
L. Kalinichenko et al. (Eds.): ADBIS 2003, LNCS 2798, pp. 416–430, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Query Containment with Negated IDB Predicates

Carles Farré, Ernest Teniente, and Toni Urpí

Universitat Politècnica de Catalunya
08034 Barcelona, Catalonia

{farre,teniente,urpi}@lsi.upc.es

Abstract. We present a method that checks Query Containment for queries
with negated IDB predicates. Existing methods either deal only with restricted
cases of negation or do not check actually containment but uniform contain-
ment, which is a sufficient but not necessary condition for containment.
Additionally, our queries may also contain equality, inequality and order com-
parisons. The generality of our approach allows our method to deal straight-
forwardly with query containment under constraints. Our method is sound and
complete both for success and for failure and we characterize the databases
where these properties hold. We also state the class of queries that can be
decided by our method.

1 Introduction

Query Containment (QC) is the problem concerned with checking whether the
answers that a query obtains are a subset of the answers obtained by another query for
every database. QC was first studied for the class of conjunctive queries [CM77]. QC
of conjunctive queries with order comparisons was studied in [Klu88, Ull97].
Conjunctive QC with safe negated EDB atoms was investigated in [Ull97, WL03].
EDB stands for extensional database, that is, the database’s stored relations whereas
IDB means intensional database, that is, the relations constructed by deductive rules.

The methods that deal with negated IDB subgoals can be classified into two
different approaches. The first one is to check QC for query classes where negation is
used in a restrictive way [LS95]. The second approach is not to check “true” QC but
another related property called Uniform QC [LS93], which is a sufficient but not
necessary condition for QC [Sag88].

When considering integrity constraints, the containment relationship between two
queries does not need to hold for any state of the database but only for those that
satisfy the integrity constraints. This idea is captured by the notion of Query
Containment under Constraints (QCuC). QCuC for datalog queries, without negation,
and integrity constraints expressing tuple-generating dependencies was addressed in
[Sag88] by taking the uniform containment approach. QCuC was also handled in the
context of hybrid systems combining conjunctive queries and constraints expressed in
a Description Logic language [LR96, CDL98].

In [FTU99] we sketched a method, named Constructive Query Containment
method (CQC for short), to check “true” QC and QCuC in the presence of negation

Query Containment with Negated IDB Predicates 417

on IDB subgoals. Intuitively, the aim of our CQC method was to construct a
counterexample that proves that there is no QC (or QCuC). This method used
different Variable Instantiation Patterns (VIPs), according to the syntactic properties
of the queries and the databases considered in each test. Such a customization only
affects the way that the facts to be part of the counterexample are instantiated. The
aim was to prune the search of counterexamples by generating only the relevant facts.

We extend here our previous work by:

− providing not just an intuitive idea but also the full formalization of the CQC
method.

− proving two additional theorems that hold when there are no recursively
defined IDB relations: failure soundness, which guarantees that containment
holds if the method terminates without building any counterexample; and
failure completeness, which ensures that if containment holds between two
queries then our method fails finitely (and terminates).

− ensuring termination when checking containment for conjunctive queries
with safe EDB negation and built-in literals.

− pointing out that the CQC method is not less efficient than other methods that
deal with conjunctive queries with or without safe EDB negation. We
propose an additional VIP, the simple VIP, to perform such a comparison.

− decomposing the General VIP in two: the discrete order VIP and the dense
order VIP that allow us to deal with built-in literals assuming both discrete
and dense order domains.

It follows from these new results that the method we describe here improves
previously proposed algorithms since it provides an efficient decision procedure for
known decidable cases and can also be applied for more general forms of queries that
were not handled by previous algorithms. In these more general cases, our method is
semidecidable because it cannot be guaranteed termination under the presence of
infinite counterexamples. Nevertheless, if there is a finite counterexample our method
finds it and terminates and if containment holds our method fails finitely and
terminates, provided that there are no recursively defined IDB relations in both cases.

Section 2 sets the base concepts used through the paper. In Section 3, we introduce
our method and Section 4 formalizes it. In Section 5, we present the main correctness
results of our method. For a more detailed formalization and detailed proofs, we refer
to [FTU02]. In Section 6, we discuss the decidability issues regarding our method. In
Section 7, we compare our method with related work. The paper ends with the
conclusions, Section 8, and references.

2 Base Concepts

A deductive rule has the form:
p(X̄) ← r1(X̄1) ∧ … ∧ rn(X̄n) ∧ ¬rn+1(Ȳ1) ∧ … ∧ ¬rm(Ȳs) ∧ C1 ∧… ∧ Ct

where p and r1, …, rm are predicate (also called relation) names. The atom p(X̄) is
called the head of the rule, and r1(X̄1), …, rn(X̄n), ¬rn+1(Ȳ1), …, ¬rm(Ȳs) are positive and
negative ordinary literals in the body of the rule. The tuples X̄, X̄1, …, X̄n, Ȳ1, …, Ȳs

418 C. Farré, E. Teniente, and T. Urpí

contain terms, which are either variables or constants. Each Ci is a built-in literal in
the form of A1 θ A2, where A1 and A2 are terms. Operator θ is <, ≤, >, ≥, = or ≠. We
require that every rule be safe, that is, every variable occurring in X̄, Ȳ1, …, Ȳs, C1 , …
or Ct must also appear in some X̄i.

The predicate names in a deductive rule range over the extensional database
(EDB) predicates, which are the relations stored in the database, and the intensional
database (IDB) predicates (like p above), which are the relations defined by the
deductive rules. EDB predicates must not appear in the head of a deductive rule.

A set of deductive rules P is hierarchical if there is a partition P = P1 ∪ … ∪ Pn

such that for any ordinary atom r(X̄) occurring positively or negatively (as ¬r(X̄)) in
the body of a clause in Pi, the definition of r is contained within Pj with j < i. Note
that a hierarchical set of deductive rules contains no recursive IDB relations.

A condition has the denial form of:
← r1(X̄1) ∧ … ∧ rn(X̄n) ∧ ¬rn+1(Ȳ1) ∧ … ∧ ¬rm(Ȳs) ∧ C1 ∧… ∧ Ct

where r1(X̄1), …, rn(X̄n), ¬rn+1(Ȳ1), …, ¬rm(Ȳs) are (positive and negative) ordinary
literals; and C1, …, Ct are built-in literals. We require also that every variable
occurring in Ȳ1, …, Ȳs, C1 , … or Ct must also appear in some X̄i. Roughly, a condition
in denial form expresses a prohibition: a conjunction of facts (literals in the body) that
must no hold on the database all at once. Therefore, a condition is violated (not
satisfied), whenever ∃Z̄ (r1(X̄1) ∧ … ∧ rn(X̄n) ∧ ¬rn+1(Ȳ1) ∧ … ∧ ¬rm(Ȳs) ∧ C1 ∧… ∧ Ct)
is true on the database, where Z̄ contains the variables occurring in X̄1, …, X̄s, Ȳ1, …,
Ȳs, C1 , … and Ct.

A query Q is a finite set of deductive rules that defines a dedicated n-ary query
predicate q. Without loss of generality, other predicates than q appearing in Q are
EDB or IDB predicates.

A query Q1 is contained in a query Q2, denoted by Q1 S Q2, if the set of answers of
Q1(D) is a subset of those of Q2(D) for any database D. Moreover, Q1 is contained in
Q2 wrt IC, denoted by Q1 SIC Q2, if the set of answers of Q1(D) is a subset of those of
Q2(D) for any database D satisfying a finite set IC of conditions (integrity
constraints).

3 The Constructive Query Containment (CQC) Method

The containment relationship between two queries must hold for the whole set of
possible databases in the general case. A suitable way of checking QC is to check the
lack of containment, that is, to find just one database where the containment
relationship that we want to check does not hold: Q1 is not contained in Q2, written Q1

c Q2, if there is at least one database D such that Q1(D) ⊄ Q2(D).
Given Q1 and Q2 two queries, the CQC method is addressed to construct the

extensional part of a database (EDB) where the containment relationship does not
hold. It requires two main inputs: the goal to attain and the set of conditions to
enforce. Initially, the goal is defined G0 = ← q1(X1, ..., Xn) ∧ ¬q2(X1, ..., Xn), meaning
that we want to construct a database where (X1, ..., Xn) could be instantiated in such a

Query Containment with Negated IDB Predicates 419

way that q1(X1, ..., Xn) is true and q2(X1, ..., Xn) is false. The set of conditions to
enforce is F0 = ∅, since there is no initial integrity constraint to take care about.

When considering a set IC of integrity constraints, we say that Q1 is not contained
in Q2 wrt IC, written Q1 cIC Q2, if there is at least one database D satisfying IC, such
that Q1(D) ⊄ Q2(D). In this case, the EDB that the CQC method has to construct to
refute the containment relationship must also satisfy the conditions in IC. This is
guaranteed by making the initial set of conditions to enforce F0 = IC together with the
goal G0 = ← q1(X1, ..., Xn) ∧ ¬q2(X1, ..., Xn).

3.1 Example: Q1 c Q2

The following example is adapted from the one in [FTU99] by introducing double
negation on IDB predicates. It allows illustrating the main ideas of our method and to
show its behavior under these complex cases. Let Q1 and Q2 be two queries:

Q1 = { sub1(X) ← emp(X) ∧ ¬chief(X) }
Q2 = { sub2(X) ← emp(X) ∧ ¬boss(X) }

where emp is an EDB predicate and chief and boss are IDB predicates defined by a set
DR of deductive rules:

DR = {boss(X) ← worksFor(Z, X)
 chief(X) ← worksFor(Y, X) ∧ ¬boss(Y) }

where worksFor is another EDB predicate.
Intuitively, we can see that Q1 is less restrictive than Q2 because Q2 does not

retrieve those employees having anyone working for them, while Q1 allows retrieving
employees having some boss working for them. Hence, we can find a database
containing EDB relations such as emp(joan), worksFor(mary, joan) and
worksFor(ann, mary), where sub1(joan) is true but sub2(joan) is false (chief(joan) is
false because boss(mary) is true whereas boss(joan) is true). Therefore, Q1 is not
contained in Q2. Note that an even smaller EDB containing just emp(joan) and
worksFor(joan, joan) would have lead us to the same conclusion.

A CQC-derivation that constructs an EDB that proves Q1 c Q2 are shown in Fig. 1.
Each row on the figure corresponds to a CQC-node that contains the following
information (columns):

1. The goal to attain: the literals that must be made true by the EDB under
construction. When the goal is [] it means that no literal needs to be satisfied.
Here, the initial CQC-node contains the goal G0 = ← sub1(X) ∧ ¬sub2(X).
That is, we want the CQC method to construct a database where exists at
least a constant k such that both sub1(k) and ¬sub2(k) are true

2. The conditions to be enforced: the set of conditions that the constructed EDB
is required to satisfy. Recall that a condition is violated whenever all of its
literals are evaluated as true. Here, the initial CQC-node contains the set of
conditions to enforce F0 = ∅.

3. The EDB under construction. Initial CQC-Nodes always have empty EDBs.
4. The conditions to be maintained: a set containing those conditions that are

known to be satisfied in the current CQC-Node and that must remain satisfied

420 C. Farré, E. Teniente, and T. Urpí

until the end of the CQC-derivation. Initial CQC-Nodes have always this set
empty.

5. The account of constants introduced in the current and/or the ancestor CQC-
nodes to instantiate the EDB facts in the EDB under construction. Initially,
such a set contains always the constants appearing already in
DR∪Q1∪Q2∪G0∪F0.

{emp(0)}

← sub1(X) ∧ ¬sub2(X)

← emp(X) ∧ ¬chief(X)
 ∧ ¬sub2(X)

← ¬chief(0) ∧ ¬sub2(0)

Goal to attain

{← emp(0) ∧ ¬boss(0) }

← boss(0)

{← chief(0)}

{← ¬boss(0)}

∅

{emp(0)}

{emp(0)}

{emp(0)}

{emp(0)}

{emp(0)}

 [] {emp(0),
worksFor(0,0)}

 []

EDB Conditions
to mantain

 1:A1

← worksFor(Z,0) ∅

 []

∅

{← worksFor(Y,0) ∧ ¬boss(Y),
 ← sub2(0) }

{← worksFor(Y,0)
 ∧ ¬boss(Y)}

{← sub2(0)}

{← worksFor(Y,0) ∧ ¬boss(Y)}

← boss(0)

← worksFor(Z,0) ∅

∅

∅

{emp(0),
worksFor(0,0)}
{emp(0),
worksFor(0,0)}

{emp(0),
worksFor(0,0)}

{emp(0)}

{emp(0)}

∅

∅ {emp(0),
worksFor(0,0)}

 []

 []

 []

 []

← ¬sub2(0)

{← worksFor(Y,0)
 ∧ ¬boss(Y)}

{← worksFor(Y,0)
 ∧ ¬boss(Y)}

{← worksFor(Y,0)
 ∧ ¬boss(Y)}

{← worksFor(Y,0)
 ∧ ¬boss(Y)}

{← worksFor(Y,0)
 ∧ ¬boss(Y)}

{← worksFor(Y,0)
 ∧ ¬boss(Y)}

{← worksFor(Y,0)
 ∧ ¬boss(Y)}

{← worksFor(Y,0)
 ∧ ¬boss(Y)}

∅

∅

∅

∅

∅

{← ¬boss(0)}

 5:B1

 2:A2

 3:A3

 6:B2

 7:B1

 8:B2

 9:B3

10:A1

11:A2

15:A2

12:B2

13:B3

14:A1

{← chief(0), ← sub2(0)} {emp(0)} ∅
 4:A3

 []

∅

∅

∅

Conditions
to enforce

Used
constants

∅

∅

{ 0 }

{ 0 }

{ 0 }

{ 0 }

{ 0 }

{ 0 }

{ 0 }

{ 0 }

{ 0 }

{ 0 }

{ 0 }

{ 0 }

{ 0 }

{ 0 }

Fig. 1.

The transition between two consecutive CQC-nodes, i.e. between an ancestor node
and its successor, is a CQC-step that is performed by applying a CQC-expansion rule
to a selected literal of the ancestor CQC-node. The selection of literals in the CQC-
derivation of Fig. 1 is nearly arbitrary: the only necessary criterion is to avoid picking
a non-ground negative-ordinary or built-in literal. In Fig. 1, the CQC-steps are labeled
with the name of the CQC-expansion rule that is applied and the selected literal in

Query Containment with Negated IDB Predicates 421

each step is underlined. We refer to Section 4.2 for a proper formalization of the
CQC-expansion rules.

The first step unfolds the selected literal, the IDB atom sub1(X) from the goal part,
by substituting it with the body of its defining rule. At the second step, the selected
literal from the goal part is emp(X), which is a positive EDB literal. To get a
successful derivation, i.e. to obtain an EDB satisfying the initial goal, emp(X) must be
true on the constructed EDB. Hence, the method instantiates X with a constant and
includes the new ground EDB fact in the EDB under construction. The procedure
assigns an arbitrary constant to X, e.g. 0. So emp(0) is the first fact included in the
EDB under construction.

¬chief(0) is the selected literal in step 3. To get success for the derivation, chief(0)
must not be true on the EDB. This is guaranteed by adding ← chief(0) as a new
condition to be enforced. Step 4 is similar to step 3, yielding ← sub2(0) to be
considered as another condition to be enforced. After performing this later step, we
get a CQC-node with a goal like []. However, the work is not done yet, since we must
ensure that the two conditions ← sub2(0) and ← chief(0) are not violated by the
current EDB. In other words, we must make both chief(0) and sub2(0) false.

Step 5 unfolds the selected literal chief(0) from one of the two conditions, getting
← worksFor(Y, 0) ∧ ¬boss(Y) as a new condition that replaces ← chief(0). At least
one of the two literals of this condition must be false. In step 6, the selected literal is
the positive EDB literal is worksFor(Y, 0). Since it matches with no EDB atom in the
EDB under construction, worksFor(Y, 0) is false and, consequently, the whole
condition ← worksFor(Y, 0) ∧ ¬boss(Y) is not violated by the current EDB. For this
reason, such a condition is moved from the set of conditions to enforce to the set of
conditions to maintain.

Step 7 unfolds the selected IDB atom sub2(0) from the remaining condition to
enforce. The EDB atom emp(0) is the selected literal in step 8. Since emp(0) is also
present in the EDB under construction, it cannot be false. So this literal is dropped
from the condition because it does not help to enforce the condition. In step 9 the
selected literal is the negative literal ¬boss(0). Since it is the only literal of the
condition, it must be made false necessarily. So boss(0) becomes a new (sub)goal to
achieve and is transferred, thus, to the goal part.

Step 10 unfolds the selected literal boss(0) from the goal part as in step 1.
worksFor(z, 0) is the selected literal in step 11. As in step 2, the method should
instantiate Z with a constant. In this case, the chosen constant is 0 again, so
worksFor(0, 0) is added to the EDB under construction. Moreover, the condition ←
worksFor(Y, 0) ∧ ¬boss(Y) is moved back to the set of conditions to enforce to avoid
that the new inclusion of worksFor(0, 0) in the EDB violates it.

In step 12, the selected literal is the positive EDB literal is worksFor(Y, 0) from the
remaining condition to enforce. Now, it matches with the current contents of the EDB
with Y = 0. As in step 8, such a literal is dropped from the condition. However, the
whole condition ← worksFor(Y, 0) ∧ ¬boss(Y) is moved again to the set of
conditions to maintain in order to prevent further inclusions of new facts about
worksFor in the EDB from violating it.

Steps 13 and 14 are identical to steps 9 and 10. In step 15, the constant 0 is selected
again to instantiate worksFor(Z, 0). Since worksFor(0, 0) is already included in the

422 C. Farré, E. Teniente, and T. Urpí

EDB, there is no need to transfer back any condition from the set of conditions to
maintain to the set of conditions to enforce.

The CQC-derivation ends successfully since it reaches a CQC-node where the goal
to attain is [] and the set of conditions to satisfy is empty. In other words, we can be
sure that its EDB, {emp(0), worksFor(0, 0)}, contains a set of facts that makes the
database satisfy the goals and conditions of all preceding CQC-nodes, including,
naturally, the first CQC-node. Then we conclude Q1 c Q2.

3.2 Variable Instantiation Patterns

When a CQC-derivation terminates successfully, we obtain a proof, the constructed
EDB, which shows that the containment relationship is not true. On the contrary,
when a derivation ends unsuccessfully, that is, it terminates but it fails to construct a
counterexample, we cannot conclude that containment holds based on a single result.
Then the question is how many derivations must be considered before achieving a
reliable conclusion. Indeed, rather than the account of all possible derivations, the real
point is to know how many variable instantiation alternatives must be considered
when adding new facts to the EDB under construction.

The aim of the CQC method is to test only the variable instantiations that are
relevant without losing completeness. The “strategy” for instantiating the EDB facts
to be included in the EDB under construction is connected to, indeed it is inspired by,
the concept of canonical databases found in [Klu88, Ull97].

Since the canonical databases to be taken into account depend on the concrete
subclass of queries that are considered, we distinguish three different variable
instantiation patterns, VIPs for shorthand. Each of them defines how the CQC
method has to instantiate the EDB facts to be added to the EDB under construction.
The four VIPs that we define are: Simple VIP, Negation VIP (as considered in
[FTU99]), Dense Order VIP and Discrete Order VIP.

The CQC method uses the Simple VIP when checking containment but not QC
under constraints. Moreover, the deductive rules defining query predicates as well as
IDB predicates must satisfy the following conditions: they must not have any negative
or built-in literal in their rule bodies; they must not have constants in their heads; and
they must not have any variable appearing twice or more times in their heads.
According to this VIP, each distinct variable is bound to a distinct new constant.

The CQC method uses the Negation VIP when checking QCuC or when checking
containment under the presence of negated IDB subgoals, negated EDB subgoals
and/or (in)equality comparisons (=, ≠). In any case, order comparisons (<, ≤, >, ≥) are
not allowed. EDBs generated and tested with this VIP correspond to the canonical
EDBs considered in [Ull97] for the conjunctive query case with negated EDB
subgoals. The intuition behind this VIP is clear: Each new variable appearing in a
EDB fact to be grounded is instantiated with either some constant previously used or
a constant never used before. This is the pattern used in t Fig. 1.

The Dense Order VIP and Discrete Order VIP are applied when there are order
comparisons (<, ≤, >, ≥) in the deductive rules, with or without negation. In this case,
each distinct variable must be bound to a constant according to either a former or a
new location in the total linear order of constants introduced previously [Klu88,

Query Containment with Negated IDB Predicates 423

Ull97]. The election between these two VIPS depends on whether the comparisons
are interpreted on a dense (real numbers) or a discrete order (integer numbers).

4 Formalization of the CQC Method

Let Q1 and Q2 be two queries, DR the set of deductive rules defining the database IDB
relations and IC a finite set of conditions expressing the database integrity constraints.
If the CQC method performs a successful CQC-derivation from (← q1(X1, ..., Xn) ∧
¬q2(X1, ..., Xn) ∅ ∅ ∅ K) to ([] ∅ T C K’) then Q1 c Q2, where K is the set of
constants appearing in DR∪Q1∪Q2. Moreover, if the CQC method performs a
successful CQC-derivation from (← q1(X1, ..., Xn) ∧ ¬q2(X1, ..., Xn) IC ∅ ∅ K’’) to ([]
∅ T C K’’’) then Q1 cIC Q2, where K’’ is the set of constants appearing in
DR∪Q1∪Q2∪IC.

CQC-derivations start from a 5-tuple (G0 F0 T0 C0 K0) consisting of the goal G0 =
← q1(X1, ..., Xn) ∧ ¬q2(X1, ..., Xn), the set of conditions to enforce F0 = ∅ or IC, the
initially-empty EDB T0 = ∅, the empty set of conditions to maintain C0 = ∅ and the
set K0 of constant values appearing in DR∪Q1∪Q2[∪IC].

A successful CQC-derivation reaches a 5-tuple (Gn Fn Tn Cn Kn) = ([] ∅ T C K’),
where the empty goal Gn = [] means that we have reached the goal G0 we were
looking for. The empty set Fn = ∅ means that no condition is waiting to be satisfied.
Tn = T is an EDB that satisfies G0 as well as F0. Cn = C is a set of conditions recorded
along the derivation and that T also satisfies. Kn = K’ is the set of constant values
appearing in DR∪Q1∪Q2[∪IC]∪T.

On the contrary, if every “fair” CQC-derivation starting from (← q1(X1, ..., Xn) ∧
¬q2(X1, ..., Xn) ∅ [∪IC] ∅ ∅ K) is finite but does not reach ([] ∅ T C K’), it will mean
that no EDB satisfies the goal G0 = ← q1(X1, ..., Xn) ∧ ¬q2(X1, ..., Xn) together with the
set of conditions F0 = ∅ [∪IC], concluding that Q1 S Q2 (Q1 SIC Q2). Section 5 below
provides the complete results and proofs regarding the soundness and completeness of
the CQC method.

4.1 CQC-Nodes, CQC-Trees and CQC-Derivations

Let Q1 and Q2 be two queries, DR be the set of deductive rules defining the database
IDB relations and IC be a finite set of conditions expressing the database integrity
constraints. A CQC-node is a 5-tuple of the form (Gi Fi Ti Ci Ki), where Gi is a goal to
attain; Fi is a set of conditions to enforce; Ti is a set of ground EDB atoms, an EDB
under construction; Ci is a set of conditions that are currently satisfied in Ti and must
be maintained; and Ki is the set of constants appearing in R = DR∪Q1∪Q2[∪IC]
and Ti.

A CQC-tree is inductively defined as follows:

1. The tree consisting of the single CQC-node (G0 F0 ∅ ∅ K) is a CQC-tree.
2. Let E be a CQC-tree, and (Gn Fn Tn Cn Kn) a leaf CQC-node of E such that Gn

≠ [] or Fn ≠ ∅. Then the tree obtained from E by appending one or more
descendant CQC-nodes according to a CQC-expansion rule applicable to (Gn

Fn Tn Cn Kn) is again a CQC-tree.

424 C. Farré, E. Teniente, and T. Urpí

It may happen that the application of a CQC-expansion rule on a leaf CQC-node
(Gn Fn Tn Cn Kn) does not obtain any new descendant CQC-node to be appended to the
CQC-tree because some necessary constraint defined on the CQC-expansion rule is
not satisfied. In such a case, we say that (Gn Fn Tn Cn Kn) is a failed CQC-node.

Each branch in a CQC-tree is a CQC-derivation consisting of a (finite or infinite)
sequence (G0 F0 T0 C0 K0), (G1 F1 T1 C1 K1), … of CQC-nodes.

A CQC-derivation is finite if it consists of a finite sequence of CQC-nodes;
otherwise it is infinite. A CQC-derivation is successful if it is finite and its last (leaf)
CQC-node has the form ([] ∅ Tn Cn Kn). That is, both the goal to attain and the set of
conditions to satisfy are empty. A CQC-derivation is failed if it is finite and its last
(leaf) CQC-node is failed.

A CQC-tree is successful when at least one of its branches is a successful CQC-
derivation. A CQC-tree is finitely failed when each one of its branches is a failed
CQC-derivation.

4.2 The CQC-Expansion Rules

The nine CQC-expansion rules are listed in tables 4.1 and 4.2. For the sake of
notation, if Gi = ← L1 ∧ … ∧ Lj-1 ∧ Lj ∧ Lj+1 ∧ … ∧ Lm then Gi\Lj = ← L1 ∧ … ∧ Lj-1

∧ Lj+1 ∧ … ∧ Lm. If Gi = ← L1 ∧ … ∧ Lm then Gi∧p(X̄) = ← L1 ∧ … ∧ Lm ∧ p(X̄).

Table 1. CQC-expansion rules: A#-rules.

A1) P(Gi) = d(X̄) is a positive IDB atom:

(Gi Fi Ti Ci Ki)


(Gi+1,1 Fi Ti Ci Ki) | … | (Gi+1,m Fi Ti Ci Ki)
only if m ≥ 1 and each Gi+1,j is the resolvent for Gi and some deductive rule d(Ȳ) ← M1
∧…∧ Mq in R.

A2) P(Gi) = b(X̄) is a positive EDB atom:

(Gi Fi Ti Ci Ki)


((Gi\b(X̄))σ1 Fi+1,1 Ti+1,1 Ci+1,1 Ki+1,1) | … | ((Gi\b(X̄))σm Fi+1,m Ti+1,j Ci+1,m Ki+1,m)
such that Fi+1,j = Fi∪Ci, Ti+1,j = Ti∪{b(X̄)σj} and Ci+1,j = ∅ if b(X̄)σj ∉ Ti; otherwise Fi+1,j
= Fi, Ti+1,j = Ti and Ci+1,j = Ci. Each σj is one out of m possible distinct ground
substitutions, obtained via a variable instantiation procedure from (vars(X̄), ∅, Ki) to (∅,
σj, Ki+1,j) according to the appropriate variable instantiation pattern, that assigns a
constant from Ki+1,j to each variable in vars(X̄). See more details in [FTU02].

A3) P(Gi) = ¬p(X̄) is a ground negated atom:

(Gi Fi Ti Ci Ki)


(Gi\¬p(X̄) Fi∪{← p(X̄)} Ti Ci Ki)

A4) P(Gi) =L is a ground built-in literal:

(Gi Fi Ti Ci Ki)


(Gi\L Fi Ti Ci Ki)
only if L is evaluated true.

Query Containment with Negated IDB Predicates 425

Table 2. CQC-expansion rules: B#-rules.

B1) P(Fi,j) = d(X̄) is a positive IDB atom:

(Gi {Fi,j}∪Fi Ti Ci Ki)


(Gi S∪Fi Ti Ci Ki)
where S is the set of all resolvents Su for clauses in R and Fi,j on d(X̄). S may be empty.

B2) P(Fi,j) = b(X̄) is a positive EDB atom:

(Gi {Fi,j}∪Fi Ti Ci Ki)


(Gi S∪Fi Ti Ci+1 Ki)
only if [] ∉ S.
Ci+1 = Ci if X̄ contains no variables and b(X̄) ∈ Ti; otherwise, Ci+1 = Ci∪{Fi,j}
S is the set of all resolvents of clauses in Ti with Fi,j on b(X̄). S may be empty, meaning
that b(X̄) cannot be unified with any atom in Ti.

B3) P(Fi,j) = ¬p(X̄) is a ground negative ordinary literal:

(Gi {Fi,j}∪Fi Ti Ci Ki)


(Gi {← p(X̄)}∪{Fi,j\¬p(X̄)}∪Fi Ti Ci Ki) only if Fi,j\¬p(X̄) ≠ [] | (Gi∧p(X̄) Fi Ti Ci Ki)

B4) P(Fi,j) = L is a ground built-in literal that is evaluated true:

(Gi {Fi,j}∪Fi Ti Ci Ki)


(Gi {Fi,j\L}∪Fi Ti Ci Ki)
only if Fi\L ≠ [].

B5) P(Fi,j) = L is a ground built-in literal that is evaluated false:

(Gi {Fi,j}∪Fi Ti Ci Ki)


(Gi Fi Ti Ci Ki)

Once a literal is selected, only one of the CQC-expansion rules can be applied. We
distinguish two classes of rules: A-rules and B-rules. A-rules are those where the
selected literal belongs to the goal Gi. Instead, B-rules correspond to those where the
selected literal belongs to any of the conditions Fi,j in Fi. Inside each class of rules,
they are differentiated with respect to the type of the selected literal.

In each CQC-expansion rule, the part above the horizontal line presents the CQC-
node to which the rule is applied. Below the horizontal line is the description of the
resulting descendant CQC-nodes. Vertical bars separate alternatives corresponding to
different descendants. Some rules like A1, A5, B2 and B4 include also an “only if”
condition that constraints the circumstances under which the expansion is possible. If
such a condition is evaluated false, the CQC-node to which the rule is applied
becomes a failed CQC-node.

Finally, note that three CQC-expansion rules, namely A1, B1 and B2, use the
resolution principle as is defined in [Llo87].

The application of a CQC-expansion rule on a given CQC-node (Gi Fi Ti Ci Ki)
may result in none, one or several alternative (branching) descendant CQC-nodes
depending on the selected literal P(Ji) = L. Here, Ji is either the goal Gi or any of the
conditions Fi,j in Fi. L is selected according to a safe computation rule P [Llo87],

426 C. Farré, E. Teniente, and T. Urpí

which selects negative and built-in literals only when they are fully grounded. To
guarantee that such literals are sooner or later selected we require deductive rules and
goals to be safe.

5 Correctness Results for the CQC Method

In this Section, we summarize and sketch the new proofs of correctness of the CQC
method. We refer the reader to [FTU02] for the detailed proofs. We also state the
class of queries that can be actually decided by the CQC method. Before proving
these results, we need to make explicit the model-theoretic semantics to with respect
those results are established.

Let R be a set of deductive rules. We define the partial completion of R, denoted
by pComp(R), as the collection of completed definitions [Cla77] of IDB predicates in R
together with an equality theory. This later one includes a set of axioms stating
explicitly the meaning of the predicate “=” introduced in the completed definitions.

Our partial completion is defined similarly to Clark’s completion [Cla77], Comp(R),
but without including the axioms of the form ∀x(¬bi(X̄)) for each predicate bi which
only occurs in the body of the clauses in R. We assume that these predicates are EDB
predicates that, obviously, are not defined in R.

If Q1 and Q2 are two queries, DR is the set of deductive rules defining the database
IDB relations and IC be a finite set of conditions expressing the database integrity
constraints, we consider that problem of knowing whether Q1 S Q2 (Q1 SIC Q2) is
equivalent to the problem of proving that pComp(R)[∪ ∀IC] \ ∀X1…Xn q1(X1,…,Xn)
→ q2(X1,…,Xn) is true, where R = DR∪Q1∪Q2. If we define the initial goal G0 = ←
q1(X1,…,Xn) ∧ ¬q2(X1,…,Xn) then testing Q1 S Q2 (Q1 SIC Q2) is equivalent to proving
pComp(R)[∪∀IC] \ G0. This proof is tackled by the CQC method, which tries to refute
pComp(R)[∪∀IC] \ G0 by constructing an EDB T such that R(T) is a model for
pComp(R) [∪∀IC] ∪ {∃X1...∃Xn (q1(X1,…,Xn) ∧ ¬q2(X1,…,Xn))}.

In the following theorems, let G0 = ← q1(X1, ..., Xn) ∧ ¬q2(X1, ..., Xn) be the initial
goal, F0 = ∅ [∪IC] be the initial set of conditions to enforce and K be the set of
constants appearing in DR∪Q1∪Q2∪F0.

Before proving results related to failure of the CQC method, we review the results
related to finite success already stated in [FTU99].

Theorem 5.1 (Finite Success Soundness)

If there exists a finite successful CQC-derivation starting from (G0 F0 ∅ ∅ K) then Q1

c Q2 (Q1 c IC Q2) provided that {G0}∪F0∪DR∪Q1∪Q2 is safe and hierarchical.

Theorem 5.2 (Finite Success Completeness)

If Q1 c Q2 (or Q1 cIC Q2) then there exists a successful CQC-derivation from (G0 F0 ∅
∅ K) to ([] ∅ T C K’) provided that {G0}∪F0∪DR∪Q1∪Q2 is safe and either
hierarchical or strict-stratified [CL89].

These results ensure that, in the absence of recursive IDB predicates, if the method
builds a finite counterexample, then containment does not hold (Theorem 5.1); and

Query Containment with Negated IDB Predicates 427

that if there exists a finite counterexample, then our method finds it and terminates
(Theorem 5.2). We extend these results by assessing the properties regarding failure
of our method. In this sense, we prove failure soundness (Theorem 5.3), which
guarantees that if the method terminates without building any counterexample then
containment holds; and failure completeness (Theorem 5.5), which states that if
containment holds between two queries then our method fails finitely.

Theorem 5.3 (Failure Soundness)

If there exists a finitely failed CQC-Tree rooted at (G0 F0 ∅ ∅ K) then Q1 S Q2 (Q1

SIC Q2) provided that the deductive rules and conditions in DR∪Q1∪Q2[∪IC] are
safe.

The proof of Theorem 5.3 is made by using the principle of contradiction and may
be intuitively explained as follows. Le us suppose that we have a finitely failed CQC-
tree but Q1 c Q2 (Q1 cIC Q2). If Q1 c Q2 (Q1 cIC Q2) it means for us that pComp(R)
[∪∀IC] ∪ {∃X1...∃Xn (q1(X1,…,Xn) ∧ ¬q2(X1,…,Xn))} has a model. However, if this is
true, we prove that there is at least one CQC-derivation not finitely failed.

Lemma 5.4 is needed for proving Theorem 5.5. Before stating it, we need some
new definitions.

A CQC-derivation is open when it is not failed. That is, when the derivation is
either infinite or finite with its last (leaf) CQC-node having the form of ([] ∅ Tn Cn

Kn). A CQC-derivation θ is saturated for the CQC-expansion Rules if for every CQC-
node (Gi Fi Ti Ci Ki) in θ the following properties hold:

1. For each literal Li,j ∈ Gi there exists a node (Gn Fn Tn Cn Kn), n ≥ i, such that
P(Gn) = Li,jσi+1…σn is the selected literal on that node to apply a CQC A-rule,
where σi+1…σn is the composition of the substitutions used in the
intermediate nodes.

2. For each condition Fi,ji
 ∈ Fi there exists a node (Gn Fn Tn Cn Kn), n ≥ i, such

that Fn,jn
 ∈ Fn is the selected condition on that node to apply a CQC B-rule

and Fn,jn
 = Fi,ji

.

A CQC-derivation is said to be fair when it is either failed or open and saturated
for the CQC-expansion Rules. A CQC-tree is fair if each one of its CQC-derivations
(branches) is fair. Note that a finitely failed CQC-tree is always fair, but the inverse is
not necessarily true.

Lemma 5.4

Let R be a set of deductive rules, G = ← L1 ∧ … ∧ Lk be a goal, F be a set of
conditions and K be the set of constants in {G0}∪F0∪R. If there exists a saturated
open CQC-derivation starting from (G0 F0∅ ∅ K) then pComp(R) ∪ {∃(L1 ∧ … ∧ Lk)}
∪ ∀F0 has a model provided that {G0}∪F0∪R is safe and hierarchical.

Theorem 5.5 (Failure Completeness)

If Q1 S Q2 (Q1 SIC Q2) then every fair CQC-Tree rooted at (G0 F0 ∅ ∅ K) is finitely
failed provided that {G0}∪F0∪DR∪Q1∪Q2 is safe and hierarchical.

The proof is made by contradiction and may be intuitively explained as follows. If
Q1 S Q2 (Q1 SIC Q2) then pComp(R) [∪∀IC] ∪ {∃X1…Xn q1(X1,…,Xn) ∧

428 C. Farré, E. Teniente, and T. Urpí

¬q2(X1,…,Xn)} cannot have a model. Assuming that it is true, let us suppose that we
have a non-failed CQC-derivation starting from (G0 F0 ∅ ∅ K). However, lemma 5.4
shows that this derivation would indeed construct a model for pComp(DR) [∪∀IC] ∪
{∃X1...∃Xn (q1(X1,…,Xn) ∧ ¬q2(X1,…,Xn))}.

6 Decidability Results

The QC problem is undecidable for the general case of queries and databases that the
CQC Method covers [AHV95]. A possible source of undecidability is the presence of
recursion, which could make the CQC Method build and test an infinite number of
EDBs. In this sense, the CQC Method excludes explicitly the presence of any type of
recursion as we have seen in the proofs of the failure completeness (Theorem 5.5) and
the finite success soundness and completeness (Theorems 5.1 and 5.2).

Another reason for undecidability is the presence of “axioms of infinity” [BM86].
In this case, the initial goal to attain could only be satisfied on an EDB with an
infinite number of facts because each new addition of a fact to the EDB under
construction triggers a condition to be repaired with another insertion on the EDB.

For this reason, the CQC Method is semidecidable for the general case, in the sense
that if either there exist one or more finite EDBs for which containment does not hold
or there is no EDB (finite or infinite), the CQC Method terminates according to our
completeness results (Theorems 5.2 and 5.5). Nevertheless, we cannot guarantee
termination under the presence of infinite counterexamples.

One of the forms to assure always termination when using the CQC Method is to
delimit a priori the type of schemas and queries for which it is guaranteed that infinite
non-containment counterexamples never exist. It is well known that this is the case of
all the different classes of conjunctive queries, including those allowing negated EDB
atoms and built-in atoms. Then, we can guarantee that our method will always
terminate in these cases.

7 Related Work

As we have seen, the CQC method deals with queries and database schemas that
include negation on IDB predicates, integrity constraints and built-in order predicates.
Previous methods that deal with negated IDB subgoals can be classified in two
different approaches: either they check Uniform Query Containment or they consider
just restricted cases of negation.

[LS93] checks Uniform QC for queries and databases with safe negated IDB
atoms. The problem is that, as pointed out in [Sag88], Uniform QC (written Q1 S

u Q2)
is a sufficient but not necessary condition for query containment. That is, if for a
given pair of queries Q1 and Q2 we have that Q1 S

u Q2, then Q1 S Q2. On the other
hand, if the result is that Q1 c

u Q2, then nothing can be said about whether or not Q1 S
Q2 holds. In contrast, we have seen that the CQC method always checks “true” query
containment.

Query Containment with Negated IDB Predicates 429

The rest of the methods that handle negation restrict the classes of queries and
database schemas they are able to deal with. Thus, we have that [Ull97, WL03]
consider only conjunctive queries with negated EDB predicates, while [LS95] checks
containment of a datalog query in a conjunctive query with negated EDB predicates.
[CDL98] cannot express simple cases of negation on IDB predicates since it is not
possible to define negation in the regular expression they consider.

In the long version of this paper [FTU03], we show the clear correspondence
between the CQC Method and the algorithms defined in [Ull97] and [WL03] by
means of examples. Our conclusion is that the CQC Method is not less efficient than
those two outstanding methods for the cases that they handle.

When checking containment for conjunctive queries with negated EDB predicates,
both the CQC Method with the Negation VIP and the algorithm of [Ull97] achieve the
same results, but their strategies are different. The CQC builds and tests canonical
EDBs dynamically since it finds one that fulfils the initial goal to attain or since no
canonical EDB, with or without extension, satisfies the goal after having built all.
Instead, the method of [Ull97] first builds all the canonical EDBs and then, it tests if
each of them accomplishes the containment relationship.

The algorithm of [Ull97] can be easily extended to consider order predicates in the
rule bodies of conjunctive queries over the two types of interpretations, dense or
discrete. In this case, the canonical databases that would be built it should take into
account every possible total ordering of variables to instantiate. Again, the CQC
Method not only covers this class of queries but also constructs similar (canonical)
EDBs with the Dense Order or the Discrete Order VIPs.

The algorithm proposed in [WL03] to check conjunctive query containment with
safe negated EDB atoms improves the efficiency of [Ull97] since it does not generate
necessarily the complete set of canonical EDBs that the method of [Ull97] needs to
construct. If we adopt the theoretical results in which the algorithm of [WL03] is
based, then it follows that the Simple VIP may replace the Negation VIP when using
the CQC Method to check query containment for conjunctive queries with negated
EDB subgoals, without any loss of completeness. In this way, the CQC Method with
the Simple VIP and the algorithm of [WL03] become quite similar. Therefore, we do
not need to generate all the canonical EDBs that the CQC Method with the Negation
VIP and [Ull97] would consider and, accordingly, the CQC Method with the Simple
VIP is as efficient as the algorithm in [WL03] for the cases covered by this latter.

8 Conclusions

In this paper we have presented the Constructive Query Containment (CQC) method
for QC Checking which ckecks “true” QC and QCuC for queries over databases with
safe negation in both IDB and EDB subgoals and with or without built-in predicates.
As far as we know, ours is the first proposal that covers all these features in a single
method and in a uniform and integrated way.

We have proved several properties regarding the correctness of the CQC method:
finite success soundness for hierarchical queries and databases, failure soundness,
finite success completeness for strict-stratified queries and databases and failure
completeness for hierarchical queries and databases. From these results, and from

430 C. Farré, E. Teniente, and T. Urpí

previous results that showed that infinite non-containment counterexamples never
exist in the particular case of checking QC for conjunctive queries with safe EDB
negation and built-in predicates, we can ensure termination, and thus decidability, of
our method for those cases.

The main contributions of this paper are twofold. First, we have shown that the
CQC method performs containment tests for more and broader cases of queries and
database schemas than previous methods. Second, we have also shown that the CQC
method is decidable and not less efficient than other methods to check query
containment of conjunctive queries with or without safe negated EDB predicates.

As a further work, we plan to characterize other classes of queries and deductive
rules for which our method always terminates.

References

[AHV95] S. Abiteboul, R. Hull, V. Vianu. Foundations of Databases. Addison Wesley, 1995.
[BM86] F. Bry, R. Manthey. Checking Consistency of Database Constraints: a Logical

Basis. In Proceedings of VLDB’86, 13–20, 1986.
[CDL98] D. Calvanese, G. De Giacomo, M. Lenzerini. On the Decidability of Query

Containment under Constraints. In Proceedings of the PODS’98, 149–158, 1998.
[CL89] L. Cavedon, J.W. Lloyd. A Completeness Theorem for SLDNF Resolution, Journal

of Logic Programming, 7(3):177–191, 1989.
[Cla77] K.L. Clark. Negation as Failure. In Logic and Data Bases, 293–322, Plenum Press,

1977
[CM77] A.K. Chandra, P.M. Merlin. Optimal Implementation of Conjunctive Queries in

Relational Data Bases. In Proc. of the 9th ACM SIGACT Symposium on Theory of
Computing, 77–90, 1977.

[FTU99] C. Farré, E. Teniente, T. Urpí. The Constructive Method for Query Containment
Checking. In Proceedings of the DEXA’99, 583–593, 1999.

[FTU02] C. Farré, E. Teniente, T. Urpí. Formalization And Correctness Of The CQC
Method. Technical Report LSI-02–68-R.

[FTU03] C. Farré, E. Teniente, T. Urpí. Query Containment With Negated IDB Predicates
(Extended Version). Technical Report LSI-03–22-R.

[Klu88] A. Klug. On Conjunctive Queries Containing Inequalities. Journal of the ACM,
35(1):146–160, 1988.

[Llo87] J.W. Lloyd. Foundations of Logic Programming, Springer, 1987.
[LR96] A. Levy, M-C. Rousset. CARIN: A Representation Language Combining Horn

Rules and Description Logics. In Proc. of the ECAI’96, 323–327, 1996.
[LS93] A. Levy, Y. Sagiv. Queries Independent of Updates. In Proceedings of the

VLDB’93, 171–181, 1993.
[LS95] A. Levy, Y. Sagiv. Semantic Query Optimization in Datalog Programs. In

Proceedings of PoDS’95, 163–173, 1995.
[Sag88] Y. Sagiv. Optimizing Datalog Programs. In Foundations of Deductive Databases

and Logic Programming, 659–698, Morgan Kaufmann, 1988.
[Ull97] J. D. Ullman. Information Integration Using Logical Views. In Proc. of the

ICDT’97, 19–40, 1997
[WL03] F. Wei, G. Lausen. Containment of Conjunctive Queries with Safe Negation. In

Proceedings of ICDT'03: 346–360, 2003.

	1 Introduction
	2 Base Concepts
	3 The Constructive Query Containment (CQC) Method
	3.1 Example: Q1 c Q2
	3.2 Variable Instantiation Patterns

	4 Formalization of the CQC Method
	4.1 CQC-Nodes, CQC-Trees and CQC-Derivations
	4.2 The CQC-Expansion Rules

	5 Correctness Results for the CQC Method
	6 Decidability Results
	7 Related Work
	8 Conclusions
	References

