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Abstract. Consider a multiparty system where parties may occasionally
be “infected” by malicious, coordinated agents, called viruses. After some
time the virus is expelled and the party wishes to regain its security.
Since the leaving virus knows the entire contents of the infected party’s
memory, a source of “fresh” randomness seems essential for regaining
security (e.g., for selecting new keys). However, such an “on-line” source
of randomness may not be always readily available.

We describe a scheme which, using randomness only at the beginning of
the computation, supplies each party with a new pseudorandom num-
ber at each round of communication. Each generated number is unpre-
dictable by an adversary controlling the viruses, even if the party was
infected in previous rounds. Qur scheme is valid as long as in each round
there is at least one noninfected party, and some of the communication
links are secure.

We describe an important application of our scheme to secure sign-on
protocols,

1 Introduction

Traditionally, cryptography was focused on protecting interacting parties (i.e.,
computers) against ezternel malicious entities. Such cryptographic tasks include
private communication over insecure channels, authentication of parties, un-
forgeable signatures, and general multiparty secure computation. An inherent
property of all these scenarios is that once a party is “corrupted” it remains this
way.

However, as computers become more complex, internal attacks on computers
(i-e., attacks that corrupt components within a computer) have become an even
more important security threat [LE93, Sto88]. Such attacks may be performed by
internal (human) fraud, operating system weaknesses, or Trojan horse software
(e.g. viruses). Security administrators often find internal attacks more alarming
than external attacks, such as line tappings. An important property of internal
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attacks is that they are often temporary, or transient [ER89]. Thus the paradigm
of “bad once means bad forever” does not hold here.

Still, almost no known solution to internal attacks allows recovery from faults.
We briefly outline two main approaches underlying the known solutions to inter-
nal attacks. One approach to reducing the vulnerability of computers to internal
attacks is to minimize the use of data that has to be kept secret. Most notable
in this approach is the use of public key cryptosystems, where only the pri-
vate key has to be kept secret (see, for instance, Novell NetWare 4.0). Still, the
public key approach requires a secure, infallible certification entity. A different
approach follows the popular paradigm of ‘not putting all eggs in one basket’.
That is, critical components are multiplied, and the overall security of the sys-
tem is ensured as long as the attacker is unable to break all, or a large number,
of the components.

However, in all these solutions, since the faults are assumed to be non-
transient, there is no mechanism for taking advantage of a possible recovery
of a component. This approach is contrasted with the traditional approach of
fault-tolerance, which relies heavily on the fact that faults are transient, and on
the reuse of recovered components. We believe that the idea of recovering and
reusing components that have once been corrupted can be extremely useful also
for cryptographic purposes. This idea, and in particular the recovery process, 1s
the focus of this work.

Note that we may not know whether a particular component has been cor-
rupted, and when the attackers have left; thus, the recovery process will be
invoked periodically, regardless of whether we identified an attack. We call such
an approach proactive, and say that such systems provide proactive security.

The goal of the recovery process is to ensure that once a component is re-
covered, it will again contribute to the overall security of the system. This goal
is somewhat tricky. Even after the attacker loses control of a component, it still
knows the (possibly modified) state of the component {e.g., the private crypto-
graphic keys). Thus, a first step in the recovery process must be to somehow hand
the recovering component some new secrets unknown to the attacker. These se-
crets can then be used to, say, choose new keys. The obvious way to generate
such secrets is to use some source of “fresh”, physical randomness. However,
such a source may not be readily available or beneficial to use. In this paper we
show that new secrets can be generated without fresh randomness. Instead, we
use other, non-corrupted components in the system.

We consider a system (network) of components (parties) where every two
parties are connected via a communication channel. (We elaborate below on the
security requirements from the channels.) Parties may be temporarily corrupted
(or infected) by malicious agents, called viruses. We assume that the viruses
are controlled by an adversary. The adversary may choose to infect different
parties at different times (i.e., communication rounds), as long as the number of
infected parties is limited. We stress that there may be no party that has never
been infected! This model was suggested by Ostrovsky and Yung [0Y91], who
also coined the terms ‘infected’ and ‘viruses’.
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We assume that, even if the faults are Byzantine, once the virus has left the
party resumes executing its original code of the protocol (while the state may
be corrupted). This assumption is explained as follows. If the virus can control
the code after it leaves, then there is little meaning to recovery and it would be
impossible to regain security. Furthermore, in practice there are reasonable ways
to ensure that the code is not modified, such as physical read-only storage or
comparison against backup copies. These techniques are used regularly in many
systems.

In this work, we describe a scheme in which the parties use randomness only
at the beginning of the computation. At each round, the scheme supplies each
noninfected party with a “fresh” pseudorandom number, unpredictable by the
adversary, even if this party was infected in previous rounds, and if the adversary
knows all the other pseudorandom numbers supplied to any party at any round.
In particular, these pseudorandom numbers can be used by a recovering party
just as fresh random numbers (e.g., for regaining security). We call such a scheme
a proactive pseudorandomness (PP) protocol.

Our implementation is simple, using pseudorandom functions [GGM86, GGM84].
We require the following very weak conditions. First, we assume that the ad-
versary is computationally bounded. Next, we require that in each round of
computation there is at least one secure party. A party is secure at a given round
if it is noninfected at this round, and it has a secure (i.e., authenticated and
private) link to a party that was secure in the previous round. We note that this
link has to be secure only at this round.

1.1 Reconstructability and its Application to Secure Sign-On

Reconstructability. Pseudorandom generators, being deterministic functions
applied to a random seed, have the following advantage over truly random
sources. A pseudorandom sequence is reconstructible, in the sense that it is pos-
sible to generate exactly the same sequence again by using the same seed. This
property is very useful for several purposes, such as repeatable simulations and
debugging, and is used in the construction of pseudo-random functions [GGMS86].
Our application to secure sign-on protocols also makes use of this property.

In our setting, we say that a PP protocol is reconstructible if the value gen-
erated within each party at each round depends only on the seeds chosen by the
parties at the beginning of the computation. In particular, these values should
not depend on the random choices of the adversary.

Reconstructability is not easily achieved for proactive pseudorandomness pro-
tocols. In particular, the basic protocol described in this paper is reconstructible
only if the faults are passive (namely, “eavesdropping” only). Crash faults (and
also Byzantine faults, at the price of slightly compromising the security) could
be tolerated by simple modifications described in section 5.

Application of Reconstructability to Secure Sign-On. Unix and other
operating systems provide security for the passwords by storing only a one-way
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function of the passwords on disk [MT79]. This technique allows authentication
of the users, secure against eavesdropping the password file. Session security is
not provided if the communication links are not secure.

In secure LAN systems, it is not realistic to assume that the communica-
tion is secure. Security mechanisms, therefore, avoid sending the password “on
the clear”. Instead, they use the user’s password to derive a session key, with
which they secure the communication. In both Kerberos [MNSS87] and NetSP
/ KryptoKnight[BGH*93a], this is done by using the password as a key for ex-
changing a random session key; this method also allows NetSP / KryptoKnight
to authenticate the user automatically to additional systems (‘single sign on’).

However, this mechanism implies that some server must be able to compute
the session key itself, using some secret (e.g. the password). This in turn implies
that the server has to maintain the password file secret. This secrecy requirement
is a major ‘Achilles heel’ of any security system. Indeed, NetWare 4.0 provides a
more complicated and expensive solution, where the server keeps, for each user,
an RSA private key encrypted using the user’s password. The encrypted private
key is sent to the workstation, which decrypts it using the password, and then
uses it to derive a session key. This solution does not require the password file
to be secret (but it is assumed that the password file is not modified).

We show how a reconstructible proactive pseudorandomness protocol can be
used to overcome this weakness, without compromising efficiency. Our solution
uses several proactive sign-on servers. The servers run a different copy of our
PP protocol for each user. The initial seed of each server P; is a pseudorandom
value derived from the user’s password, e.g. fpw (i). Each server sets its key
for each time period to be the current output of the PP protocol. The user,
knowing all the servers’ inputs of this deterministic computation, can simulate
the computation and compute each server’s key at any time period without need
for any communication. Thus, a user can always interact with the server of his
choice. The security of our PP protocol makes sure that a mobile adversary does
not know the key currently used by a secure server, as long as in each round
there exists at least one secure server.

This solution does not require public key mechanisms, and is secure even if
the attacker can modify the login files kept by the servers.

1.2 Related Works

Previous works have addressed the issue of transient faults in different ways.
Reischuk [Rei85] designed a Byzantine agreement protocol which is able to tol-
erate faults covering a fraction of the network, if they remain stationary for a
given interval of time. His results have been recently been extended by Garay
[Gar94], who has also noted that randomization could provide a solution better
in (expected) time by using the coin tossing techniques of [FM88]. Ostrovsky
and Yung [OY91] showed how to perform secret sharing and how to compute
any function in the presence of transient viruses. Their work required the par-
ties to have a trusted random source, as well as complete security of the links;
furthermore, their protocols tolerate only a small fraction of infected parties at
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each round. In [FY93), Franklin and Yung present a graph theoretic approach
to privacy in a system with transient eavesdroppers.

We note that our PP protocol can be used to provide randomness to both
[0Y91] and [FM88].

Our application to single sign-on provides protection for both server and user
against impersonation, even when attacker may break into servers. Traditional
unix security [MT79] keeps only a hashing of the password, which allows an
attacker (which reads the hashed-password file) to spoof the user. This has been
extended by [BM93] to protect weak passwords from dictionary attack.
Organization. In Section 2 we define PP protocols, and recall the definition of
pseudorandom function families. In Sections 3 and 4 we describe our PP protocol
and prove its correctness. In Section 5 we describe some modifications to our
application to secure sign-on protocols. In Appendix A we offer an alternative
definition of PP protocols, and show that it is implied by our first definition.

2 Definitions

In this section we describe the communication model, the assumptions on the
adversary, and define proactive pseudorandomness protocols.

Communication network. We consider a network where every two par-
ties are connected via a secure (i.e., private and authenticated) communication
channel. (In Section 4.1 we describe a relaxation of this security requirement
on the links.) The parties are synchronized. Namely, the communication pro-
ceeds in rounds and all parties know the current round number. For simplicity,
we also assume that at the end of each round, each party can send a message
to each other party; these messages are received at the beginning of the next
round. It is simple to extend our results to more realistic communication and
synchronization models.

The Adversary. We assume that parties are occasionally being infected
by some external, malicious entities, called viruses. Upon infecting a party, the
entire contents of the party’s memory becomes known to the virus. Furthermore,
the virus can alter the party’s memory and program. After some time the virus
is discovered and removed from the party. Once a virus is removed, the party
returns to execute its original program; however, its memory may have been
altered. Assuming that the rate in which new parties are infected is roughly
equal to the rate in which the viruses are being removed, we may model this
scenario as follows. We assume a limit, ¢, on the number of viruses. The adversary
may decide which parties are infected at each round, as long as at each round
the number of infected parties 1s at most ¢.

We assume that the viruses cooperate. That is, there exists an entity that
accumulates all the data gathered by the viruses and coordinates their activity.
We call this entity a mobile adversary. We say that a mobile adversary is t-limited
if in each round of the computation at most ¢ parties are infected. (We stress
that there may exist no party that has never been infected!)

Copyright (c) 1998, Springer-Verlag



430

A definition of proactive pseudorandomness. Consider a network of parties
performing some computation in the presence of a mobile adversary. We limit
the parties’ access to randomness to the beginning of the computation. Once the
interaction starts no additional randomness is available. Still, the parties may
need secret, “fresh” random input at different rounds of the computation (e.g.,
in order to recover from a virus).

For this purpose, the parties will run a special deterministic protocol; this
protocol will generate a new value within each party at each round. Given that
the parties’ initial inputs of this protocol are randomly chosen, the value gen-
erated within each party at each round will be indistinguishable from random
from the point of view of a mobile adversary, even if the values generated within
all the other parties, at all rounds, are known. We call such a protocol a proactive
pseudorandomness (PP) protocol.

We stress that at each round the adversary may know, in addition to the data
gathered by the viruses, the outputs of all the parties (including the noninfected
ones) at all the previous rounds. Still, it cannot distinguish between the current
output of a noninfected party and a random value.

More specifically, consider the following attack, called an on-line attack, with
respect to an n-party PP protocol. Let the input of each party be taken at ran-
dom from {0, 1}¥, where k is a security parameter (assume n < k). Furthermore,
each party’s output at each round is also a value in {0, 1}*.

On-line attack: The protocol is run in the presence of a mobile adversary for
m rounds (m is polynomial in n and k), where in addition to the data gathered
by the viruses, the adversary knows the outputs of all the parties at all the
rounds. At a certain round, ! (chosen “on-line” by the adversary), the adversary
chooses a party, P, out of the noninfected parties at this round. The adversary Is
then given a test value, v, instead of P’s output at this round. The execution of
the protocol is then resumed for rounds | 4+ 1,..., m. (Our definition will require
that the adversary be unable to say whether v is P’s output at round I, or a
random value.)

For an n-party protocol 7, and a mobile adversary 4, let A(w, PR) (respec-
tively, (A(7, R)) denote the output of A after an on-line attack on r, and when
the test value v given to A is indeed the output of the specified party (respec-
tively, when v is a random value). Without loss of generality, we assume that

A(r, PR) € {0,1}.

Definitionl. Let 7 be a deterministic n-party protocol with security parameter
k. We say that « is a t-resilient proactive pseudorandomness protocol (PP) if for
every t-limited polynomial time mobile adversary A, for all ¢ > 1 and all large
enough k we have

|Prob(A(r, PR) = 1) — Prob(A(m, R) = 1)| < kﬂ
where m is the total number of rounds of protocol 7, and the probability is

taken over the parties’ inputs of = and the choices of A. (We stress that m is
polynomial in k.)

We say that 7 is efficient if it uses resources polynomial in n and k.
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An alternative definition. Using Definition 1 above, it can be shown that the
following property holds for any randomized application protocol « run by the
parties. Consider a variant, o, of « that runs a PP protocol along with «, and
uses the output of = as random input for « at each round. Then, The parties’
outputs of @ and o’ are indistinguishable; furthermore, running &’ the adversary
gains no knowledge it did not gain running «. In fact, this property may serve
as an alternative definition for PP protocols. In Appendix A we present a more
precise definition of this property.
We can now state our main result:

Theorem 2. If one-way functions ezist, then for all n € N there exists an
efficient, (n — 1)-resilient PP protocol for n parties.

Pseudorandom function families. Qur constructions make use of pseudoran-
dom functions families. We briefly sketch the standard definition.

Let 7). denote the set of functions from {0, 1}* to {0, 1}*. Say that an algo-
rithm D with oracle access distinguishes between two random variables f and
g over Fy with gap s(k), if the probability that D outputs 1 with oracle to f
differs by s(k) from the probability that D outputs 1 with oracle to g. Say that
a random variable f over 7 is s(k)-pseudorandom if no polynomial time (in
k) algorithm with oracle access distinguishes between f and ¢ €r Fr, with gap
s(k). (Throughout the paper, we let e €5 D denote the process of choosing an
element e uniformly at random from domain D)

We say that a function family F, = {f,c},ge{o;l}k (where each f, € Fi)
is s(k)-pseudorandom if the random variable f, where « cp {0, 1}* is s(k)-
pseudorandom. A collection {Fj}1en is pseudorandom if for all ¢ > 0 and for all
large enough k, the family F}, is k—lc-pseudorandom. We consider pseudorandom
collections which are efficiently constructible. Namely, there exists a polytime
algorithm that on input &,z € {0, 1}* outputs f.(z).

Pseudorandom function families and their cryptographic applications were
introduced by Goldreich, Goldwasser and Micali [GGMS86, GGM84]. Applica-
tions to practical key distribution and authentication protocols were shown by
Bellare and Rogaway [BR93]. In [GGMS86] it is shown how to construct pseudo-
random functions from any pseudo-random generator, which in turn could be
constructed from any one-way function [HILL93]. However, practitioners often
trust and use much simpler constructions based on DES or other widely available
cryptographic functions.

3 The Protocol

In this section we describe the basic protocol. Several modifications useful for
the application to secure sign-on are described in Section 5.

Consider a network of n parties, Py, .. .y Pn, having inputs z,,...,z, re-
spectively. Each input value z; is uniformly distributed in {0,1}*, where k is a
security parameter. We assume that parties have agreed on a predefined pseudo-
random function family F = {fK}KE{O,I}k, where each f, : {0, 1}* — {0, 1}*.
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In each round ! each party P, computes an internal value (called a key),
K41, in a way described below. P;’s output at round /, denoted r;;, is set to be
it = fe,;(0), where 0 is an arbitrary fixed value.

The key &, is computed as follows. Initially, P; sets its key to be its input
value, namely &, = z;. At the end of each round [ > 0, party P; sends fy, ()
to each party P;. Next, P; erases its key for round [ and sets its key for round
I+1 to the bitwise exclusive or of the values received from all the parties at this
round:

Kiit1 = Dioy fe, () (1)

We stress that it is crucial that the parties erase the old keys. In fact, if
parties cannot erase their memory, proactive pseudo-randomness is impossible.
In particular, once each party has been infected in the past, the adversary has
complete information on the system at, say, the first round. Now the adversary
can predict all the subsequent outputs of this deterministic protocol.

4 Analysis

We first offer some intuition for the security of our protocol. This intuition is
based on an inductive argument. Assume that, at round {, the key of a nonin-
fected party is pseudorandom from the point of view of the adversary. There-
fore, the value that this party sends to each other party is also pseudorandom.
Furthermore, the values received by different parties seem unrelated to the ad-
versary; thus, the value that each party receives from a noninfected party is
pseudorandom from the point of view of the adversary, even if the values sent to
other parties are known. Thus, the value computed by each noninfected party
at round ! +1 (being the bitwise exclusive or of the values received from all the
parties) is also pseudorandom.

Naturally, this argument serves only as intuition. The main inaccuracy in
it is in the implied assumption that we do not lose any pseudo-randomness in
the repeated applications of pseudorandom functions. A more rigorous proof of
correctness (using known techniques) is presented below.

Theorem 3. Our protocol, given a pseudorandom function family, is an effi-
cient, (n — 1)-resilient PP protocol.

Proof. Let n denote our protocol (run for m rounds). Assume there exists a
polytime mobile adversary A such that

[Prob(A(r, PR) = 1) — Prob(A(r, R) = 1)| > kﬂ

for some constant ¢ > 0 and some value of k. For simplicity we assume that A4
infects exactly n — 1 parties at each round, and that A always runs the full m
rounds before outputting its guess. The proof can be easily generalized to all A.
We show that F is not pseudorandom. Specifically, we construct a distinguisher
D that distinguishes with gap 3+ between the case where its oracle is taken at
random from F} and the case where its oracle is a random function in Fj.
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In order to describe the operation of D, we define hybrid probabilities as
follows. First, define m + 1 hybrid protocols, H, . .., H,,, related to protocol 7.
Protocol H; instructs each party P, to proceed as follows.

— In rounds ! < ¢ party P; outputs a random value and sends a random
value to each other party P, (instead of fx..(0) and f., (t), respectively).
In other words, P, uses a random function from J instead of fx,,, for his
computations.

— In rounds ! > ¢ party P, executes the original protocol, .

Ofcourse, whenever a party is infected it follows the instructions of the ad-
versary.

Distinguisher D, given oracle access to function g, operates as follows. First,
D chooses at random a round number Iy €5 [0,...,m—1]. Next, D runs adver-
sary A on the following simulated on-line attack on a network of n parties. The
infected parties follow the instructions of A. The (single) noninfected party at
each round [, denoted P, 1y, proceeds as follows.

1. In rounds ! < ly, party P,(;y outputs a random value and sends a random
value to each other party (as in the first steps of the hybrid interactions).

2. In round lo, party P,(1,) uses the oracle function g to compute its output
and messages. Namely, it outputs 9(0) and sends g(j) to each other party
P;.

3. In rounds ! > [y, party P, 1y follows protocol .

(Note that D knows which parties are infected by A at each round.)

Once a round is completed, D reveals all the parties’ outputs of this round
to A (as expected by A in an on-line attack). When A asks for a test value v, D
proceeds as follows. First, D chooses a bit b € {0,1}. If b = 0, then D sets v to
the actual corresponding output of the party chosen by A. Otherwise, D sets v
to a random value. Finally, if b = 0 then at the end of the simulated interaction
D outputs whatever 4 outputs. If b = 1 then D outputs the opposite value to
whatever A outputs.

The operation of D can be intuitively explained as follows. It follows from a
standard hybrids argument that there must exist an  such that either
|[Prob(A(H;,PR) = 1) — Prob(A(H;11,PR) = 1)| is large or |Prob(4A(H;,R) =
1) — Prob(A(Hiy1,R) = 1)| is large. Thus, if D chooses the “correct” values
for lp and b it can use the output of A to distinguish between the two possible
distributions of its oracle. We show that a similar distinction can be achieved if
lo and b are chosen at random.

‘We analyze the output of D as follows. Let PR, 2 Prob(A(H;,PR) = 1).
(Namely, PR; is the probability that 4 outputs 1 after interacting with parties
running protocol H; and when the test value given to A is indeed the correspond-
ing output value of the party that A chose.) Similarly, let R; & Prob(A(H;,R) =
1). Let p (resp., ¢) be a random variable distributed uniformly over Fj (resp.,
over Fy). Assume that D is given oracle access to p. Then, at round Iy party
P, (1,) outputs a random value and sends random values to all the other parties.
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Thus, the simulated interaction of A is in fact an on-line attack of A on protocol
Hi,. Therefore, if b = 0 (resp., if b = 1), then D outputs 1 with probability
PRy, (resp., 1 — Ry,). Similarly, D is given oracle access to ¢ then the simulated
interaction of A4 is an on-line attack of 4 on protocol H;, ;1. In this case, if b = 0
(resp., if b = 1), then D outputs 1 with probability PRy, 41 (resp., 1 — Ry 41)-
Thus,

m—1 m—1
PI'Ob(Dp = 1) — PI’Ob(D¢ = 1) = '2Lm (PR,, +1- R,J — % Z(PR"'H' +1- R4‘+1)
i=0 i=0
1 m—1
= o > ((PR; = Ry) — (PRiy1 — Riy1))]
1

= 5-[(PRo ~ Ro) ~ (PR ~ Rum)].

Clearly, Ho is the original protocol 7. Thus, by the contradiction hypothesis,

I[PRo ~ Rg| > #&. On the other end, in protocol H,, the parties output random

values in all the m rounds, thus PR,, — R,, = 0. We conclude that |Prob(D? =
1

l)—Prob(D¢:1)|>5%.:_§:§F' 0

4.1 Insecure Links

When describing the model, we assumed that all the communication links are
secure (i.e., private and authenticated). Here, we discuss the effect of insecure
links on our protocol. We note that the protocol remains a PP protocol even
if in each round ! only a single noninfected party P; has a single link which is
secure in round ! to a party P; that wasn’t infected in round { — 1 (and P; had
in round ! — 1 a secure link to a noninfected party, etc.).

This security requirement on the links is minimal in the following sense. If no
randomness is allowed after the interaction begins then a mobile adversary that
sees the entire communication can continue simulating each party that has once
been infected, even after the virus has left this party. Thus, after few rounds,
the adversary will be able to simulate all parties and predict the output of each
party at each subsequent round.

5 On the Application to Secure Sign-On

In subsection 1.1 we discussed reconstructible protocols and described an appli-
cation of our PP protocol to proactive secure sign-on, using its reconstructabil-
ity. However, as mentioned there, the protocol described in Section 3 is recon-
structible only if all the parties (servers) follow their protocols at all times (that
is, the adversary is only eavesdropping).

In this section we describe modifications of our protocol, aimed at two goals:
one goal is to make the protocol more efficient for the user; the other goal is
to maintain the reconstructability property for the case where the servers don’t
follow their protocols.
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We start by describing a variant of the protocol which is more efficient for
the user. Using the protocol described in Section 3, the user had to simulate the
computation performed by the servers step by step. In case that many rounds
have passed since the last time the user updated its keys, this may pose a consid-
erable overhead. Using this variant, denoted p, the user can compute its updated
key simulating only one round of computation of the servers. On the other hand,
this variant has a weaker resilience property: it assures that the servers’ keys be
unpredictable by the adversary only if there exists a server that has never been
infected.

The variant is similar in structure to the original protocol with the following
modification. Each P; has a master key which is never erased. This master key is
set to be the initial key, «; ¢ (derived, say, from the password). The master key
is used as the index for the function at all the rounds. Namely, the key «;,; at
round ! is computed as follows:

Rii = ‘l’yzlfm,,a (z)

It is also possible to combine the original protocol with the variant described
above, in order to reach a compromise between efficiency and security. We define
a special type of round: a major round. (For instance, let every 10th round be a
major round.) The parties now update their master keys, using the original pro-
tocol, only at major rounds. In non-major rounds, the servers use their current
master key as the index for the function.

This combined protocol has the following properties. On one hand, the user
has one tenth of the rounds to simulate than in the original scheme. On the other
hand, we only need that in any period of 10 rounds there exists a server that
has not been infected. We believe that such versions may be a more reasonable
design for actual implementations.

Next, we describe additions to the protocol, aimed at maintaining the recon-
structability property for the case where the servers don’t follow their protocols.
We note that it is possible to withstand crash failures of servers, if the servers co-
operatively keep track of which servers crashed at each round (this coordination
can be done using standard consensus protocols).

The following addition to the protocol handles the case of Byzantine faults,
if variant p described above is used. The only way an adversary controlling party
P; could interfere with the reconstructability of variant p is by sending a wrong
value instead of f (i), to some server P;. However, P; can, when unable to
authenticate a user, compare each of the f., (i) values with the user, e.g. using
the 2PP protocol [BGH93b], without exposing any of the values. If there are
more than half of the values which match, the server and the user may use the
exclusive or of these values only. This technique requires that at any round, the
majority of the servers are non-faulty (otherwise the server may end up using
values which are all known to the adversary). We note that this idea does not
work if the basic protocol (that of Section 3) is used instead of variant p.
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Conclusions and Open Problems

We believe that incorporating proactive security (i.e., the repeated, periodic
attempt at recovery from potential break-ins, using other components in the
system) in the design of systems can greatly inhance their security. In particular,
our proactive pseudorandomness protocol may prove very useful in the design
of proactive security protocols, supplying them with pseudorandomness (with
some reconstructibility properties).

We propose the following open problem as a particularly challenging example
for the applicability of proactive security to many security tasks. One of the
major drawbacks of identity based cryptosystems is their reliance on a single,
trusted key-generation facility, which knows the keys of all parties. It would be
much better if one could design a distributed key-generation facility composed
of several, potentially less trusted servers, but having proactive security.

Another challenging and important problem is to find a PP protocol with full
reconstructibility against byzantine faults without giving up on security (prelim-
inary results have been obtained by (CH94]).
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Appendix A: An alternative definition of PP

We offer an alternative definition of a PP. This definition follows from Definition
1. Borrowing from the theory of secure encryption functions, we call Definition
1 “PP in the sense of indistinguishability” (or, in short, PP), whereas Definition
5 below is called “semantic PP” (or, in short, SPP). We first recall the standard
definition of polynomial indistinguishability of distributions.

Definition4. Let A = {A;}ren and B = {Bi}ren be two ensembles of prob-
ability distributions. We say that A and B are polynomially indistinguishable if
there exists a constant ¢ > 0 such that for every polytime distinguisher D and
for all large enough &,

|Prob(D(Az) = 1) — Prob(D(By) = 1)| < ki
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We colloquially let A; =~ B; denote “{A;} and {B;} are polynomially indistin-
guishable”.

Let o be some distributed randomized protocol, which is resilient against ¢-
limited mobile adversaries, for some value of t. We wish to adapt protocol « to a
situation where no randomness is available once the interaction starts. Namely,
we want to construct a protocol a’ in which the parties use randomness only
before the interaction starts, and the parties’ outputs of protocol ' are “the
same as” their outputs of protocol «.

A general framework for a solution to this problem proceeds as follows. The
parties run protocol « along with another deterministic protocol, 7. Each party’s
local input of protocol = is chosen at random at the beginning of the interaction.
In each round, each party sets the random input of protocol a for this round
to be the current output of protocol 7. We call 7 a semantically secure proac-
tive pseudorandomness(SPP) protocol. We refer to protocol o as the application
protocol.

We state the requirements from a SPP protocol 7. Informally, we want the
following requirement to be satisfied for every application a. Whatever an ad-
versary can achieve by interacting with o combined with protocol 7 as described
above, could also be achieved by interacting with the original protocol a when
combined with a truly random oracle. More formally,

— for an n-party randomized application protocol a, a mobile adversary A,
an input vector x = 21,...,2s, and 1 < i < n, let a(x, A); denote party
P;’s output of protocol @ with a random oracle when party P; has input z;
and in the presence of adversary A. Let a(x, 4)o denote A’s output of this
execution. Let a(x, 4) 2 a(x, Ao, ..., a(x, A),.

— For a randomized protocol « and a deterministic protocol = for which each
party has an output at each round, let ar denote the protocol in which «

and 7 are run simultaneously and each party at each round sets the random
input of & to be the current output of =.

Definition 5. We say that an n party deterministic protocol = is a ¢-resilient
SPP protocol if for every (randomized) application protocol a and every ¢-limited
mobile adversary A there exists a ¢-limited mobile adversary A’ such that for
every input vector x (for protocol ) we have

an(x,A') = a(x, 4).

where the probabilities are taken over the inputs of 7 and the random choices
of A and of the oracle of a.

Theorem 6. If a protocol is a t-resilient PP protocol then it is a t-resilient SPP
protocol.
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