Towards Temporal Information
in Workflow Systems

Carlo Combi! and Giuseppe Pozzi?

! Universita di Verona, strada le Grazie 15 1-37134 Verona - Italy
combi@sci.univr.it
2 Politecnico di Milano, P.za L. da Vinci 32 1-20133 Milano - Ttaly
giuseppe.pozzi@polimi.it

Abstract. A workflow management system (WfMS) is a software sys-
tem that supports the coordinated execution of different simple activities,
assigning them to human or automatic executors, to achieve a common
goal defined for a business process. Temporal aspects of stored infor-
mation cannot be neglected and the adoption of a temporal database
management system (TDBMS) could benefit.

By this paper we scratch the surface of the topic related to the use of a
TDBMS in a WIMS, identifying some advantages in managing temporal
aspects by a TDBMS inside some of the components of a WIMS. E.g.,
queries to reconstruct the schema of the business process or to assign ac-
tivities to executors balancing their workload over time, or the definition
of constraints among tasks can benefit from the use of a TDBMS.

1 Introduction

Workflows are activities involving the coordinated execution of multiple tasks
performed by different processing entities. A worktask (or task) defines some
work to be done by a person, by a software system or by both of them. Specifying
a workflow involves describing those aspects of its component tasks (and the
processing entities that execute them) that are relevant to control and coordinate
their execution, as well as the relationships between the tasks themselves.

Information needed to run a workflow are stored by a database management
system (DBMS). In most cases, the adopted DBMS is a traditional, off-the-shelf,
relational DBMS which does not provide any facility to manage temporal aspects
of stored information, forcing the designer to explicitly define and manage those
aspects. Temporal information to be managed in a workflow involves several
aspects, such as the starting and ending timestamps of a task, the deadline for
completing an activity, the validity time of a data item, the time interval between
the execution of two different activities, to mention few of them.

With regards to these temporal aspects, the adoption of a temporal DBMS
(TDBMS), which is based on a data model where time and time dimensions are
suitably represented and managed [12], could easily improve the development of
a system devoted to the automatic management of workflows (workflow man-
agement system: W{MS). Indeed, the adoption of a temporal data model and of
a related temporal query language, could help to:

A. Olivé et al. (Eds.): ER 2002 Ws, LNCS 2784, pp. 13-25] 2003.
© Springer-Verlag Berlin Heidelberg 2003

14 Carlo Combi and Giuseppe Pozzi

— manage in a homogeneous way information related to different aspects of a
workflow system, providing a uniform data model to all the software com-
ponents of a workflow system:;

— express in a general way those temporal aspects that are not application-
dependent, thus allowing the focus on specific issues of the application when
designing a workflow;

— allow a powerful specification of workflows, where application-dependent
temporal aspects of real world situations can be simply expressed.

This paper provides a first analysis of specific temporal issues of workflow
systems which could be suitably faced by the adoption of a TDBMS; more specif-
ically, we first consider temporalities of information modeled in workflow systems
and then examine the temporal issues related to the management of this infor-
mation during the automatic execution of workflows. In this paper we shall adopt
a generic temporal relational data model and the widely known temporal query
language TSQL2 [13], to show how to model and manage different temporalities
in WfMSs. Throughout the paper, we shall mainly consider the two basic tempo-
ral dimensions, namely valid and transaction times, which have been extensively
considered in the temporal database literature [12]; more recent topics in the
temporal database area will be mentioned for specific needs of WfMSs.

In the following, Section 2l provides some basic concepts on workflow systems,
a motivating example, and a description of used models. Section [3] discusses the
workflow models which require temporal dimensions, and describes the compo-
nents of a workflow system that could greatly benefit from the adoption of a
TDBMS, mentioning also relevant related work. Finally, Section M sketches out
some conclusions and general remarks.

2 Workflow Management Systems - WfMSs

Workflow Management Systems (WfMSs) are software systems that support the
specification of business processes (described by their process model or schema),
the execution of process instances (cases) described in terms of activities (tasks)
and of dependencies among tasks. A business process may refer to the man-
agement of a car rental company, of a travel agency, of an assurance company
or even a bank loan. WIMSs control process executions by scheduling activities
and by assigning them to executing agents. WfMSs are very complex systems
and include many different components, such as: the interpreter of the process
definition language (PDL) used to formally model the business process; the pro-
cess model designer, which helps the user to suitably define a process model
according to the supported PDL; the resource management unit, to assign tasks
to executing agents; the database connectivity unit, to access data stored into a
DBMS; the transaction manager; and the e-mail feeder.

2.1 A Motivating Example

Throughout the paper, as motivating example of a business process that can be
managed by a WIMS, we shall refer to a car rental company: Figure [l depicts

Towards Temporal Information in Workflow Systems 15

the car rental example. Although the semantics of the graphical representation
is very intuitive, we refer to the conceptual model described in [5].

A new case is started as the car rental company receives a reservation request.
The task GetRentalData collects customer’s data and pick-up and return date and
place. Next, ChooseCar specifies the type of car the customer prefers (Ferrari,
Cadillac, ...). The task CheckCarAvailability queries the database and verifies
whether the specified car is available by defining a value for the variable Available.
According to the value of Available observed by routing task R1, the outgoing
left arch may be followed, leading to the task RejectReservation which informs
the customer about failure in reserving the car: otherwise, if the car is available,
the task MakeReservation performs the reservation and informs the customer,
while SendConfirmation sends the customer a mail with reservation details.

CarReservation GetRentalData
Warkflow variables: Customer's data are registered
CustomerName
Car
ReservationDate
RentalDate
ReturnDate
Available ChooseCar
Customer chooses the car
CheckCarAvailability
Check for car availability
MakeReservation
Reservation is made
- T R1 - T aal
l Available = "no Available = "yes'
Y
RejectReservation SendConfirmation
Booking is rejected Reservation is confirmed by mail

Y 3

Fig. 1. Schema for the CarReservation process

2.2 Workflow Models

A WIMS stores all the information it needs inside a database managed by a
DBMS. Several models can be defined for a WfMS considering the organization
where the process is enacted and managed, the formal description of the process
model, the data used by the process, the exception model to manage expected
events which may force a deviation from the main flow [6], the transaction model

16 Carlo Combi and Giuseppe Pozzi

to manage aspects of concurrent access to shared data [5]. In the following, we
categorize some of the models we shall refer to, as defined in [5].

The Organizational Model The organizational model formally depicts the
organization of the company where the process is being enacted. Information
mainly relates to agents, owned skills and hierarchy inside the company: all this
information is stored by suitable database tables, whose structure is indepen-
dent both from the organization and from the application domain. Every agent
belongs to a group: a group collects agents either involved in the same project
or working in the same geographical area. Every agent has a function (or role)
specifying the skills the agents owns and the tasks he/she can be assigned, and
a supervisor. A generic description of the organizational model includes several
tables: however, for clarity reasons, we shall assume that all the information are
stored into one unique table, namely Agent, storing the name and the Id of the
agent, the e-mail address, the role owned, the group the agent belongs to, and
the Id of the manager for that agent. The structure of the table, with some tuples
for the CarRental process, is the following:

|Agent AgentName|AgentId|E-mail Role Group ManagedBy
Hernest HO03 hernest@mailer PhoneOperator|Boston B08
Rudy RO1 rudy@mailer PhoneOperator|Boston [B08
Laura LO5 laura@mailer PhoneOperator|[Harvard [B08
Ken K13 ken@mailer PhoneOperator[Harvard [B08
Doug D10 douglas@mailer CarExpert Syracuse [B08
Bob B08 mass_dealer@mailer|LocalDealer Boston [BO1
Luke B01 boss@mailer CEO Arlington|B01

The Process Model The process model describes the schema of the process;
all the information is stored inside suitable database tables whose structure is
statically determined and independent from the application domain. At process
model design time, the process engineer specifies which is the first task to be
executed, the subsequent tasks, the conditions to be evaluated to select different
outgoing arcs, the criteria used to assign tasks to agents.

Namely, the tables of the process model are: Workflow, storing the names of
the process models registered into the WfMS with their respective first task to
be activated; Worktask, storing the names of the tasks of all the process models
and the required role for the executing agent; RoutingTask, describing the type
of all the routing tasks of any process model; Next, storing the successor task for
any task of any process model; AfterFork, storing the criteria adopted to activate
arcs outgoing from a routing task of any process model. Their structures with
some tuples related to the process model CarReservation are the following;:

[Workflow[SchemaName [StartTask |
[CarReservation[GetRentalData]

WorkTask|SchemaName [TaskName Role
CarReservation|GetRentalData PhoneOperator
CarReservation|ChooseCar CarExpert

CarReservation

CheckCarAvailability

InformationSystem

CarReservation

RejectReservation

PhoneOperator

CarReservation

MakeReservation

PhoneOperator

CarReservation

SendConfirmation

InformationSystem

Towards Temporal Information in Workflow Systems 17

[RoutingTask[SchemaName [RTName]Type |

[CarReservation|[R1 [mutualex_fork|
|Next SchemaName [TaskName NextTask
CarReservation|GetRentalData ChooseCar
CarReservation|ChooseCar CheckCarAvailability
CarReservation|CheckCarAvailability|[R1
CarReservation|MakeReservation SendConfirmation
CarReservation|SendConfirmation end_flow
CarReservation|RejectReservation end_flow
|AfterFork SchemaName [ForkTask|NextTask Cond
CarReservation|R1 RejectReservation|Available = “no”
CarReservation|R1 MakeReservation [Available = “yes”

The Information Model. The information model describes the application
domain data the process has to manage and the history of different cases.
Process Specific Data. The structure of process-specific tables is defined at schema
design time and tables are automatically derived. Even though in most cases sev-
eral tables are used, for clarity reasons in the following we assume that all the
data about the cases of the process model CarReservation is stored within one
single table: tables can eventually be reconstructed as a view. The table Rental-
Data stores the process variables defined at process design time: case identifier,
customer’s name, date when the reservation was made, date of picking up the
car, date for returning the car, and availability of the car as a result of the reser-
vation. This latter variable is used by routing task R1 to activate the successor
task (RejectReservation or MakeReservation). Table RentalData, with 2 runs of
the CarReservation process, is depicted as:

[RentalData]Caseld[CName Car ReservationDate|RentalDate|ReturnDate| Available
50 Marple J. [Cadillac 01-03-09 01-12-01 02-01-06 “yes”
51 Wallace E.|Lamborghini|01-07-11 02-02-01 02-02-02 “no”

Historical Data. Historical data contains information related to the execution
of tasks and cases and is independent from the application domain. A generic
description of historical data is obtained by the tables CaseHistory (storing the
identifier of all the executed cases, the name of their respective process model,
the responsible agent, which in most cases is the starting agent, and tempo-
ral information about the start time and the duration of the entire case) and
TaskHistory (storing the name of the task, the identifier of the case the task be-
longed to, the name of the executing agent, the final status of the task and the
time of start and end of the task itself). Their structures with some tuples from
the process model CarReservation are the following;:

|CaseHistory Caseld[SchemaName |Responsible|StartTime Duration
47 CarReservation|H03 01-03-09 10:03:10{8 min 40 sec
48 CarReservation|[L05 01-07-11 9:00:10 |3 min 49 sec

18 Carlo Combi and Giuseppe Pozzi

[TaskHistory[Caseld[TaskName StartTime EndTime FinalState [AgentId
47 GetRentalData 01-03-09 10:03:10[{01-03-09 10:05:50|{Completed|HO3
47 ChooseCar 01-03-09 10:06:00[{01-03-09 10:08:50{Completed|D10
47 CheckCarAvailability[01-03-09 10:08:51[01-03-09 10:08:52| Completed|auto
47 MakeReservation 01-03-09 10:08:53[01-03-09 10:08:55|Completed|RO1
47 SendConfirmation 01-03-09 10:09:10[01-03-09 10:11:50[Completed|auto
48 GetRentalData 01-07-11 9:00:10 [01-07-11 9:01:43 [Completed|L05
48 ChooseCar 01-07-11 9:01:45 [01-07-11 9:02:01 [Completed|D10
48 CheckCarAvailability[01-07-11 9:02:03 [01-07-11 9:02:07 [Completed]|auto
48 RejectReservation 01-07-11 9:02:10 [01-07-11 9:03:59 [Completed|K13

3 Temporal Aspects in WfMS

In this section, we show that several aspects managed by a WfMS have relevant
temporal dimensions. We first introduce some examples of temporalities we need
to consider when representing and storing information related to the different
models of Section B2} then, we show how this information should be managed
by the WfMS through a TDBMS.

3.1 Temporalities of the Models

Several temporal aspects of data could be managed by a TDBMS, providing a
unified support for all the models the WfMS needs. In the following we shall focus
on the application to workflow models of those temporal dimensions which are
widely recognized as the fundamental temporal dimensions of any fact relevant
to a database [12]: valid and transaction times. The valid time (VT) of a fact is
the time when the fact is true in the considered domain, while the transaction
time of a fact is the time when the fact is current in the database.
Temporality in the Organizational Model. In defining the organizational
model, temporal aspects have to be considered: indeed, we need to represent
when agents are available to perform any task suitable for their roles. Let us
consider the case of human agents in the CarReservation process: each agent is
working only during certain hours of the day and only during some days of the
week; furthermore, each agent spends some holidays out of work during the year.
All these aspects have to be managed in any case by the WfMS. The adoption of
an organizational model which explicitly considers these temporal features can
improve the usability of the system by the workflow designer, which can suitably
represent the temporal constraints of the organization under consideration. As
an example, in the following table we describe when a given agent is available.

[AgentAvailability[AgentId[VT

HO03 working days in [00-08-09 = +o0]

RO1 mondays, tuesdays in [00-01-05 +~ +o0]
L05 working mornings in [00-05-07 +— +o0]
K13 working days in [01-01-23 + +o0

D10 working days in [01-01-09 -+ +oo

B08 working days in [01-11-11 + +o0

BO1 all days in [00-01-03 + +o0]

Towards Temporal Information in Workflow Systems 19

CarReservation GetRentalData

Workflow variables:
CustomerName

Car

ReservationDate
RentalDate
ReturnDate
Available

Customer's data are registered

ChooseCar

Customer chooses the car

CheckCarAvailability

—

RejectReservation

Check for car availabilit

Booking is rejected

Available = "no" R1 Available = "yes" l

SendApologizes MakeReservation

Send apologizes by mail Reservation is made

_— R —

Fig. 2. Schema for the CarReservation process after a change to schema has been
applied

In the previous example we assume we are able to express valid time ac-
cording to different granularities, suitably defined and managed by the TDBMS.
Several works on time granularity have been done within the temporal database
community, which should be deeply considered in modelling this kind of temporal
data for a WIMS [1I8II3/10].

Temporality in the Process Model. In the process model we mainly distin-
guish two different temporal aspects: versioning and temporal constraints.
Versioning. A process can have different versions, which result from the modifi-
cation of the process schema due to the evolution of the application needs: for
example, we can imagine that the schema of the process CarReservation, defined
on January 5th, 2000, is that one depicted in Figure [until October 12" 2001,
when it is modified as depicted in Figure 2. As a difference from the previous
version of the schema, if the reservation succeeds, the customer is no longer sent
a confirmation: if the reservation fails, the customer is informed and an apol-
ogizing mail is sent along with some advertising flyers (task SendApologizes).
Each version of the process model has, thus, a valid time, which identifies the
temporal interval during which the given version was used. Tables WorkTask and
Next, which are now valid time relations, are suitably updated according to the
changes to the schema as follows:

20 Carlo Combi and Giuseppe Pozzi

|WorkTask SchemaName |TaskName Role VT
CarReservation|GetRentalData PhoneOperator 00-01-05 + +o0]
CarReservation|ChooseCar CarExpert 00-01-05 +— +oo |

00-01-05 = +o0
00-01-05 = + o0
00-01-05 = Fo0
00-01-05 = 01-10-12]
01-10-13 = Fo9]

CarReservation|CheckCarAvailability|[InformationSystem
CarReservation|RejectReservation PhoneOperator
CarReservation|MakeReservation PhoneOperator
CarReservation|ConfirmReservation [InformationSystem
CarReservation|SendApologizes InformationSystem

Next|SchemaName |[TaskName NextTask Tcons VT
CarReservation|GetRentalData ChooseCar 0 m <+ 2 m] [[00-01-05 + +o0
CarReservation|ChooseCar CheckCarAvailability[[0 m +— 10 m][[00-01-05 =+ +oo
CarReservation|CheckCarAvailability|R1 0 m = 1 m] [[00-01-05 = +oco
CarReservation|MakeReservation ConfirmReservation [[0 m = 1 m] [[00-01-05 =+

01-10-12]
CarReservation|ConfirmReservation [end-flow [0 m = 0 m] [[00-01-05 =

01-10-12]
CarReservation|RejectReservation end_flow [0 m = 0 m] [[00-01-05 =

01-10-12]
CarReservation|MakeReservation end_flow Om = 0m 01-10-13 =+ +o0
CarReservation|RejectReservation SendApologizes 0m = 2 m| [[0I-10-13 + +o0
CarReservation|SendApologizes end_flow 0Om + 0 m| [[01-10-13 + 400

Temporal Constraints. A process model includes the definition of temporal con-
straints among the different tasks and their durations [I]. For instance, the col-
umn labelled Tcons in table Next defines a constraint for the scheduler of the
WIMS, specifying that the successor task is to be scheduled, after the current
task finished, within the minimum and maximum time stated by Tcons. Sim-
ilarly, also time constraints for the maximum allowable task duration can be
defined for every task, serving as temporal constraints on the execution time.
TDBMS should be able to represent temporal constraints even with different
temporal granularities, as discussed in [IJ2].

Temporality in the Information Model. Several different temporal dimen-
sions can be considered for data inside the information model; in this context,
valid and transaction times are very important, managing both the history of
workflow data and of possible changes on entered data. As an example, the table
RentalData, managed by a bitemporal database system [12], allows the W{MS
to discover changes both in the customer preferences and in entered data.

The table RentalData presents two situations. In the first one, customer Smith
for case 47 modified his reservation. In fact, the customer named Smith on
November 12th 2001 made the reservation for a car to be returned on January
6th 2002 (see the first tuple with Caseld=47). The valid time for the case started
on November 12¢th 2001. On November 21st 2001 he changed the return date to
January Tth 2002 - thus forcing the same case to be still opened and closing the
first transaction for case 47 - and asked for a new car type FIAT.

In the second situation, data originally entered were wrong. Customer Jones
did not change anything about his reservation; there has been only an error in
data insertion (collection). Indeed, in this case, there is only one tuple about
Jones in the current database state (i.e., the state consisting of tuples having
the transaction time with +o0c as upper bound): valid time of this tuple confirms
that the reservation of Jones was valid from its definition up to now.

The table RentalData is the following:

Towards Temporal Information in Workflow Systems 21

Caseld|Cname [Car RentDate|RetDate|Avlb|VT TT

47 Smith J.|Ferrari|01-12-01 [02-01-06|yes 01-11-12 + +o0] 01-11-12 + 01-11-21]
48 Jones J. |Lotus [02-02-01 [02-02-02|no 01-08-02+ +o0] 01-08-02 =+ 01-08-03]
47 Smith J.|Ferrari[01-12-01 [02-01-06|yes 01-11-12 = 01—11—21] 01-11-21 + +OO]

47 Smith J.|Fiat 01-12-01 |02-01-07|yes 01-11-21 + +o0] 01-11-21 + +o0]

48 Jones J. |Lotus |02-02-01 |02-02-03|no 01-08-02+ +oo] 01-08-03+ +oo}

As for historical data of the information model, by a TDBMS we are able to
manage in a homogeneous way temporal data already present into the database
and explicitly managed by the WfMS as user-defined times. Indeed, tables Case-
History and TaskHistory depicted in Section 2.2lrepresent the valid time of stored
information by attributes StartTime, Duration and StartTime, EndTime, respec-
tively; being these attributes user-defined times [12], the WIMS has to deal with
them explicitly. Using a TDBMS, instead, these two tables would be simply valid
time relations, directly and homogeneously managed be the temporal database
system. Instances of tables CaseHistory and TaskHistory, when represented in a
temporal database system as valid time relations, are depicted in the following:

CaseHistory|Caseld[SchemaName |Responsible VT
47 CarReservation|H03 [01-11-12 10:03:10 < 01-11-12 10:11:50]
48 CarReservation|L05 [01-08-02 9:00:10 = 01-08-02 9:03:59]
[TaskHistory|Caseld[TaskName FinalState |Agent|VT

47 GetRentalData Completed|HO3 [[01-11-12 10:03:10 + 01-11-12 10:05:50]
47 ChooseCar Completed|D10 [[01-11-12 10:06:00 + 01-11-12 10:08:50]
47 CheckCarAvailability|Completed|auto [[01-11-12 10:08:51 + 01-11-12 10:08:52]
47 MakeReservation Completed|RO1 [[01-11-12 10:08:53 <+ 01-11-12 10:08:55]
48 GetRentalData Completed|L05 [[01-08-02 9:00:10 + 01-08-02 9:01:43]
48 ChooseCar Completed|D10 [[01-08-02 9:01:45 + 01-08-02 9:02:01]
48 CheckCarAvailability|Completed|auto [[01-08-02 9:02:03 + 01-08-02 9:02:07]
48 RejectReservation Completed|[K13 [[01-08-02 9:02:10 + 01-08-02 9:03:59]

Observation. To reconstruct the complete history of a case, it could be useful
to distinguish at the modelling level both the time during which the task has been
executed, i.e., the valid time of the task, and the time at which the task has been
assigned to the agent. This latter temporal dimension could be suitably modeled
by the concept of event time, which is the occurrence time of a real-world event
that either initiates or terminates the validity interval of the modeled fact [7].

3.2 Managing Temporal Aspects

All the components of a WfMS heavily interact with the DBMS to store and
reference all the data from the different models (organizational, process and
information models). If the adopted DBMS does not feature the management of
temporal information, all the components of the WfMS have to explicitly manage
those temporal aspects of data: on the other hand, if a TDBMS is adopted,
temporal aspects of data are directly managed by the DBMS itself. Without
loss of generality, in the following we shall use the widely known temporal query

22 Carlo Combi and Giuseppe Pozzi

language TSQL2 [13], to show how the interaction of the WfMS with a TDBMS
could be powerfully performed by a temporal query language. In the following,
we briefly outline some of the components of a WfMS that could take the greatest
advantages from the adoption of a TDBMS.
Process Instancer: This component defines the proper process model to be
adopted for all the running cases and also for completed ones. Obviously, if
no change has never been applied to the model of a given process, there is no
need to manage temporal aspects related to schema migration of the process
model itself: however, a very very small percentage of process models (a good
reasonable estimation is less than 1%) does not need for a change during their
life, not even for adaptive, perfective or corrective maintenance [4]. On the other
hand, if the process model has been changed, one may want to reconstruct the
exact process model defined for all the cases, no matter if completed or not.
For completed cases, the table CaseHistory defines only the executed tasks, while
the table does not allow one to completely reconstruct the schema: in fact, if in
front of a routing operator with three or more outgoing arcs one of them only
was followed, the table CaseHistory does not specify which outgoing arcs were
available but only the followed outgoing arcs. The complete reconstruction of
the process model is thus not feasible by the workflow history only.
Assuming that a case evolves according to the process model valid at the time
of its initiation [4], the temporal query in TSQL2 [13] to reconstruct the process
model for any case should sound like:
SELECT Caseld, TaskName, NextTask
FROM Next N, CaseHistory C
WHERE C.SchemaName = N.SchemaName AND
VALID(N) OVERLAPS BEGIN(VALID(C))

On the other hand, whenever a new case is started, the process instancer has to
define which is the current process model to be followed for the starting case.
The TSQL2 query to reconstruct the current process model for CarReservation,
if many different versions are defined, should sound like:
SELECT TaskName, NextTask
FROM Next N
WHERE N.SchemaName = "CarReservation" AND

VALID(N) OVERLAPS CURRENT DATE
In both the described situations, the reconstruction of the correct process model
would be completed by considering the information about routing tasks stored
in the table AfterFork, with the same approach previously described.
Scheduler of the Workflow Engine: This component assigns tasks to agents
for execution based on their skills. The component has to mainly consider work-
ing time and work load of agents, which are very critical and may vary continu-
ously.
Working time: the scheduler should not assign to an agent a task whose ex-
pected completion, computed as the maximum task duration started from the
initiation of that task, will fall into or will include an holiday period for that
agent. Additionally, holiday time for agents is in most situations made of a set
of intervals, e.g., agent Bob will be on holiday on 02-04-04+02-04-11 and on

Towards Temporal Information in Workflow Systems 23

02-05-01-+02-05-06. If the task is expected to start on 02-04-02 and the expected
duration is 3 days, the agent will suspend the execution of the task on 02-04-03
(beginning of holiday) and will resume its execution at the end of the holiday
on 02-04-11, resulting in a duration of the execution of that task of approxima-
tively 10 days, much beyond the expectancy of 3 days. The scheduler, thus, has
to compare intervals of holidays of agents and expected execution time of tasks
by suitable techniques, to be able to manage comparisons between intervals at
different levels of granularities and/or with indeterminacy [T]]. In this direction,
Bettini and colleagues in [T] study the problem of specifying, even with different
granularities, time constraints for tasks and for delays between tasks; they also
propose a general algorithm for finding free schedules, i.e. schedules which do
not impose further constraints on the task durations, for a workflow.
Work Load: The scheduler has to assign tasks to agents balancing the load of
work among them. When evaluating the history of tasks executed by agents, the
scheduler could consider, for example, whether there is some agent which is not
working when some other agent (with the same role) is working. Let us consider
the following TSQL2 query:
SELECT A.AgentId, TaskName
FROM AgentAvailability A, TaskHistory T, Agent G1, Agent G2
WHERE A.AgentId <> T.Agent AND A.AgentId = G1.AgentId AND

T.AgentId = G2.AgentId AND Gl1.Role = G2.Role AND

NOT EXISTS (SELECT *

FROM TaskHistory T1
WHERE T1.Agent=A.AgentId AND VALID(T1) OVERLAPS VALID(T))

Through this query, by using the default semantics of TSQL2 in the FROM clause,
tuples of tables AgentAvailability, TaskHistory, and Agent are associated
only if their valid times intersect (in this case, tuples of atemporal tables are
considered as always valid); the condition expressed in the WHERE clause is then
evaluated on these tuples. Valid times of tuples in the result are the intersection
of the tuples considered in the evaluation of the query.
Process Model Designer Tool: The process model engineer uses a tool,
namely workflow designer, to formally define the schema inside the WfMS. The
process engineer has to define for every task an expected task duration (i.e.,
the average duration for a task) and the maximum allowable duration (i.e., a
deadline for the completion of the task): if the execution of a task exceeds the
maximum duration, the agent has to be urged to complete the task and if the
delay persists, a compensation action could possibly be executed. The tool also
has to enable the engineer in defining temporal constraint (e.g., through suit-
able values of the attribute Tcons in table Next of Section Bl) over dependencies
among tasks, identifying the maximum allowable interval between the comple-
tion of a predecessor task and the activation of its successor(s): these constraints
must be observed by the workflow scheduler.
Exception Designer Tool: The process model engineer, after having defined
the process model, has to define expected exceptions [GJIT], i.e., those anoma-
lous situations that are part of the semantics of the process and that are known
in advance at workflow design time. Exceptions are an important component

24 Carlo Combi and Giuseppe Pozzi

of workflow models and permit the representation of behaviors that, although
abnormal, occur with high frequency (sometimes even more than 10% of the
times). Examples of expected exceptions are the violation of either constraints
over data or temporal conditions, a car accident in a car rental process, as well as
a change in the RentalDate or in the ReturnDate: if the customer postponed the
ReturnDate, some compensation actions must be performed, e.g., re-arranging
the subsequent rentals of the same car to other customers. Exception manage-
ment modules in a WIMS are periodically invoked, sometimes with a frequency
ranging from tens of minutes to several hours: such a frequency considers that
business processes are long-running activities [0] and in most cases there is no
need for an immediate management of exceptions. These modules manage excep-
tional situations that may have occurred during the process enactment since the
previous activation of the modules themselves [6] and consider for execution the
several exceptions occurred to different cases, grouping them by exception type:
e.g., all the task instances that for any reason exceeded their maximum allowable
task durations are processed altogether. In order to select all the exceptions to
be processed, a temporal query must be performed to select all the exceptions
that actually occurred since the last execution of the exception manager: the use
of a TDBMS could easily help.
Additionally, a TDBMS can help in retrieving values of process specific data at
given instants. Let us assume that we need an exception detecting whether the
customer switched from a car to another car. The exception mechanism has to
compare the currently booked car with the previously booked one. The event of
the exception is a modify of an attribute, namely Car: the condition part has
to monitor the value of Car with its previous value. By a TDBMS the query to
reconstruct the changes to the Car attribute sounds like the following;:
SELECT SNAPSHOT R1.Car, R2.Car
FROM RentalData R1, RentalData R2
WHERE R1.Caseld = R2.Caseld AND R1.Car <> R2.Car AND
VALID(R1) BEFORE VALID(R2) AND
NOT EXISTS (SELECT *
FROM RentalData R
WHERE R.Caseld = R1.CaseId AND VALID(R) AFTER VALID(R1)
AND VALID(R) BEFORE VALID(R2))
It can be easily observed that if the adopted DBMS is not a temporal one, the
query would result in a more specific expression: indeed, the attributes represent-
ing the valid time would be treated as application-dependent ones. Furthermore,
the query would be executed without any special support by the DBMS.

4 Conclusions

In this paper, we showed how temporal database systems applied to WIMS could
greatly improve performances, e.g. by allowing one to define different versions
of the same process model, picking the last one for new cases to be started and
using the original one valid at the time the already running case was started,

Towards Temporal Information in Workflow Systems 25

and ease-of-usage of WIMSs, e.g. by storing the subsequent changes to process-
specific data. We also showed how to model and query in a homogeneous way
temporal information concerning different models needed by W{MSs.

The management of temporal information in WfMSs is an underestimated
research topic, where research results from the temporal database area could
be extensively applied and suitably extended. To this regard, we are going to
consider the following possible future research directions:

Design of visual tools for process model design: the process engineer can
define real world temporal constraints among tasks and on task/case durations,
possibly by a powerful and easy-to-use tool;

Exception modelling: the process engineer can define suitable compensation
actions if deadlines and/or temporal constraints are violated. Compensation ac-
tions, on the other hand, can be immediately executed, delayed, or temporally
grouped, depending on the violated constraints and on the specific process.

References

1. Bettini C., Sean Wang X., Jajodia S. Free Schedules for Free Agents in Work-
flow Systems. Seventh International Workshop on Temporal Representation and
Reasoning, TIME 2000, IEEE Computer Society, 31-38

2. Brusoni V., Console L., Terenziani P., Pernici B. Qualitative and Quantitative
Temporal Constraints and Relational Databases: Theory, Architecture, and Appli-
cations. IEEE TKDE 1999, 11(6): 948-968

3. Casati F., Ceri S., Pernici B., Pozzi G. Deriving Production Rules for Workflow
Enactment. In: Proceedings of the 7th Database and Expert Systems Applications
International Conference, Springer-Verlag, LNCS, 1996, 94-115

4. Casati F., Ceri S., Pernici B., Pozzi G. Workflow Evolution. Int. Journal Data and
Knowledge Engineering 1998, 24(1): 211-239

5. Casati F., Pernici B., Pozzi G., Sanchez G., Vonk J. Conceptual Workflow Model.
In: Database Support for Workflow Management, Dordrecht, Kluwer Ac., 1999,
23-45

6. Casati F., Ceri S., Paraboschi S., Pozzi G. Specification and Implementation of
Exceptions in Workflow Management Systems. ACM TODS 1999, 24(3): 405-451

7. Combi C., Montanari A. Data Models with Multiple Temporal Dimensions: Com-
pleting the Picture. In: Advanced Information Systems Engineering, 13th Interna-
tional Conference, CAiSE 2001, Berlin, Springer, LNCS, 2001, 187202

8. Combi C., Pozzi G. HMAP - A temporal data model managing intervals with
different granularities and indeterminacy from natural language sentences. VLDB
Journal 2001, 9(4): 294-311

9. Dayal U., Hsu M., Ladin R. Organizing long-running activities with triggers and
transactions. SIGMOD Record, 1990, 19(2): 204-214.

10. Dyreson C. E., Evans W. S.; Lin H, Snodgrass R. T.: Efficiently Supported Tem-
poral Granularities. JEEE TKDE 2000, 12(4): 568-587 (2000)

11. Eder J., Liebhart W. The Workflow Activity Model WAMO. Proceedings of the
374 International Conference on Cooperative Information Systems, 1995, 87-98.

12. Jensen C., Snodgrass R.T. Temporal Data Management. IJEEE TKDE 1999, 11(1):
3644

13. Snodgrass R.T. (ed.) The TSQL2 Temporal Query Language. Boston, Kluwer Ac.,
1995.

	Introduction
	Workflow Management Systems - WfMSs
	A Motivating Example
	Workflow Models

	Temporal Aspects in WfMS
	Temporalities of the Models
	Managing Temporal Aspects

	Conclusions

