pre-defined project deadline, the net present value is
decreased by a discounted penalty cost as given in eq. (1).

Mutation method. The mutation method diversifies the population to avoid the crea-
tion of a set of homogeneous population elements. Each time a mutation is performed,
the algorithm randomly swaps a small fraction of the SRK values to obtain a new
SRK vector. Computational results revealed that less than 10% of the SRK values
need to be swapped to lead to the best results.

 A Genetic Algorithm for Net Present Value Maximization 19

Update population. The newly obtained child solutions replace the parent solutions
in the subset P+, Pb and P-, as follows. First, the Pb subset contains the best found
solutions during each generation run, and hence, a parent solution is only replaced by
a newly generated child solution if the parent is not the currently best found solution
so far. In doing so, we prevent the loss of high quality solutions. Second, all solution
elements of the subsets P+ and P- are automatically replaced by their best generated
child solutions, even if this leads to a deterioration of the net present value, as long as
the newly obtained solution has not yet been incorporated in the Pb subset. In doing
so, we prevent duplication of solution elements among subsets. This is particularly
important for problem instances where most activity cash flows have the same sign
(positive or negative). In this case, the best solution elements of the Pb subset are very
similar to the solutions of the P- (in case of many negative cash flows) or the P+ (in
case of many positive cash flows) subset, which only takes the negative or positive
cash flows into account during the net present value calculation.

The various crossover operators are illustrated on a project network example dis-
played in Fig. 2 with a pre-specified project duration of δn+1 = 15, an interest rate α =
0.01 and a fixed resource availability for a single renewable resource a1 = 5. Fig. 2
also displays a father solution (left) and a mother solution (right). We have run the
GA without penalty cost, but instead we have assigned a large positive cash inflow (a
lump sum cash inflow of 300) at the dummy end node, which gives the genetic algo-
rithm an incentive to finish the project earlier than infinity.

1 2 4 7 11

5 8 10

3 6 9

0

0

2

1,-20

4

4,-160

4

3,-120

1

1,-10

0

0, 300

4

4, 160

3

4,-120

2

2, 40

1

1,-10

1

1, 10

i

di

ri1, ci

1 2 4 7 11

5 8 10

3 6 9

0

0

2

1,-20

4

4,-160

4

3,-120

1

1,-10

0

0, 300

4

4, 160

3

4,-120

2

2, 40

1

1,-10

1

1, 10

i

di

ri1, ci

i

di

ri1, ci

22

33

44
66 99

55

77

88 1010

Time

Resource consumption

5 10 15

5

4

3

2

1

5

4

3

2

1

∑(RUR) = (8*4 + 2*5) / 5 = 8.4

c1 c2

t1 t2

SRK = [0, 9, 0, 13, 13, 2, 18, 17, 6, 18, 19]
net present value = 53.83
penalty = 4 days

2

3

4
6 9

5
78 10

Time

Resource consumption

5 10 15

5

4

3

2

1

SRK = [0, 0, 2, 8, 8, 4, 14, 12, 12, 13, 15]
net present value = 50.75
penalty = 0 days

t1 t2

2

3

4
6 9

5
78 10

Time

Resource consumption

5 10 15

5

4

3

2

1

SRK = [0, 0, 2, 8, 8, 4, 14, 12, 12, 13, 15]
net present value = 50.75
penalty = 0 days

22

33

44
66 99

55
7788 1010

Time

Resource consumption

5 10 15

5

4

3

2

1

5

4

3

2

1

SRK = [0, 0, 2, 8, 8, 4, 14, 12, 12, 13, 15]
net present value = 50.75
penalty = 0 days

t1 t2t1 t2

Fig. 2. An example network with two parent solutions (schedules)

The two-point crossover operator randomly selects the crossover points c1 = 2 en c2
= 12 from the interval [0, 9] and [10, 19], respectively, and generates a new RK vec-
tor as [0 - Δ, 0, 0 - Δ, 13 + Δ, 13 + Δ, 4, 18 + Δ, 17 + Δ, 12, 18 + Δ, 19 + Δ], with Δ a
large constant to preserve the relative ranking. The RUR based crossover randomly
selects a length l = 10 from the interval [0, 19] and calculates the maximal total RUR
value on the parent solutions resulting in two crossover point t1 = 5 en t2 = 15. The
constructed RK vector equals [0 - Δ, 0 - Δ, 2 - Δ, 13, 13, 4 - Δ, 18, 17, 6, 18, 15 + Δ].

20 M. Vanhoucke

The application of the two crossover operations results in a new child solution given
in Fig. 3 (left). The electromagnetic crossover can not be illustrated on this simple
example, since information about the objectives of all population elements is needed
to calculate the charges for the father and mother solutions. The general philosophy is
that the resulting charges will change a subset of the mother solution (lowest net pre-
sent value) such that the RK values are modified towards the RK values of the father
solution (highest net present value). The cash flow based crossover copies the RK
values from the mother based on cash flow information, resulting in the RK vector
equal to [0, 9, 2, 13, 8, 2, 18, 17, 12, 13, 15] (under the assumption that both
parent solutions come from the same subset). The new child solution is displayed in
Fig. 3 (right).

22

33

44
66 99

55

77

88 1010

Time

Resource consumption

5 10 15

5

4

3

2

1

5

4

3

2

1

SRK = [0, 0, 2, 11, 11, 4, 16, 15, 8, 16, 17]
net present value = 43.67
penalty = 2 days

22

33

44
66 99

55

77

88 1010

Time

Resource consumption

5 10 15

5

4

3

2

1

5

4

3

2

1

SRK = [0, 6, 0, 13, 13, 2, 18, 17, 10, 18, 19]
net present value = 53.85
penalty = 4 days

Fig. 3. The child solutions obtained by the two-point crossover, RUR based crossover and EM
crossover (left) and the cash flow based crossover (right)

3 Computational Tests

We have coded the genetic algorithm in Visual C++ 6.0 and performed computational
tests on a Dell Dimension DM051 with a Pentium D with a 2.80 GHz processor. Sev-
eral algorithmic parameters have been fine-tuned to the best found values based on
computational results on a small randomly generated dataset containing 1,000 in-
stances with up to 100 activities. Computational results revealed that a distance-based
mutation approach outperforms a random mutation approach. Hence, the algorithm
only uses the mutation method in case a child has been constructed from two not
mutually diverse parents. The algorithm calculates the distance between two parent
solutions as the sum of the differences of the standardized random key values for each
solution. We use a fixed minimal threshold value of n / 5 to distinguish between mu-
tually equal and mutually diverse parent solutions and the number of swaps has been
set fixed at n / 3 for each mutation. The population size has been set to 250 and the
search has been truncated after 5,000 generated schedules. This population sizes is
split into three disjoint subsets with each a population size of |P-|, |P+| and |Pb| (where
|P-| + |P+| + |Pb| is equal to the size of the total population). In all our computational
tests, we have set the size of the subset Pb to a value equal to 65% of the population
size. The remaining part is divided between subsets P- and P+, according to the per-
centage negative (for set P-) and positive (for set P+) cash flow activities in the project
network.

Table 1 displays the results of the tests where all possible combinations of parent
selection methods (see Fig. 1) and the four crossover operators of the child generation
method have been tested. We have tested our algorithm on the N25 dataset presented

 A Genetic Algorithm for Net Present Value Maximization 21

in [21] which can be downloaded from www.projectmanagement.ugent.be/npv.php
which contains 180 problem instances with varying levels for the order strength OS
[11] and the resource constrainedness RC [15]. . We extended these instances with
activity cash flows where 0%, 25%, 50%, 75% or 100% of the activities have a nega-
tive cash flow and with four varying project deadlines from Cmax * (1 + 5%) to Cmax *
(1 + 20%) in steps of 5%. We have extended each problem instance with two penalty
costs: 10 + 10% (low) and 100 + 20% (high). Consequently, we test 180 * 5 * 4 * 2 =
7,200 project instances in total.

Table 1. Computational results for various combinations of parent selection and child genera-
tion methods

TPC CFC EMC RUC TPC CFC EMC RUC

× 10.70% 0.73% 11.42% 10.25% 11.57% 0.81% 12.38% 11.08%
× 10.54% 0.61% 11.41% 9.97% 11.41% 0.66% 12.35% 10.79%

× 11.70% 0.84% 12.53% 11.37% 12.65% 0.93% 13.57% 12.29%
× 10.86% 1.23% 12.31% 11.67% 11.77% 1.35% 13.34% 12.64%

× × 11.34% 1.18% 11.79% 10.36% 12.26% 1.27% 12.78% 11.21%
× × 11.25% 0.48% 11.94% 10.71% 12.18% 0.52% 12.94% 11.58%
× × 11.80% 0.82% 12.20% 11.36% 12.77% 0.89% 13.21% 12.30%

× × 10.92% 0.38% 11.62% 10.08% 11.83% 0.40% 12.60% 10.93%
× × 10.58% 0.19% 11.72% 10.07% 11.46% 0.20% 12.70% 10.88%

× × 11.95% 1.10% 12.41% 11.64% 12.96% 1.24% 13.46% 12.59%
× × × 11.24% 0.34% 11.81% 10.41% 12.15% 0.36% 12.81% 11.27%
× × × 11.08% 0.15% 11.90% 10.60% 11.98% 0.17% 12.91% 11.48%
× × × 11.53% 0.42% 12.27% 11.32% 12.49% 0.46% 13.30% 12.27%

× × × 10.64% 0.00% 11.69% 10.04% 11.53% 0.00% 12.67% 10.87%
× × × × 11.24% 0.61% 12.10% 11.02% 12.16% 0.66% 13.12% 11.92%

Avg. Dev. 11.16% 0.61% 11.94% 10.73% 12.08% 0.66% 12.94% 11.61%

Penalty = high

P
- ×

P- an
d

P+ ×
P

+

P
b ×

Pb

P
- ×

P+

P- ×
P

b
an

d
P+

×
Pb

Penalty = low

Table 1 displays the results for each penalty setting as an average deviation from
the best average solution found by a particular combination of parent selection/child
generation methods. The table clearly shows that the cash flow based crossover
operator outperforms all other crossover operators for all child generation methods.
Moreover, the table also reveals that the best parent selection method consists of a
combination of all subpopulations, as presented in Fig. 1. However, the other cross-
over operators that do not take cash flow information into account perform best under
a single population genetic algorithm, where only the best found solutions are saved
in the population set.

Fig. 4 shows partial results of a large computational experiment where each set of
solutions has been split up by network structure (OS) and resource tightness (RC).
The average best found solutions have been displayed for each (OS, RC) combination
(9 combinations in total), split up in the net present value excluding the penalty cost
(y-axis) and the total amount of days exceeding the Cmax (x-axis), and under three
different settings for the %Neg and two penalty cost settings. The figure shows the
intuitively clear result that a higher penalty cost leads to a lower project makespan
and project delays (above the Cmax) occur more often when the number of negative
cash flows increases.

The table shows a clear positive effect between a project’s net present value and its
corresponding RC value when %Neg >=50. Indeed, projects with low RC value have

22 M. Vanhoucke

relative low lead times, and hence, can not fully benefit from the delay of negative
cash flow activities. Hence, in order to obtain high net present values, the project lead
time need to be increased a lot compared to the minimal project makespan Cmax, re-
sulting in a huge extra penalty cost. However, projects with a high RC value have a
relatively high lead time, which automatically delays the negative cash flow activities
resulting in a higher net present value. Hence, no large penalty cost need to be sub-
stracted compared to the minimal makespan Cmax to obtain a relatively good (positive)
net present value. A similar, but opposite effect can be observed for project instances
with %Neg = 20%. In these cases, low RC value instances have low project deadlines,
which is beneficial for the net present value of positive cash flows.

%
N

eg
=

 2
0%

%
N

eg
=

 5
0%

%
N

eg
=

 8
0%

Penalty = low Penalty = high

(0.75;0.25)

(0.25;0.25)

(0.25;0.50)

(0.25;0.75)

(0.50;0.25)

(0.50;0.50)

(0.50;0.75)

(0.75;0.50)
(0.75;0.75)

-1000

-800

-600

-400

-200

0

200

400

600

0 5 10 15 20 25

(0.75;0.25)

(0.25;0.25)

(0.25;0.50)

(0.25;0.75)

(0.50;0.25)

(0.50;0.50)

(0.50;0.75)

(0.75;0.50)

(0.75;0.75)

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

0 5 10 15 20 25

(0.75;0.25)

(0.25;0.25)

(0.25;0.50)

(0.25;0.75)

(0.50;0.25)

(0.50;0.50)

(0.50;0.75)

(0.75;0.50)

(0.75;0.75)

-1200

-1000

-800

-600

-400

-200

0

200

400

0 0.5 1 1.5 2 2.5 3

(0.75;0.25)

(0.25;0.25)

(0.25;0.50)

(0.25;0.75)

(0.50;0.25)

(0.50;0.50)

(0.50;0.75)

(0.75;0.50)

(0.75;0.75)

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

0 0.5 1 1.5 2 2.5 3

(0.75;0.25)

(0.25;0.25)

(0.25;0.50)

(0.25;0.75)

(0.50;0.25)

(0.50;0.50)

(0.50;0.75) (0.75;0.50)(0.75;0.75)

3000

3500

4000

4500

5000

5500

0 0.5 1 1.5 2 2.5 3 3.5

(0.75;0.25)

(0.25;0.25)

(0.25;0.50)

(0.25;0.75)

(0.50;0.25)

(0.50;0.50)

(0.50;0.75)
(0.75;0.50)

(0.75;0.75)

3000

3500

4000

4500

5000

5500

0 0.2 0.4 0.6 0.8 1 1.2

Fig. 4. The net present value (excl. penalty cost) versus the number of days above Cmax
(Each dot number represents a (OS, RC) value)

 A Genetic Algorithm for Net Present Value Maximization 23

The influence of the OS follows a similar reasoning, although less outspoken. Pro-
ject instances with %Neg = 20 show that lower OS values result in higher net present
values as an immediate result of the relatively low project deadlines. A similar, but
opposite effect can be observed for project instances with %Neg ≥ 50% and RC = 25
project instances: larger OS value instances have more precedence relations resulting
in a larger project deadline. In case of negative cash flows (%Neg ≥ 50%), this has a
beneficial effect on the net present value. However, all other instances (i.e. %Neg ≥
50 and RC > 25) show a reverse OS effect: in these cases, the high resource tightness
(RC > 25) automatically results in larger project deadlines (and higher corresponding
net present values), and the positive influence of high OS values on the project dead-
line is no longer relevant. In these cases, lower OS values results in project instances
with more scheduling degrees of freedom, allowing the postponement of negative
cash flows further in time within the project duration. Note that the y-axis of Fig. 4
displays a project’s net present value without the penalty cost. However, in order to
detect which (OS, RC) combination has the highest total net present value (including
the penalty cost), one can draw iso-npv lines (i.e. lines with identical total net present
values) with a slope equal to the penalty cost.

4 Conclusions

In this paper, we presented a genetic algorithm using three different subpopulations.
Each population sorts the individual solutions according to their corresponding net
present value for a subset of activities.

We have tested three crossover operators that perform well for the resource-
constrained project scheduling problem and compare them with a simple cash-flow
based crossover operator. This operator relies on (positive and/or negative) cash flow
characteristics and is based on the straightforward net present value philosophy, and
the specific implementation slightly differs in function of the combination of the sub-
populations. We also have tested various mutation operators and the influence of the
problem structure (measured by the order strength) and the resource tightness (meas-
ured by the resource constrainedness) on the total net present value of a project. The
computational results revealed that the combination of three populations outperforms
a classical genetic algorithm (with one population) and the cash flow crossover per-
forms far better than the other three operators.

References

1. Branke, J., Deb, K., Miettinen, K., Slowinski, R. (eds.): Multi-objective optimization: interac-
tive and evolutionary approaches. LNCS, vol. 5252, p. 470. Springer, Heidelberg (2008)

2. Birbil, S.I., Fang, S.C.: An electromagnetism-like mechanism for global optimization.
sssJournal of Global Optimization 25, 263–282 (2003)

3. Brücker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E.: Resource-constrained project
scheduling: notation, classification, models and methods. European Journal of Operational
Research 112, 3–41 (1999)

4. Debels, D., Vanhoucke, M.: A decomposition-based genetic algorithm for the resource-
constrained project scheduling problem. Operations Research 55, 457–469 (2007)

24 M. Vanhoucke

5. Debels, D., Vanhoucke, M.: The electromagnetism meta-heuristic applied to the resource-
constrained project scheduling problem. In: Talbi, E.-G., Liardet, P., Collet, P., Lutton, E.,
Schoenauer, M. (eds.) EA 2005. LNCS, vol. 3871, pp. 259–270. Springer, Heidelberg
(2006)

6. Debels, D., De Reyck, B., Leus, R., Vanhoucke, M.: A hybrid scatter
search/electromagnetism meta-heuristic for project scheduling. European Journal of Op-
erational Research 169, 638–653 (2006)

7. Herroelen, W., Demeulemeester, E., De Reyck, B.: A classification scheme for project
scheduling. In: Weglarz, J. (ed.) Project Scheduling – Recent Models, Algorithms and Ap-
plications. International Series in Operations Research and Management Science, vol. 14,
pp. 77–106. Kluwer Academic Publishers, Boston (1999)

8. Li, K.Y., Willis, R.J.: An iterative scheduling technique for resource-constrained project
scheduling. European Journal of Operational Research 56, 370–379 (1992)

9. Kolisch, R.: Serial and parallel resource-constrained project scheduling methods revisited:
theory and computation. European Journal of Operational Research 43, 23–40 (1996)

10. Kolisch, R., Hartmann, S.: Heuristic algorithms for solving the resource-constrained pro-
ject scheduling problem: classification and computational analysis. In: Weglarz, J. (ed.)
Project Scheduling – Recent Models, Algorithms and Applications, pp. 147–178. Kluwer
Academic Publishers, Boston (1999)

11. Mastor, A.A.: An experimental and comparative evaluation of production line balancing
techniques. Management Science 16, 728–746 (1970)

12. Mika, M., Waligora, G., Weglarz, J.: Simulated annealing and tabu search for multi-mode
resource-constrained project scheduling with positive discounted cash flows and different
payment models. European Journal of Operational Research 164, 639–668 (2005)

13. Özdamar, L., Ulusoy, G., Bayyigit, M.: A heuristic treatment of tardiness and net present
value criteria in resource-constrained project scheduling. International Journal of Physical
Distribution and Logistics 28, 805–824 (1998)

14. Özdamar, L., Ulusoy, G.: An iterative local constraint based analysis for solving the re-
source-constrained project scheduling problem. Journal of Operations Management 1996,
193–208 (1996)

15. Patterson, J.H.: Project scheduling: the effects of problem structure on heuristic schedul-
ing. Naval Research Logistics 23, 95–123 (1976)

16. Russell, A.H.: Cash flows in networks. Management Science 16, 357–373 (1970)
17. Selle, T., Zimmermann, J.: A bidirectional heuristic for maximizing the net present value

of large-scale projects subject to limited resources. Naval Research Logistics 50, 130–148
(2003)

18. Ulusoy, G., Özdamar, L.: A heuristic scheduling algorithm for improving the duration and
net present value of a project. International Journal of Operations and Production Man-
agement 15, 89–98 (1995)

19. Valls, V., Ballestín, F., Quintanilla, S.: A hybrid genetic algorithm for the Resource-
constrained project scheduling problem with the peak crossover operator. In: Eighth Inter-
national Workshop on Project Management and Scheduling, pp. 368–371 (2002)

20. Valls, V., Quintanilla, S., Ballestín, F.: Resource-constrained project scheduling: a critical
activity reordering heuristic. European Journal of Operational Research 149, 282–301
(2003)

21. Vanhoucke, M.: A scatter search heuristic for maximizing the net present value of a re-
source-constrained project with fixed activity cash flows. International Journal of Produc-
tion Research (2009) (to appear)

Divide-And-Evolve Facing State-of-the-Art
Temporal Planners during

the 6th International Planning Competition

Jacques Bibai1,2, Marc Schoenauer1, and Pierre Savéant2

1 Projet TAO, INRIA Saclay & LRI, Université Paris Sud, Orsay, France
firstname.lastname@inria.fr

2 Thales Research & Technology, Palaiseau, France
firstname.lastname@thalesgroup.com

Abstract. Divide-and-Evolve (DAE) is the first evolutionary planner
that has entered the biennial International Planning Competition (IPC).
Though the overall results were disappointing, a detailed investigation
demonstrates that in spite of a harsh time constraint imposed by the
competition rules, DAE was able to obtain the best quality results in a
number of instances. Moreover, those results can be further improved by
removing the time constraint, and correcting a problem due to completely
random individuals. Room for further improvements are also explored.

1 Introduction

An artificial intelligence planning problem is specified by the description of an
initial state, a set of desired goals to reach and a set of possible actions. An
action modifies the current state, and can be applied only if certain conditions
in the current state are met. A solution to a planning problem is an ordered set
of actions forming a valid plan, whose execution in the initial state transforms
it into a state where the problem goals are satisfied. In temporal planning prob-
lems a given goal is reached by taking a number of durative actions which may
temporally overlap.

Although researchers have investigated a variety of methods for solving the
temporal planning problems submitted to the biennial International Planning
Competition (IPC) since 1998 (e.g. extended planning graph: TGP [13], LPG
[6,7]; reduction to linear programming: LPGP [8]; reduction to constraint pro-
gramming: CPT [14,15]; partitioning planning problems into subproblems by
parallel decomposition: SGPlan [3]), none of them rely on an evolutionary algo-
rithm. Recently, Divide-and-Evolve (DAE), an Evolutionary Planner was pro-
posed by the authors [11,12], and entered the IPC-6 competition, becoming, to
the best of our knowledge, the first evolutionary temporal planning system that
participated to such competition.

DAE hybridises evolutionary algorithms with classical planning methods by
dividing the initial problem into a sequence of subproblems, solving each sub-
problem in turn, and building a global solution from the subproblem solutions.

C. Cotta and P. Cowling (Eds.): EvoCOP 2009, LNCS 5482, pp. 133–144, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

134 J. Bibai, M. Schoenauer, and P. Savéant

This approach is both original and generic for the planning community. However,
the results of DAE in the IPC-6 competition were altogether disappointing, even
though it performed best on several problems.

In this paper, we investigate the reasons for such results, and propose sev-
eral ways to enhance DAE performances. Section 2 briefly introduces Temporal
Planning Problems (TPP); Section 3 details the Divide-and-Evolve approach,
representation, fitness function and variation operators; section 4 validates DAE
beyond [11,12] by presenting experimental results on previous IPC benchmarks;
Section 5 details the results of DAE during the IPC-6 competition, then proposes
some enhancements that are validated on the IPC-6 benchmarks.

2 Temporal Planning Problem

Domain-independent planners rely on the Planning Domain Definition Language
(PDDL) [10], inherited from the STRIPS model [4], to standardise and represent
a planning problem. It was developed mainly to make the International Planning
Competition (IPC) series possible. The planning competition compares the per-
formance of candidate planners on a set of benchmark problems, thus requiring
a common language for specifying them. The language has been extended for
representing temporality and action concurrency in PDDL2.1 [5].

The description of a planning problem splits in two separate parts: the generic
domain theory on one hand and a specific instance scenario on the other hand.
The domain definition specifies object types, predicates and actions which cap-
ture the possible moves, whereas the instance scenario declares the objects of
interest, the initial state and the goal description. A state is described by a set of
atomic formulae, or atoms. An atom is defined by a predicate symbol from the
domain followed by a list of object identifiers: (PREDICATE NAME OBJ1 ...
OBJN). The initial state is complete, i.e. it gives a unique status of the world,
whereas the goal is only partial and can be true in many different states. An
action is composed of a set of preconditions and a set of effects, and applies to a
list of variables given as arguments. Preconditions are logical constraints which
apply domain predicates to the arguments an trigger the effects when they are
satisfied. Effects enable state translations by adding or removing atoms.

A solution to a temporal planning problem is a consistent schedule of grounded
actions whose execution in the initial state leads to a state where the problem
goal is satisfied. The total duration of the solution plan is called the makespan
and its minimisation is the usual objective of the optimisation.

A planning problem defined on domain D with initial state I and goal G will
be denoted PD(I, G) in the following.

3 Divide-And-Evolve

Divide-and-Evolve (DAE) is an evolutionnary computation technique that
searches the space of state decompositions [11,12]. In order to solve a planning
problem PD(I, G), the basic idea is to find a sequence of states S1, . . . , Sn, and to

Divide-And-Evolve Facing State-of-the-Art Temporal Planners 135

use some ’local’ planner to solve the series of planning problems PD(Sk, Sk+1),
for k ∈ [0, n] (with the convention that S0 = I and Sn+1 = G). The con-
catenation of the plans solving all subproblems is then a plan that solves the
original global problem. The rationale is that all sub-problems PD(Sk, Sk+1) can
be made simpler for the local planner than the original problem PD(I, G), thus
allowing DAE to find solutions of instances that the local planner alone can-
not solve. Very preliminary validation on the IPC-3 zeno benchmarks validated
this idea in [11,12]. However, many improvements have been brought to DAE
since those early results, and, more importantly, comparison of DAE results with
state-of-the-art planners remained to be done.

We shall now present DAE, specifically detailing the problem-specific repre-
sentation and associated initialisation and variation operators, as well as the
fitness function.

3.1 Representation

Following the rationale above, an individual in DAE is a sequence of states. And
as described in Section 2, a state is a list of boolean atoms. However, searching
the space of complete states would result in a very fast combinatorial explosion
of the search space size. Moreover, goals of TPPs need only to be defined as
partial states. It thus seemed practical to search only sequences of partial states.
However, this raises the issue of the choice of the atoms to be used to represent
individuals, among all possible atoms. The choice made in the first versions of
DAE [11,12] was to use only the predicates that appear in the goal – this variant
of DAE will be termed DAE1 in the following. Another option is to use the
results of the grounding step of CPT, that generates all possible atoms, and to
choose the predicates (at most 3) that are more frequent. This variant is termed
DAE2 in the following.

Nevertheless, even when restricted to specific choices of atoms, the choice of
random atoms can lead to inconsistent partial states, because some sets of atoms
can be mutually exclusive (mutex in short). Whereas it could be possible to allow
mutex atoms in the partial states generated by DAE, and to let evolution discard
them, it seems more efficient to a priori forbid them, as much as possible. Because
the embedded planner CPT computes and maintains a list of all mutex pairs of
atoms, it is thus possible to exclude such pairs a priori, even though this still
does not guarantee that the partial state is consistent – but determining if a
state is consistent amounts to solving the complete planning problem!

An individual in DAE is hence represented as a variable length ordered list
of partial states, and each state is a variable length list of atoms involving only
predicates that are present in the goal G that are not pairwise mutex.

3.2 Fitness, and CPT

The fitness of a list of partial states S1, . . . , Sn is computed by repeatedly calling
a local planner to solve the sequence of problems PD(Sk, Sk+1) (k = 0, . . . , n).
Any existing planner could be used here, and DAE uses CPT, an exact planning

136 J. Bibai, M. Schoenauer, and P. Savéant

system for temporal STRIPS planning. CPT combines a branching scheme based
on Partial Order Causal Link (POCL) Planning with powerful and sound pruning
rules implemented as constraints [14,15].

For any given k, if CPT succeeds in solving PD(Sk, Sk+1), the final complete
state is computed, and becomes the initial state of next problem: initial states
need to be complete (and denoting each problem as PD(Sk, Sk+1) is indeed
an abusive notation). If all problems, PD(Sk, Sk+1) are solved by CPT, the
individual is called feasible, and the concatenation of all solutions plans for all
PD(Sk, Sk+1) is a global solution plan for PD(S0 = I, Sn+1 = G). However,
this plan can in general be optimised by parallelising some of its actions, in a
step call compression (see [2,12] for detailed discussion). The fitness of a feasible
individual is the makespan of the compressed plan.

However, as soon as CPT fails to solve one PD(Sk, Sk+1) problem, the fol-
lowing problem PD(Sk+1, Sk+2) cannot be even tackled by CPT, as its complete
initial state is in fact unknown, and no makespan can be given to that individual.
All such plans receive a fixed penalty cost such that the fitness of any infeasible
individual is higher than that of any feasible individual. In order to nevertheless
give some selection pressure toward feasible individuals, the relative rank of the
first problem that CPT fails to solve is added to the fixed penalty, so infeasible
individuals which solve the more subproblems are favoured by selection.

Finally, because the initial population contains randomly generated individu-
als, some of them might contain some subproblems that are in fact more difficult
than the original global problems. Because CPT can sometimes take months to
solve very difficult problems, it was necessary to limit the maximal number
of backtracks that CPT is allowed to use to solve any of the subproblems. And
because, ultimately, it is hoped that all subproblems will be easy to solve, such
limitation should not harm the search for solutions – though setting this limit
might prove difficult (see Section 5.1).

3.3 Initialisation and Variation Operators

The initialisation of an individual is the following: First, the number of states
is uniformly drawn between one and the number of atoms in the goal of the
problem, divided by the number of atoms per state; the number of atoms per
state is chosen uniformly in [1, 4]. Atoms are then chosen one by one, uniformly
in the allowed set of atoms (i.e. built on the goal predicate in most results here),
and added to the individual if not mutex with any other atom already there
(thanks to CPT list of pairwise exclusions).

A 1-point crossover is used, adapted to variable-length representation in that
both crossover points are uniformly independently chosen in both parents.

Four different mutation operators have been designed, and once an individual
has been chosen for mutation (according to a population-level mutation rate),
the choice of which mutation to apply is made according to user-defined relative
weights (see Section 3.4). Two mutation operators act at the individual level, ei-
ther removing or inserting a partial state at a uniformly chosen position in the list,
and two act at the state level, removing or modifying an atom (while still avoiding

Divide-And-Evolve Facing State-of-the-Art Temporal Planners 137

pairwise mutex atoms) in a uniformly chosen partial state of the individual. A mu-
tation that adds an atom to an existing partial state was used in early experiments,
but soon was found to have no influence whatsoever on the results, and hence was
abandoned. The reason for that is probably that when a new partial-state is in-
serted in the individual, it is created using some atoms of its two neighbors, plus
some new atoms, thus bringing in diversity at the state level.

3.4 Evolution Engine and Parameter Settings

One of the main weaknesses of Evolutionary Algorithms today is the difficulty in
tuning their numerous parameters, for which there exist no theoretical guidelines.
Users generally rely on their previous experience on similar problems, or use
standard but expensive statistical methods, e.g. Design of Experiments (DOE)
and Analysis of Variance (ANOVA).

However, because there are here many parameters to tune, some of them were
set once and for all based on preliminary experiments [11,12]. This is the case
for the evolution engine, chosen to be a (10+70)-ES: 10 parents generate 70
offspring using variation operators, and the best of those 80 individuals become
the parents of the next generation. The same stopping criterion has also been
used for all experiments: after a minimum number of 10 generations, evolution is
stopped if no improvement of the best fitness in the population is made during
20 generations, with a maximum of 100 generations altogether.

The remaining parameters concern the variation operators: the probabili-
ties of individual-level application of crossover and mutation (pcross and pmut)
and the relative weights of the 4 mutation operators (waddStation, wdelStation,
wchangeAtom, wdelAtom). A two-stage DOE was used: first, the relative weights
were set to (4, 1, 4, 1) (from preliminary experiments), and an incomplete fac-
torial DOE was done on pcross and pmut on zeno 10-12 problems (11 runs per
parameter set). The differences were then validated using both Kolmogorov and
Wilcoxon non-parametric tests at 95% confidence levels. Three pairs for (pcross,
pmut) were found significantly better than the others, and another DOE on the 4
weights and those 3 pairs yielded the final setting: (0.25, 0.75) for (pcross, pmut),
and (35, 3, 35, 7) for the relative mutation weights.

4 Comparing DAE and CPT on IPC-3 Problems

This section presents experimental results that further validate the DAE ap-
proach beyond the initial results in [11] using several other domains from the
3rd International Planning Competition.

Significantly, DAE can solve several problems that CPT alone cannot. For
instance, for the zeno domain (not shown on the figure 1), DAE solved the
first 19 instances when CPT failed after instance 14. Same thing is true, though
not as clearly related to the instance number, for the satellite and drivers
domains, and to a lesser extent depot.

The other observation concerns the quality of the results, compared to the
optimal values found by CPT, an exact planner. For all instances of the rovers,

138 J. Bibai, M. Schoenauer, and P. Savéant

Fig. 1. Optimal makespans for CPT (1 month time limit) and DAE (best of 100 runs,
4000 backtracks limit) on depot, satellite, rovers and drivers IPC-3 domains.
Each column represents an instance of the domain.

zeno and drivers domains, DAE has found optimal values. For the satellite
and depot domains, DAE always found either the optimal value, or a best
makespan very close to the optimum (more than 93%). Moreover, when CPT
fails to find a solution, the values found by DAE are very close to (and sometimes
better than) those found by LPG [2].

5 DAE at the IPC-6 Competition

The International Planning Competition (IPC) is a biennial event organised
within the International Conference on Planning and Scheduling, aiming at
analysing and advancing the state-of-the-art in automated planning systems.
The experimental conditions imposed by this competition are very simple: all
planners have to solve several instances of different planning domains in a com-
pletely automated way, and within 30min of CPU time.

5.1 Maximal Number of Backtracks

Divide-and-Evolve entered the 6th edition in the deterministic track [1] with
DAE1 and DAE2, the two versions described in Section 3.1 (DAE1 uses the
predicates of the goal to represent the individuals, while DAE2 uses those having
the most instances amongst all possible atoms).

Whereas all parameters described in Section 3.4 were chosen as default, giving
a fixed value to the maximum number of backtracks allowed for CPT had two
possible major drawbacks: on the one hand, a too small limit could completely
prevent DAE from finding solutions even to problems that CPT alone could
solve (using more backtracks); on the other hand, a too large limit would allow
CPT to spend a lot of time on poor individuals in the early generations, slowing
down the evolution and forbidding any good solution to be found within the
30min limit.

Based on numerous experiments made on IPC-3 benchmarks, the maximum
number of backtracks allowed for CPT was set to a linear combination of the
ratio of the number of causal links plus the number of actions to the number of

Divide-And-Evolve Facing State-of-the-Art Temporal Planners 139

atoms generated by those actions, and the ratio of the number of nodes to the
number of conflicts:

bksstate = #Ga ∗ (
#nodes

#conflicts
+ 2 ∗ (

#causals + #actions

#atoms
)) (1)

where #Ga is the number of goal atoms, #causals the number of causal links,
#actions the number of actions and #atoms the number of atoms generated
after action grounding.

Further experiments have also demonstrated the need for more backtracks
when solving the last subproblem (reaching the global goal). Hence a specific
formula was designed for this case: bksgoal = 7 ∗ bksstate

5.2 Detailed DAE Results at IPC-6

Using the above automated parameter settings, the raw global result of DAE are
the 4th and 5th ranks among 6 participants. Those poor results can however be
refined when considered domain by domain: In two of the 6 domains, CPT could
not even complete its grounding step in less than 30min: in such domain, of
course, there is no hope that DAE can solve any of the instances. Furthermore,
though in the 4 other domains DAE could not solve all instances, it almost
always found a better makespan than SGPlan6, the winner of the competition,
on instances it did solve, as witnessed by Figures 2, 3, 4 and 5 for, respectively,
the peg solitaire, the openstack, the parcprinter and the crewplanning
domains.

Fig. 2. Results of CPT (black), DAE1 (downward lines), DAE2 (upward lines) and
SGPlan6 (the winner of the competition, white) on peg solitaire domain (one column
per instance) with IPC-6 conditions (30 min CPU per instance)

Surprisingly, however, DAE failed to solve instances that CPT alone could
solve, as peg 11 to 13 and 16 to 19, or parcprinter 7 to 15 (and even 3 to
5 for DAE2). First investigations of this strange behaviour showed that it was
not due to the time limit, nor to a too small value for the maximal number
of backtracks. It finally turned out that, for some of the random individuals of
the first generation, CPT entered some infinite loop. This is again a case where
Evolutionary Algorithms can be seen as “fitness function debuggers” [9].

140 J. Bibai, M. Schoenauer, and P. Savéant

Fig. 3. Results of CPT (black), DAE1 (downward lines), DAE2 (upward lines) and
SGPlan6 (the winner of the competition, white) on openstack domain (one column
per instance) with IPC-6 conditions (30 min CPU per instance)

Fig. 4. Results of CPT (black), DAE1 (downward lines), DAE2 (upward lines) and
SGPlan6 (the winner of the competition, white) on parcprinter domain (one column
per instance) with IPC-6 conditions (30 min CPU per instance)

Fig. 5. Results of CPT (black), DAE1 (downward lines), DAE2 (upward lines) and
SGPlan6 (the winner of the competition, white) on crewplanning domain (one column
per instance) with IPC-6 conditions (30 min CPU per instance)

5.3 A New Version of DAE

A patch was applied to CPT, and used within the DAE1 version, now termed
DAE-p. Note that this patch modifies CPT internal consistency check, and could
result in inconsistent plans. Hence all the solutions found by DAE-p were val-
idated with the IPC solution checker (http://planning.cis.strath.ac.uk/
VAL/), thus ensuring their consistency.

http://planning.cis.strath.ac.uk/
VAL/

Divide-And-Evolve Facing State-of-the-Art Temporal Planners 141

Fig. 6. Results of CPT (black), DAE1 (downward lines), DAE2 (upward lines) and
DAE-p (white) on peg solitaire domain (one column per instance). No time limit.

Fig. 7. Results of CPT (black), DAE1 (downward lines), DAE2 (upward lines) and
DAE-p (white) on openstack domain (one column per instance). No time limit.

Fig. 8. Results of CPT (black), DAE1 (downward lines), DAE2 (upward lines) and
DAE-p (white) on parcprinter domain (one column per instance). No time limit.

DAE-p was able to solve almost all instances of the 4 domains of the IPC-6
competition that CPT could handle, though demanding more than 30 min for
the large instances: See Figures 6, 7, 8, and 9 for the comparative results of CPT,
DAE1, DAE2 and DAE-p, and Figure 10 for examples of running times of the
new DAE-p algorithm, where the horizontal bars show the 30min limit of IPC-6
competition: even DAE-p would have failed to solve the most difficult instances
in the competition conditions.

5.4 Time-Based Atom Choice

Another conclusion that can be drawn from the results of IPC-6 (Section 5.2)
is that none of the planners DAE1 or DAE2 outperforms the other one. Indeed,

142 J. Bibai, M. Schoenauer, and P. Savéant

Fig. 9. Results of CPT (black), DAE1 (downward lines), DAE2 (upward lines) and
DAE-p (white) on crewplanning domain (one column per instance). No time limit.

Fig. 10. Run times (s) of DAE-p on openstack (left) and crewplanning (right) do-
mains. For each instance (column), the central box is the 25% – 75% quartile with
median bar, the end of the upper (lower) dashed lines indicate the highest (lowest) val-
ues that are not considered as outliers, while the circles outside these lines are outliers.

though DAE1 outperforms DAE2 on most instances (e.g. for parcprinter do-
main Figure 8, or for instances peg 5, 20 and 25 Figure 6), the reverse is true
on a large minority of other instances (e.g. crewplanning 24 Figure 9, peg 10,
14, 21, and 28 Figure 6). No satisfactory explanation could be found for this
unpredictable behaviour. However, it demonstrates the need for a very careful
choice of the atoms that are used to build the partial states.

This lead to propose a new method to actually build the partial states, based
on a lower bound on the earliest time an atom can become true. Such lower
bounds can easily be computed using a relaxation of the initial problem. The
time before the earliest time all atoms from the goal can become true is then
discretized into the number of partial states that are needed, and a partial state is
build at each value of this discretized time by randomly choosing atoms between
1 and the number of subset of mutex atoms that are possible true at this time.
Variations operators (cf. Section 3.3) are modified changed in order take into
account those earliest time for all atoms.

Divide-And-Evolve Facing State-of-the-Art Temporal Planners 143

Fig. 11. Results of CPT (black), DAE1 (downward lines), DAE2 (upward lines),
DAEnew (grey), and SGPlan6 (the winner of the competition, white) on openstack

domain (one column per instance) with IPC-6 conditions (30 min CPU per instance).
To be compared with Figure 3.

Preliminary results using this new algorithm, termed at the moment DAEnew,
can be seen on Figure 11, and should be compared to those of Figure 3: DAEnew

solves all instances up to instance 23, and clearly outperforms SGPlan6 – though
deeper and more intensive statistical tests are still on-going.

6 Conclusion and Further Work

Divide-and-Evolve is an original “memeticization” of Evolutionary and Opera-
tional Research algorithms in the area or Temporal Planning. A lot of progress
has been made since its original inception [11], and it has now reached a level of
performance high enough to be able to compete with the state-of-the-art plan-
ners of all kind.

First of all, DAE concept when using CPT as the embedded planner has been
validated on many benchmarks of both IPC-3 and IPC-6 competitions, as DAE
did solve many problems that CPT alone did not. Whereas this demonstrate the
ability of DAE to overcome the curse of time complexity, DAE still fails when
space-complexity is the issue, and CPT cannot even initialise the problem data.

DAE is the first evolutionary planner to have entered the IPC-6 competition,
where CPT allowed DAE to tackle 4 out of 6 domains. A very positive result
is that DAE gave a better makespan than SGPlan6, winner of the competition,
whenever it could find a feasible solution (i.e. reach the goal). Unfortunately,
there remained several instances that DAE could not solve – sometimes even
without the harsh time limit of the competition, and even on instances that
CPT alone could solve. This gave us an opportunity to detect a weird behaviour
of CPT, that is unlikely to take place with ’standard’ instances, but did happen
with the random initial individuals of some evolutionary runs. The patched ver-
sion of DAE was then able to solve most IPC-6 instances - though sometimes
requiring much more CPU time than allowed during the official runs.

But there is still room for large improvements for DAE. First, the choice of
the atoms that are used to represent individuals is still an open issue, and pre-
liminary experiments using more information from the planning domain are very

144 J. Bibai, M. Schoenauer, and P. Savéant

promising. But another critical parameter is the maximum number of backtracks
that we allow to CPT runs. The empirical formulae need to be refined, and this
puts some light on the more general issue of parameter tuning: what is needed
now are some descriptors of temporal planning instances, that would allow us
to learn the best parameters based on the instance description. Such promising
directions will be the subject of further research.

References

1. Bibai, J., Schoenauer, M., Savéant, P., Vidal, V.: DAE: Planning as Artificial
Evolution (Deterministic part). In: IPC 2008 Competition Booklet (2008)

2. Bibai, J., Schoenauer, M., Savéant, P., Vidal, V.: Evolutionary Planification by
decomposition. INRIA Research Report No. RT-0355 (2008),
http://hal.inria.fr/inria-00322880/en/

3. Chen, Y., Hsu, C., Wah, B.: Temporal Planning using Subgoal Partitioning and
Resolution in SGPlan. Artificial Intelligence 26, 323–369 (2006)

4. Fikes, R., Nilsson, N.: STRIPS: A New Approach to the Application of Theorem
Proving to Problem Solving. Artificial Intelligence 2(3-4), 189–208 (1971)

5. Fox, M., Long, D.: PDDL2.1: An Extension to PDDL for Expressing Temporal
Planning Domains. Journal of Artificial Intelligence Research 20 (2003)

6. Gerevini, A., Saetti, A., Serina, I.: Planning through Stochastic Local Search and
Temporal Action Graphs in LPG. Journal of Artificial Intelligence Research 20,
239–290 (2003)

7. Gerevini, A., Saetti, A., Serina, I.: On Managing Temporal Information for Han-
dling Durative Actions. In: LPG. AI*IA 2003: Advances in Artificial Intelligence.
Springer, Heidelberg (2003)

8. Long, D., Fox, M.: Exploiting a Graphplan Framework in Temporal Planning. In:
Proceedings of ICAPS 2003, pp. 51–62 (2003)

9. Mansanne, F., Carrre, F., Ehinger, A., Schoenauer, M.: Evolutionary Algorithms
as Fitness Function Debuggers. In: Raś, Z.W., Skowron, A. (eds.) ISMIS 1999.
LNCS, vol. 1609. Springer, Heidelberg (1999)

10. McDermott, D.: PDDL – The Planning Domain Definition Language (1998),
http://ftp.cs.yale.edu/pub/mcdermott

11. Schoenauer, M., Savéant, P., Vidal, V.: Divide-and-Evolve: a New Memetic Scheme
for Domain-Independent Temporal Planning. In: Gottlieb, J., Raidl, G.R. (eds.)
EvoCOP 2006. LNCS, vol. 3906, pp. 247–260. Springer, Heidelberg (2006)

12. Schoenauer, M., Savéant, P., Vidal, V.: Divide-and-Evolve: a Sequential Hybridis-
ation Strategy using Evolutionary Algorithms. In: Michalewicz, Z., Siarry, P. (eds.)
Advances in Metaheuristics for Hard Optimisation, pp. 179–198. Springer, Heidel-
berg (2007)

13. Smith, D., Weld, D.S.: Temporal Planning with Mutual Exclusion Reasoning. In:
Proc. IJCAI 1999, pp. 326–337 (1999)

14. Vidal, V., Geffner, H.: Branching and Pruning: An Optimal Temporal POCL Plan-
ner based on Constraint Programming. In: Proc. of AAAI 2004, pp. 570–577 (2004)

15. Vidal, V., Geffner, H.: Branching and Pruning: Optimal Temporal POCL Planner
based on Constraint Programming. Artificial Intelligence 170(3), 298–335 (2006)

http://hal.inria.fr/inria-00322880/en/
http://ftp.cs.yale.edu/pub/mcdermott

Exact Solutions to the Traveling Salesperson
Problem by a Population-Based Evolutionary

Algorithm�

Madeleine Theile

Institut für Mathematik, TU Berlin, Germany
theile@math.tu-berlin.de

Abstract. This articles introduces a (μ + 1)-EA, which is proven to
be an exact TSP problem solver for a population of exponential size.
We will show non-trivial upper bounds on the runtime until an optimum
solution has been found. To the best of our knowledge this is the first time
it has been shown that an NP-hard problem is solved exactly instead of
approximated only by a black box algorithm.

1 Introduction

Evolutionary algorithms (EA) are based on the principle of bio-inspired comput-
ing using principles like mutation, crossover, fitness of individuals and various
types of selection. Evolutionary algorithms together with other algorithm classes
like e. g. memetic algorithms and ant colony optimization algorithms belong to
the very general class of randomized search heuristics (RSH) (cf. [20] for an
introductory article). They enable an engineer to attack difficult optimization
problems in a straightforward manner as all of these algorithm classes consist of
a modular framework. Naturally, such generic approaches cannot compete with
a custom-tailored algorithm, which explicitely uses problem-specific knowledge.
Thus, it is not surprising that early hopes that RSH might make notoriously hard
problems become tractable did not fulfill. While most research on evolutionary
computation is experimental, the last ten years produced a growing interest in
a theory-founded understanding of the success of these algorithms.

The challenge to gain additional theoretical insights complementary to exper-
imental results is that RSH have not been designed with the aim to make them
analyzable in terms of runtime or solution quality. A theoretical understanding
of such methods - in contrast to experimental successes - is still in its infancy.
Although search heuristics are mainly applied to problems whose structure is
not well known, the analysis of evolutionary algorithms - as a starting point -
concentrates on problems whose structure is well understood. The recent years
produced some very nice theoretical results, mostly on convergence phenomena

� This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part
of the Collaborative Research Center ”Computational Intelligence” (SFB 531).

C. Cotta and P. Cowling (Eds.): EvoCOP 2009, LNCS 5482, pp. 145–155, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

146 M. Theile

and runtime analyses. But nevertheless the overall goal of these theoretical con-
siderations is to provide practitioners with insights of when and why randomized
search heuristics work well.

The problem we are dealing with in this article is to find optimal solutions to
the Traveling Salesperson Problem (TSP), which is well known to be NP-hard.
When faced with an NP-hard optimization problem the typical approach to
compute a solution is to find a polynomial algorithm which computes an approx-
imate solution. In the case of the general TSP dealing with arbitrary distances
between the cities of the input, it is not even possible to find an approxima-
tion algorithm1. Thus, the TSP is one of the hardest combinatorial problems to
tackle. Nevertheless, we will show, how it is possible to solve a given arbitrary
TSP instance by a population-based evolutionary algorithm in a non-trivial run-
time competitive to the best known upper bounds for the exact solution of the
problem.

1.1 Previous Work

There are some exact algorithms for the solution of the TSP based on linear
programming and dynamic programming, see [1], [10], which are typically not
the best algorithms in terms of performance. Consequently, there is still the need
for experimental solution of large TSP instances. This demand has produced a lot
of clever ideas using local optimization techniques, such as tabu search, particle
swarm and genetic algorithms (cf. [9], [14]). Possibly the most famous one is the
algorithmic scheme of Lin and Kernighan [12] which implements a variable k-opt
neighborhood in order to find good solutions to real-world instances. However,
there is a recent result proving for ”a family of Euclidean instances” that ”2-
opt can take an exponential number of steps”, see [4]. The last result shows
that there is always the need to theoretically understand the guarantees of any
practically successful heuristic.

Evolutionary Algorithms have been found to be efficient optimizers for a lot
of problems, see, e.g., the Proceedings of the conferences EvoCop, GECCO,
PPSN. Among the theory-driven results are combinatorial optimization prob-
lems which are typical components of real-world optimization problems like e. g.
sorting and shortest paths [19], spanning trees [17], maximum matchings [7],
matroids [18], all-pairs shortest path [3] and minimum cuts [15,16]. There are
also some results on evolutionary algorithms acting as approximation algorithms
for NP-hard problems like partition [21] and covering problems [6]. RSH in
their pure form are considered to be black box algorithms. This means that
they do not gain any explicit knowledge about the structure of the problem
instance. However, the analysis of a problem explicitely calls for the exploita-
tion of the problem structure. Thus, it is common to all of these articles that
they use structural knowledge of the problem gained by the analysis of classi-
cal algorithms to prove how a black-box algorithms is capable of solving the
problem.
1 Under the reasonable assumption of P �= NP.

Exact Solutions to the TSP by a Population-Based Evolutionary Algorithm 147

1.2 Our Contributions

In this article we will prove for the first time, that evolutionary algorithms -
in their classical sense of being black box algorithms - are able to act as exact
solvers for NP-hard problems. We will show how a population-based evolution-
ary algorithm is able to find an optimal solution to an arbitrary TSP instance
in non-trivial worst-case optimization time O(n3 · 2n) with a population of size
less than (n− 1) · 2n−1. I. e. we prove that the evolutionary algorithm is signifi-
cantly faster even in the worst-case than to search the whole search space of size
n! = 2Θ(n log n) in order to find an optimum solution. Clearly, this does not yield
a practical algorithm, but the aim of this article is to take the logical step from
analyzing evolutionary algorithms yielding exact solutions on ”easy” problems
in P to notoriously hard problems in NP .

The results will help to gain a deeper understanding of how evolutionary
algorithms can use the underlying structure of the problem to find an optimum
solution without knowing the structure of the problem itself. We find, that the
evolutionary algorithm is capable of acting as a randomized variant of a dynamic
program. Such a behavior has recently been proven in [3] based on a population-
based evolutionary algorithm, though the authors do not explicitely state it.

2 An EA for the TSP

In the traveling salesperson problem TSP we are given a set of cities v1, . . . vn and
a distance w(vi, vj) for each pair of cities vi, vj . The goal is to find an ordering π
of the cities that minimizes the total cost of the round-trip

∑n
i=1 w(vπ(i), vπ(j))+

w(vπ(n), vπ(1)). The input to the TSP problem induces a complete graph G =
(V, E) with V = {v1, . . . , vn} having weighted edges according to the distances
between cities.

The two problems Hamiltonian cycle and Hamiltonian path are two closely
related problems to the TSP. The task to find an Hamiltonian cycle in a given
graph is equivalent to finding a TSP tour in G regardless of its length. A Hamil-
tonian path in a given graph is a simple path having n − 1 vertices with each
vertex lying on the path exactly once.

The remainder of this section introduces all necessary modules of the (μ+1)-
EA for the solution of the TSP problem. The (μ + 1)-EA is finally defined in
section 2.4.

2.1 Individuals and Population

An individual x = (S, p) is defined on a set of vertices S ⊆ V \{v1} with a
dedicated vertex p taken from S. x is a permutation πS of the nodes from
S ∪ {v1} with πS(|S|) := p and πS(i) ∈ S. The TSP tour Cx on x is given by
Cx = (c0 = v1, c1 = vπ(1), . . . , ck = p, ck+1 = v1). That is, the tour starts in a
fixed vertex v1, then runs over all nodes from S\{p} in an arbitrary order ending
in a given vertex p before returning to vertex v1. The definition of the mutation

148 M. Theile

operator will make sure that only feasible individuals being Hamiltonian paths
on their specific ground set S are created.

The full population P consists of every possible individual x = (S, p) with
vertex set S ⊆ V \{v1} and vertex p ∈ S, i e. each individual represents a
Hamiltonian path on S. As there are exactly k · (n−1

k

)

individuals of size k,
for k ∈ {1, . . . , n − 1} the population has size μ =

∑n−1
k=1 k · (n−1

k

)

. We will use
μ ≤ (n− 1) · 2n−1 as an upper bound on the size of the population.

2.2 Fitness and Selection

A fitness function f : P → R assigns each individual a non-negative real value
which is called its fitness. The fitness of an individual x = (S, p) is given by the
weight of the Hamiltonian path f(x) := w(v1, vπ(1)) +

∑|S|−1
i=1 w(vπ(i), vπ(i+1)).

The individual is assigned a fitness +∞ if it does not represent a Hamiltonian
path.

The aim of the selection modules in an evolutionary algorithm is twofold.
First, individuals need to be selected from the population in order to be changed
by a variation operator (cf. line 2 of Algorithm 1). And second, the population
needs to be prevented from growing too large while at the same time the ”right”
individuals have to remain in the population (cf. line 12 and 13 in Algorithm 1).
In our case the selection operator will choose an individual from the population
uniformly at random for the application of the mutation operator. It will also
act as a diversity mechanism to ensure that each possible individual is contained
in the population at most once. For each pair x = (S, p) only the fittest will stay
in the population.

In fact this means that the second selection step (line 13 of algorithm 1) of the
(μ + 1)-EA only needs to compare the fitness of individuals which are identical
with respect to their ground set S and vertex p.

2.3 Mutation

A typical mutation operator changes the representation of an individual only
slightly. For example an individual which is represented by a bitstring of length
n is changed by flipping each bit uniformly at random with probability 1

n . This
is obviously not feasible for a path representation. However, the behavior of the
standard bit mutation can be simulated by a mechanism, that was proposed in
[19]. A number s is chosen at random according to a Poisson distribution with
parameter λ = 1, i. e. Pois(λ = 1). An elementary mutation is then applied s+1
times to an individual which has been selected. The mutation works as follows:
Let p ∈ V be the end vertex of the Hamiltonian path P of individual x = (S, p).
A node q is chosen uniformly at random from the set V \{v1}. If the edge (p, q) is
already contained in the path, remove it from the individual, otherwise append
it at the corresponding end of the individual. It is reasonable to use the Poisson
distribution with λ = 1 because it is the limit of the binomial distribution for
n trials each having probability 1

n in the bitstring model. Please note that the
mutation operator is able to insert a vertex into an individual which is already

Exact Solutions to the TSP by a Population-Based Evolutionary Algorithm 149

present and thus creating an infeasible individual. Such an individual will have
fitness +∞ as assigned by the fitness function. Producing infeasible individuals
does not pose a problem, because we will see later that there always is a mutation
creating a feasible individual.

2.4 (μ + 1)-EA

The aim of the optimization process is to minimize the fitness of individuals
having size n − 1. That is the optimization process has finished after every
individual ({v2, . . . , vn}, p) ∀p ∈ {v2, . . . , vn} has been minimized.

For the analysis of the optimization time of an evolutionary algorithm it is
important to note that we will only count the number of fitness evaluations, that
is the number of iterations of the algorithm. This is a common measure in the
algorithm community because it neglects the number of steps for the evaluation
of the problem-specific fitness function.

We now bring together the above defined modules in the definition of a con-
crete (μ + 1)-EA in Algorithm 1.

Algorithm 1. (μ + 1)-EA
1: Initialize the population P with μ different individuals x1, . . . , xμ with xi = (S, p),

S ⊆ V \{v1} and p ∈ S
2: while true do
3: Mutation
4: Select individual z = (S, v) ∈ P uniformly at random
5: Choose s := Pois(λ = 1) .
6: Generate new individual z′ = (S′, v′) by s + 1 times applying the
7: mutation operator
8: Selection
9: Let z′′ = (S′, v′) ∈ P be the individual defined on the same ground set having

the same end vertex if such an individual exists in the population
10: if w(z′) ≤ w(z′′) then
11: Add z′ to P and remove z′′ from P
12: end if
13: end while

In the first step of the algorithm the initialization of the population takes
places. In each iteration the evolutionary algorithm using only mutation selects
an individual uniformly at random. It then applies the above described mutation
operator by choosing a Poisson-distributed variable s.

The newly created individual z′ := (S′, v) is inserted into the population. But
as it is not reasonable to have more than one individual (S′, v) in the population,
the next selection step ensures the above discussed diversity by only keeping the
fitter individual in the population.

Formally this algorithm is an infinite loop, but we aim at the analysis of the
first time when the (n − 1) possible Hamiltonian paths on ({2, . . . , n}, p) with

150 M. Theile

p ∈ {2, . . . , n} have been minimized with respect to their fitness. Taking the
fittest individual we get an optimal solution of the TSP problem.

3 Analysis of the (μ + 1)-EA

In this section we show the worst case optimization time of the (μ + 1)-EA is
O(n3 · 2n) with probability at least (1 − eΩ(n))- this is also known to be ”with
overwhelming probability”.

The initialization of the population in step 1 of Algorithm 1 takes time O(n2 ·
2n) which is linear in the number of individuals and their size. This step of the
algorithm poses no problem in the proof of the runtime.

Proposition 1. The (μ + 1)-EA works correctly, that is it will always find an
optimal solution to the TSP problem.

Proof. After the initialization there is an individual in the population for ev-
ery possible pair (S, p), S ⊆ V \{v1} with p ∈ S. Due to the way the selec-
tion works in line 10 of Algorithm 1, there is always at least an individual
defined on a pair (S, p), and its fitness can never increase. An individual of op-
timal fitness OPT (S, p) is then defined by the Bellman principle OPT (S, p) =
min{OPT (S\{p}, q)+w(q, p), ∀q ∈ S\{p}}. Every path has the the so-called op-
timal substructure property, meaning that in order to have a Hamiltonian path
on (S, p) with minimal length, every sub-path also has to be a Hamiltonian path
of minimal length. Thus, starting with all optimal individuals ({2}, 2), . . . , ({n},
n), there always is a possibility to successively create optimal individuals defined
on larger subsets by the right mutation step. The overall optimal TSP tour can
easily be read off by taking an individual x∗ = arg minp∈{2,...,n} f(({v2, . . . , vn},
p)) + w(p, 1), for which the associated TSP tour is optimal. 	

Bounding the optimization time of the algorithm from above, we can make some
pessimistic assumptions on the way the algorithm works. An optimal individual
(S, p) of size |S| = k with (v0 = 1, v1, v2, . . . , vk−1, vk = p, vk+1 = 1) being
the associated Hamiltonian cycle can be created if the evolutionary algorithm
performs the following sequence of steps: At first individual ({v1}, v1) is chosen
in the selection step and then is extended in the mutation step by at least vertex
v2. The created individual ({v1, v2}, v2) is an optimal one with respect to the
set {v1, v2} with vertex v3 being the end vertex of the Hamiltonian path on
set {v1, v2}. This holds because it is a sub-path of the optimal Hamiltonian
path (v1, v2, . . . , vk−1, vk = p), that is we are using the optimal substructure-
property of paths. This procedure is repeated for the subsequent vertices until
the path has been created. The described procedure is again a pessimistic view
on the way the evolutionary algorithm is capable of optimizing an individual
of size k, because an individual can be extended by more than one vertex in a
mutation step.

The proof of the runtime will be based on mutations with s = 0 only, which
only slows down the considered process. For the proof we will need Chernoff

Exact Solutions to the TSP by a Population-Based Evolutionary Algorithm 151

bounds (cf. [13, Chapter 4]) and the Union Bound(cf. [13, Chapter 3.1]), which
we state here for reasons of simplicity.

Theorem 3.1. Let X1, . . . , Xt be mutually independent random variables with
Xi ∈ {0, 1} for all i ∈ {1, . . . , t}. Let X := X1 + . . . + Xn.

∀0 < δ < 1 : Pr(X < (1 − δ) · E(X))) < exp (
−E(X) · δ2

2
)

Theorem 3.2. Let E1, E2, . . . , En be arbitrary events.

Pr

(

n
⋃

i=1

Ei
)

≤
n

∑

i=1

Pr(Ei)

We will now upper bound the optimization time of all individuals of length k.
For this we look at the expected optimization time for an arbitrary but fixed
individual of length 2 ≤ k ≤ n − 1. We then find sharp bounds for the success
probability to optimize this individual within a given time-interval. This bound
in turn is used for a Union Bound argument, which bounds the overall failure
probability not to create all individuals of size 2 ≤ k ≤ n − 1 within the time
interval. Taking k = n− 1 leads to the wanted optimization time to compute an
optimal TSP tour.

Lemma 3.3. Let 2 ≤ k ≤ n − 1 be the size of the ground set S an individual
(S, p) is defined on. Then with probability at least (1 − eΩ(n)) all individuals of
size k are optimized with respect to their fitness in O(k ·n2 · 2n) iterations of the
(μ + 1)-EA.

Proof. To create an arbitrary but fixed individual (S, p) of size |S| = k with
associated Hamiltonian cycle (v0 = 1, v1, v2, . . . , vk = p, vk+1 = 1), the evolu-
tionary algorithm needs an expected number of O(k ·n2 ·2n) iterations. This can
be seen as follows: The algorithm needs to select the appropriate path of length
1 from the population and then choose an appropriate vertex for the extension
of the individual (and the associated path). The probability to select a specific
individual from the population is bounded below by 1

μ ≥ 1
(n−1)·2n−1 . The prob-

ability to choose a specific vertex for the extension is depending on the outcome
of the experiment to get s = 0 and then to choose the correct vertex out of at
most n− 1 vertices. The probability to have a mutation with s = 0 by definition
of the Poisson distribution with λ = 1 equals e−1. Thus, the probability to get
a successful extension is bounded below by 1

e·(n−1) . We call a successful muta-
tion of the type described above necessary. The probability to have a necessary
mutation is thus p := 1

e·(n−1)2·2n−1 Altogether the expected number of iterations
until the fitness of an element of size k has been optimized is upper bounded by
e · k · (n− 1)2 · 2n−1 = O(k · n2 · 2n).

We will now show that a time interval of O(k · n2 · 2n) suffices to optimize all
individuals of size k with probability at least (1− eΩ(n)).

152 M. Theile

By using Chernoff bounds we are able to bound the number of iterations
sharply around the expectation value. Let t := α · e · k · (n − 1)2 · 2n−1 with
α := c · n

k and c > 0 constant be the time interval the (μ + 1)-EA is given
to perform k necessary mutations. For every iteration i from within that time
interval define the random variable Xi ∈ {0, 1} to be Xi = 1 if a necessary
mutation has occurred in the i-th iteration of the algorithm. Then all the Xi are
mutually independent, and we have Pr[Xi = 1] = p. Let X := X1 + . . . + Xt,
then its expectation value is E[X] = t · p = c · n.

As argued above the algorithms needs at least k necessary mutations to cre-
ate an arbitrary but fixed optimal individual of size k. Thus, the algorithm will
fail to create this individual if X < k. We will now bound the associated fail-
ure probability Pr[x was not optimized within t steps] ≤ Pr(X < k) by using
Chernoff bounds. This is possible because the event that the considered x has
not been optimized within t iterations is composed of the conjunction of several
possibilities that the algorithm fails, among which X < k is just one.

Let δ := 1− k
E[X] and it holds that 0 < δ < 1 and 1 ≤ k ≤ n− 1.

Pr[X < k]
(1−δ)= k

E[X]= Pr[X < (1− δ)E[X]]

Theorem 3.1
< exp (−p · t ·

(

1− k

p · t
)2

· 2−1)

= exp (−
(

c · n− 2k +
k2

n

)

· 2−1)

≤ exp (−c · n
2

+ k)

≤ exp(−c′ · n)

Where in the last line we bounded c
2 + k by an appropriate constant c′ > c,

because k < n− 1 holds.
Now using Theorem 3.2 we can upper bound the probability, that one of the

� := k · (n−1
k

)

individuals x1, . . . , x� of size k is not optimized within t iterations.

Pr[x1 ∨ . . . ∨ x� not optimized within t iterations]

Theorem 3.2≤
�

∑

i=1

Pr[xi not optimized within t iterations]

≤
�

∑

i=1

exp (−c′ · n)

= k ·
(

n− 1
k

)

· exp (−c′ · n)

≤ exp (ln k + ln
(

(n− 1)k

k!

)

− c′ · n)

≤ exp (ln k + k ln(n− 1)− k ln k − c′ · n
≤ e−Ω(n)

Exact Solutions to the TSP by a Population-Based Evolutionary Algorithm 153

This term is dominated by exp (−c′ · n) for both cases of k = o(n) and k =
O(n).

We have shown, that the wanted optimization time is at most O(k · n2 · 2n)
with probability at least

(

1− eΩ(n)
)

. This finishes the proof. 	

For k = n we immediately get an upper bound of O(n3 · 2n) on the number of
iterations until all possible Hamiltonian paths have been optimized with over-
whelming probability.

Theorem 3.4. The (μ + 1)-EA finds all shortest Hamiltonian paths (S, p) with
S ⊆ V \{1} and p ∈ S in O(n3 · 2n) number of iterations with probability
(1− eΩ(n)).

4 Conclusions and Outlook

In this article we proved for μ ≤ O(n · 2n) that a (μ + 1)-EA is able to solve
a given TSP instance to optimality. The proven upper bound of O(n3 · 2n)
is competitive to the best-known upper bound of O(n2 · 2n) of the dynami-
cal programming approach. This was the first time it could theoretically be
shown that a black-box algorithm is able to solve an NP-hard problem to
optimality.

The importance of a theoretical result of this flavor is due to the fact that the
TSP is the classicalNP-hard combinatorial optimization problem with numerous
applications. Every algorithmic idea is sooner or later put to test on the TSP (cf.
[2, Chapter 4]). Many important techniques in integer and linear programming
were developed because they proved valuable for the solution of the TSP, as the
prototypical combinatorial optimization problem.

The development of practical algorithms for the solution of large TSP
instances is an important topic in combinatorial optimization. We pose the
question under which circumstances it is possible to speed up the proposed
evolutionary algorithm by the use of a crossover operator. Moreover, we con-
ducted some preliminary experiments which show that the EA is still able to
find the optimal solution to the given instance if the size of the population is
reduced - however, at the cost of an increased runtime. These questions will
be dealt with in the future by an experimental evaluation of the evolutionary
algorithm.

Acknowledgments

The author would like to thank Martin Skutella and Andreas Wiese for many
useful discussions.

This article is dedicated to the memory of Ingo Wegener.

154 M. Theile

References

1. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Implementing the dantzig-
fulkerson-johnson algorithm for large traveling salesman problems. Mathematical
Programming 97, 91–153 (2003)

2. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman
Problem: A Computational Study (2007)

3. Doerr, B., Happ, E., Klein, C.: Crossover can provably be useful in evolutionary
computation. In: GECCO 2008: Proceedings of the 10th annual conference on
Genetic and evolutionary computation, pp. 539–546. ACM, New York (2008)

4. Englert, M., Röglin, H., Vöcking, B.: Worst case and probabilistic analysis of the
2-opt algorithm for the TSP: extended abstract. In: Bansal, N., Pruhs, K., Stein,
C. (eds.) SODA, pp. 1295–1304. SIAM, Philadelphia (2007)

5. Forrest, S.: Genetic algorithms. ACM Computing Surveys 28, 77–80 (1996)
6. Friedrich, T., Hebbinghaus, N., Neumann, F., He, J., Witt, C.: Approximating

covering problems by randomized search heuristics using multi-objective models.
In: GECCO 2007: Proceedings of the 9th annual conference on Genetic and evolu-
tionary computation, pp. 797–804. ACM, New York (2007)

7. Giel, O., Wegener, I.: Evolutionary algorithms and the maximum matching prob-
lem. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 415–426.
Springer, Heidelberg (2003)

8. Giel, O., Wegener, I.: Maximum cardinality matchings on trees by randomized local
search. In: GECCO 2006: Proceedings of the 8th annual conference on Genetic and
evolutionary computation, pp. 539–546. ACM, New York (2006)

9. Goldbarg, E.F.G., de Souza, G.R., Goldbarg, M.C.: Particle swarm for the travel-
ing salesman problem. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2006. LNCS,
vol. 3906, pp. 99–110. Springer, Heidelberg (2006)

10. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems.
In: Proceedings of the 1961 16th ACM national meeting, pp. 71.201–71.204. ACM
Press, New York (1961)

11. Johnson, D.S., McGeoch, L.A.: The Traveling Salesman Problem: A Case Study
in Local Optimization, pp. 215–310. Wiley, Chichester (1997)

12. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the travelling-
salesman problem. Operations Research 21, 498–516 (1973)

13. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge (1995)

14. Nagata, Y.: Fast eax algorithm considering population diversity for traveling sales-
man problems. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2006. LNCS, vol. 3906,
pp. 171–182. Springer, Heidelberg (2006)

15. Neumann, F., Reichel, J.: Approximating minimum multicuts by evolutionary
multi-objective algorithms. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C.,
Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 72–81. Springer, Heidelberg
(2008)

16. Neumann, F., Reichel, J., Skutella, M.: Computing minimum cuts by randomized
search heuristics. In: Proc. of the 10th Genetic and Evolutionary Computation
Conference (GECCO 2008), pp. 779–786 (2008)

17. Neumann, F., Wegener, I.: Randomized local search, evolutionary algorithms, and
the minimum spanning tree problem. Theoretical Computer Science 378(1), 32–40
(2007)

Exact Solutions to the TSP by a Population-Based Evolutionary Algorithm 155

18. Reichel, J., Skutella, M.: Evolutionary algorithms and matroid optimization prob-
lems. In: Proc. of the 9th Genetic and Evolutionary Computation Conference
(GECCO 2007), pp. 947–954 (2007)

19. Scharnow, J., Tinnefeld, K., Wegener, I.: The analysis of evolutionary algorithms
on sorting and shortest paths problems. Journal of Mathematical Modelling and
Algorithms, 349–366 (2004)

20. Wegener, I.: Randomized search heuristics as an alternative to exact optimization.
In: Lenski, W. (ed.) Logic versus Approximation. LNCS, vol. 3075, pp. 138–149.
Springer, Heidelberg (2004)

21. Witt, C.: Worst-case and average-case approximations by simple randomized search
heuristics. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp.
44–56. Springer, Heidelberg (2005)

Finding Balanced Incomplete Block Designs
with Metaheuristics

David Rodŕıguez Rueda1, Carlos Cotta2, and Antonio J. Fernández2

1 Universidad Nacional Experimental del Táchira (UNET), Laboratorio de
Computación de Alto Rendimiento (LCAR), San Cristóbal, Venezuela

drodri@unet.edu.ve
2 Universidad de Málaga, ETSI Informática, Campus de Teatinos,

29071 Málaga, Spain
{ccottap,afdez}@lcc.uma.es

Abstract. This paper deals with the generation of balanced incomplete
block designs (BIBD), a hard constrained combinatorial problem with
multiple applications. This problem is here formulated as a combinato-
rial optimization problem (COP) whose solutions are binary matrices.
Two different neighborhood structures are defined, based on bit-flipping
and position-swapping. These are used within three metaheuristics, i.e.,
hill climbing, tabu search, and genetic algorithms. An extensive em-
pirical evaluation is done using 86 different instances of the problem.
The results indicate the superiority of the swap-based neighborhood, and
the impressive performance of tabu search. This latter approach is capa-
ble of outperforming two techniques that had reported the best results
in the literature (namely, a neural network with simulated annealing and
a constraint local search algorithm).

1 Introduction

The generation of block designs is a well-known combinatorial problem, which
is very hard to solve [1]. The problem has a number of variants, among which
a popular one is the so-called Balanced Incomplete Block Designs (BIBDs).
Basically, a BIBD is defined as an arrangement of v distinct objects into b blocks
such that each block contains exactly k distinct objects, each object occurs in
exactly r different blocks, and every two distinct objects occur together in exactly
λ blocks (for k, r, λ > 0). The construction of BIBDs was initially attacked in
the area of experiment design [2,3]; however, nowadays BIBD can be applied to
a variety of fields such as cryptography [4] and coding theory [5], among others.

BIBD generation is a NP-hard problem [6] that provides an excellent bench-
mark since it is scalable and has a wide variety of problem instances, ranging
from easy instances to very difficult ones. The scalability of the problem as well
as its difficulty make it an adequate setting to test the behavior of different
techniques/algorithms. As it will be discussed in Sect. 2.2, complete methods
(including exhaustive search) have been applied to the problem although this
remains intractable even for designs of relatively small size [7]. As a proof of

C. Cotta and P. Cowling (Eds.): EvoCOP 2009, LNCS 5482, pp. 156–167, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Finding Balanced Incomplete Block Designs with Metaheuristics 157

the difficulty of the problem, there currently exist a number of open instances
that have not been solved yet (of course, it might be the case that there is no
solution for them; then again, insolvability could not be established by complete
methods). The fact that, in the general case, the algorithmic generation of block
designs is an NP-hard problem [6] makes complete methods be inherently lim-
ited by the size of the problem instances. The application of metaheuristics thus
seems to be more appropriate to attack larger problem instances. This paper
provides some steps in this direction and demonstrates empirically that these
approaches (particularly, local search techniques) are effective methods in the
design of balanced incomplete blocks. More specifically, the paper describes two
local searchers –i.e., a steepest descent hill climbing (HC) algorithm and a tabu
search (TS)– and a genetic algorithm (GA), each of them with two variants. A
wide range of problem instances have been tackled by these metaheuristics, and
the results have been compared with two techniques found in the literature that
reported the best results [8,9]. In the following we will show that a particular TS
algorithm outperforms the remaining approaches and even can find solutions to
instances that the other methods could not solve.

2 Background

This section provides a brief overview of the problem, presents its classical for-
mulation, and discusses how it has been tackled in the literature.

2.1 Formulation

A standard way of representing a BIBD is in terms of its incidence matrix M ≡
{mij}v×b, which is a v × b binary matrix with exactly r ones per row, k ones
per column, a scalar product of λ between any pair of distinct rows, and where
mij ∈ {0, 1} is equal to 1 if the ith object is contained in the jth block, and 0
otherwise; in this context, mij represents the incidence of object i in block j of
M . A BIBD is then specified by five parameters 〈v, b, r, k, λ〉, i.e., a 〈v, b, r, k, λ〉-
BIBD consists of a set of v points that is divided into b subsets in such a way
that each point in v is contained in r different subsets and any couple of points
in v is contained in λ < b subsets with k < v points in each subset.

The five parameters defining a 〈v, b, r, k, λ〉−BIBD are related and satisfy the
following two relations: bk = vr and λ(v−1) = r(k−1). In fact, the corresponding
instance can be defined by just three parameters 〈v, k, λ〉 since b and r are given
in terms of the other parameters:

b =
v(v − 1)λ
k(k − 1)

r =
(v − 1)λ
k − 1

(1)

Clearly, these relations restrict the set of admissible parameters for a BIBD;
however, the parameter admissibility is a necessary condition but it is not suf-
ficient to guarantee the existence of a BIBD [10,11]. According to the Fisher’s
inequality theorem [12], b > v in any block design; the case b = v represents

158 D. Rodŕıguez Rueda, C. Cotta, and A.J. Fernández

0 0 0 1 0 1 1 1 0 0 0 1 1 1
1 1 0 1 1 0 1 0 0 1 0 0 0 1
0 1 1 1 1 1 0 0 1 0 0 0 1 0
0 0 0 0 1 1 1 1 1 1 1 0 0 0
1 0 1 0 1 1 0 0 0 0 1 1 0 1
0 1 0 0 0 0 0 0 1 1 1 1 1 1
1 1 1 0 0 0 1 1 1 0 0 1 0 0
1 0 1 1 0 0 0 1 0 1 1 0 1 0

0 1 0 1 0 1 0
1 0 0 1 0 0 1
1 1 1 0 0 0 0
0 0 1 0 0 1 1
0 1 0 0 1 0 1
1 0 0 0 1 1 0
0 0 1 1 1 0 0

Fig. 1. (Left) a 〈8, 14, 7, 4, 3〉−BIBD; (Right) a 〈7, 7, 3, 3, 1〉−symmetric BIBD

an special design called symmetric design. A direct consequence of a symmetric
design is that r = k. This kind of blocks are usually used with a maximum
order of v = b = 7, although this is not a strict requirement. Figure 1 shows
configurations of the incidence matrix M representing possible solutions to a
〈8, 14, 7, 4, 3〉−BIBD and a symmetric 〈7, 7, 3, 3, 1〉−BIBD, respectively.

2.2 Related Work

The BIBD problem has been tackled by a number of different techniques in the
literature, with different success. Traditionally, the problem was dealt via deter-
ministic, constructive and/or complete methods. For instance John et al. [13,14]
used mathematical programming methods to look for an optimal incomplete
block design. Also, Zergaw [15] considered the error correlation, and presented
a sequential algorithm for constructing optimal block designs. Following this
line of work, Tjur [16] incorporated interchange mechanisms via the addition of
experimental units (blocks) one by one. Flener et al. [17] proposed a matricial
model based on ECLIPSE to solve the problem of block generation. Also, con-
straint programming techniques have been used; this way, Puget [18] formulated
the problem as a constraint satisfaction problem (CSP) where each instance was
represented by a classical binary matrix of size v×b. Puget proposed to combine
methods for symmetry breaking via dominance detection and symmetry breaking
using stabilizers in order to solve the problem. Also, [19] explored two strategies
(namely, a heuristic for variable selection and a domain pruning procedure) for
exploiting the symmetry of the problem. The underlying idea in this work was
to use symmetries to guide the search for a solution. The objective of this work
was not solving specific instances but being effective in reducing search effort.
Be as it may, although all these methods can be used to design BIBDs, their
applicability is limited by the size of the problem instances. A survey of known
results can be found in [1].

Stochastic methods were also applied to the problem. For example, the gen-
eration of BIBDs is formulated in [8] as a COP tackled with a neural network.
Several optimization strategies were considered as relaxation strategies for com-
parative purposes. A simulated annealing algorithm endowed with this neural
network (NN-SA) was shown to offer better performance than an analogous hy-
bridization with mean field annealing. These results were further improved by
Prestwich [20,9], that considered different schemes for adding symmetry breaking
constraints inside a constrained local search (CLS).

Finding Balanced Incomplete Block Designs with Metaheuristics 159

In general, most of the proposals to generate BIBDs are focused in unsolved
problems and consider a small number of instances, and only a small number of
papers provide an extensive experimentation on a large set of instances. Among
these papers, the most interesting ones are [8,9,19]. To the best of our knowl-
edge, [9] provides the best results published in many instances of the problem
and therefore, represents the state-of-the-art in the generation of BIBDs. For
these reasons the NN-SA and CLS proposals will be later considered in the
experimental section of this paper for comparative purposes with the methods
described in this paper.

Let us finally mention that there exist other variants of the BIBD problem,
e.g., partially BIBDs, randomized block designs, pairwise balanced designs, reg-
ular graph designs, and maximally balanced maximally uniform designs, among
others [21,22,23,24]. Although in some cases metaheuristic approaches have been
used on some of them [25,26,27], to the best of our knowledge there exists no
previous literature on this line of attack for the BIBD problem we consider in
this work (save the SA approach mentioned before).

3 Solving the 〈v, b, r, k, λ〉-BIBD Problem

The BIBD problem exhibits a clear combinatorial structure, and can be read-
ily transformed in an optimization task. We have approached this challenging
resolution via two local search techniques (HC and TS) and a population-based
technique (GA), which will be described below. To this end, let us firstly define
the objective function, and possible neighborhood structures.

3.1 Objective Function

The generation of BIBDs is a CSP posed here as a COP. This is done by relaxing
the problem (allowing the violation of constraints) and defining an objective
function that accounts for the number and degree of violation of them. More
precisely, for the general case of the instance 〈v, b, r, k, λ〉, the following objective
function is defined:

f 〈v,b,r,k,λ〉(M) =
v

∑

i=1

φir(M) +
b

∑

j=1

φ′
jk(M) +

v−1
∑

i=1

v
∑

j=i+1

φ′′
ijλ(M) (2)

where

φir(M) =

∣

∣

∣

∣

∣

∣

r −
b

∑

j=1

mij

∣

∣

∣

∣

∣

∣

; φ′
jk(M) =

∣

∣

∣

∣

∣

k −
v

∑

i=1

mij

∣

∣

∣

∣

∣

; φ′′
ijλ(M) =

∣

∣

∣

∣

∣

λ−
b

∑

k=1

mikmjk

∣

∣

∣

∣

∣

(3)
Observe that, for a given incidence matrix M , the value returned by the objec-

tive function sums up all discrepancies with respect to the expected values of the
row constraints, column constraints and scalar product constraints. Obviously,
the aim is to minimize the value of the objective function. If the instance is sat-
isfiable, a global optimum is a configuration M∗ such that f 〈v,b,r,k,λ〉(M∗) = 0.

160 D. Rodŕıguez Rueda, C. Cotta, and A.J. Fernández

3.2 Neighborhood Structures

Two neighborhood structures are considered. The first one arises naturally from
the binary representation of solutions as the incidence matrix M . This neigh-
borhood is based on the Hamming distance, and will be denoted as bit-flip. Let
H(M1, M2) be the Hamming distance between two incidence matrices M1 and
M2; the bit-flip neighborhood is defined as Nbit−flip(M) = {M ′ | H(M,M’)=1}.
Clearly the size of this neighborhood is |Nbit−flip(M)| = vb, and the evalua-
tion of any M ′ ∈ Nbit−flip(M) requires the incremental re-computation (with
respect to the evaluation of M) of v + 1 constraints (i.e., 1 row constraint +
1 column constraint + v − 1 scalar products). Observe that evaluating a solu-
tion from scratch requires to compute exactly v + b + v(v − 1)/2 constraints,
and thus the complete exploration of the neighborhood can be assimilated to
neq = vb(v+1)

v+b+v(v−1)/2 full evaluations. This consideration will be useful in order
to provide a fair basis for comparing local search and population-based tech-
niques later on, i.e., by taking constraint checks as a measure of computational
effort. While this measure can admit several nuances, it is more informative than
the number of solutions generated, and more hardware-independent than, e.g.,
running time.

A second neighborhood structure –which we denote as swap– can be considered
as well. The underlying idea here is to take an object from one block, and move
it to a different one. This can be formulated in binary terms as permuting a 0
and a 1 within the same row. Notice that by doing so, if a configuration holds the
row constraint for a specific row, then all its neighbors will also hold it. The swap
neighborhood is defined as Nswap(M) = {M ′ | ∃!i, j, k : mij = m′

ik = 0, m′
ij =

mik = 1}. Clearly, the size of this neighborhood is |Nswap(M)| = vr(b− r), from
which the number of evaluations to explore the complete neighborhood can be
directly inferred. Note that row constraints do not have to be re-evaluated as
the number of 1’s per row remains constant. In any case, the impact of this con-
sideration is minimal since the computing effort is dominated by the quadratic
term in the denominator. Let us note as a final consideration that a symmet-
rical version of this latter neighborhood could be defined, substituting an ob-
ject by another different one within a block. Notice however that the objective
function is not symmetrical in this sense, and the cost of exploring this neigh-
borhood is higher (and it exhibits other difficulties when deployed on a GA,
as Nswap will be in Sect. 3.4). For this reason, it has not been considered in
this work.

3.3 Local Search Techniques

Two different versions of a hill climbing (HC) approach and a tabu search (TS)
algorithm were defined on the basis of the two neighborhood structures. These
are denoted as HCbf , HCsw, TSbf and TSsw respectively. Besides the obvious
differences in algorithmic aspects and neighborhood computation, there is an
additional consideration regarding the choice of neighborhood: since the swap
neighborhood does not alter the number of 1’s per row, if the initial solution

Finding Balanced Incomplete Block Designs with Metaheuristics 161

does not fulfill all row constraints no feasible solution will be ever found. Hence,
it is mandatory to enforce these constraints when generating the starting point
for a swap-based local search algorithm. Their bit-flip-based counterparts do not
require this, and can take a fully random solution as initial point for the search.
Nevertheless, the effect that such a guided initialization can have on these latter
algorithms has been empirically studied as well in Sect. 4.

The HC algorithms follow a steepest-descent procedure: the neighborhood of
the current solution is completely explored, and the best solution is chosen unless
this is worse than the current one; if this is the case, the current solution is a
local optimum, and the process is re-started from a different point (randomly
chosen) until the computational budget allocated is exhausted. Regarding the
TS algorithms, they also conduct a full-exploration of the current neighborhood,
moving to the best non-tabu neighbor even if it is worse than the current solution.
In the case of TSbf , a move is tabu if it modifies a specific bit mij stored in the
tabu list. Similarly, in the case of TSsw, a move is tabu if it attempts to reverse
a previous swap mij ↔ mik stored in the tabu list. To prevent cycling, the
tabu tenure –i.e., the number of iterations tabu move stays in the list– is chosen
randomly in the range [β/2, 3β/2], where β = vb in TSbf and β = vbr in TSsw.
The tabu status of a move can be overridden if the aspiration criteria is fulfilled,
namely, finding a solution better than the current best solution found so far.
After a number of nι evaluations (a parameter that we will set as a function of
the total number of evaluations) with no improvement, the search is intensified,
by returning to the best solution found so far.

3.4 Genetic Algorithm

Two versions of a steady state GA have been considered. Both of them use binary
tournament selection and replacement of the worst individual in the population.
They differ in the reproductive stage though. The first one, which we denote as
GAbf , is related to the bit-flip neighborhood, since it uses uniform crossover and
bit-flip mutation. The second one is denoted as GAsw , and is more related to
the swap neighborhood. To be precise, this latter algorithm performs uniform
crossover at row level (that is, it randomly selects entire rows from either of
the parents), and uses swap mutation. Obviously, this implies that the unitation
of each row is never changed, and therefore the initialization of the population
has to be done with solutions fulfilling all row constraints, as it was the case
with HCsw and TSsw. Again, this guided initialization can be optionally done
in GAbf , although it is not mandatory.

To keep diversity in the population, both GA variants ban duplicated solu-
tions, i.e., if an offspring is a copy of an existing solution it is discarded. Further-
more, a re-starting mechanism is introduced to re-activate the search whenever
stagnation takes place. This is done by keeping a fraction f% of the top individ-
uals in the current population, and refreshing the rest of the population with
random individuals. This procedure is triggered after a number of nι evaluations
with no improvement of the current best solution.

162 D. Rodŕıguez Rueda, C. Cotta, and A.J. Fernández

4 Experimental Results

The experiments have been done on 86 instances taken from [8,9] where vb �
1000 and k �= 3. This corresponds to the hardest instances reported therein,
since the cases where k = 3 were easily solvable. Table 1 shows the particular
instances considered, along with an identification label, and their solvability sta-
tus regarding the NN-SA [8] and CLS [9] algorithm. Although the data reported
in [9] is limited to the best result out of 3 runs of CLS per instance, it must be
noted that the number of instances solved by the latter algorithm is more than
3 times that of NN-SA.

All algorithms have been run 30 times per problem instance. To make the com-
parison with CLS as fair as possible, all runs of local search techniques are limited
to explore nν = 2·106 neighbors. This number correspond to the maximum num-
ber of backtrack steps (fixing one entry of the incidence matrix) performed by
CLS in [9]. The GAs consider the equivalent number of full evaluations in each
case (see Sect. 3.2). The number of evaluations without improvement to trigger
intensification in TS or re-starting in GA is nι = nν/10. Other parameters of the

Table 1. BIBD instances considered in this work, and their solvability status with
respect to the simulated annealing/neural network hybrid algorithm (NN-SA) in [8],
and the constrained local search algorithm (CLS) in [9]

ID v b r k λ vb NN-SA CLS ID v b r k λ vb NN-SA CLS
1 8 14 7 4 3 112 yes yes 44 25 25 9 9 3 625 no no
2 11 11 5 5 2 121 yes yes 45 15 42 14 5 4 630 no yes
3 10 15 6 4 2 150 yes yes 46 21 30 10 7 3 630 no no
4 9 18 8 4 3 162 yes yes 47 16 40 10 4 2 640 no yes
5 13 13 4 4 1 169 yes yes 48 16 40 15 6 5 640 no no
6 10 18 9 5 4 180 yes yes 49 9 72 32 4 12 648 no yes
7 8 28 14 4 6 224 yes yes 50 15 45 21 7 9 675 no no
8 15 15 7 7 3 225 yes yes 51 13 52 16 4 4 676 no yes
9 11 22 10 5 4 242 yes yes 52 13 52 24 6 10 676 no yes

10 16 16 6 6 2 256 yes yes 53 10 72 36 5 16 720 no yes
11 12 22 11 6 5 264 no yes 54 19 38 18 9 8 722 no no
12 10 30 12 4 4 300 yes yes 55 11 66 30 5 12 726 no yes
13 16 20 5 4 1 320 yes yes 56 22 33 12 8 4 726 no no
14 9 36 16 4 6 324 yes yes 57 15 52 26 7 12 780 no no
15 8 42 21 4 9 336 no yes 58 27 27 13 13 6 729 no no
16 13 26 8 4 2 338 yes yes 59 21 35 15 9 6 735 no no
17 13 26 12 6 5 338 no yes 60 10 75 30 4 10 750 no yes
18 10 36 18 5 8 360 no yes 61 25 30 6 5 1 750 no yes
19 19 19 9 9 4 361 no yes 62 20 38 19 10 9 760 no no
20 11 33 15 5 6 363 no yes 63 16 48 15 5 4 768 no yes
21 14 26 13 7 6 364 no no 64 16 48 18 6 6 768 no no
22 16 24 9 6 3 384 no yes 65 12 66 22 4 6 792 no yes
23 12 33 11 4 3 396 yes yes 66 12 66 33 6 15 792 no yes
24 21 21 5 5 1 441 yes yes 67 9 90 40 4 15 810 no yes
25 8 56 28 4 12 448 no yes 68 13 65 20 4 5 845 no yes
26 10 45 18 4 6 450 no yes 69 11 77 35 5 14 847 no yes
27 15 30 14 7 6 450 no no 70 21 42 10 5 2 882 no no
28 16 30 15 8 7 480 no no 71 21 42 12 6 3 882 no no
29 11 44 20 5 8 484 no yes 72 21 42 20 10 9 882 no no
30 9 54 24 4 9 486 no yes 73 16 56 21 6 7 896 no no
31 13 39 12 4 3 507 no yes 74 10 90 36 4 12 900 no yes
32 13 39 15 5 5 507 no yes 75 15 60 28 7 12 900 no no
33 16 32 12 6 4 512 no no 76 18 51 17 6 5 918 no no
34 15 35 14 6 5 525 no no 77 22 42 21 11 10 924 no no
35 12 44 22 6 10 528 no yes 78 15 63 21 5 6 945 no yes
36 23 23 11 11 5 529 no no 79 16 60 15 4 3 960 no yes
37 10 54 27 5 12 540 no yes 80 16 60 30 8 14 960 no no
38 8 70 35 4 15 560 no yes 81 31 31 6 6 1 961 no yes
39 17 34 16 8 7 578 no no 82 31 31 10 10 3 961 no no
40 10 60 24 4 8 600 no yes 83 31 31 15 15 7 961 no no
41 11 55 20 4 6 605 no yes 84 11 88 40 5 16 968 no yes
42 11 55 25 5 10 605 no yes 85 22 44 14 7 4 968 no no
43 18 34 17 9 8 612 no no 86 25 40 16 10 6 1000 no no

Finding Balanced Incomplete Block Designs with Metaheuristics 163

Table 2. Results of HC algorithms (30 runs per instance). x, σ, B and S denote,
respectively, the fitness average value, the standard deviation, the best obtained result,
and the number of times that a problem instance solution is obtained.

HCbf HCsw HCbf HCsw
ID x̄ ± σ B S x̄ ± σ B S ID x̄ ± σ B S x̄ ± σ B S
1 3.50 ± 1.12 0 2 0.00 ± 0.00 0 30 44 139.67 ± 3.80 130 0 100.40 ± 3.08 95 0
2 5.13 ± 4.62 0 13 0.00 ± 0.00 0 30 45 35.33 ± 3.17 29 0 15.00 ± 2.14 11 0
3 5.83 ± 1.24 4 0 0.00 ± 0.00 0 30 46 84.60 ± 3.53 78 0 50.63 ± 3.22 45 0
4 5.73 ± 1.44 0 1 0.00 ± 0.00 0 30 47 29.63 ± 2.74 23 0 13.10 ± 2.41 8 0
5 3.13 ± 4.15 0 19 0.00 ± 0.00 0 30 48 47.57 ± 2.63 43 0 20.47 ± 2.60 11 0
6 11.27 ± 1.63 7 0 1.47 ± 1.93 0 19 49 25.93 ± 3.80 13 0 2.00 ± 2.00 0 15
7 7.80 ± 1.19 5 0 0.00 ± 0.00 0 30 50 54.90 ± 4.43 41 0 17.60 ± 2.09 13 0
8 36.60 ± 2.68 30 0 4.33 ± 5.17 0 17 51 24.67 ± 2.44 16 0 7.63 ± 1.62 4 0
9 14.67 ± 1.70 10 0 3.97 ± 0.84 0 1 52 42.20 ± 3.00 36 0 10.03 ± 2.76 4 0

10 37.23 ± 1.67 33 0 4.47 ± 5.67 0 18 53 38.87 ± 4.54 29 0 3.17 ± 2.18 0 9
11 22.27 ± 2.14 16 0 6.13 ± 1.26 4 0 54 96.27 ± 4.14 88 0 42.00 ± 3.75 33 0
12 11.30 ± 1.35 9 0 2.53 ± 1.93 0 11 55 31.93 ± 3.45 21 0 5.87 ± 2.17 0 2
13 20.67 ± 2.07 16 0 8.40 ± 4.12 0 5 56 104.97 ± 5.44 94 0 61.43 ± 4.26 50 0
14 11.20 ± 1.66 7 0 0.27 ± 1.00 0 28 57 72.53 ± 4.81 59 0 44.57 ± 1.65 41 0
15 12.07 ± 2.03 8 0 0.00 ± 0.00 0 30 58 214.20 ± 4.93 200 0 137.03 ± 6.52 111 0
16 16.17 ± 2.08 12 0 6.13 ± 1.06 4 0 59 110.00 ± 4.82 102 0 58.27 ± 3.85 51 0
17 28.53 ± 2.20 22 0 9.63 ± 1.58 6 0 60 25.50 ± 3.51 17 0 3.43 ± 1.84 0 6
18 19.67 ± 1.96 14 0 2.67 ± 1.89 0 10 61 73.53 ± 4.81 63 0 49.53 ± 4.11 41 0
19 78.00 ± 2.49 73 0 45.50 ± 3.38 35 0 62 116.73 ± 5.07 102 0 48.60 ± 3.42 42 0
20 19.17 ± 2.18 15 0 4.10 ± 1.35 0 2 63 41.77 ± 3.29 35 0 18.47 ± 2.92 13 0
21 38.77 ± 3.09 33 0 13.37 ± 2.26 6 0 64 50.37 ± 4.20 40 0 20.63 ± 3.01 13 0
22 40.47 ± 2.05 35 0 19.80 ± 2.17 15 0 65 24.13 ± 2.46 20 0 6.97 ± 2.51 4 0
23 16.30 ± 1.62 13 0 5.00 ± 1.18 4 0 66 51.70 ± 4.18 43 0 7.40 ± 2.56 0 1
24 48.87 ± 4.57 34 0 23.30 ± 7.20 0 1 67 33.90 ± 6.15 15 0 3.33 ± 2.36 0 9
25 19.20 ± 3.52 12 0 0.00 ± 0.00 0 30 68 26.67 ± 3.62 17 0 9.73 ± 2.35 4 0
26 15.37 ± 1.80 9 0 2.00 ± 2.00 0 15 69 38.47 ± 3.39 31 0 5.43 ± 2.06 0 1
27 46.27 ± 3.00 41 0 17.00 ± 2.42 11 0 70 64.90 ± 3.83 56 0 36.90 ± 3.16 29 0
28 59.83 ± 3.88 52 0 22.70 ± 2.52 16 0 71 76.73 ± 3.92 69 0 44.70 ± 3.28 37 0
29 24.00 ± 2.52 19 0 3.87 ± 1.73 0 4 72 125.93 ± 6.71 106 0 59.17 ± 5.88 46 0
30 17.63 ± 2.51 13 0 0.67 ± 1.49 0 25 73 53.83 ± 3.85 43 0 22.50 ± 3.28 17 0
31 20.63 ± 2.37 16 0 6.37 ± 1.94 4 0 74 28.00 ± 6.10 14 0 5.70 ± 2.58 0 3
32 26.97 ± 2.47 20 0 8.63 ± 1.74 5 0 75 66.43 ± 4.98 53 0 19.10 ± 2.75 13 0
33 43.53 ± 2.28 37 0 20.67 ± 2.56 15 0 76 60.73 ± 4.05 48 0 30.60 ± 4.57 21 0
34 40.87 ± 2.60 35 0 16.43 ± 2.68 10 0 77 153.00 ± 6.62 131 0 67.27 ± 5.53 54 0
35 36.20 ± 3.91 28 0 6.13 ± 1.67 4 0 78 43.30 ± 3.57 35 0 16.37 ± 3.02 11 0
36 135.73 ± 3.86 128 0 84.43 ± 4.10 72 0 79 39.20 ± 4.46 27 0 14.60 ± 3.53 9 0
37 27.83 ± 3.61 20 0 3.53 ± 1.43 0 4 80 83.07 ± 6.50 70 0 24.83 ± 3.22 17 0
38 29.00 ± 4.93 16 0 0.13 ± 0.72 0 29 81 134.73 ± 5.88 122 0 100.77 ± 5.04 87 0
39 67.13 ± 4.35 57 0 28.17 ± 2.00 23 0 82 231.17 ± 5.85 219 0 175.60 ± 6.37 160 0
40 19.40 ± 3.02 11 0 2.67 ± 1.89 0 10 83 312.40 ± 6.15 300 0 206.10 ± 6.14 194 0
41 19.23 ± 2.43 14 0 4.10 ± 1.60 0 3 84 42.53 ± 5.08 34 0 7.70 ± 2.64 0 1
42 26.90 ± 3.22 20 0 4.53 ± 1.67 0 2 85 102.07 ± 4.68 94 0 57.73 ± 4.63 44 0
43 85.57 ± 3.60 79 0 34.93 ± 3.22 28 0 86 167.60 ± 6.52 150 0 98.57 ± 5.78 88 0

GA are population size= 100, crossover and mutation probabilities pX = .9 and
pM = 1/� (where � = vb is the size of individuals) respectively, and f% = 10%.

Tables 2-4 show all results. Regarding the initialization procedure, bit-flip-
based algorithms have been tested both with purely random initialization and
guided initialization (i.e., enforcing row constraints). The guided initialization
resulted in worse results for HC, indistinguishable results for TS, and better
results for GA in most instances (in all cases with statistical significance at the
standard 0.05 level according to a Wilcoxon ranksum test). This can be explained
by the inferior exploration capabilities of HCbf when starting from a solution
satisfying row constraints (the search will be confined to a narrow path uphill).
This consideration is unimportant for TSbf , since it can easily make downhill
moves to keep on exploring. The GAbf benefits however from having a diverse
population of higher quality than random. We have therefore opted for reporting
the results of HCbf and TSbf with random initialization, and the results of GAbf

with guided initialization.
A summary of performance is provided in Table 5, showing the number of

problem instances (out of 86) that were solved in at least one run by each
of the algorithms, and the corresponding success percentage. As expected, TS

164 D. Rodŕıguez Rueda, C. Cotta, and A.J. Fernández

Table 3. Results of TS algorithms (30 runs per instance). x, σ, B and S denote,
respectively, the fitness average value, the standard deviation, the best obtained result,
and the number of times that a problem instance solution is obtained.

TSbf TSsw TSbf TSsw
ID x̄ ± σ B S x̄ ± σ B S ID x̄ ± σ B S x̄ ± σ B S
1 3.30 ± 2.62 0 10 0.00 ± 0.00 0 30 44 108.80 ± 6.48 96 0 66.70 ± 9.48 22 0
2 6.93 ± 6.06 0 12 0.00 ± 0.00 0 30 45 17.53 ± 2.64 9 0 4.30 ± 1.44 0 2
3 6.17 ± 2.40 0 2 0.00 ± 0.00 0 30 46 58.37 ± 4.32 50 0 32.37 ± 1.74 29 0
4 4.30 ± 1.68 0 3 0.00 ± 0.00 0 30 47 16.87 ± 4.13 8 0 2.43 ± 1.99 0 12
5 3.67 ± 4.81 0 18 0.00 ± 0.00 0 30 48 24.23 ± 3.50 18 0 8.70 ± 1.72 4 0
6 7.33 ± 2.53 4 0 0.00 ± 0.00 0 30 49 1.50 ± 2.01 0 19 0.00 ± 0.00 0 30
7 1.67 ± 2.10 0 18 0.00 ± 0.00 0 30 50 23.43 ± 3.96 16 0 6.03 ± 1.35 4 0
8 28.60 ± 5.37 15 0 0.00 ± 0.00 0 30 51 8.70 ± 2.42 0 1 0.00 ± 0.00 0 30
9 9.27 ± 2.86 4 0 0.00 ± 0.00 0 30 52 14.37 ± 2.95 10 0 0.40 ± 1.20 0 27

10 27.13 ± 7.10 0 1 0.00 ± 0.00 0 30 53 6.20 ± 3.26 0 3 0.00 ± 0.00 0 30
11 13.50 ± 3.39 5 0 0.00 ± 0.00 0 30 54 50.77 ± 5.97 39 0 24.53 ± 2.05 20 0
12 3.93 ± 2.73 0 8 0.00 ± 0.00 0 30 55 6.83 ± 2.19 4 0 0.00 ± 0.00 0 30
13 16.60 ± 4.10 8 0 0.00 ± 0.00 0 30 56 68.33 ± 4.83 51 0 40.47 ± 2.68 35 0
14 3.13 ± 2.05 0 8 0.00 ± 0.00 0 30 57 43.17 ± 2.57 38 0 40.13 ± 0.43 40 0
15 1.60 ± 2.39 0 19 0.00 ± 0.00 0 30 58 160.80 ± 8.58 145 0 100.43 ± 3.85 91 0
16 10.60 ± 2.24 4 0 0.00 ± 0.00 0 30 59 66.53 ± 4.08 56 0 35.90 ± 2.53 30 0
17 16.33 ± 3.25 8 0 2.93 ± 1.77 0 8 60 2.47 ± 2.12 0 12 0.00 ± 0.00 0 30
18 7.27 ± 2.79 0 1 0.00 ± 0.00 0 30 61 54.60 ± 5.22 43 0 14.40 ± 11.64 0 10
19 59.27 ± 5.28 50 0 0.37 ± 1.97 0 29 62 65.37 ± 6.74 54 0 29.77 ± 1.80 26 0
20 8.37 ± 2.44 4 0 0.00 ± 0.00 0 30 63 20.73 ± 3.59 13 0 5.17 ± 1.44 0 1
21 22.70 ± 3.94 15 0 5.77 ± 0.88 4 0 64 23.53 ± 2.70 19 0 8.13 ± 1.69 4 0
22 27.43 ± 3.23 23 0 4.70 ± 4.41 0 12 65 5.50 ± 2.03 0 1 0.00 ± 0.00 0 30
23 8.33 ± 2.29 4 0 0.00 ± 0.00 0 30 66 12.57 ± 4.11 5 0 0.00 ± 0.00 0 30
24 33.33 ± 12.10 0 2 0.00 ± 0.00 0 30 67 2.23 ± 2.56 0 16 0.00 ± 0.00 0 30
25 1.43 ± 1.99 0 19 0.00 ± 0.00 0 30 68 7.37 ± 2.11 4 0 0.00 ± 0.00 0 30
26 3.77 ± 2.35 0 7 0.00 ± 0.00 0 30 69 7.27 ± 2.54 0 1 0.13 ± 0.72 0 29
27 26.10 ± 4.04 18 0 8.13 ± 1.82 4 0 70 40.53 ± 3.87 32 0 18.23 ± 1.84 14 0
28 34.70 ± 3.91 27 0 11.70 ± 1.51 9 0 71 47.37 ± 4.42 38 0 24.17 ± 2.60 17 0
29 8.57 ± 2.67 4 0 0.00 ± 0.00 0 30 72 70.63 ± 5.49 61 0 36.77 ± 2.60 32 0
30 2.67 ± 2.34 0 12 0.00 ± 0.00 0 30 73 21.90 ± 3.18 17 0 8.30 ± 1.73 4 0
31 8.47 ± 2.40 4 0 0.00 ± 0.00 0 30 74 2.20 ± 2.70 0 17 0.00 ± 0.00 0 30
32 12.93 ± 2.05 9 0 0.27 ± 1.00 0 28 75 24.90 ± 4.72 15 0 5.63 ± 2.33 0 2
33 25.63 ± 3.40 20 0 9.37 ± 1.87 4 0 76 32.00 ± 3.53 24 0 14.13 ± 2.53 9 0
34 22.67 ± 2.66 18 0 6.70 ± 1.39 4 0 77 84.23 ± 8.92 68 0 43.87 ± 2.20 41 0
35 12.70 ± 3.25 6 0 0.00 ± 0.00 0 30 78 16.47 ± 2.80 11 0 3.17 ± 2.07 0 8
36 100.07 ± 6.39 85 0 49.47 ± 18.59 0 3 79 15.00 ± 3.17 10 0 1.43 ± 2.06 0 20
37 6.13 ± 2.63 0 2 0.00 ± 0.00 0 30 80 32.00 ± 5.14 22 0 10.23 ± 2.01 6 0
38 2.33 ± 2.83 0 17 0.00 ± 0.00 0 30 81 109.23 ± 7.99 89 0 22.90 ± 18.70 0 12
39 36.27 ± 3.98 29 0 15.47 ± 1.78 12 0 82 184.40 ± 6.34 173 0 134.13 ± 5.08 124 0
40 3.30 ± 2.69 0 11 0.00 ± 0.00 0 30 83 230.37 ± 10.02 207 0 159.63 ± 5.92 148 0
41 5.47 ± 1.65 4 0 0.00 ± 0.00 0 30 84 7.60 ± 3.59 0 1 0.50 ± 1.28 0 26
42 7.47 ± 3.31 4 0 0.00 ± 0.00 0 30 85 61.90 ± 4.47 54 0 34.80 ± 2.56 31 0
43 48.80 ± 5.53 39 0 20.47 ± 1.87 16 0 86 107.70 ± 5.54 99 0 65.70 ± 3.64 56 0

variants outperform their HC counterparts. Note also that results of local search
algorithms are considerably improved when considering the swap neighborhood.
The difference is not so marked in the case of GAs, although GAsw still manages
to solve more instances than GAbf . In global terms, TSsw outperforms the rest
of techniques, including NN-SA and CLS. In fact, TSsw can solve every instance
solved by CLS (i.e., the technique that had reported the best results on the
problem), as well as instances 〈23, 23, 11, 11, 5〉 and 〈15, 60, 28, 7, 12〉.

A more fine-grained comparison of the algorithms considered is provided in
Table 6. This table shows the percentage of instances in which a certain algorithm
performs better (again, with statistical significance at the 0.05 level according
to a Wilcoxon ranksum test) than another certain one (note that entries (i, j)
and (j, i) in this table do not necessarily sum 100%, since there are instances on
which there is no significant difference between the algorithms compared). As
it can be seen, swap-based algorithms are consistently better than bit-flip-based
algorithms (above 75% in almost all cases). Regarding the GAs, note GAsw is
better than GAbf in about 78% of the runs, a larger difference than the number
of solved instances. Finally, TSsw is the clear winner, beating the remaining
algorithms in 78%-100% of instances.

Finding Balanced Incomplete Block Designs with Metaheuristics 165

Table 4. Results of GAs (30 runs per instance). x, σ, B and S denote, respectively, the
fitness average value, the standard deviation, the best obtained result, and the number
of times that a problem instance solution is obtained.

GAbf GAsw GAbf GAsw
ID x̄ ± σ B S x̄ ± σ B S ID x̄ ± σ B S x̄ ± σ B S
1 0.00 ± 0.00 0 30 0.00 ± 0.00 0 30 44 113.43 ± 5.44 104 0 86.80 ± 5.72 76 0
2 0.37 ± 1.97 0 29 0.00 ± 0.00 0 30 45 15.07 ± 3.17 8 0 11.83 ± 2.03 8 0
3 0.77 ± 1.75 0 25 0.00 ± 0.00 0 30 46 56.83 ± 5.41 47 0 47.23 ± 4.42 40 0
4 1.07 ± 1.77 0 22 0.27 ± 1.00 0 28 47 13.77 ± 3.29 7 0 14.00 ± 2.28 10 0
5 0.00 ± 0.00 0 30 0.00 ± 0.00 0 30 48 25.33 ± 3.65 19 0 21.00 ± 3.16 17 0
6 2.60 ± 2.17 0 12 0.13 ± 0.72 0 29 49 1.97 ± 2.36 0 17 4.00 ± 2.27 0 5
7 0.10 ± 0.54 0 29 0.00 ± 0.00 0 30 50 25.70 ± 4.13 17 0 18.63 ± 3.18 13 0
8 11.20 ± 8.82 0 10 4.20 ± 6.43 0 21 51 7.33 ± 2.51 4 0 8.60 ± 3.17 4 0
9 5.37 ± 1.76 0 1 3.60 ± 1.70 0 5 52 14.90 ± 3.34 9 0 12.03 ± 2.64 7 0

10 14.67 ± 7.11 0 4 8.47 ± 6.48 0 11 53 4.80 ± 2.87 0 6 6.00 ± 2.46 0 2
11 8.47 ± 2.36 0 1 4.87 ± 1.41 0 1 54 56.23 ± 6.01 44 0 39.83 ± 5.70 25 0
12 2.10 ± 2.13 0 15 1.07 ± 1.77 0 22 55 7.37 ± 3.02 0 1 6.90 ± 2.01 3 0
13 10.20 ± 4.46 0 4 4.40 ± 5.46 0 18 56 72.70 ± 7.34 61 0 60.27 ± 5.40 51 0
14 1.60 ± 1.96 0 18 0.63 ± 1.43 0 25 57 45.97 ± 2.95 40 0 43.73 ± 1.79 40 0
15 0.73 ± 1.48 0 24 0.00 ± 0.00 0 30 58 171.43 ± 8.58 154 0 131.93 ± 7.23 118 0
16 6.47 ± 1.71 4 0 5.60 ± 1.23 4 0 59 70.23 ± 6.72 58 0 56.30 ± 6.95 46 0
17 11.43 ± 2.26 7 0 7.17 ± 1.83 4 0 60 4.40 ± 2.39 0 5 5.43 ± 2.74 0 4
18 4.03 ± 2.06 0 5 1.40 ± 1.85 0 19 61 51.23 ± 5.17 41 0 46.57 ± 5.24 36 0
19 55.10 ± 3.94 47 0 31.27 ± 8.52 0 1 62 70.50 ± 8.35 50 0 49.63 ± 5.31 39 0
20 6.17 ± 2.05 4 0 2.87 ± 1.89 0 9 63 20.10 ± 3.62 13 0 19.13 ± 3.43 13 0
21 17.00 ± 2.71 11 0 9.97 ± 1.78 6 0 64 25.33 ± 4.41 16 0 20.67 ± 3.28 15 0
22 23.30 ± 3.63 12 0 15.57 ± 2.39 10 0 65 5.90 ± 2.33 0 1 8.23 ± 2.26 4 0
23 5.00 ± 2.03 0 3 2.87 ± 1.93 0 9 66 12.40 ± 3.24 7 0 10.60 ± 2.70 6 0
24 17.67 ± 12.38 0 8 7.47 ± 10.00 0 19 67 3.93 ± 2.28 0 6 5.20 ± 1.66 0 1
25 0.80 ± 1.62 0 24 0.00 ± 0.00 0 30 68 8.50 ± 3.29 4 0 10.53 ± 2.31 7 0
26 2.50 ± 2.39 0 14 1.13 ± 1.75 0 21 69 9.13 ± 2.73 4 0 9.20 ± 3.11 0 1
27 22.80 ± 3.33 17 0 13.80 ± 2.09 9 0 70 39.20 ± 4.83 32 0 36.23 ± 4.33 25 0
28 29.60 ± 3.59 23 0 17.43 ± 2.74 12 0 71 50.53 ± 5.04 36 0 41.63 ± 5.20 33 0
29 5.43 ± 2.80 0 4 3.40 ± 2.01 0 7 72 82.23 ± 7.28 69 0 58.20 ± 5.07 46 0
30 1.30 ± 1.86 0 20 0.27 ± 1.00 0 28 73 27.87 ± 4.57 17 0 23.03 ± 3.70 15 0
31 7.60 ± 2.44 4 0 4.77 ± 1.71 0 2 74 5.20 ± 2.54 0 1 7.17 ± 3.14 0 2
32 10.03 ± 2.77 4 0 6.70 ± 2.00 4 0 75 29.57 ± 4.51 22 0 20.27 ± 2.45 16 0
33 23.30 ± 2.93 19 0 15.93 ± 2.31 11 0 76 35.40 ± 4.42 25 0 29.30 ± 3.80 21 0
34 19.00 ± 3.11 13 0 12.63 ± 1.85 10 0 77 101.73 ± 10.25 76 0 65.90 ± 5.02 58 0
35 10.57 ± 2.51 5 0 4.43 ± 1.61 0 2 78 19.93 ± 4.30 11 0 18.33 ± 3.60 12 0
36 103.27 ± 5.50 94 0 73.53 ± 5.00 60 0 79 16.40 ± 3.57 9 0 17.00 ± 3.20 10 0
37 3.53 ± 2.59 0 9 2.00 ± 1.93 0 14 80 37.60 ± 6.40 26 0 26.33 ± 4.75 18 0
38 1.23 ± 2.25 0 22 0.37 ± 1.11 0 27 81 107.37 ± 10.77 80 0 97.93 ± 9.80 78 0
39 37.97 ± 4.28 29 0 22.27 ± 2.45 17 0 82 200.70 ± 9.84 185 0 174.17 ± 7.86 157 0
40 2.60 ± 2.33 0 13 1.27 ± 1.81 0 20 83 261.47 ± 7.67 244 0 200.63 ± 8.21 182 0
41 4.00 ± 2.13 0 5 2.33 ± 2.09 0 13 84 9.27 ± 3.76 0 2 9.73 ± 2.78 5 0
42 6.50 ± 2.26 0 1 3.00 ± 2.05 0 9 85 67.10 ± 6.23 55 0 58.53 ± 5.96 48 0
43 47.23 ± 5.68 38 0 28.93 ± 3.19 24 0 86 125.20 ± 11.65 107 0 94.90 ± 8.25 81 0

Table 5. Number and percentage of solved instances for each algorithm on the 86
instances considered

NN-SA CLS HCbf HCsw TSbf TSsw GAbf GAsw

16 55 4 35 27 57 35 37
(18.60%) (63.95%) (4.65%) (40.70%) (31.40%) (66.28%) (40.70%) (43.02%)

Table 6. Summary of statistical significance results. Each entry in the table indicates
the percentage of instances in which the algorithm labelled in the row outperforms the
algorithm labelled in the column, with a statistically significant difference according to
a Wilcoxon ranksum test.

HCbf HCsw TSbf TSsw GAbf GAsw

HCbf − 0.00% 0.00% 0.00% 0.00% 0.00%
HCsw 100% − 76.64% 0.00% 61.63% 12.79%
TSbf 95.35% 12.79% − 0.00% 27.91% 11.63%
TSsw 100% 97.67% 100.00% − 86.05% 77.91%
GAbf 100% 10.47% 43.02% 11.63% − 5.81%
GAsw 100% 47.67% 81.40% 17.44% 77.91% −

166 D. Rodŕıguez Rueda, C. Cotta, and A.J. Fernández

5 Conclusions and Future Work

The application of metaheuristics to the design of balanced incomplete blocks
has resulted in very encouraging and positive results. An empirical evaluation of
three different techniques (i.e., a hill climbing method, a tabu search algorithm,
and a genetic algorithm), with two variants each, has shown that highly com-
petitive results can be achieved. Furthermore, a TS algorithm working on the
swap neighborhood has been shown to be competitive to an ad-hoc constrained
local search (CLS) method, the current incumbent for this problem.

In addition, our analysis also indicates the relevance of the neighborhood
structure chosen. The swap neighborhood provides better navigational capabili-
ties than the bit-flip neighborhood, regardless how initial solutions are chosen in
the latter. However, this does not imply the bit-flip neighborhood is not appro-
priate for this problem. For example, we believe a hybrid approach that combine
both neighborhoods –e.g., in a variable neighborhood search framework– would
be of the foremost interest. Work is in progress in this line. This hybridization
can be also done from the algorithmic point of view, i.e., a memetic combination
of TS and GAs. The form of this combination is an issue of further work.

Acknowledgements

This work is partially supported by projects TIN2008-05941 (of MICIIN) and
P06-TIC2250 (from Andalusian Regional Government).

References

1. Colbourn, C., Dinitz, J.: The CRC handbook of combinatorial designs. CRC Press,
Boca Raton (1996)

2. van Lint, J., Wilson, R.: A Course in Combinatorics. Cambridge University Press,
Cambridge (1992)

3. Mead, R.: Design of Experiments: Statistical Principles for Practical Applications.
Cambridge University Press, Cambridge (1993)

4. Buratti, M.: Some (17q, 17, 2) and (25q, 25, 3)BIBD constructions. Designs, Codes
and Cryptography 16(2), 117–120 (1999)

5. Lan, L., Tai, Y.Y., Lin, S., Memari, B., Honary, B.: New constructions of quasi-
cyclic LDPC codes based on special classes of BIDBs for the AWGN and binary
erasure channels. IEEE Transactions on Communications 56(1), 39–48 (2008)

6. Corneil, D.G., Mathon, R.: Algorithmic techniques for the generation and anal-
ysis of strongly regular graphs and other combinatorial configurations. Annals of
Discrete Mathematics 2, 1–32 (1978)

7. Gibbons, P., Österg̊ard, P.: Computational methods in design theory. In: [1], pp.
730–740

8. Bofill, P., Guimerà, R., Torras, C.: Comparison of simulated annealing and
mean field annealing as applied to the generation of block designs. Neural Net-
works 16(10), 1421–1428 (2003)

9. Prestwich, S.: A local search algorithm for balanced incomplete block designs. In:
Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 53–64. Springer, Heidelberg (2003)

Finding Balanced Incomplete Block Designs with Metaheuristics 167

10. Cochran, W.G., Cox, G.M.: Experimental Design. John Wiley, New York (1957)
11. Fisher, R.A., Yates, F.: Statistical Tables for Biological, Agricultural and Medical

Research, 3rd edn. Oliver & Boy (1949)
12. Fisher, R.A.: An examination of the different possible solutions of a problem in

incomplete blocks. Annals of Eugenics 10, 52–75 (1940)
13. Whitaker, D., Triggs, C.M., John, J.A.: Construction of block designs using math-

ematical programming. J. Roy. Statist. Soc. B 52(3), 497–503 (1990)
14. John, J.A., Whitaker, D., Triggs, C.M.: Construction of cyclic designs using integer

programming. Journal of statistical planning and inference 36(2), 357–366 (1993)
15. Zergaw, D.: A sequential method of constructing optimal block designs. Australian

& New Zealand Journal of Statistics 31, 333–342 (1989)
16. Tjur, T.: An algorithm for optimization of block designs. Journal of Statistical

Planning and Inference 36, 277–282 (1993)
17. Flener, P., Frisch, A.M., Hnich, B., Kzltan, Z., Miguel, I., Walsh, T.: Matrix mod-

elling. In: CP 2001 Workshop on Modelling and Problem Formulation. Interna-
tional Conference on the Principles and Practice of Constraint Programming (2001)

18. Puget, J.F.: Symmetry breaking revisited. In: Van Hentenryck, P. (ed.) CP 2002.
LNCS, vol. 2470, pp. 446–461. Springer, Heidelberg (2002)

19. Meseguer, P., Torras, C.: Exploiting symmetries within constraint satisfaction
search. Artif. Intell. 129(1-2), 133–163 (2001)

20. Prestwich, S.: Negative effects of modeling techniques on search performance. An-
nals of Operations Research 18, 137–150 (2003)

21. Street, D., Street, A.: Partially balanced incomplete block designs. In: [1], pp. 419–
423

22. Mullin, C., Gronau, H.: PBDs and GDDs: The basics. In: [1], pp. 185–193
23. Wallis, W.D.: Regular graph designs. Journal of Statistical Planning and Infer-

ence 51, 272–281 (1996)
24. Bofill, P., Torras, C.: MBMUDs: a combinatorial extension of BIBDs showing good

optimality behaviour. Journal of Statistical Planning and Inference 124(1), 185–204
(2004)

25. Chuang, H.Y., Tsai, H.K., Kao, C.Y.: Optimal designs for microarray experiments.
In: 7th International Symposium on Parallel Architectures, Algorithms, and Net-
works, Hong Kong, China, pp. 619–624. IEEE Computer Society, Los Alamitos
(2004)

26. Morales, L.B.: Constructing difference families through an optimization approach:
Six new BIBDs. Journal of Combinatorial Design 8(4), 261–273 (2000)

27. Angelis, L.: An evolutionary algorithm for A-optimal incomplete block designs.
Journal of Statistical Computation and Simulation 73(10), 753–771 (2003)

Guided Ejection Search for the Job Shop
Scheduling Problem

Yuichi Nagata and Satoshi Tojo

Graduate School of Information Sciences,
Japan Advanced Institute of Science and Technology, Japan

{nagatay,tojo}@jaist.ac.jp

Abstract. We present a local search framework we term guided ejec-
tion search (GES) for solving the job shop scheduling problem (JSP). The
main principle of GES is to always search for an incomplete solution from
which some components are removed, subject to the constraint that a
quality of the incomplete solution is better than that of the best (com-
plete) solution found during the search. Moreover, the search is enhanced
by a concept reminiscent of guided local search and problem-dependent
local searches. The experimental results for the standard benchmarks for
the JSP demonstrate that the suggested GES is robust and highly com-
petitive with the state-of-the-art metaheuristics for the JSP.

Keywords: job shop scheduling, tabu search, ejection chain, guided local
search, metaheuristics.

1 Introduction

The job shop scheduling problem (JSP) consists of a set of jobs to be processed
on machines. Each job is composed of an ordered list of operations, each of which
must be processed by a predetermined machine and has an associated processing
time. The objective of the JSP (with the makespan criterion) is to find a schedule
(job sequence on the machines) that minimizes the makespan (i.e., the duration
needed for processing all jobs), subject to the constraint that each machine can
process only one operation at a time.

The JSP has been intensively studied since the 1950s because it models practi-
cal production processes very well. Apart from its practical importance, the JSP
is a challenging optimization problem of significant academic value as it is known
as one of the most difficult NP-complete combinatorial optimization problems
and is often used as a benchmark problem when new solution approaches are
suggested. Therefore, a number of metaheuristic approaches as well as exact al-
gorithms have been developed and tested in the JSP. For an extensive survey of
scheduling techniques, the reader is referred to [1][2].

Recently, we developed a powerful route minimization heuristic for the vehi-
cle routing problem with time windows (VRPTW) [3]. We found that the basic
framework of this heuristic can be used for solving a wide variety of combina-
tional optimization problems, and we refer to this framework as guided ejection
search (GES). In this paper we formulate GES and hence apply it to the JSP.

C. Cotta and P. Cowling (Eds.): EvoCOP 2009, LNCS 5482, pp. 168–179, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Guided Ejection Search for the Job Shop Scheduling Problem 169

GES for the JSP tries to improve a schedule step-by-step without allowing
temporal deterioration of the makespan. Instead, we allow temporal removal
(ejection) of operations from a schedule and store them in the so-called ejection
pool (EP) [4]. In GES, “insertion-ejection” moves are iterated until the EP
becomes empty, subject to the constraint that the makespan of the incomplete
schedule is less than that of the best (complete) schedule found so far. Here, an
insertion-ejection move is performed by inserting an operation in the EP and
ejecting operations (if necessary) from the resulting schedule (ejected operations
are added to the EP). Moreover, the ejection is directed by a concept reminiscent
of the guided local search [5], and the insertion is enhanced by a local search.

The GES framework shares similarities with the shifting bottleneck heuristic
[6], ejection chains [7], and large neighborhood search [8]. These approaches also
temporarily remove some components from a current solution and then the re-
moved components are re-inserted based on construction heuristics or variable
depth methods to construct complete solutions. A major difference between GES
and these approaches is that GES always allows incomplete solutions, while
other approaches must construct complete solutions after prearranged proce-
dures. This feature of GES makes the search more flexible.

The suggested GES algorithm was tested on the standard benchmark prob-
lems for the JSP and was compared with the state-of-the-art heuristics for the
JSP [9][10][11]. Computational results showed that the proposed algorithm is ro-
bust and highly competitive. It found new best-known solutions in eight bench-
mark instances. The reminder of this paper is arranged as follows. First, the
problem definition and notations are described in Section 2. The problem solv-
ing methodology based on GES are described in Section 3. The computational
analysis of GES and its comparison with other algorithms are presented in Sec-
tion 4. Conclusions are presented in Section 5.

2 Problem Definition and Notations

The JSP can be formulated as follows. Let J = {1, . . . , |J |} denote a set of jobs
and M = {1, . . . , |M |} a set of machines. Each job consists of a sequence of
operations that must be processed in a particular order (job order criteria). Let
V = {0, 1, . . . , n, n+1} denote a set of operations (with dummy operations 0 and
n + 1 representing the start and end of a schedule, respectively) where n refers
to the total number of operations in all the jobs. For each operation i ∈ V , let μi

and pi (with p0 = pn+1 = 0) denote the machine and time, respectively, required
for processing it. A schedule is represented by the processing order of operations
on the machines, π = (π1, . . . , π|M|), where πm = 〈πm(1), . . . , πm(lm)〉 repre-
sents the processing order of operations on machine m (lm is the number of
operations). In addition, we define πm(0) = 0 and πm(lm + 1) = n + 1.

For a given schedule π, representation as a directed graph G(π) = (V, R∪E(π))
[9] is useful (see Fig. 1). Here, R is defined as a set of arcs, each of which
represents a successive operation pair on the same job. Likewise, E(π) is defined
as a set of arcs, each of which represents a successive operation pair on the same

170 Y. Nagata and S. Tojo

(a)

0

1

87

1110

6

9

2

5

12

43

13

1

11

221

1122

12 00

(b)

0

1

87

1110

6

9

2

5

12

43

13

1

11

221

112

1 00

Fig. 1. Examples of directed graph G(π) of 3-job, 4-machine instance; arcs in R and
E(π) are denoted by solid and dotted lines, respectively. The critical paths are il-
lustrated by black lines. (a) A complete schedule has the makespan of 10. (b) An
incomplete schedule (operations 7 and 9 are skipped) has the makespan of 8.

machine, i.e., E(π) = ∪|M|
m=1∪lm−1

s=1 {(πm(s), πm(s+1))}. Each node i ∈ V has the
associated weight pi (the arcs have zero weight). A schedule π is called feasible
if G(π) does not contain any cycle and infeasible if otherwise. For a feasible
schedule π, the makespan, denoted by C(π), equals the length of the longest
path from 0 to n + 1 in G(π) (called the critical path). Therefore, the JSP is
equivalent to finding a feasible schedule π that minimizes C(π). In addition, we
define an incomplete schedule as a schedule in which some operations are skipped
(i.e., some operations temporarily need not be processed). For an incomplete
schedule, the directed graph and makespan are defined in the same manner as
the complete schedule (see Fig. 1). In the sequel, a schedule refers to either
complete or incomplete schedule unless otherwise stated.

For a given schedule π, let ri denote the length of the longest path from 0
to i (including the node weight of i) in G(π) and let qi be the length of the
longest path from i to n + 1 (including the node weight of i). For each node
i ∈ {1, . . . , n}, we denote the job-predecessor by JP [i] and the job-successor by
JS[i]. Likewise, we denote the machine-predecessor by MP [i] and the machine-
successor by MS[i]. Let f(s) (s = 0, 1, . . . , n, n + 1) denote the topological order
of the nodes in G(π), i.e., if j must be processed after i, f(i) < f(j) holds.

3 Guided Ejection Search for the JSP

3.1 GES Framework for the JSP

The pseudo-code of GES applied to the JSP is shown in Algorithm 1. Proce-
dure MainGES() is the main function. GES starts with a randomly generated
initial schedule π (line 2). Then the makespan is step-by-step reduced by repeat-
ing procedure RoutineGES(π, L), which searches a complete schedule whose
makespan is less than or equal to the upper bound L. Here, L is set to C(π∗)−1
(π∗ refers to the current best complete schedule) (line 5).

Procedure RoutineGES(π, L) is started by ejecting operations from the in-
put schedule so that the makespan (of the resulting incomplete schedule) is
less than or equal to L. The ejection pool (EP) is then initialized with the
ejected operations (lines 1, 13-16). The EP is to always hold the set of tem-
porarily ejected operations, currently missing from an incomplete schedule π.

Guided Ejection Search for the Job Shop Scheduling Problem 171

Here, I(π, L), which is obtained by procedure Ejection(π, L), is defined as
a set of all combinations consisting of at most kmax operations whose ejec-
tion from π results in C(π) ≤ L. Therefore, a k-tuple (k ≤ kmax) of oper-
ations selected from I(π, L) is ejected from the input schedule (the selection
strategy is explained later). Then subsequent iterations are repeated to re-
insert operations in the EP into π until EP becomes empty, subject to the
constraint C(π) ≤ L.

In each iteration, operation iin is selected from the EP with the last-in first-
out (LIFO) strategy and is removed from the EP (lines 4, 5). The selected
operation is then inserted into all positions in the corresponding machine (some
of which may result in infeasible schedules) (line 8). The resulting (feasible)
schedules are then improved by a local search (line 9) to enhance the con-
straint satisfaction (i.e., C(πs) ≤ L). Here, one should note that the local
search may performed on incomplete schedules (operations in the EP are ig-
nored). Let π be the best of the schedules after invoking the local search (line
11). If C(π) ≤ L holds, we have succeeded in inserting operation iin without
violating the constraint. Otherwise, we eject at most kmax operations from π
to satisfy the constraint and add the ejected operations to the EP (lines 13-
16). Here, a k-tuple of operations, {iout(1), . . . , iout(k)} (k ≤ kmax), is selected
from I(π, L) so that the sum of the penalty counters of the ejecting operations,
Psum = p[iout(1)] + . . . , p[iout(k)], is minimized (line 14). Here, the penalty
counter, p[i] (i ∈ V), refers to how many times operation i is selected from the
EP (which is almost the same as the number of ejections of i) over the iterations
in Algorithm 1 (line 6). The general principle of this selection mechanism is to
select a k-tuple, giving priority to fewer k. In addition, this selection mechanism
is useful for avoiding cycling. If some operations conflict with each other be-
cause of insertion, cycling will occur (i.e., insertions and ejections are repeated
within the conflicting operations) and the penalty counters of these operations
will increase. Therefore, GES can escape from a cycling by ejecting a relatively
large number of operations with relatively small penalty values when a cycling
occurs. After each insertion-ejection move, the resulting schedule π is perturbed
by procedure Perturb(π, L) (line 19) to diversify the search where random local
search moves are executed for a given number of times, subject to the constraint
(i.e., C(π) ≤ L).

However, I(π, L) potentially becomes empty, especially when kmax is small
(e.g., kmax = 1, 2). We design two variants of GES to address this problem.

GES-1: If I(π, L) is empty, restore both π and EP to those before line 4 (we
observed that I(π, L) was not empty for the input schedule (lines 1, 13)).

GES-2: If I(π, L) is empty, repeat ejections of kmax bottleneck nodes (oper-
ations causing the constraint violation (see Section 3.2)) with the fewest
penalty counters until procedure Ejection(π, L) generates a nonempty set
I(π, L). Then, a k-tuple of operations is ejected according to lines 13-15.
In addition, the ejected operations are restored to their original locations
unless the constraint is violated because some operations will be excessively
ejected. The ejected operations are then added to the EP .

172 Y. Nagata and S. Tojo

Although the GES framework can be applied to a wide variety of combi-
national optimization problems, several procedures are problem-dependent. In
particular, procedure Ejection requires an efficient implementation because the
number of possible combinations consisting of at most kmax operations is usually
very large. As for procedures LocalSearch and Perturb, we can employ any
local search algorithm that has been developed for the JSP.

Algorithm 1. Guided ejection search for the JSP

Procedure MainGES()
1 :Set iter := 0;
2 :Generate an initial solution π;
3 :Initialize all penalty counters p[i] := 1 (i ∈ V);
4 :repeat
5 : Set π∗ := π and L := C(π∗)− 1;
6 : π := RoutineGES(π,L);
7 :until iter ≥ maxIter
8 :return π∗;

Procedure RoutineGES(π,L)
1 :Set EP := ∅ and goto line 13;
2 :repeat
3 : Set iter := iter + 1;
4 : Select iin from EP with the LIFO strategy;
5 : Remove iin from EP → EP ;
6 : Set p[iin] := p[iin] + 1;
7 : for s := 0 to lm (where m = μiin) do
8 : Insert iin between πm(s) and πm(s + 1) → πs;
9 : if πs is a feasible schedule then πs := LocalSearch(πs);
10: end for
11: Select best (feasible) schedule among {π0, π1, . . . , πlm} → π;
12: if C(π) > L then
13: I(π, L) := Ejection(π, L);
14: Select {iout(1), . . . , iout(k)} ∈ I(π, L)

s.t. p[iout(1)]+, . . . , +p[iout(k)] is minimized;
15: Eject {iout(1), . . . , iout(k)} from π → π;
16: Add {iout(1), . . . , iout(k)} to EP → EP ;
17: end if
18: π :=Perturb(π, L);
19:until EP = ∅ or iter ≥ maxIter
20:return π;

3.2 Algorithm of Procedure Ejection

Procedure Ejection(π, L), which computes I(π, L), is a core part of the GES.
More formally, I(π, L) is defined by I(π, L) = {T ∈ Tkmax | C(π − T) ≤ L},
where Tkmax is a set of all combinations consisting of at most kmax operations
and π − T refers to a schedule obtained by ejecting the operations in T from π.

First, we describe an outline of procedure Ejection. Let the operations be
labeled according to the topological order f(π) in the directed graph G(π) for

Guided Ejection Search for the Job Shop Scheduling Problem 173

simplicity (see Fig. 2). To compute I(π, L)1, nodes in G(π) are in principle
ejected from π in the lexicographic order2 and successful ejections T (i.e., C(π−
T) ≤ L) are stored. Indeed, most of the lexicographic ejections can be pruned.
For node i ∈ V , ri + qi − pi gives the length of the longest path from 0 to
n + 1 that passes through i. We call node i a bottleneck node if ri + qi − pi > L
holds. Obviously, we can limit ejecting nodes to the bottleneck nodes in the
lexicographic ejection process. In addition, we define a bottleneck path as one
whose length is greater than L in G(π). We can see that any node in a bottleneck
path is a bottleneck node. One should note that bottleneck nodes and paths will
change after ejecting operations in the lexicographic ejection process (see Fig. 2).
In the following, we use the term “temporal schedule” to refer to a temporal
schedule obtained in the lexicographic ejection process.

The pseudo-code of procedure Ejection(π, L) is shown in Algorithm 2. This
algorithm has a hierarchical structure. Procedure MainEjection(π, L) com-
putes an initial state and procedure Routine(k) tries to eject a k-th node from
the temporal schedule (i.e., nodes iout(1), . . . , iout(k−1) are temporarily ejected
in the higher-level ejections). In procedure Routine(k), rk

i and V k
bn refer to

ri and a subset of the bottleneck nodes in the temporal schedule, respectively,
which are dynamically updated in the lexicographic ejection process. As we can
see from the update mechanism for V k

bn (lines 2, 6-9, 17-18), all bottleneck paths
in the temporal schedule certainly pass through at least one of the nodes in
V k

bn (see Fig. 2). Therefore, we can detect that the makespan of the temporal
schedule is less than or equal to L as soon as V k

bn becomes empty.
Now, we detail procedure Routine(k). Lines 13 and 2 are required for back-

tracking. In the while loop (lines 3-20), the minimum node i in V k
bn is selected

as iout(k) and is removed from V k
bn (lines 4-6). Then, we eject node i from the

temporal schedule (modify the directed graph; delete i, link JP (i) and JS(i),
and link MP (i) and MS(i)) (line 7). If the length of the longest path that passes
through arc (JP (i), JS(i)) is greater than L, JS(i) is added to V k

bn (line 8). The
same applies to MS(i) (line 9). If V k

bn is empty, the k-tuple of currently ejected
operations is stored to I (lines 10, 11). If this is not the case, proceed to the
(k + 1)-th ejection phase if k < kmax (line 13). At lines 15-18, node i is re-
inserted into the original position to shift the k-th ejection node (the directed
graph is restored to that before line 7), rk

i is then computed (line 16)4, and V k
bn

is updated in the same manner as described above. After re-inserting node i, if
the “finish” node n+1 becomes a bottleneck node, the subsequent k-th ejections
can be pruned (line 19) because there exists a path 〈0, . . . , i, n+1〉 whose length
is greater than L.

1 Actually, “excessive” ejections will be excluded. For example, if C(π − {1, 2}) ≤ L,
combinations {1, 2, i} (i > 2) are excluded.

2 For example, if kmax = 3, nodes are ejected in the following order: {1}, {1, 2},
{1, 2, 3}, {1, 2, 4}, . . ., {1, 2, n}, {1, 3}, {1, 3, 4}, . . ., {1, n− 1, n}, {2},

3 Actually, there is no need to copy all rk−1
i . It is a simplified algorithm.

4 Due to the lexicographic ejections in the topological order, when rk
i is updated,

rk
JP (i) (rk

MP (i)) has the true value if it is a bottleneck node or “−1” if otherwise.

174 Y. Nagata and S. Tojo

Algorithm 2. Procedure Ejection(π, L)

Procedure MainEjection(π,L)
1 :I := ∅;
2 :Calculate the topological order and qi (i ∈ V);
3 :r0

0 = 0, r0
i = −1 (i ∈ V \{0});

4 :V 0
bn = {i ∈ V | qi > L, JP (i) = 0, MP (i) = 0};

5 :Routine(1);
6 :return I;

Procedure Routine(k)
1 :rk

i = rk−1
i (i ∈ V);

2 :V k
bn = V k−1

bn (copy all elements);
3 :while

4 : Set i := the minimum node in V k
bn;

5 : iout(k) = i;
6 : V k

bn := V k
bn\{i};

7 : Modify the directed graph (eject i);
8 : if rk

JP (i) + qJS(i) > L then Add JS(i) to V k
bn;

9 : if rk
MP (i) + qMS(i) > L then Add MS(i) to V k

bn;
10: if V k

bn = ∅ then
11: Add {iout(1), . . . , iout(k)} to I;
12: else
13: if k < kmax then Routine(k + 1);
14: end if
15: Modify the directed graph (re-insert i to the original position);
16: rk

i = max{rk
JP (i), r

k
MP (i)}+ pi;

17: if rk
i + qJS(i) > L then Add JS(i) to V k

bn;
18: if rk

i + qMS(i) > L then Add MS(i) to V k
bn;

19: if n + 1 ∈ V k
bn then break;

20:end while

(a)

0

4

98

76

3

1

5

2

10

1211

13

1

11

221

1122

12 00

(b)

0

4

98

76

3

1

5

2

10

1211

13

1

1

221

1122

12 00

Fig. 2. Examples of lexicographic ejections where nodes are labeled according to the
topological order of a schedule. Bottleneck nodes and bottleneck paths are highlighted
(L = 8). Figure (a) illustrates an example of 1st ejection phase (Routine(1)); nodes 1,
3, 4, 5, 6, 8, 11, and 12 will be ejected as iout(1) in this order. Figure (b) illustrates an
example of 2nd ejection phase (Routine(2)); node 3 is ejected as iout(1), and nodes
6, 8, 11, and 12 will be ejected as iout(2) in this order. V k

bn is updated as follows: (a)
V 1

bn = {1} (line 2), V 1
bn = {1} before ejecting node 1 (line 4), V 1

bn = ∅ after ejecting node
1 (lines 6-9), and V 1

bn = {3, 6} after re-inserting node 1 (lines 17-18). V 1
bn = {3, 6} before

ejecting node 3 (line 4), V 1
bn = {6} after ejecting node 3 (lines 6-9), and V 1

bn = {4, 6, 8}
after re-inserting node 3 (lines 17-18), . . ., (b) V 2

bn = {6} (line 2),

Guided Ejection Search for the Job Shop Scheduling Problem 175

3.3 Algorithms of Procedures LocalSearch and Perturb

First, we describe the local search algorithm (procedure LocalSearch(π)) em-
bedded in the GES framework. Here, we should design a simple algorithm be-
cause the GES framework will call the local search a number of times. In this
research, we used a TS algorithm developed by Zhang et al. [12] with a little
modification.

The pseudo-code of the local search is shown in procedure LocalSearch(π).
The neighborhood, denoted by N (π), is based on the well-known N6 neighbor-
hood. For an extensive review of classical local search techniques for the JSP,
refer to [1]. The suggested local search uses only short-term memory (tabu list).
The tabu list, denoted by Tabu, stores the most recent maxT solutions in the
search history (line 5). For each neighbor solution π′, if both a sequence of op-
erations and their positions in a machine (i.e., πm(s1), . . . , πm(s2)) modified by
a move (m, s1 and s2 are defined) matches one of the solutions in the tabu list,
such a solution is defined as a tabu-solution.

In our TS algorithm, tabu-solutions are not accepted. We used the first-
acceptance strategy to accept a neighbor solution (line 3) to accelerate the
iterations. If a solution better than π is not found in the neighborhood, the
best non-tabu solution is accepted (line 4). The iterations are continued until
the best solution is not improved for stagLS iterations (line 6).

Procedure LocalSearch(π)
1 :Set the tabu list Tabu := ∅ and π∗(best solution) := π;
2 :repeat
3 : With the first-acceptance strategy, randomly select non-tabu solution π′ ∈ N (π)

such that C(π′) < C(π);
4 : if π′ does not exist then Set π′ to the best non-tabu solution among N (π);
5 : Set π := π′, update π∗ (if the best solution is improved), and add π to Tabu;
6 :until Improvement of π∗ stagnates for stagLS iterations
7 :return π∗;

The randomization procedure (procedure Perturb(π, L)) is rather simple.
Here, random feasible moves are executed for a given number of times (iterRand)
under the constraint that the makespan is less than or equal to L. Each move is
executed by swapping two randomly selected successive operations in a machine.
Here, one should note that the pair of operations can be selected from non-critical
paths contrary to the standard neighborhood for the JSP.

4 Computational Experiments

The GES algorithm was implemented in C++ and was executed on AMD
Opteron 2.4 GHz (4-GB memory) computers. Several computational experi-
ments have been conducted to analyze the performance of GES. In this section
we present the results along with a comparative analysis.

176 Y. Nagata and S. Tojo

4.1 Experimental Settings

The suggested GES algorithms (GES-1 and GES-2) were tested on well-known
and widely used benchmarks in the literature: SWV01-10, YN1-4, and TA01-
50. All instances are available from the OR-library (http://people.brunel.ac.uk/
mastjjb/jeb/orlib/) or Taillard’s web-site (http://mistic.heig-vd.ch/taillard).

GES has two groups of parameters: kmax and maxIter for the main framework
(procedure RoutineGES) and stagLS and iterRand for the sub procedures
(procedures LocalSearch and Perturb). Parameters for the sub-procedures
were fixed as follows for simplicity: stagLS = 50 and iterRand = 100. As for the
parameter kmax, we tested three values (1, 2, and 3) for both GES-1 and GES-2.
Parameter maxIter was set to 10,000 for relatively easy instances (YN1-4 and
TA-1-10) or 20,000 for hard instances (SWV01-10 and TA11-50) to clarify the
difference in performance between GES-1 and GES-2 with different kmax. GES
with each configuration was applied to each instance ten times.

To evaluate the performance, we present the quality of solutions and the
running time. We evaluate the quality of solution π with the relative percentage
error to the known lower bound of the optimal solution defined as RE = (C(π)−
LB)/LB × 100 because this measure with lower bound LB taken from [2] has
been widely used in recent literature on the JSP. In the following, b-RE and
a-RE refer to the best and average values of RE, respectively, over ten runs. In
addition, a-T refers to the average running time in seconds over ten runs.

4.2 Analysis of GES

The results obtained by both configurations GES-1 and GES-2 with different
kmax are presented in Table 1. Due to space limitation, only a-RE and a-T
averaged over selected groups of instances are presented. (See also Table 2 to
refer to the problem size and RE for the best-known solutions (UB)).

First, let us focus on GES-1. The solution quality of GES-1 with kmax = 1
is clearly inferior to those of GES-1 with kmax = 2 and 3. The reason is simply
because the number of operations in the EP is always one in this configuration
and thus the strength of the GES framework is spoiled. In addition, we find
that the solution quality of GES-1 improves with increasing kmax. However, the
computation time of GES-1 is significantly increased, in particular for the large
instances (e.g., TA31-50), by increasing kmax from 2 to 3. The reason apparently
comes from the computation time for procedure Ejection. Next, let us focus on
GES-2. GES-2 is superior to GES-1 in terms of the solution quality, indicating
that GES-2 is better suited to address the problem of I(π, L) becoming empty.
Note that when kmax = 3, a significant difference is not found in SWV01-10,
YN1-4, and TA1-30 because I(π, L) becomes empty very occasionally in these
instances.

In addition to the improvement in the solution quality, the computation time
is also improved by GES-2. In our observation, when I(π, L) becomes empty, the
lexicographic ejection process (see Section 3.2) tends not to be effectively pruned
and the computation time per procedure Ejection will increase. Moreover, this

Guided Ejection Search for the Job Shop Scheduling Problem 177

Table 1. Results of GES-1 and GES-2 with different kmax

a-RE (%) a-T (sec)
Type GES-1 GES-2 GES-1 GES-2

Inst. \ kmax 1 2 3 1 2 3 1 2 3 1 2 3
SWV01-05 4.26 1.40 1.37 1.73 1.30 1.39 145 146 155 115 137 155
SWV06-10 12.20 8.56 8.15 8.45 8.12 8.20 200 205 267 157 170 255

YN01-04 8.90 6.98 6.85 6.93 6.93 6.95 113 105 158 75 83 131
TA01-10 1.23 0.09 0.09 0.17 0.08 0.08 55 47 48 42 44 48
TA11-20 4.36 2.80 2.71 2.92 2.73 2.70 183 168 204 126 135 173
TA21-30 7.82 6.01 5.84 5.95 5.83 5.89 207 201 327 150 160 241
TA31-40 3.09 1.29 0.90 0.86 0.83 0.80 403 406 2244 241 257 496
TA41-50 8.72 6.18 5.17 5.21 4.94 4.88 461 528 5098 273 313 1391

situation tends to continue in GES-1 because the insertion-ejection move is not
performed in this situation (only the randomization procedure is applied). On
the other hand, GES-2 can escape from this situation by ejecting more than kmax

operations. In conclusion, GES-2 with kmax = 2 seems to be a good configuration
for GES applied to the JSP.

Typical behaviors of GES are illustrated in Fig. 3. Due to space limitation,
we present results of only GES-2 with kmax = 2 and 3 in instance SWV06.
The graphs show both the makespan of the best complete schedule (C(π∗)) and
the number of temporarily ejected operations (operations in the EP) against
the number of iterations (iter). As we all know, the best solution is improved
immediately after the EP becomes empty. The maximum number of temporarily
ejected operations in both cases reaches 20 and more than 30, respectively.

0

5

10

15

20

25

30

0 2000 4000 6000 8000 10000

1430

1450

0

5

10

15

20

25

30

0 2000 4000 6000 8000 10000

1430

1450
GES-2 (kmax=3)GES-2 (kmax=2)

iterations iterations

n
u

m
b

e
r

o
f

e
je

c
te

d
 o

p
e

ra
ti
o

n
s

th
e

 b
e

s
t

m
a

k
e

s
p

a
n

n
u

m
b

e
r

o
f

e
je

c
te

d
 o

p
e

ra
ti
o

n
s

th
e

 b
e

s
t

m
a

k
e

s
p

a
n

Fig. 3. Typical behaviors of GES-2 in instance SWV06 (20× 15)

4.3 Comparisons with Other Algorithms

We compared the results of GES-2 (kmax = 2) with state-of-the-art metaheuris-
tics for the JSP. Moreover, we tested GES-2 (kmax = 2) with a larger total number
of iterations maxIter (five times greater than those of the original values). The
GES algorithms with these two configurations are referred to as GES-2 (small)
and GES-2 (large). We selected three algorithms for comparison: i-TSAB by Now-
icki and Smutnicki [9], TSSA by Zhang et al. [10], and i-STS/SGMPCS by Wat-
son and Beck [11]. i-TSAB is a hybrid tabu search/path relinking algorithm that

178 Y. Nagata and S. Tojo

Table 2. Comparisons with state-of-the-art algorithms

UB GES-2(small) GES-2(large)
Inst. (|M| × |J|) RE b-RE a-RE a-T b-RE a-RE a-T

SWV01-05 (20 × 10) 0.70 0.93 1.30 137 0.83 1.05 674
SWV06-10 (20 × 15) 6.86 7.05 8.12 170 6.62 7.07 834

YN01-04 (20 × 20) 6.42 6.56 6.93 83 6.39 6.64 411
TA01-10 (15 × 15) 0.00 0.01 0.08 44 0.00 0.01 214
TA11-20 (20 × 15) 2.28 2.38 2.73 135 2.29 2.46 655
TA21-30 (20 × 20) 5.36 5.44 5.83 160 5.39 5.55 791
TA31-40 (30 × 15) 0.48 0.60 0.83 257 0.55 0.66 1167
TA41-50 (30 × 20) 3.93 4.38 4.94 313 4.08 4.39 1494

Computer Opteron 2.4 GHz Opteron 2.4 GHz

i-TSAB TSSA i-STS/SGMPCS
Inst. RE T b-RE a-RE a-T b-RE a-RE a-T

SWV01-05 1.01 660 0.78 1.76 138
SWV06-10 7.49 935 6.91 8.66 190

YN01-04 6.44 6.99 109
TA01-10 0.11 79 0.01 0.11 65
TA11-20 2.81 390 2.37 2.92 235 2.26 2.45 1800
TA21-30 5.68 1265 5.43 5.97 433 5.52 5.71 1800
TA31-40 0.78 1225 0.55 0.93 370 0.50 0.68 1800
TA41-50 4.70 1670 4.07 4.84 846 4.22 4.63 1800

Computer Penti. 900 M Penti.IV 3.0 GHz Opteron 2.0 GHz

had dominated other algorithms since 2003 until very recently. TSSA is a hybrid
tabu search/simulated annealing algorithm, and i-STS/SGMPCS is a hybrid tabu
search/constraint programming algorithm. The latter two algorithms were pro-
posed very recently and are competitive with i-TSAB. Here, one should note that
these three algorithms dominate all other metaheuristics, although a number of
algorithms have been proposed for the JSP.

The results are shown in Table 2. b-RE, a-RE, and a-T obtained over ten
independent runs are presented for all algorithms except for i-TSAB. Because
i-TSAB was executed once for each instance, results obtained by only a single
run are presented (denoted as RE and T). In the table, a blank cell means that
a corresponding result is not available. In addition, the column labeled “UB”
provides RE for the best-known solutions (upper bound) taken from [9][10][11].
The column labeled “Computer” provides specifications on the computers used
in the experiments; we applied GES algorithms to some instances on different
machines and observed that our computer (Opteron 2.4 GHz) is about 1.6 times
faster than a Pentium 2.8 GHz machine.

First, we compare GES-2 and i-TSAB. In general, a-RE of GES-2 (small) is
slightly inferior to RE of i-TSAB, but the computational effort of GES-2 (small)
is smaller than that of i-TSAB even if the difference of the computer speed is
considered. In contrast, a-RE of GES-2 (large) is superior to RE of i-TSAB, but
the computational effort is larger than that of i-TSAB. Next, GES-2 is compared
with TSSA. The computational effort of GES-2 (small) is roughly equal to that
of TSSA. GES-2 (small) tends to be superior to TSSA in terms of a-RE, but
GES-2 (small) tends to be inferior to TSSA in terms of b-RE. The last com-
parison is made with i-STS/SGMPCS. i-STS/SGMPCS was executed with a
fixed computation time (30 minutes plus a few minutes (not clearly described)).
GES-2 (large) is highly competitive with i-STS/SGMPCS in terms of both

Guided Ejection Search for the Job Shop Scheduling Problem 179

b-RE and a-RE even though the computational effort is not larger than that
of i-STS/SGMPCS. In conclusion, these results show that GES-2 (kmax = 2) is
highly competitive with the three state-of-the-art metaheuristics for the JSP.

The ten runs of GES-2 (large) improved the best-known upper bound in eight
instances: SWV06 (1672), SWV07 (1594), SWV09 (1655), SWV10 (1751), YN02
(905), TA20 (1348), TA37 (1775), and TA42 (1949).

5 Conclusion

The concept of GES was originally developed as a route minimization heuristic
for the VRPTW. In this paper we have formulated GES for other combinational
optimization problems and hence apply it to the JSP. We have demonstrated
that the suggested GES algorithm is highly competitive with the state-of-the-art
metaheuristics for the JSP, improving eight best-known solutions in the well-
known benchmarks. Given that these good results were obtained by the simple
concept of GES, GES appears to have good potential for developing effective
solution algorithms for other combinatorial optimization problems.

References

1. Blazewicz, J., Domschke, W., Pesch, E.: The job shop scheduling problem: Conven-
tional and new solution techniques. European Journal of Operational Research 93,
1–33 (1996)

2. Jain, A.S., Meeran, S.: Deterministic Job-Shop Scheduling: Past, Present and Fu-
ture. European Journal of Operational Research 113, 390–434 (1999)

3. Nagata, Y., Bräysy, O.: A Powerful Route Minimization Heuristic for the Vehicle
Routing Problem with Time Windows (under submission)

4. Lim, A., Zhang, X.: A two-stage heuristic with ejection pools and generalized
ejection chains for the vehicle routing problem with time windows. Informs Journal
on Computing 19, 44–457 (2007)

5. Voudouris, C., Tsang, E.: Guided local search, Technical Report CSM-247, De-
partment of Computer Science, University of Essex, UK (August 1995)

6. Adams, J., Balas, E., Zawack, D.: The shifting bottleneck procedure for job shop
scheduling. Management Science 34, 391–401 (1988)

7. Glover, F.: Ejection chains, reference structures and alternating path methods for
traveling salesman problems. Discrete Applied Mathematics 65, 223–253 (1992)

8. Shaw, P.: Using constraint programming and local searchmethods to solve vehicle
routing problems. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520,
pp. 417–431. Springer, Heidelberg (1998)

9. Nowicki, E., Smutnick, C.: An Advanced Tabu Search Algorithm for the Job Shop
Problem. Journal of Scheduling 8, 14–159 (2005)

10. Zhang, C., Li, P.G., Rao, Y.Q., Guan, Z.: A very fast TS/SA algorithm for the job
shop scheduling problem. Computers and Operations Research 35, 282–294 (2008)

11. Watson, J.-P., Chistopher, J.: A Hybrid Constraint Programming / Local Search
Approach to the Job-Shop Scheduling Problem. In: Perron, L., Trick, M.A. (eds.)
CPAIOR 2008. LNCS, vol. 5015, pp. 263–277. Springer, Heidelberg (2008)

12. Zhang, C., Li, P.G., Guan, Z.L., Rao, Y.Q.: A tabu search algorithm with a new
neighborhood structure for the job shop scheduling problem. Computers and Op-
erations Research 34, 3229–3242 (2007)

Improving Performance in Combinatorial
Optimisation Using Averaging and Clustering

Mohamed Qasem and Adam Prügel-Bennett

School of Electronics and Computer Science
University of Southampton, SO17 1BJ, UK

Abstract. In a recent paper an algorithm for solving MAX-SAT was
proposed which worked by clustering good solutions and restarting the
search from the closest feasible solutions. This was shown to be an ex-
tremely effective search strategy, substantially out-performing traditional
optimisation techniques. In this paper we extend those ideas to a second
classic NP-Hard problem, namely Vertex Cover. Again the algorithm ap-
pears to provide an advantage over more established search algorithms,
although it shows different characteristics to MAX-SAT. We argue this is
due to the different large-scale landscape structure of the two problems.

1 Introduction

One of the potential benefit of using an evolutionary algorithm (EA) is the pos-
sibility to learn about the large-scale structure of the fitness landscape from the
whole population. However, there are few examples of EAs on real world prob-
lems where the algorithm unambiguously exploits this global knowledge of the
landscape. Recently we proposed an algorithm for solving large MAX-SAT prob-
lems based on clustering good solutions which we argued does precisely this [1].
We review that work here and extend the idea to a second classic NP-Hard
problem, Vertex Cover. The algorithm behaves differently on Vertex Cover to
MAX-SAT, although again the algorithm provides a performance improvement.
We argue that the reason for the difference in behaviour of the algorithm on
the two problems reflects difference in the large-scale structure of the fitness
landscape.

The algorithm we use here is a hybrid algorithm. We find many good solutions
using a local neighbourhood search algorithm (a basic hill-climber, BHC). The
solutions are either averaged or clustered using a K-means cluster algorithm.
The solution closest to the mean solution or centroid of each cluster is then used
as a starting position for applying a second round of the local neighbourhood
search algorithm. This very simple algorithm finds remarkably good solutions—
we describe our tests of the algorithm in section 2.1.

Our interpretation for the good performance of this algorithm is that in many
combinatorial optimisation problems good quality solutions tend to surround
the global maxima. Thus by averaging good solutions, we can find a position in
the vicinity of a global maximum, or, at least, a very high quality solution. As

C. Cotta and P. Cowling (Eds.): EvoCOP 2009, LNCS 5482, pp. 180–191, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Improving Performance in Combinatorial Optimisation 181

the landscapes are often rugged, the average solution (or more accurately the
nearest feasible solution to the average) may not itself be very good, although
by continuing the search from the average solution we are likely to find an
improved solution. It may be thought that crossover performs a similar operation
to averaging, however, this is not the case, as, in expectation, a child is as far
from the centroid of the parents as the parents themselves (this is even true
when more than two parents are used in crossover). This observation is backed
up empirically, where we find crossover does not perform at all like averaging.

For many combinatorial optimisation problems the landscape is more com-
plex because there are often global optima a substantial distance apart. We can
imagine the local optima being like stars clustered into galaxies. The high qual-
ity solutions typically being close to the centre of the galaxies. In this case, if
we average solutions lying in different galaxies the mean solution may not lie
close to the centre of any galaxy. However, by first clustering solutions and using
the centroid of each cluster we can hope that at least some centroids might be
close to the centre of a galaxy. For MAX-SAT we found clustering was superior
to averaging all solutions (although, averaging all solutions was found to be supe-
rior to hill-climbing, suggesting that the galaxies themselves are correlated—this
interpretation is supported by direct empirical studies). In Vertex Cover clus-
tering provided no significant improvement over averaging suggesting that the
global optima for Vertex Cover may not be so widely spread over the search
space as MAX-SAT.

The rest of the paper is arranged as follows. In the next section, we recap on
the behaviour of our new method for MAX-SAT. In section 3 we discuss the new
results for Vertex Cover. Finally, in section 4 we draw conclusions.

2 Recap on MAX-SAT

MAX-SAT is a generalisation of the well-known SAT problem. A SAT problem
consists of a set of m clauses {Ci|i = 1, 2, . . . , m}, where each clause Ci is
formed by the disjunction of Boolean variables, X = (X1, X2, . . . , Xn) or their
negation, where Xi ∈ {true, false}. The SAT decision problem is whether there
exists a truth assignment X which satisfies all the clauses. If the number of
literals in each clause is K then the problem is called K-SAT. If K ≥ 3, then
K-SAT is NP-Complete. In MAX-SAT we attempt to find an assignment of
the variables which maximises the number of satisfied clauses. MAX-SAT is an
NP-Hard problem.

MAX-SAT is one of the best studied optimisation problems—in part because
of its association with SAT, which, besides from its theoretical importance, has a
huge number of practical applications. A large amount of research has gone into
characterising the typical behaviour of random instances. In this paper, we also
concentrate on random fixed-length clause instances [2]. These are created by
generating m clauses from n variables by randomly picking K variables for each
clause. Then with a probability of 0.5 a variables is negated. Duplicate clauses
are discarded.

182 M. Qasem and A. Prügel-Bennett

For this class of problem there is a transition between the case where most in-
stances are satisfiable to the case where most instances are unsatisfiable, which
occurs at a ratio of clauses to variables of α = m/n ≈ 4.3. This transition
becomes increasingly sharp as the problem size increases and is viewed as an ex-
ample of a classic first-order phase transition. At around the same ratio of clauses
to variables, there is an observed change in the difficulty of problem instances
with most instances being easy to solve below the phase transition while above
the phase transition most instances are hard to solve [2,3]. That is, the empiri-
cal time complexity for most complete SAT solvers grows dramatically around
this phase transition. For larger ratios of m/n the 3-SAT decision problem typ-
ically becomes easy again because it is straightforward to prove unsatisfiability,
however the MAX-SAT problem remains hard [4,5].

2.1 Experimental Results

We briefly present empirical results of our algorithm on large instances of MAX-
3-SAT for α = m/n = 8. More details can be found in [1]. We were unable to
compare our algorithm with most other algorithms that appear in the literature
since the other studied were performed on much smaller instances (typically
around 100 variables). For such small instances we found that running the basic
hill-climber a few times would almost always find a solution we were unable to
improve on and which we believe to be the global optimum. This made our clus-
tering approach redundant. The only work we are aware of which studied similar
sized instances to those used here is by Zhang [6]. Our algorithm substantially
out-performs the results given in that paper. To provide some comparators to
the clustering approach we ran a number of variants of the algorithms. The main
purpose of these comparators was to rule out other possible explanations of why
the approach we are taking is successful.

Experimental Setup. We generated random MAX-3-SAT instances using the
method described in section 2. We consider problem instances ranging in size
from 6 000 to 18 000 variables in increments of 2000 variables, and with α =
m/n = 8. These are difficult problems since they are in the over-constrained
region. For each increment we generated 100 problems instances.

In all tests we carried out we started by performing 1 000 hill-climbs using
BHC starting from different random starting configurations. The number of iter-
ations started from 20000 for 6 000 variables and ended with 50 000 iterations for
18,000 variables in increments of 5 000. The number of iterations were increased
with the number of variables so that BHC would be given more opportunities
to find better quality solutions. With the growth of the number of variables it
becomes more difficult for a local search algorithm to reach local maxima [7],
although the goal was not necessarily to reach a local maximum, but only to
find a good solution. The best result for the 1 000 hill-climbs averaged over all
100 problem instances is shown in the second column of table 1. We then tested
a number of different strategies to boost the performance obtained from these
initial 1 000 points. The testing procedure we carried out is shown schematically

Improving Performance in Combinatorial Optimisation 183

Table 1. Comparison of different algorithms. The tests were carried out on random
MAX-3-SAT problems with α = 8.0. Each test was performed on 100 problem instances
for each number of variables. The K-means algorithm performs best. The results are
based on the number of unsatisfied clauses.

#Vars First
BHC

Second
BHC (1)

K-
Means/
BHC (2)

Average/
BHC (3)

hybrid-GA Perturb/
BHC

(2) - (1) (3) - (1)

6000 1971.77 1448.35 1370.61 1385.82 2429.5 1447.92 77.74 62.53

8000 2944.03 2037.26 1913.26 1943.38 3691.22 2038.78 124 93.88

10000 3464.7 2614.65 2456.67 2507.56 4908.87 2617.19 157.98 107.09

12000 4235.8 3247.74 3051.09 3125.79 6218.57 3247.4 196.65 121.95

14000 4999.14 3892.06 3652.23 3761.51 7533.33 3895.38 239.77 130.55

16000 5711.81 4496.69 4226.15 4368.23 N/A N/A 270.54 128.46

18000 6551.83 5256.28 4932.41 5129.12 N/A N/A 323.87 127.16

Fig. 1. Schematic diagram of the set of tests carried out and reported in table 1

in figure 1. As a baseline we repeated the basic hill-climber for same number of
iterations on all 1 000 search points. These results are shown in the third column
of table 1. This second round of hill-climbing shows that the solutions found in
the first round were still some way away from being locally optimal.

K-Means and Averaging. We next performed clustering using the K-means
clustering algorithm [8] on the 1 000 search points found by the initial hill-
climbing. This algorithm starts by assigning a random string on the n-cube
to each of K initial “centres” (note that, in this section, K is used to denote
the numbers of centres in K-means clustering and should not be confused with
the number of variables in each clause). For a number of assignments Xk ∈
{0, 1}n with k = 1, 2, . . . , P , the centre or average is defined to be

X = argmax
X∈{0,1}n

∑

k

H(X, Xk)

184 M. Qasem and A. Prügel-Bennett

where H(X, Xk) is the Hamming distance between binary strings. Thus the
average is a configuration which minimises the sum of distances to each assign-
ment. Each of the 1 000 points is then assigned to the cluster with the nearest
centre. The centres are then updated to be the centroid of the cluster. The points
are reassigned to the nearest centroid and the process is repeated until there are
no changes. This usually happens after five to ten iterations. Having computed
the 100 centroids a second round of hill-climbing is then carried out. The results
obtained after this procedure are shown in the forth column of table 1. In ev-
ery case there is a considerable gain in performance compared to the baseline,
although the K-means method used 100 points in contrast to the 1000 in the
second round of hill-climbing (in consequence, the baseline method uses approx-
imately 10 times as much CPU time in this second stage than the K-means
clustering method). The gain in performance compared to the baseline in shown
in column 8 of table 1.

We have compared clustering with ‘averaging’, where we randomly selected
10 points and averaged them to create a centroid. These were then rounded
to give a valid assignment of the variables and a second cycle of hill-climbing
carried out. This was repeated 100 times so as to give a fair comparison with
the K-means clustering method. The results are shown in the fifth column of
table 1. This again produced a substantial gain in performance compared with
the baseline (the gain is shown in the last column of table 1), however, these
gains are smaller than those obtained by K-means clustering. This seems to
provide empirical support for the claim that the global maxima are clustered. It
also shows that even the mean of all the good solutions provides a much better
starting point than a random starting point.

To show that these results are not due to clustering or averaging acting as a
macro-mutation which allows the search to escape out of local maxima we con-
sidered applying perturbations of 0.1%, 1%, 2%, 5% and 10% of the variables
and then repeating hill-climbing. We found that doing this gave us worse per-
formance than the baseline algorithm. Even with 0.1% the perturbation appears
slightly detrimental (see column 7 of table 1).

Comparison with GAs. We also compared our algorithms against a hybrid
genetic algorithm. This combined hill-climbing with selection and two-parent
crossover. For selection we used scaled Boltzmann selection where we chose each
member of the population with a probability proportional to exp(−β Fi/σ) where
Fi is the fitness of individual, i; σ is the standard deviation of the fitness values
in the population; and β controls the selection strength. Various values of β were
tried, but this did not strongly affect the results. Uniform, single-point and multi-
point crossovers were tried. The best results were obtained with single-point
crossover. Column 6 of table 1 shows the best results we were able to obtain using
a GA. Although we do not claim that all the parameters were optimally chosen,
the results obtained by the hybrid-GA are extremely disappointing compared to
the other algorithms.

The behaviour of the hybrid genetic algorithm appears particularly poor. This
was due to the limited number of BHCs allowed for each algorithm. When given a

Improving Performance in Combinatorial Optimisation 185

20 40 60 80 100 120 140 160 180

1200

1300

1400

1500

1600

1700

1800

1900

2000

Time (s)

U
ns

at
is

fie
d

cl
au

se
s

BHC
Hybrid−GA
K−Means/BHC

Fig. 2. Comparison of BHC, genetic algorithms and K-means clustering as a function
of CPU time run on X instances of randomly generated MAX-3-SAT instances with
6000 variables at α = 8. The large jump in fitness in the K-means algorithm after
around 10 seconds marks the point where K-means clustering is carried out.

longer time the hybrid-GA performs considerably better. In figure 2 we show the
average performance of parallel-BHC, K-means clustering and the hybrid-GA.
Each algorithm was run for 3 minutes and the results were averaged over 100
instances of randomly generated MAX-3-SAT instances with 6000 variables at
α = 8. In parallel-BHC, we run 10 BHCs in parallel and show the best of these.
K-means clustering was run starting with an initial population of 100 where
we performed 27 000 BHCs before performing K-means clustering with K = 10
clusters and then running BHC starting from the 10 centroids. No tuning was
performed on the K-means clustering algorithm. Finally we tested a hybrid-GA
with a population of size 10 where we performed uniform crossover, Boltzmann
selection with a selection strength of β = 0.1 and BHC. The parameters for the
hybrid-GA were chosen after performing a large number of preliminary tests.
As can be seen the GA outperforms BHC given enough time, but does not beat
K-means on average, (although in some instances it does).

For larger problem instances the speed of K-means becomes more pronounced
so that for problems with 18 000 variables run for 5 minutes K-means gave
better performance than a hybrid-GA on every one of 50 instances that was
tested.

2.2 Landscape of MAX-3-SAT

As described in the introduction we have attributed the performance of our algo-
rithm to the clustering of the good quality solutions. Here we present some direct
evidence in support of this picture obtained by extensive empirical observations
on the fitness landscape of MAX-3-SAT for α = m/n = 8. We studied instances
up to size 100 by finding many local maxima. To achieve this we used the basic
hill-climber. The algorithm was started from different, randomly-chosen, start-
ing points. To ensure that we had found a local maximum, after running the

186 M. Qasem and A. Prügel-Bennett

hill-climber with no improvements in many attempts we switched to an exhaus-
tive search method that checked all neighbours at the same cost as the current
point, and then checked their neighbours repeatedly, until either a fitter solution
was found or else all neighbours at the current cost had been searched, in which
case we could be sure that we were at a local maximum.

We postulate that the best local maxima we found are the global maxima,
since if there were even a single maximum fitter than those we found then we
would expect to find it with high probability given the number of hill-climbs we
made (unless it had a very atypically small basin of attraction). We call our best
maxima found in this way, quasi-global maxima as we believe them to be the
true global maxima, although we have no proof of this1.

We investigated the distribution of quasi-global maxima by examining the fre-
quencies of Hamming distances between all quasi-global maxima in an instance.
In figure 2.2, we show these frequencies averaged over 300 problem instances. To
find the set of quasi-global maxima we ran BHC followed by exhaustive search
5000 times on each problem instance. The histogram has a large peak at a Ham-
ming distance approximately equal to 5% of the total number of variables. This
indicates a clustering of quasi-global maxima around each other. However, the
histogram has a large tail with a second peak at a large Hamming distance away
from the first. This is indicative of multiple clusters that are weakly correlated
with each other (if there was no correlation then the clusters would be at a
Hamming distance of n/2).

0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

Hamming Distance

N
or

m
al

iz
ed

 F
re

qu
en

ci
es

50 Variables
75 Variables
100 Variables

Fig. 3. Shows a histogram of the Hamming distance between quasi-global maxima for
instances of size n = 50, 75, and 100 with α = 8. There is a cluster of very close global
maxima below a Hamming distance of 10. Also, a significant number of global maxima
at a Hamming distances equivalent to 30–40% of the variables.

1 For small problems, n ≤ 50, we could find the true global maxima using a branch-
and-bound algorithm. In every case, the best solution found by performing multiple
BHC were true global maxima. We also tested problems with n = 100 from SATLIB
and in every case we were able to find the best solution for the problem using BHC.

Improving Performance in Combinatorial Optimisation 187

0 5 10 15 20 25
10

15

20

25

30

35

40

45

50

55

c−c
min

A
ve

ra
ge

 H
am

m
in

g
di

st
an

ce

50 Variables
75 Variables
100 Variables

Fig. 4. The average Hamming distance between the quasi-global maxima and the local
maxima. As the gap in fitness between the quasi-global maxima and local maxima
decreases so does the average distance to the quasi-global minimum.

Figure 4 shows how the average Hamming distance between the local maxi-
mum and the nearest quasi-global maximum varies as a function of the difference
in the cost between the local maxima and the quasi-global maxima. It is easy
to understand why higher-cost solutions should be closely correlated on aver-
age with the quasi-global maxima as global-optimum solutions represent good
ways of maximising the number of satisfied clauses. Therefore, nearby solutions
are also likely to satisfy many clauses. However, what is perhaps more surpris-
ing is that the solutions whose cost differs by one from the quasi-global optima
have a high average Hamming distance from any quasi-global optima. Even for
relatively small problems with 100 variables this average Hamming distance is
around 18 which is sufficiently large that the probability of a stochastic hill-
climber reaching a global maximum from a local maximum is negligibly small.

Although it is always dangerous to rely on low-dimensional pictures to un-
derstand what happens in a high-dimensional space, nevertheless we offer the
following caricature of our fitness landscape. We imagine the search space as
being points on a ‘world’ where the height of the points representing the fitness
values. This is schematically illustrated in figure 5. The good solutions lie in
mountain ranges. The mountain ranges have hugely more foothills than high
mountains. There are only a few mountain ranges in this world and they are
slightly correlated (e.g. all the mountain ranges might lie in one hemisphere).
The mountain ranges occupy only a very small proportion of the world. As
with real mountain ranges, higher solutions tend to lie in the middle of the
mountain ranges. Starting from a random position and hill-climbing we are
likely to land up at a foothill, just because there are so many of them. Finding
a good solution through hill-climbing alone will be very difficult. An alterna-
tive strategy is to perform a large number of hill-climbs starting from different

188 M. Qasem and A. Prügel-Bennett

Fig. 5. Caricature of the Fitness Landscape showing the clustering of good solutions

randomly-chosen positions. We could then cluster the solutions we find after
performing hill-climbing. If we are lucky, a cluster will correspond to a mountain
range. The centres of the clusters corresponds to the regions with many high
mountains so if we restart hill-climbing from the centre of a cluster we have
a very good chance of finding a high quality solutions. Of course, this picture
fails in many ways. The search space is not continuous, but is discrete. Further-
more, using a Hamming neighbourhood the topology of the search space is an
n-dimensional hypercube. The high-dimensionality makes it harder for low-cost
solutions to be local maxima since they have a large number of neighbours. Also
the set of costs is discrete so that there is no gradient information. Nevertheless
our algorithm based on clustering seems to perform very well which suggests
that this simple picture might not be too misleading.

3 Vertex Covering

To further test our hypothesis that averaging or clustering is effective in other
combinatorial problems we have tested the optimisation version of the Vertex
Cover problem. A vertex cover for an undirected graph G = (V , E) (where V is
the set of vertices, and E is the set of edges) is a subset of the vertices S ⊆ V
such that each edge has at least one end point in S [9]. The Vertex Cover
decision problem is, given an integer R, does there exist a vertex cover. S, such
that |S| ≤ R? We consider an optimisation version of the Vertex Cover problem
where we set |S| = R for a predetermine R and we seek a collection of elements of
S which maximises the number of covered edges. Since the Vertex Cover problem
is NP-complete, the optimisation version of the problem will be NP-hard.

To generate random problems we created 1 000 vertices, with an edge density
of p = 0.01. That is an edge between two vertices is created with a probability of
0.01. For 1 000 vertices, the number of edges created was 4 995 on average. We

Improving Performance in Combinatorial Optimisation 189

chose R to be 500 vertices, and used a basic hill-climber to find the 500 most
covering vertices amongst the 1 000. (We tested our algorithm on instances with
many different parameter values, but found very similar results in each case).

We applied three different algorithms to solve this problem. We applied a basic
hill-climber (BHC), Averaging and a Hybrid-GA. We represented a solution by
two sets S and S̄ = V\S. Initially the elements of S were randomly chosen with
the constraint that |S| = R. In (BHC) we chose a random element from S and
another random element from S̄. These were exchanged provided the number
of edges covered by the vertices after the exchange was, at least, as large at
the number of edges covered by the vertices before the exchange. The “average”
was taken to be the set S with the largest intersection with all members of the
population Sk for k = 1, 2, . . . , P . As with MAX-SAT averaging is used just
once, in this case after 500 basic hill-climbing iterations. We also tried performing
K-mean clustering in a similar manner to that described for MAX-SAT, but this
gave us no noticeable benefit compared with averaging.

In the Hybrid-GA we combined BHC with selection and crossover. After a
set number of hill-climbs (500 in the case shown), 2× P members were selected
using scaled Boltzmann selection with a selection strength of β = 4. The selected
members were paired up and crossed to create P children. A child is produced
from two parents, Sk and Sl by randomly choosing R elements from Sk ∪ Sl.
We experimented with different parameter values for the Hybrid-GA but were
unable to find parameters where it out-performed BHC.

The results averaged over 1000 different instances of the problem are shown
in Figure 6. The performance of the Hill-Climber and the Hybrid-GA are in-
distinguishable on the graph. Averaging produces a rapid improvement in per-
formance. Although not very clear in the graph, the results after averaging are
significantly better than either Hill-Climbing or the Hybrid-GA even at the end
of the run. Interestingly, in Vertex Cover averaging produces an immediate im-
provement in fitness. This is in contrast to MAX-SAT where initially averaging
decreases the fitness (although in the longer term it leads to a more rapid in-
crease in fitness), see Figure 2. This suggests that the landscape for Vertex Cover
is much less rugged than MAX-SAT, at least, for the instances we chose.

An explanation of why clustering provides a performance advantage for Max-
Sat, but not for Vertex Cover is that in Max-Sat many of the global optima
are weakly correlated while in Vertex Cover the global optima lie in a much
more confined part of the search space. To gain support for this view we have
run independent hill-climbers on both problems and measured the correlation
between solutions over time. Figure 7 shows the evolution of this correlation
versus the number of hill-climbing steps. Initially, the hill-climbers are randomly
chosen so on average they have zero correlation with each other. Over time the
hill-climbers move towards fitter solutions. In both cases the solutions become
correlated, however, this correlation is much more pronounced in Vertex Cover,
suggesting that good solutions lie in a much smaller region of the search space
than for MaxSat.

190 M. Qasem and A. Prügel-Bennett

0 20000 40000 60000 80000 100000
Number of Function Evalutations

400

600

800

1000

1200

N
um

be
r

of
 U

nc
ov

er
ed

 E
dg

es
Hill-climber, P = 10
Averaging, P = 10
GA, P = 10, β = 4

Vertex Cover, n = 1000, p = 0.01, r= 500, # instances= 1000

Fig. 6. Comparison of BHC, Hybrid-GA, and K-means clustering as a function of the
number of evaluations. We see the the same jump in fitness we previously saw in the
MAX-3-SAT problem.

0 20000 40000 60000 80000 100000
Number of Iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

C
or

re
la

ti
on Vertex Cover

MAX-3-SAT

Fig. 7. Correlation between solutions found by hill-climbers versus number of itera-
tions. The results are averaged over 100 instances of each problem. The Vertex Cover
graphs are drawn from a distribution with n = 1000, p = 0.01 where R = 500. The
MAX-3-SAT intances are for n = 1000 and m = 8000.

4 Conclusions

Clustering and averaging is shown to provide an important new search operator
for solving hard optimisation problems. For MAX-3-SAT it provides a substantial
improvement over other techniques. In Vertex Cover the improvement is less
pronounced although it is still useful especially for finding good solutions quickly.
From our studies of the landscape of both problems, the main difference would

Improving Performance in Combinatorial Optimisation 191

appear to be that Vertex Cover is not particularly hard—or more accurately,
the instances we chose are not particularly hard.

However, the success of averaging and clustering on these two classic com-
binatorial optimisation problems is encouraging. The success of these operators
relies on two important features of a landscape. Firstly good solutions should
be clustered around global optima (which is not difficult to imagine will often
be the case). Secondly, these solutions should be isotropically clustered. If they
were strongly biased in one direction then averaging may mislead the search.
It is far from obvious that this isotropic clustering holds in real optimisation
problems. The evidence from both MAX-3-SAT and Vertex Cover is that this is
the case, which provides hope that this approach is applicable to more problems.
We are currently extending this technique to new problems and particularly to
problems which are known to by typically hard.

References

1. Qasem, M., Prügel-Bennett, A.: Learning the large-scale structure of the max-
sat landscape using populations. IEEE Transactions on Evolutionary Computation
(2008) (submitted)

2. Mitchell, D., Selman, B., Levesque, H.: Hard and easy distributions of SAT problems.
In: Proceedings of the Tenth National Conference on Artificial Intelligence, San Jose,
CA, USA, pp. 459–465. AAAI, Menlo Park (1992)

3. Crawford, J.M., Auton, L.D.: Experimental results on the crossover point in random
3-SAT. Artificial Intelligence 81(1-2), 31–57 (1996)

4. Zhang, W.: Phase transitions and backbones of 3-SAT and maximum 3-SAT. In:
Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 153–167. Springer, Heidelberg (2001)

5. Prügel-Bennett, A.: Symmetry breaking in population-based optimization. IEEE
Transactions on Evolutionary Computation 8(1), 63–79 (2004)

6. Zhang, W.: Configuration landscape analysis and backbone guided local search.
part 1: satisfiability and maximum satisfiability. Artificial Intelligence 158(1), 1–26
(2004)

7. Qasem, M., Prügel-Bennett, A.: Complexity of max-sat using stochastic algorithms.
In: GECCO (2008)

8. Hartigan, J.A., Wong, M.A.: A k-means clustering algorithm. Applied Statis-
tics 28(1), 100–108 (1979)

9. Garey, M.R., Johnson, D.S.: Computers and intractability. A guide to the theory of
NP-completeness. Freeman, New York (1979)

Iterated Local Search for Minimum Power
Symmetric Connectivity in Wireless Networks

Steffen Wolf and Peter Merz

Distributed Algorithms Group
University of Kaiserslautern, Germany
{wolf,pmerz}@informatik.uni-kl.de

Abstract. The problem of finding a symmetric connectivity topology
with minimum power consumption in a wireless ad-hoc network is NP-
hard. This work presents a new iterated local search to solve this problem
by combining filtering techniques with local search. The algorithm is
benchmarked using instances with up to 1000 nodes, and results are
compared to optimal or best known results as well as other heuristics.
For these instances, the proposed algorithm is able to find optimal and
near-optimal solutions and outperforms previous heuristics.

1 Introduction

Wireless ad-hoc networks have received a lot of research attention recently [1].
Nodes in such networks usually carry their own power supply, which makes the
wireless ad-hoc network a good choice for a first responders infrastructure, or
as the main communications infrastructure in regions where installing a wired
infrastructure would be too expensive or even infeasible.

Communication in such ad-hoc networks can be performed by adjusting the
transmission power of the sending node to reach the recipient. However, because
the transmission power is a polynomial function of the distance, the total energy
consumption can often be reduced by using intermediate nodes [1]. E. g., if the
power consumption is proportional to the squared distance (this is the case when
there are no obstacles), sending to an intermediate node and having it relay the
message to the final recipient can cost only half the energy of a direct connection
to the destination.

Because of the limited battery power of each node, it is crucial to find com-
munication topologies that minimize the energy consumption, leading to two
opposing aims when setting up wireless ad-hoc networks: The network lifetime
should be high, so settings with lower transmission powers are preferred. On the
other hand, the network has to stay connected, so too low transmission ranges are
discouraged. The connectivity of the network can be defined as a strong connec-
tivity or as symmetric connectivity. Whereas symmetric connectivity only allows
bidirectional links for communication, the strong connectivity allows different
paths to be used for different directions. However, many of the low layer proto-
cols in wireless networks require bidirectional links (e. g. CSMA/CA RTS/CTS
in IEEE 802.11), so strong connectivity alone is not enough in those settings [1].

C. Cotta and P. Cowling (Eds.): EvoCOP 2009, LNCS 5482, pp. 192–203, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Iterated Local Search for Minimum Power Symmetric Connectivity 193

In this work, we are searching for the wireless topology that minimizes the
total energy consumption but still gives a symmetrically connected network.
This problem is known as the Minimum Power Symmetric Connectivity Problem
(MPSCP) [2,3,4,5]. We present a new Iterated Local Search for the MPSCP and
compare its solutions against optimal solutions as well as other heuristics.

This paper is structured as follows. In the remainder of this section we give
a formal definition of the MPSCP and summarize related work. In Section 2 we
present our heuristic, and then give results of experiments carried out with this
heuristic in Section 3. Section 4 summarizes our findings and gives an outline for
future research.

1.1 Minimum Power Symmetric Connectivity Problem

The Minimum Power Symmetric Connectivity Problem (MPSCP) is an NP-
hard optimization problem [2,6]. It is also known as the Strong Minimum En-
ergy Topology (SMET) problem [6] or the Weakly Symmetric Range Assignment
(WSRA) problem [1]. The MPSCP in an ad-hoc wireless network G = (V, E, d)
can be defined as the problem of finding a spanning tree T = (V, ET) (an undi-
rected tree, defined by the set of edges ET ⊆ E), that minimizes the necessary
total transmission power c(T) to connect all nodes of the network via bidirec-
tional links:

c(T) =
∑

i∈V

max {d(i, j)α| {i, j} ∈ ET }
︸ ︷︷ ︸

transmission power of node i

Here, the distance function d : E → R
+ refers to the Euclidean distance and the

constant α is the distance-power gradient, which is 2 in an ideal environment,
but can also vary from 1 to more than 6 in other environments [1]. Each node is
required to set its transmission range to reach the farthest neighbouring node in
the tree. Note that every node contributes to the total cost, as each node needs
to reach at least one other node in the network.

1.2 Related Work

The MPSCP is first introduced by Călinescu et al . in [2] as a variant of another
Range Assignment Problem searching for strong connectivity only [7,8]. They
show that the Minimum Spanning Tree (MST) is a 2-approximation for the
MPSCP, based on a similar result for the strong connectivity variant in [8]. This
approximation ratio is shown to be tight using the example from Fig. 1. They
also give an approximation scheme based on k-restricted decomposition yielding
an approximation ratio of 1 + ln 2 + ε ≈ 1.69 + ε.

The problem is rediscovered by Cheng et al . in [6], where the authors empha-
size that the problem is different than the strong connectivity range assignment
problem and continue to give a new NP-proof. They also rediscover the MST as
a 2-approximation, and present a new greedy heuristic, later called Incremental
Power: Prim (IPP). This heuristic builds the tree in a way that resembles Prim’s
algorithm for building MSTs. Since IPP explicitly exploits the fact that nodes

194 S. Wolf and P. Merz

1 ε 1 ε ε
. . .

1•
1

•
2
•
3

•
4
•
5

•• •
n

1 + ε
ε

1 + ε
ε ε

. . .

1
•
1

•
2
•
3

•
4
•
5

•• •
n

Fig. 1. Tight example for performance ratio of MST approximation. The MST on the
left needs a total power of n · 1α, each node needs to send over the larger link. The
optimal assignment on the right needs n/2 · (1 + ε)α + (n/2 − 1) · εα + 1α ε→0= n/2 + 1.
Only about half the nodes need to send over a larger link. Example taken from [2].

can reach closer nodes for free when they already have to send to a farther node,
it produces solutions with lower costs than the corresponding MST solutions.

Improving upon these construction heuristics, Althaus et al . [3,4] present two
local search heuristics. In the edge-switching (ES) heuristic, edges from the tree
are replaced by non-tree edges re-establishing the connectivity. In the edge-and-
fork-switching (EFS) heuristic, not only edges, but also pairs of edges sharing
one node, so-called forks, are inserted in the tree, and the resulting cycles are cut
again by removing other edges. In both heuristics, the largest reduction in cost
is chosen, and the process is repeated until a local optimum is reached. Forks
were already used in [2] as 3-restricted decompositions, but the EFS produces
better results. Average improvements over the MST of up to 6 % are achieved.
The authors also try filtering out edges to reduce computation complexity, and
concentrate on Delaunay edges only. This may also filter out edges that are part
of the optimal solution, so the results using the filtered local searches are weaker.

Park et al . [9] give an experimental survey over different construction and lo-
cal search heuristics. They name the greedy heuristics based on Prim or Kruskal
Incremental Power: Prim and Kruskal (IPP and IPK), respectively, and present
a new local search ES2 that applies the best double edge switch. They also show
that the approximation ratio of 2 is not reduced by these heuristics. In the exper-
iments, problem instances of up to 100 nodes are used, but no computation times
are provided. Average improvements over the MST of up to 6 % are presented.
For the ES2 local search, the average improvements are said to be as high as
14 %. We were unable to reproduce these values using similar random instances.
In our instances, the optimal solution is about 6−7 % below the MST. However,
their instances may contain some properties that are unknown to us.

Several Mixed Integer Programming formulations (MIP) have been presented
to compute optimal solutions. Althaus et al . [3,4] give a formulation using an
exponential number of inequalities to ensure connectivity and to forbid cycles.
A cutting plane algorithm is used to find optimal values for problem instances
of up to 40 nodes (or up to 60 nodes when only Delaunay edges are considered).
Montemanni et al . [5] give two MIP formulations based on incremental power.
In the first formulation they avoid the problem of an exponential number of
inequalities by defining n3 flow variables. The second formulation is incorporated
in an exact solver EX2, which iteratively solves the MIP and adds necessary

Iterated Local Search for Minimum Power Symmetric Connectivity 195

constraints. Also, the authors present a filtering technique (see Section 2), that
greatly reduces the computation time. Problem instances of up to 40 nodes were
solved with these formulations.

In these papers, many approximation algorithms have been presented, reduc-
ing the approximation ratio from 2 (MST, IPP, IPK) down to 1+ ln2+ε [2] and
5/3 + ε [3,4]. Recent theoretical advances on approximation ratios for the more
general Minimum Power k-Connected Subgraph problem can be found in [10].

Another problem in wireless networks is the Minimum Energy Broadcast
Problem (MEB), where one node needs to send data to all other nodes. However,
heuristics for the MEB (such as [11]) cannot be reused for the MPSCP, because
of the bidirectional links in MPSCP. The local search and the mutation operator
need to take the additional costs for the back-links into account.

2 Iterated Local Search

The MPSCP heuristic presented here is based on iterated local search [12]. It
operates on a global view of the wireless ad-hoc network. It also incorporates a
filtering technique first presented in [5] to exclude edges that cannot be part of
the optimal solution. The general outline of the algorithm is shown in Fig. 2.

Filter. In order to reduce the number of edges to be considered by the heuristic,
we apply a filtering technique as described in [5]. Since each node needs to have
a transmission range at least high enough to reach its nearest neighbour, we can
calculate a very weak lower bound. The filter then checks whether adding an
edge {i, j} increases this cost beyond an upper bound determined by the best
solution found so far by the heuristic. Such edges are marked and are not used in
the following operations. The filter is first applied after the initialization. Note
that more edges are filtered out during the run of the heuristic when better
solutions are found. Note also, that a larger edge might be allowed, although
smaller edges starting from the same node are filtered out. This is the case, for
example, when this node is the nearest neighbour of a remote node.

Initialization

Filter

Local Search

stop?

yes

Filterno

Mutation

T ← Initialization(E)
F ← Filter(E, T)
T ← LocalSearch(E, T, F)
while ¬ terminated do

F ← Filter(E, T)
Tnew ← Mutation(E, T, F)
Tnew ← LocalSearch(E,Tnew, F)
if c(Tnew) < c(T) then

T ← Tnew

end if
end while

Fig. 2. General overview of the Iterated Local Search

196 S. Wolf and P. Merz

procedure ES(E, T, F)
repeat

best savings ← 0
Calculate all possible savings for removing edges {x, y} ∈ ET

for each edge {i, j} ∈ E \ (ET ∪ F) do
Temporarily insert {i, j} in ET // increases transmission ranges of i and j
Find edge {x, y} on path from i to j in ET \ {i, j} whose removal saves most
savings ← saved cost from {x, y} − additional cost from {i, j}
if savings > best savings then

best savings ← savings
(i∗, j∗, x∗, y∗)← (i, j, x, y)

end if
Remove edge {i, j} again from ET // restores transmission ranges of i and j

end for
if best savings > 0 then

Insert edge {i∗, j∗} in ET and remove edge {x∗, y∗} from ET

// adjusts transmission ranges accordingly
end if

until best savings = 0

Fig. 3. Edge switching search (ES), using filter F , implemented as an insert search

Initialization. The initial solution is created using MST or the Prim-like con-
struction heuristic IPP. Using MST and IPP bears the advantage that there is
an upper bound for the solutions of the Iterated Local Search heuristic, since
both heuristics already give a 2-approximation for the MPSCP [2,9]. Although
IPP tends to produce better solutions, in some cases its solutions are slightly
worse than the MST. In our heuristic, we simply take the better solution as
initialization.

Local Search. After initialization and mutation, a local search is applied to
further improve the current solution. We use a modified edge switching search
(ES), as well as an edge and fork switching search (EFS) as defined in [3,4].
We also use a faster subtree moving search (ST), as defined in [13]. Each local
search heuristic follows a best improvement strategy. The local search is restarted
whenever an improving step was found, until a local optimum has been reached.

The pseudocode for the modified edge switching search (ES) is shown in Fig. 3.
The time complexity of one step of ES is O(n3), since there are O(n2) edges
{i, j} to be considered, and the path between any two nodes i, j ∈ E contains
at most n − 1 edges. In our implementation, the simple graph operations such
as removing, finding or inserting an edge take constant time. Calculating the
possible savings for every edge is done at the beginning of each step of the ES.
Only edges adjacent to nodes i and j need recalculation, since the newly included
edge {i, j} changes the precalculated savings. The local search was modified not
to insert edges that cannot be part of an optimal solution and are therefore
filtered out (F) in a pre-processing step. The unmodified ES can be simulated
by setting F = ∅.

Iterated Local Search for Minimum Power Symmetric Connectivity 197

procedure EFS(E, T, F) // F is ignored in this unfiltered version
repeat

best savings ← 0
for each edge {i, j} ∈ ET do

Temporarily remove {i, j} from ET // reduces transmission ranges of i and j
for each edge {k, l} ∈ ET do

Temporarily remove {k, l} from ET // reduces transmission ranges of k and
l
if saved costs > best savings then

Find edges {x, y} and {y, z} reconnecting the separated trees, that mini-
mize the additional cost
if saved costs − additional costs > best savings then

best savings ← saved costs − additional costs
(i∗, j∗, k∗, l∗, x∗, y∗, z∗)← (i, j, k, l, x, y, z)

end if
end if
Re-insert edge {k, l} in ET // restores transmission ranges of k and l

end for
Re-insert edge {i, j} in ET // restores transmission ranges of i and j

end for
if best savings > 0 then

Remove edges {i∗, j∗} and {k∗, l∗} and insert edges {x∗, y∗} and {y∗, z∗}
// adjusts transmission ranges accordingly

end if
until best savings = 0

Fig. 4. Edge and fork switching search (EFS), implemented as a deletion search

Another local search is the edge and fork switching search (EFS), shown in
Fig. 4. Here, two edges are removed from the tree. There are n − 1 edges in ET .
Removing two edges splits the tree in three parts, each of size O(n). These three
parts are reconnected by inserting a fork {x, y}+{y, z}with x, y, z taken from dif-
ferent parts. Out of all possible deletion and insertion combinations, the one that
reduces the total cost the most is taken. This process is repeated until no further
improvements can be made. The time complexity of one step of EFS is O(n5).

A third local search is the subtree moving search (ST). Here, an edge is re-
moved from the tree. The node adjacent to the removed edge in one part of the
tree is made the root of this subtree. The subtree is reconnected with the main
tree by connecting its root node to another node in the main tree. This can be
done by forcing x = i in Fig. 3, reducing the time complexity of one step of this
local search to O(n2).

More expensive local searches are also possible. For example, EFS could be
extended to allow two non-adjacent edges to reconnect the three parts, thus
yielding the ES2 search from [9] with time complexity O(n6).

Mutation. Since local search alone will get stuck in local optima, we use muta-
tion to continue the search. The mutation operator should change the solution
enough to leave the attraction basin of the local optimum, but it should also avoid

198 S. Wolf and P. Merz

changing the solution too much and destroying already promising structures. An-
other criterion for the mutation operator is its relation to the local search. The
mutation operator should not be easily reversible by the local search. In our
heuristic, we use the following two mutation operators: random range increase
and random edge exchange.

In the first mutation operation, the transmission power of a randomly chosen
node is increased to a random level. All reached nodes adjust their transmission
power to establish bidirectional links to the first node. Unnecessary connections,
i. e. those that would introduce a cycle, are cut without adjusting the transmis-
sion power. The local search can later adjust the higher transmission powers or
use them to reach other nodes. The cost of the solution increases according to
the sum of the power level changes. Since this mutation operation could result
in star-like topologies, we applied the same filters as for the local search. Also,
with 20% probability we increased the transmission range of the selected node
to the largest level allowed by the filters.

In the second mutation operation, we remove a random edge from the tree
and insert another random edge to reconnect the tree. The transmission ranges
of the involved nodes are adjusted accordingly. However, new connections that
could be established because of the increased ranges are not inserted in the tree.
This can be done later by the local search heuristics.

Termination criterion. We stop the ILS after 200 iterations. For the smaller
instances (n ≤ 50), this setting is already too high. However, for the larger
instances (n ≥ 500) and especially for the weakest local search (ST), this setting
should be increased in order to find optimal solutions instead of near-optimal
solutions. Because of the large running times of the stronger local searches, we
increased the number of iterations to 2000 only for the ST local search.

3 Experiments

For our experiments, we used two sets of well established test instances [11]. Each
set contains 30 instances, where n nodes are randomly located in a 10 000×10 000
grid, using a uniform distribution. Euclidean distance was used and the distance-
power gradient was set to α = 2 as in an ideal environment. The sets use only
n ∈ {20, 50} nodes, so we added some larger sets (n ∈ {100, 200, 500, 1000}), as
well as clustered instances (n ∈ {100, 200, 500}, with c = 	√n� clusters of size
1000×1000, the cluster centres placed at a random location in the 10 000×10 000
grid). All sets can be found at http://dag.cs.uni-kl.de/research/rap/.

Each experiment was repeated 30 times and average values are used for the
following discussion. Calculation times refer to the CPU time on a 2.5GHz Intel
Xeon running 64 bit Linux 2.6; the algorithm was implemented in C, and only
one CPU core was used for each experiment.

3.1 Obtaining Optimal Solutions

The commercial MIP solver CPlex 10.1 [14] was used together with the exact
algorithm EX2 from [5] to obtain optimal solutions for the problem instances.

http://dag.cs.uni-kl.de/research/rap/

Iterated Local Search for Minimum Power Symmetric Connectivity 199

EX2 uses the same filtering technique as described in Section 2. We used the best
known solution found by any of our experiments as an upper bound and filtered
out all edges that would induce a larger cost. Since the MPSCP is NP-hard, EX2
was only able to provide optimal solutions for the 20 and 50 nodes problems,
taking about 2 s and 10mins, respectively. Three of the 100 nodes instances were
solved to optimality, taking up to 30 days. Other instances of this set occupied
the EX2 algorithm even longer, in one instance more than five months, without
reaching a feasible solution.

We refrained from trying to solve all 100 nodes problems to optimality, or
any of the larger problems. However, the intermediate solutions found by EX2
can still be used as lower bounds, as they represent topologies that need minimal
power, but are not connected. EX2 is not suitable for clustered instances, though,
as the intermediate solutions are even below the simple lower bound given by
half the cost of the MST solution. The intermediate topologies tend to separate
the clusters, thus leaving out the most expensive edges.

3.2 Results

We use the following table format to present our results: Each row gives the
average values for all 30 problem instances of the same set. The first column de-
notes the problem size, where clustered instances are shown as 100c10, 200c14,
and 500c22. The second column gives the improvements compared to the simple
MST heuristic. The third column gives the calculation time in CPU seconds.
The fourth column gives the excess over the optimum or the best known so-
lutions. These best known solutions are taken from the experiments presented
in this section. We believe only a few of these solutions up to n = 500 to be
not optimal, but for n = 1000 the best known solutions can probably still be
improved.

Table 1. Results for the simple heuristics ES and EFS starting from the MST

edge switching (ES) edge and fork switching (EFS)

Improvement CPU Excess over Improvement CPU Excess over
Size to MST time best known to MST time best known

20 4.18 % 0.00 s 0.250 % 4.33 % 0.00 s 0.092 %
50 6.04 % 0.00 s 0.541 % 6.32 % 0.07 s 0.243 %

100 5.58 % 0.00 s 0.542 % 5.95 % 1.67 s 0.143 %
200 6.05 % 0.08 s 0.518 % 6.40 % 48.07 s 0.140 %
500 6.08 % 1.94 s 0.593 % 6.46 % 4261.16 s 0.188 %

1000 6.07 % 23.71 s 0.326 %
100c10 8.47 % 0.01 s 2.446 % 10.37 % 1.69 s 0.246 %
200c14 4.67 % 0.09 s 1.596 % 6.03 % 44.96 s 0.110 %
500c22 4.18 % 1.87 s 1.154 % 5.11 % 4244.00 s 0.150 %

200 S. Wolf and P. Merz

Using the established edge switching heuristic (ES) starting from MST so-
lutions already produces solutions that are less than 1 % above the optimum
for the uniformly random networks (left side in Table 1). However, optimal
solutions are found very rarely. Also, clustered instances pose a challenge for this
simple heuristic. Using the stronger local search EFS reduces this gap (right side
in Table 1). However, the high time complexity prohibits an application of this
heuristic to larger instances. For the 1000 nodes problems we estimate running
times of 200 hours, but already the running times for the 500 nodes problems
are too high for practical use. The aim of our ILS heuristic is to produce results
similar to EFS in less time.

Selected results for the experiments with ILS using different local searches
and mutations are shown in Tables 2-5. In these tables, the last column shows
how often the optimum or best known solution was found in all 900 runs.

Already the ILS using the weakest local search ST (Table 2) gives results that
are better than the application of the simple ES heuristic to the MST. For the
instances of up to 100 nodes, the results are even better than the EFS heuristic.
Since ST has a time complexity of only O(n2), it can easily be applied to much
larger instances than the ones considered here.

However, better results can be found using the ILS with the stronger local
search ES (Table 3). Optimal solutions are found with very high probability in
instances of up to 100 nodes. This heuristic can be applied to the larger set of
1000 nodes instances, but the running times are still unacceptably high.

The effect of the filters can be seen when comparing Tables 3 and 4. Using
filters, the ILS takes only a third of the time and still produces better results for
the larger instances. For the clustered instances (100c10 and 200c14) the average
solution is worse than without filters, but the best known solutions are still found
more often. This is because of some runs ending in poor local optima.

Using the strongest EFS local search in the ILS produces the best results.
Optimal solutions can be found with very high probability. However, the time
complexity of O(n5) prohibits the application of this local search to larger prob-
lem instances. In our environment, n = 200 was the largest setting that delivered
results in acceptable time. Due to the high running times we only repeated the
experiments 20 times for n = 500. Using filters would allow to work on slightly
larger problem instances, but the time complexity remains the same. We used
the ILS with EFS only for finding the best known solutions, and deactivated the
filters in order to get the best results.

An analysis of the optimal solutions found by EX2 and the best known so-
lutions for the larger problems shows that, on average, the MST solution for
uniformly random graphs can only be improved by 6 − 7 %. This observation
was also made by Althaus et al . in [3,4]. However, for some of the instances,
improvements as high as 12.25 % can be found.

Clustered instances allow larger improvements. E. g. in the clustered 100 nodes
instances (100c10), the average improvement is as high as 10.58 %, the best
improvement is 19.28 %. However, when the number of clusters increases, the
possible improvements quickly reduce to the aforementioned 6 − 7 %, due to

Iterated Local Search for Minimum Power Symmetric Connectivity 201

T
a
b
le

2
.

R
es

ul
ts

fo
r

IL
S

us
in

g
ST

(fi
lt
er

ed
)

an
d

ed
ge

ex
ch

an
ge

m
ut

at
io

n
(u

nfi
lt

er
ed

),
20

00
it
er

at
io

ns

Si
ze

Im
pr

ov
em

en
t

C
P

U
ti
m

e
E

xc
es

s
ov

er
#

be
st

to
M

ST
be

st
kn

ow
n

fo
un

d

20
4.

37
%

0.
05

s
0.

04
6

%
84

9
50

6.
48

%
0.

30
s

0.
07

3
%

66
3

10
0

5.
97

%
1.

25
s

0.
12

3
%

39
6

20
0

6.
34

%
5.

39
s

0.
21

0
%

66
50

0
6.

15
%

44
.0

8
s

0.
51

7
%

0
10

00
5.

86
%

23
8.

68
s

0.
54

6
%

0
10

0c
10

10
.4

8
%

1.
07

s
0.

12
0

%
38

0
20

0c
14

5.
96

%
4.

72
s

0.
19

1
%

47
50

0c
22

4.
94

%
41

.0
8

s
0.

33
1

%
0

T
a
b
le

3
.

R
es

ul
ts

fo
r

IL
S

us
in

g
E

S
(u

nfi
lt

er
ed

)
an

d
ed

ge
ex

ch
an

ge
m

ut
at

io
n

(u
nfi

lt
er

ed
)

Si
ze

Im
pr

ov
em

en
t

C
P

U
ti
m

e
E

xc
es

s
ov

er
#

be
st

to
M

ST
be

st
kn

ow
n

fo
un

d

20
4.

41
%

0.
03

s
0.

00
0

%
90

0
50

6.
54

%
0.

49
s

0.
00

0
%

89
9

10
0

6.
07

%
4.

86
s

0.
01

6
%

74
8

20
0

6.
42

%
50

.3
4

s
0.

11
8

%
45

50
0

6.
33

%
12

91
.4

1
s

0.
33

0
%

0
10

00
6.

09
%

16
45

2.
88

s
0.

30
0

%
0

10
0c

10
10

.5
1

%
5.

06
s

0.
08

5
%

41
3

20
0c

14
5.

97
%

50
.4

3
s

0.
17

6
%

47
50

0c
22

5.
04

%
12

67
.0

0
s

0.
23

4
%

0

T
a
b
le

4
.

R
es

ul
ts

fo
r

IL
S

us
in

g
E

S
(fi

lt
er

ed
)

an
d

ra
nd

om
in

cr
ea

se
m

ut
at

io
n

(fi
lt
er

ed
)

Si
ze

Im
pr

ov
em

en
t

C
P

U
ti
m

e
E

xc
es

s
ov

er
#

be
st

to
M

ST
be

st
kn

ow
n

fo
un

d

20
4.

41
%

0.
01

s
0.

00
0

%
90

0
50

6.
54

%
0.

15
s

0.
00

5
%

87
1

10
0

6.
07

%
1.

44
s

0.
01

6
%

79
7

20
0

6.
47

%
14

.3
9

s
0.

07
1

%
21

6
50

0
6.

45
%

34
2.

88
s

0.
20

0
%

1
10

00
6.

23
%

44
21

.9
4

s
0.

15
3

%
30

10
0c

10
10

.3
9

%
2.

27
s

0.
22

2
%

43
3

20
0c

14
5.

95
%

21
.9

6
s

0.
19

6
%

16
2

50
0c

22
5.

06
%

38
4.

31
s

0.
20

6
%

0

T
a
b
le

5
.

R
es

ul
ts

fo
r

IL
S

us
in

g
E

F
S

(u
nfi

lt
er

ed
)

an
d

ra
nd

om
in

-
cr

ea
se

m
ut

at
io

n
(fi

lt
er

ed
).

O
nl

y
20

ru
ns

fo
r
in

st
an

ce
s
m

ar
ke

d
w

it
h

*.

Si
ze

Im
pr

ov
em

en
t

C
P

U
ti
m

e
E

xc
es

s
ov

er
#

be
st

to
M

ST
be

st
kn

ow
n

fo
un

d

20
4.

41
%

0.
20

s
0.

00
0

%
90

0
50

6.
54

%
8.

31
s

0.
00

0
%

89
9

10
0

6.
09

%
17

6.
42

s
0.

00
2

%
88

2
20

0
6.

53
%

41
06

.8
3

s
0.

00
3

%
84

7
50

0
6.

62
%

13
04

97
.3

9
s

0.
01

5
%

25
0*

10
0c

10
10

.5
8

%
30

5.
10

s
0.

00
1

%
87

5
20

0c
14

6.
13

%
73

48
.0

7
s

0.
00

1
%

84
8

50
0c

22
5.

25
%

21
37

87
.0

2
s

0.
00

9
%

14
4*

202 S. Wolf and P. Merz

••

•

•
••

•

•

• •

•
•

• •

•

•
••

•
•

Fig. 5. Detail from the best known solution for the first instance of 100c10. From each
of the shown clusters, only one node has a higher transmission range to reach another
cluster. In the MST, at least two nodes from each cluster are chosen to build the
inter-cluster connections.

closer or overlapping clusters. The higher improvements for clustered instances
are a result of the edges connecting different clusters. In the MST, these edges
connect the closest nodes from the two clusters, and thus often force multiple
nodes in the same cluster to have a higher transmission range. In the optimal
solutions, only a few nodes or even only one node from each cluster is required
to have a large transmission range to connect its cluster to other clusters. An
example for this effect is shown in Fig. 5. In a way, this is a similar effect as
in the tightness example for the performance ratio of the MST in Fig. 1, where
small clusters with only two nodes have to be connected.

The best heuristic in terms of running time and solution quality is the ILS
using ES local search together with random increase mutation and filters. The
fastest heuristic is the ILS with ST local search, and best results are found using
ILS with the strongest local search EFS, ignoring the high calculation times. Un-
fortunately, the ILS cannot give a performance guarantee better than the MST
approximation ratio. This can only be achieved by using better approximation
algorithms for initialization, e. g. those from [2,3,4].

4 Conclusion

We have presented a new Iterated Local Search for the Minimum Power Sym-
metric Connectivity Problem. As local search we used ES, EFS, and a subtree
search. The algorithm has been shown to find optimal or near-optimal solutions
in short time for the considered test instances. Also, comparisons show that the
proposed heuristic outperforms previous heuristics.

Future work focusses on an ant colonization heuristic incorporating local
search for the same problem. We are also striving for a distributed algorithm
that approximates the results of the heuristic proposed here.

Iterated Local Search for Minimum Power Symmetric Connectivity 203

References

1. Santi, P.: Topology Control in Wireless Ad Hoc and Sensor Networks. John Wiley
& Sons, Chichester (2005)

2. Călinescu, G., Măndoiu, I.I., Zelikovsky, A.: Symmetric Connectivity with Mini-
mum Power Consumption in Radio Networks. In: Baeza-Yates, R.A., Montanari,
U., Santoro, N. (eds.) Proc. 2nd IFIP International Conference on Theoretical
Computer Science. IFIP Conference Proceedings, vol. 223, pp. 119–130. Kluwer,
Dordrecht (2002)

3. Althaus, E., Călinescu, G., Măndoiu, I.I., Prasad, S.K., Tchervenski, N., Zelikovsky,
A.: Power Efficient Range Assignment in Ad-Hoc Wireless Networks. In: Proc. of
the IEEE Wireless Communications and Networking Conference (WCNC 2003),
pp. 1889–1894. IEEE Computer Society Press, Los Alamitos (2003)

4. Althaus, E., Călinescu, G., Măndoiu, I.I., Prasad, S.K., Tchervenski, N., Zelikovsky,
A.: Power Efficient Range Assignment for Symmetric Connectivity in Static Ad Hoc
Wireless Networks. Wireless Networks 12(3), 287–299 (2006)

5. Montemanni, R., Gambardella, L.M.: Exact algorithms for the minimum power
symmetric connectivity problem in wireless networks. Computers & Operations
Research 32(11), 2891–2904 (2005)

6. Cheng, X., Narahari, B., Simha, R., Cheng, M.X., Liu, D.: Strong Minimum Energy
Topology in Wireless Sensor Networks: NP-Completeness and Heuristics. IEEE
Transactions on Mobile Computing 2(3), 248–256 (2003)

7. Clementi, A.E.F., Penna, P., Silvestri, R.: Hardness Results for the Power Range
Assignment Problem in Packet Radio Networks. In: Hochbaum, D.S., Jansen, K.,
Rolim, J.D.P., Sinclair, A. (eds.) RANDOM 1999 and APPROX 1999. LNCS,
vol. 1671, pp. 197–208. Springer, Heidelberg (1999)

8. Kirousis, L.M., Kranakis, E., Krizanc, D., Pelc, A.: Power Consumption in Packet
Radio Networks. Theoretical Computer Science 243(1-2), 289–305 (2000)

9. Park, J., Sahni, S.: Power Assignment For Symmetric Communication In Wire-
less Networks. In: Proceedings of the 11th IEEE Symposium on Computers and
Communications (ISCC), Washington, pp. 591–596. IEEE Computer Society, Los
Alamitos (2006)

10. Nutov, Z.: Approximating Minimum-Power k-Connectivity. In: Coudert, D.,
Simplot-Ryl, D., Stojmenovic, I. (eds.) ADHOC-NOW 2008. LNCS, vol. 5198, pp.
86–93. Springer, Heidelberg (2008)

11. Wolf, S., Merz, P.: Evolutionary Local Search for the Minimum Energy Broadcast
Problem. In: van Hemert, J., Cotta, C. (eds.) EvoCOP 2008. LNCS, vol. 4972, pp.
61–72. Springer, Heidelberg (2008)

12. Lourenço, H.R., Martin, O., Stützle, T.: Iterated Local Search. In: Glover, F.W.,
Kochenberger, G.A. (eds.) Handbook of Metaheuristics. International Series in Op-
erations Research & Management Science, vol. 57, pp. 321–353. Springer, Heidel-
berg (2002)

13. Merz, P., Wolf, S.: Evolutionary Local Search for Designing Peer-to-Peer Overlay
Topologies based on Minimum Routing Cost Spanning Trees. In: Runarsson, T.P.,
Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.)
PPSN 2006. LNCS, vol. 4193, pp. 272–281. Springer, Heidelberg (2006)

14. ILOG S.A.: ILOG CPLEX User’s Manual, Gentilly, France, and Mountain View,
USA (July 2006), http://www.cplex.com/

http://www.cplex.com/

Metropolis and Symmetric Functions:
A Swan Song

Lars Kaden1, Nicole Weicker2, and Karsten Weicker3

1 University of Stuttgart, Germany
2 College of Education PH Heidelberg, Germany
3 Applied University HTWK Leipzig, Germany

weicker@imn.htwk-leipzig.de

Abstract. The class of symmetric functions is based on the OneMax
function by a subsequent assigning application of a real valued function.
In this work we derive a sharp boundary between those problem instances
that are solvable in polynomial time by the Metropolis algorithm and
those that need at least exponential time. This result is both proven
theoretically and illustrated by experimental data. The classification of
functions into easy and hard problem instances allows a deep insight
into the problem solving power of the Metropolis algorithm and can be
used in the process of selecting an optimization algorithm for a concrete
problem instance.

1 Motivation

For almost all combinatorial optimization problems there exists a wide spectrum
of problem instances—from very hard to rather easy instances where the latter
are already solvable by simple optimization algorithms. As a consequence the
properties of the problem instances need to be considered when an optimization
algorithm is chosen. Every time a simple problem solver suffices, the question
arises how the easy problem subclass and especially the border between easy
and hard problem instances might be characterized. With this motivation in
mind, we investigate the symmetric functions and describe mathematically the
borderline between polynomial and exponential runtime in expectation for the
most simple stochastic optimizer, the Metropolis algorithm. In the remainder of
the paper all statements concerning the runtime are in expectation.

Bit counting-based functions have a long history in evolutionary computation—
from OneMax to the deceptive trap functions (Ackley, 1987) to a set of new func-
tions by Droste et al. (2001). This problem class is referred to as symmetric func-
tions f : {0, 1}n → R which are defined by the fact that the function value
depends only on the number of ones in the input string

f(x) = fk ∈ R, k = ‖x‖1, x ∈ {0, 1}n.

Furthermore, we assume the unique global maximum to be at bit string
(1, . . . , 1)— the so-called all-ones symmetric functions.

C. Cotta and P. Cowling (Eds.): EvoCOP 2009, LNCS 5482, pp. 204–215, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Metropolis and Symmetric Functions: A Swan Song 205

Algorithm 1. (Metropolis algorithm with the parameter α ∈ (0, 1) to control the
selective pressure and the one-bit flipping mutation)
Metropolis(fitness function f : {0, 1}n → R)
1 x← choose random number uniformly from {0, 1}n
2 while f(x) is not optimal
3 do � i← choose random number uniformly from {1, . . . , n}
4 y ← flip the ith bit in x
5 if (random number from (0, 1)) ≤ min{αf(x)−f(y), 1}
6 then � x← y��
7 return x

The Metropolis algorithm (Metropolis et al., 1953, see Algorithm 1) with one-
bit flipping mutation, and symmetric functions have been the subject of matter
in a publication by Droste et al. (2001). They have shown that a function exists
which can be solved by Metropolis in exponential time only but is polynomial
for simulated annealing (Kirkpatrick et al., 1983). In the remainder of the paper
the term Metropolis algorithm refers to Algorithm 1.

Based on some of the results of Droste et al. (2001) and the work of Kaden
(2002) we derive a necessary and sufficient criterion for the polynomial runtime of
Metropolis on symmetric functions. Furthermore we demonstrate the immediate
practical relevance in a few experiments at the end of this contribution.

Since the borderline between polynomial and exponential time is determined
exactly, we consider this work to rule off any runtime question concerning
Metropolis and symmetric functions – as a consequence it is a swan song.

2 Criterion for Polynomial Time

As in Droste et al. (2001) the optimization process can be modeled as Markov
chain where the state 0 ≤ i ≤ n corresponds to the number of ones in the current
individual x. The transitions are defined by probability p+

i to advance from state
i to state i+1 in one step (0 ≤ i < n) and probability p−i for a step from state i to
state i−1 (0 < i ≤ n). The probability to stay in state i is 1−p+

i −p−i (0 ≤ i ≤ n)
where in addition p−0 = p+

n = 0. Apparently the following equations hold:

p+
i =

n− i

n
·min{αfi−fi+1 , 1} (1)

p−i =
i

n
·min{αfi−fi−1 , 1} (2)

From Droste et al. (2001) the following notations and results are used within
our analysis. The random variable T denotes the complete optimization time
and Ti (0 ≤ i ≤n) the optimization time when starting in state i. Then for the
expected time

E(T) =
n
∑

i=0

(

n
i

)

2n
·E(Ti). (3)

T +
i denotes the time until state i + 1 is reached for the first time when starting

from state i. Then for Ti

206 L. Kaden, N. Weicker, and K. Weicker

E(Ti) =
n−1
∑

j=i

E(T +
j) (4)

And for the T +
i the following lemma holds. (For a proof we refer to Droste et al.

(2001)).

Lemma 1. When starting in state 0 ≤ i < n, the expected number of steps until
we reach i + 1 for the first time results as

E(T +
i) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
p+
0

, if i = 0

1
p+

i

+
p−i
p+

i

·E(T +
i−1), otherwise

(5)

E(T +
i) =

i
∑

k=0

1
p+

k

·
i
∏

l=k+1

p−l
p+

l

(6)

To receive a general criterion concerning the polynomial runtime, a representa-
tion of the expected runtime in terms of the function values fk is necessary. The
function values and the selection parameter α are inserted into the formula in
the following lemma.

Lemma 2

E(T) =
n
∑

i=0

(

n
i

)

2n

n−1
∑

j=i

j
∑

m=0

n · (n− j − 1)!j!
(n−m)!m!

· αfj−fm

min{αfj−fj+1 , 1} (7)

Proof First, we consider the term (
∏b+1

l=a+1 p−l)·(∏b
l=a p+

l)−1 and apply equations
(1) and (2). This leads to

∏b+1
l=a+1 p−l
∏b

l=a p+
l

=
(n− b− 1)!(b + 1)!

(n− a)!a!
· αfb+1−fa

which can be proved easily using induction. This result can be substituted into
equation (3) using equations (6) and (4). �
To transform this result concerning the expected runtime into a general polyno-
mial time-criterion, a notion for simplifying terms within the polynomial func-
tion class is introduced. The following lemma is crucial in the derivation of the
criterion.

Definition 1 (P-equivalent). Two functions f : N → R and g : N → R are
called P-equivalent

f ∼P g :⇔ ∃ polynomials p(n), q(n) : f(n) ≤ p(n)g(n) ∧ g(n) ≤ q(n)f(n).

Note, that the P-equivalence partitions the functions in the complement of P
into an infinite number of classes. In the following we are only interested in
distinguishing between functions with polynomially bound and non-polynomially
bound runtime: As long as f ∈ P and f ∼P g holds, it is true that g ∈ P. Also
f
∈ P and f ∼P g imply g
∈ P.

Metropolis and Symmetric Functions: A Swan Song 207

Lemma 3. Let f : N → R be a sum of a polynomially bound number of terms
s(i, n) (with a(n) ≤ i ≤ b(n) and b(n)− a(n) + 1 ∈ P). Then

f(n) =
b(n)
∑

i=a(n)

s(i, n) ∼P max
a(n)≤i≤b(n)

{s(i, n)}

Proof. Without loss of generality we assume that s(i, n) ≥ 0. Let maxval(n) be
the value denoted by the right hand side. Then, we have to show that there exist
polynomials p(n) and q(n) such that f(n) ≤ p(n)maxval(n) and maxval (n) ≤
q(n)f(n) (according to definition 1). The second condition holds with q(n) ≡ 1
since maxval(n) is an addend of f(n). And the first condition holds with p(n) =
b(n)− a(n) + 1.

Now the following result can be shown.

Theorem 1 (Polynomial time criterion)

E(T)(n) ∈ P ⇐⇒
∃c ∈ R : max{n(ln n− ln 2) + max

0≤m≤j≤�n
2 �

(gm − fj | ln α|), max
0≤m≤j

�n
2 �<j≤n

(gm − gj) }

≤ c ln n,

where gx = fx| ln α| − (n− x) ˜ln (n− x)− x ˜ln x and

˜ln x =
{

1, iff x ≤ 0
ln x, iff x > 0.

Proof. By applying lemma 3 three times to (7), we receive

E(T)(n) ∼P max
0≤i,m≤j≤n−1

{
(

n
i

)

2n
· n · (n− j − 1)!j!

(n−m)!m!
· αfj−fm

min{αfj−fj+1 , 1}

}

(8)

where the index i = n is dropped since it results in a term = 0 and all terms
are ≥ 0.
In order to simplify (8), we show that we can omit the dividend min{αfj−fj+1 , 1}
by proving

max
0≤i,m≤j≤n

{F (i, m, j, n)} ∼P max
0≤i,m≤j≤n−1

{Fmin(i, m, j, n)}

with F (i, m, j, n) =

(

n
i

)

2n
· n · (n− j − 1)!j!

(n−m)!m!
· αfj−fm

and Fmin(i, m, j, n) = F (i, m, j, n)
1

min{αfj−fj+1 , 1} , where (−1)! := 1.

This result follows directly, if we show

max
0≤i,m≤j≤n

{F (i, m, j, n)} ≤P max
0≤i,m≤j≤n−1

{Fmin(i, m, j, n)} and (9)

max
0≤i,m≤j≤n

{F (i, m, j, n)} ≥P max
0≤i,m≤j≤n−1

{Fmin(i, m, j, n)} (10)

208 L. Kaden, N. Weicker, and K. Weicker

with f(n) ≤P g(n)⇐⇒ ∃polynomial p(n) : f(n) ≤ p(n)g(n).
For j < n, (9) follows immediately from

F (i, m, j, n) = min{αfj−fj+1 , 1}
︸ ︷︷ ︸

≤1

·Fmin(i, m, j, n). (11)

And for j = n, the following equation holds

F (i, m, n, n) = n · min{αfn−1−fn , 1}
αfn−1−fn

︸ ︷︷ ︸

≤1

·Fmin(i, m, n− 1, n).

For the proof of (10) the following cases are distinguished:

– case fj ≤ fj+1: Fmin(i, m, j, n) = F (i, m, j, n)
– case fj > fj+1 and j = n− 1: Fmin(i, m, n− 1, n) = 1

n · F (i, m, n, n)
– case fj > fj+1 and j < n− 1:

Fmin(i, m, j, n) =
n− j − 1

j + 1
· F (i, m, j + 1, n).

Now we have shown the simplified form

E(T)(n) ∼P max
0≤i,m≤j≤n

{
(

n
i

)

2n
n · (n− j − 1)!j!

(n−m)!m!
· αfj−fm

}

. (12)

The parameter i occurs in the binomial coefficient
(

n
i

)

only. Using the condition
i ≤ j the following result may be used

max
i≤j

(

n
i

)

=
(

n
min{j,�n

2 �}
)

.

If j ≤ �n
2 � the term may be simplified
(

n
i

)

2n
n · (n− j − 1)!j!

(n−m)!m!
· αfj−fm =

1
2n
· n

n− j
· n!
(n−m)!m!

· αfj−fm .

If j > �n
2 � the observation 2n

n+1 ≤
(

n
�n

2 �
) ≤ 2n is used and the following criterion

results:

E(T)(n) ∼P max
{

max
0≤m≤j≤�n

2 �

{

n

n− j
· n!
2n(n−m)!m!

· αfj−fm

}

,

max
0≤m≤j∧�n

2 �<j≤n

{

n · (n− j − 1)!j!
(n−m)!m!

· αfj−fm

}}

.

In order to get rid of the unhandy factorial terms we use Stirling’s formula

k! ≈
√

2πk

(

k

e

)k

Metropolis and Symmetric Functions: A Swan Song 209

for k ≥ 1. Therefore we get

E(T)(n) ∼P

max
{

max
0≤m≤j≤�n

2 �

{

n

n− j
·
√

n

2πm(n−m)
nn

2n(n−m)n−mmm
· αfj−fm

}

,

max
0≤m≤j∧�n

2 �<j≤n

{

n

n− j − 1
·
√

(n− j − 1)j
(n−m)m

·
(

n− j − 1
n− j

)n−j

·

(n− j)n−jjj

(n−m)n−mmm
· αfj−fm

}}

.

where m
= 0, m
= n, j
= n − 1, and j
= n. Those excluded cases are treated
later.

It is easy to see that
(n− j − 1

n− j

)n−j

∈ Θ(1) and both terms

n

n− j
·
√

n

2πm(n−m)
∼P 1 and

n

n− j − 1
·
√

(n− j − 1)j
(n−m)m

∼P 1

Those terms can be omitted in the criterion leading to

E(T)(n) ∼P max
{

max
0≤m≤j≤�n

2 �

{

nn

2n(n−m)n−mmm
· αfj−fm

}

,

max
0≤m≤j∧�n

2 �<j≤n

{

(n− j)n−jjj

(n−m)n−mmm
· αfj−fm

}}

.

The cases m = 0, m = n, j = n − 1, and j = n require special treatment
which is introduced by a modified logarithm function.

E(T)(n) ∼P max{ exp
(

n(ln n− ln 2) + max
0≤m≤j≤�n

2 �
gm − fj | ln α|),

exp
(

max
0≤m≤j∧�n

2 �<j≤n
gm − gj

) }.

Eventually, the theorem follows directly from the equation above by applying
the logarithm to the equation. �

3 Interpretation

In this section, we want to describe the fitness functions that are solved within
polynomial time as close as possible. Those functions must fulfill the condition
in theorem 1.

Within the criterion a maximum of two terms is considered. For the maximum
to be less than c ln n with a given c ∈ R, this must be fulfilled for both terms
which are examined separately.

In the remainder, we assume that the number n of bits is even.

210 L. Kaden, N. Weicker, and K. Weicker

index mm
ax

im
al

fit
ne

ss
di

ffe
re

nc
e

f m
−

f j
(m
≤

j
≤

n
/2

)

0

0.1 · n

0.2 · n

0.3 · n

0.4 · n

0.5 · n

0.6 · n

0.7 · n

0 0.1 · n 0.2 · n 0.3 · n 0.4 · n n/2

Fig. 1. First condition in equation (13). The given fitness difference needs to be scaled
by the factor | ln α|.

The first resulting condition concerns the fitness values in the worse half of
the search space:

n(ln n− ln 2) + max
0≤m≤j≤n

2

{

(fm − fj)| ln α| − (n−m) ˜ln (n−m)−m ˜ln m
}

≤ c ln n. (13)

Note that −(n−m) ˜ln (n−m)−m ˜ln m has its maximal value for m = n
2 where it

equals −n(ln n− ln 2) and eliminates the first term in (13). As a consequence the
difference between function values fm and fj is bound by c ln n plus a constant
term if the maximum is not at m = n

2 . The latter is shown in figure 1.
The second resulting condition relates the fitness value of each point in the

better half of the search space with the fitness value of all points containing a
smaller number of ones:

max
0≤m≤j

�n
2 �<j≤n

{

(fm − fj)| ln α|+ (n− j) ˜ln (n− j)+

j ˜ln j − (n−m) ˜ln (n−m)−m ˜lnm
} ≤ c lnn (14)

The maximal possible fitness differences are visualized in figure 2.
Note that the graphs in figures 1 and 2 omit the factor | ln α|. As a consequence

the role of the selective pressure α is a mere rescaling of the acceptable fitness
differences.

4 Practical Relevance

The proven theorem may be used to classify any symmetric function accord-
ing to the runtime of the Metropolis algorithm in expectation. However it’s

Metropolis and Symmetric Functions: A Swan Song 211

index m

(m ≤ j)index j

m
ax

im
al

fit
ne

ss
di

ffe
re

nc
e

f m
−

f j

−0.8 · n
−0.4 · n

0

0.4 · n
0.8 · n

n/2 0.6 · n 0.7 · n 0.8 · n 0.9 · n
n 0

0.2 · n
0.4 · n

0.6 · n
0.8 · n

n

Fig. 2. Second condition in equation (14). The gray area marks the illegal combinations
of (j, m). The thick contour line denotes the value 0. The given fitness difference needs
to be scaled by the factor | ln α|.

application to well known functions like OneMax or the trap function is of mi-
nor interest: The polynomial runtime concerning OneMax is seen easily since
there is no worsening of the function value with increasing number of ones—as
a consequence the fitness difference is always below the limits in the theorem.
Also the trap function is quickly classified as requiring exponential runtime in
expectation since the linear declining in the worse half of the number of ones
does not meet the condition in the theorem.

As a consequence it is more interesting to construct a function that lies exactly
on the borderline of polynomial and exponential runtime in expectation. The
fitness function is solved in polynomial runtime—but any linear modification of
a single function value (e.g. fj + ε · n with ε > 0) leads to exponential time. In
fact fj + ε · (ln n)2 would suffice for exponential runtime.

The resulting function in the left part of figure 3 is generated by successive
assignment of function values beginning for the optimum (n ones) down to the
case without ones. For each number of ones the maximal possible value is chosen
that is compatible with the values already assigned (see Algorithm 2). The value
c = 1 and α = 0.95 was chosen.

Theorem 1 shows that this function is solvable in polynomial runtime. It is
modified in two ways. First, at position 3 · n/4 the value 10 · log n is added
to the fitness value. Second, at the same position the value n is added to the
function value (right part of figure 3). According to the theorem above the first
modification should still be solvable in polynomial time, where the second mod-
ification should lead to exponential runtime. In the remainder of this section we
examine whether this effect can be observed experimentally.

Now, 100 experiments were executed for each fitness function and each value
n = 10, 20, . . .160 using the Metropolis algorithm with α = 0.95. The starting
point was chosen uniformly from all possible genotypes {0, 1}n—as it is requested
by the prerequisites of the theorem. The exact averaged results are shown in
tabular 1 and in the left part of figure 4.

212 L. Kaden, N. Weicker, and K. Weicker

Algorithm 2. (Compute a borderline function f : {0, 1}n → R)
Borderline-Function(equal problem size n ∈ N, maximal function value maxf)

1 f(n)← maxf
2 for m← n− 1, . . . , 1
3 do � value← maxf
4 if m ≤ n

2

5 then � for j ← m + 1, . . . , n
2

6 do � testval← f(j) + difference according to cond1 (13) for j, m
7 if testval < value
8 then � value← testval��
9 start← n

2
+ 1�

10 else � start← m + 1�
11 for j ← start, . . . , n
12 do � testval← f(j) + difference according to cond2 (14) for j, m
13 if testval < value
14 then � value← testval��
15 f(m)← value�
16 f(0)← f(1)
17 return f

0 20 40 60 80 100
number of ones in the bit string

3800

4200

4600

5000

fu
n
ct

io
n

va
lu

e

3 · n/4

modification of function

resp. +n

by adding +10 · ln n

Fig. 3. The polynomially solvable function for n = 100 is shown in the left graph. The
right graph illustrates how the function is modified to get exponential runtime (in the
case of +n).

With a regression analysis we have estimated the empirical asymptotic run-
time of the experiments. The unmodified constructed function results in the
runtime O(x1.988). For the function modified using a +n term at one point the
runtime O(1.05x) can be observed. The function with +10 · lnn shows a runtime
in O(x1.999). How well these estimates fit the experimental data is shown in
figures 4 and 5 by dividing the observed runtime by the estimated asymptotic
runtime. In case of the functions requiring polynomial time in expectation an
almost constant factor verifies the theoretical runtime in the experiments. The
function with exponential runtime in expectation can also be verified by a bound
constant factor for n = 50, . . . , 150.

Metropolis and Symmetric Functions: A Swan Song 213

Table 1. Number of iterations to find the optimum (average over 100 runs)

constructed function with
no changes +10 ln n at f3n/4 +n at f3n/4

10 154.80 132.53 149.65
20 799.85 819.45 710.96
30 1678.52 2080.27 1949.65
40 3601.35 3761.74 4394.10
50 5308.06 7883.95 6533.16
60 8989.84 10593.79 10922.89
70 13339.12 13707.35 16755.72
80 17223.95 19183.02 23253.94
90 18746.36 21185.28 34986.41
100 24271.40 25827.67 56907.27
110 26423.45 36003.97 91038.00
120 34803.01 42738.73 136275.46
130 38848.24 45230.06 254373.45
140 48171.56 53457.71 335701.91
150 57042.62 58052.34 717697.53
160 68708.67 78813.22 1469201.78

modified by +10 · ln n

modified by +n

unmodified function

0 40 80 120 160

length n of bit string

0

1E6

2E6

3E6

4E6

av
er

ag
e

ru
nt

im
e

unmodified

function

0 40 80 120 160

length n of bit string

1.4

1.8

2.2

2.6

3

(a
ve

ra
ge

ru
nt

im
e)

/n
1.

98
8

Fig. 4. The left graph shows a comparison of the experimentally deterimend runtime for
the three functions. The right graph shows the average runtime scaled by the estimated
asymptotic runtime for the unmodified constructed function.

These experimental data certainly cannot “prove” an asymptotic runtime be-
havior empirically because of the limited problem size—and this is not necessary
since the theorem makes a clear statement in this regard. But the interesting fact
is that this theoretical runtime can be observed immediately in our experements—
even for functions that differ in one function value only. This shows how sharp the
line between polynomial and exponential runtime is and underlines the practical
relevance of the theorem.

214 L. Kaden, N. Weicker, and K. Weicker

function

modified

by +10 ln n

0 40 80 120 160
1.2

1.6

2

2.4

2.8

3.2

length n of bit string

(a
ve

ra
ge

ru
nt

im
e)

/n
1.

99
9

function

by +n

modified

0 40 80 120 160

(a
ve

ra
ge

ru
nt

im
e)

/1
.0

8n

0

200

400

600

600

length n of bit string

Fig. 5. The average runtime scaled by the estimated asymptotic runtime is shown for
the function modified by +10 · lnn on the left and for the function modified by the
term +n on the right.

5 Conclusion and Outlook

In this work, for the Metropolis algorithm and the one-bit flipping mutation, a
sharp boundary between polynomially and exponentially solvable instances of
symmetric functions is proven. The immediate impact of the result was shown
experimentally—already for a small number of bits, a slight change in the sym-
metric function turns polynomial into exponential runtime. The asymptotic clas-
sification of the experimental runtime is demonstrated by a regression analysis.
Modifications in terms of log n stay within the polynomial runtime class where
any bigger change, like n, drops out of the class. By varying strong modifi-
cations in terms of log n for different numbers of ones, functions may be de-
signed that do not seem to fall into the polynomial case at first look. Even very
rugged functions are possible as long as the polynomial criterion derived above
is true.

For the case of the symmetric functions a problem classification into easy
and hard problems is possible and provides the most profound insight into the
optimization power of the Metropolis algorithm. Whether these results can be
transfered easily to other problems is an open question. However, if we stick
to symmetric functions, similar results are possible even when moving from
the simple Metropolis algorithm to a more competitive optimization algorithm
like simulated annealing. We hope that a comparison between the result for
the Metropolis algorithm and boundary for simulated annealing might pro-
duce a useful understanding concerning the scope of application of the latter
algorithm. Such a result should be of considerable impact since simulated an-
nealing is for many simple problem instances still a good choice in real-world
applications.

Metropolis and Symmetric Functions: A Swan Song 215

Bibliography

Ackley, D.H.: A Connectionist Machine for Genetic Hillclimbing. Kluwer, Boston (1987)
Droste, S., Jansen, T., Wegener, I.: Dynamic parameter control in simple evolutionary

algorithms. In: Martin, W.N., Spears, W.M. (eds.) Foundations of Genetic Algo-
rithms, vol. 6, pp. 275–294. Morgan Kaufmann, San Francisco (2001)

Kaden, L.: Laufzeitkriterien für genetische Algorithmen mit und ohne dynamische An-
passung der Selektionsstrategie. Studienarbeit, University of Stuttgart, Germany
(2002)

Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671–680 (1983)

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation
of state calculations by fast computing machines. Journal of Chemical Physics 21(6),
1087–1092 (1953)

C. Cotta and P. Cowling (Eds.): EvoCOP 2009, LNCS 5482, pp. 216–227, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Robustness Analysis in Evolutionary Multi-Objective
Optimization Applied to VAR Planning in Electrical

Distribution Networks

Carlos Barrico1,2, Carlos Henggeler Antunes1,3, and Dulce Fernão Pires1,4

1 INESC Coimbra, Rua Antero de Quental 199, 3000-033 Coimbra, Portugal
2 Department of Informatics, University of Beira Interior, 6200 Covilhã, Portugal

3 Department of Electrical Engineering and Computers, University of Coimbra, Portugal
4 School of Technology, Polytechnic Institute of Setúbal, 2910-761 Setúbal, Portugal

cbarrico@inescc.pt, ch@deec.uc.pt, dcosta@est.ips.pt

Abstract. In this paper an approach to robustness analysis in evolutionary
multi-objective optimization is applied to the problem of locating and sizing ca-
pacitors for reactive power compensation (VAR planning) in electric radial dis-
tribution networks. The main goal of this evolutionary algorithm is to find a
non-dominated front containing the most robust non-dominated solutions also
ensuring diversity along the front. A concept of degree of robustness is incorpo-
rated into the evolutionary algorithm, which intervenes in the computation of
the fitness value assigned to solutions. Two objective functions of technical and
economical nature are explicitly considered in the mathematical model: mini-
mization of system losses and minimization of capacitor installation costs. Con-
straints refer to quality of service, power flow, and technical requirements. It is
assumed that some input data are subject to perturbations, both concerning the
objective functions and the constraints coefficients.

Keywords: robustness analysis, multi-objective evolutionary algorithm, reac-
tive power compensation problem.

1 Introduction

The purpose of the study of a multi-objective optimization problem may be either to
support the decision maker (DM) in selecting a final compromise solution (or a re-
duced set of solution for further screening) or to characterize the whole set of non-
dominated (Pareto optimal) solutions. However, some of these solutions, which could
be of interest for a DM as adequate compromise solutions, in the sense they present a
satisfactory balance between the multiple, conflicting and incommensurate objective
functions, may be very susceptible to perturbations. Algorithms must strive for robust
solutions, that is solutions that are relatively “immune” to perturbations, in the sense
that their feasibility and objective function performances should not degrade signifi-
cantly for small changes in the values estimated for the model data (coefficients of
objective functions, coefficients of constraints, bounds of decision variables). Some
studies have been devoted to compute robust solutions both in single-objective, [1]-
[4], as well as in multi-objective evolutionary optimization, [5]-[11]. For more details
about this topic see [12].

 Robustness Analysis in Evolutionary Multi-Objective Optimization 217

The reactive power compensation (VAR planning) problem involves determining
the number, location, and sizes for shunt capacitors (sources of reactive power) to be
installed, in this case in a distribution feeder, to achieve a balance between costs (as-
sociated with installing new capacitors) and technical / quality of service evaluation
aspects.

In this paper, an approach to robustness analysis in evolutionary multi-objective
optimization is applied to the reactive power compensation problem. This approach is
based on the concept of degree of robustness assigned to solutions and it is aimed at
tackling perturbations in the objective function and constraint coefficients (i.e., drift-
ing from their nominal values). This approach relies on the concept of scenario, which
is a possible instantiation of the objective function and constraint coefficients around
their nominal values. The set of initial (nominal) objective function and constraint
coefficients is denoted by reference scenario. In this way, the approach used herein is
based on the solution behavior in the neighborhood of the reference scenario. This
concept of degree of robustness conveys more information to a DM than a simple
robust/not robust classification and enables him/her to wield control on the level of
robustness of solutions obtained through the setting of some parameters (see also
[9]-[11]). The size of the reference scenario neighborhood can be specified, both
regarding the objective function and constraint coefficients as well as the objective
function space. The degree of robustness intervenes in the evaluation of a solution
(individual) of a population and enables to classify the solutions accordingly.

The evolutionary approach used in this study has been developed encompassing
this concept of degree of robustness, which is embedded in the evolutionary process,
particularly in the fitness assessment of each individual. The underlying rationale is to
bias the evolutionary process towards more robust solutions, that is solutions for
which feasibility and the objective function performances are more insensitive to
perturbations in the constraint and the objective function coefficients.

The interest and motivation of the study have been provided in this section. In sec-
tion 2 the concept of degree of robustness is presented. The reactive power compensa-
tion problem in electrical distribution networks is presented in section 3. The main
features of the evolutionary algorithm are described in section 4. Illustrative results
are presented in section 5. In section 6 some conclusions are drawn.

2 The Degree of Robustness

The definition of robust solution is not harmonized in the literature. A robust solution
must guarantee a good performance (regarding both feasibility and objective function
values) even if (slightly) different model coefficients apply, vis-à-vis a nominal situa-
tion, due to the uncertainty associated with data gathering, estimates etc.

2.1 Perturbations of the Objective Function Coefficients

It is assumed that perturbations may occur in any coefficient of objective function fr
(cr1, cr2,…, crm), for r = 1, …, R. The assessment of the degree of robustness of a solu-
tion x entails analyzing the neighborhood of the reference scenario s, where x is a
solution to the problem and fs(x) is the point in the objective space for the reference
scenario s. The underlying idea is to determine a set of neighborhoods kδ around the

218 C. Barrico, C.H. Antunes, and D.F. Pires

reference scenario s, such that the images of x for these neighborhood scenarios are
better than fs(x), for all objective functions, or still belong to a pre-specified
neighborhood η around fs(x) in the objective space. The process begins by analyzing
scenarios (coefficient instantiation) randomly generated inside a hyperbox of radius δ
around s. This neighborhood (hyperbox) is then progressively enlarged, in multiples
of δ (δ ,2δ ,…), until the percentage of scenarios for which the images of x in the
objective space that are better than fs(x) or belong to the neighborhood of fs(x) is not
greater than a pre-defined threshold. This enables to assign a degree of robustness to
solutions according to the number of hyperbox enlargements for which that condition
is fulfilled (see Fig. 1).

Fig. 1. Definition of neighborhoods in the scenario space and objective function space associ-
ated with a solution x (for 2-dimension spaces)

The degree of robustness depends on the size of a δ-neighborhood of scenario s
and the percentage of the h neighboring points whose objective function values for x
are better than fs(x) or belong to the η-neighborhood of fs(x). Those h neighboring
points are randomly generated around scenario s (see also [5], [9]-[11]). The degree of
robustness of solution x is a value k, such that (see Fig. 1):

a) the percentage of scenarios s’ in the kδ-neighborhood of s, for which the objec-
tive function values fs’(x) that are better than fs(x) or that belong to the η-
neighborhood of fs(x), is greater than or equal to a pre-specified threshold p1;

b) the percentage of scenarios s’ in the (k+1)δ-neighborhood of s, for which the
objective function values fs’(x) that are better than fs(x) or that belong to the
η-neighborhood of fs(x), is lower than p1.

The degree of robustness k of a solution x determined in the reference scenario s is
gradually computed as k increases (neighborhoods δ, 2δ, …, kδ), as well as the num-
ber of neighboring points of s (h, h+qh, …, h+(k-1)qh), such that h+(t-1)qh neighbor-
ing points (t ∈ {1, …, k}) are analyzed in the tδ-neighborhood of s.

2.2 Perturbations of the Constraint Coefficients

For this case a scenario is a set of possible values for the constraint coefficients (it can
include the decision variable bounds) subject to perturbations. The computation of the

 Robustness Analysis in Evolutionary Multi-Objective Optimization 219

degree of robustness of a solution x involves to analyze the feasibility of x for the
neighborhood of the reference scenario s. f(x) is the point in the objective space for
the reference scenario s, as well as for all possible scenarios. The feasibility of x var-
ies for distinct scenarios, since each scenario (constraint coefficient instantiation) may
correspond to distinct feasible regions. The aim is to compute a set of k neighbor-
hoods around the reference scenario s, the radius of which is a multiple of a value
(kδ), such that x still is a feasible solution for those coefficient instantiations around
the nominal (reference scenario).

Randomly generated scenarios inside a hyperbox of radius δ around reference sce-
nario s are analyzed. This neighborhood is then progressively enlarged (δ, 2δ, …) until
the percentage of scenarios for which the solution x is a feasible solution is not greater
than a pre-defined threshold. Again, this enables to assign a degree of robustness to
solutions according to the number of hyperbox enlargements for which that condition is
satisfied, which depends on the size of a δ-neighborhood of reference scenario s and the
percentage of the h neighboring points for which the solution x is a feasible solution.

The degree of robustness of solution x is a value k, such that:

a) the percentage of scenarios s’ in the kδ-neighborhood of s, for which the solu-
tion x is a feasible solution, is greater than or equal to a pre-specified threshold
p2;

b) the percentage of scenarios s’ in the (k+1)δ-neighborhood of s, for which the
solution x is a feasible solution, is lower than p2.

The degree of robustness k of a solution x is determined in the same way as ex-
plained above for the case of perturbations of the objective function coefficients.

2.3 The Robustness Parameters

The radius of each neighborhood (around a solution or the reference scenario) is a
multiple of the parameter δ (δ ,2δ , ...). This parameter reflects the DM’s preferences
about the base dimension of the neighboring solutions in the solutions space or the
neighboring scenarios in the scenario space, such that he/she is indifferent for solu-
tions or scenarios located therein.

The parameter h sets the number of neighboring points of a solution or the refer-
ence scenario that are generated and analyzed. The higher the value of h, more exten-
sive is the analysis (however, higher will be the execution time of the algorithm).

The vector parameter η reflects the threshold of indifference for each objective
function. This parameter is used as the upper bound for the distance between the im-
ages of a solution x in a given scenario and in the reference scenario. Increasing the
values of η (meaning that the DM is more tolerant to the differences in the objective
function values) tends to increase the number of solutions with a higher degree of
robustness.

The thresholds p1 and p2 control the exigency of the degree of robustness.
The parameter q is a value between 0 and 1, which is associated with the increase

of the number of neighboring points that are analyzed in successive enlargements of
the neighborhood of a solution or the reference scenario.

220 C. Barrico, C.H. Antunes, and D.F. Pires

The values of the parameters p1, p2, η and q may be different depending on the so-
lution type, that is whether solutions are non-dominated, or they are dominated or
non-feasible. Due to the significant run time of this approach, it is advisable that the
value of p1 and p2 should be higher for dominated and infeasible solutions, and the
values of η and q should be higher for non-dominated solutions. The underlying
rationale is that the algorithm seeks for non-dominated solutions, which are more
relevant than dominated and infeasible solutions, and therefore a more exhaustive
analysis is necessary for those solutions.

The computation of the (absolute or relative) distance between the images of solu-
tion x according to the scenarios s and s’ in the objective space, fs’(x) and fs(x), fs’(x)
belonging to the η-neighborhood of fs(x), can be done using any metric (Manhattan,
Euclidean, Chebycheff, etc.).

The amount of parameters required may be reduced by establishing some depend-
ences between them.

3 The Reactive Power Compensation Problem in Electrical
Distribution Networks

The compensation of reactive power (VAR planning) is an important issue in electric
power systems, being directly related with efficient delivery of active power to loads
(converted into “useful” energy, such as light or heat). Reactive power compensation
contributes to releasing electric system capacity, improving voltage bus profile and
reducing losses. The device generally used for reactive power compensation is the
shunt capacitor (source of reactive power). Operational, economical and quality of
service aspects for selecting a suitable deployment of capacitors need to be weighed
by DMs (planning engineers) to select good solutions having in mind their practical
implementation. The aim is to find the network nodes to install capacitors and the
dimension of each capacitor to be installed to minimize costs and system losses while
keeping an acceptable bus voltage profile.

Multi-objective mathematical models are then required to capture these multiple,
conflicting, and incommensurate evaluation aspects of the merit of solutions. A multi-
objective model has been developed considering two (conflicting) objective functions:
minimizing (resistive) losses and minimizing the installation costs of new sources of
reactive power. Constraints are related with requirements of acceptable node voltage
profile (quality of service imposed by legislation), power flow (physical laws in elec-
trical networks), and impossibility of capacitor locations at certain nodes (technical
restrictions). For more details about this mathematical model see [13]-[15], which
includes non-linearities in the losses objective function and in the power flow con-
straints as well as continuous, integer and binary decision variables.

Evolutionary algorithms (EAs) are quite adequate for dealing with multi-objective
programming (MOP) models (particularly, of combinatorial nature) due to their capabil-
ity of working with a population of solutions [16]-[19]. Since in those models the aim is
generally the characterization of a Pareto optimal front rather than computing a single
optimal solution, EAs endowed with techniques to maintain diversity of solutions pre-
sent advantages with respect to the use of approaches based on scalarizing functions as
in traditional mathematical programming approaches. These are surrogate scalar func-

 Robustness Analysis in Evolutionary Multi-Objective Optimization 221

tions that (temporarily) aggregate the multiple objective functions so that an optimal
solution to the scalarizing function is a non-dominated solution to the MOP problem.
Also, EAs are well-suited for solution representation in networks [20]-[25].

In this paper, it is assumed that the input data associated with costs and capacities
of capacitors are unchanged and the remaining input data are subject to small pertur-
bations, due to the uncertainties inherent to measurements and estimates. The changes
in these input data imply that both the objective function values and the feasibility of
the solutions are subject to variations.

4 The Evolutionary Algorithm

An EA has been developed aimed at characterizing the Pareto optimal (non-
dominated) front and assessing the robustness of solutions therein taking into account
changes in the input data. This EA includes an elitist strategy with a secondary popu-
lation (with feasible non-dominated solutions only). This is aimed at increasing the
algorithm performance, both accelerating the convergence towards the non-dominated
frontier and ensuring the solutions attained are well-spread over the frontier (an im-
portant issue in real-world problems [18]).

The EA encompasses the definition of a degree of robustness associated with each
solution, which is embedded into the fitness assessment together with the non-
dominance test. That is, in each non-dominance level, the evolutionary process favors
more robust solutions that are then are more likely to contribute for the next generation.

The main steps of this algorithm are the following:

− The fitness of the individuals composing the main population is computed;
− From the main population (consisting of POP individuals) POP-E individuals

are selected by using a tournament technique (E is the size of the elite set);
− A new population is formed by the POP-E offspring generated by crossover and

mutation, and the E most robust individuals (elite) in the secondary population;
− The fitness of individuals is evaluated by a dominance test and by taking into

account the degree of robustness, which defines an approximation to the Pareto
front;

− The non-dominated solutions are computed and they are processed to update the
secondary population using a sharing technique, if necessary.

The population consists of individuals represented by an array of NN integer val-
ues (NN being the number of network nodes where it is possible to install a new ca-
pacitor or change the capacity of a capacitor already installed). The index of the array
corresponds to a network node and the value therein denotes the type of capacitor to
install in that node (the capacitor type is indexed by an index ranging from 0 to J – 0
means no capacitor; that is, J different capacitor sizes can be installed).

The fitness value of a solution depends on its degree of robustness and the domi-
nance test. For each solution, the fitness computation uses a “non-dominated sorting”
technique as in “NSGA-II”, [19], [26], and involves determining several solution
fronts. For more details about this technique, see [9]-[11].

222 C. Barrico, C.H. Antunes, and D.F. Pires

The sharing mechanism for updating the secondary population uses a niche scheme
whose radius is a dynamic value and the degree of robustness of the solutions. This
mechanism is applied after computing all non-dominated solutions candidate for the
secondary population. These are all the non-dominated solutions in the set formed by
the secondary population and the main population. This mechanism is only applied
when the number of solutions candidate for the secondary population (NCPS) is
greater than the size of this population (NPS). For more details about this technique,
see [9]-[11].

The initial population consists of randomly generated feasible non-dominated solu-
tions only. In problems with few feasible non-dominated solutions, the initial popula-
tion may also contain some feasible dominated solutions (the ones needed to complete
the population).

Uniform crossover has been used, with probability pc. In each generation a new
mask is created.

The capacitor type is indexed by an index ranging from 0 to J. The mutation consists in
modifying (with a probability pm) the current index value to one of other possible values.

5 Illustrative Results of a Real-World Case Study

This approach has been applied to an actual Portuguese radial distribution system, the
main characteristics of which in terms of line length, resistance and inductance are
summarized in Table 1. Other input data to the model are the sizes and installation
costs of each capacitor type (Table 2) as well as the active and reactive power (load)
at each node of the distribution network.

Table 1. Network characteristics

 Minimum Maximum Average Standard Deviation
Line length (m) 256 4027 856 559.6
Resistance (Ω /Km) 0.213 1.5 0.745 0.393
Inductance (Ω/Km) 0.356 0.395 0.379 0.011

Table 2. Capacitor dimension and acquisition cost

 Maximum Capacity (kVAr) Composition (kVAr) Cost (€€)
C1 30 7.5+7.5 + 7.5 + 7.5 1 800
C2 60 15 + 15 + 30 2 000
C3 75 15 + 30 + 30 2 198

The performance of the distribution system has been assessed under several condi-

tions, before and after the compensation solutions (considering the node's voltage
magnitude within the bounds nominal voltage ± 10%). Whereas for medium (70% of
the peak load) and light (30% of the peak load) load conditions all the nodes satisfy
the lower and upper bounds on the node's voltage magnitude, for peak load conditions
about 40% of the nodes do not respect those quality of service constraints. This means

 Robustness Analysis in Evolutionary Multi-Objective Optimization 223

that the system operation under peak conditions is impaired by this poor voltage pro-
file. Fig. 2 shows the Pareto-front obtained before incorporating the concept of degree
of robustness into the EA. The following parameter values have been used: POP = 40;
NPS = 30; E = 0.1 NPS; pc = 0.9; pm = 0.1; and number of iterations = 2000, which
are then also used when the degree of robustness is included.

Fig. 2. Pareto-front obtained without considering the degree of robustness

Table 3 displays a set of selected non-dominated solutions representing different
compensation schemes and different trade-offs between the objective functions along
the non-dominated front. Solutions 1 and 2 are the non-dominated solutions that indi-
vidually optimize resistive losses and cost objective functions, respectively. The in-
formation in Table 3 enables to conclude that there are no feasible solutions without
making an investment of, at least, 25780 €€ (solution 2), otherwise the bounds on the
node voltage magnitudes would not be satisfied as a consequence of the poor voltage
profile of this network.

Table 3. Sample of non-dominated solutions (Fig. 2)

Sol Losses Cost Cap. type 1 Cap. type 2 Cap. type 3 Total
1 0.23785 66554 0 8 23 31
2 0.26485 25780 1 1 10 12
3 0.23838 62354 1 5 23 29
4 0.24017 55762 0 7 19 26
5 0.24156 51762 0 5 19 24
6 0.24286 48158 0 1 21 22
7 0.24545 43762 0 1 19 20
8 0.24834 39564 0 0 18 18
9 0.25213 35168 0 0 16 16
10 0.25671 30772 0 0 14 14
11 0.25984 28376 0 1 12 13
12 0.26275 26178 0 1 11 12

224 C. Barrico, C.H. Antunes, and D.F. Pires

Table 4 displays the structure of a sub-set of these non-dominated solutions, in
terms of capacitor size and location. Each digit in the sequence represents the capaci-
tor type (0 for no capacitor installed), and the position in the sequence represents the
node number. For example, in solution 2 that optimizes the cost objective function the
deployment structure indicates that a capacitor of type 3 is installed on nodes 22, 25
and 27, etc.

Table 4. Type and location of capacitors for some solutions

Sol Capacitors type in each node

1
000000000002000000330030030300000000000030000022020003033033333300022
3023300203000303330000000

2
000000000000000000000030030300000000000000000000000000000000000300000
0000001203000303333000000

5
000000000002000000330030030300000000000000000000020003033033330300002
3003000203000203330000000

9
000000000000000000030030030300000000000000000000000000003033300300000
0003000303000303330000000

Fig. 3 displays the non-dominated solutions obtained with different p1 and p2 val-

ues for the non-dominated solutions: (a) p1 = p2 = 100%, (b) p1 = 95% and p2 =
100%, (c) p1 = 100% and p2 = 95%, and (d) p1 = p2 = 95%. For the dominated and
infeasible solutions p1 = p2 = 100% in all examples. The values of the other parame-
ters (associated with the robustness analysis study) are the following: h = 100; δ =
0.004 for resistance and δ = 0.002 for inductance of branches, and δ = 0.001 for active
and δ = 0.003 for reactive power at nodes; η = (η1, η2) = (0.004, 200) for non-
dominated solutions, and η = (η1, η2) = (0.002, 200) for dominated and infeasible
solutions; q = 1 for the non-dominated solutions and q = 0 for dominated and infeasi-
ble solutions.

The thresholds p1 and p2 may be perceived as a measure of the exigency of ro-
bustness. If p1 = 100% then all fs’(x) in all neighboring scenarios s’ tested are better
than fs(x) or belong to the predefined η-neighborhood of fs(x). If p1 = 95% then the
fs’(x) that are better than fs(x) or belong to the η-neighborhood of fs(x) are at least
95%. So, it is more probable that a solution x with degree of robustness k in the first
case (p1 = 100%) has actually this degree of robustness than in the second case
(p1 = 95%) when p1 is relaxed. A similar interpretation can be made for parameter p2
regarding solution feasibility.

For p1 = p2 = 100% (Fig. 3 (a)) most solutions have a degree of robustness 1 and a
few solutions near the optimum of the cost of objective function have a degree of
robustness 0.

As p1 or/and p2 decreases, thus decreasing the level of exigency of the robustness,
the non-dominated solutions present a higher degree of robustness. The most robust
solutions are generally located towards the best values for the resistive losses objec-
tive function. The relaxation of the p1 or/and p2 values enable to obtain better

 Robustness Analysis in Evolutionary Multi-Objective Optimization 225

Fig. 3. Pareto-front obtained with (a) p1 = p2 = 100%, (b) p1 = 95% and p2 = 100%, (c) p1 =
100% and p2 = 95%, (d) p1 = p2 = 95%

discrimination regarding robustness for the solutions in the Pareto front. In this way, it
becomes clearer where the most robust non-dominated solutions are located.

In general, it is expected that a DM strive for well-balanced solutions (that is, pre-
senting trade-offs with satisfactory values for both objective functions) and displaying
a high degree of robustness. The information on the degree of robustness can be used
to complement the evaluation of the merit of non-dominated solutions based on the
objective function values and the trade-offs that are at stake.

226 C. Barrico, C.H. Antunes, and D.F. Pires

6 Conclusions

In this paper, an approach to robustness analysis in evolutionary multi-objective op-
timization, in which the values of the objective function coefficients and the con-
straint coefficients are subject to small perturbations, is applied to a combinatorial
problem of locating and sizing capacitors for reactive power compensation in electric
radial distribution networks. This problem has been modeled as a multi-objective
programming problem, considering two objective functions of technical and eco-
nomical nature - minimization of system losses and minimization of capacitor instal-
lation costs.

The concept of degree of robustness is incorporated into the EA, particularly in the
computation of the fitness value assigned to the solutions. This approach enables to
classify the solutions of the Pareto-front according to their degree of robustness.

Information on the robustness of solutions, and not just on their structure and ob-
jective function value trade-offs, is relevant for assisting a DM in assessing the merit
of non-dominated solutions and selecting a satisfactory compromise solution that
exhibits a higher degree of stability in face of perturbations.

References

1. Branke, J.: Creating Robust Solutions by means of an Evolutionary Algorithm. In: Eiben,
A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp.
119–128. Springer, Heidelberg (1998)

2. Branke, J.: Efficient Evolutionary Algorithms for Searching Robust Solutions. In: Adap-
tive Computing in Design and Manufacture (ACDM), pp. 275–286. Springer, Heidelberg
(2000)

3. Jin, Y., Sendhoff, B.: Trade-Off between Performance and Robustness: An Evolutionary
Multiobjective Approach. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L.
(eds.) EMO 2003. LNCS, vol. 2632, pp. 237–251. Springer, Heidelberg (2003)

4. Tsutsui, S., Ghosh, A.: Genetic Algorithm with a Robust Solution Searching Scheme.
IEEE Transactions on Evolutionary Computation 1(3), 201–219 (1997)

5. Deb, K., Gupta, H.: Introducing Robustness in Multiple-Objective Optimization. Evolu-
tionary Computation 14(4), 463–494 (Winter 2006)

6. Hughes, E.J.: Evolutionary Multi-Objective Ranking with Uncertainty and Noise. In:
Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001.
LNCS, vol. 1993, pp. 329–343. Springer, Heidelberg (2001)

7. Teich, J.: Pareto-Front Exploration with Uncertain Objectives. In: Zitzler, E., Deb, K.,
Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp.
314–328. Springer, Heidelberg (2001)

8. Li, M., Azarm, S., Aute, V.: A Multi-Objective Genetic Algorithm for Robust Design Op-
timization. In: Genetic and Evolutionary Computation Conference (GECCO 2005), Wash-
ington, DC, USA, pp. 771–778 (2005)

9. Barrico, C., Antunes, C.H.: Robustness Analysis in Multi-Objective Optimization Using a
Degree of Robustness Concept. In: IEEE Congress on Evolutionary Computation (CEC
2006), Vancouver, Canada, pp. 1887–1892. IEEE Press, Los Alamitos (2006)

10. Barrico, C., Antunes, C.H.: A New Approach to Robustness Analysis in Multi-Objective
Optimization. In: 7th International Conference on Multi-Objective Programming and Goal
Programming (MOPGP 2006), Loire Valley, City of Tours, France (2006)

 Robustness Analysis in Evolutionary Multi-Objective Optimization 227

11. Barrico, C., Antunes, C.H.: An Evolutionary Approach for Assessing the Degree of Ro-
bustness of Solutions to Multi-Objective Models. In: Ong, Y.S., Yaochu, J., Shengxiang,
Y. (eds.) Evolutionary Computation in Dynamic and Uncertain Environments. Studies in
Computational Intelligence, vol. 51, pp. 565–582. Springer, Heidelberg (2007)

12. Jin, Y., Branke, J.: Evolutionary Optimization in Uncertain Environments – A Survey.
IEEE Transactions on Evolutionary Computation 9(3), 1–15 (2005)

13. Antunes, C.H., Barrico, C., Gomes, A., Pires, D., Martins, A.: On the Use of Evolutionary
Algorithms for Reactive Power Compensation in Electrical Distribution Networks - Ex-
periments on a Case Study. In: 6th Metaheuristics International Conference (MIC 2005),
Viena, Austria, pp. 514–519 (2005)

14. Antunes, C.H., Pires, D., Barrico, C., Gomes, A., Martins, A.: A Multi-objective Evolu-
tionary Algorithm for Reactive Power Compensation in Distribution Networks. In: Ap-
plied Energy. Elsevier, Amsterdam (2009) (accepted)

15. Pires, D.F., Martins, A.G., Antunes, C.H.: A multiobjective model for VAR planning in
radial distribution networks based on Tabu Search. IEEE Transactions on Power Sys-
tems 20(2), 1089–1094 (2005)

16. Fonseca, C.M., Fleming, P.J.: An Overview of Evolutionary Algorithms in Multiobjective
Optimization. Evolutionary Computation 3(1), 1–16 (1995)

17. Coello, C., Veldhuizen, D., Lamont, G.: Evolutionary Algorithms for Solving Multi-
Objective Problems. Kluwer Academic Publishers, Dordrecht (2002)

18. Gomes, A., Antunes, C.H., Martins, A.: A multiple objective evolutionary approach for the
design and selection of load control strategies. IEEE Transactions on Power Sys-
tems 19(2), 1173–1180 (2004)

19. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley and
Sons, New York (2001)

20. Iba, K.: Reactive power optimization by genetic algorithm. IEEE Transactions on Power
Systems 9(2), 685–692 (1994)

21. Lee, K.-Y., Bai, X., Park, Y.-M.: Optimization method for reactive power planning by us-
ing a modified simple genetic algorithm. IEEE Transactions on Power Systems 10(4),
1843–1850 (1995)

22. Kim, K.-H., You, S.-K.: Voltage profile improvement by capacitor placement and control
in unbalanced distribution systems using GA. In: IEEE Power Engineering Society Sum-
mer Meeting, vol. 2, pp. 800–805. IEEE Press, Los Alamitos (1999)

23. Levitin, G., Kalyuhny, A., Shenkman, A., Chertkov, M.: Optimal capacitor allocation in
distribution systems using a genetic algorithm and a fast energy loss computation tech-
nique. IEEE Transactions on Power Delivery 15(2), 623–628 (2000)

24. Delfanti, M., Granelli, G., Marannino, P., Montagna, M.: Optimal capacitor placement us-
ing deterministic and genetic algorithms. IEEE Transactions on Power Systems 15(3),
1041–1046 (2000)

25. Baran, B., Vallejos, J., Ramos, R., Fernandez, U.: Reactive power compensation using a
multi-objective evolutionary algorithm. In: IEEE Porto Power Tech. Conference. IEEE
Press, Los Alamitos (2001)

26. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic
algorithm: NSGA-II. IEEE Transactions Evolutionary Computation 6(2), 182–197 (2002)

Staff Scheduling with Particle
Swarm Optimisation and Evolution Strategies

Volker Nissen and Maik Günther

Technical University of Ilmenau, Chair of Information Systems in Services,
D-98684 Ilmenau, Germany

volker.nissen@tu-ilmenau.de, maik.guenther@gmx.de

Abstract. The current paper uses a scenario from logistics to show
that modern heuristics, and in particular particle swarm optimization
(PSO) can significantly add to the improvement of staff scheduling in
practice. Rapid, sub-daily planning, which is the focus of our research
offers considerable productivity reserves for companies but also creates
complex challenges for the planning software.

Keywords: staff scheduling, sub-daily planning, particle swarm opti-
mization, combinatorial optimization, evolution strategy.

1 Introduction to the Problem of Staff Scheduling

Staff scheduling involves the assignment of an appropriate employee to the appro-
priate workstation at the appropriate time while considering various constraints.
This work describes a method for solving the problem of subdaily staff scheduling
with individual workstations. According to current research employees spend up
to 36% of their working time unproductively, depending on the branch [17]. Ma-
jor reasons include a lack of planning and controlling. The problem can be faced
with demand-oriented staff scheduling. Key planning goals are increased produc-
tivity, reduction of staff costs, prevention of overtime, motivation of employees
with positive results for sales and service [19].

In practice, the application of a system for staff scheduling has not been very
prevalent up to now. Most often planning takes place based on prior experience
or with the aid of spreadsheets [1]. It is obvious that the afore-mentioned goals of
demand-oriented staff scheduling cannot be realised with these planning tools.
Even with popular staff planning software employees are regularly scheduled
for one workstation per day. However, in many branches, such as trade and
logistics, the one-employee-one-station concept does not correspond to the actual
requirements and sacrifices potential resources. Therefore, sub-daily planning
should be an integral component of demand-oriented staff scheduling.

In the following section, the application problem is stated more formally.
Then, we discuss work related to our own research before developing approaches
based on PSO and evolution strategies (ES) for sub-daily staff scheduling in
section 4. Section 5 describes the practical planning scenario and experimental
setup before the empirical results are presented and discussed in section 6. The
paper concludes with a short summary and some indications for future work.

C. Cotta and P. Cowling (Eds.): EvoCOP 2009, LNCS 5482, pp. 228–239, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Staff Scheduling with Particle Swarm Optimisation 229

2 Formal Statement of the Problem

The problem starts out assuming a set of employees E = {1, . . . , E}, a set of
workstations W = {1, . . . , W} and a discrete timeframe T with the index t =
0, . . . , T − 1, where each period t of the range has a length lt greater than zero.
The demand dwt of employees per workstation and period cannot be negative.

lt > 0 ∀t ∈ T
dwt ≥ 0 ∀w ∈ W and ∀t ∈ T (1)

The availability of employees is known at the beginning of the sub-daily plan-
ning and is determined using the binary variable aet.

aet =
{

1 if employee e is available at period t
0 otherwise (2)

The assignment of an employee to a workstation is controlled using the binary
variable xewt.

xewt =
{

1 if employee e is assigned to workstation w at period t
0 otherwise (3)

An employee can only be associated with a workstation w in the period t if
he or she is actually present.

W
∑

w=1

xewt ≤ aet ∀e ∈ E and ∀t ∈ T (4)

Additionally, an employee can only be designated to one workstation at a
time.

W
∑

w=1

xewt ≤ 1 ∀e ∈ E and ∀t ∈ T (5)

Any workstation can require a set of qualifications Qw, and employees have
a set of qualifications Qe at their disposal. If an employee is planned for a
workstation but does not meet all necessary qualifications, error points Pq

are generated for the duration of the assignment according to the error point
size cq.

Pq =
T−1
∑

t=0

W
∑

w=1

E
∑

e=1

cqltxewt

cq > 0 if employee e is not qualified
for workstation w,

cq = 0 else
(6)

If a discrepancy arises from the workstation staffing target dwt, error points Pd

are generated for the duration and size of the erroneous assignment according to
the error point size. Different types of errors can be distinguished: cdo represents

230 V. Nissen and M. Günther

overstaffing when the demand dwt > 0, cdn signals overstaffing when the demand
dwt = 0, cdu signals cases of understaffing.

Pd =
T−1
∑

t=0

W
∑

w=1

(cdn + cdo + cdu)lt

∣

∣

∣

∣

∣

(

E
∑

e=1

xewt

)

− dwt

∣

∣

∣

∣

∣

, with: (7)

cdn > if workstation w is overstaffed at period t and dwt = 0, else cdn = 0
cdo > if workstation w is overstaffed at period t and dwt > 0, else cdo = 0
cdu > if workstation w is overstaffed at period t and dwt = 0, else cdu = 0

To avoid an excessive number re of sub-daily workstation (job) rotations for any
employee cr error points arise for such (job) rotations.

Pr = cr

E
∑

e=1

re (8)

Therefore, the objective function to be minimised becomes:

minP = Pq + Pd + Pr. (9)

3 Related Work

The basic principles of particle swarm optimisation (PSO) were developed by
Kennedy and Eberhart among others [10] [11]. Swarm members are assumed to
be massless, collision-free particles that search for optima with the aid of a fitness
function within a solution space. In this process each single particle together
with its position embodies a solution to the problem [23]. While looking for the
optimum, a particle does not simply orient itself using its own experience but
also using the experience of its neighbours [8]. This means that the particles
exchange information, which can then positively influence the development of
the population in the social system as a whole [15].

Modifications of standard real-valued PSO exist for binary variables, where
the speed of a particle is used as the probability for the change of the binary
value [11]. This approach, however, has several limitations and was changed from
binary to decimal variables in [24]. Another PSO-variant was developed for se-
quence planning tasks [20]. In 2007 Poli analysed the IEEE Xplore database for
the thematic grouping of PSO applications [16]. Of approximately 1100 publi-
cations only one work is focused specifically on timetabling [6] which is related
to our own application problem. In [6], the authors adjust PSO to the combi-
natorial domain. No longer is the position of a particle determined by its speed
but rather by using permutation operators. In [5] university timetabling was also
approached with PSO.

In [7] Ernst et al. offer a summary of papers related to the issue of staff
scheduling - about 700 papers between the years 1954 and 2004 have been in-
cluded. They identify certain categories of problems, such as the category flexible

Staff Scheduling with Particle Swarm Optimisation 231

demand. This category is characterised by little available information on sched-
ules and upcoming orders. A demand per time interval is given as well as a
required qualification. Thus, the application problem discussed here can be clas-
sified in the group flexible demand schemes. It can additionally be classed under
task assignment. Task assignment is used to generate assignments requiring cer-
tain qualifications and needing to be completed in a certain period of time, which
are then distributed amongst the employees. The employees have already been
assigned shifts.

As work related to our research Vanden Berghe [22] presents an interesting,
though non-PSO heuristic to sub-daily planning. Here, demand is marked by
sub-daily time periods , which allows the decoupling of staff demand from fixed
shifts resulting in fewer idle times. However, scheduling ist not performed at the
detailed level of individual workstations as in our research.

In [13] Schaerf and Meisels provide a universal definition of an employee
timetabling problem. Both the concepts of shifts and of tasks are included,
whereby a shift may include several tasks. Employees are assigned to the shifts
and assume task for which they are qualified. Since the task is valid for the du-
ration of a complete shift, no sub-daily changes of tasks (or rather workstations)
are made. Blöchlinger [4] introduces timetabling blocks (TTBs) with individual
lengths. In this model employees may be assigned to several sequential TTBs, by
which subdaily time intervals could be represented within a shift. Blöchlinger’s
work also considers tasks; however, a task is always fixed to a TTB. Essentially,
our problem of the logistics service provider represents a combination of [13]
(assignment of staff to tasks) and [4] (sub-daily time intervals), but with the
assignment periods (shifts) of the employees already being set.

Staff scheduling is a hard optimization problem. In [9] Garey and Johnson
demonstrate that even simple versions of staff scheduling problems are NP-
hard. Kragelund and Kabel [12] show the NP-hardness of the general employee
timetabling problem. Moreover, Tien and Kamiyama prove in [21] that practical
personnel scheduling problems are generally more complex than the TSP which
is itself NP-hard. Thus, heuristic approaches appear justified for our application.
Apparently, there exists no off-the-shelf solution approach to the kind of detailed
sub-daily staff planning problem considered here. A PSO approach and evolution
strategy for this application are outlined in the following section. We assume the
reader is familiar with standard-PSO [11] [8] and standard-ES [2] [3].

4 PSO Approach and Evolution Strategy

4.1 Problem Representation

To apply PSO and the evolution strategy, the sub-daily staff scheduling problem
needs to be conveniently represented. A two-dimensional matrix is applied. Each
particle in the swarm (for PSO) has an own matrix that determines its position.
Also, each individual in the ES-population uses a matrix to represent it’s solu-
tion to the application problem. The rows of the matrix signify employees and the
columns signify each time period of the length lt > 0. To mark times in which an

232 V. Nissen and M. Günther

Table 1. Assignment of workstations in a two-dimensional matrix

period
employee

0 1 2 3 4 5 6 ...
1 1 1 1 1 1 1 1
2 0 0 2 2 2 2 2
3 0 0 1 1 2 2 2
4 0 0 6 6 6 6 2
5 3 3 3 2 2 0 0
...

employee is not present due to his work-time model, a dummy workstation is intro-
duced (in table 1: workstation 0). For example, employee two is absent in the first
two periods and then is assigned to workstation 2. Assignment changes can only
be made on non-dummy workstations, so that no absent employee is included.

To lower the complexity the number of dimensions should be reduced. This
can be realised via a suitable depiction of time. Within the planned day, time is
viewed with a time-discrete model. An event point (at which a new time interval
begins) occurs when the allocation requirement for one or more workstations or
employee availability change. With this method, however, the periods are not
equally long any more, so that their lengths need to be stored.

4.2 Outline of Combinatorial PSO for This Application

At the start of PSO the initialisation of the particle position does not take
place randomly. Rather, valid assignments w.r.t. the hard constraints are made
that use information from the company’s current full-day staff schedule to set
which employee works at which station. Therefore, valuable foreknowledge is
not wasted. Based on this plan, improved solutions can now be determined that
include plausible workstation changes.

In each iteration the new particle position is determined by traversing all di-
mensions and executing one of the following actions with predefined probability.
The probability distribution was heuristically determined in prior tests:

– No change: The workstation already assigned remains. (prob. p1)
– Random workstation: A workstation is randomly determined and assigned.

Only those assignments are made for which the employee is qualified. The
probability function is uniformly distributed. (prob. p2)

– pBest workstation: The corresponding workstation is assigned to the particle
dimension from pBest, the best position found so far by the particle. Through
this, the individual PSO component is taken into account. (prob. p3)

– gBest workstation: The corresponding workstation is assigned to the particle
dimension from gBest (or rather lBest if a gBest neighbourhood topology is
not being used). gBest (lBest) represents the best position of all particles
globally (in the local neighbourhood). The social behaviour of the swarm is
controlled with these types of assignments. (prob. p4)

Staff Scheduling with Particle Swarm Optimisation 233

By considering the best position of all particles, the experience of the swarm is
included in the calculation of the new position. Premature convergence on a sub-
optimal position can be avoided by using the lBest topology, in which a particle
is only linked to its neighbour. The extent to which the swarm acts individu-
ally or socially is determined by the probability with which the workstation is
assigned from pBest, gBest or lBest. The behaviour of the PSO-heuristic is rela-
tively insensitive to changes of p1, p3, and p4. The optimal value for p2 depends
on the problem size. Pre-tests revealed that a value of 0.3% for p2 works best
for the problem investigated here. The other probabilities were set at p1=9.7%,
p3=30%, and p4=60% with a gBest topology.

The characteristics of PSO have not been changed with these modifications.
There are merely changes in the way to determine a new particle position, so
that the calculation of the velocity is not needed. The current form of posi-
tion determination makes it unnecessary to deal with dimension overruns. All
other peculiarities of PSO regarding social or global behaviour remain. Even
all neighbourhood topologies established as part of continuous parameter opti-
misation in standard-PSO remain and can be used without restrictions. In our
implementation, PSO terminates after 400,000 inspected solutions. In the future,
other convergence-based termination criteria could be employed. The following
pseudocode presents an overview of the implemented PSO.

1: initialise the swarm
2: determine pBest for each particle and gBest
3: loop
4: for i = 1 to number of particles
5: calculate new position // use the 4 alternative actions
6: if f(new position)<f(pBest) then pBest=new position // new pBest
7: if f(pBest)<f(gBest) then gBest=pBest // new gBest
8: next i
9: until termination

4.3 Outline of Evolution Strategy for This Application

PSO-results are compared to several variants of the evolution strategy, origi-
nally developed by Rechenberg and Schwefel [2] [3]. In our application, it was
an objective to preserve the basic characteristics of evolution strategies, even
though they are most often used for continuous parameter optimization. How-
ever, evolution strategies have proved to be powerful heuristics in combinatorial
optimization, see for instance [14].

The ES-population is initialized with valid solutions w.r.t the hard problem
constraints. Again, information from the company’s current full-day staff sched-
ule is used. (μ, λ)-selection (comma-selection) as well as (μ + λ)-selection (plus-
selection) are used as well as different population sizes. The best solution found
during an experimental run is always stored and updated in a ”golden cage”. It
represents the final solution of the run. Following suggestions in the literature
[2] [3], the ratio μ/λ is set to 1/5 - 1/7 during the practical experiments. The
recombination of parents to create an offspring solution works as follows:

234 V. Nissen and M. Günther

Fig. 1. Recombination operator employed

A crossover point is determined independently and at random for each em-
ployee (row) of a solution and the associated parts of the parents are exchanged
(see fig. 1).

Mutation of an offspring is carried out by picking an employee at random
and changing the workstation assignment for a time interval chosen at random.
It must be ensured, though, that valid assignments are made w.r.t. the hard
problem constraints. The number of employees selected for mutation follows a
(0, σ)-normal distribution so that small changes are more frequent than large
ones. Results are rounded and converted to positive integer numbers. Other
approaches are possible here [18]. The mutation stepsize sigma is controlled
self-adaptively using a log-normal distribution and intermediary recombination,
following the standard scheme of evolution strategies [3].

In prior tests, other recombination and mutation schemes as well as selection
pressures were tried, but they performed worse than the current approach. The
ES terminates when 400,000 solutions have been inspected to allow for a fair
comparison with PSO. The following pseudocode presents an overview of the
implemented ES.

1: initialise the population with μ individuals
2: evaluate the μ individuals
3: loop
4: copy and recombine parents to generate λ offspring
5: mutate the λ offspring
6: evaluate the λ offspring
7: select ((μ + λ) or (μ, λ)) best individuals as the new generation
8: until termination

5 Test Problem and Experimental Setup

The present problem originates from a German logistics service provider. This
company operates in a spatially limited area 7 days a week almost 24 hours
a day. The tasks of employees concern loading and unloading, short distance
transportation and other logistic services. The employees are quite flexible in
terms of their working hours, which results in a variety of working-time models.
There are strict regulations especially with regard to qualifications because the
assignment of unqualified employees might lead to significant material damage
and personnel injury. The employer regularly invests a lot of time and money
in qualification measures so that many different employees can work at several

Staff Scheduling with Particle Swarm Optimisation 235

different workstations. The personnel demand is known for each workstation,
resulting in high planning security. Currently, monthly staff scheduling is carried
out manually within MS EXCELTM. Employees are assigned a working-time
model and a fixed workstation each day. Several considerations are included, such
as presence and absence, timesheet balances, qualifications and resting times etc.

The personnel demand for the workstations is subject to large variations dur-
ing the day. However, employees are generally scheduled to work at the same
workstation all day, causing large phases of over- and understaffing. This lowers
the quality of service and the motivation of employees and leads to unnecessary
personnel costs as well as downtime. At this time, sub-daily workstation rotation
is only rarely used in the planning. Usually, department managers intervene di-
rectly on site and reassign the employees manually. Obviously, demand-oriented
staff scheduling cannot be realised with this approach.

The planning problem covers seven days (20 hours each), divided into 15-
minute intervals. It includes 65 employees and, thus, an uncompressed total
of 36,400 dimensions for the optimization problem to be solved. The general
availability of the employees is known for each interval from the previous full-
day planning. Employee shift planning was done for 13 possible shifts plus a
planned off-shift. Nine different workstations need to be filled, with seven having
qualification requirements. The variety of qualifications was summarised in four
qualification groups.

A staff schedule is only valid if any one employee is only assigned to one
workstation at a time and if absent employees are not included in the plan. These
hard constraints can be contrasted with soft constraints, which are penalised
with error points. The exact determination of error point counts is in practice
an iterative process and will not be covered in detail here. The error points used
here are from an interview with the logistics service provider and reflect that
companys requirements.

All test runs were conducted on a PC with an Intel 4 x 2.67 GHz processor
and 4 GB of RAM. Thirty independent runs were conducted each time for each
of the experiments to allow for statistical testing. The runtime of ca. 25 minutes
for a single run is similar for all solution methods tested in the next section.

6 Results and Discussion

The full-day manual staff schedule without sub-daily workstation changes results
in 411,330 error points after an evaluation that included the penalties arising
from the afore-mentioned constraints.

The results of the methods are shown in table 2. All heuristics for sub-daily
staff scheduling significantly outperform the manual full-day schedule in terms
of total error points. This demonstrates the value of sub-daily scheduling as
compared to today’s standard staff scheduling approaches which not only waste
resources but also demotivates personnel and deteriorates quality of service.
Generally, the problems of understaffing and overstaffing for periods without
demand are greatly reduced. On the other hand, all heuristics lead to more

236 V. Nissen and M. Günther

Table 2. Comparison (error points) of the different sub-daily scheduling heuristics,
based on 30 independent runs each. Best results are bold and underlined.

error number wrong under- overstaffing in minutes number
of qualifi- staffing of

heuristic mean min job- cations in fitness
changes in minutes demand > 0 demand = 0 evalua-

minutes tions
manual
plan

411330 411330 0,0 1545 20130.0 14610.0 33795.0 -

PSO 52162 51967 1666.8 0 7478.5 28488.0 7265.5 400000
(20)
PSO 52222 52085 1730.2 0 7568.6 28112.1 7731.4 400000
(40)
PSO
(100)

52591 52400 1778.5 19.1 8136.8 27874.1 8537.7 400000

PSO
(200)

53727 53467 2220.3 0 7658.5 28017.0 7916.5 400000

ES 55987 55545 1616.8 0 7994.5 26163.0 10106.5 400001
(1,5)
ES 55893 55575 1604.2 0 7970.5 26181.0 10064.5 400001
(1+5)
ES
(10,50)

56948 55744 1677.3 0 8093.0 25560.0 10808.0 400010

ES
(10+50)

56484 55701 1664.8 0 8029.5 25819.5 10485.0 400010

ES
(30,200)

63953 58587 1536.8 0 8999.5 21132.5 16142.0 400030

ES
(30+200)

63634 58449 1531.7 0 8906.0 21165.5 16015.5 400030

overstaffing in periods with demand > 0 as compared to the initial plan. This
approach, however, is sensible because employees can still support each other
instead of being idle when demand = 0.

Interestingly, the PSO heuristic provides the best results with a rather small
swarm size of 20 particles. ES reacted similarly, with the (1+5)- and (1,5)-
strategy providing the best results on average. There is no clear advantage for
the comma- or plus-selection scheme in the evolution strategies tested here.
Moreover, recombination apparently does not guarantee an advantage for the ES
on this type of problem. The (1+5)- and (1,5)-strategy with a parent population
size of one make no use of recombination, but still perform better than the other
ES-variants with larger populations and recombination applied. An increased
population size without using recombination also created results worse than
those stated in the table, though. Thus, neither a large population size nor the
use of recombination necessarily lead to success with evolution strategies.

PSO(20) and ES(1+5) provided the best mean error results in their respec-
tive groups. With 30 independent runs for each heuristic it is possible to test the

Staff Scheduling with Particle Swarm Optimisation 237

Table 3. T-test results for pairwise comparison of heuristics

95% confidence
H1 T df significance mean intervall of

H0 difference differences
(l-tailed) lower upper

PSO(20) < ES(1+5) -86.19 39.02 < 0.001 -3731.07 -3818.62 -3643.51
PSO(20) < ES(1,5) -100.26 42.26 < 0.001 -3825.33 -3902.31 -3748.35
PSO(200) < ES(1+5) -45.85 49.15 < 0.001 -2166.60 -2261.55 -2071.65
PSO(200) < ES(1,5) -53.07 53.45 < 0.001 -2260.87 -2346.30 -2175.44

Fig. 2. Convergence chart for PSO(20) and ES(1+5)

statistical significance of the performance difference between both solution meth-
ods with a t-test (see table 3). A Levene-test revealed the heterogeniety of vari-
ances between both groups (F = 21.23, p < 0.001). The corresponding t-test with
a 95% confidence interval confirms the better performance of PSO(20) with a
very high statistical significance (p < 0.001 for H0). A further test was conducted
to compare the worst parameterisation of PSO tested here (PSO(200)) with the
best parameterisation of ES, the ES(1+5). Even here PSO outperforms the ES
on a highly significant level (p < 0.001 for H0). The results are equally signifi-
cant when the comparison is made between PSO and the ES(1,5) as can be seen
from table (3). This success must be attributed to the operators of PSO since the
coding of PSO and ES are identical. A second reason concerns the fewer strategy
parameters in our PSO-approach which are more easily adapted to the applica-
tion domain. Fig. 2 shows the convergence behaviour of best variants from PSO
and ES in comparison. Not only does PSO generate the better final solution, but
it also demonstrates a more rapid convergence towards good solutions. This is
generally a desirable characteristic, particularly when the available time for an
optimization is rather limited (not the case here).

Notwithstanding the fact that the PSO heuristic was able to provide bet-
ter results for this problem, it also has one technical advantage over ES. The

238 V. Nissen and M. Günther

PSO outlined in this paper only requires the varying of two parameters (swarm
size and p2), which can both be very easily set. ES, on the other hand, offers
more parameterisation possibilities (selection pressure, recombination scheme,
plus or comma selection etc.), resulting in greater heuristic complexity from a
user’s perspective. However, while our ES-approach adheres quite closely to the
standard-ES procedure, other parameterisations are certainly possible that could
potentially improve over the performance here.

7 Conclusion and Future Work

Sub-daily staff scheduling is a meaningful practical problem area. Using an actual
planning scenario, it was demonstrated that particle swarm optimisation pro-
duces far better results than traditional full day scheduling. Sub-daily schedul-
ing significantly increases the value contributions of individual staff members.
Because PSO in its traditional form is not suitable for the planning problem at
hand, the method was adapted to the combinatorial domain without sacrificing
the basic PSO-mechanism. PSO also outperformed different variants of the evo-
lution strategy on this problem. The superior performance must be attributed to
the operators and parameters of PSO since the coding of PSO and ES are iden-
tical. In future research, these promising results are to be expanded by creating
further test problems with the aid of cooperating companies. Moreover, other
heuristics from roughly comparable problems in the literature are currently being
adapted to our domain and tested to further validate the results.

References

1. ATOSS Software AG, FH Heidelberg (eds.): Standort Deutschland 2006. Zukunfts-
sicherung durch intelligentes Personalmanagement. München (2006)

2. Bäck, T. (ed.): Handbook of Evolutionary Computation. Institute of Physics Pub-
lishing, Bristol (2002)

3. Beyer, H.G., Schwefel, H.P.: Evolution strategies: a comprehensive introduction.
Natural Computing 1, 3–52 (2002)

4. Blöchlinger, I.: Modeling Staff Scheduling Problems. A Tutorial. European Journal
of Operational Research 158, 533–542 (2004)

5. Brodersen, O., Schumann, M.: Einsatz der Particle Swarm Optimization zur Op-
timierung universitärer Stundenpläne. Techn. Rep. 05/2007, Univ. of Göttingen
(2007)

6. Chu, S.C., Chen, Y.T., Ho, J.H.: Timetable Scheduling Using Particle Swarm Op-
timization. In: Proceedings of the International Conference on Innovative Comput-
ing, Information and Control (ICICIC 2006), Beijing, vol. 3, pp. 324–327 (2006)

7. Ernst, A.T., Jiang, H., Krishnamoorthy, M., Owens, B., Sier, D.: An Annotated
Bibliography of Personnel Scheduling and Rostering. Annals of OR 127, 21–144
(2002)

8. Fukuyama, Y.: Fundamentals of Particle Swarm Optimization Techniques. In: Lee,
K.Y., El-Sharkawi, M.A. (eds.) Modern Heuristic Optimization Techniques with
Applications to Power Systems, pp. 24–51. Wiley-IEEE Press, New York (2003)

Staff Scheduling with Particle Swarm Optimisation 239

9. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory
of NP-Completeness. Freeman, New York (1979)

10. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proc. of the IEEE
Int. Conf. on Neural Networks, pp. 1942–1948. IEEE, Piscataway (1995)

11. Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence. Kaufmann, San Francisco
(2001)

12. Kragelund, L., Kabel, T.: Employee Timetabling. An Empirical Study, Master’s
Thesis, Department of Computer Science, University of Aarhus, Denmark (1998)

13. Meisels, A., Schaerf, A.: Modelling and Solving Employee Timetabling. Annals of
Mathematics and Artificial Intelligence 39, 41–59 (2003)

14. Nissen, V., Gold, S.: Survivable Network Design with an Evolution Strategy. In:
Yang, A., Shan, Y., Bui, L.T. (eds.) Success in Evolutionary Computation, Studies
in Computational Intelligence, pp. 263–283. Springer, Berlin (2008)

15. Parsopoulos, K.E., Vrahatis, M.N.: Recent Approaches to Global Optimization
Problems through Particle Swarm Optimization. Nat. Comp. 1, 235–306 (2002)

16. Poli, R.: An Analysis of Publications on Particle Swarm Optimization. Report
CSM-469, Dep. of Computer Science, University of Essex, England (2007)

17. Proudfoot Consulting: Produktivitätsbericht 2007. Company Report (2007)
18. Rudolph, G.: An Evolutionary Algorithm for Integer Programming. In: Davidor,

Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 139–148.
Springer, Heidelberg (1994)

19. Scherf, B.: Wirtschaftliche Nutzenaspekte der Personaleinsatzplanung. In: Fank,
M., Scherf, B. (eds.) Handbuch Personaleinsatzplanung, pp. 55–83. Datakontext,
Frechen (2005)

20. Tasgetiren, M.F., Sevkli, M., Liang, Y.C., Gencyilmaz, G.: Particle Swarm Op-
timization Algorithm for Single Machine total Weighted Tardiness Problem. In:
Proceedings of the CEC 2004, pp. 1412–1419. IEEE, Piscataway (2004)

21. Tien, J., Kamiyama, A.: On Manpower Scheduling Algorithms. SIAM Rev. 24(3),
275–287 (1982)

22. Vanden Berghe, G.: An Advanced Model and Novel Meta-heuristic Solution Meth-
ods to Personnel Scheduling in Healthcare. Thesis, University of Gent (2002)

23. Veeramachaneni, K.: Optimization Using Particle Swarm with Near Neighbor In-
teractions. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly,
U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Das-
gupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Stan-
dish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 110–121. Springer, Heidelberg
(2003)

24. Veeramachaneni, K., Osadciw, L., Kamath, G.: Probabilistically Driven Particle
Swarms for Optimization of Multi-valued Discrete Problems: Design and Analysis.
In: Proceedings of the IEEE SIS 2007, Honolulu, pp. 141–149 (2007)

University Course Timetabling with Genetic
Algorithm: A Laboratory Excercises Case Study

Zlatko Bratković, Tomislav Herman, Vjera Omrčen, Marko Čupić,
and Domagoj Jakobović

University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia
{zlatko.bratkovic,tomislav.herman,vjera.omrcen,

marko.cupic,domagoj.jakobovic}@fer.hr

Abstract. This paper describes the application of a hybrid genetic al-
gorithm to a real-world instance of the university course timetabling
problem. We address the timetabling of laboratory exercises in a highly
constrained environment, for which a formal definition is given. Solution
representation technique appropriate to the problem is defined, along
with associated genetic operators and a local search algorithm. The ap-
proach presented in the paper has been successfully used for timetabling
at the authors’ institution and it was capable of generating timetables
for complex problem instances.

1 Introduction

The university timetabling problem and its variations are a part of the larger
class of timetabling and scheduling problems. The aim in timetabling is to find
an assignment of entities to a limited number of resources while satisfying all
the constraints. Two forms of university timetabling problems may be recognized
in today’s literature: examination timetabling and course timetabling problems,
where the differences between those types usually depend on the university in-
volved. The problem can be further specialized as either post enrollment based
or curriculum based. In post enrollment problems, the timetable must be con-
structed in such a way that all students can attend the events on which they are
enrolled, whereas in curriculum problems the constraints are defined according
to the university curricula and not based on enrollment data.

Due to inherent problem complexity and variability, most of the real-world
university timetabling problems are NP-complete. This calls for the use of heuris-
tic algorithms that do not guarantee an optimal solution, but are in many cases
able to produce a solution that is "good enough" for practical purposes. It has
been previously shown that metaheuristic-based techniques (such as evolution-
ary algorithms, tabu-search etc.) are especially well suited for solving these kinds
of problems, and this work is an example of that approach.

The paper focuses on a laboratory exercise timetabling problem (LETP), which
we define as a type of university course timetabling problem (UCTP). The mo-
tivation for this work emerged from a need for automated timetable generation

C. Cotta and P. Cowling (Eds.): EvoCOP 2009, LNCS 5482, pp. 240–251, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

University Course Timetabling with Genetic Algorithm 241

at the authors’ institution. The timetables could no longer be constructed us-
ing traditional methods due to the increased complexity caused by teaching
curriculum reforms. The work described here is a part of the research of two
different metaheuristics for timetable construction: genetic algorithm (GA) and
ant colony optimization (ACO). In this paper we give a formal definition of
the LETP problem and apply a hybrid genetic algorithm to solve real-world in-
stances of the problem. The main contributions of the paper are the definition
of solution representation and genetic operators that are tailored to the complex
set of timetable constraints, as well as a local search algorithm for additional so-
lution refinement. The result is a GA-based system, capable of producing usable
timetables, that is highly adaptive to various idiosyncratic requirements that
may be imposed by a particular institution.

A concise overview of some general trends in automated timetabling can be
found in [1,2,3,4,5]. Many university course timetabling problems in literature have
been intentionally simplified, since real-world examples hold numerous features
that make algorithm implementation and performance tracking complicated. A
general trend that can be noticed in recent years is that the research focuses on
metaheuristic algorithms, instead of application-specific heuristics [2,5,3].

While there is ample research based on simplified artificial problem instances
[6,7,8,9,10], we were unable to find an approach that would encompass the
requirements imposed by post-enrollment laboratory exercises timetabling, par-
ticularly when applied to a large number of students and courses. Since the com-
plexity of the problem significantly depends on the defined constraints [11,12],
we present a variant of the problem with additional characteristics which are
particularly suited for laboratory timetabling.

The remainder of this paper is organized as follows: Section 2 introduces the
actual timetabling problem and in Section 3 we elaborate our approach. Section 4
presents the results while Section 5 concludes the paper and discusses future work.

2 University Course Timetabling Problem

2.1 Problem Statement

Timetable construction is an NP-complete combinatorial optimization problem
[13] that consists of four finite sets: a set of meetings, a set of available resources
(e.g., rooms, staff, students), a set of available time slots and a set of constraints.
The problem is to assign resources and time slots to each given meeting, while
maintaining constraints satisfied to the highest possible extent. University course
timetabling problem (UCTP) is a timetabling problem where a set of courses and
a set of attending courses for each of the students is defined, a course being a set
of events that need to take place in the timetable. The main characteristic that
discriminates the university course timetabling from other types of timetabling
problems is the fact that students are generally allowed to choose courses they
wish to enroll [14]. A set of constraints is usually divided into hard constraints,
whose violation makes the timetable suggestion infeasible, and soft constraints,
rules that improve the quality of timetables, but are allowed to be violated.

242 Z. Bratković et al.

Since this description of UCTP usually does not cover all the requirements
imposed by a particular institution, we define additional elements of the problem
which allow its application to more specific timetabling instances. The presented
model was used for organizing laboratory exercises at the authors’ institution,
but it can also be used to describe various instances of course timetabling.

2.2 Laboratory Exercise Timetabling Problem

We define the laboratory exercise timetabling problem (LETP) as a six-tuple:

LETP = (T, L, R, E, S, C) ,

where T is a set of time quanta in which the scheduling is possible, L is a set of
limited assets present at university, R is a set of rooms, E is a set of events that
need scheduling, S is a set of attending students, and C is a set of constraints.

– A set of time quanta in which scheduling the exercises is possible is denoted
T . We assume that the durations of all the exercises can be quantified as a
multiple of a fixed time interval, a time quantum, denoted tq. A time slot
is defined as one or more consecutive time quanta in the timetable. When
choosing the duration of the quantum, one needs to make a trade-off between
finer granularity of scheduling in time and the larger size of the search space.
In all of the examples below, we will assume that the quantum duration is
15 minutes and the exercises can be scheduled between 8:00 and 20:00.

– A set of all the limited assets (resources) available for laboratory exercises
is denoted L. One can concieve assets that are required for many different
laboratory exercises, but are available in only limited amounts. For example,
a laboratory exercise may use a commercial software package, but university
can be in possession of only a limited number of licenses. This limits the
concurrency of laboratory exercises, as the assets are shared among various
courses. For each resource l ∈ L, a quantity, denoted quantity l, is defined
as the number of workplaces that can use the resource concurrently.

– With each room, we associate a pair of properties: (sizer, Tr), sizer ∈ �,
Tr ⊆ T , defined as follows:

• The workplace is defined as an atomic room resource varying from room
to room, such as seats in ordinary classrooms, computers in computer
classrooms, etc. For each room r ∈ R, the number of workplaces, denoted
sizer ∈ �, is defined.
• The rooms required for laboratory exercises could be used for other ed-

ucational purposes such as exams or lectures. Therefore, for each room
r ∈ R a set of time quanta in which the room is not occupied, denoted
Tr ⊆ T is defined.

– Event e ∈ E is defined as a single laboratory exercise of a course. A single
event may be scheduled in one or more event instances in different time slots.
For example, one instance of the event may be held at 8:00-9:00 on Monday

University Course Timetabling with Genetic Algorithm 243

(for one group of students) and the other at 10:00-11:00 on Tuesday (for the
rest of the students). Each event has a set of properties defined as follows:

• Each event e has a duration, denoted dure ∈ �, defined as a multiple of
time quanta. For example, the event "Artificial Intelligence exercise 1"
may have a duration of durAI = 4 quanta, or 60 minutes.
• Event timespan, denoted spane ∈ �, can be defined to ensure that all

instances of the event are scheduled within a specified time interval. It is
defined as a difference between the end time of the last instance and the
start time of the first instance of the event. For example, let us consider
an exercise whose part is a brief quiz. To ensure fairness of the test for
all students, the staff may demand that all instances of the exercise have
to take place within one day (or, even more restrictive, within a certain
number of consecutive time quanta).
• The events may take place in different types of rooms, varying from

computer classrooms to specialized electronic or electrical engineering
laboratories. Hence, for each event the acceptable room set Re ⊆ R is
defined.
• For each event e, a nonempty subset of suitable time quanta, denoted

Te ⊆ T can be defined. For example, the staff of a course may demand
events to be scheduled only on Wednesday and Friday, due to the organ-
isation issues.
• Certain events may require the use of one or more limited assets. The

set of assets used by the event is denoted Le ⊆ L.
• Usually, members of teaching staff are present at events in order to help

the students carry out the exercise. The number of staff present may
depend on the event and the room the event is held in. The staff can
be viewed as a form of limited asset of an event. The number of staff
available for event e is denoted staffe ∈ �. The value usagee,r is defined
as the number of teaching staff used for event e being scheduled at room
r. The usage is undefined for r /∈ Re.
• A maximum number of rooms used concurrently for an event, denoted

roomse ∈ �, can be defined.
• Some pairs of events may require a partial ordering relation between

them. This requirement is apparent in courses with exercises that build
on top of each other. For example, event "AI exercise 1" and event "AI
exercise 2" need to be scheduled in the same week, but it must be ensured
that the second event is scheduled after the first. Also, the students must
have at least one whole day between these exercises to prepare properly.
A relation, denoted �d can be defined for a pair of events, �d: E × E.
The events are in relation e2 �d e1 iff each instance of e2 is scheduled at
least d days after the last instance of event e1.
• For each event, the number of students per workplace, denoted spwe ∈ �

is defined. For example, the staff of some courses may prefer that students
in computer classrooms do their exercise on their own, and other prefer
group-work, allowing two or more students per workplace.

244 Z. Bratković et al.

– Set S is the set of students that are to be scheduled. Each student s ∈ S has
a set of properties defined as follows:

• As the students are required to attend lectures and exams along with
the exercises, it is not possible to assume that the student will always
be available for the event. Thus, for each student a set of time quanta
when the student is free Ts ⊆ T is defined.
• Depending on the student’s selection of enrolled courses, the student is

required to attend a nonempty set of events, denoted Es ⊆ E.

– The requirements of the courses are represented in a set of constraints C.
The constraints are divided into hard constraints Ch, which are essential
for the courses, and soft constraints Cs, which may require some manual
intervention if they are not met. Hard constraints Ch are defined as follows:

• The room can be occupied by at most one event at any time.
• The room must be free for use at the time scheduled.
• Event can be placed only in a room r ∈ Re that is suitable for that event.
• The room r, when used for event e, can accommodate no more than

sizer · spwe students.
• Event e can be held only at the time defined as suitable for that event.
• When the event e is placed in a schedule, it occupies the consecutive

dure quanta belonging to the same day, dure being the duration of the
event e.
• Event e must be scheduled within the total spane for the event.
• When the ordering relation �d exists between two events, it must be

satisfied in the timetable.
• Asset l ∈ L can be used concurrently on at most quantity l workplaces.

Thus, the number of students concurrently attending an event is limited
by the number of assets the students consume.
• When the event is placed concurrently in rooms, enough teaching staff

must be available to attend the event.
• Event e can be concurrently placed in at most roomse rooms.
• The students must attend all the events they are enrolled in.

The set of soft constraints Cs contains two elements:

• Students can attend an event only at the time when she or he is free
from other educational activities.
• Students can attend only one event at a time.

Defining these constraints as soft may seem irrational, but the reasoning
behind this is as follows: ’hard’ constraints are simply those that are at all
times satisfied for any individual (i.e., any solution) in GA population in our
implementation, whereas for the ’soft’ constraints this may not be the case.
’Soft’ constraints are defined as such because it was not known in advance
whether there even exists a solution that satisfies all the constraints (given

University Course Timetabling with Genetic Algorithm 245

the complex requirements). In other words, our approach tries to find the
best solution within the imposed constraints and possibly to give a feedback
to the course organisers if some are still severely violated. In the remainder
of the text, the term ’feasible solution’ denotes the one that satisfies only
the hard constraints as defined above.

3 Solving LETP with Genetic Algorithm

3.1 Solution Representation

The adequate solution representation for the LETP suggests itself from the def-
inition of the problem: each solution sol (a timetable) contains all the events
that have to be scheduled. Each event e is, in turn, scheduled in one or more
event instances, where each instance is defined with the following: a time slot,
a subset of feasible rooms, and a subset of students that attend event e. Events
must be allocated in enough instances so that no students are left unscheduled.
We consider an event to be the basic unit of heredity in a chromosome.

– Event instance ie = (tsi, Ri, Si), where:

• tsi denotes the time slot allocated to particular event instance ie
• Ri denotes the allocated room set Ri ⊆ Re

• Si denotes allocated student subset Si ⊆ Se

– Event instance set I(e) = {i1e, · · · , ime}
– Solution sol = {I(e1), · · · , I(en)}, ∀ei ∈ E .

3.2 Creation of Initial Population

Each member of the initial population (a single solution) is created using the
following procedure:

while set of events E not empty do
select random event e and remove it from E;
De = set of valid days for event e;
Se = set of students that attend event e;
while (De not empty) AND (Se not empty) do

select random day d and remove it from De ;
TSe,d = set of valid timeslots for event e in day d;
while (TSe,d not empty) AND (Se not empty) do

select random timeslot ts and remove it from TSe,d ;
create event instance i = (ts , Ri, Si) with Ri = ∅ and Si = ∅;
for every suitable room r ∈ Re do

if (r is available in ts) AND (r meets event requirements) then
reserve room r and add it to Ri;
assign sizer · spwe students from Se to r and add them to Si;
remove assigned students from Se;

246 Z. Bratković et al.

end if
end for

end while
end while
if Se not empty then

creation unsuccessful;
end if

end while
In the above procedure, ’valid days’ and ’valid timeslots’ denote suitable days

and slots according to the time constraints, while ’room meets requirements’
condition ensures all other requirements are met (such as the use of assets, staff
availability, etc.). Thus, every member of the population satisfies the given hard
constraints, whereas soft constraints may be violated.

It is obvious that the creation of a solution may not always succeed; the above
algorithm only succeeds at some success rate, dependent of the given set of events
and their requirements. However, even a small success rate allows the creation
of the desired number of solutions, since the algorithm is only performed at the
beginning of the evolution process. In our experiments the success rate ranged
between 5% and 75%, so we were always able to build the population in this
way. On the other hand, failure to do so could suggest the infeasibility of the
given constraints.

3.3 Fitness Function

Fitness function evaluates the quality of a solution and it is proportional to the
number of conflicts in a given solution. A conflict is a violation of soft constraints
which occurs if a student is scheduled to more than one event in the same time
slot. The number of conflicts is equal to the number of time quanta during which
events overlap. The exact fitness measure is defined as:

fitness =
∑

s∈S

∑

tq∈T

Ne,s,tq · (Ne,s,tq − 1)
2

where Ne,s,tq represents the number of events the student is scheduled to in
current time quantum. For instance, if a student is scheduled on two events that
overlap in four time quanta, then the fitness value equals four. The best solution
will have fitness value of zero, meaning that no conflicts exist in the solution.

The calculation of the fitness function may be time consuming since it is
necessary to iterate through all the students and all the time slots in a solution.
In our implementation, the fitness is evaluated incrementally after an individual
has changed due to genetic operations. In other words, only the part of the
solution that has undergone some changes is reevaluated, which significantly
speeds up the fitness calculation.

3.4 Genetic Operators

In order to apply genetic algorithm to aforementioned problem, appropriate
genetic operators need to be devised. Due to the fact that every solution needs to

University Course Timetabling with Genetic Algorithm 247

satisfy all of the hard constraints, the result of each genetic operation needs to be
a solution with the same property. Thus, we introduce especially crafted crossover
and mutation operators that are closed over the space of feasible solutions. The
crossover operator is defined as follows:

– Let us define Isol(e) as a set of event instances assigned to event e ∈ E in
one particular solution sol ∈ P , where P is current population.

– We define the relation ⊗ over SOL and I where I denotes a power set
of event instances and SOL denotes the LETP search space (the set of all
possible solutions). The characteristic function of the relation χ : SOL×I →
{T ,F} is defined to be true iff the insertion of a particular set of instances
I ∈ I into sol ∈ SOL does not cause violation of hard constraints.

– Now, we consider two particular solutions a ∈ P and b ∈ P contained in
current population P as parents. Crossover operator takes the parent solu-
tions a and b and produces a solution child. Having the relation ⊗ defined
as above, we describe the crossover operator using the following pseudo code:

Crossover (soluton a, solution b)
solution child = ∅;
randomly select subset of events E1 ⊂ E;
E2 = E − E1;
for all events e ∈ E1 do

add set of instances Ia(e) to child;
end for
for all events e in E2 do

if child ⊗ Ib(e) then
add set of instances Ib(e) to child;

else
randomly allocate I(e);
if child⊗ I(e) then

add I(e) to child;
else

discard child;
end if

end if
end for

In the above procedure, the creation of the child may not always succeed be-
cause the allocation of new event instances cannot always be performed without
the violation of hard constraints. In that case, the procedure is repeated until it
succeeds or a predefined number of repetitions is performed.

The mutation operator selects a random event and removes the associated set
of instances from the solution. The removed event instances are then generated
randomly with regard to hard constraints. This operation may be repeated more
than once as defined by the mutationLevel parameter (defined in subsection 3.6).
The mutation operator is applied on child solution after the crossover operation
(with a certain probability) and it uses the following pseudo code:

248 Z. Bratković et al.

Mutation (solution a)
n = random value between (1, mutationLevel);
for i = 1 to n do

randomly select event e and remove instance set Ia(e) from solution a;
randomly allocate new instance set I(e) so that a⊗ I(e) holds;
add I(e) to a;

end for

3.5 Local Search Algorithm

Since genetic operators are designed to satisfy only hard constraints, the number
of conflicts in a solution (which are the consequence of soft constraints violation)
may increase during the evolution. To counter that, we implemented a fast local
search algorithm which improves the solution significantly.

The local search algorithm operates on students with conflicted schedules
within a single solution. The algorithm randomly choses a single student among
those and tries to find another instance (in another time slot) of the same event
that causes no conflicts for the chosen student. If such instance is not found, the
algorithm selects a random instance, but in both cases the student is allocated
to another instance. This operation is repeated (for randomly chosen students)
until a certain number of consecutive iterations without fitness improvement
occurs, where the number of repetitions is predefined. Local search is applied to
every individual produced by the crossover operator or modified by mutation.

The primary goal of local search is further reduction of soft constraint vi-
olations, since genetic operators are designed to optimize room allocation in
different time slots. After the rooms are allocated, the assignment of students to
event instances is a subproblem contained in LETP that local search is used to
optimize.

3.6 GA Parameters and Adaptation

The presented implementation has an adaptive parameter called mutationLevel.
Mutation level defines the maximum number of events that will be rescheduled
when a solution undergoes mutation. Mutation level is updated if stagnation

Table 1. Genetic algorithm parameters

parameter value

population size 30
selection algorithm tournament selection
tournament size 3
individual mutation probability 55 %
initial/maximum mutation level 1 / 10
initial stagnation threshold 5
stop criteria 10000 generations or min fitness = 0

University Course Timetabling with Genetic Algorithm 249

is detected. Stagnation occurs when there is no improvement in population in
particular number of generations called stagnationThreshold. If stagnation is
detected the following parameter updates are performed:
– stagnationThreshold = stagnationThreshold · 1.5;
– mutationLevel = min(mutationLevel + 1, maxMutationLevel);
When improvement occurs, the adaptive parameters are reset. The parameters

of the genetic algorithm are shown in Table 1.

4 Results

The described hybrid GA was successfully applied to laboratory exercises
scheduling at the authors’ institution during the last two semesters. In this pa-
per we present the actual results which were adopted in the students’ schedule
and used by the departments organizing the exercises. In each semester, there
are several periods during which the exercises may take place. The number and
durations of those periods are determined by the curriculum and the lectures
schedule, which is made prior to the laboratory scheduling. Each scheduling pe-
riod, denoted a laboratory cycle, is in fact a separate and independent timetabling
problem with associated dataset.

The timetabling problems at authors’ institution had different durations and
a greatly varying number of events and attending students (total number of
students ranged from several hundred to more than two thousand). To estimate
problem size and dificuilty, we introduce the student events sum Ss,e as a measure
of a single laboratory cycle complexity. Ss,e is an aggregated number of events
that each student must attend, defined as Ss,e =

∑

s∈S

|Es| .

Table 2. Algorithm performance on twelve different laboratory cycles

fitness - best of run comparison

cycle Ne Ss,e days min avg max st.dev.(σ) rnd. LS only GA only

1 51 7081 9 24 228.6 286 77.2 14615 1937 6647
2 9 2104 5 0 0.0 0 0 4565 399 2667
3 11 2553 5 0 16.2 32 10.1 5839 395 2522
4 16 4868 5 0 28.4 146 44.9 9755 684 4346
5 6 1586 5 0 0.0 0 0 3771 379 2668
6 8 2471 5 0 0.0 0 0 4838 610 2320
7 15 3648 5 0 7.4 12 5.5 7830 623 3424
8 19 5430 4 82 89.9 106 9.6 13486 1505 6021
9 9 3843 5 0 59.0 126 54.95 7088 506 4166
10 8 1701 5 0 3.55 8 5.81 4254 41 3210
11 11 1783 5 0 124.8 132 2.5 3646 466 1974
12 21 5934 5 0 184.3 292 48.1 12477 10540 6476

250 Z. Bratković et al.

The algorithm was used in twelve different timetabling problems as listed in
the Table 2, where Ne denotes the number of events to be scheduled and days
is the cycle duration (the statistics are derived from 10 runs on each problem).
We managed to find a schedule with no conflicts for ten out of twelve problem
instances. The remaining two instances were subsequently proven to be impos-
sible to schedule without conflicts, by identifying a single event with infeasible
requirements posed by course organizers, in combination with existing lectures’
schedule. For instance, the best found fitness value of 24 in the first cycle resulted
from six students that were double booked in four time quanta each. The actual
problem datasets are available at http://morgoth.zemris.fer.hr/jagenda.

To illustrate the effectivenes of hybrid algorithm components, we also include
in Table 2 the best results obtained with random generation of solutions, local
search only (LS) and genetic algorithm without local search (GA).

5 Conclusions and Future Work

This paper describes the application of a hybrid genetic algorithm to a complex
timetabling problem and shows that, with appropriate solution representation
and genetic operators, it is possible to obtain solutions of a very good quality.

The problem is formulated as a laboratory exercises timetabling problem and
its formal definition is given. Although highly constrained, we believe that the
definition is quite general and may be applied to a wider class of problems, simply
by omitting some of the requirements or further specializing the existing ones.
For instance, the set L of limited assets may be removed or the time quantum
duration may be changed if the problem at hand allows it. The scheduling of the
events may be forced to a single instance by defining event timespan equal to
the event duration, a whole semester timetable can be generated by repeating
a single cycle, etc. With all those adaptations, the solution representation and
evolutionary algorithm need not be changed at all, although for a greatly sim-
plified variant of the problem, some other algorithm may consequently obtain
the results faster.

The algorithm presumes that every solution in every stage of evolution process
satisfies the defined set of hard constraints. To achieve that, we define a solution
initialization procedure for building the initial population. The procedure may
not always succeed in creation of a valid solution, so it must be repeated until a
desired number of solutions are created. While the creation success rate may be
low, it still does not present a problem since the initialization of the whole pop-
ulation is performed only once, at the beginning of the evolution. The drawback
of this approach is that it is possible to have a set of requirements that would
make it impossible to create a valid solution. However, in all our experiments we
have not encountered that situation.

The genetic operators preserve the mentioned property of the solutions while
trying to combine ’adequately’ scheduled events. The efficiency of the operators
when used without local search is generally not high, and in that case the conver-
gence is relatively slow.The inclusionof the local searchoperator, that concentrates

University Course Timetabling with Genetic Algorithm 251

on student allocation only, has proven beneficial to the optimization process as it
improved the quality of the individuals and accelerated the convergence.

A possible improvement could be gained by devising and experimenting with
different variants of crossover and mutation. Furthermore, a systematic exper-
imentation is needed regarding the values of various parameters used in the
algorithm, since they can have a significant impact on the performance. Never-
theless, even the relatively simple operators used in the algorithm succeeded in
producing solutions of acceptable quality.

References
1. McCollum, B.: University timetabling: Bridging the gap between research and prac-

tice. In: Burke, E.K., Rudová, H. (eds.) PATAT 2007. LNCS, vol. 3867, pp. 15–35.
Springer, Heidelberg (2007)

2. Qu, R., Burke, E., McCollum, B., Merlot, L., Lee, S.: A Survey of Search Method-
ologies and Automated Approaches for Examination Timetabling. Technical Re-
port NOTTCS-TR-2006-4, School of CSiT, University of Nottingham (2006)

3. Burke, E., Petrovic, S.: Recent research directions in automated timetabling. Eu-
ropean Journal of Operational Research 127(2), 266–280 (2002)

4. Schaerf, A.: A survey of automated timetabling. In: 115. Centrum voor Wiskunde
en Informatica (CWI), p. 33 (1995) ISSN 0169-118X

5. Lewis, R.: A survey of metaheuristic-based techniques for university timetabling
problems. OR Spectrum (2007)

6. Azimi, Z.: Hybrid heuristics for Examination Timetabling problem. Applied Math-
ematics and Computation 163(2), 705–733 (2005)

7. Azimi, Z.N.: Comparison of Methheuristic Algorithms for Examination Timetabling
Problem. Applied Mathematics and Computation 16(1), 337–354 (2004)

8. Rossi-Doria, O., Sample, M., Birattari, M., Chiarandini, M., Dorigo, M., Gam-
bardella, L., Knowles, J., Manfrin, M., Mastrolilli, M., Paechter, B., Paquete, L.,
Stützle, T.: A Comparison of the Performance of Different Metaheuristics on the
Timetabling Problem. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002.
LNCS, vol. 2740, pp. 329–351. Springer, Heidelberg (2003)

9. Socha, K., Sampels, M., Manfrin, M.: Ant Algorithms for the University Course
Timetabling Problem with Regard to the State-of-the-Art. In: Raidl, G.R.,
Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E.,
Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003,
EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003,
EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 334–345. Springer,
Heidelberg (2003)

10. Socha, K., Knowles, J., Sampels, M.: A MAX -MIN Ant System for the Univer-
sity Timetabling Problem. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant
Algorithms 2002. LNCS, vol. 2463, pp. 1–13. Springer, Heidelberg (2002)

11. Burke, E.K., Jackson, K., Weare, J.K., Automated, R.: university timetabling: The
state of the art. The Computer Journal 40(9), 565–571 (1997)

12. van den Broek, J., Hurkens, C., Woeginger, G.: Timetabling problems at the TU
Eindhoven. In: PATAT, pp. 123–138 (2006)

13. Cooper, T.B., Kingston, J.H.: The complexity of timetable construction problems.
In: Proc. of the 1st Int. Conference on the Practice and Theory of Automated
Timetabling (ICPTAT 1995), pp. 511–522 (1995)

14. Gross, J.L., Yellen, J.: Handbook of Graph Theory. CRC Press, Boca Raton (2004)

A Hybrid Algorithm for Computing Tours
in a Spare Parts Warehouse

Matthias Prandtstetter, Günther R. Raidl, and Thomas Misar

Institute of Computer Graphics and Algorithms
Vienna University of Technology, Vienna, Austria

{prandtstetter,raidl}@ads.tuwien.ac.at

Abstract. We consider a real-world problem arising in a warehouse for
spare parts. Items ordered by customers shall be collected and for this
purpose our task is to determine efficient pickup tours within the ware-
house. The algorithm we propose embeds a dynamic programming al-
gorithm for computing individual optimal walks through the warehouse
in a general variable neighborhood search (VNS) scheme. To enhance
the performance of our approach we introduce a new self-adaptive vari-
able neighborhood descent used as local improvement procedure within
VNS. Experimental results indicate that our method provides valuable
pickup plans, whereas the computation times are kept low and several
constraints typically stated by spare parts suppliers are fulfilled.

1 Introduction

Nowadays, spare parts suppliers are confronted with several problems. On the one
hand, they should be able to supply spare parts both on demand and as fast as pos-
sible. On the other hand, they have to keep their storage as small as possible for var-
ious economic reasons. Storage space itself is expensive, but more importantly by
adding additional capacity to the stock, the complexity of administration increases
substantially.Therefore, thedemand for (semi-)automaticwarehousemanagement
systems arises. Beside keeping computerized inventory lists additional planning
tasks can be transferred to the computer system. For example, lists containing all
articles to be reordered can be automatically generated.

Obviously the main task to be performed within a spare parts warehouse is
the issuing of items ordered by customers and to be sent to them as quickly as
possible. For this purpose, several warehousemen traverse the storage and collect
ordered articles which will then be brought to a packing station where all items
are boxed and shipped for each customer. Of course, the possible savings related
with minimizing collecting times of items are high and therefore effort should
be put into a proper tour planning. Various constraints related to capacities
of trolleys used for transporting collected articles, structural conditions of the
warehouse and delivery times guaranteed to the customers have to be considered.

The rest of this paper is organized as follows: The next section gives a detailed
problem definition. In Sec. 3 we present an overview of related work. A new hy-
brid approach based on variable neighborhood search and dynamic programming
is presented in Sec. 4. Experimental results and conclusions complete the paper.

C. Cotta and P. Cowling (Eds.): EvoCOP 2009, LNCS 5482, pp. 25–36, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

26 M. Prandtstetter, G.R. Raidl, and T. Misar

2 Problem Definition

The problem as considered within this paper can be defined as follows: We are
given a warehouse with a storage layout similar to that presented in Fig. 1,
i.e. several racks are aligned such that two types of aisles arise: rack aisles and
main aisles, whereas we assume that there are two main aisles with an arbitrary
number of rack aisles lying between them. While rack aisles provide access to
the racks main aisles only act as an interconnection between the rack aisles and
the packing station. We denote by R = {1, . . . , nR} the set of racks located in
the rack aisles.

PS

racks
packing station
rack aisles

PS

main aisles

Fig. 1. An exemplary storage layout. Main aisles (vertical in this sketch) and rack
aisles (horizontally aligned) are joining each other orthogonally.

In addition, a set of articles A, with A = {1, . . . , nA}, nA ≥ 1, is given.
Each article a ∈ A is stored at a non-empty set Ra of one or more racks, i.e.
∅ �= Ra ⊆ R. The quantities of articles a ∈ A are given by qa : Ra → N.

We assume that a homogeneous fleet of nT trolleys used for carrying collected
items exists, each having capacity c. A group of nW warehousemen, 1 ≤ nW ≤
nT, is operating these trolleys and issuing ordered articles.

A set of customer orders is given, whereas each order consists of a list of articles
with demands to be shipped to a specific address. Further, a latest delivery
time to be met is associated with each of these customer orders. Although the
assignment of orders to customers is important for a production system we are
only interested in the quantities of each article to be collected in the warehouse
for this work, since extra workers are assigned to pack all items according to
orders. Therefore, we define the set O of orders as the set of tuples (a, da) ∈ O,
with |O| = nO, stating the total integer demand da ≥ 1 of each article a ∈ A.
In addition, we assume that the capacities of all trolleys together, i.e. nT · c, is
greater than the amount of articles to be collected.

Let us denote by set S a finite set of selections, whereas a selection S ∈ S
is a set of triples (a, δ, r) such that r ∈ Ra, 1 ≤ δ ≤ qa(l), and there exists an
order (a, da) ∈ O with da ≥ δ. Further, we denote by T a set of tours whereas
for each Si ∈ S a tour Ti ∈ T exists. By tour Ti we understand a walk through
the warehouse visiting all locations contained in Si such that the corresponding
items of Si can be collected. The length of tour Ti ∈ T is denoted by c(Ti).

A Hybrid Algorithm for Computing Tours in a Spare Parts Warehouse 27

A solution x = (S, T , Π) to the given problem consists of a set T of tours
corresponding to the selections in S as well as a mapping Π : T → {1, . . . , nW}
of tours to workers such that

– |S| = |T | ≤ nT,
– tour Ti ∈ T collects all articles a ∈ Si, Si ∈ S,
–
∑

S∈S
∑

(a,δ,l)∈S δ = da, for all a ∈ A,
– worker Π(Ti) processes tour Ti ∈ T ,
– all time constraints are met, i.e. for each customer order it has to be guar-

anteed that tour T ∈ T picking up the last not yet collected article must be
finished before the specific delivery time.

We formulate the given problem as an optimization problem in which the to-
tal length of the tours, i.e.

∑

T∈T c(T), as well as the violations of the capacity

constraints defined by the trolleys, i.e.
∑

S∈S max
{

∑

(a,δ,l)∈S δ − c, 0
}

, should
be minimized. For weighting the relative importance of violating capacity con-
straints compared to tour lengths, we introduce a weighting coefficient ω such
that the objective function can be written as

min
∑

T∈T
c(T) + ω ·

∑

S∈S
max

⎧

⎨

⎩

∑

(a,δ,l)∈S

δ − c, 0

⎫

⎬

⎭

(1)

For this work, ω is set to the maximum possible length of one tour picking up
one article plus one. Such a choice for ω implies that it is always better to use
an additional tour for collecting an item than violating a capacity constraint.

3 Related Work

Obviously, the stated problem is related to warehouse management in general.
An introduction to this topic as well as an overview over tour finding, storage
management and other related tasks is given in [1].

It is obvious that the stated problem forms a special variant of the well known
vehicle routing problem (VRP) [2]. In fact, the classical VRP is extended by ad-
ditional domain specific constraints. In the classical VRP one wants to find a set
of tours minimal with respect to their total length starting at a depot and visit-
ing a predefined set of customers. Further, the problem studied here is related to
the split delivery VRP [3], the VRP with time windows [4] and the capacitated
VRP [5]. To our knowledge, there exists so far no previous work considering a
combination of these variants of VRP in connection with the additionally defined
constraints.

Beside this obvious relationship with VRPs, this problem is also related to
the generalized network design problems [6] with respect to the possibility to
collect one article from different locations within the warehouse. At a time only
one node of such a cluster has to be visited.

28 M. Prandtstetter, G.R. Raidl, and T. Misar

4 A Hybrid Variable Neighborhood Search Approach

Based on the fact that the problem examined within this paper is strongly re-
lated to the VRP, we expect that exact approaches are limited to relatively
small instances. In addition, short computation times are important, since the
observation was made that new orders are committed continuously by customers
which implies that the algorithm is restarted frequently. Since recently highly
effective variable neighborhood search (VNS) [7] approaches have been reported
for diverse variants of the VRP [8,9] we also based our approach on a similar
concept. Within our hybrid VNS, variable neighborhood descent (VND) [7] is
used as embedded local search procedure, and subproblems corresponding to
the computation of individual tours for collecting particular items are solved
by means of dynamic programming [10], exploiting the specific structure of the
warehouse.

4.1 The Basic Principle

In this work, we assume that all orders stated by customers can be fulfilled with
respect to the capacity constraints defined by the trolleys, i.e. the total capacity
of the trolleys is not exceeded. Anyhow, in real-world settings the problem may
arise that these constraints cannot be satisfied. In that case a straightforward
preprocessing step is used, which partitions the set of orders such that for each
partition the capacity constraints are satisfied.

The tour planning algorithm mainly consists of two parts: (1) the allocation
of articles to at most nT selections and (2) the computation of concrete routes
through the warehouse for collecting all items assigned to the previously deter-
mined selections. Anyhow, both of these parts have to be executed intertwined,
since the evaluation of the mapping of articles to tours is based on the lengths
of these tours. Therefore, these two steps are repeated until no further improve-
ment can be achieved. Finally, an assignment of the walks to nW warehousemen
is done, such that the latest finishing time is as early as possible. As soon as
additional orders are committed by customers the whole algorithm is restarted
from the beginning. This can be done efficiently by using a straightforward in-
cremental update function.

4.2 Assignment of Articles to Tours

One crucial point of our algorithm is the assignment of articles to selections
such that in a second step walks through the warehouse can be computed. Nev-
ertheless, the capacity constraints stated by the trolleys as well as the maximum
number of available trolleys nT have to be regarded during this allocation step.

Construction Heuristic. For quickly initializing our algorithm we developed
a construction method called collision avoiding heuristic (CAH). The main idea
of CAH is to divide the storage into m ≥ 1 physically non-overlapping zones
whereupon each one is operated by one trolley, i.e. m selections are generated.
For this work, we set m to nW.

A Hybrid Algorithm for Computing Tours in a Spare Parts Warehouse 29

Since the capacities of the trolleys are not regarded within this initialization
procedure the solution qualities produced by this heuristic are not outstanding.
The required computation times are, however, very low. Therefore, CAH can be
used for providing ad hoc solutions such that the workers start collecting the
first scheduled item while the rest of the tours is improved in the meantime.

Improvement Heuristic. For improving solutions generated by CAH, we
present a variable neighborhood search (VNS) approach using an adapted ver-
sion of variable neighborhood descent (VND) as subordinate. The basic idea of
VNS/VND is to systematically swap between different neighborhood structures
until no further improvement can be achieved. In fact, the crucial task in design-
ing such an approach is the proper definition of appropriate moves used for defin-
ing the neighborhood structures incorporated in VNS and VND, respectively. In
our approach, the following seven different move types were implemented:

BreakTour(i) Selection Si ∈ S is removed from S and all articles assigned to
Si are randomly distributed over all other selections Sj ∈ S \ Si.

MergeTour(i, j) Selections Si ∈ S and Sj ∈ S are both removed from S and
merged with each other into a new selection Si′ , which is then added to S.

ShiftArticle(i, j, a) Any solution generated by this move differs from the un-
derlying solution in one article a which is moved from selection Si to selection
Sj , with a ∈ Si and Si, Sj ∈ S.

ShiftArticleChangeRack(i, j, a, r) Analogously to the ShiftArticle move, this
move shifts an article a ∈ Si to selection Sj , with Si, Sj ∈ S. In addition to
this, a is now collected from rack r ∈ Ra regardless of the position it was
acquired before.

SplitTour(i) By applying this move, selection Si ∈ S is split into two new
selections Si′ and Si′′ such that |Si′ | = |Si′′ | or |Si′ | = |Si′′ |+1. Selection Si

is removed from S, whereas Si′ and Si′′ are added.
SwapArticle(i, j, a1, a2) This move swaps two articles a1 ∈ Si and a2 ∈ Sj ,

with Si, Sj ∈ S.
SwapArticleChangeRack(i, j, a1, a2, r1, r2) This move is similar to the Swap-

Article move. After swapping articles a1 ∈ Si and a2 ∈ Sj between selections
Si ∈ S and Sj ∈ S, the rack of a1 is changed to r1 ∈ Ra1 and that of a2 is
changed to r2 ∈ Ra2 .

Based on these move types, the neighborhood structures for VNS and VND
are defined, whereas the neighborhoods N1(x), . . . , Nkmax(x), with 1 ≤ kmax ≤
|S| − 1, used within the shaking phase of VNS are purely based on BreakTour
moves such that within Nk(x), with 1 ≤ k ≤ kmax, k randomly chosen BreakTour
moves are applied to x. The neighborhood structures N1, . . . ,N6 for VND are
defined by a single application of one of the other six move types, such that
N1, . . . ,N6 apply SplitTour, MergeTour, ShiftArticle, ShiftArticleChangeRack,
SwapArticle, SwapArticleChangeRack, respectively.

In addition to the proper definition of neighborhood structures, a beneficial
order used for systematically examining them is necessary and has a great influ-
ence on the performance of VND (cf. [11,12]). Preliminary tests showed that the

30 M. Prandtstetter, G.R. Raidl, and T. Misar

contributions of neighborhood structures N1 and N2 are relatively high during
the beginning of VND but dramatically decrease after only a few iterations. This
is due to the fact that splitting and merging of tours is only important as long
as the capacity constraints are either violated or highly over-satisfied, i.e. there
is significant capacity left in more than one trolley. Anyhow, in most of the iter-
ations, i.e. in about 95% of the iterations, no improvement can be achieved by
these neighborhoods. Therefore, some dynamic order mechanism guaranteeing
that neighborhoods N1 and N2 are primarily examined during the beginning
phase of VND while being applied less frequently during the later iterations
seems to be important.

In contrast to self-adaptive VND as proposed by Hu and Raidl [11], we do
not punish or reward neighborhood structures based on their examination times,
but reorder the neighborhoods according to their success rates, i.e. the ratios of
improvements over examinations, only. The neighborhood order is updated each
time an improvement on the current solution could be achieved.

In addition, we adapted VND such that not only improvements on the cur-
rent solution are accepted but also moves can be applied which leave the current
objective value unchanged. To avoid infinite loops, at most ten non-improving
subsequent moves are allowed in our version of VND, whereas the i-th non-
improving move is accepted with probability 1− (i− 1) · 0.1, only. All counters
regarding the acceptance of non-improving moves are reset as soon as an im-
provement could be achieved. As step function a next improvement strategy was
implemented, whereas a random examination order was chosen to uniformly
sample the current neighborhood.

4.3 Computing Individual Tours

Another crucial point of the proposed algorithm is the computation of concrete
tours which will be used by the warehousemen for collecting a specific set of
ordered items. Although the decision which article to collect next will finally
be made by the workers themselves, the system provides them a suggestion.
Further, the evaluation of the assignment of articles to selections is based on the
shortest possible tours, and therefore an efficient tour computation is needed.

Please note that a tour as used within this work does not correspond to tours as
used within works related to the traveling salesman problem or the VRP. In fact,
the main difference lies therein that tours within a storage are allowed to visit each
point of interest, i.e. among others the packing station, crossings of aisles and rack
positions, more than once. This is simply induced by the circumstance that in most
cases no direct connection between two points of interest exists. Consequently,
paths between points of interest can be walked along more than once within one
tour. Anyhow, an upper bound for the number of times the same passage is walked
can be provided based on the following two observations.

Theorem 1. Given is a tour T , which is of shortest length with respect to a
set of points of interest, i.e. all of these points are visited by T . Further, we
assume that there exist two adjacent points of interest v and w which are twice

A Hybrid Algorithm for Computing Tours in a Spare Parts Warehouse 31

v wPS
T1

T3

T5

T2

T4

(a)

v wPS
T1

T3

T5

T2

T4

(b)

Fig. 2. How to construct a tour T ′ from a given tour T under the assumption that T
visits two times location w immediately after location v

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 3. In (a)–(e) the five basic aisle operations (AOs) are presented, whereas (f)–(j)
show basic inter-aisle operations (IOs)

visited immediately consecutively in T . Then the passage between v and w is once
traversed from v to w and once vice versa in T .

Proof. Let us assume that the passage between points v and w is traversed twice
in the same direction. Then, we can split tour T into five subwalks T1, T2, T3,
T4 and T5 as shown in Fig. 2a, whereas PS denotes the packing station. A new
tour T ′ can be built by passing segment T1 from PS to v followed by traversing
walk T3 from v to w and finally walking along T5 from w to PS, see Fig. 2b.
Since v and w are adjacent, i.e. no other point of interest has to be visited when
walking from v to w, T ′ visits the same points of interest as T . Furthermore,
since subwalks T2 and T4 are not traversed within T ′, T ′ is shorter than T , which
is a contradiction to the assumption that T is optimal.

Lemma 1. Given is an optimal tour T with respect to a set of points of interest.
Then any two adjacent points v and w are visited at most twice immediately
consecutively by T .

Proof. lemma directly follows from Theorem 1. Under the assumption that
points v and w are visited more than two times immediately consecutively the
passage between these two points has to be traversed at least twice in the same
direction.

Based on the special structure induced by warehouse layouts similar to that
shown in Fig. 1, we define aisle operations (AOs) and inter-aisle operations
(IOs). While AOs are representations of the walks to be performed within rack
aisles, IOs correspond to movements in main aisles. In Fig. 3 the sets of basic

32 M. Prandtstetter, G.R. Raidl, and T. Misar

(a)

invalidvalid

(b)

valid or invalid? valid or invalid?

(c)

Fig. 4. Figure (a) shows a module representing that part of a tour entering and leaving
the RA from and to the left side. This aisle operation is then suitably joined with
the rest of the tour by appropriate inter-aisle operations. For some combinations of
modules (b) it can be directly decided whether or not they are valid. In other cases (c)
this decision has to be postponed.

AOs and IOs are shown. By appropriately combining these basic operations, so-
called modules can be defined, which will then be used for representing parts of
tours, for an example see Fig. 4a. Based on Theorem 1 it can be concluded that
the number of different module types needed for representing a tour is limited.

Although it is now obvious that tours can be built by selecting an appropriate
module for each aisle to visit, it can be observed that the resulting tours may
contain subtours, which are not connected to the rest of the tour, see for example
Fig. 4b. Unfortunately, as shown in Fig. 4c, the decision whether a combination
of modules is valid cannot always be made as soon as the next module is selected.
Let us denote by Nc(j) the set of those modules j′ which might be connected
with module j with respect to the IOs of j and j′, i.e. all modules j′ forming
together with j possibly valid tour parts. Further, we denote by Nv(j) the set
of those modules j′ ∈ Nc(j) such that the usage of modules j and j′ results in
a definitely valid tour (part).

Therefore, we introduce two (n + 1)× (ν) matrices σ and τ , with n being the
number of aisles containing items to be selected and ν indicating the maximum
number of potentially used module types. An entry σij , with 1 ≤ i ≤ n and
1 ≤ j ≤ ν, corresponds to the length of a valid tour T ′ which visits all rack
locations in aisles 1 to i storing articles to be shipped to customers and performs
in aisle i the operations corresponding to module j. Analogously, an entry τij

corresponds to the total length of tour parts which visit all racks in aisles 1 to i
storing articles to be shipped and perform in aisle i the operations corresponding
to module j. Anyhow, these tour parts need not to be connected with each other
and therefore it has to be assured that they are going to be joined into one (big)
tour by operations performed in any aisle > i. Now, let us assume that ci(j)
denotes the length of the tour part(s) represented by module j when applied to
aisle i and module μ represents the IOs necessary for reaching the first aisle from
the packing station. Then, the entries of σ and τ can be computed by using the
following recursive functions:

σ0μ = τ0μ = 0 (2)
σ0j = τ0j =∞ for j ∈ {1, . . . , ν} \ {μ} (3)

A Hybrid Algorithm for Computing Tours in a Spare Parts Warehouse 33

σij = ci(j) + min

{

{σi−1j′ : j′ ∈ Nv(j)}∪
{τi−1j′ : j′ ∈ Nv(j)}

}

for i ∈ {1, . . . , n}
for j ∈ {1, . . . , ν} (4)

τij = ci(j) + min

{

{σi−1j′ : j′ ∈ Nc(j)}∪
{τi−1j′ : j′ ∈ Nc(j)}

}

for i ∈ {1, . . . , n}
for j ∈ {1, . . . , ν} (5)

For decoding the optimal tour, one first needs to identify module J used for aisle
n in an optimal tour, i.e. J = arg minj∈{1,...,ν}{σnj}. Then, the computations
based on Eq. (4) and (5) have to be performed backwards. Anyhow, it can be easily
proven that σnJ �=∞ definitely holds. In case of ties any module can be chosen.

4.4 Assignment of Workers to Tours

In a final step, an assignment of workers to tours has to be computed such that
the latest finishing time is as early as possible while regarding the guaranteed
delivery times. For this purpose, we implemented a General VNS scheme using
a greedy construction heuristic and random moves for the shaking phase. There
are three different move types defining neighborhood structures for VND: The
first one reassigns one tour from one worker to another worker. The second
one swaps two tours between two workers. The third move type rearranges the
schedule of one worker such that one tour is shifted towards the beginning of
the current working day. The used neighborhood order corresponds to this order
and is fixed. A first improvement strategy is used as step function in VND and
random moves are applied for the shaking phase of VNS.

5 Experimental Results

For evaluating the performance of the proposed method several test runs were
performed. Our algorithm was implemented in Java and all tests were run on
a single core of a Dual Opteron with 2.6GHz and 4GB of RAM. All instances
were randomly generated based on the characteristics of real-world data, i.e.
storage layouts and typical customer orders, provided by our industry partner
Dataphone GmbH.

For each of the 20 instances, we performed 40 independent runs, whereas for the
half of those runs we allowed that workers may reverse within one aisle, while for
the remaining ones we assured that once an aisle is entered, it is completely tra-
versed by the warehousemen. To avoid excessive computation times, a time limit of
1200 seconds for VNS was applied. See Tab. 1 for a detailed listing of the obtained
results. The column labled init presents the initial values obtained by the so called
s-shaped heuristic [1], whereas we simply try to collect as much articles as possi-
ble during one tour regarding the capacities of the trolleys used. The objective
values provided within the nex columns correspond to the weighted sum as pre-
sented in Eq. 1. The standard deviations (presented in parentheses) are relatively
low with respect to the tour lengths. Taking a look at these average values it can
be observed that the tour lengths can be reduced by about 20% on average when

34 M. Prandtstetter, G.R. Raidl, and T. Misar

Table 1. Average results over 20 runs for 20 instances. The initial values, the objective
values (including standard deviations in parentheses), the number of tours (nT), the
average filling degree of the trolleys used (quota) and the average computation times in
seconds are opposed for instances allowing to reverse in aisle and disallowing turning
around. The last column presents the p-values of an unpaired Wilcoxon rank sum
test, for evaluating whether the tours with turning around are 20% shorter than those
without reversing.

reversing disabled reversing enabled
inst. init objective nT quota time objective nT quota time p-Val
(01) 3750 3059.0 (132.6) 3.0 74.2 37.5 2281.0 (44.7) 3.0 74.2 35.5 <0.01
(02) 4200 3213.0 (156.5) 3.7 79.3 29.2 2348.0 (85.6) 3.5 85.0 59.1 <0.01
(03) 4260 3560.0 (109.0) 4.0 75.5 47.5 2541.5 (80.0) 4.0 75.5 78.7 <0.01
(04) 3210 2962.0 (35.8) 3.0 91.8 22.6 2298.5 (4.9) 3.0 91.8 30.6 <0.01
(05) 4020 3605.0 (105.6) 4.1 88.1 37.8 2466.5 (39.1) 4.0 90.3 55.5 <0.01
(06) 5060 4671.5 (106.7) 5.7 78.3 61.2 3576.0 (74.9) 5.4 82.0 114.6 <0.01
(07) 6050 5575.5 (79.3) 7.0 81.7 83.8 4052.5 (73.5) 6.8 82.9 192.7 <0.01
(08) 5650 5602.5 (155.8) 7.0 84.9 95.6 4159.5 (98.9) 7.0 85.5 212.6 <0.01
(09) 7000 6583.0 (246.9) 8.0 86.4 132.5 4887.5 (117.6) 8.0 86.4 334.1 <0.01
(10) 5070 4995.5 (252.1) 6.0 78.8 88.2 3589.5 (104.1) 5.8 82.2 128.8 <0.01
(11) 10740 9254.0 (268.4) 12.2 81.9 391.4 6158.5 (149.3) 11.1 90.4 845.4 <0.01
(12) 9350 8155.0 (175.9) 12.6 79.3 255.4 5952.0 (136.9) 11.7 85.4 689.0 <0.01
(13) 9970 8939.0 (256.2) 12.0 83.2 323.9 6102.0 (156.7) 11.3 88.0 715.7 <0.01
(14) 9520 9082.5 (246.5) 12.6 79.6 370.7 6165.5 (181.2) 11.7 85.8 864.3 <0.01
(15) 7690 7473.0 (270.4) 11.5 86.9 279.2 5860.5 (74.9) 11.2 89.2 673.0 0.02
(16) 11510 8878.0 (240.3) 12.2 81.9 716.4 6465.0 (165.9) 11.7 85.8 1200.0 <0.01
(17) 11460 8251.5 (216.7) 12.3 80.9 782.2 6261.5 (161.7) 11.7 85.4 1200.0 <0.01
(18) 11740 8520.0 (187.8) 12.6 79.3 748.5 6238.5 (159.9) 11.5 86.9 1200.0 <0.01
(19) 11480 8990.0 (216.8) 12.1 82.6 828.3 6349.0 (207.0) 11.7 85.8 1200.0 <0.01
(20) 12260 9644.5 (286.9) 12.6 79.6 819.0 6635.0 (164.4) 11.8 85.0 1200.0 <0.01

it is allowed to reverse within an aisle. To statistically confirm this observation, we
performed an unpaired Wilcoxon rank sum test. The corresponding p-values are
shown in the last column of Tab. 1. Regarding the number of tours as well as the
filling degree of the trolleys, no significant difference between those runs allowing
reversing and those forbidding it can be identified. Finally, taking a closer look at
the computation times, it can be observed that for those instances including the
option to reverse the running times are longer. This can be reasoned by the fact
that the number of aisle operations is more restricted for those runs forbidding
reversing. Since the available computation time was limited, the results obtained
for instances 16–20 might be further improved when using looser time limits. Re-
garding the last step of the algorithm, i.e. the assignment of tours to workers, all
violations of the time constraints could be resolved within a few iterations of the
corresponding VNS procedure.

Regarding the performance of the proposed neighborhoods, i.e. the ratio of
improvements over examinations, we observed that all of them except N6 con-
tribute substantially to the final solution whereas neighborhood N6 did almost

A Hybrid Algorithm for Computing Tours in a Spare Parts Warehouse 35

Table 2. Average contributions of the individual neighborhood structures to the final
solutions. The numbers represent the average ratios of improvements over examinations
over 20 runs for 20 instances with 25, 50, 100, 200 different items to be collected (#it.).

reversing disabled reversing enabled
inst. #it. N1 N2 N3 N4 N5 N6 N1 N2 N3 N4 N5 N6

(01) 25 3.6 10.6 60.2 34.4 46.9 0.2 5.9 15.9 70.2 61.5 18.2 0.0
(02) 25 4.1 12.0 61.0 32.2 33.8 0.0 5.6 19.7 73.0 46.2 16.3 1.1
(03) 25 3.6 11.8 60.5 40.6 49.9 0.1 4.4 17.1 73.4 55.2 27.9 0.0
(04) 25 4.5 11.1 52.1 27.4 34.6 0.0 7.4 18.2 70.9 42.8 6.9 0.4
(05) 25 6.6 15.2 65.9 29.3 45.2 0.8 9.1 19.9 74.2 58.0 32.3 0.0
(06) 50 10.4 17.6 69.6 3.7 18.7 0.0 10.7 23.3 81.8 53.5 7.6 0.0
(07) 50 12.2 20.7 74.3 6.0 42.0 0.0 12.9 25.7 85.6 59.6 48.2 0.0
(08) 50 13.5 19.5 72.3 1.7 55.9 0.0 19.1 28.6 87.9 29.9 40.2 0.0
(09) 50 13.9 20.3 74.4 41.2 46.3 0.0 17.8 27.8 85.8 46.8 37.4 0.0
(10) 50 9.8 17.4 70.8 9.2 22.3 0.0 12.6 23.1 81.8 66.9 18.5 0.0
(11) 100 16.0 27.1 76.3 7.9 24.6 0.0 21.6 29.4 88.5 44.0 37.0 0.0
(12) 100 18.9 29.9 77.8 0.9 24.7 0.0 18.4 28.8 88.3 47.2 39.2 0.0
(13) 100 16.5 26.2 75.9 5.9 26.7 0.0 23.5 29.3 87.3 60.4 44.9 0.0
(14) 100 14.3 27.6 78.2 1.1 19.5 0.0 19.4 27.2 88.0 50.5 33.8 0.0
(15) 100 18.2 23.2 73.4 1.1 12.8 0.0 20.1 26.7 85.3 51.1 30.8 0.0
(16) 200 18.0 30.3 75.3 2.9 8.1 0.0 25.7 31.5 88.8 46.4 30.5 0.0
(17) 200 17.9 28.8 75.7 0.0 7.9 0.0 27.0 31.8 88.8 39.3 49.2 0.0
(18) 200 19.2 28.6 76.0 3.5 15.0 0.0 28.1 32.2 88.8 53.8 38.6 0.0
(19) 200 16.1 28.1 74.5 1.8 17.3 0.0 26.2 29.8 88.4 35.9 35.1 0.0
(20) 200 16.4 28.2 75.4 1.1 6.7 0.0 27.5 34.7 90.2 46.6 32.8 0.0

never add an improvement (see Tab. 2). Nevertheless, for the small instances
with 25 articles to be shipped, some improvements could be achieved even by
N6, and therefore we included it here. Regarding the other neighborhood struc-
tures,N3, i.e. the neighborhoods based on the ShiftArticle move, performed best.
It is interesting that neighborhood structure N4 did worse for those instances
forbidding turning around. However, this can be explained by the fact that for
these instances the degree of freedom is less than for the others which results
therein that once an aisle i has to be entered all ordered articles stored within
this aisle can be collected with less expenses from aisle i than from any other
aisle. The same observation holds for neighborhood structure N5, although this
effect is less prominent for the underlying move type.

6 Conclusions

In this paper, we proposed a new hybrid algorithm combining variable neigh-
borhood search (VNS) with dynamic programming (DP) for solving a real-world
scheduling and tour finding problem within a spare parts warehouse. For
boosting the performance of the neighborhood structures used within variable
neighborhood descent (VND), we used a new self-adaptive VND rearranging the

36 M. Prandtstetter, G.R. Raidl, and T. Misar

neighborhoods according to their success rates. Individual optimal tours within
the spare parts warehouse are computed by means of dynamic programming,
whereas the special structure of the storage is exploited.

Experimental results showed that this approach performs good for instances
based on real-world characteristics. Further, we showed that the total tour
lengths can be reduced by about 20% on average when reversing within aisles
is allowed. Regarding the computation times, our approach is able to provide
good results within 1200 seconds which correspond to acceptable time limits in
real-world scenarios.

References

1. de Koster, R., Le-Duc, T., Roodbergen, K.J.: Design and control of warehouse order
picking: A literature review. European Journal of Operational Research 182(2),
481–501 (2007)

2. Toth, P., Vigo, D.: The Vehicle Routing Problem. Monographs on Discrete Math-
ematics and Applications, vol. 9. SIAM, Philadelphia (2002)

3. Dror, M., Laporte, G., Trudeau, P.: Vehicle routing with split deliveries. Discrete
Applied Mathematics 50(3), 239–254 (1994)

4. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with
time window constraints. Operations Research 35(2), 254–265 (1987)

5. Ralphs, T.K., Kopman, L., Pulleyblank, W.R., Trotter, L.E.: On the capacitated
vehicle routing problem. Mathematical Programming 94(2–3), 343–359 (2003)

6. Feremans, C., Labbe, M., Laporte, G.: Generalized network design problems. Eu-
ropean Journal of Operational Research 148(1), 1–13 (2003)

7. Hansen, P., Mladenović, N.: Variable neighborhood search. In: Glover, Kochen-
berger (eds.) Handbook of Metaheuristics, pp. 145–184. Kluwer Academic Pub-
lisher, Dordrecht (2003)

8. Hemmelmayr, V.C., Doerner, K.F., Hartl, R.F.: A variable neighborhood search
heuristic for periodic routing problems. European Journal of Operational Research
(2007) (in press), doi:10.1016/j.ejor.2007.08.048

9. Ostertag, A., Dörner, K.F., Hartl, R.F.: A variable neighborhood search integrated
in the POPMUSIC framework for solving large scale vehicle routing problems. In:
Blesa, M.J., Blum, C., Cotta, C., Fernández, A.J., Gallardo, J.E., Roli, A., Sampels,
M. (eds.) HM 2008. LNCS, vol. 5296, pp. 29–42. Springer, Heidelberg (2008)

10. Bellman, R.E.: Dynamic Programming. Dover Publications Inc., Mineola (2003)
11. Hu, B., Raidl, G.R.: Variable neighborhood descent with self-adaptive

neighborhood-ordering. In: Cotta, C., Fernandez, A.J., Gallardo, J.E. (eds.) Pro-
ceedings of the 7th EU/MEeting on Adaptive, Self-Adaptive, and Multi-Level
Metaheuristics (2006)

12. Puchinger, J., Raidl, G.R.: Relaxation guided variable neighborhood search. In:
Proceedings of the XVIII Mini EURO Conference on VNS (2005)

A New Binary Description of the Blocks
Relocation Problem and Benefits in a Look

Ahead Heuristic

Marco Caserta, Silvia Schwarze, and Stefan Voß

University of Hamburg, Institute of Information Systems,
Von-Melle-Park 5, 20146 Hamburg, Germany

{caserta,schwarze}@econ.uni-hamburg.de, stefan.voss@uni-hamburg.de

Abstract. We discuss the blocks relocation problem (BRP), a specific
problem in storing and handling of uniform blocks like containers. The
BRP arises as an important subproblem of major logistic processes, like
container handling on ships or bays, or storing of palettes in a stacking
area. Any solution method for the BRP has to work with the stacking
area and needs to draw relevant information from there. The strength
of related approaches may rely on the extensive search of neighborhood
structures. For an efficient implementation, fast access to data of the cur-
rent stacking area and an efficient transformation into neighboring states
is needed. For this purpose, we develop a binary description of the stack-
ing area that fulfills the aforementioned requirements. We implement the
binary representation and use it within a look ahead heuristic. Compar-
ing our results with those from literature, our method outperforms best
known approaches in terms of solution quality and computational time.

1 Introduction

Efficient handling in warehouses and inventories is a major issue to decrease
logistic costs and processing times. This includes fast access to stored items. We
consider a particular case where N uniform blocks (e.g., containers, palettes)
are piled up on each other in a two-dimensional area. In this setting, it is only
possible to access blocks that are located on top of a stack. Each block is given a
unique priority number n = 1, . . . , N ; thus the priorities establish a total order
of the considered blocks. Blocks have to be retrieved according to their priority
(smallest number first). Thus, whenever the block with the highest priority (the
target block) is not accessible due to other blocks piled on top of it, we have to
perform relocation activities to free the target block.

We assume that we have to clear the complete stacking area according to the
given priorities. (At a container terminal this refers to completely clearing a bay
and moving all the containers of the bay onto a vessel.) Furthermore, we assume
that whenever a target block is accessible, it is going to be retrieved immediately.
That is, retrievals are carried out while the relocation process is running. The
objective of our approach is to minimize the number of relocations performed till

C. Cotta and P. Cowling (Eds.): EvoCOP 2009, LNCS 5482, pp. 37–48, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

38 M. Caserta, S. Schwarze, and S. Voß

the stacking area is cleared. For configuration of the stacking area, we assume
that we have a given number W > 0 of stacks and a maximum number H > 0
of tiers (where this is the same for all stacks).

Whenever we have a pair of blocks located in the same stack, and the priority
of the lower block is higher than the priority of the upper block, we say that
this pair of blocks forms a deadlock. This definition is given in a more general
version by [5] in the context of blocks-world planning. In the case of a deadlock,
the upper block will cause an extra relocation. However, one relocation might
resolve more than one deadlock. A related, but different notion is that of a mis-
overlay, described, e.g., by [8]. To obtain the number of mis-overlays in a stacking
area, one has to count the number of blocks that are placed above blocks with
higher priority. This value is also called confirmed relocation [6].

The BRP has been addressed before with the following contributions being
most successful in solving the problem. Kim and Hong [6] develop a branch-and-
bound method and a heuristic based on expected values of future relocations.
Furthermore, [3] propose two mathematical programming formulations and a
simple heuristic rule. The corridor method is applied to the BRP by [4].

Related problem settings are found in the area of container handling. For
instance, in stowage planning, loading, unloading, and sorting processes are de-
scribed for container ships that visit a number of ports on a round-trip [2,1].
Moreover, in a second class of problems the sorting process is separated from
the retrieval process. To this class belong the location of incoming containers in
a stacking area [7,13] and pre-marshalling problems [9,8]. For a general overview
on container handling see [11,10].

To be comparable with approaches presented in literature, we carry over the
following assumption A1 from [6] and [4]. Note that by establishing A1, optimal
solutions might be cut away, as illustrated by [3].

Assumption A1: Let k be the number of the current target blocks. Before
retrieving k, only relocations of blocks located above k are permitted.

For solving the BRP, we propose a heuristic approach which explores the neigh-
borhood of a given stacking area. Two stacking area states are neighbored if one
can be transformed into the other through exactly one relocation. To enhance
the search procedure, a score based on simple heuristic rules as well as a look
ahead mechanism is used to estimate the quality of an intermediate solution and
to focus on promising regions of the search space.

Building on a simple greedy algorithm such as, e.g., a construction heuristic
the pilot method [12] is a metaheuristic not necessarily based on a local search in
combination with an improvement procedure. It primarily looks ahead for each
possible local choice (by computing a so-called “pilot” solution), memorizing the
best result, and performing the respective move. One may apply this strategy by
successively performing a greedy heuristic for all possible local steps (i.e., start-
ing with all incomplete solutions resulting from adding some not yet included
element at some position to the current incomplete solution). The look ahead
mechanism of the pilot method is related to increased neighborhood depths as

A New Binary Description of the Blocks Relocation Problem 39

it exploits the evaluation of neighbors at larger depths to guide the neighbor
selection at depth one. For a survey on the pilot method including similar ideas
being investigated under the acronym rollout method we refer to [12].

In most applications, it is reasonable to restrict the pilot process to some
evaluation depth. That is, the method is performed up to an incomplete solution
(e.g., partial assignment) based on this evaluation depth and then completed by
continuing with a conventional heuristic.

Regarding the BRP even an evaluation depth of one seems reasonable as it
prevents the search from immediate capture in simple basins of attraction. The
strength as well as the drawback of this approach lies in extensive repetition
of calculations and the extensive search of neighborhood structures. Thus, fast
access to information concerning the current status of the stacking area and fast
exploration of the neighborhood are crucial. To achieve an efficient implementa-
tion, defining an appropriate representation of the problem setting is essential.

The major contribution of this paper is the introduction of a new binary rep-
resentation of a stacking area as it is given in the BRP. This encoding generates
a (N +W)× (N +W)-matrix providing fast access to all relevant information of
a current stacking area. Moreover, the neighborhood of a current stacking area
is described by a set of simple matrix manipulations. By developing a problem-
independent encoding, we allow for use of generic approaches, using the full
strength of highly developed toolboxes. We apply the binary description for the
implementation of a randomized metaheuristic for the BRP. Our experimental
results illustrate that we outperform current approaches provided in literature
in terms of computational time and solution quality.

The outline of the paper is as follows. The new representation is described
in Section 2. Algorithmic details can be found in Sections 3 and 4. Section 5
provides a comparison of the results given in literature and our results. Finally,
we give a summary and some ideas for extending our research.

2 Binary Encoding of the BRP

To adapt heuristics and metaheuristics to a particular optimization problem, a
good representation of the considered problem is needed. We are looking for a
translation of the BRP into a problem-independent description (e.g., a binary
one). Afterwards, this allows to apply especially metaheuristics without knowing
details about the actual problem description. Together with developing such an
encoding goes the definition of a valid neighborhood and transformation steps
between solutions in a neighborhood. In this section, we propose such a binary
formulation together with a neighborhood transformation for the BRP.

The idea is to transform a current stacking area state to a binary (N + W)×
(N +W)-matrix. Rows and columns 1, . . . , N correspond to the N blocks stored
in the initial stacking area. Moreover, rows and columns N + 1, . . . , N + W
correspond to the W stacks of an initial stacking area and may be interpreted as
W “artificial” blocks that lie at tier 0 and are not going to be retrieved. Consider
Figure 1 with a bay with three stacks and three tiers as an illustration of that

40 M. Caserta, S. Schwarze, and S. Voß

1

2

5

4 6

9

7

Tier No.

1

2

3

0 10 11 12

3

8

Artificial blocks

Fig. 1. Stacking area including artificial blocks

interpretation. Artificial block p is related to stack p − N . The function of the
artificial blocks is to keep track of the actual stacks and to indicate empty stacks.

Let us indicate with N ′ = N+W the total number of rows (as well as columns)
of the binary matrix. Moreover, let us denote the binary matrix by A and define
its elements for all blocks i, j = 1, . . . , N ′ as follows:

aij =

{

1, if i is located in the same stack, at a position below j

0, otherwise
(1)

For instance, the stacking area given in Figure 1 is transformed into the
matrix:

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 1 0 0 0 0
0 0 0 0 0 1 1 0 1 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Given this matrix, row four indicates that above block four are located block
three and block eight. On the other hand, column seven says that blocks six, nine
and twelve are below block seven. However, block p = 12 is an artificial block
and represents the stack p − N = 12 − 9 = 3. Thus, we obtain the additional
information that block seven is located on stack three.

Apart from having a compact and elegant representation of the stacking area,
the generated binary matrix allows to draw a number of relevant information
immediately, e.g.,

A New Binary Description of the Blocks Relocation Problem 41

– which blocks are on top of a stack and can be moved,
– which blocks are already cleared (i.e., moved from the bay or retrieved to

the vessel),
– whether two blocks are in the same stack and which one is located above the

other,
– how many deadlocks we have, and
– stack and tier number of a block.

In particular, A fulfills the following properties:

1. A zero row i (i.e., aij = 0 ∀ j) indicates that i is the uppermost block in
its stack and therefore it can be either retrieved or relocated. Moreover, i is
free to stack another block onto it.

2. A zero column j (i.e., aij = 0 ∀ i) indicates that “nothing is below j.” There
are only two cases, where zero columns appear:
– A block k already retrieved to the vessel is indicated by a zero column.
– Columns N + 1, . . . , N ′ corresponding to the artificial blocks are zero

columns.
3. The stacking area is cleared (all blocks are retrieved to the vessel) if A is a

zero matrix (i.e., aij = 0 ∀ i, j)
4. Given two non-artificial blocks j, k ∈ {1, . . . , N} that are located in the

stacking area (i.e., columns j and k contain at least one non-zero element
each). If column j dominates column k (i.e., aij ≥ aik ∀ i) then block j is
located somewhere above block k (i.e., akj = 1).

5. Deadlocks are displayed by entries in the upper triangular of the matrix A
that equal one. Thus, the number of deadlocks is given by

D(A) =
N−1
∑

i=1

N
∑

j=i+1

aij .

Note that columns N + 1, . . . , N ′ are zero columns anyway and need not
be taken into the sum. Furthermore, D(A) does not provide the number of
forced relocations as one relocation might resolve more than one deadlock.

6. The diagonal of A contains only zero elements.
7. Considering block k, let s(k) and t(k) denote stack and tier number, respec-

tively. We have:

s(k) = −N +
N ′
∑

i=N+1

i · aik and t(k) =
N ′
∑

i=1

aik .

8. Each stacking area can be transformed to a (N ′) × (N ′)-binary matrix fol-
lowing formulation (1) but not vice versa.

Once we have a representation of the stacking area, we need to define retrieval
and relocation activities. To maintain feasibility of a stacking area, particular
conditions have to be satisfied before these operations can be carried out. We
define the preconditions together with the transformations to matrix A next.

42 M. Caserta, S. Schwarze, and S. Voß

Relocation of block p directly on top of block k.

Precondition: Both blocks p and k have to be the highest block in their stack,
i.e., apj = 0 and akj = 0 ∀ j = 1, . . . , N ′ has to hold.
Optional: If the height of the stacking area is bounded by H , the following
condition has to be satisfied in addition: There are at most H − 2 blocks
below k, i.e.,

∑N
i=1 aik ≤ H−2. Note that only rows 1, . . . , N are considered

in the sum, as artificial blocks do not count concerning height.
Transformation: Only column p is going to be changed - everything which has

been below k is now also below p and, in addition, k itself is below p. We
obtain the transformed matrix A′ by

a′
ij =

⎧

⎪

⎨

⎪

⎩

aik for j = p, i �= k

1 for j = p, i = k

aij for j �= p, i = 1, . . . , N ′
(2)

It is easy to see that the computational complexity of the operation “relocation”
is O(N ′).

Retrieve block p from the stacking area (to the vessel).

Precondition: We have three preconditions: First, block p has to be within the
stacking area, i.e., there has to be a non-zero element in column p. Second,
block p − 1 has to be already retrieved (zero column p − 1). Third, block
p has to be the highest block in its stack (zero row p). Consequently, the
following three requirements have to be satisfied:

(i)
∑N ′

i=1 aip > 0 ,
(ii) aip−1 = 0 ∀ i = 1, . . . , N ′ ,
(iii) apj = 0 ∀ j = 1, . . . , N ′ .

Transformation: Only column p is changed, namely, we set each element to
zero. We obtain the transformed matrix A′ by

a′
ij =

{

0 for j = p, i = 1, . . . , N ′

aij for j �= p, i = 1, . . . , N ′ (3)

The computational complexity of the operation “retrieval” is O(N ′).

After having an encoding available as well as a set of rules coordinating relo-
cation and retrieving operations, we conclude by defining the following.

Definition 1 (BRP in terms of binary encoding). Given an initial matrix
A, find a sequence of feasible relocation and retrieving activities that terminates
with a zero matrix A′ such that the number of relocations is minimized.

A New Binary Description of the Blocks Relocation Problem 43

3 A Simple Heuristic Approach

When implementing our approach for the BRP, we take advantage of some simple
heuristic rules (proposed by [3]) that will guide our search procedure. Thus,
before describing the details of the procedure in the subsequent section, we will
have a brief look into the adaption of the heuristic rules to the proposed binary
encoding in matrix A.

Given a stack s, denote the smallest block number within s by mins. For
empty stacks, set mins = N + 1. In short, the heuristic rule is the following (see
[3] for details):

– Relocate only blocks located above the target block (the block that has to
be retrieved next)

– When a block r has to be relocated, choose the new stack by applying the
following rules:
1. (Relocation without new deadlock) Choose among those stacks, where

r < mins is satisfied, a stack that minimizes mins.
2. (Relocation causes new deadlock) If there is no stack satisfying r < mins

and no empty stack then choose a stack that maximizes mins.

To implement the heuristic rules, the following information about the current
state of the stacking area is required and can be taken easily from the matrix A:

1. Identify stack number of block n: Check column n for the unique positive
entry in rows N +1, . . . , N ′. Stack number is row number minus N . (O(W))

2. Identify blocks located above block n: Check row n for positive entries (only
elements regarding columns 1, . . . , N). (O(N))

3. Identify set of empty stacks: Find zero rows among rows N + 1, . . . , N ′.
From each row number, subtract N to obtain the number of the empty
stack. (O(WN))

4. Identify the highest block in stack s: Identify blocks located above block n
(see Item 2).
From the set of associated rows, find the unique zero row. (O(N2))

5. Identify mins for a given stack s: Check entries of row N + s. The column
number of the first positive entry provides mins. Stack s is empty if there is
no positive entry. (O(W))

The overall computational complexity of the heuristic approach is O(N2WH).

4 The Algorithm

As presented in Section 2, matrix A provides a complete representation of a
bay. In the following, let us indicate with Ak the matrix associated with the bay

44 M. Caserta, S. Schwarze, and S. Voß

after k iterations. Therefore, A0 corresponds to the initial bay. Consequently,
the solution to the BRP can be seen as a sequence of matrices A0, A1, . . . , AK ,
where Ak is obtained from Ak−1 through the application of a valid move and
AK is a zero matrix.

In the following, let us indicate with tk the target block, i.e., the block with
highest priority within Ak, and with sk the stack upon which the target is
currently lying. In addition, let us indicate with ni the number of blocks located
above block i at any point in time. It is worth noting that the values ni, i =
1, . . . , N ′, are initially computed in O(N ′2) and subsequently updated at each
iteration in O(N ′). Finally, let us indicate with jk the uppermost element in the
stack containing the target at iteration k, i.e., stack sk. It is easy to see that such
block can be found in O(N) by using the information provided by ni. Note that
for clarity one might refer to these values by indicating their specific iteration
k, i.e., by using values nk

i .
The proposed algorithm consists of four basic steps, iteratively repeated until

all blocks have been retrieved from the bay, i.e., until we obtain a zero matrix
AK . The four-step algorithm can be summarized as follows (for the sake of
readability, we omit index k):

Target Identification: Block t with lowest priority in the bay is identified,
along with its stack s. Since all the information related to block t is contained
in row t and column t of the current matrix A, we sequentially scan the
matrix from row 1 to row N . Therefore, finding the target is carried out in
at most O(N).

Choice Design: We first need to identify the uppermost element in s, i.e., j.
If j = t, we retrieve the target (as presented in Section 2, this can be done
in O(N ′)) and we go back to the target identification phase. Otherwise, we
define a neighborhood of the current configuration N (A) made up by all
the matrices that can be reached from A through the application of a valid
move. Note that this refers to using the concept of the pilot method with
evaluation depth one. Given the current target t located onto stack s, and
the current block to be relocated j, we can create at most W − 1 different
matrices by relocating block j onto any other stack, excluding s. The actual
cardinality of neighborhoodN (A) could be smaller than W−1 if, e.g., height
limits are imposed.
Let us indicate with S the set of available stacks, i.e., stacks onto which it
is possible to relocate block j. We define a valid move as a transformation
function that operates on the current configuration A, in such a way that
m : A → A′, where A′ is the configuration obtained after relocating block
j from stack s to stack s′ ∈ S, i.e., A′ = m(A, j, s′). Therefore, the current
neighborhood can be defined as:

N (A) = {A′ : A′ = m(A, j, s′), s′ ∈ S}

Move Evaluation and Selection: We define a greedy score g(A′) for each
feasible configuration A′ ∈ N (A). Such score is computed by applying upon

A New Binary Description of the Blocks Relocation Problem 45

A′ the greedy heuristic described in Section 3. The value returned by the
heuristic, i.e., the number of further relocations required to clear up the
current bay A′, is taken as score. Once such scores have been computed,
we apply a “roulette-wheel” mechanism to randomly select the next con-
figuration A′ and its associated move. Such mechanism allows for different
solutions to be selected at each iteration, while still preserving a measure of
attractiveness of each selection proportional to the greedy score.

Trajectory fathoming: Given the best upper bound, we apply a simple logical
test to detect whether the current trajectory is dominated by a previously
found feasible solution. In such case, the current trajectory can be fathomed
and the algorithm is restarted. Otherwise, if the logical test fails, the next
iteration of the algorithm is performed.

Algorithm 1. Matrix-Algorithm()
Require: initial configuration A0

Ensure: number of relocations z∗, set of relocations
1. z∗ ←∞
2. compute ni, i = 1, . . . N {counter no. blocks above i - O(N ′2)}
3. while stopping criterion() is not reached do
4. k ← 0 {relocations counter}
5. for t = 1, . . . , N do
6. while nt > 0 do
7. identify the uppermost element j {O(N)}
8. define N (A) {O(WN ′)}
9. for all A′ ∈ N (A) do

10. compute g(A′) {greedy score – O(N2WH)}
11. end for
12. select a move and define Ak+1 = m(Ak, j, s′) {roulette-wheel}
13. k← k + 1
14. for all blocks i in stacks s and s′ do
15. update ni {O(N ′)}
16. end for
17. apply logical test trajectory fathoming {O(1)}
18. end while
19. retrieve target block t from Ak {O(N ′)}
20. end for
21. if k < z∗ then
22. z∗ ← k and save best trajectory
23. end if
24. end while

A pseudo-code of the algorithm is presented in Matrix-Algorithm(). In the
following, the four-phase algorithm is repeated until a complete trajectory is
built, i.e., until all blocks of the bay have been retrieved in the predefined or-
der. In turn, the trajectory construction scheme is iteratively repeated until a
stopping criterion is reached.

46 M. Caserta, S. Schwarze, and S. Voß

5 Computational Results

In this section we present computational results on randomly generated in-
stances. All tests presented in this section have been carried out on a Pentium
IV Linux Workstation with 512Mb of RAM. The algorithm has been coded in
C++ and compiled with the GNU C++ compiler using the -O option.

We designed an experiment that uses the same instances presented in [4]. In
this section, we compare the results of the proposed algorithm with those of [6]
(heuristic based on expected value of future relocations) and of [4] (metaheuristic
corridor method). We focus our attention on tests on “realistic” instances, whose
size matches the typical size of a bay found at container terminals. The optimal
solution of these instances is currently unknown. The random generation process
of the instances takes as input two parameters, the number of stacks W and the
number of tiers H , and randomly generates a rectangular bay configuration of
size N = H ×W , where N indicates the total number of blocks in the bay. For
each combination of W and H we generated 40 different instances.1

Table 1. Computational results. Each row shows average values over 40 runs.

Bay Size KH CM Matrix-Algorithm
H W No. Time No. Time No. Time
6 6 37.3 0.1 32.4 7.94 31.8 0.38
6 10 75.1 0.1 49.5 15.72 47.6 0.65
10 6 141.6 0.1 102.0 30.13 82.9 0.93
10 10 178.6 0.1 128.3 65.42 121.3 1.57

In Table 1, we compare the results of the proposed scheme with those obtained
running the codes of [6], KH for short, and the corridor method (CM) of [4] on
the same set of instances. It is worth noting that all values reported in the table
are average values, computed over 40 different instances of the same class. This
helps in offsetting instance specific biases in the reported results.

In Table 1, the first two columns define the instance size, in terms of number
of tiers H and number of stacks W . Columns three and four report the results, in
terms of number of relocations and computational time, required by the heuristic
of [6]. Similarly, columns five and six report results of [4] on the same instances,
both in terms of relocation moves and computational time (in CPU seconds),
while columns seven and eight summarize the results of our proposed algorithm.

The computational results illustrate two issues. First, it is observed that the
running times of Matrix-Algorithm() are considerably shorter compared to
those of the CM, the only other metaheuristic in Table 1. This speed-up is due
to the fast access to information taken from the stacking area which is enabled by
the presented binary encoding. Moreover, by implementing the search procedure

1 The code and all the instances used during the experiment can be obtained from the
authors upon request.

A New Binary Description of the Blocks Relocation Problem 47

6x6 6x10 10x6 10x10

20
40

60
80

10
0

12
0

14
0

Bay Configuration (hxm)

R
el

oc
at

io
n

M
ov

es

Fig. 2. Variability of results over 40 runs for each instance class

given in Matrix-Algorithm(), we are able to improve the solution quality, i.e.,
decrease the number of relocations, with respect to the KH and CM approaches.

In order to further illustrate the robustness of the proposed algorithm, in
Figure 2 we graphically present the variability of the results on the instances.
As shown in Figure 2, the algorithm is quite robust with respect to the initial
configuration of the bay.

6 Conclusion

We have presented a new binary encoding for stacking areas where homogeneous
blocks are stored on stacks. Such a stacking area has been described in the blocks
relocation problem. This new representation allows fast access to information re-
lated to the current status of the stacking area as well as fast transformation into
neighboring solutions. Thus, it is suited as a base for developing metaheuristic
search strategies. We have implemented one approach by developing a randomly
(roulette-wheel) guided look ahead mechanism based upon the idea of the pilot
metaheuristic by taking advantage of simple heuristic rules to compute scores of
intermediate solutions. Our experimental results illustrate that we are able to
outperform current results from literature in terms of computational time and
solution quality.

For future research it seems worthwhile to adapt the presented concepts to
pre-marshalling problems. For instance, it seems straight forward to adapt the
presented binary encoding to the pre-marshalling problem (see, e.g., [9]). Pre-
marshalling is related to blocks relocation with the main difference that no blocks
are retrieved during the relocation process. In other words, relocation and re-
trieval phases are separated in pre-marshalling. Thus, all deadlocks have to be

48 M. Caserta, S. Schwarze, and S. Voß

resolved before the retrieval process starts. We can exploit property number 5
of matrix A and obtain the following definition.

Definition 2 (Pre-marshalling problem in terms of binary encoding).
Given an initial matrix A, find a sequence of feasible relocation activities that
terminates with a matrix A′ that contains only zeros in the upper triangular such
that the number of relocations is minimized.

Moreover, it would be of interest to develop a mathematical programming formu-
lation based on the binary encoding extending ideas from [3] and to investigate
its suitability to solve the blocks relocation and the pre-marshalling problem and
compare the results with those obtained in this paper.

References

1. Avriel, M., Penn, M., Shpirer, N.: Container ship stowage problem: complexity
and connection to the coloring of circle graphs. Discrete Applied Mathematics 103,
271–279 (2000)

2. Avriel, M., Penn, M., Shpirer, N., Witteboon, S.: Stowage planning for container
ships to reduce the number of shifts. Annals of Operations Research 76, 55–71
(1998)

3. Caserta, M., Schwarze, S., Voß, S.: A mathematical formulation for the blocks
relocation problem. Working Paper, Institute of Information Systems, University
of Hamburg (2008)

4. Caserta, M., Voß, S., Sniedovich, M.: An algorithm for the blocks relocation prob-
lem. Working Paper, Institute of Information Systems, University of Hamburg
(2008)

5. Gupta, N., Nau, D.S.: On the complexity of blocks-world planning. Artifical Intel-
ligence 56(2-3), 223–254 (1992)

6. Kim, K.H., Hong, G.P.: A heuristic rule for relocating blocks. Computers & Oper-
ations Research 33, 940–954 (2006)

7. Kim, K.H., Park, Y.M., Ryu, K.R.: Deriving decision rules to locate export con-
tainers in container yards. European Journal of Operational Research 124, 89–101
(2000)

8. Lee, Y., Chao, S.-L.: A neighborhood search heuristic for pre-marshalling export
containers. European Journal of Operational Research 196, 468–475 (2009)

9. Lee, Y., Hsu, N.Y.: An optimization model for the container pre-marshalling prob-
lem. Computers & Operations Research 34, 3295–3313 (2007)

10. Stahlbock, R., Voß, S.: Operations research at container terminals: a literature
update. OR Spectrum 30, 1–52 (2008)

11. Steenken, D., Voß, S., Stahlbock, R.: Container terminal operations and operations
research- a classification and literature review. OR Spectrum 26, 3–49 (2004)

12. Voß, S., Fink, A., Duin, C.: Looking ahead with the pilot method. Annals of Op-
erations Research 136, 285–302 (2005)

13. Yang, J.H., Kim, K.H.: A grouped storage method for minimizing relocations in
block stacking systems. Journal of Intelligent Manufacturing 17, 453–463 (2006)

C. Cotta and P. Cowling (Eds.): EvoCOP 2009, LNCS 5482, pp. 49–60, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Plasmid Based Transgenetic Algorithm for the
Biobjective Minimum Spanning Tree Problem

Sílvia M. D. Monteiro, Elizabeth F. G. Goldbarg, and Marco C. Goldbarg

Department of Informatics and Applied Mathematics, Universidade Federal do Rio Grande do
Norte, Campus Universitário Lagoa Nova, Natal, Brazil

silvinha_treze@yahoo.com.br, {beth,gold}@dimap.ufrn.br

Abstract. This paper addresses the application of a plasmid based transgenetic
algorithm to the biobjective spanning tree problem, an NP-hard problem with
several applications in network design. The proposed evolutionary algorithm is
inspired on two major evolutionary forces: the horizontal gene transfer and the
endosymbiosis. The computational experiments compare the proposed approach
to another transgenetic algorithm and to a GRASP algorithm proposed recently
for the investigated problem. The comparison of the algorithms is done with
basis on the binary additive ε-indicator. The results show that the proposed
algorithm consistently produces better solutions than the other methods.

Keywords: Biobjective minimum spanning tree, plasmid, transgenetic
algorithm.

1 Introduction

A spanning tree of a connected undirected graph G = (N, E) is an acyclic subgraph
of G with n - 1 edges, where n = |N|. If G is a weighted graph, a minimum spanning
tree, MST, of G is spanning tree for which the sum of the weights of its edges is
minimum over all spanning trees of G. The MST is a well known combinatorial
optimization problem with applications in distinct areas such as, networks design
and clustering. Its theoretical importance comes from the fact that it may be utilized
in approximation algorithms for other combinatorial optimization problems such as
the Traveling Salesman [10] and the Steiner Tree [11]. The MST is solvable in
polynomial time and a survey containing several algorithms for this problem is
presented by Bazlamaçci and Hindi [3]. Although the problem is polynomial, con-
straints often render it NP-hard [7]. Examples include the degree-constrained mini-
mum spanning tree problem, the maximum-leaf spanning tree problem, and the
shortest-total-path-length spanning tree problem. Another difficult variant is the
multi-criteria minimum spanning tree problem, mc-MST. Aggarwal et al. [1]
showed that the 0-1 knapsack problem can be reduced by a polynomial function to
the biobjective spanning tree, thus proving that the latter problem is NP-hard. As its
counterpart with one objective the mc-MST arises in many real world applications,
such as in network design where the edge weights can be associated, for instance, to
reliability restrictions and installation costs.

50 S.M.D. Monteiro, E.F.G. Goldbarg, and M.C. Goldbarg

Bio-inspired algorithms have shown to be powerful tools to deal with
multi-objective problems. In this paper an evolutionary algorithm based on a
natural vehicle of horizontal gene transfer is applied to the biobjective minimum
spanning tree.

The inspiration for the proposed heuristics comes from two major evolutionary
forces: the horizontal gene transfer and the endosymbiosis [9]. Horizontal or lateral
gene transfer refers to the acquisition of foreign genes by organisms. It occurs exten-
sively among prokaryotes (living forms whose cells do not have nucleus) and pro-
vides organisms with access to genes in addition to those that can be inherited [12].
The term "endosymbiosis" specifies the relationship between organisms which live
one within another (symbiont within host) in a mutually beneficial relationship. The
Serial Endosymbiotic Theory proposed by Margulis [15] states that a new organism
can emerge from the fusion of two or more independent beings. Today, researchers
recognize the horizontal transfer of functional genes between organisms as a determi-
nant factor of the endosymbiotic origin of specialized cellular parts called organelles
[16]. A known vehicle of horizontal gene transfer that is of special interest for this
paper is the plasmid. Plasmids, in nature, are mobile genetic particles that can repli-
cate independently of the chromosome. They are composed of DNA and can be
thought as mini-chromosomes. By means of genetic engineering, scientists are able to
construct plasmids with artificially created DNA. Artificial DNA is called recombi-
nant DNA. The plasmids formed with recombinant DNA are often referred as recom-
binant plasmids.

In the Transgenetic Algorithms, where a co-evolutionary process is thought to oc-
cur between a host cell and its endosymbionts, three contexts of information are con-
sidered: the endosymbionts, the host and the transgenetic vectors. The endosymbionts,
also called endosymbiont chromosomes or, simply, chromosomes, are the base of the
search since they encode problem solutions. Unlike other evolutionary approaches,
chromosomes do not share genetic material directly by means of crossover or recom-
bination. Information about the problem being tackled by the algorithm (a priori in-
formation) and information about the heuristic search (a posteriori information) are
stored in the host’s context. Agents, called transgenetic vectors, are responsible for
the exchanging of information between the host and the endosymbionts. These agents
are inspired on natural mechanisms of horizontal gene transfer, such as the plasmids.
The transgenetic vectors manipulate the chromosomes, modifying their codes and
promoting the random variation that is necessary for the exploration and exploitation
of the search space.

A computational experiment shows that the proposed algorithm obtains high qual-
ity results for the biobjective spanning tree problem. The results are compared with
recent approaches presented for the investigated problem.

The paper is organized as follows. Section 2 presents the multi-objective minimum
spanning tree problem. Transgenetic algorithms are discussed in section 3. The algo-
rithm proposed for the investigated problem is described in section 4. Section 5 pre-
sents the computational experiments methodology and results. Finally, section 6
points out some conclusions.

 A Plasmid Based Transgenetic Algorithm 51

2 Multi-objective Minimum Spanning Tree Problem

The general multi-objective minimization problem (with no restrictions) can be
stated as:

“minimize” f(x) = (f(x1), …, f(xk)), subjected to x ∈ X (1)

where x is a discrete value solution vector and X is a finite set of feasible solutions.
Function f(x) maps the set of feasible solutions X in ℜk, k > 1 being the number of
objectives. Once, usually, there is not only a single solution for the problem, the word
minimize has to be understood in another context. Let x,y ∈ X, then x dominates y,
written x f y, if and only if ∀i, i=1,...k, f(xi) ≤ f(yi) and ∃i, such that f(xi) < f(yi). The
set of optimal solutions X* ⊆ X is called Pareto optimal. A solution x* ∈ X* if there is
no x ∈ X such that x f x*. The nondominated solutions are said also to be efficient
solutions. Thus, to solve a multi-criteria problem, one is required to find the set of
efficient solutions. Solutions of this set can be divided in two classes: the supported
and nonsupported efficient solutions. The supported efficient solutions can be ob-
tained by solving the minimization problem with a weighted sum of the objectives.
More formally [5],

minimize ()i

ki
i xf

,...,1
∑

=

α (2)

where 1
,...,1

=∑
= ki

iα , αi > 0, i = 1,…,k (3)

The nonsupported efficient solutions are those which are not optimal for any
weighted sum of objectives. This set of solutions is a major challenge for researchers
that deal with the mc-MST.

Given a graph G = (N,E), a vector of non negative weights wij = (1
ijw ,..., k

ijw), k > 1,

is assigned to each edge (i,j) ∈ E. Let S be the set of all possible spanning trees,
T = (NT,ET), of G and W = (W1,..., Wk), where

Wq = ∑
∈ TEji

q
ijw

),(

, q=1,..,k. (4)

The problem seeks S* ⊆ S, such that T*∈ S* if and only if ∃/ T ∈ S, such that
T f T*. In this work the biobjective problem is considered, although the proposed
algorithm can be adapted to consider k > 2 objectives.

Exact algorithms based on the branch-and-bound technique were proposed by
Ramos et al. [18] and Sourd et al. [21] for the biobjective spanning tree. The largest
instances solved by these algorithms are 20 [18] and 150 [21]. A k-best exact algo-
rithm is presented by Steiner and Radzik [22] who apply their method to instances up
to 80 nodes.

Given the problem difficulty and high applicability, a number of works have been
dedicated to this problem [14], [18], [22], [23]. Among the heuristic approaches, evolu-
tionary algorithms were introduced by Gen et al. [8], Zhou and Gen [23], Knowles [13]
and Rocha et al. [19, 20], and a GRASP algorithm was presented by Arroyo et al. [2].

52 S.M.D. Monteiro, E.F.G. Goldbarg, and M.C. Goldbarg

3 Transgenetic Algorithm

Transgenetic algorithms are evolutionary computing techniques based on living
processes where cooperation is the main evolutionary strategy [9]. Those biological
processes contain the movement of genetic material between organisms and endo-
symbiotic interactions. The Transgenetic Algorithms accomplish the search on the
space of solutions of optimization problems by means of a computational context that
is inspired in the information sharing between a host cell and a population of endo-
symbionts. Three contexts of information are considered in Transgenetic Algorithms:

• Solutions that are represented in chromosomes, also called endosymbiont
chromosomes;

• Information about the problem being tackled and information about the evolution-
ary search performed by the algorithm, called host’s information;

• Entities that are used to modify the candidate solutions, called transgenetic vectors.

The individuals of the population of candidate solutions are thought as endosymbi-

onts within a host cell. They constitute the population of endosymbiont chromosomes.
The information about the problem and the evolutionary search is thought as the

host’s genetic information. The information is said to be a priori, if it exists independent
of the search being performed by the algorithm. This type of information is, usually,
inherent to the problem or the instance being tackled, such as upper or lower bounds,
heuristic solutions and results of statistical analysis of the problem structure, among
others. A posteriori information is obtained during the algorithm execution and is re-
lated to the search. For example, new best solutions or partial solutions may arise from
the population of chromosomes. A priori and a posteriori information are stored in a
repository, called host’s repository. They are used by the transgenetic vectors to modify
the solutions in the population. These vectors are inspired in the natural horizontal gene
transfer mechanisms and are named accordingly. Their function is to modify the solu-
tions represented in the endosymbiont chromosomes, generating the variation necessary
to accomplish the search. The transgenetic vectors are the unique tools to perform inten-
sification and diversification tasks in the Transgenetic Algorithms.

The transgenetic vectors implemented in the algorithm presented in this paper are
the plasmids and the recombinant plasmids. They are composed of an information
string and a method to manipulate the chromosomes. The information string of these
vectors is a sequence of genes that represents a partial solution. Plasmids and recom-
binant plasmids differ in the way the information strings are obtained. Plasmids obtain
their information string from one source of the host’s repository. The information
string of recombinant plasmids can be obtained from two or more sources of the
host’s repository, it can also be generated by a heuristic or exact method and, finally,
the information string can be obtained by mixing information obtained in the host’s
repository with information generated with some method. In this paper, the informa-
tion string of the recombinant plasmid is generated with a heuristics.

The other component of the transgenetic vectors is the method they utilize to
manipulate the chromosomes. The method of the plasmids, recombinant or not, is
composed of two procedures: attack (p1) and transcription (p2). Procedure p1 imple-
ments a criterion that establishes whether a given chromosome is susceptible or not to

 A Plasmid Based Transgenetic Algorithm 53

be manipulated by a given vector. Procedure p2 defines how the information string is
inserted into the chromosome. The number of genes in the plasmid’s information
string is said to be the length of the plasmid.

Algorithm TA presents a general framework of the Transgenetic Algorithms. An
initial population of chromosomes is created and evaluated. The host’s repository is
initialized with a priori information and, if some interesting information exists in the
population, then that information is also included in the host’s repository. Steps 3 to 8
are repeated while a stop condition is not met. In step 4 the transgenetic vectors are
generated and in step 5 a set of chromosomes is chosen to be manipulated. If the ac-
tion of the transgenetic vectors on the chromosomes produces new information, then
the host’s repository is updated in step 7.

Algorithm TA
1 Generate and evaluate a population of chromosomes
2 Initialize the host’s repository (HR)
3 Repeat
4 Generate transgenetic vectors
5 Select chromosomes for manipulation
6 Manipulate the selected chromosomes
7 Update HR
8 until a stopping criterion is satisfied

4 Transgenetic Algorithm for the mc-MST

Algorithm Plas-TA presents a pseudo-code of the transgenetic algorithm implemented
for the biobjective spanning tree problem. At first, #popSize chromosomes are gener-
ated. The spanning trees are represented in the chromosomes with the correspondent
set of edges that compose the tree [17]. The algorithm executes a fixed number of
iterations, #numGer. Two methods are used to generate the chromosomes of the
initial population. The first method is a version of the Kruskal’s algorithm for the
biobjective spanning tree with the inclusion of random choices of the edges that com-
pose the tree [19]. This method is called rmc-Kruskal. At each constructive step, one
edge is randomly chosen from a restricted list of candidates (RLC) as in a GRASP
algorithm [6]. The RLC is composed of edges whose costs are, at most, #tolPer per-
cent greater than the minimum cost of the edges out of the tree. In the experiments,
the value adopted for #tolPer was 5%. The costs of the edges are calculated by
equation 2. If two identical trees are generated by this algorithm, only one of them is
maintained in the population. This method is executed #popSize times. If less than
#popSize distinct individuals are generated, then the population is completed with
chromosomes generated with the RandomWalk method [17].

Algorithm Plas-TA
1 generate_initial_population(P={C1,...,C#popSize})
2 create_archive(G_A,P)
3 for i 1 to #numGer
4 create_set_of_plasmids(#plasNum)
5 for j 1 to #popSize
6 t random(1,#plasNum)

54 S.M.D. Monteiro, E.F.G. Goldbarg, and M.C. Goldbarg

7 Cresult plasmid(Cj, t)
8 if (better (Cresult,Cj))
9 Cj Cresult
10 else ctr[j] ctr[j] + 1
11 if (ctr[j] = 2)
12 Cresult recombPlasmid(Cj)
13 ctr[j] 0
14 if (better(Cresult,Cj))
15 Cj Cresult
16 end_if_line_11
17 update(G_A,Cj)
18 end_for_j
19 end_for_i

The algorithm maintains an archive of nondominated solutions, G_A, that is lim-

ited to 300 solutions and is initialized with the nondominated solutions of the initial
population. The objective space of the solutions in G_A is represented by a multidi-
mensional grid structure divided in cells [13]. A new solution is added to this archive
if it is not dominated by any solution in G_A. Solutions in G_A that are dominated by
the new solution are discarded. If the storage limit is violated, then a solution in the
most populous cell of the grid is randomly selected and withdrawn.

The proposed algorithm uses one plasmid and two recombinant plasmids. The G_A
is the source of information for the plasmids. At each iteration step one solution of a
cell with few solutions is randomly chosen to be the source of information for the
plasmids of that iteration. Then, k randomly chosen edges of the tree compose the
information string of the plasmid. The information string of the first recombinant
plasmid is obtained from solutions generated with the rmc-Kruskal. A spanning tree is
created with this method and a fragment of it is randomly chosen to be the informa-
tion string of the first recombinant plasmid. The length of the information string of the
plasmid and the first type of recombinant plasmid is chosen at random in the interval
[0.30n,0.60n] and both transgenetic vectors use the same manipulation method. Given
the edges of the information string, the procedure p2 builds a tree with these edges and
the edges of the original solution that do not induce a cycle. If necessary, random
edges are added to the tree until a spanning tree is formed.

The information string of the second type recombinant plasmid is built with the
mcPrim method [14]. When this transgenetic vector attacks an individual, a random
scalarizing vector is applied to evaluate the total cost of the tree. Only a small fragment
of the original tree, with length in the interval [0.05n,0.1n], is maintained. This fragment
is randomly chosen such that the smaller the cost of an edge, the bigger its probability to
remain in the tree. The Prim´s method, based on the scalarized costs, chooses the edges
to build the remaining of the tree. The edges added to the tree by the mcPrim constitute
the genetic information string of the second type recombinant plasmid.

The same procedure p1 is used to verify if a manipulation is accepted or not for the
three transgenetic vectors of the proposed algorithm. It is implemented in procedure
better(). The input data of this procedure are Cj, j=1,…,#popSize ̧the original chromo-
some and Cresult, the chromosome that results from the manipulation of Cj. Procedure
better (Cresult, Cj) states that Cresult replaces Cj in the population, if Cresult dominates Cj or
if Cresult is nondominated considering all solutions in G_A.

 A Plasmid Based Transgenetic Algorithm 55

At each iteration step, a set of transgenetic vectors is generated in step 4. This set
contains #plasNum/2 plasmids and #plasNum/2 recombinant plasmids of the first
type. One of these transgenetic vectors is randomly selected in step 6 to manipulate all
chromosomes of the current population.

The algorithm maintains a failure counter for each individual of the population, ctr.
The failure counter is initialized with 0. The counter of each individual is incremented
whenever a manipulation by a plasmid or a first type recombinant plasmid does not
result in the replacement of the original chromosome by the manipulate chromosome.
When the counter of a given individual reaches 2, the individual is manipulated by the
second type recombinant plasmid and its counter is set to 0 again.

5 Computational Experiments

A first experiment compared the performance of the proposed algorithm with another
effective transgenetic algorithm presented previously [20]. Two main reasons con-
tributed for choosing this algorithm to be compared with the proposed one. First, both
are transgenetic algorithms and, second, the TA proposed by Rocha et al. [20] pre-
sented better results than the algorithm AESSEA presented by Knowles [14] and the
Memetic Algorithm presented by Rocha et al. [19].

Table 1. Instance parameters

Conc Corr Anticorr
Id

ζ η β β
 50 0.03 0.125 0.7 -0.7

100_1 0.01 0.02 0.3 -0.3
100_2 0.02 0.1 0.7 -0.7
200_1 0.05 0.2 0.3 -0.3
200_2 0.08 0.1 0.7 -0.7
300_1 0.03 0.1 0.3 -0.3

300_2 0.05 0.125 0.7 -0.7

400_1 0.025 0.125 0.3 -0.3

400_2 0.04 0.2 0.7 -0.7
500_1 0.02 0.1 0.3 -0.3
500_2 0.03 0.15 0.7 -0.7
600_1 0.0016 0.1 0.125 -0.125
600_2 0.002 0.02 0.95 -0.95
700_1 0.0014 0.03 0.35 -0.35

700_2 0.001 0.008 0.7 -0.7

800_1 0.00125 0.035 0.45 -0.45

800_2 0.0015 0.03 0.05 -0.05
900_1 0.0011 0.009 0.15 -0.15
900_2 0.002 0.01 0.85 -0.85
1000_1 0.001 0.2 0.4 -0.4

1000_2 0.0005 0.1 0.9 -0.9

56 S.M.D. Monteiro, E.F.G. Goldbarg, and M.C. Goldbarg

Both algorithms were implemented in C++ and were executed in a Pentium 4,
3.2GHz processor with 1Gb RAM, using KUbuntu 7.10 and gcc compiler. A set of 63
instances were generated with the method proposed by Knowles [13] as complete
graphs with 2 objectives. These instances are divided in three groups of 21 instances.
Each group is composed by instances belonging, respectively, to the classes concave
(conc), correlated (corr) and anti-correlated (anticorr). Each class contains one in-
stance with 50 vertices and 10 pairs of instances with n in the interval [100, 1000]. To
create correlated and anti-correlated instances, it’s necessary to specify a correlation
factor β. Two parameters, ζ and η, are used to generate concave instances. Table 1
shows the parameters used to create the set of instances.

For each instance, 30 independent runs were performed for both algorithms. The
parameters of the proposed algorithm, referred as Plas-TA, are: #numGer = 30, #pop-
Size = 150, #popIni = 142 and #plasNum = 10.

The binary additive ε-indicator, Iε+, proposed by Zitzler et al. [24], was used to
compare the performances of the transgenetic algorithms. Given two approximation
sets, A and B, a value Iε+(A,B) < 0 indicates that every solution of B is strictly domi-
nated by at least one solution of A. Values Iε+(A,B) ≤ 0 and Iε+(B,A) > 0 indicate that
every solution of B is weakly dominated by at least one solution of A. Values
Iε+(A,B) > 0 and Iε+(B,A) > 0 indicate that neither A weakly dominates B nor B weakly
dominates A. The Mann-Withney (U-test) statistical test is used to verify the statistical
significance of the results [4]. The p-values that resulted from the U-test are shown in
table 2 for each instance of each class. The transgenetic algorithm of Rocha et al. [20]
is referred as TA in table 2.

Table 2. p-values resultant from the comparison of Plas-TA with TA

Conc Corr Anticorr Id
Plas-TA TA Plas-TA TA Plas-TA TA

50 0 1 0 1 0 1
100_1 0 1 0 1 0 1
100_2 0 1 0 1 0 1
200_1 0 1 0 1 0 1
200_2 0 1 0 1 0 1
300_1 0 1 0 1 0 1
300_2 0 1 0 1 0 1
400_1 0 1 0 1 0.26 0.74
400_2 0 1 0 1 0.03 0.97
500_1 0 1 0 1 0 1
500_2 0 1 0 1 0 1
600_1 0 1 0 1 0 1
600_2 0.01 0.99 0 1 0 1
700_1 0.61 0.39 0 1 0 1
700_2 0 1 0 1 0 1
800_1 0.18 0.82 0 1 0 1
800_2 0.86 0.14 0 1 0 1
900_1 0 1 0 1 0 1
900_2 0 1 0 1 0 1

1000_1 0.24 0.76 0 1 0 1
1000_2 0.25 0.75 0 1 0 1

 A Plasmid Based Transgenetic Algorithm 57

Considering 0.05 as the significance level of the statistical test, table 2 shows that
Plas-TA outperforms TA in 16 concave instances, 21 correlated instances and 20
anti-correlated instances. The proposed algorithm is not outperformed by TA in any
instance.

Table 3 exhibits the execution times, in seconds, obtained by both algorithms.
According to the data presented, Plas-TA exhibits significantly better processing
times than TA.

Table 3. Execution times

Conc Corr Anticorr Id
Plas-TA TA Plas-TA TA Plas-TA TA

50 0 4 0 3 0 12
100_1 1 6 1 7 2 22
100_2 1 7 1 6 2 28
200_1 5 19 6 25 6 60
200_2 5 15 6 23 6 76
300_1 13 39 13 48 14 93
300_2 13 34 13 47 14 125
400_1 25 64 25 74 26 134
400_2 25 67 24 75 25 169
500_1 40 98 41 109 41 178
500_2 40 94 40 98 41 213
600_1 59 137 59 138 59 190
600_2 59 134 54 133 58 251
700_1 84 185 84 184 84 291
700_2 84 181 81 180 82 297
800_1 109 236 108 235 107 354
800_2 110 235 110 230 110 264
900_1 141 293 140 298 140 362
900_2 140 289 133 290 135 399

1000_1 150 337 175 356 172 470
1000_2 172 354 165 342 169 456

A second computational experiment compared the performance of the proposed

transgenetic algorithm with a GRASP algorithm, GRA, recently proposed in the lit-
erature [2]. The set of instances of this experiment was kindly provided by the
GRASP’s authors, as well as, the approximation sets obtained by their algorithm. The
set contains 3 groups of 5 instances, with 20, 30 and 50 vertices. The edge costs of
each group of instances are uniformly distributed in the intervals [30, 200], [20,100]
and [10,50], respectively. The binary additive ε-indicator was used in this test. The
results are organized in table 4, where Plas-TA/GRA corresponds to Iε+(Plas-
TA,GRA) and GRA/Plas-TA is equivalent to Iε+(GRA,Plas-TA). According to this
table, the solutions in the approximation sets obtained with the GRASP algorithm is
strictly dominated by at least one solution of Plas-TA for all instances. Therefore,
regarding this indicator, the solutions obtained by Plas-TA are better results than the
ones obtained by the GRASP algorithm. These results are illustrated by the objective
space of the approximation sets generated by both algorithms for four instances that
are presented in figures 1 and 2.

58 S.M.D. Monteiro, E.F.G. Goldbarg, and M.C. Goldbarg

Table 4. Values obtained for the binary additive ε

20 vertices 30 vertices 50 vertices
Id Plas-TA

/GRA
GRA/

Plas-TA
Plas-TA
/GRA

GRA/
Plas-TA

Plas-TA
/GRA

GRA/
Plas-TA

1 -149 324 -99 379 -63 591
2 -133 364 -113 380 -118 632
3 -138 373 -99 369 -56 589
4 -117 386 -150 369 -88 604
5 -82 289 -140 395 -47 567

 (a) (b)

Fig. 1. Objective space of the approximation sets obtained by Plas-TA and GRA for instances
(a) 50.1 and (b) 50.2 with n=50

 (a) (b)

Fig. 2. Objective space of the approximation sets obtained by Plas-TA and GRA for (a)
instance 20.1 with n=20 and (b) instance 30.1 with n=30

6 Conclusions

This work presented a plasmid-based Transgenetic Algorithm for the biobjective
spanning tree problem. The approximation sets generated with the proposed algorithm

 A Plasmid Based Transgenetic Algorithm 59

are compared to the approximation sets generated by an efficient transgenetic algo-
rithm proposed by Rocha et al. [20] and to a GRASP algorithm proposed by Arroyo et
al. [2]. The comparisons are based on the binary additive epsilon quality indicator.
Statistical tests show that the proposed algorithm is highly effective when compared
with the other algorithms, outperforming both of them regarding the quality of the
generated approximation sets. The proposed algorithm also presents better execution
times than the TA.

Acknowledgments. We want to thank Arroyo, Vieira and Viana, who kindly pro-
vided us the instance set they used to test their GRASP algorithm and the approxima-
tion sets obtained. We are also thankful to ANP, Brazilian National Oil Agency,
PRH-22 project, who partially supported this research.

References

1. Aggarwal, V., Aneja, Y., Nair, K.: Minimal spanning tree subject to a side constraint.
Computers & Operations Research 9, 287–296 (1982)

2. Arroyo, J.E.C., Vieira, P.S., Vianna, D.S.: A GRASP Algorithm for the Multi-criteria
Minimum Spanning Tree Problem. Annals of Operations Research 159, 125–133 (2008)

3. Bazlamaçci, C.F., Hindi, K.S.: Minimum-weight Spanning Tree Algorithms A Survey and
Empirical Study. Computers and Operations Research 28, 767–785 (2001)

4. Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. John Wiley & Sons, Chichester
(2001)

5. Ehrgott, M., Gandibleux, X.: A Survey and Annotated Bibliography of Multiobjective
Combinatorial Optimization. OR Spektrum 22, 425–460 (2000)

6. Feo, T.A., Resende, M.G.C.: Greedy Randomized Adaptive Search Procedures. Journal of
Global Optimization 6, 109–133 (1995)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
completeness. Freeman, New York (1979)

8. Gen, M., Ida, K., Kim, J.R.: A Spanning Tree-Based Genetic Algorithm for Bicriteria
Topological Network Design. In: Proceedings of 1998 IEEE International Conference on
Evolutionary Computing, pp. 15–20 (1998)

9. Goldbarg, M.C., Bagi, L.B., Goldbarg, E.F.G.: Transgenetic algorithm for the traveling
purchaser problem. European Journal of Operational Research (2008) (accepted)

10. Gutin, G., Punnen, A.P.: Traveling Salesman Problem and Its Variations. Kluwer Aca-
demic Publishers, Dordrecht (2002)

11. Hakami, S.L.: Steiner’s Problem in Graphs and Its Implications. Networks 1, 113–133
(1971)

12. Jain, R., Rivera, M.C., Moore, J.E., Lake, J.A.: Horizontal Gene Transfer Accelerates Ge-
nome Innovation and Evolution. Molecular Biology and Evolution 20(10), 1598–1602
(2003)

13. Knowles, J.D.: Local-Search and Hybrid Evolutionary Algorithms for Pareto Optimiza-
tion. Ph.D Thesis. Department of Computer Science, University of Reading, Reading, UK
(2002)

14. Knowles, J.D., Corne, D.W.: A Comparison of Encodings and Algorithms for Multiobjec-
tive Spanning Tree Problems. In: Proceedings of the 2001 Congress on Evolutionary
Computation (CEC 2001), pp. 544–551 (2001)

60 S.M.D. Monteiro, E.F.G. Goldbarg, and M.C. Goldbarg

15. Margulis, L.: Symbiosis in Cell Evolution: Microbial Communities in the Archean and
Proterozoic Eons. W.H. Freeman, New York (2002)

16. Pierce, S.K., Massey, S.E., Hanten, J.J., Curtis, N.E.: Horizontal Transfer of Functional
Nuclear Genes Between Multicellular Organisms. The Biological Bulletin 204, 237–240
(2003)

17. Raidl, G.R.: An Efficient Evolutionary Algorithm for the Degree-constrained Minimum
Spanning Tree Problem. In: Proceedings of the 2000 Congress on Evolutionary Computa-
tion (CEC 2000), pp. 104–111. IEEE Press, Los Alamitos (2000)

18. Ramos, R.M., Alonso, S., Sicília, J., González, C.: The Problem of the Optimal Biobjec-
tive Spanning Tree. European Journal of Operational Research 111, 617–628 (1998)

19. Rocha, D.A.M., Goldbarg, E.F.G., Goldbarg, M.C.: A Memetic Algorithm for the Biobjec-
tive Minimum Spanning Tree Problem. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2006.
LNCS, vol. 3906, pp. 183–194. Springer, Heidelberg (2006)

20. Rocha, D.A.M., Goldbarg, E.F.G., Goldbarg, M.C.: A New Evolutionary Algorithm for
the Biobjective Minimum Spanning Tree. In: ISDA 2007 Seventh International Confer-
ence on Intelligent Systems Design and Applications, 2007. Proceedings of ISDA 2007,
Rio de Janeiro, vol. 1, pp. 735–740. IEEE Computer Society, Danvers (2007)

21. Sourd, F., Spanjaard, O., Perny, P.: Multiobjective Branch and Bound. Application to the
Biobjective Spanning Tree Problem. In: Proceedings of the 7th International Conference
on Multi-Objective Programming and Goal Programming (2006)

22. Steiner, S., Radzik, T.: Solving the Biobjective Minimum Spanning Tree Problem using a
k-best Algorithm. Technical Report TR-03-06, Department of Computer Science, King’s
College, London (2003)

23. Zhou, G., Gen, M.: Genetic Algorithm Approach on Multi-Criteria Minimum Spanning
Tree Problem. European Journal of Operational Research 114, 141–152 (1999)

24. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Fonseca, V.G.: Performance As-
sessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on
Evolutionary Computation 7(2), 117–132 (2003)

A Tabu Search Algorithm with Direct
Representation for Strip Packing

Jean-Philippe Hamiez�, Julien Robet, and Jin-Kao Hao

LERIA, Université d’Angers, 2 Bd. Lavoisier, 49045 Angers, France
{hamiez,robet,hao}@info.univ-angers.fr

Abstract. This paper introduces a new tabu search algorithm for a two-
dimensional (2D) Strip Packing Problem (2D-SPP). It integrates several
key features: A direct representation of the problem, a satisfaction-based
solving scheme, two different complementary neighborhoods, a diversi-
fication mechanism and a particular tabu structure. The representation
allows inexpensive basic operations. The solving scheme considers the
2D-SPP as a succession of satisfaction problems. The goal of the combi-
nation of two neighborhoods is (to try) to reduce the height of the packing
while avoiding solutions with (hard to fill) tall and thin wasted spaces.
Diversification relies on a set of historically “interesting” packings. The
tabu structure avoids visiting similar packings. To assess the proposed
approach, experimental results are shown on a set of well-known bench-
mark instances and compared with previously reported tabu search al-
gorithms as well as the best performing algorithms.

Keywords: Tabu search, strip packing, direct representation, multi-
neighborhoods.

1 Introduction

Packing (and cutting) problems are optimization problems which are NP-hard
in the general case. “Small” objects of various shapes (regular or not) and di-
mensions have to be packed without overlap, with rotation and “guillotine” cuts1

allowed or not, into other larger objects. These larger objects are usually called
“containers” for the 3D cases (all dimensions fixed or infinite height) and “bins”
(all dimensions fixed) or “strips” (only width fixed, infinite height) in 2D. Ob-
jectives are, for instance, to minimize the number of containers and / or to
maximize the material used (hence to minimize the wasted area). The most
studied category of such problems seems to be in the 2D space.

This paper is dedicated to the 2D (non-guillotine and without rotation) Strip
Packing Problem (2D-SPP) which can be informally stated as follows. Given a set
of rectangular objects, pack them into a strip of an infinite height and fixed width
while minimizing the height of the packing. 2D-SPP is a NP-hard combinatorial

� Contact author.
1 The guillotine constraint imposes a sequence of edge-to-edge cuts.

C. Cotta and P. Cowling (Eds.): EvoCOP 2009, LNCS 5482, pp. 61–72, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

62 J.-P. Hamiez, J. Robet, and J.-K. Hao

optimization problem with a number of practical applications such as cardboard
packing, glass and metal cutting or publicity scheduling for instance [1,2,3,4,5].

Given the NP-hard nature of 2D-SPP, many (meta)heuristic procedures have
been tried: Greedy Randomized Adaptive Search Procedure (GRASP) [6], Intensifi-
cation / Diversification Walk (IDW) [7], Simulated Annealing [8,9,10,11], Tabu
Search (TS) [8,12,13], Genetic Algorithm [9,10,11,13,14,15,16,17,18,19], hybrid
(meta)heuristic [11,13,20], HyperHeuristic [21]. Exact algorithms have also been
considered but they are usually limited to “small instances” (up to 200 ob-
jects) [22,23,24,25]. Among these procedures, the approximate GRASP and IDW
approaches [6,7] are probably the best performing ones.

In this paper, we introduce a new TS algorithm dedicated to the 2D-SPP
(TSD for “Tabu Search with Direct representation”). Compared with previous al-
gorithms for the 2D-SPP, our TSD has several notable features. First, it uses a
direct representation of the problem (location of the objects on the strip) while
many previous attempts manipulate permutations of the objects. Second, TSD
treats the optimization problem (minimizing the height of the packing) as succes-
sive satisfaction problems: Starting from a packing s0 (obtained with a greedy
method e.g.) of height H (s0), TSD tries to solve the 2D-SPP with decreasing
values of H (s0). Finally, our algorithm includes two different complementary
neighborhoods, a diversification mechanism and handles a particular tabu struc-
ture. Preliminary computational results suggest that TSD may be of great interest
to efficiently solve the 2D-SPP.

In the next section, the 2D-SPP is formally stated. Section 3 is devoted to
the detailed presentation of our dedicated TS algorithm for the 2D-SPP. Ex-
perimental results are shown in Sect. 4 on a set of well-known benchmarks and
compared with previous TS attempts and the best performing state-of-the-art
algorithms. We finally discuss possible extensions in Sect. 5 before concluding.

2 Problem Formulation

Let P (for “P lane”) be a 2D vertical space with fixed width W and infinite height.
The bottom-left corner of P stands for the (0, 0) point of an xy-plane where the
x-axis (respectively y-axis) is the direction of the width (resp. height) of P . The set
of n > 1 objects (Rectangles) to be positioned in P is R = {r1, . . . , rn} where the
weight (resp. height) of each ri (1 ≤ i ≤ n) is 0 < wr

i ≤W (resp. hr
i > 0).

According to these notations, the 2D-SPP is then to determine the (xr
i , y

r
i)

coordinates of the bottom-left corner of all ri ∈ R (i.e. the location of each ri in
P) so as to minimize the yr

i + hr
i value of the highest object in P , see (1). This

can be formally stated as follows:

Minimize: H = max
1≤i≤n

(yr
i + hr

i) (1)

subject to: 0 ≤ xr
i ≤W − wr

i ∧ yr
i ≥ 0 (2)

∧ (

xr
i ≥ xr

j + wr
j ∨ xr

i + wr
i ≤ xr

j (3)

∨ yr
i ≥ yr

j + hr
j ∨ yr

i + hr
i ≤ yr

j

)

. (4)

A Tabu Search Algorithm with Direct Representation for Strip Packing 63

where (2) forces each ri to be inside P and (3–4) specify that any two ri and rj

objects (i �= j) must not overlap horizontally and vertically, respectively.

3 TSD: A Tabu Search with Direct Representation

TS is an advanced local search method using general mechanisms and rules as
guidelines for smart search [26]. In Sect. 3.1–3.6, we first describe the components
of our TSD algorithm for the 2D-SPP where all p variables (with subscripts) are
parameters whose values will be given in the experimentation part (Sect. 4.1).
The general procedure is finally summarized in Sect. 3.7.

3.1 Search Space: A Direct Representation

Many approaches for the 2D-SPP consider a search Space S composed of the
set of all permutations of the objects, see [13,14] for instance. More precisely,
for a given n-set of objects to be packed, a permutation of [1 . . . n] is used to
introduce an order for all the objects which is followed by a given placement
heuristic (or “decoder”). In other words, given a particular permutation π and
placement heuristic φ, one can pack all the objects using φ and according to the
order indicated by π. Based on this permutation representation, several greedy
placement heuristics have been investigated for the 2D-SPP. BLF (Bottom Left
Fill) is such a heuristic [27]. Basically, BLF places each object at the left-most
and lowest possible free area. It is capable of filling enclosed wasted areas. Notice
that, according to the way BLF is implemented, its worst time complexity goes
from O

(

n3
)

[28] to O
(

n2
)

[29] for a permutation of n objects.
TSD does not code packings with permutations but adopts a direct represen-

tation where a “solution” s ∈ S (optimal or not) is a {L, E} set:

– L, for “Location” (of the rectangular objects to be positioned in P), is an
n-vector. It indicates the coordinates (xr

i , y
r
i) of the bottom-left corner of

each rectangle ri ∈ R in P .
– E is a set of rectangular “Empty” spaces in P . Each ei ∈ E is characterized

by the coordinates (xe
i , y

e
i) of its bottom-left corner, a width 0 < we

i ≤ W
and a height 0 < he

i ≤ H(s) with 0 ≤ xe
i ≤W −we

i and 0 ≤ ye
i ≤ H (s)−he

i .
Each ei ∈ E is a maximal rectangle, i.e. ∀ (ei, ej) ∈ E × E/i �= j, xe

i <
xe

j ∨ xe
i + we

i > xe
j + we

j ∨ ye
i < ye

j ∨ ye
i + he

i > ye
j + he

j (ei is not included
into ej). Note that the notion of “maximal rectangular empty space” seems
to have been independently introduced in [30] (where it is called “maximal
area”) and [8] (“maximal hole”). In particular, it was proved in [30] that |E|
is at most in O

(

n2
)

.

3.2 Initial Solution

In local search algorithms, the initial solution s0 specifies where the search begins
in S. TSD uses the BLF procedure [27] to construct s0, where the π permutation

64 J.-P. Hamiez, J. Robet, and J.-K. Hao

orders the ri ∈ R first by decreasing width, and, second, by decreasing height
if necessary (randomly last). We employed this decoder / order since previous
experiments suggested that the BLF placement algorithm usually outperforms
other φ decoders, see [28,31] for instance.

3.3 Fitness Function

To evaluate a solution s ∈ S, TSD uses the following f itness (or “evaluation”)
function f to be minimized:

f(s) =
{

0 if 	R
 = ∅
∑

ri∈�R� wr
i ∗ (yr

i + hr
i −H∗ + pH) otherwise .

(5)

where 	R
 ⊆ R is the set of rectangles ri/yr
i + hr

i > H∗ − pH (integer 0 < pH <
H∗, for decrement of the Height) and H∗ is the best height found, initially the
height H (s0) of the starting solution s0 introduced in the previous section.

Roughly speaking, the value f (s) is the area of rectangles exceeding H∗−pH in
P with f (s) = 0 meaning H (s) < H∗, see Fig. 1 for an example. In other words,
f measures the quality of s with respect to the current satisfaction problem
considered, defined by H∗ and pH : Is there a solution s ∈ S/H (s) ≤ H∗ − pH?
f is used to compare any (s, s′) ∈ S × S: s is better than s′ if f (s) < f (s′).
TSD maintains a set S∗ of best solutions according to (5) with |S∗| ≤ p∗ and
S∗ = {s0} at the beginning of the search. S∗ is used for the diversification process
described in Sect. 3.6.

1
H* − pH

H*

1

s’ ss’’

2

2 12

3

3 3

Fig. 1. Let r1 be the unit square. f(s′′) = W since �R� = {r3} for s′′. Similarly,
f(s′) = 1 and f(s) = 0.

3.4 Neighborhoods and Their Exploitation

A Neighborhood N : S → S is an application used to explore S (and to guide the
search process) such as ∀s ∈ S, s′ ∈ N (s) if s and s′ only differ by a particular
operation called a “move” (noted μ). TSD integrates two different complementary
neighborhoods called N1 (performed with probability pN) and N2 (probability
1− pN), both of them are based on the principle of ejection chains. The goal of
this combination is to reduce the height of the packing while avoiding solutions
with (hard to fill) tall and thin wasted spaces.

Each time a move is performed from s to s′ (at iteration m), S∗ and H∗ are
updated if necessary, and only whenever s′ /∈ S∗, with the following rules where
	s∗
 (resp. �s∗�) is the worst (resp. a best, found at iteration m∗) element in S∗

according to (5) (consider the 	s∗
 introduced the most recently):

A Tabu Search Algorithm with Direct Representation for Strip Packing 65

– f (s′) < f (�s∗�)⇒ δ ← m −m∗, pD ← m + pI ∗ δ, m∗ ← m. δ (number of
moves required to improve �s∗�), pI (for “Increment”) and pD are used for
the Diversification process detailed in Sect. 3.6

– f (s′) = 0⇒ H∗ ← H (s′)
– |S∗| < p∗ ⇒ S∗ ← S∗ ∪ {s′}
– |S∗| = p∗ ∧ f (s′) < f (s∗
)⇒ S∗ ← S∗ \ 	s∗
 ∪ {s′}

N1 and N2 are based on the ejection chain principle and share a common char-
acteristic: They move (at least) one rectangle ri to another location. This new lo-
cation for ri may generate overlaps with a set Rri ⊂ R of other rectangles: Rri =
{

rj ∈ R/j �= i ∧ xr
i <xr

j + wr
j ∧ xr

i + wr
i > xr

j ∧ yr
i < yr

j + hr
j ∧ yr

i + hr
i > yr

j

}

. To
repair the overlaps between ri and all rj ∈ Rri (i.e. to insure s′ ∈ S), all
rj ∈ Rri are removed from P , sorted like in Sect. 3.2 and, then, relocated
with BLF.

Finally, notice that changing the location of ri and the deletion or reposition-
ing of all rj ∈ Rri (possibly) imply updates of E. This is done using the efficient
“incremental” procedures introduced in [8,20].

N1: Reduce the Height of the Packing. This is done by moving a ri ∈
	R
 below its current location (xr

i , y
r
i), at the bottom-left corner either of an

empty space ej ∈ E (defining a sub-neighborhood NE
1) or of another rj ∈ R

(defining NR
1).

Start with NE
1 . From the current s, all ri ∈ 	R
 (considered from the highest

and left-most to the lowest and right-most) are first tried to be relocated to the
(

xe
j , y

e
j

)

coordinates of all ej ∈ E/ye
j < yr

i ∧xe
j + wr

i ≤W . This generates | 	R
 |
sets NE

1 (s, i) of neighbors: NE
1 (s) = ∪ri∈�R�NE

1 (s, i). Let �NE
1 (s)� ⊆ NE

1 (s)
be the set of the best evaluated neighbors of s according to NE

1 and (5).
If f (s′) = 0 ∀s′ ∈ �NE

1 (s)�, select randomly one s′ ∈ �NE
1 (s)� minimizing (1)

to become the new “current” solution for the next iteration (s← s′). Otherwise,
if f (s′) < f (s)∀s′ ∈ �NE

1 (s)� make s ← s′ (select s′ randomly if �NE
1 (s)�

contains more than one such element).

Possibly Apply NR
1 . If NE

1 cannot improve s according to (5), i.e. if f (s′) ≥
f (s)∀s′ ∈ �NE

1 (s)�, try to do so with NR
1 . In this case, NR

1 (s) is explored in a
random order and the first improving move (if available) is performed.

From the current s, a random ri ∈ 	R
 is first selected. Then, all rj ∈ R/j �=
i ∧ yr

j < yr
i ∧ xr

j + wr
i ≤ W are considered in a random order. If transferring ri

at
(

xr
j , y

r
j

)

leads to an improved solution s′, the exploration of NR
1 (s) halts and

the search continues from s′ (s← s′). Otherwise, another such rj is selected. If
all rj have been tried, the exploration of NR

1 (s) continues with another ri.

In the Worst Case, Make a Best Non-Improving Move. Let �N1 (s)� be the set
of the best evaluated neighbors of s according to NE

1 , NR
1 and (5). If N1 cannot

improve s, i.e. f (s′) ≥ f (s)∀s′ ∈ �N1 (s)�, a random non-improving neighbor
s′ ∈ �N1 (s)� is selected for the next iteration: s← s′.

66 J.-P. Hamiez, J. Robet, and J.-K. Hao

N2: Avoid Solutions with Tall and Thin Wasted Spaces. This second
neighborhood relies on the following empirical observation: Some empty spaces
(usually tall and thin) have a low area / perimeter ratio. Intuitively, since they
are often located on the borders of the strip, they cannot be used with NE

1 .
Indeed, preliminary computational experiments, using only N1, has shown that
some of them (those with a maximum perimeter) were persistent and hard to fill.
N2 has thus been designed to (try to) avoid these situations, i.e. to concentrate
on these particular empty spaces to limit their number.

Let 	E
 ⊆ E be the set of empty spaces with maximum perimeter: 	E
 =
{

ej′ ∈ E/we
j′ + he

j′ ≥ we
j′′ + he

j′′∀ej′′ ∈ E
}

. Choose the empty space ej ∈ 	E

located the highest and the left-most in P , i.e. ye

j ≥ ye
j′ ∧ xe

j ≤ xe
j′∀ej′ ∈

	E
. ej is said to be “not adjacent” to rk ∈ R (shortly noted “ej ∩ rk =
∅”) if xr

k > xe
j + we

j ∨ xr
k + wr

k < xe
j ∨ yr

k > ye
j + he

j ∨ yr
k + hr

k < ye
j ∨

((

xr
k = xe

j + we
j ∨ xr

k + wr
k = xe

j

) ∧ (

yr
k + hr

k = ye
j ∨ yr

k = ye
j + he

j

))

. Let
⌈

Rej

⌉ ⊂
R be the set of rectangles with a greater area than that of ej and that are not
adjacent to ej :

⌈

Rej

⌉

=
{

rk ∈ R/wr
k ∗ hr

k > we
j ∗ he

j ∧ ej ∩ rk = ∅}.
From the current s, all ri ∈

⌈

Rej

⌉

(considered from the highest and left-
most to the lowest and right-most) are first tried to be relocated to the four
corner of ej . To be more precise, the bottom-left corner of each ri ∈

⌈

Rej

⌉

is
positioned at (xe

j , y
e
j) if xe

j + wr
i ≤ W , (xe

j + we
j − wr

i , ye
j) if xe

j + we
j − wr

i ≥ 0,
(xe

j , y
e
j +he

j−hr
i) if ye

j +he
j−hr

i ≥ 0∧xe
j +wr

i ≤W and (xe
j +we

j−wr
i , y

e
j +he

j−hr
i)

if ye
j + he

j − hr
i ≥ 0 ∧ xe

j + we
j − wr

i ≥ 0. This generates | ⌈Rej

⌉ | sets N2 (s, i)
of neighbors with 1 ≤ |N2 (s, i) | ≤ 4: N2 (s) is the union of these sets. Let
�N2 (s)� be the set of the best evaluated neighbors of s according to N2 and
(5): �N2 (s)� = {s′ ∈ N2 (s) /∀s′′ ∈ N2 (s) , f (s′) ≤ f (s′′)}. Similarly to N1, if
f (s′) = 0 ∀s′ ∈ �N2 (s)�, select randomly one s′ ∈ �N2 (s)� minimizing (1).
Otherwise, choose s′ ∈ �N2 (s)� at random for the next iteration.

3.5 Tabu List

One fundamental component of TS is a special short-term memory that main-
tains a selective history of the search. It is composed of previously encountered
solutions or, more generally, pertinent attributes of such solutions. The aims
of a T abu List (shortly “TL”) are to avoid cycling and to go beyond local
optima.

At current iteration m, since a TSD move μm from s to a neighbor s′ ∈ N (s)
consists in relocating (at least) one ri ∈ R from (xr

i , y
r
i) to another location

(x′r
i , y

′r
i), i.e. x′r

i �= xr
i ∨ y′r

i �= yr
i , it seems quite natural to forbid ri to return

to (xr
i , y

r
i) from s′. This “reverse” move (noted μ−1

m), that can be characterized
by μ−1

m = (i, xr
i , y

r
i), will then be stored in TL (shortly TL← TL ∪ {

μ−1
m

}

) for
a duration TT (called the “T abu T enure”) to indicate that μ−1

m is forbidden,
at least up to iteration m + TT . In TSD, TT is a random integer number from
[pminTT , . . . , pmax TT].

This strategy has one main drawback. Assume that μm has been performed
and that the next move μm+1 relocates a rj ∈ R to (xr

i , y
r
i) such that j �= i

and μm+1 is not tabu (μm+1 /∈ TL). If rj and ri are of the same dimensions,

A Tabu Search Algorithm with Direct Representation for Strip Packing 67

i.e. wr
i = wr

j ∧ hr
i = hr

j , μm+1 may return the search to s (already visited) or to
solutions (already visited or not) too close to s.

To avoid these situations, TSD does not record (i, xr
i , y

r
i) but (wr

i , h
r
i , x

r
i , y

r
i).

Note that the following simple “aspiration criterion” (that removes a tabu status)
is available in TSD: A tabu move is always accepted if it leads to a solution s′ that
is better than the best solution �s∗� ever found (f (s′) < f (�s∗�)). Furthermore,
if all potential moves are tabu, we select the first one with the lowest tabu
duration that would be performed if all tabu status were (temporarily) removed.

3.6 Diversification

The TSD algorithm maintains a set S∗ of high quality solutions obtained from
the beginning of the search (see Sect. 3.3 and 3.4). These elite solutions are used
as candidates for diversification.

When the current search cannot be improved for a number of iterations, TSD
picks one solution s∗ ∈ S∗ at random. This solution is then slightly perturbed
by moving a random ri ∈ R to (x, H∗ − pH − hr

i), where x is chosen randomly
from [0 . . .W − wr

i]. Rectangles overlapping with ri are relocated like in Sect.
3.4. This perturbed solution becomes finally the new current solution (s ← s∗)
with the tabu list reset to empty (except the move used for perturbation).

3.7 TSD: An Overview

The TSD algorithm begins with an initial solution (Sect. 3.2). Then it proceeds
iteratively to visit a series of (locally best) solutions following the neighborhoods
(Sect. 3.4). At each iteration, the current solution s is replaced by a neighboring
solution s′ even if s′ does not improve s.

While it is not mentioned here for simplicity, note that TSD can also end (see
Step 2 below) before reaching the maximum time Limit pL. This may occur each
time S∗ is updated whenever the optimum height HOPT (or an upper bound) is
known and H (�s∗�) ≤ HOPT .

1. Initialization. m← 0 (current number of iterations), build s using BLF.
H∗ ← H (s), S∗ ← {s}, m∗ ← 0, TL← ∅.

2. Stop condition. If elapsed time has reached pL Then: Return H∗ and �s∗�.
3. Diversification. If m > pD Then:

– Choose at random s ∈ S∗, ri ∈ R and x ∈ [0 . . .W − wr
i].

– Update s by relocating ri to (x, H∗ − pH − hr
i), defining a move μ.

– TL← {

μ−1
}

, m∗ ← m, pD ← m + pI ∗ δ. Possibly update S∗ or H∗.
4. Exploration of the neighborhood. Let N be N1 or N2 according to pN .

Update s according to N (s), defining a move μ. m← m + 1.
TL← TL ∪ {

μ−1
}

. Possibly update S∗, H∗ or pD. Go to step 2.

4 Experimentations

We used a set of 21 well-known benchmark instances [28] available from http://
mo.math.nat.tu-bs.de/packlib/xml/ht-eimhh-01-xml.shtml to compare

http://
mo.math.nat.tu-bs.de/packlib/xml/ht-eimhh-01-xml.shtml

68 J.-P. Hamiez, J. Robet, and J.-K. Hao

Table 1. Main characteristics of the test problems from [28]

Category Instances W n HOP T

C1 C1P1, C1P2, C1P3 20 16, 17, 16 20
C2 C2P1, C2P2, C2P3 40 25 15
C3 C3P1, C3P2, C3P3 60 28, 29, 28 30
C4 C4P1, C4P2, C4P3 60 49 60
C5 C5P1, C5P2, C5P3 60 73 90
C6 C6P1, C6P2, C6P3 80 97 120
C7 C7P1, C7P2, C7P3 160 196, 197, 196 240

TSD with previously reported TS algorithms as well as the best performing ap-
proaches. The main characteristics of these instances are given in Tab. 1. Note
that these benchmarks have a known optimal height HOPT .

4.1 Experimentation Conditions

The comparison is based on the percentage gap γ of a solution s from the opti-
mum or its best bound (HOPT): γ (s) = 100 ∗ (H (s)−HOPT) /H (s). Similarly
to the best-known approaches considered in Tab. 2, mean gap γ (resp. best gap
γ∗) is averaged over a number of 10 runs (resp. over best runs only), each run
being Limited to pL seconds.

The TSD parameters are: pH = 1 (to define the current satisfaction problem
to solve), p∗ = 30 (maximum size of S∗), pN = 0.65 (probability to explore
neighborhood N1), pminTT = 5 and pmaxTT = 15 (minimum and maximum
T abu T enure), pD = 10 and pI = 3 (for diversification), pL ∈ [60 . . . 2 700]
(time Limit, in seconds). TSD is coded in C++ and all computational results were
obtained running TSD on a 2 Ghz Dual Core PC.

4.2 Computational Results

TSD is compared in Tab. 2 with the previously reported TS algorithms denoted
as “TS1” [13] and “TS2” [12] and the best performing approaches: GRASP [6] and
IDW [7]. Note that TS was also tried in [8], achieving “good performance”, but no
numerical results were reported. While the stopping criterion per run for GRASP,
IDW and TS1 is also a time Limit pL (60, 100 and 360 seconds resp.), TS2 used
a maximum number of iterations (1 500).

In Table 2, “-” marks mean unknown information, “Mean Ci” are averaged
values on category Ci, the last three lines reporting averaged values for the
largest (and hardest) instances and all the 21 instances, and (minimum) number
of instances optimally solved. No γ or γ∗ is mentioned for IDW, TS2 and TS1 since
this information is not given in [7,12,13].

According to Tab. 2, TS1 is the worst performing (TS) approach for the bench-
mark tried. Indeed, γ∗ = 0 only for C2P1 and C2P3 while other methods always
solved at least 6 instances.

On the “smallest” (easiest) instances C1–C3, TS2 is the best method since it
always solved all the 9 instances. However, TSD (and GRASP) compares well with
TS2 since only one instance was not solved optimally (H∗ = 31 for C3P2).

A Tabu Search Algorithm with Direct Representation for Strip Packing 69

The largest instances (C4–C7) are quite challenging since no approach reached
HOPT to our knowledge on these instances (except IDW perhaps but this is not
clearly mentioned in [7]). Note that, while IDW achieved here the smallest γ value,
TSD is slightly better than GRASP on C6 (1.37 < 1.56) and C7 (1.23 < 1.36), see
also line “Mean C4–C7” where 1.33 < 1.41.

Table 2. Mean and best percentage gap (γ and γ∗ resp.) on instances from [28]

Instances
TSD TS1 [13] TS2 [12] GRASP [6] IDW [7]

γ γ∗ γ∗ γ∗ γ γ∗ γ

C1P1 0 0 9.09 0 0 0 -
C1P2 4.76 0 9.09 0 0 0 -
C1P3 0 0 4.76 0 0 0 -

Mean C1 1.59 0 7.65 0 0 0 0
C2P1 0 0 0 0 0 0 -
C2P2 0 0 6.25 0 0 0 -
C2P3 0 0 0 0 0 0 -

Mean C2 0 0 2.08 0 0 0 0
C3P1 0 0 3.23 0 0 0 -
C3P2 3.23 3.23 9.09 0 3.23 3.23 -
C3P3 0 0 9.09 0 0 0 -

Mean C3 1.08 1.08 7.14 0 1.08 1.08 2.15
C4P1 1.64 1.64 6.25 - 1.64 1.64 -
C4P2 1.64 1.64 4.76 - 1.64 1.64 -
C4P3 1.64 1.64 3.23 - 1.64 1.64 -

Mean C4 1.64 1.64 4.75 - 1.64 1.64 1.09
C5P1 1.1 1.1 5.26 - 1.1 1.1 -
C5P2 1.1 1.1 3.23 - 1.1 1.1 -
C5P3 1.1 1.1 6.25 - 1.1 1.1 -

Mean C5 1.1 1.1 4.91 - 1.1 1.1 0.73
C6P1 1.64 0.83 4.76 - 1.56 0.83 -
C6P2 0.83 0.83 3.23 - 1.56 0.83 -
C6P3 1.64 0.83 3.23 - 1.56 0.83 -

Mean C6 1.37 0.83 3.74 - 1.56 0.83 0.83
C7P1 1.23 1.23 - - 1.64 1.64 -
C7P2 1.23 1.23 - - 1.19 0.83 -
C7P3 1.23 1.23 - - 1.23 1.23 -

Mean C7 1.23 1.23 - - 1.36 1.23 0.41

Mean C4–C7 1.33 1.2 - - 1.41 1.2 0.76
Mean C1–C7 1.14 0.84 - - 0.96 0.84 0.4
#HOP T /21 8 ≥ 2 9 8 9

5 Possible Extensions

The TSD approach reported in this paper is in fact the first version of an ongoing
study. In this section, we discuss possible extensions which are worthy of fur-
ther study and would help to improve the performance of TSD: Diversification,
combined utilization of neighborhoods and evaluation function. All these points
merit certainly more investigations and constitute our ongoing work.

Diversification: The diversification technique described in Sect. 3.6 is based on
a random perturbation strategy. This strategy can be reinforced by a more
elaborated strategy using useful information extracted from high quality
solutions. For instance, it would be possible to identify a set of critical objects

70 J.-P. Hamiez, J. Robet, and J.-K. Hao

that prevent the search from converging toward a good packing and then
focus on these objects in order to realize a guided diversification.

Combined utilization of neighborhoods: Two neighborhoods are proposed
in Sect. 3.4. They are used in a particular manner, applying N1 with proba-
bility pN or N2 with probability 1− pN . These two neighborhoods can also
be employed in other combined ways, for instance, by the union of N1 and
N2 (N1 ∪N2) or sequentially (token-ring, N1 → N2 → N1 . . .).

Evaluation function: The current evaluation function (see Sect. 3.3) is unable
to distinguish two solutions with the same height. However, such a situation
occurs often during a search process. To overcome this difficulty, it would
be useful to introduce an additional criterion into the evaluation function.
For instance, the free surface under H∗ may be such a potential criterion.
As such, we can say a solution s′ is better than another solution s if s′ has
a larger total free area under H∗ than s does even if both solution have the
same height. Indeed, it would be easier to improve s′ than s.

6 Conclusions

In this paper, we presented TSD, a Tabu Search algorithm for the 2D Strip Pack-
ing Problem. TSD uses a solution strategy which traits the initial optimization
problem as a succession of satisfaction problems: Starting from a packing s0 of
height H , TSD tries to solve the 2D-SPP with decreasing values of H .

TSD uses a direct representation of the search space which permits inexpensive
basic operations. Two complementary neighborhoods using ejection chains are ex-
plored in a combined way by TSD. The goal of this combination is to reduce H∗

(hence to solve the current satisfaction problem) while avoiding solutions with
(hard to fill) tall and thin wasted spaces. A specific fitness function f is designed to
guide the search. A diversification mechanism, relying on a set of historically best
packings, helps to direct the search to promising and unexplored regions. The tabu
structure includes knowledge of the problem to avoid visiting similar packings.

Preliminary computational results were reported on a set of 21 well-known
benchmark instances, showing competitive results in comparison with two recent
best performing algorithms. The results on the largest and hardest instances are
particularly promising. Several issues were identified for further improvements.

Acknowledgments. We would like to thank the reviewers of the paper for
their useful comments. This work was partially supported by two grants from
the French “Pays de la Loire” region (MILES and RadaPop projects).

References

1. Wäscher, G., Haußner, H., Schumann, H.: An improved typology of cutting and
packing problems. European Journal of Operational Research 183(3), 1109–1130
(2007)

2. Dowsland, K., Dowsland, W.: Packing problems. European Journal of Operational
Research 56(1), 2–14 (1992)

A Tabu Search Algorithm with Direct Representation for Strip Packing 71

3. Sweeney, P., Ridenour Paternoster, E.: Cutting and packing problems: A cate-
gorized, application-orientated research bibliography. Journal of the Operational
Research Society 43(7), 691–706 (1992)

4. Fowler, R., Paterson, M., Tanimoto, S.: Optimal packing and covering in the plane
are NP-complete. Information Processing Letters 12(3), 133–137 (1981)

5. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completness. W.H. Freeman and Company, San Francisco (1979)

6. Alvarez-Valdes, R., Parreño, F., Tamarit, J.: Reactive GRASP for the strip-packing
problem. Computers & Operations Research 35(4), 1065–1083 (2008)

7. Neveu, B., Trombettoni, G.: Strip packing based on local search and a randomized
best-fit. In: Fifth International Conference on Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems: First Work-
shop on Bin Packing and Placement Constraints (CPAIOR: BPPC), Paris, France,
May 22 (2008)

8. Neveu, B., Trombettoni, G., Araya, I.: Incremental move for strip-packing. In:
Avouris, N., Bourbakis, N., Hatzilygeroudis, I. (eds.) Proceedings of the 19th IEEE
International Conference on Tools with Artificial Intelligence (ICTAI), vol. 2, pp.
489–496. IEEE Computer Society, Los Alamitos (2007)

9. Soke, A., Bingul, Z.: Hybrid genetic algorithm and simulated annealing for two-
dimensional non-guillotine rectangular packing problems. Engineering Applications
of Artificial Intelligence 19(5), 557–567 (2006)

10. Zhang, D., Kang, Y., Deng, A.: A new heuristic recursive algorithm for the strip
rectangular packing problem. Computers & Operations Research 33(8), 2209–2217
(2006)

11. Zhang, D., Liu, Y., Chen, S., Xie, X.: A meta-heuristic algorithm for the strip
rectangular packing problem. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC
2005. LNCS, vol. 3612, pp. 1235–1241. Springer, Heidelberg (2005)

12. Alvarez-Valdes, R., Parreño, F., Tamarit, J.: A tabu search algorithm for a two-
dimensional non-guillotine cutting problem. European Journal of Operational Re-
search 183(3), 1167–1182 (2007)

13. Iori, M., Martello, S., Monaci, M.: Metaheuristic algorithms for the strip packing
problem. In: Pardalos, P.M., Korotkikh, V. (eds.) Optimization and Industry: New
Frontiers. Applied Optimization, vol. 78, pp. 159–179. Springer, Heidelberg (2003)

14. Gómez-Villouta, G., Hamiez, J.P., Hao, J.K.: A dedicated genetic algorithm for
two-dimensional non-guillotine strip packing. In: Proceedings of the 6th Mexican
International Conference on Artificial Intelligence, Special Session, MICAI, Aguas-
calientes, Mexico, pp. 264–274. IEEE Computer Society, Los Alamitos (2007)

15. Bortfeldt, A.: A genetic algorithm for the two-dimensional strip packing problem
with rectangular pieces. European Journal of Operational Research 172(3), 814–
837 (2006)

16. Mukhacheva, E., Mukhacheva, A.: The rectangular packing problem: Local opti-
mum search methods based on block structures. Automation and Remote Con-
trol 65(2), 248–257 (2004)

17. Yeung, L., Tang, W.: Strip-packing using hybrid genetic approach. Engineering
Applications of Artificial Intelligence 17(2), 169–177 (2004)

18. Leung, T., Chan, C., Troutt, M.: Application of a mixed simulated annealing-
genetic algorithm heuristic for the two-dimensional orthogonal packing problem.
European Journal of Operational Research 145(3), 530–542 (2003)

19. Gomez, A., de la Fuente, D.: Solving the packing and strip-packing problems with
genetic algorithms. In: Mira, J., Sánchez-Andrés, J. (eds.) IWANN 1999. LNCS,
vol. 1606, pp. 709–718. Springer, Heidelberg (1999)

72 J.-P. Hamiez, J. Robet, and J.-K. Hao

20. Neveu, B., Trombettoni, G., Araya, I., Riff, M.C.: A strip packing solving method
using an incremental move based on maximal holes. International Journal on Ar-
tificial Intelligence Tools 17(5), 881–901 (2008)

21. Araya, I., Neveu, B., Riff, M.C.: An efficient hyperheuristic for strip-packing prob-
lems. In: Cotta, C., Sevaux, M., Sörensen, K. (eds.) Adaptive and Multilevel Meta-
heuristics. Studies in Computational Intelligence, vol. 136, pp. 61–76. Springer,
Heidelberg (2008)

22. Kenmochi, M., Imamichi, T., Nonobe, K., Yagiura, M., Nagamochi, H.: Exact
algorithms for the 2-dimensional strip packing problem with and without rotations.
European Journal of Operational Research (2008) (to appear)

23. Bekrar, A., Kacem, I., Chu, C.: A comparative study of exact algorithms for the
two dimensional strip packing problem. Journal of Industrial and Systems Engi-
neering 1(2), 151–170 (2007)

24. Lesh, N., Marks, J., McMahon, A., Mitzenmacher, M.: Exhaustive approaches to
2D rectangular perfect packings. Information Processing Letters 90(1), 7–14 (2004)

25. Martello, S., Monaci, M., Vigo, D.: An exact approach to the strip packing problem.
INFORMS Journal on Computing 15(3), 310–319 (2003)

26. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Dordrecht
(1997)

27. Baker, B., Coffman Jr., E., Rivest, R.: Orthogonal packings in two dimensions.
SIAM Journal on Computing 9(4), 846–855 (1980)

28. Hopper, E., Turton, B.: An empirical investigation of meta-heuristic and heuris-
tic algorithms for a 2D packing problem. European Journal of Operational Re-
search 128(1), 34–57 (2001)

29. Chazelle, B.: The bottom-left bin-packing heuristic: An efficient implementation.
IEEE Transactions on Computers 32(8), 697–707 (1983)

30. El Hayek, J.: Le problème de bin-packing en deux-dimensions, le cas non-orienté :
résolution approchée et bornes inférieures. Ph.D thesis, Université de Technologie
de Compiègne, France (2006) (in French)

31. Imahori, S., Yagiura, M., Nagamochi, H.: Practical algorithms for two-dimensional
packing. In: Gonzalez, T. (ed.) Handbook of Approximation Algorithms and Meta-
heuristics. Chapman & Hall/CRC Computer & Information Science Series, ch. 36,
vol. 13. CRC Press, Boca Raton (2007)

An ACO Approach to Planning

Marco Baioletti, Alfredo Milani, Valentina Poggioni, and Fabio Rossi

Dipartimento di Matematica e Informatica
University of Perugia, Italy

{baioletti,milani,poggioni,rossi}@dipmat.unipg.it

Abstract. In this paper we describe a first attempt to solve planning
problems through an Ant Colony Optimization approach. We have im-
plemented an ACO algorithm, called ACOPlan, which is able to op-
timize the solutions of propositional planning problems, with respect
to the plans length. Since planning is a hard computational problem,
metaheuristics are suitable to find good solutions in a reasonable com-
putation time. Preliminary experiments are very encouraging, because
ACOPlan sometimes finds better solutions than state of art planning
systems. Moreover, this algorithm seems to be easily extensible to other
planning models.

1 Introduction

Automated planning [1] is a very important research field in Artificial Intelli-
gence. Planning has been extensively and deeply studied and now many applica-
tions of automated planning exist, ranging from robotics to manufacturing and
to interplanetary missions [1].

A planning problem can be concisely described as the problem of finding a
plan, i.e. a sequence of actions, which starts from a known initial state and leads
to a final state that satisfies a given goal condition. Each action can be possibly
executed only in some states and in this case, after its execution, the current
state is altered by changing the value of some state variables.

Planning problems are usually defined in terms of a decision problem, in which
the aim is to find any solution. Sometimes just finding a solution is satisfactory.
But there are many problems which have several solutions, and just stopping
the search phase after having found a first plan may not be a good idea, because
this plan may be sensitively more expensive than other possible ones. The cost
of a plan is an important feature to take into account, because high cost plans
can be useless, almost like non executable plans. Therefore, in these situations
the purpose of the search is finding optimal or near–optimal plans in terms of a
given objective function.

There are many planning models, which extend the classical one, in which
the main aim is to optimize a metric function that measures the quality of the
plans found. Perhaps the problems in which the role of an objective function to
be optimized is more natural are those belonging to the numerical extension of
planning (see for instance [2]). In this model, the problems are not only described

C. Cotta and P. Cowling (Eds.): EvoCOP 2009, LNCS 5482, pp. 73–84, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

74 M. Baioletti et al.

in terms of propositional variables (as in the classical model), but they can
also contain numerical variables in preconditions, effects, initial state, goals and,
of course, objective function. For instance, a cost could be assigned to each
action in terms of both needed fuel and covered distance, and the goal condition
could require to minimize both of them. Besides the apparent importance of
optimization in planning, this topic has not been extensively studied in extended
models, such as planning with numerical resources. In fact there exist only a few
optimal planners and there are a relatively small number of other planners which
usually produce good solutions, without guaranteeing the optimality.

However, even in the case of pure propositional planning, the number of ac-
tions is an interesting objective function too and finding optimal solutions can be
a very hard problem. For instance, Gupta and Nau [3] have proved that optimal
planning, for the well known blocks world problem, is NP–complete.

In any case, optimal planning is a (hard) combinatorial optimization prob-
lem, for which there exist only a few standard algorithmical techniques. These
methods are often not so efficient and they are only able to solve small instances
of interesting planning problems.

In order to solve this difficulty, the main idea of this paper is to adapt the
well known Ant Colony Optimization metaheuristic to optimal planning. Clearly,
being ACO a stochastic algorithm, there is no guarantee that an optimal solu-
tion is found, but we hope that, as shown in many other applications of ACO,
this method produces either excellent or optimal solutions. In fact, ACO has
been successfully used in many combinatorial optimization problems [4], being
competitive with the best ad–hoc algorithms for these problems.

Hence, we have implemented, as a first step, an ACO–based propositional
planner which tries to optimize plans in terms of their lengths, in order to test if
ACO can be effectively used in planning for optimization. This planner performs
a forward search in the state space in which the ants are guided by the pheromone
values and by a heuristic function typically used in planning. Since we will show
that this implementation is able to find very good solutions, it is likely that ACO
can be successfully implemented in other models of planning, as we will discuss
in the conclusions.

As far as we know, this is the first application of a metaheuristic to optimal
automated planning. Genetic programming has been used in planning in [5], but
this technique has not been shown to be promising and it seems to have been
soon abandoned.

One of the most difficult problem we have coped with, is how to assign a
meaningful score to plans which are not solutions, because, in this case, the plan
length is not suitable to evaluate the quality of a plan. It is obvious that these
situations appear often during the first generations and it is very important to
force the ants to produce legal plans as much as possible. Therefore, we decided
to use a further scoring function which takes into account the distance between
the states reached by the sequence and the goals. Discarding illegal solutions or
just counting the number of goals reached would be too naive techniques, which
will loose many important information about the planning domain.

An ACO Approach to Planning 75

The paper is structured as follows. In section 2 a short introduction to AI Plan-
ning is provided, while in Section 3 we show how we applied ACO to AI Planning.
In section 4 some preliminary experimental results are shown. In Section 5 some
related works are discussed. Section 6 concludes the paper by describing some
possible improvements and extensions of this work.

2 A Brief Introduction to Automated Planning

The standard reference model for planning is the Propositional STRIPS model
[1], called also “Classical Planning”. In this model the world states are described
in terms of a finite set F of propositional variables: a state s is represented with
a subset of F , containing all the variables which are true in s. A problem is a
triple (I,G,A), in which I is the initial state, G denotes the goal states, and A
is a finite set of actions.

An action a ∈ A is described by a triple (pre(a), add(a), del(a)). pre(a) ⊆ F
is the set of preconditions: a is executable in a state s if and only if pre(a) ⊆ s.
add(a), del(a) ⊆ F are respectively the sets of positive and negative effects: if
an action a is executable in a state s, the state resulting after its execution is
Res(s, a) = s ∪ add(a) \ del(a). Otherwise Res(s, a) is undefined.

A linear sequence of actions (a1, a2, . . . , an) is a plan for a problem (I,G,A)
if a1 is executable in I, a2 is executable in s1 = Res(I, a1), a3 is executable in
s2 = Res(s1, a2), and so on. A plan (a1, a2, . . . , an) is a solution for (I,G,A) if
G ⊆ sn.

Planning problems are usually stated as a pure search problem, in which the
purpose is finding, if any, a solution plan. This computational problem is known
to be PSPACE–complete.

There exist many algorithmical solutions for planning. Among all the proposed
algorithms, three approaches are important.

A first approach is to design ad–hoc algorithms. Until the mid 90ies, the
dominating technique has been Partial Order Planning. A more recent way is
the graph–based approach, also used in [6]. A second approach is to translate
a planning problem into a different combinatorial problem, like propositional
satisfiability [7], integer programming or constraint satisfaction problems, and
then to use fast solvers designed for these problems. A third possibility is to
formulate planning problems as heuristic search problems, as done in HSP [8]
and in FF [9].

3 ACO and Planning

One of most important methods proposed to solve planning problems is the
heuristic search in the state space. The search moves from the initial state
through state space by using well known search methods (A∗, Hill climbing,
etc.) guided by a heuristic function, and it stops when a state containing the
goals is reached. These methods are usually deterministic.

76 M. Baioletti et al.

In our approach, an ACO algorithm performs a metaheuristic search in the
state space, in order to optimize some quantitative characteristics of a planning
problem, as the length of solutions found, the consumption of resources, and so
on. In other words, we are regarding to a planning problem as an optimization
problem, not only as a search problem.

3.1 Ant Colony Optimization

Ant Colony Optimization (ACO) is a metaheuristic designed to tackle
Combinatorial Optimization problems and introduced since early 90s by Dorigo
et al. [10,4].

ACO is a constructive meta–heuristic, i.e. each ant builds a sequence of ele-
ments, called components, in an incremental stochastic way. Each solution com-
ponent is assigned a pheromone value, i.e. a numerical real quantity. The vector
of all pheromone values T is the pheromone model. At each construction step,
the next component to add to the current partial solution is chosen according to
both a probability distribution on the feasible components (i.e. components that
satisfy problem constraints), induced by the pheromone values, and a heuristic
function that estimates how promising each component is. When all ants have
completed the solution construction process, the pheromone values of the com-
ponents which take part in the best found solutions are increased. In this way
the probability of each component to be drawn in the next iterations changes.
As time goes by, ants learn which components take part in the best solutions,
because their pheromone values tend to increase.

Many ACO variants differ just on the pheromone update method adopted: the
solutions set involved, the rule for updating, etc. The solutions considered for
the update are often best–so–far (best solution found in all the iterations already
executed) or iteration–best (best solution found in the current iteration) or both.
In certain variants, limits for maximum and minimum pheromone values are
used [11]. Another important ACO feature is the so called forgetting mechanism:
at each iteration, before increasing pheromone values of component taking part
in the best solutions, all the values are decreased by an evaporation rate ρ,
in order to prevent a premature convergence to suboptimal solutions.For more
details on ACO see [12,4].

3.2 Planner Ants

In our approach, ants build up plans starting from the initial state s0 = I and
by executing actions step by step. Each ant chooses the next action a to execute
in the current state sj by drawing from the set A(sj) of all actions which are
executable in sj . After the execution of an action a the current state is updated
as sj+1 = Res(sj , a).

We might apparently assume a single action as a solution component. But the
same action a may be executed in different states leading to different successor
states. In other words, the execution of an action a can have a different utility,
depending on the state in which it is executed.

An ACO Approach to Planning 77

Drop(B1,R2)

Move(R1,R2)

Move(R2,R1)

Move(R1,R2)

Move(R2,R1)

Drop(B1,R1)

Drop(B1,R1)

Grasp(B1,R1)

s0 = At(B1, R1)
At(B2, R1)
At_r(R1)
free()

Move(R1,R2)

s1 = Hold(B1)
At(B2, R1)
At_r(R1)

s3 = At(B1, R1)
At(B2, R1)
At_r(R2)
free()

Grasp(B2,R1)
s2 = Hold(B2)
At(B1, R1)
At_r(R1)

s4 = Hold(B1)
At(B2, R1)
At_r(R2)

Move(R2,R1)

s5 = Hold(B2)
At(B2, R1)
At_r(R2)

Grasp(B1,R2)

Drop(B2,R2)

Grasp(B2,R2)

.....

.....

Fig. 1. Initial part of state space graph for the Gripper domain

For example, let us consider the domain Gripper in which there are two balls
(B1, B2) and two rooms (R1,R2). In the initial state s0, both balls are in R1.
The goal requires that both B1 and B2 are in R2. The available actions are
Move from a room to another one, Grasp a ball, and Drop a ball. The initial
part of the related state space graph is shown in Fig. 1.

Action move(R1, R2) may be a useful action or not depending on the state in
which is executed. For example executing this action in s0 is not useful to reach
the goals, instead executing this action in s1 is useful. So, if we assume a single
action as a solution component, increasing the pheromone value of move(R1, R2)
increases its probability to be drawn in the next iterations in both s1 (where it
is desirable) and in s0 (where it is not desirable). This consideration leads to
assume a couple state/action cj

i = (sj , ai) as a solution component. In this way,
increasing the pheromone value of (s1, move(R1, R2)) increases the probability
of drawing this action when it is only useful. The whole set of couples state/action
constitutes the pheromone model that we have called state–action.

Another possibility is to assume a couple step/action cj
i = (tj , ai) as a solution

component, where tj is the time step at which ai is executed. However, knowing
that an action a is executed at step tj instead of step tj + 1 seems intuitively
less interesting than knowing in which state an action is executed. The whole
set of couples step/action constitutes the pheromone model that we have called
level–action.

Referring to pheromone model state–action, the rule to calculate the transition
probabilities is the classical one:

p(cj
i) =

[τ j
i]α · [η(sj , ai)]β

∑

ak∈A(sj)

[τ j
k]α · [η(sj , ak)]β

, ∀ai ∈ A(sj) (1)

where τ j
i is the pheromone value assigned to the component cj

i = (sj , ai), η(sj , ai)
is a heuristic function that evaluates how much is promising to execute ai in the

78 M. Baioletti et al.

state sj , A(sj) is the set of actions executable in sj and α, β are parameters to
determine the relative importance of pheromone value and heuristic estimation.

3.3 Heuristic Estimation η

We decided to use as function η the heuristic Fast-Forward (FF) [9]. FF esti-
mates the distance from a state to the goals, i.e. the number of needed actions
to reach the goals. FF exploits the basic idea of relaxing the original planning
problem by ignoring deleting effects of all actions, which is used in other heuristic
systems too (for instance HSP [8]). To evaluate a given state, FF builds a relaxed
planning graph (by ignoring delete effects) which is extended until all goals are
reached. Then, it attempts to extract a relaxed plan in a GraphPlan style, i.e.
performing a backward search from the goals to the initial state. The number of
needed actions is the estimated distance. Moreover, FF provides some pruning
techniques too, in order to exclude some space state branches from search. We
adopted the so called Helpful Actions (actions that seem more promising than
other ones) method in order to increment the η value for these actions.

So, at each construction step, our algorithm calculates η values of the states
resulting by the execution of each feasible action in the current state by using
the following rule:

η(sc, ai) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
h(Res(sc, ai))(1 − k)

if ai is a Helpful Action

1
h(Res(sc, ai))

otherwise

∀ai ∈ A(sc)

(2)
where sc is the current state, h(Res(sc, ai)) is the heuristic value of Res(sc, ai),
k ∈ [0, 1] is a reduction rate (in our tests we usually set k ∈ [0.15, 0.5]) to increase
the transition probabilities of Helpful Actions.

3.4 Plan Evaluation

At end of each iteration, a quality evaluation of all plans built by the ants is
needed, in order to perform a pheromone update. An intuitive (trivial) criterion
is to consider the number of goals reached, but this is useless when no plans
reach any goal.

The basic idea to evaluate the quality of a plan p is keeping track of the
minimum heuristic value hmin (i.e. the minimum distance from goals) that p has
reached during the execution of their actions: the smaller hmin, the higher the
plan quality. Moreover, if two plans have the same hmin, then the plan which
reaches first this value is better. For instance, let us consider the situation in
which three ants build three different plans: Plan A, which reaches hmin = 2
at the construction step 2, Plan B, which reaches hmin = 3 at the construction
step 2, and Plan C, which reaches hmin = 2 at the construction step 1. We
assume that the quality of both Plan C and Plan A is better than the quality
of B, because they get lower minimum heuristic values. Moreover, we assume

An ACO Approach to Planning 79

that the quality of C is better than A, because C gets the value 2 at a previous
construction step.

In this way we are able to compare two different plans, in order to decide
which is better. A quantitative measure Q(p) for the quality of a plan p can be
easily defined as

Q(p) =
(

1
1 + hmin

)γ (1
tmin

)δ

(3)

where tmin is the step at which p reaches hmin, and both γ and δ are parameters
to tune the importance of two terms.

To consider also the number of reached goals, we can add a term to the
equation above:

Q(p) =
(

1
1 + hmin

)γ (1
tmin

)δ (

1 +
gfound

|G|
)θ

(4)

where gfound is the number of goals reached, |G| is the total number of goals and
θ is a parameter to adjust the importance.

3.5 Pheromone Update

In our framework we perform a pheromone update considering best–so–far and
iteration–best solutions. Referring to the state–action pheromone model the rule
is the classical one used in the HyperCube Framework for ACO [13]:

τ j
i = (1− ρ)τ j

i + ρ
∑

p∈Pupd | cj
i∈p

Q(p)
∑

p′∈Pupd

Q(p′)
(5)

where τ j
i is the pheromone value of cj

i , ρ is the pheromone evaporation rate, Pupd

is the set of solutions (plans) which are involved in the update, Q is the quality
plan evaluation function.

After some preliminary experiments, we decided that, for each p ∈ Pupd, only
the pheromone values relative to the first tmin actions are only updated, the
other ones are neglected. The main reason is that what a plan does after having
reached its “best” state can be ignored, because it probably moves in a wrong
direction, i.e. away from the goals.

The pseudo code of the resulting algorithm, called ACOPlan, is shown in
figure 1.

4 Experimental Results

ACOplan has been tested over some domains taken from last International Plan-
ning Competitions (IPC). In general these domains are used as standard bench-
marks to compare planner performances. We run a set of systematics tests over
the domains Rovers and Driverlog. They have been chosen among the set of

80 M. Baioletti et al.

Algorithm 1. The algorithm ACOPlan
1: sbest ← ∅
2: InitPheromone(T , c)
3: while termination condition not met do
4: siter ← ∅
5: for m← 1 to number of ants do
6: sp ← ∅
7: state←initial state of the problem
8: for i← 1 to max number of construction step do
9: Ai ← feasible actions on state

10: Hi ← ∅
11: HAi ← GetHelpfulActions(state,Ai)
12: for all aj

i in Ai do
13: hj

i ← heuristic value of al
i

14: Hi ← Hi ∪ hj
i

15: end for
16: ak ← ChooseAnAction(T , Hi, Ai, HAi)
17: extend sp adding ak

18: update state
19: end for
20: if f(sp) > f(siter) then
21: siter ← sp

22: end if
23: end for
24: if f(siter) > f(sbest) then
25: sbest ← siter

26: end if
27: UpdatePheromone(T , sbest, siter, ρ)
28: end while

benchmark domains because they offer a good variety and the corresponding
results allow us interesting comments1 .

We chose to compare ACOplan with LPG, HSP and FF.
LPG is a very performant planner and, when running with -quality option,

it gives solution plans with, in general, a number of actions very close to the
optimum (sometimes it can find solutions with the optimum number of actions).
It is a non deterministic planner, so the results collected here are the mean values
obtained over 100 runs.

HSP can run with several options. In particular, with the options -d backward,
-h h2max and -w 1, it produces optimal plan in the number of actions. Never-
theless, in this setting, either it often fails to report a solution in a reasonable
CPU time or it runs out of memory; for this reason, we have chosen to run it
with default options also, in order to solve a larger set of problems and collect
more results.

1 A complete repository and detailed descriptions of these domains can be found in
the ICAPS website www.icaps-conference.org

An ACO Approach to Planning 81

Table 1. Results for Driver domain collecting solution lengths and CPU time

ACOplan HSP FF HSP -opt LPG

Problem length time length time length time length time length time
Driverlog 1 7 0.01 7 0.01 8 0.01 7 0.01 7 0.26
Driverlog 2 19 3.87 24 0.01 22 0.01 19 3905.92 19 0.33
Driverlog 3 12 0.06 14 0.01 12 0.01 12 0.14 12 0.12
Driverlog 4 16 24.32 21 0.01 16 0.01 16 5854.79 16 0.84
Driverlog 5 19 2.79 22 0.01 22 0.01 – – 19 2.87
Driverlog 6 11 47.35 13 0.01 13 0.01 11 0.72 12 1.21
Driverlog 7 13 0.4 15 0.01 17 0.01 13 5796.76 13 0.32
Driverlog 8 22 29.50 26 0.01 23 0.01 – – 24 0.12
Driverlog 9 22 12.87 28 0.03 31 0.01 – – 22 0.08
Driverlog 10 17 96.56 24 0.03 20 0.01 – – 18 1.67
Driverlog 11 19 899.56 24 0.07 25 0.01 – – 21 3.19
Driverlog 12 36 432.68 44 0.07 52 0.22 – – 41 4.95
Driverlog 13 26 119.61 33 0.16 36 0.09 – – 29 5.33
Driverlog 14 34 5440.28 44 1.66 38 0.12 – – 35 18.40
Driverlog 15 44 4920.89 48 1.65 48 0.03 – – 39 7.12

FF has no option to choose and it runs in default version.
Also ACOplan has many parameters that have to be chosen. After some pre-

liminary tests we decided to use this setting: 10 ants, 5000 iterations, α = 2,
β = 5, ρ = 0.15, c = 1, k = 0.5, pheromone model state–action. Being a non
deterministic system, like LPG, the results collected here are the mean values
obtained over 100 runs.

In Table 1 and Table 2 results of tests over Driverlog and Rovers domains
are shown. For HSP it has been not possible to collect results in the domain
Rovers because this planner had some troubles to solve it. In the first column
the problem names are listed; in the next columns the length of solution plans
and the execution times to reach the best solutions are reported for each planner.
For LPG and ACOPlan these columns report average lengths (rounded to the
closest integer) and times. The column entitled HSP -opt contains the results
for HSP called with options guaranteeing the optimality. The symbol – in table
entries means that the corresponding problem has not been solved in 2 hours of
CPU times or because of memory fault.

Results in Table 1 for the Driver domain show how the quality of solutions
synthesized by ACOplan is practically always better than the ones extracted
by FF and HSP and is often better than the ones extracted by LPG. Only in
one case LPG extracts a better solution. For instance, with respect to FF, on
the average, the percentage improvement is 15%, with a top of 31%. Moreover,
the available data for the optimal version of HSP show how the length of the
solution extracted by ACOplan is actually the optimum length.

Results in Table 2 for the Rovers domain show similar results where the
percentage improvement is 8% with respect to FF and 10% with respect to LPG
with a top 15% in both cases.

82 M. Baioletti et al.

Table 2. Results for Rovers domain collecting solution lengths and CPU time

ACOplan FF LPG

Problem length time length time length time
Rover 1 10 0.04 10 0.01 10 0.26
Rover 2 8 0.04 8 0.01 8 0.01
Rover 3 11 0.26 13 0.01 12 0.01
Rover 4 8 0.08 8 0.01 8 0.26
Rover 5 22 0.25 22 0.01 22 0.51
Rover 6 36 26.35 38 0.01 40 0.26
Rover 7 18 0.34 18 0.01 21 0.02
Rover 8 26 0.98 28 0.01 29 0.51
Rover 9 31 160.66 33 0.18 34 0.01
Rover 10 35 38.28 37 0.04 37 0.26
Rover 11 32 207.72 37 0.04 35 0.54
Rover 12 19 1.15 19 0.02 22 0.12
Rover 13 43 156.52 46 0.67 45 1.03
Rover 14 28 80.61 28 0.02 30 2.32
Rover 15 41 979.70 42 0.04 46 1.54
Rover 16 41 250.89 46 0.12 45 2.32
Rover 17 47 5126.78 49 0.16 50 3.75
Rover 18 41 4758.65 42 0.87 48 4.87
Rover 19 65 3427.45 74 0.65 76 5.02
Rover 20 – – 96 101 0.43 32.76

Nevertheless we have obtained good results from an optimality point of view,
the same cannot be said about efficiency. Anyway this is not surprising because
we have still a quite simple implementation; on the contrary the number of
solved problems with respect to the optimal HSP is encouraging and a dramatic
improvement of performances is predictable.

5 Related Works

There are several relevant planners which can be directly related to this work.
First of all, we have to refer to LPG [6] because it is based on a stochastic
algorithm and it is considered by the planning scientific community a state–
of–art planner. It is important to note that stochastic approaches to planning
did not have the due attention by the planning community (with respect to the
standard deterministic approaches) even if it has been proved they can give very
good performances also in the case of optimality problems. Moreover, we have
to refer to heuristic planners like HSP [8] and FF [9] for two different reasons:
(i) the heuristic of our planner is directly inspired from the FF’s one, (ii) the
HSP planner can run in an optimal version and its results could be used also to
compare the solution plans given by the planners. Finally, some words have to
be spent about the optimality concept in planning. The notion of optimal plan
is first introduced as makespan (both as number of actions and as number of

An ACO Approach to Planning 83

steps) and then it has been refined to consider any metric which can also include
resources, time and particular preferences or time trajectory constraints. To the
best of our knowledge the optimal version of HSP is the best optimal planner
with respect the number of actions of linear plans, so we have included it in our
experimental tests.

6 Conclusions and Future Works

In this paper we have described a first application of the Ant Colony Opti-
mization meta–heuristic to Optimal Propositional Planning. The preliminary
empirical tests have shown encouraging results and that this approach is a vi-
able method for optimization in classical planning. For these reasons we are
thinking to improve and extend this work in several directions.

First of all, we have planned to modify the implementation of the ACO system,
in particular the use of heuristic functions requiring a smaller computation time,
because it is possible that a less informative and less expensive heuristic function
can be used without having a sensitive loss of performance.

Then, another idea is to change the direction of the search in the state space:
using “regressing” ants, which start from the goal and try to reach the initial
state. Backward search methods has been successfully used in planning.

Finally, we are considering to apply ACO techniques also to other types of
planning. The extension of classical planning which appears to be appealing for
ACO is planning with numerical fluents: in this framework an objective function
can be easily defined. It is almost straightforward to extend our ACO system
(with “forward” ants) in order to handle the numerical part of a planning prob-
lem, even if it could be problematic to use the complete state in the solution
components. Also the extension to handle preferences seems to be straightfor-
ward, being necessary only a modification in the computation of Q(p).

Acknowledgements

We acknowledge the usage of computers at IRIDIA (http://code.ulb.ac.be/
iridia.home.php) Institute at Université Libre de Bruxelles, which Fabio Rossi
was visiting from June to August 2008, for some of the computations done here.
Moreover, a special thank to Dr. Thomas Stützle for his useful suggestions.

References

1. Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory and Practice.
Morgan Kaufmann, San Francisco (2004)

2. Hoffmann, J.: The metricff planning system: Translating ignoring delete lists to
numerical state variables. Journal of Artificial Intelligence Research. Special issue
on the 3rd International Planning Competition 20, 291–341 (2003)

3. Gupta, N., Nau, D.S.: On the complexity of blocks-world planning. Artificial In-
telligence 56, 223–254 (1992)

84 M. Baioletti et al.

4. Dorigo, M., Stuetzle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
5. Muslea, I.: Sinergy: A linear planner based on genetic programming. In: Steel, S.

(ed.) ECP 1997. LNCS, vol. 1348, pp. 312–324. Springer, Heidelberg (1997)
6. Gerevini, A., Serina, I.: LPG: a planner based on local search for planning graphs.

In: Proceedings of the Sixth International Conference on Artificial Intelligence
Planning and Scheduling (AIPS 2002). AAAI Press, Toulouse (2002)

7. Kautz, H., Selman, B.: Unifying sat-based and graph-based planning. In: Proceed-
ings of IJCAI 1999, Stockholm (1999)

8. Bonet, B., Geffner, H.: Planning as heuristic search. Artificial Intelligence 129(1-2)
(2001)

9. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research 14, 253–302 (2001)

10. Dorigo, M., Maniezzo, V., Colorni, A.: Ant System: Optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics Part B:
Cybernetics 26(1), 29–41 (1996)

11. Stuetzle, T., Hoos, H.H.: Max min ant system. Future Generation Computer Sys-
tems (16), 889–914 (2000)

12. Dorigo, M., Blum, C.: Ant colony optimization theory: a survey. Theor. Comput.
Sci. 344(2-3), 243–278 (2005)

13. Blum, C., Dorigo, M.: The hyper-cube framework for ant colony optimization.
IEEE Transactions on Systems, Man, and Cybernetics – Part B 34(2), 1161–1172
(2004)

An Artificial Immune System for the
Multi-Mode Resource-Constrained

Project Scheduling Problem

Vincent Van Peteghem and Mario Vanhoucke

Ghent University, Faculty of Business Administration
Tweekerkenstraat 2, 9000 Gent, Belgium

Abstract. In this paper, an Artificial Immune System (AIS) for the
multi-mode resource-constrained project scheduling problem (MRCPSP),
in which multiple execution modes are available for each of the activities
of the project, is presented. The AIS algorithm makes use of mechanisms
which are inspired on the vertebrate immune system performed on an
initial population set. This population set is generated with a controlled
search method, based on experimental results which revealed a link be-
tween predefined profit values of a mode assignment and its makespan.
The impact of the algorithmic parameters and the initial population
generation method is observed and detailed comparative computational
results for the MRCPSP are presented.

1 Introduction

Resource-constrained project scheduling has been a well-known and extensively
studied research topic for the past decades. The optimization problem minimizes
the makespan of the project, subject to precedence relations between the acti-
vities and limited renewable resource availabilities. When introducing different
modes for each activity, with for every mode a different duration and different re-
newable and non-renewable resource requirements, the problem is generalised to
the Multi-Mode Resource-Constrained Project Scheduling Problem (MRCPSP).

In the MRCPSP, a set N of n activities is given, where each activity i ∈
N = {1, ..., n}, can be performed in different execution modes, mi ∈ Mi =
{1, ..., |Mi|}. The duration of activity i, when executed in mode mi, is dimi .
Each mode mi also requires rρ

imik
units for each of the resources in the set Rρ of

renewable resource types. For each renewable resource k ∈ Rρ = {1, ..., |Rρ|}, the
availability aρ

k is constant throughout the project horizon. Activity i, executed
in mode mi, will also use rν

imil nonrenewable resource units of the total available
nonrenewable resource aν

l , with l ∈ Rν and Rν the set of nonrenewable resources.
Also a set A of pairs of activities between which a precedence relationship exists,
is given. The aim of the MRCPSP is to select exactly one mode for each activity
in order to schedule the project with a minimal makespan, subject to the resource
and precedence constraints. Formally, the MRCPSP can be stated as follows:

C. Cotta and P. Cowling (Eds.): EvoCOP 2009, LNCS 5482, pp. 85–96, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

86 V. Van Peteghem and M. Vanhoucke

minimize fn (1)
subject to fi + djmj ≤ fj ∀(i, j) ∈ A (2)

∑

i∈S(t)

rρ
imik ≤ aρ

k ∀k ∈ Rρ, ∀mi ∈Mi, ∀t (3)

n
∑

i=1

rν
imil ≤ aν

l ∀l ∈ Rν , ∀mi ∈Mi (4)

mi ∈Mi ∀i ∈ N (5)
f0 = 0 (6)

fi ∈ int+ ∀i ∈ N (7)

where S(t) denotes the set of activities in progress in period]t− 1, t] and fi the
finish time of the ith activity.

Several exact, heuristic and meta-heuristic procedures to solve the MRCPSP
have been proposed in recent years. The first to present an enumeration scheme
for solving the problem was [42], while an enumeration scheme-based procedure
was presented by [35]. Branch-and-bound procedures were used by [18], [40]
and [41], while a branch-and-cut algorithm was proposed by [45]. Also different
single or multi-pass heuristics were presented by [8], [14], [23], [27], [30] and [33].
Genetic algorithms were proposed by [2], [19], [31] and [34] and the simulated
annealing approach was used by [9], [22] and [39]. A tabu search procedure
was presented by [32] and the methodolgy of particle swarm optimization was
introduced by [21] and [44]. Recently, a hybridized scatter search procedure to
solve the MRCPSP was proposed by [36].

In this study, we present an Artificial Immune System (AIS), a new search
algorithm inspired by the mechanisms of a vertebrate immune system. In the next
section the principles of this immune system are described while the proposed
solution algorithm and the various AIS parameters are described in section 3.
In section 4 the results of the computational experiments are reported as well
as the comparison with other heuristics. Finally, the conclusions of the present
work are summarized in section 5.

2 Vertebrate Immune System

An Artifical Immune System (AIS) is a computational algorithm proposed by [13]
and inspired by theories and components of the vertebrate immune system. The
vertebrate immune system is able to identify and kill disease-causing elements,
called antigens, by the use of immune cells, of which the B-cells are the most
common ones. These immune cells have receptor molecules on their surfaces
(also called antibodies), whose aim is to recognize and bind to pattern-specific
antigens.

Since the antibodies on the B-cells are able to kill these specific type of antigens
(antibodies and antigens which shapes are complementary will rivit together), the
B-cells will be stimulated to proliferate and to mature into non-dividing antibody

An Artificial Immune System for the MRCPSP 87

secreting cells (plasma cells), according to the principles of clonal selection. The
degree of proliferation is directly proportional to the recognizing degree of the anti-
gen and the proliferation is succeeded by cell divisions and results in a population
of clones which are copies from each other [13].

To better recognize the antigens, a whole mutation and selection process, which
is called the affinity maturation, is applied on the cloned cells. A first mechanism
is the hypermutation, a process in which random changes take place in the vari-
able region of the antibody molecules. The degree of hypermutation is inversely
proportional to the affinity of the antibody to the antigen: the higher the affinity,
the lower the mutation rate and vice versa. However, a large proportion of these
mutated antibodies will be of inferior quality and will be non-functional in the
immune system. Those cells are eliminated from the population and replaced by
newly developed receptors in a process which is called receptor editing.

3 AIS Algorithm for the MRCPSP

The efficient mechanisms of an immune system make artificial immune systems
useful for scheduling problems. AIS is used for solving job-shop [10][17], flow-shop
[15] and resource-constrained project scheduling problems [5]. In this section,
a problem-solving technique for the MRCPSP based on the principles of the
vertabrate immune system is presented. The different generic steps in our AIS
algorithm are presented in Figure 1 and will be discussed along the following
subsections.

3.1 Representation

The MRCPSP can be divided into two subproblems: a first subproblem can be
refered to as the Mode Assignment Problem (MAP), whose aim is to generate

Fig. 1. Artificial Immune System: procedure

88 V. Van Peteghem and M. Vanhoucke

a feasible mode assignment list. This mode assignment list assigns a mode to
each activity and appoints a duration and a resource consumption to each re-
source type. The list also determines the feasibility of the mode assignment.
A mode assignment which uses more nonrenewable resources than available is
called infeasible, otherwise the mode assignement is called feasible. If there is
more than one nonrenewable resource, the problem of finding a feasible solution
is NP-complete [27].

In a second subproblem, the order in which the activities needs to be sched-
uled must be determined. Given the duration and the resource consumptions
of the different activities, the aim of the Resource-constrained Project Schedul-
ing Problem (RCPSP) is to minimize the makespan of the project. The order
in which the activities are scheduled is stored in an activity sequence list. Sev-
eral representations are available in literature to denote the sequence in which
the activities are scheduled [28]. In this paper we make use of the activity list
representation, where a precedence-feasible solution is represented by an or-
dered list of activities. Each activity in the list appears in a position after all its
predecessors.

In the MRCPSP, a solution vector V is represented by two lists, a mode
assignment list and an activity list respectively.

3.2 Initial Population

Several authors use random techniques to initiate the initial population. They
argue that random initial starting solutions are more diverse and use less compu-
tational effort than heuristic procedures to produce initial solutions [4]. However,
in this paper we use a more controlled generation of the initial population. In a
first stage, the mode assignment list is generated, while in a second stage, the
activity list is constructed based on this mode assignment list.

Mode assignment list generation. The MAP is very similar to the Multi-
Choice Multi-Dimensional Knapsack Problem (MMKP), an extension of the well-
known and extensively studied Knapsack Problem. In the MMKP, several classes
have several items and each item has a non-negative profit value and requires a
predefined number of resources. The aim of the MMKP is to pick exactly one item
from each class in order to maximize the total profit value of the pick, subject
to the resource constraints. Several exact and heuristic solution approaches for
this problem have already been proposed [1][20][37].

To translate the MMKP to the MAP, a profit value needs to be assigned to
each mode/activity combination. If a relationship between the makespan of a
project that results from a specific mode assignment and its profit value can be
found, the search space of the problem can be reduced to the most promising
search regions. Experimental tests were performed on 90 problem instances from
the test dataset as defined in section 4.1. For every problem instance 100 feasible
and unique mode assignment lists were generated randomly. Based on the infor-
mation of each mode assignment, a schedule was build using the bi-population
genetic algorithm of [12]. Computational experience revealed that there is a

An Artificial Immune System for the MRCPSP 89

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

0 0,5 1 1,5 2 2,5 3

(a) Total work content as profit value

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

0 0,5 1 1,5 2 2,5 3

(b) Sum of durations as profit value

Fig. 2. Relationship between makespan and profit value

direct proportional relationship between the makespan and the following two
profit values:

– Total Work Content (TWC), defined as
∑n

i=1

∑|Rρ|
k=1 rρ

imik
dimi

– Sum of Durations (SUM), defined as
∑n

i=1 dimi

In Figure 2, a graph is plotted with the results of these tests. To standardize
the values on the vertical and horizontal axis, the following calculations were
made:

– On the vertical axis, χ is shown. For each problem instance and for each
generated mode assignment list, χ is calculated as the ratio of the makespan
which results from a particular mode assignment to the best found makespan.
The larger χ, the more the makespan deviates from the best found makespan
of that problem instance. The χ-value of the mode assignment list which
results in the best makespan is 1 and obviously, the value of χ can never be
lower than 1.

– On the horizontal axis, the value υ is shown. υ is calculated as the ratio
of the profit value of the mode assignment to the profit value of the mode
assignment which results in the schedule with the best found makespan. υ
can be lower than 1 since the profit value of a mode assignment with a higher
makespan can be lower than the profit value of the mode assignment of the
best makespan.

In both graphs a positive relationship between the profit value and the
makespan can be observed. A Pearson correlation test revealed that the cor-
relations for the TWC and SUM are 0.61 and 0.74, respectively.

Since there is a clear relationship between the profit value and the makespan,
mode assignment lists with low profit values are preferred to mode assignment
lists with high profit values. Therefore, to start with a good, but also diverse
initial population, we create a start population, called RANDPOP , with a large
number of randomly generated feasible mode assignment lists (in this paper: 4
times the number of elements in our population). For each mode assignment list

90 V. Van Peteghem and M. Vanhoucke

the corresponding profit value is calculated and the POP mode assignment lists
with the lowest overall profit values are selected for use in the initial population.
Once the mode assignment lists are generated, a duration and resource consump-
tion can be assigned to each activity for each population element. Based on this
information, the activity list can be generated.

Activity list generation. In the second stage, the activity list is generated.
Several heuristics available in literature make use of well-performing priority
rules to generate the sequence in which the activities should be scheduled. Some
of the best performing priority rules are the Latest Finish Time (LFT), the Latest
Start Time (LST), the Minimum Slack (SLK) and the Maximum Remaining
Work (RWK). More information about these priority rules can be found in [26]
and [6].

For each mode assignment list, an activity list is generated using one of the
proposed priority rules. Since different mode assignment lists are generated, also a
diverse set of activity lists will be generated. If two or more equal mode assignment
lists occur in the initial population, different priority rules are applied on the mode
assignment lists to avoid equal solution vectors in the initial population.

After the generation of the activity list and the mode assignment list, a sched-
ule is build for each of the POP population elements in the initial population.

3.3 Clonal Selection Process

A population of POP solution vectors is generated and for each solution vector
the makespan is determined. Only the best Pclonal% solution vectors will be
available for proliferation. For these solution vectors, the corresponding affinity
value is determined as follows:

Affinity(V) =
1

2(makespan(V)− bestmakespan + 1)
(8)

where makespan(V) refers to the makespan of solution vector V and bestmakespan
refers to the best makespan found so far. The number of clones of a solution vec-
tor V in the population is given by the affinity of the solution vector V over the
sum of affinities of all population solution vectors multiplied by the number of
population elements. Since the cloning of the antibodies is done directly propor-
tional to their affinity value, it can be noticed that solution vectors with higher
makespans will appear less frequent than solution vectors with low makespans.
The size of the antibody population is fixed and infeasible solution vectors can
not be proliferated.

3.4 Affinity Maturation

After the proliferation, the affinity maturation is performed. This process is ap-
plied in two phases: first, a hypermutation procedure is applied on each solution
vector of the population and afterwards the receptor editing mechanism is used.

An Artificial Immune System for the MRCPSP 91

Hypermutation. Since a solution vector contains both an activity list and a
mode assignment list, a mutation process is applied on both lists. However, the
process for both lists is different.

For the mutation on the activity list, a hypermutation rate η which defines
the degree of modification in the activity list is calculated. The hypermutation
rate for solution vector V can be formulated as follows:

η(V) = 100e−0.05∗(makespan(V)−bestmakespan) (9)

The number of mutations is calculated as:

NumbMut(V) = 1 +
(100− η(V))n

100
(10)

The lower the makespan, the lower the hypermutation rate of the activity
list will be and the lower the number of mutations. By applying this muta-
tion process, the algorithm can explore the neighbourhood of the solution. That
neighbourhood will expand when the hypermutation rate increases. A mutation
is defined as follows: in the current activity list, an activity is chosen and is moved
randomly to a new position. In order to respect the precendence constraints, the
new position of the activity is lying between the position of its latest predecessor
and the position of its earliest successor.

The mutation process for the mode assignment list is based on a frequency
matrix of the mode assignment lists in the population. To assign a mode to an
activity, a random population element is chosen and the mode for that popu-
lation element activity is assigned to the cloned element activity. Modes that
occur more in the population of good solutions will therefore occur more. This
procedure shows similarities with the Harmony Search procedure [16]. In case
the mode assignment list becomes infeasible, a feasibility procedure is applied
such that the mode list becomes feasible by changing mode assignments and
such that the modes with the lowest profit values (as defined in the previous
section) are chosen first. After the mutation process, every new feasible solution
vector is evaluated.

Receptor Editing. After the cloning and mutation process, a new population
of antibodies is generated. Only the best Pediting% antibodies are preserved in
the population. The other elements are eliminated and to preserve POP elements
in the population, the population is seeded with high quality mode assignment
lists from the start population RANDPOP . In that way, schedules with a low
makespan stay incorporated in the antibody population and antibodies evolving
to inferior search regions are deleted. The newly generated population is the
start population for a new generation process. This process continues until the
stop condition is met.

4 Computational Results

In order to prove the efficiency of our algorithm, we have tested our AIS so-
lution procedure on a test set which is defined in section 4.1. In this section,

92 V. Van Peteghem and M. Vanhoucke

the impact of the different algorithmic parameters, such as Pclonal, Pediting and
the population size POP , is tested and the efficiency of our initial population
generation method is proven. In section 4.2, we compare the proposed solution
method with other metaheuristic procedures available in literature based on the
well-known PSPLIB benchmark dataset [25].

4.1 Parameter Setting

For the generation of the instances of the test set, we have used the RanGen
project scheduling instances generator developed by [43] and extended the pro-
jects to a multi-mode version. Each instance contains 20 activities, with three
modes, two renewable and two non-renewable resources. The instances have been
generated with the following settings: the order strength is set at 0.25, 0.50 or
0.75, the (renewable and nonrenewable) resource factor at 0.50 or 1 and the
(renewable and nonrenewable) resource strength at 0.25, 0.50 or 0.75. Using 5
instances for each problem class, we obtain a problem set with 540 network
instances. The project parameters are explained in [43], amongst others.

Extensive testing revealed that the optimal values for the different algoritmic
parameters are Pclonal=25%, Pediting=20% and POP=450. Table 1 shows the
average deviation from the minimal critical path after the initial population gen-
eration of POP population elements and after 5000 schedules. The 2 different
profit values (TWC and SUM) and the 4 different priority rules (LFT, LST,
SLK and RWK) are compared to the result of the solutions in which a random
generated initial population is used.

Table 1. Average % deviation from minimal critical path

After initial generation After 5000 schedules
Profit values Profit values

Priority rules Random TWC SUM Random TWC SUM
Random 48.23% 42.60% 42.43% 22.42% 20.81% 20.52%

LFT 43.24% 38.32% 37.85% 22.14% 20.86% 20.55%
LST 42.35% 37.62% 37.17% 22.44% 20.97% 20.74%
SLK 44.86% 39.56% 39.13% 22.29% 21.06% 20.73%

RWK 42.52% 37.95% 37.51% 22.22% 20.95% 20.50%

A paired-samples T-test revealed a very significant (p<0.01) influence on the
quality of the schedules using a controlled initial population generation method
instead of a random generation method: the difference between the average devi-
ation from the critical path for the random generated solutions (48.23%) and the
average deviation for the controlled generated elements (LST/SUM - 37.17%) is
11.06%, which corresponds with an average decrease of 2.2 working days on an
average makespan of 28 days (information not available in Table 1).

Regardless of which priority rule is used, the combination in which SUM is
used as profit value always outperforms the other profit value TWC. This result
is in accordance to the results of [6], who proposed several priority rules for the

An Artificial Immune System for the MRCPSP 93

mode assignment problem and who concluded that choosing the shortest feasible
execution-mode is the most appropriate rule to minimize project duration.

The best solution after 5000 schedules is found for the combination RWK/SUM
(20.50%). There is a significant difference (p<0.01) with the solution in which a
random generated initial population is used. In the further course of this paper,
the Maximum Remaining Work (RWK) will be used as priority rule and the
Sum of Durations (SUM) will be used as profit value in our AIS algorithm.

4.2 Comparison

In this section, the algorithm is compared to the best performing heuristics and
metaheuristics in published literature. As a benchmark, we use the well-known
PSPLIB dataset [25] to compare with other existing procedures from the litera-
ture. The dataset for the multi-mode RCPSP contains project instances with 10,
12, 14, 16, 18, 20 and 30 activities, each with 2 renewable and 2 nonrenewable
resources. For the instances with 30 activities only a set of best known heuristic
solutions is available, for the other instances the optimal solutions are available.
For each problem size, 640 instances were generated.

Table 2. Comparison with other heuristics - average % optimality gap - 5000 schedules

J10 J12 J14 J16 J18 J20 J30
Jozefowska et al. (2001) 1.16 1.73 2.60 4.07 5.52 6.74 11.67
Alcaraz et al. (2003) 0.24 0.73 1.00 1.12 1.43 1.91 n.a.
Ranjbar et al. (2008) 0.18 0.65 0.89 0.95 1.21 1.64 n.a.
Jarboui et al. (2008) 0.03 0.09 0.36 0.44 0.89 1.10 2.35
This work 0.02 0.07 0.20 0.39 0.52 0.70 1.55

Table 3. Deviation measures - 5000 schedules

J10 J12 J14 J16 J18 J20 J30
Max. deviation (%) 4.16 7.14 7.14 9.52 7,41 9.52 11.90
Optimal (%) 99.44 98.35 95.10 90.36 86.23 81.59 65.22

A comparison of the different algorithms on the J10 to J30 datasets of PSPLIB
is made for the authors mentioned in Table 2. For the J10 to J20 datasets the
average deviation from the optimal solution is shown, for the J30 dataset the
average deviation from the best known solutions is presented. To make a fair
comparison between the different heuristics, the evaluation is stopped after 5000
generated schedules. As [29] stated, one schedule corresponds to (at most) one
start time assignment per activity. The number of generated schedules can be
calculated as the sum of times each activity of the project has obtained a feasible
start time divided by the number of activities of the project. As can be seen in
Table 2, the results for our algorithm outperform the other heuristics. Table 3
shows the maximal deviation from the optimal solution for each instance set, as
well as the percentage of instances for which an optimal solution was found.

94 V. Van Peteghem and M. Vanhoucke

5 Conclusions

In this paper, an artifical immune system is presented. The vertebrate immune
system mechanisms which inspire AIS as solution methodology were used to solve
the multi-mode resource-constrained project scheduling problem. To generate a
good and diverse initial population, a controlled search procedure is used, which
is based on an observed link between predefined profit values and the makespan
of the mode assignment and which leads the search process more quickly to more
interesting search regions. The proposed AIS algorithm proves its effectiveness
as problem solving technique for the MRCPSP by generating competitive results
for the different PSPLIB datasets. The introduction of this algorithm in other
project scheduling problems such as DTRTP can lead to promising results.

References

1. Akbar, M.M., Rahman, M.S., Kaykobad, M., Manning, E.G., Shoja, G.C.: Solving
the Multidimensional Multiple-Choice Knapsack Problem by constructing convex
hulls. Computers and Operations Research 33, 1259–1273 (2006)

2. Alcaraz, J., Maroto, C., Ruiz, R.: Solving the multi-mode resource-constrained
project scheduling problem with genetic algorithms. Journal of the Operational
Research Society 54, 614–626 (2003)

3. Alvarez-Valdes, R., Tamarit, J.M.: Heuristic algorithms for resource-constrained
project scheduling: A review and an empirical analysis. In: Slowinski, R., Weglarz,
J. (eds.) Advances in Project Scheduling, pp. 113–134. Elsevier, Amsterdam (1989)

4. Anderson, E.J., Ferris, M.C.: Genetic Algorithm for Combinatorial Optimisation:
The Assembly Line Balancing Problem. ORSA Journal on Computing 6, 161–173
(1994)

5. Argawal, R., Tiwari, M.K., Mukherjee, S.K.: Artificial Immune System Based Ap-
proach for Solving Resource Constraint Project Scheduling Problem. International
Journal of Advanced Manufacturing Technology 34, 584–593 (2007)

6. Boctor, F.: Heuristics for scheduling projects with resource restrictions and several
resource-duration modes. International Journal of Production Research 31, 2547–
2558 (1993)

7. Boctor, F.: An adaption of the simulated annealing for solving resource-constrained
project scheduling problems. International Journal of Production Research 34,
2335–2351 (1996)

8. Boctor, F.: A new and effcient heuristic for scheduling projects with resource re-
strictions and multiple execution modes. European Journal of Operational Re-
search 90, 349–361 (1996)

9. Bouleimen, K., Lecocq, H.: A new effcient simulated annealing algorithm for the
resource-constrained project scheduling problem and its multiple mode version.
European Journal of Operational Research 149, 268–281 (2003)

10. Coello Coello, C.A., Rivera, D.C., Cortés, N.C.: Use of an Artificial Immune System
for Job Shop Scheduling. In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003.
LNCS, vol. 2787, pp. 1–10. Springer, Heidelberg (2003)

11. Davis, E.W., Patterson, J.H.: A comparison of heurstic and optimum solutions in
resource-constrained project scheduling. Management Science 21, 944–955 (1975)

An Artificial Immune System for the MRCPSP 95

12. Debels, D., Vanhoucke, M.: A bi-population based genetic algorithm for the
resource-constrained project scheduling problem. In: Gervasi, O., Gavrilova, M.L.,
Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA
2005. LNCS, vol. 3483, pp. 378–387. Springer, Heidelberg (2005)

13. De Castro, L.N., Timmis, J.I.: Artificial immune systems: a novel paradigm for
pattern recognition. In: Alonso, L., Corchado, J., Fyfe, C. (eds.) Artificial Neural
Networks in Pattern Recognition, pp. 67–84. University of Paisley (2002)

14. Drexl, A., Grünewald, J.: Nonpreemptive multi-mode resource-constrained project
scheduling. IIE Transactions 25, 74–81 (1993)

15. Engin, O., Döyen, A.: A New Approach to Solve Hybrid Flow Shop Scheduling
Problems by Artificial Immune System. Future Generation Computer Systems 20,
1083–1095 (2004)

16. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A New Heuristic Optimization Algo-
rithm: Harmony Search. Simulation 76, 60–68 (2001)

17. Hart, E., Ross, P., Nelson, J.: Producing robust schedules via an artificial immune
system. In: Proceedings of the ICEC 1998, pp. 464–469 (1998)

18. Hartmann, S., Drexl, A.: Project scheduling with multiple modes: a comparison of
exact algorithms. Networks 32, 283–297 (1998)

19. Hartmann, S.: Project scheduling with multiple modes: a genetic algorithm. Annals
of Operations Research 102, 111–135 (2001)

20. Hifi, M., Michrafy, M., Sbihi, A.: Heuristic algorithms for the multiple-choice multi-
dimensional knapsack problem. Journal of Operational Research Society 55, 1323–
1332 (2004)

21. Jarboui, B., Damak, N., Siarry, P., Rebai, A.: A combinatorial particle swarm opti-
mization for solving multi-mode resource-constrained project scheduling problems.
Applied Mathematics and Computation 195, 299–308 (2008)

22. Jozefowska, J., Mika, M., Rozycki, R., Waligora, G., Weglarz, J.: Simulated anneal-
ing for multi-mode resource-constrained project scheduling. Annals of Operations
Research 102, 137–155 (2001)

23. Knotts, G., Dror, M., Hartman, B.: Agent-based project scheduling. IIE Transac-
tions 32, 387–401 (2000)

24. Kolisch, R., Sprecher, A., Drexl, A.: Characterization and generation of a general
class of resource-constrained project scheduling problems. Management Science 41,
1693–1703 (1995)

25. Kolisch, R., Sprecher, A.: PSPLIB - a project scheduling problem library. European
Journal of Operational Research 96, 205–216 (1996)

26. Kolisch, R.: Serial and parallel resourceconstrained project scheduling methods
revisited: Theory and computation. European Journal of Operational Research 90,
320–333 (1996)

27. Kolisch, R., Drexl, A.: Local search for nonpreemptive multi-mode resource-
constrained project scheduling. IIE Transactions 29, 987–999 (1997)

28. Kolisch, R., Hartmann, S.: Project Scheduling - Recent Models, Algorithms and
Applications. Kluwer Academic Publishers, Boston (1999)

29. Kolisch, R., Hartmann, S.: Experimental investigation of heuristics for resource-
constrained project scheduling: An update. European Journal of Operational Re-
search 174, 23–37 (2006)

30. Lova, A., Tormos, P., Barber, F.: Multi-mode resource-constrained project schedul-
ing: Scheduling schemes, priority rules and mode selection rules. Inteligencia Arti-
ficial 30, 69–86 (2006)

96 V. Van Peteghem and M. Vanhoucke

31. Mori, M., Tseng, C.: A genetic algorithm for multi-mode resource-constrained
project scheduling problem. European Journal of Operational Research 100, 134–
141 (1997)

32. Nonobe, K., Ibaraki, T.: Formulation and tabu search algorithm for the resource-
constrained project scheduling problem (RCPSP). Technical report, Kyoto Univer-
sity (2001)

33. Özdamar, L., Ulusoy, G.: A local constraint based analysis approach to project
scheduling under general resource constraints. European Journal of Operational
Research 79, 287–298 (1994)

34. Özdamar, L.: A genetic algorithm approach to a general category project scheduling
problem. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applica-
tions and Reviews 29, 44–59 (1999)

35. Patterson, J., Slowinski, R., Talbot, F., Weglarz, J.: Advances in Project Schedul-
ing. Elsevier, Amsterdam (1989)

36. Ranjbar, M., De Reyck, B., Kianfar, F.: A hybrid scatter-search for the discrete
time/resource trade-off problem in project scheduling. European Journal of Oper-
ational Research 193, 35–48 (2009)

37. Sbihi, A.: A best first search exact algorithm for the Multiple-choice Multidi-
mensional Knapsack Problem. Journal of Combinatorial Optimization 13, 337–351
(2007)

38. Shahriar, A.Z.M., Akbar, M.M., Rahman, M.S., Newton, M.A.H.: A multiprocessor
based heuristic for multi-dimensional multiple-choice knapsack problem. Journal
of supercomputing 43, 257–280 (2008)

39. Slowinski, R., Soniewicki, B., Weglarz, J.: DSS for multiobjective project schedul-
ing. European Journal of Operational Research 79, 220–229 (1994)

40. Sprecher, A., Hartmann, S., Drexl, A.: An exact algorithm for project scheduling
with multiple modes. OR Spektrum 19, 195–203 (1997)

41. Sprecher, A., Drexl, A.: Solving multi-mode resource-constrained project schedul-
ing problems by a simple, general and powerful sequencing algorithm. European
Journal of Operational Research 107, 431–450 (1998)

42. Talbot, F.: Resource-constrained project scheduling with time-resource tradeoffs:
The nonpreemptive case. Management Science 28(10), 1197–1210 (1982)

43. Vanhoucke, M., Coelho, J., Debels, D., Maenhout, B., Tavares, L.: An evaluation of
the adequacy of project network generators with systematically sampled networks.
European Journal of Operational Research 187, 511–524 (2008)

44. Zhang, H., Tam, C., Li, H.: Multimode project scheduling based on particle swarm
optimization. Computer-Aided Civil and Infrastructure Engineering 21, 93–103
(2006)

45. Zhu, G., Bard, J., Tu, G.: A branch-and-cut procedure for the multimode resource-
constrained project-scheduling problem. Journal on Computing 18, 377–390 (2006)

Beam-ACO Based on Stochastic Sampling for
Makespan Optimization Concerning the

TSP with Time Windows�

Manuel López-Ibáñez1, Christian Blum1, Dhananjay Thiruvady2,3,
Andreas T. Ernst3, and Bernd Meyer2

1 ALBCOM Research Group, Universitat Politècnica de Catalunya, Barcelona, Spain
{m.lopez-ibanez,cblum}@lsi.upc.edu

2 Calyton School of Information Technology, Monash University, Australia
{dhananjay.thiruvady,bernd.meyer}@infotech.monash.edu.au

3 CSIRO Mathematics and Information Sciences, Australia
andreas.ernst@csiro.au

Abstract. The travelling salesman problem with time windows is a
difficult optimization problem that appears, for example, in logistics.
Among the possible objective functions we chose the optimization of the
makespan. For solving this problem we propose a so-called Beam-ACO
algorithm, which is a hybrid method that combines ant colony optimiza-
tion with beam search. In general, Beam-ACO algorithms heavily rely
on accurate and computationally inexpensive bounding information for
differentiating between partial solutions. In this work we use stochastic
sampling as an alternative to bounding information. Our results clearly
demonstrate that the proposed algorithm is currently a state-of-the-art
method for the tackled problem.

1 Introduction

The travelling salesman problem with time windows (TSPTW) [1] seeks to find
an efficient route to visit a number of customers, starting and ending at a depot,
with the added difficulty that each customer may only be visited within a certain
time window. In practice, the TSPTW is an important problem in logistics. The
TSPTW is proven to be NP -hard, and even finding a feasible solution is an NP -
complete problem [2]. The problem is closely related to a number of important
problems. For example, the well-known travelling salesman problem (TSP) is a
special case of the TSPTW. The TSPTW itself can be seen as a special case with
a single vehicle of the vehicle routing problem with time windows (VRPTW).
The literature mentions two different objective functions for this problem. In
this work we chose the optimization of the makespan as the objective. The ant

� This work was supported by grant TIN2007-66523 (FORMALISM) of the Spanish
government. Moreover, Christian Blum acknowledges support from the Ramón y
Cajal program of the Spanish Ministry of Science and Innovation.

C. Cotta and P. Cowling (Eds.): EvoCOP 2009, LNCS 5482, pp. 97–108, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

98 M. López-Ibáñez et al.

colony optimization approaches from [3,4] are among the current state-of-the-art
algorithms for the TSPTW when optimizing the makespan.

Ant colony optimization (ACO) is a metaheuristic that is based on the prob-
abilistic construction of solutions [5]. At each algorithm iteration, a number
of solutions are constructed independently of each other. A recently proposed
ACO hybrid, known as Beam-ACO [6,7], employs at each iteration a probabilistic
beam search procedure that constructs a number of solutions interdependently
and in parallel. At each step, beam search keeps a certain number of the best
partial solutions available for further extension [8]. These partial solutions are
selected with respect to bounding information. Hence, accurate and inexpensive
bounding information is a crucial component of beam search. A problem arises
when the bounding information is either misleading or when this information
is computationally expensive, which is the case for the TSPTW. López-Ibáñez
and Blum [9] presented a first study with the aim to show that stochastic sam-
pling [10,11] is a useful alternative to bounding information. Hereby, each given
partial solution is completed a certain number of times in a stochastic way. The
information that is obtained in this way is used to differentiate between different
partial solutions.

In this work, apart from comparing our results to the best known ones from
the literature, we also study the effect that different components of Beam-ACO
with stochastic sampling have on the performance of the algorithm. In particular,
we will evaluate the influence of the pheromone information and the effects of
different degrees of stochastic sampling. The remainder of this work is organized
as follows. In Section 2 we give a technical description of the TSPTW. Section 3
introduces the Beam-ACO algorithm for the TSPTW. In Section 4 we describe
the experimental evaluation, and in Section 5 we offer conclusions and an outlook
to future work.

2 The TSP with Time Windows

The TSPTW is formally defined as follows. Given an undirected complete graph
G = (N, A)—where N = {0, 1, . . . , n} is a set of nodes representing the de-
pot (node 0) and n customers, and A = N × N is the set of edges connect-
ing the nodes—a solution to the problem is a tour visiting each node once,
starting and ending at the depot. Hence, a tour is represented as P = (p0 =
0, p1, . . . , pn, pn+1 = 0), where the sub-sequence (p1, . . . , pk, . . . , pn) is a permu-
tation of the nodes in N \{0} and pk denotes the index of the customer at the kth

position of the tour. Two additional elements, p0 = 0 and pn+1 = 0, represent
the starting depot and the final depot.

For every edge aij ∈ A between two nodes i and j, there is an associated cost
c(aij). This cost typically represents the travel time between customers i and j,
plus a service time at customer i.

Furthermore, there is a time window [ei, li] associated to each node i ∈ N ,
which specifies that customer i cannot be serviced before ei or visited later than
li. In most formulations of the problem, waiting times are permitted, that is, a

Beam-ACO Based on Stochastic Sampling 99

node i can be reached before the start of its time window ei, but cannot be left
before ei. Therefore, given a particular tour P , the departure time from customer
pk is calculated as Dpk

= max(Apk
, epk

), where Apk
= Dpk−1 + c(apk−1,pk

) is the
arrival time at the customer pk in the tour.

Two different but related objectives for this problem are found in the litera-
ture. One is the minimization of the cost of the edges traversed along the tour.
The other alternative is to minimize Apn+1 , that is, the arrival time at the depot.
The first objective is analogous to the objective of the TSP, while the second is
similar to the concept of a makespan in scheduling problems. In this paper, we
focus on the latter. Hence, we formally define the TSPTW as:

min F (P) = Apn+1 , (1)

subject to Ω(P) =
∑n+1

k=0 ω(pk) = 0, where ω(pk) = 1 if Apk
> lpk

, and 0
otherwise. Note that Apn+1 is recursively computed as Apk+1 = max(Apk

, epk
)+

c(apk,pk+1). In the above definition, Ω(P) denotes the number of time window
constraints that are violated by tour P , which must be zero for feasible solutions.

3 The Beam-ACO Algorithm

In the following we first explain the solution construction, which is the crucial
part of our Beam-ACO algorithm. The application of the (Beam-)ACO frame-
work to any problem implies the definition of a pheromone model T and a
solution construction mechanism. In fact, we need a solution construction mech-
anism for the probabilistic beam search as well as for stochastic sampling.

Stochastic Sampling. Given a partial solution, an ant a chooses at each con-
struction step one customer j among the set N (Pa) of customers not included
yet in the current partial tour Pa. Once all customers have been added to the
tour, it is completed by adding node 0. The decision of which customer to choose
at each step is done with the help of pheromone information and heuristic in-
formation. As for the pheromone information, ∀aij ∈ A, ∃τij ∈ T , 0 ≤ τij ≤ 1,
where τij represents the desirability of visiting customer j after customer i in
the tour. The greater the pheromone value τij , the greater is the desirability of
choosing j as the next customer to visit in the current tour.

The decision of which customer to choose is made by firstly generating a
random number q uniformly distributed within [0, 1] and comparing this value
with a parameter q0 called the determinism rate. If q ≤ q0, j is chosen deter-
ministically as the value with the highest product of pheromone and heuristic
information, that is, j = arg maxk∈N (Pa){τik · ηik}, where i is the last customer
added to the tour Pa, and ηij is the heuristic information that represents an
estimation of the benefit of visiting customer j after customer i. Otherwise, j is
stochastically chosen from the following distribution of probabilities:

pi(j) =
τij · ηij

∑

k∈N (Pa) τik · ηik
if j ∈ N (Pa) (2)

100 M. López-Ibáñez et al.

There are several heuristics that could be used for the TSPTW. When deciding
which customer should be visited next, not only a small travel cost between
customers (cij) is desirable, but also those customers whose time window fin-
ishes sooner should be given priority to avoid constraint violations. In addition,
visiting those customers whose time window starts earlier may prevent waiting
times. Hence, we use a heuristic information that combines the travel cost be-
tween customers, the latest service time (lj) and the earliest service time (ej).
The values are first normalized to [0, 1], with the maximum value corresponding
to 0 and the minimum to 1, and then combined:

ηij = λc cmax − cij

cmax − cmin
+ λl lmax − lj

lmax − lmin
+ λe emax − ej

emax − emin
(3)

where λc + λl + λe = 1 are weights that allow to balance the importance of
each heuristic. In earlier experiments, we found out that no single combination
of weights would perform optimally across all instances in our benchmark set.
Therefore, we decided to define the weights randomly for each application of
probabilistic beam search.

The solution construction mechanism described above may result in the con-
struction of infeasible solutions. Therefore, it is necessary to define a way of
comparing between different—possibly infeasible—solutions. This will be done
lexicographically (<lex) by first minimising the number of constraint violations
(Ω) and, in the case of an equal number of constraint violations, by comparing
the tour cost (F). More formally, we compare two different solutions P and P ′

as follows:

P <lex P ′ ⇐⇒ Ω(P) < Ω(P ′) ∨ (Ω(P) = Ω(P ′) ∧ F (P) < F (P ′)) (4)

Probabilistic Beam Search. The probabilistic beam search that we developed
for the TSPTW is described in Algorithm 1. The algorithm requires three input
parameters: kbw ∈ Z

+ is the so-called beam width, μ ∈ R
+ ≥ 1 is a parameter that

determines the number of children that can be chosen at each step, and N s is the
number of stochastic samples taken for evaluating a partial solution. Moreover,
Bt denotes a set of partial tours called the beam. Hereby, index t denotes the
current iteration of the beam search. At any time it holds that |Bt| ≤ kbw, that
is, the beam is smaller than or equal to the beam width. A problem-dependent
greedy function ν() is utilized to assign a weight to partial solutions.

At the start of the algorithm the beam only contains one partial tour starting
at the depot, that is, B0 := {(0)}. Let C := C(Bt) denote the set of all possible
extensions of the partial tours in Bt. A partial tour P may be extended by
adding a customer j not yet visited by that tour. Such a candidate extension
of a partial tour is henceforth denoted by 〈P, j〉. At each iteration, at most

μ · kbw� candidate extensions are selected from C by means of the procedure
ChooseFrom(C) to form the new beam Bt+1. At the end of each step, the new
beam Bt+1 is reduced by means of the procedure Reduce in case it contains more
than kbw partial solutions. When the current iteration is equal to the number of
customers (t = n), all elements in Bn are completed by adding the depot, and
finally the best solution is returned.

Beam-ACO Based on Stochastic Sampling 101

Algorithm 1. Probabilistic Beam search (PBS) for the TSPTW
1: B0 := {(0)}
2: randomly define the weights λc, λl, and λe

3: for t := 0 to n do
4: C := C(Bt)
5: for k = 1, . . . , min{�μ · kbw�, |C|} do
6: 〈P, j〉 := ChooseFrom(C)
7: C := C \ 〈P, j〉
8: Bt+1 := Bt+1 ∪ 〈P, j〉
9: end for

10: Bt+1 := Reduce(Bt+1, kbw)
11: end for
12: output: arg minlex {T | T ∈ Bn}

The procedure ChooseFrom(C) chooses a candidate extension 〈P, j〉 from C,
either deterministically or probabilistically according to the determinism rate
q0. More precisely, for each call to ChooseFrom(C), a random number q is gen-
erated and if q ≤ q0 then the decision is taken deterministically by choosing the
candidate extension that maximises the product of the pheromone information
T and the greedy function ν(): 〈P, j〉 = arg max〈P ′,k〉∈C τ(〈P ′, k〉) · ν(〈P ′, k〉)−1,
where τ(〈P ′, k〉) corresponds to the pheromone value τik ∈ T , supposing that i
is the last customer visited in tour P ′.

Otherwise, if q > q0, the decision is taken stochastically according to the
following probabilities:

p(〈P, j〉) =
τ(〈P, j〉) · ν(〈P, j〉)−1

∑

〈P ′,k〉∈C

τ(〈P ′, k〉) · ν(〈P ′, k〉)−1
(5)

The greedy function ν(〈P, j〉) assigns a heuristic value to each candidate ex-
tension 〈P, j〉. In principle, for this purpose we could use the heuristic η given
by Eq. (3), that is, ν(〈P, j〉) = η(〈P, j〉). As in the case of the pheromone in-
formation, the notation η(〈P, j〉) refers to the value of ηik as defined in Eq. (3),
supposing that i was the last customer visited in tour P . However, when compar-
ing two extensions 〈P, j〉 ∈ C and 〈P ′, k〉 ∈ C, the value of η might be misleading
in case P �= P ′. We solved this problem by defining the greedy function ν() as
the sum of the ranks of the heuristic information values that correspond to the
construction of the extension. For an example see Fig. 1. The edge labels of the
search tree are tuples that contain the (fictious) values of the heuristic infor-
mation (η) in the first place, and the corresponding rank in the second place.
For example, the extension 2 of the partial solution (1), denoted by 〈(1), 2〉 has
greedy value ν(〈(1), 2〉) = 1 + 2 = 3.

Finally, the application of procedure Reduce(Bt) removes the worst max{|Bt|−
kbw, 0} partial solutions from Bt. As mentioned before, we use stochastic sampling
for evaluating partial solutions. More specifically, for each partial solution, a
number N s of complete solutions is sampled as explained in the paragraph above

102 M. López-Ibáñez et al.

(0)

1 2 3

(0.5, 1) (0.2, 3) (0.3, 2)

2 3 1 3 1 2

(0.3, 2) (0.7, 1) (0.5, 1) (0.5, 1) (0.4, 2) (0.6, 1)

3 2 3 1 2 1

(1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1)

Fig. 1. Search tree corresponding to a problem instance with three customers. Edge
labels are tuples that contain the heuristic information (η) in the first place, and the
corresponding rank in the second place.

on stochastic sampling. The value of the best of these samples (with respect to
Eq. 4) is used for evaluating the corresponding partial solution. Only the kbw best
partial solutions (with respect to their corresponding best samples) are kept in
Bt and the others are discarded.

3.1 Beam-ACO Framework

The probabilistic beam search outlined in the previous section is used to con-
struct solutions within an ACO algorithm that is implemented in the hyper-cube
framework [12]. A high level description of the algorithm is given in Algorithm 2.
The data structures used, in addition to counters and to the pheromone values,
are: (1) the best-so-far solution P bf, that is, the best solution generated since
the start of the algorithm; (2) the restart-best solution P rb, that is, the best
solution generated since the last restart of the algorithm; (3) the convergence
factor (cf), 0 ≤ cf ≤ 1, which is a measure of how far the algorithm is from
convergence; and (4) the Boolean variable bs update, which becomes true when
the algorithm reaches convergence.

Roughly, the algorithm works as follows. Initially, all variables are initialized.
In particular, the pheromone values are set to their initial value 0.5. Then, a
main loop is repeated until a termination criteria, such as a CPU time limit,
is met. Each algorithm iteration consists of the following steps. First, a prob-
abilistic beam search algorithm is executed, which returns solution P ib. Then,
after updating the best-so-far solution, a new value for the convergence factor
cf is computed. Depending on this value, as well as on the value of the Boolean
variable bs update, a decision on whether to restart the algorithm or not is made.
If the algorithm is restarted, all the pheromone values are reset to their initial
value (0.5). The algorithm is iterated until the CPU time limit is reached. Once
terminated, the algorithm returns the best solution found which corresponds to
P bf. In the following we describe the two remaining procedures of Algorithm 2
in more detail.

Beam-ACO Based on Stochastic Sampling 103

Algorithm 2. ACO algorithm for the TSPTW
1: input: N s, kbw ∈ Z

+, μ ∈ R
+, q0 ∈ [0, 1] ⊂ R

2: P bf := null, P rb := null, cf := 0, bs update := false
3: τij := 0.5 ∀τij ∈ T
4: while CPU time limit not reached do
5: P ib := PBS(kbw,μ,N s) /* see Algorithm 1 */
6: if P ib <lex P rb then P rb := P ib

7: if P ib <lex P bf then P bf := P ib

8: cf := ComputeConvergenceFactor(T)
9: if bs update = true and cf > 0.99 then

10: τij := 0.5 ∀τij ∈ T
11: P rb := null, bs update := false
12: else
13: if cf > 0.99 then bs update := true end if
14: ApplyPheromoneUpdate(cf, bs update , T , P ib, P rb, P bf)
15: end if
16: end while
17: output: P bf

Procedure ComputeConvergenceFactor(T) computes the convergence factor cf,
which is a function of the current pheromone values, as follows:

cf = 2

(∑

τij∈T max{τmax − τij , τij − τmin}
|T | · (τmax − τmin)

− 0.5

)

(6)

where τmax and τmin are, respectively, the maximum and minimum pheromone
values allowed. Hence, cf = 0 when the algorithm is initialized (or reset), that is,
when all pheromone values are set to 0.5. In contrast, when the algorithm has
converged, then cf = 1. In all other cases, cf has a value within (0, 1).

The next step of the algorithm updates the pheromone information by means
of the procedure ApplyPheromoneUpdate(cf, bs update, T , P ib, P rb, P bf). In ge-
neral, three solutions are used for updating the pheromone values. These are
the iteration-best solution P ib, the restart-best solution P rb, and the best-so-far
solution P bf. The influence of each solution on the pheromone update depends
on the state of convergence of the algorithm as measured by the convergence
factor cf. Hence, each pheromone value τij ∈ T is updated as follows:

τij = τij + ρ · (ξij − τij) , (7)

with ξij = κib ·P ib
ij +κrb ·P rb

ij +κbf ·P bf
ij , where ρ is a parameter that determines

the learning rate, P ∗
ij is 1 if customer j is visited after customer i in solution P ∗

and 0 otherwise, κib is the weight (i.e., the influence) of solution P ib, κrb is the
weight of solution P rb, κbf is the weight of solution P bf, and κib +κrb +κbf = 1.
For our application we used a standard update schedule as shown in Table 1 and
a value of ρ = 0.1.

104 M. López-Ibáñez et al.

Table 1. Setting of κib, κrb and κbf de-
pending on the convergence factor cf and
the Boolean control variable bs update

bs update false true
cf [0, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1] —

κib 1 2/3 1/3 0 0
κrb 0 1/3 2/3 1 0
κbf 0 0 0 0 1

After the pheromone update rule in
Eq. (7) is applied, pheromone values
that exceed τmax = 0.999 are set back
to τmax (similarly for τmin = 0.001).
This is done in order to avoid a com-
plete convergence of the algorithm,
which is a situation that should be
avoided. This completes the descrip-
tion of our Beam-ACO approach for
the TSPTW.

4 Experimental Evaluation

We implemented Beam-ACO in C++ and used 30 instances originally provided
by Potvin and Bengio [13] for testing. These instances are known to contain a mix
of randomly-located and clustered customers. First, we performed a set of initial
experiments in order to find appropriate values for various parameters of Beam-
ACO. On the basis of these experiments we chose kbw = 10, μ = 1.5, N s = 5,
q0 = 0.9, and a time limit of 60 CPU seconds per run and per instance. Each
experiment was repeated 25 times with different random seeds. All experiments
were run on a AMD Opteron 8218 processor, with 2.6 GHz CPU and 1 MB of
cache size running GNU/Linux 2.6.24.

Comparison to the State-of-the-art. In Table 2 we compare the results of Beam-
ACO with the results of two ACO algorithms proposed in the literature: ACS-
TSPTW [3] and ACS-Time [4], where ACS-TSPTW is a variation of ACS-Time.
These algorithms can be regarded as the current state-of-the-art for the TSPTW
with makespan optimization. The structure of Table 2 is as follows. F̃ is the
mean makespan obtained by each algorithm, and TCPU is the mean computa-
tion time in seconds. The results of ACS-TSPTW and ACS-Time were obtained
using an AMD Athlon CPU with 1.46 GHz, which should be about two times
slower than our machine. For the results of Beam-ACO, we provide the corre-
sponding standard deviations (“sd”). Finally, the column “Old Best-known”
gives the previously best known result for each instance, while “New Best-
known” gives the best-known makespan taking into account the results obtained
by Beam-ACO.

Beam-ACO obtained a feasible solution in all 25 runs, while it is not clear
how many feasible solutions were obtained by ACS-TSPTW and ACS-Time. In
case no feasible solution was obtained in any of the 5 runs of ACS-TSPTW or
ACS-Time, the corresponding entry is blank. In fact, ACS-TSPTW fails to find
any feasible solution in three cases, whereas ACS-Time fails to find any feasible
solution in five cases. Beam-ACO achieves a better performance than the other
two algorithms in 22 out of 30 cases. In further seven cases our algorithm equals
the best of the results obtained by the other two algorithms. Only for one instance
(rc.202.3) Beam-ACO was not able to obtain the best result known. In many

Beam-ACO Based on Stochastic Sampling 105

Table 2. Comparison of results obtained by ACS-TSPTW, ACS-Time and Beam-ACO

ACS-TSPTW ACS-Time Beam-ACO Best-known

Problem n F̃ TCPU F̃ TCPU F̃ sd TCPU sd Old New

rc201.1 20 592.06 100.94 592.06 96.77 592.06 0.00 0.01 0.00 592.06 592.06
rc201.2 26 877.49 246.26 866.56 262.66 860.17 0.00 0.39 0.44 861.91 860.17
rc201.3 32 867.61 464.30 854.11 466.13 853.71 0.00 0.09 0.15 853.71 853.71
rc201.4 26 900.52 151.05 — — 889.18 0.00 0.16 0.32 900.38 889.18

rc202.1 33 880.74 241.77 880.74 241.72 850.48 0.00 0.95 1.15 871.11 850.48
rc202.2 14 338.52 46.77 382.47 47.17 338.52 0.00 0.00 0.00 338.52 338.52
rc202.3 29 892.18 190.24 — — 894.10 0.00 0.26 0.50 847.31 847.31
rc202.4 28 — — 874.55 170.75 853.71 0.00 1.18 1.19 856.37 853.71

rc203.1 19 673.07 78.83 600.66 80.44 488.42 0.00 0.01 0.01 572.63 488.42
rc203.2 33 926.75 255.77 911.34 278.96 853.71 0.00 4.05 3.37 897.88 853.71
rc203.3 37 — — — — 921.54 0.51 20.47 13.58 — 921.44
rc203.4 15 493.85 53.08 429.96 52.11 338.52 0.00 0.01 0.01 415.26 338.52

rc204.1 46 949.68 438.25 — — 925.12 1.14 24.79 15.62 949.22 920.11
rc204.2 33 863.65 240.55 770.08 238.42 691.58 3.21 22.46 15.74 753.52 690.06
rc204.3 24 642.06 127.27 533.25 128.80 456.19 1.58 19.15 18.71 488.36 455.03

rc205.1 14 422.24 46.90 421.57 46.67 417.81 0.00 0.03 0.05 417.81 417.81
rc205.2 27 820.19 181.06 820.19 195.11 820.19 0.00 3.44 2.68 820.19 820.19
rc205.3 35 950.05 274.55 951.22 273.09 950.05 0.00 0.13 0.20 950.05 950.05
rc205.4 28 870.43 186.56 849.32 180.18 837.71 0.00 1.70 1.09 838.75 837.71

rc206.1 4 117.85 13.27 117.85 13.41 117.85 0.00 0.00 0.00 117.85 117.85
rc206.2 37 914.99 306.13 906.98 304.27 879.17 6.07 14.22 16.85 905.47 870.49
rc206.3 25 650.59 140.72 650.59 140.51 650.59 0.00 0.01 0.01 650.59 650.59
rc206.4 38 943.31 320.19 — — 920.18 5.17 29.44 18.14 943.31 911.98

rc207.1 34 860.98 258.44 889.33 258.28 820.23 4.19 26.88 17.07 851.06 809.86
rc207.2 31 — — 792.38 — 720.78 1.07 24.21 16.76 761.78 717.22
rc207.3 33 955.70 241.70 844.98 233.68 757.80 8.49 34.73 13.39 836.05 747.47
rc207.4 6 133.14 22.45 133.14 22.80 133.14 0.00 0.00 0.00 133.14 133.14

rc208.1 38 934.80 334.72 901.61 331.58 820.88 8.84 41.96 10.42 877.20 810.70
rc208.2 29 722.24 185.73 608.84 185.33 581.32 0.00 8.50 5.89 591.43 581.32
rc208.3 36 795.03 291.98 739.54 295.94 691.66 1.30 26.67 15.14 715.27 686.80

instances, Beam-ACO found the (presumably) optimal solution in all 25 runs,
as illustrated by a zero standard deviation.

With respect to computation time, Beam-ACO is between 5 and 100 times
faster than the other two algorithms. This difference of computation time be-
tween Beam-ACO and the other algorithms cannot be explained solely by dif-
ferences in processor speed.

Summarizing, the results let us conclude that Beam-ACO is a new state-of-
the-art algorithm for the TSPTW with makespan optimization.

Analysis of Beam-ACO. With the aim of obtaining a better understanding of the
behaviour of Beam-ACO we conducted a series of additional experiments. First,
we wanted to study the influence and the importance of the pheromone informa-
tion, which is used during the construction process of probabilistic beam search

106 M. López-Ibáñez et al.

as well as for stochastic sampling. For that purpose we repeated the experiments
with a version of Beam-ACO in which the pheromone update was switched off.
This has the effect of removing the learning mechanism from Beam-ACO. In the
presentation of the results this version is denoted by noph. In a second set of ex-
periments we wanted to study the importance of stochastic sampling. Remember
that, at each step of the probabilistic beam search, first a number of maximally

μ · kbw� extensions are chosen. Then, based on the results of stochastic sam-
pling, procedure Reduce removes extensions until only the best kbw extensions
with respect to stochastic sampling are left. In order to learn if this reduction
step is important, we repeated all the experiments with a version of Beam-ACO
where μ = 1 and kbw = 15 (in order to compensate for the smaller μ value). Note
that when μ = 1, procedure Reduce is never invoked and stochastic sampling is
never performed. In the presentation of the results this version of Beam-ACO
is denoted by no ss. Finally, we wanted to study how good stochastic sampling
is in terms of an estimate, by applying it only after a certain number of itera-
tions of each probabilistic beam search, that is, once the partial solutions in the
beam of a probabilistic beam search contain a certain percentage of customers.
More specifically, for the first (n− (rs · n)/100) iterations of probabilistic beam
search, stochastic sampling is not used. Instead, Reduce simply selects kbw par-
tial solutions at random. In contrast, for the remaining (rs · n)/100 iterations
of probabilistic beam search, procedure Reduce uses the estimate provided by
stochastic sampling for the elimination of partial solutions. Henceforth, we refer
to parameter rs as the rate of stochastic sampling. The value of this parame-
ter is given as a percentage, where 0% means that no stochastic sampling is
ever performed, while 100% refers to the Beam-ACO approach that always uses
stochastic sampling. In our experiments we tested the following rates of stochas-
tic sampling: rs = {0%, 25%, 50%, 75%, 85%, 100%}. In the presentation of the
results the corresponding algorithm versions are simply denoted by the value of
parameter rs.

Figure 2 shows the results of the different experiments described above for
five problem instances that are rather difficult to solve. The barplots (in grey)
compare the results with respect to the mean ranks obtained by each algorithm
version over 25 runs. Note that standard deviations are shown as error bars. The
ranks are calculated by sorting all solutions lexicographically. On the other hand,
the boxplots (in white) show the distribution of computation time (in seconds)
required by each algorithm version.

The following conclusions can be drawn. First, when no pheromone informa-
tion is used (see algorithm noph), the performance of the algorithm drops signif-
icantly. Interestingly, the performance of Beam-ACO without pheromone update
is always worse than the performance of Beam-ACO using at least rs = 50% of
stochastic sampling. Second, the use of stochastic sampling seems essential to
achieve satisfactory results. When no stochastic sampling is used (see algorithm
no ss), the results achieved are worse than the ones obtained by Beam-ACO
with stochastic sampling, and the algorithm requires significantly more compu-
tation time.

Beam-ACO Based on Stochastic Sampling 107

(Makespan, Constrain Violations) Time (s)

100%

85%

75%

50%

25%

 0%

noph

no_ss

(921.44, 0) (933.53, 0) (953.32, 0) (943.08, 1) (926.96, 2) (949.03, 2) (1028.64, 3) (1131.81, 4) (1059.12, 5) 0 10 20 30 40 50 60

100%

85%

75%

50%

25%

 0%

noph

no_ss

(455.03, 0) (462.34, 0) (463.43, 0) (466.96, 0) (469.58, 0) (471.75, 0) (474.82, 0) (476.82, 0) (480.48, 0) 0 10 20 30 40 50 60

100%

85%

75%

50%

25%

 0%

noph

no_ss

(820.19, 0) (823.72, 0) (820.19, 1) (830.25, 1) (851.08, 1) (821.54, 2) (823.18, 2) (833.36, 2) 0 10 20 30 40 50 60

100%

85%

75%

50%

25%

 0%

noph

no_ss

(747.47, 0) (761.03, 0) (774.86, 0) (781.85, 0) (788.33, 0) (800.91, 0) (811.64, 0) (833.78, 0) (898.82, 0) 10 20 30 40 50 60

100%

85%

75%

50%

25%

 0%

noph

no_ss

(581.32, 0) (584.75, 0) (588.96, 0) (593.08, 0) (594.67, 0) (598.94, 0) (603.07, 0) (612.69, 0) (620.31, 0) 0 10 20 30 40 50 60

Fig. 2. Results concerning the analysis of Beam-ACO. From top to bottom the graphics
concern instances rc.203.3, rc.204.3, rc.205.2, rc.207.3, and rc.208.2.

Finally, the results of the algorithm variants using different rates of stochastic
sampling show a clear pattern. The performance of the algorithm increases with
increasing rate of stochastic sampling. Disabling stochastic sampling completely
(rs = 0%), strongly affects the performance of Beam-ACO in a negative way.
Starting from rates of stochastic sampling of at least 75%, the performance of
the algorithm is already very close to—and sometimes the same as—the per-
formance of Beam-ACO when always using stochastic sampling. However, even
in those cases where a rate of stochastic sampling of 85% performs as well as
the variant using rs = 100%, the latter requires less computation time; see, for
example, instances rc.204.3 and rc.208.2. This is particularly interesting because
the variant using rs = 100% is the most expensive one in terms of computa-
tional effort. Therefore, this result suggests that stochastic sampling helps the
algorithm to converge faster to the best solutions.

108 M. López-Ibáñez et al.

5 Conclusions

In this paper, we have proposed a Beam-ACO approach for the TSPTW with
makespan optimization. Beam-ACO is a hybrid between ant colony optimization
and beam search that, in general, relies heavily on bounding information that
is accurate and computationally inexpensive. We studied a version of Beam-
ACO in which the bounding information is replaced by stochastic sampling.
Experiments were performed on a set of standard benchmark instances for the
TSPTW, comparing the Beam-ACO approach to the best known methods from
the literature. The results showed that Beam-ACO is a state-of-the-art algorithm
for the TSPTW with makespan optimization. In a second set of experiments
we analysed the influence of pheromone information and stochastic sampling
on the performance of Beam-ACO. The results showed that both algorithmic
components are essential for achieving high quality results. In the future we plan
to improve the performance of our Beam-ACO approach further, for example,
by the inclusion of local search.

References

1. Ohlmann, J.W., Thomas, B.W.: A compressed-annealing heuristic for the traveling
salesman problem with time windows. INFORMS J. Comput. 19(1), 80–90 (2007)

2. Savelsbergh, M.W.P.: Local search in routing problems with time windows. Annals
of Operations Research 4(1), 285–305 (1985)

3. Cheng, C.B., Mao, C.P.: A modified ant colony system for solving the travelling
salesman problem with time windows. Mathematical and Computer Modelling 46,
1225–1235 (2007)

4. Gambardella, L., Taillard, E.D., Agazzi, G.: MACS-VRPTW: A multiple ant
colony system for vehicle routing problems with time windows. In: Corne, D.,
Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 63–76. McGraw Hill,
London (1999)

5. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
6. Blum, C.: Beam-ACO–hybridizing ant colony optimization with beam search: an

application to open shop scheduling. Comp. & Op. Res. 32, 1565–1591 (2005)
7. Blum, C.: Beam-ACO for simple assembly line balancing. INFORMS J. Com-

put. 20(4), 618–627 (2008)
8. Ow, P.S., Morton, T.E.: Filtered beam search in scheduling. Int. J. Prod. Res. 26,

297–307 (1988)
9. López-Ibáñez, M., Blum, C.: Beam-ACO based on stochastic sampling: A case

study on the TSP with time windows. In: Battiti, R., et al. (eds.) Proceedings of
LION3. LNCS. Springer, Berlin (2009)

10. Juillé, H., Pollack, J.B.: A sampling-based heuristic for tree search applied to gram-
mar induction. In: Proceedings of AAAI 1998, pp. 776–783. MIT press, Cambridge
(1998)

11. Ruml, W.: Incomplete tree search using adaptive probing. In: Proceedings of IJCAI
2001, pp. 235–241. IEEE press, Los Alamitos (2001)

12. Blum, C., Dorigo, M.: The hyper-cube framework for ant colony optimization.
IEEE T. Syst. Man Cyb. – Part B 34(2), 1161–1172 (2004)

13. Potvin, J.Y., Bengio, S.: The vehicle routing problem with time windows part II:
Genetic search. INFORMS J. Comput. 8, 165–172 (1996)

	0
	1
	A Critical Element-Guided Perturbation Strategy for Iterated Local Search
	Introduction
	Critical Element-Guided Perturbation (CEGP)
	CEGP Procedure
	CEGP Framework
	ILS with CEGP

	Case Study 1: Graph Coloring
	Problem Description
	General Solution Procedure
	Initial Solution and Evaluation Function
	Local Search Procedure
	Perturbation
	Experimental Results and Comparisons

	Case Study 2: Course Timetabling
	Problem Description
	Initial Solution, Search Space and Evaluation Function
	Local Search Procedure
	Perturbation
	Experimental Results

	Conclusion and Discussion
	References

	109
	Binary Exponential Back Off for Tabu Tenure in Hyperheuristics
	Introduction
	Related Work
	Hyperheuristic Approaches
	Computational Experiments
	Conclusions
	References

	121
	Diversity Control and Multi-Parent Recombination for Evolutionary Graph Coloring Algorithms
	Introduction
	Problem Statement and Generic Hybrid Algorithm
	General Design of the Evolutionary Algorithm

	New Multi-Parent Crossover
	Population Management
	Search Space Distance Metric
	Offspring Reject Mechanism
	Diversity-Based Replacement Strategy

	Experimental Results
	Discussion
	Conclusions
	References

	13
	A Genetic Algorithm for Net Present Value Maximization for Resource Constrained Projects
	Introduction
	Genetic Algorithm
	Computational Tests
	Conclusions
	References

	133
	Divide-And-Evolve Facing State-of-the-Art Temporal Planners during the 6^{th} International Planning Competition
	Introduction
	Temporal Planning Problem
	Divide-And-Evolve
	Representation
	Fitness, and CPT
	Initialisation and Variation Operators
	Evolution Engine and Parameter Settings

	Comparing DAE and CPT on IPC-3 Problems
	DAE at the IPC-6 Competition
	Maximal Number of Backtracks
	Detailed DAE Results at IPC-6
	A New Version of DAE
	Time-Based Atom Choice

	Conclusion and Further Work
	References

	145
	Exact Solutions to the Traveling Salesperson Problem by a Population-Based Evolutionary Algorithm
	Introduction
	Previous Work
	Our Contributions

	An EA for the TSP
	Individuals and Population
	Fitness and Selection
	Mutation
	 (μ+ 1)-EA

	Analysis of the (μ+ 1)-EA
	Conclusions and Outlook
	References

	156
	Finding Balanced Incomplete Block Designs with Metaheuristics
	Introduction
	Background
	Formulation
	Related Work

	Solving the $\langle v,b,r,k,\lambda\rangle$-BIBD Problem
	Objective Function
	Neighborhood Structures
	Local Search Techniques
	Genetic Algorithm

	Experimental Results
	Conclusions and Future Work
	References

	168
	Guided Ejection Search for the Job Shop Scheduling Problem
	Introduction
	Problem Definition and Notations
	Guided Ejection Search for the JSP
	GES Framework for the JSP
	Algorithm of Procedure $\sc{Ejection}$
	Algorithms of Procedures $\sc{LocalSearch}$ and $\sc{Perturb}$

	Computational Experiments
	Experimental Settings
	Analysis of GES
	Comparisons with Other Algorithms

	Conclusion
	References

	180
	Improving Performance in Combinatorial Optimisation Using Averaging and Clustering
	Introduction
	Recap on MAX-SAT
	Experimental Results
	Landscape of MAX-3-SAT

	Vertex Covering
	Conclusions
	References

	192
	Iterated Local Search for Minimum Power Symmetric Connectivity in Wireless Networks
	Introduction
	Minimum Power Symmetric Connectivity Problem
	Related Work

	Iterated Local Search
	Experiments
	Obtaining Optimal Solutions
	Results

	Conclusion
	References

	204
	Metropolis and Symmetric Functions: A Swan Song
	Motivation
	Criterion for Polynomial Time
	Interpretation
	Practical Relevance
	Conclusion and Outlook
	Bibliography

	216
	Robustness Analysis in Evolutionary Multi-Objective Optimization Applied to VAR Planning in Electrical Distribution Networks
	Introduction
	The Degree of Robustness
	Perturbations of the Objective Function Coefficients
	Perturbations of the Constraint Coefficients
	The Robustness Parameters

	The Reactive Power Compensation Problem in Electrical Distribution Networks
	The Evolutionary Algorithm
	Illustrative Results of a Real-World Case Study
	Conclusions
	References

	228
	Staff Scheduling with Particle Swarm Optimisation and Evolution Strategies
	Introduction to the Problem of Staff Scheduling
	Formal Statement of the Problem
	Related Work
	PSO Approach and Evolution Strategy
	Problem Representation
	Outline of Combinatorial PSO for This Application
	Outline of Evolution Strategy for This Application

	Test Problem and Experimental Setup
	Results and Discussion
	Conclusion and Future Work
	References

	240
	University Course Timetabling with Genetic Algorithm: A Laboratory Excercises Case Study
	Introduction
	University Course Timetabling Problem
	Problem Statement
	Laboratory Exercise Timetabling Problem

	Solving LETP with Genetic Algorithm
	Solution Representation
	Creation of Initial Population
	Fitness Function
	Genetic Operators
	Local Search Algorithm
	GA Parameters and Adaptation

	Results
	Conclusions and Future Work
	References

	25
	A Hybrid Algorithm for Computing Tours in a Spare Parts Warehouse
	Introduction
	Problem Definition
	Related Work
	A Hybrid Variable Neighborhood Search Approach
	The Basic Principle
	Assignment of Articles to Tours
	Computing Individual Tours
	Assignment of Workers to Tours

	Experimental Results
	Conclusions
	References

	37
	A New Binary Description of the Blocks Relocation Problem and Benefits in a Look Ahead Heuristic
	Introduction
	Binary Encoding of the BRP
	A Simple Heuristic Approach
	The Algorithm
	Computational Results
	Conclusion
	References

	49
	A Plasmid Based Transgenetic Algorithm for the Biobjective Minimum Spanning Tree Problem
	Introduction
	Multi-objective Minimum Spanning Tree Problem
	Transgenetic Algorithm
	Transgenetic Algorithm for the mc-MST
	Computational Experiments
	Conclusions
	References

	61
	A Tabu Search Algorithm with Direct Representation for Strip Packing
	Introduction
	Problem Formulation
	TSD: A Tabu Search with Direct Representation
	Search Space: A Direct Representation
	Initial Solution
	Fitness Function
	Neighborhoods and Their Exploitation
	Tabu List
	Diversification
	TSD: An Overview

	Experimentations
	Experimentation Conditions
	Computational Results

	Possible Extensions
	Conclusions
	References

	73
	An ACO Approach to Planning
	Introduction
	A Brief Introduction to Automated Planning
	ACO and Planning
	Ant Colony Optimization
	Planner Ants
	Heuristic Estimation η
	Plan Evaluation
	Pheromone Update

	Experimental Results
	Related Works
	Conclusions and Future Works
	References

	85
	An Artificial Immune System for the Multi-Mode Resource-Constrained Project Scheduling Problem
	Introduction
	Vertebrate Immune System
	AIS Algorithm for the MRCPSP
	Representation
	Initial Population
	Clonal Selection Process
	Affinity Maturation

	Computational Results
	Parameter Setting
	Comparison

	Conclusions
	References

	97
	Beam-ACO Based on Stochastic Sampling for Makespan Optimization Concerning the TSP with Time Windows
	Introduction
	The TSP with Time Windows
	The Beam-ACO Algorithm
	Beam-ACO Framework

	Experimental Evaluation
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

