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Abstract. In this paper we show how parallel algorithms can be turned
into efficient streaming algorithms for several classical combinatorial
problems in the W-Stream model. In this model, at each pass one input
stream is read and one output stream is written; streams are pipelined
in such a way that the output stream produced at pass i is given as
input stream at pass i + 1. Our techniques give new insights on devel-
oping streaming algorithms and yield optimal algorithms (up to polylog
factors) for several classical problems in this model including sorting, con-
nectivity, minimum spanning tree, biconnected components, and
maximal independent set.

1 Introduction

Data stream processing has gained increasing popularity in the last few years
as an effective paradigm for processing massive data sets. Huge data streams
arise in several modern applications, including database systems, IP traffic anal-
ysis, sensor networks, and transaction logs [13, 23]. Streaming is an effective
paradigm also in scenarios where the input data is not necessarily represented
as a data stream. Due to high sequential access rates of modern disks, streaming
algorithms can be effectively deployed for processing massive files on secondary
storage [14], providing new insights into the solution of computational problems
in external memory. In the classical read-only streaming model, algorithms are
constrained to access the input data sequentially in one (or few) passes, using
only a small amount of working memory, typically much smaller than the input
size [14, 18, 19]. Usual parameters of the model are the working memory size s
and the number of passes p that are performed over the data, which are usually
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functions of the input size. Among the problems that have been studied in this
model under the restriction that p = O(1), we recall statistics and data sketch-
ing problems (see, e.g., [2, 11, 12]), which can be typically approximated using
polylogarithmic working space, and graph problems (see, e.g., [5, 9, 10]), most
of which require a working space linear in the vertex set size.

Motivatedbypractical factors, such as availability of large amounts of secondary
storage at low cost, a number of authors have recently proposed less restrictive
streaming models, where algorithms can both read and write data streams. Among
them, we mention the W-Stream model and the StrSort model [1, 21]. In the
W-Stream model, at each pass we operate with an input stream and an output
stream. The streams are pipelined in such a way that the output stream produced
at pass i is given as input stream at pass i + 1. Despite the use of intermediate
streams, which allows achieving effective space-passes tradeoffs for fundamental
graph problems, most classical lower bounds in read-only streaming hold also in
this model [8]. The StrSortmodel is just W-Streamaugmented with a sorting prim-
itive that can be used at each pass to reorder the output stream for free. Sorting
provides a lot of computational power, making it possible to solve several graph
problems using polylog passes and working space [1]. For a comprehensive survey
of algorithmic techniques for processingdata streams,we refer the interested reader
to the extensive bibliographies in [4, 19].

It is well known that algorithmic ideas developed in the context of parallel
computational models have inspired the design of efficient algorithms in other
models. For instance, Chiang et al. [7] showed that efficient external memory
algorithms can be derived from PRAM algorithms using a general simulation.
Aggarwal et al. [1] discussed how circuits with uniform linear width and polylog
depth (NC) can be simulated efficiently in StrSort, providing a systematic way
of constructing algorithms in this model for problems in NC that use a linear
number of processors. Examples of problems in this class include undirected
connectivity and maximal independent set.

Parallel techniques seem to play a crucial role in the design of efficient algo-
rithms in the W-Stream model as well. For instance, the single-source shortest
paths algorithm described in [8] is inspired by a framework introduced by Ullman
and Yannakakis [25] for the parallel transitive closure problem. However, to the
best of our knowledge, no general techniques for simulating parallel algorithms
in the W-Stream model have been addressed so far in the literature.

Our Contributions. In this paper, we show how classical parallel algorithms
designed in the PRAM model can be turned into near-optimal algorithms in
W-Stream for several classical combinatorial problems. We first show that any
PRAM algorithm that runs in time T using N processors and memory M can
be simulated in W-Stream using p = O((T · N · log M)/s) passes. This yields
near-optimal trade-off upper bounds of the form p = O((n · polylog n)/s) in
W-Stream for several problems, where n is the input size. Relevant examples
include sorting, list ranking, and Euler tour. For other problems, however, this
simulation does not provide good upper bounds. One prominent example con-
cerns graph problems, for which efficient PRAM algorithms typically require
O(m+n) processors on graphs with n vertices and m edges. For those problems,
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this simulation method yields p = O((m·polylog n)/s) bounds, while p = Ω(n/s)
almost-tight lower bounds in W-Stream are known for many of them.

To overcome this problem, we study an intermediate parallel model, which we
call RPRAM, derived from the PRAM model by relaxing the assumption that a
processor can only access a constant number of cells at each round. This way, we
get the PRAM algorithms closer to streaming algorithms, since a memory cell
in the working memory can be processed against an arbitrary number of cells
in the stream. For some problems, this enhancement allows us to substantially
reduce the number of processors while maintaining the same number of rounds.
We show that simulating RPRAM algorithms in W-Stream leads to near-optimal
algorithms (up to polylogarithmic factors) for several fundamental problems, in-
cluding sorting, minimum spanning tree, biconnected components, and maximal
independent set. Since algorithms obtained in this way are not always optimal –
although very close to being so –, for some of the problems above we give better
ad hoc algorithms designed directly in W-Stream, without using simulations.

Finally, we show that there exist problems for which the increased compu-
tational power of the RPRAM model does not help in reducing the number
of processors required by a PRAM algorithm while maintaining the same time
bounds, and thus cannot lead to better W-Stream algorithms. An example is
deciding whether a directed graph contains a cycle of length two.

2 Simulating Parallel Algorithms in W-Stream

In this section we show general techniques for simulating parallel algorithms in
W-Stream. We show in the next sections that our techniques yield near-optimal
algorithms for many classical combinatorial problems in the W-Stream model.
In Theorem 1 we discuss how to simulate general CRCW PRAM algorithms.
Throughout this paper, we assume that each memory address, cell value, and
processor state can be stored using O(log M) bits, where M is the memory size
of the parallel machine.

Theorem 1. Let A be a PRAM algorithm that uses N processors and runs
in time T using space M = poly(N). Then A can be simulated in W-Stream in
p = O((T ·N · log M)/s) passes using s bits of working memory and intermediate
streams of size O(M + N).

Proof (Sketch). In the PRAM model, at each parallel round, every processor may
read O(1) memory cells, perform O(1) instructions to update its internal state,
and write O(1) memory cells. A round of A can be simulated in W-Stream by
performing O((N log M)/s) passes, where at each pass we simulate the execution
of Θ(s/ log M) processors using s bits of working memory. The content of the
memory cells accessed by the algorithm and the state of each processor are
maintained on the intermediate streams. We simulate the task of each processor
in a constant number of passes as follows. We first read from the input stream its
state and the content of the O(1) memory cells used by A and then we execute
the O(1) instructions performed. Finally, we write to the output stream the
new state and possibly the values of the O(1) output cells. Memory cells that
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remain unchanged are simply propagated through the intermediate streams by
just copying them from the input stream to the output stream at each pass.

There are many examples of problems that can be solved near-optimally in
W-Stream using Theorem 1. For instance, solving list ranking in PRAM takes
O(log n) rounds and O(n/ log n) processors [3], where n is the length of the list.
By Theorem 1, we obtain a W-Stream algorithm that runs in O((n log n)/s)
passes. An Euler tour of a tree with n vertices is computed in parallel in O(1)
rounds using O(n) processors [15], which by Theorem 1 yields again a p =
O((n log n)/s) bound in W-Stream. However, for other problems, the bounds
obtained this way are far from being optimal. For instance, efficient PRAM
algorithms for graph problems typically require O(m + n) processors, where n
is the number of vertices, and m is the number of edges. For these problems,
Theorem 1 yields bounds of the form p = O((m ·polylog n)/s), while p = Ω(n/s)
almost-tight lower bounds are known for many of them.

In Definition 1 we introduce RPRAM as an extension of the PRAM model. It
allows every processor to handle in a parallel round not only O(1) memory cells,
but an arbitrary number of cells. Since in W-Stream a value in the working mem-
ory might be processed against all the data in the stream, we view RPRAM as a
natural link between PRAM and W-Stream, even though it may be unrealistic
in a practical setting. We first introduce a generic simulation that turns RPRAM
algorithms into W-Stream algorithms. We then give RPRAM implementations
that lead to efficient algorithms in W-Stream for a number of problems where
the PRAM simulation in Theorem 1 does not yield good results.

Definition 1. An RPRAM (Relaxed PRAM) is an extended CRCW PRAM
machine with N processors and memory of size M where at each round each
processor can execute O(M) instructions that:

– can read an arbitrary number of memory cells. Each cell can only be read
a constant number of times during the round, and no assumptions can be
made as to the order in which values are given to the processor;

– can write an arbitrary subset of the memory cells. The result of concurrent
writes to the same cell by different processors in the same round is undefined.
Writing can only be performed after all read operations have been done.

Similarly to a PRAM, each processor has a constant number of registers of size
O(log M) bits.

The jump in computational power provided by RPRAM allows substantial im-
provements for many classical PRAM algorithms such as decreasing the number
of parallel rounds while preserving the number of processors or reducing the num-
ber of processors used while maintaining the same number of parallel rounds. We
show in Theorem 2 that parallel algorithms implemented in this more powerful
model can be simulated in W-Stream within the same bounds of Theorem 1.

Theorem 2. Let A be an RPRAM algorithm that uses N processors and runs
in time T using space M = poly(N). Then A can be simulated in W-Stream in
p = O((T ·N · log M)/s) passes using s bits of working memory and intermediate
streams of size O(M + N).
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Proof (Sketch). We follow the proof of Theorem 1. The main difference is that
a processor in the RPRAM model can read and write an arbitrary number
of memory cells at each round, executing many instructions while still using
O(log M) bits to maintain its internal state. Since the instructions of algorithm
A performed by a processor during a round do not assume any particular order
for reading the memory cells, reading memory values from the input stream can
still be simulated in one pass. Replacing cell values read from the input stream
with the new values written on the output stream can be performed in one
additional pass.

3 Sorting

As a first simple application of the simulation techniques introduced in Section 2,
we show how to derive efficient sorting algorithms in W-Stream. We first recall
that n items can be sorted on a PRAM with O(n) processors in O(log n) parallel
rounds and O(n log n) comparisons [15]. By Theorem 1, this yields a W-Stream
sorting algorithm that runs in p = O((n log2 n)/s) passes. In RPRAM, how-
ever, sorting can be solved by O(n) processors in constant time as follows. Each
processor is assigned to an input item; in one parallel round it scans the entire
memory and counts the numbers i and j of items smaller than and equal to
the item the processor is assigned to respectively. Then each processor writes its
own item into all the cells with indices between i + 1 and i + 1 + j, and thus we
obtain a sorted sequence.

Theorem 3. Sorting n items in RPRAM can be done in O(1) parallel rounds
using O(n) processors.

Using the simulation in Theorem 2, we obtain the result stated below.

Corollary 1. Sorting n items in W-Stream can be performed in O(n log n/s)
passes.

We obtain a W-Stream sorting algorithm that takes p = O((n log n)/s) passes,
thus matching the performance of the best known algorithm for sorting in a
streaming setting [18]. Since sorting requires p = Ω(n/s) passes in W-Stream,
this bound is essentially optimal. However, both our algorithm and the algorithm
in [18] perform O(n2) comparisons. We reduce the number of comparisons to
the optimal O(n log n) at the expense of increasing the number of passes to
O((n log2 n)/s) by simulating an optimal PRAM algorithm via Theorem 1, as
stated before.

4 Graph Problems

In this section we discuss how to derive efficient W-Stream algorithms for sev-
eral graph problems using the RPRAM simulation in Theorem 2. Since efficient
PRAM graph algorithms typically require O(m + n) processors on graphs with
n vertices and m edges [6], simulating such algorithms in W-Stream using The-
orem 1 yields bounds of the form p = O((m · polylog n)/s), while p = Ω(n/s)
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almost-tight lower bounds in W-Stream are known for many of them. Graph
connectivity is one prominent example [8]. Notice that, assigning each vertex to
a processor, RPRAM gives enough power for each vertex to scan its entire neigh-
borhood in a single parallel round. Since many parallel graph algorithms can be
implemented using repeated neighborhood scanning, in many cases this allows
us to reduce the number of processors from O(m+n) to O(n) while maintaining
the same running time. By Theorem 2, this yields improved bounds of the form
p = O((n · polylog n)/s).

4.1 Connected Components (CC)

A classical PRAM random-mating algorithm for computing the connected com-
ponents of a graph with n vertices and m edges uses O(m+n) processors and runs
in O(log n) time with high probability [6, 20]. We first describe the algorithm
and then we give an RPRAM implementation that uses only O(n) processors
which, by Theorem 2, leads to a nearly optimal algorithm in W-Stream.

PRAM Algorithm. The algorithm is based on building a set of star subgraphs and
contracting the stars. It each parallel round it performs the following sequence
of steps.

1. Each vertex is assigned the status of parent or child independently with
probability 1/2;

2. For each child vertex u, determine whether it is adjacent to a parent vertex.
If so, choose one such a vertex to be the parent f(u) of u, and replace each
edge (u, v) by (f(u), v) and each edge (v, u) by (f(v), u);

3. For each vertex having parent u, set the parent to f(u).

The algorithm performs O(log n) parallel rounds with high probability [6].

RPRAM Implementation. We show how to implement each parallel round in
RPRAM in O(1) rounds using only O(n) processors. We attach a processor
to each vertex. We first assign each vertex the status of parent or child, and
then for each vertex we scan its neighborhood to find a parent, if there exists
one (in case of several parents, we break ties arbitrarily). Updating the parents
according to the third step also takes one round in RPRAM. We obtain the
result in Theorem 4.

Theorem 4. Solving CC in RPRAM takes O(n) processors and O(log n) rounds
with high probability.

By Theorem 2, this yields the following bound in W-Stream.

Corollary 2. CC can be solved in W-Stream in O((n log2 n)/s) passes with high
probability.

By the p = Ω(n/s) lower bound for CC in W-Stream [8], this upper bound is
optimal up to a polylogarithmic factor. We notice that the same bound can be
achieved deteministically by starting from the PRAM algorithm for CC in [22].
This bound can be further improved to O((n log n)/s) passes as shown in [8].
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4.2 Minimum Spanning Tree (MST)

In this section, we first describe the PRAM algorithm in [6] for computing the
MST of an undirected graph. We then give an RPRAM implementation that
leads to an optimal algorithm (up to a polylog factor) in W-Stream by using the
simulation in Theorem 2. Finally, we give an algorithm designed in W-Stream
that outperforms the algorithm obtained via simulation.

PRAM Algorithm. The randomized CC algorithm previously introduced can
be extended to find a minimum spanning tree in a (connected) graph [6]. It
also takes O(log n) rounds with high probability and uses O(m + n) processors.
The algorithm is based on the property that given a subset V ′ of vertices, a
minimum weight edge having one and only one endpoint in V ′ is in some MST.
We modify the second step of the CC algorithm as follows. Each child vertex u
determines the minimum weight incident edge (u, v). If v is a parent vertex, then
we set f(u) = v and flag the edge (u, v) as belonging to the spanning tree. This
algorithm computes a MST and performs O(log n) rounds with high probability.

RPRAM Implementation. The updated second step runs in O(1) rounds in
RPRAM and uses O(n) processors. Since the implementations of the other steps
of the CC algorithm are unchanged and take O(1) rounds and O(n) processors,
we obtain the result stated in Theorem 5.

Theorem 5. MST is solvable in RPRAM using O(n) processors and O(log n)
rounds with high probability.

Assuming edge weights can be encoded using O(log n) bits, we obtain the fol-
lowing bound in W-Stream by Theorem 2.

Corollary 3. MST can be solved in W-Stream in O((n log2 n)/s) passes.

We now give a deterministic algorithm designed directly in W-Stream that im-
proves the bounds achieved by using the simulation.

A Faster ad hoc W-Stream Algorithm. We again assume edge weights can be
encoded using O(log n) bits. We build the MST by progressively adding edges
as follows. We compute for each vertex the minimum weight edge incident to
it. This set of edges E′ is added to the MST. We then compute the connected
components induced by E′ and contract the graph by considering each connected
component a single vertex. We repeat these steps until the graph contains a single
vertex or there are no more edges to add. More precisely, we consider at each
iteration a contracted graph where the vertices are the connected components of
the partial MST so far computed. Denoting Gi = (Vi, Ei) the graph before the
ith iteration, the (i + 1)th iteration consists of the following steps.

1. for each vertex u ∈ Vi, we compute a minimum weight edge (u, v) incident
to u, and flag (u, v) as belonging to the MST (cycles that might occur due to
weight ties are avoided by using a tie-breaking rule). Denote E′

i = {(u, v), u ∈
Vi} the set of flagged edges.
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2. we run a CC algorithm on the graph (Vi, E
′
i). The resulted connected com-

ponents are the vertices of Vi+1.
3. we replace each edge (u, v) by (c(u), c(v)), where c(u) and c(v) denote the

labels of the connected components previously computed.

We now analyze the number of passes required in W-Stream. Let |Vi| = ni. The
first and the third steps require O((ni log n)/s) passes each, since we can process
in one pass O(s/ log n) vertices. Computing the connected components also takes
O((ni log n)/s) passes, and therefore the ith iteration requires O((ni log n)/s)
passes. We note that at each iteration we add an edge for every vertex in Vi and
thus |Vi+1| ≤ |Vi|/2, i.e., the number of connected components is divided by at
least two. We obtain that the total number of passes performed in the worst case
is given by T (n) = T (n/2) + O((n log n)/s), which sums up to O((n log n)/s).

Theorem 6. MST can be computed in O((n log n)/s) passes in W-Stream.

By the p = Ω(n/s) lower bound for CC in W-Stream [8], this upper bound
is optimal up to a polylog factor. To the best of our knowledge, no previous
algorithm was known for MST in W-Stream.

4.3 Biconnected Components (BCC)

Tarjan and Vishkin [24] gave a PRAM algorithm that computes the biconnected
components (BCC) of an undirected graph in O(log n) time using O(m + n)
processors. We give an RPRAM implementation of their algorithm that uses
only O(n) processors while preserving the time bounds and thus can be turned
using Theorem 2 in a W-Stream algorithm that runs in O((n log2 n)/s) passes.
We also give a direct implementation that uses only O((n log n)/s) passes.

PRAM Algorithm. Given a graph G, the algorithm considers a graph G′ such
that vertices in G′ correspond to edges in G and connected components in G′

correspond to biconnected components in G. The algorithm first computes a
rooted spanning tree T of G and then builds a subgraph G′′ of G′ having as
vertices all the edges of T . The edges of G′′ are chosen such that two vertices are
in the same connected component of G′′ if and only if the corresponding edges
in G are in the same biconnected component. After computing the connected
components of G′′ the algorithm appends the remaining edges of G to their
corresponding biconnected components. We now briefly sketch the five steps of
the algorithm.

1. build a rooted spanning tree T of G and compute for each vertex its preorder
and postorder numbers together with the number of descendants. Also, label
the vertices by their preorder numbers.

2. for each vertex u, compute two values, low(u) and high(u), as follows.

low(u) = min({u} ∪ {low(w)|p(w) = u} ∪ {w|(u, w) ∈ G \ T })
high(u) = max({u} ∪ {high(w)|p(w) = u} ∪ {w|(u, w) ∈ G \ T }),

where p(u) denotes the parent of vertex u.
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3. add edges to G′′ according to the following two rules. For all edges (w, v) ∈
G \ T with v + desc(v) ≤ w, add ((p(v), v), (p(w), w)) to G′′, and for all
(v, w) ∈ T with p(w) = v, v �= 1, add ((p(v), v), (v, w)) to G′′ if low(w) < v
or high(w) ≥ v + desc(v), where desc(v) denotes the number of descendants
of vertex v.

4. compute the connected components of G′′.
5. add the remaining edges of G to their biconnected components. Each edge

(v, w) ∈ G \ T , with v < w, is assigned to the biconnected component of
(p(w), w).

RPRAM Implementation. We give RPRAM descriptions for all the five steps of
the algorithm, each of them using O(log n) time and O(n) processors. First, we
compute a spanning tree of the graph using the RPRAM algorithm previously
introduced. Rooting the tree and computing for each vertex the preorder and
postorder numbers as well as the number of descendants are performed using
list ranking and Euler tour [24], which take O(log n) time and O(n) processors
in PRAM, and thus in RPRAM. Since the second step takes O(log n) time
using O(n) processors in PRAM [24], the same bounds hold for RPRAM. We
implement the third step in RPRAM in constant time and O(n) processors,
since it suffices a scan of the neighborhood for each vertex. For computing the
connected components of G′′ in the fourth step, we use the RPRAM algorithm
previously introduced that takes O(log n) time and O(n) processors. Finally, we
implement the last step of the algorithm in RPRAM in O(1) time and O(n)
processors by scanning the neighborhood for all vertices v and assigning the
edges to the proper biconnected components. Since we implement all the steps
of the algorithm in RPRAM in O(log n) rounds and O(n) processors, we obtain
the following result.

Theorem 7. BCC can be solved in RPRAM using O(n) processors in O(log n)
rounds with high probability.

By Theorem 2, this yields the following bound in W-Stream.

Corollary 4. BCC can be solved in W-Stream in O((n log2 n)/s) passes with
high probability.

We now show that we can achieve better bounds with an implementation de-
signed directly in W-Stream.

A Faster ad hoc W-Stream Algorithm. We describe how to implement directly
in W-Stream the steps of the parallel algorithm of Tarjan and Vishkin [24].
Notice that we have given constant time RPRAM descriptions for the third
and the fifth step, thus by applying the simulation in Theorem 2 we obtain
W-Stream algorithms that run in O((n log n)/s) passes. For computing the con-
nected components in the fourth step, we use the algorithm in [8] that requires
O((n log n)/s) passes. Therefore, to achieve a global bound of O((n log n)/s)
passes, it suffices to give implementations that run in O((n log n)/s) passes for
the first two steps. For the first step, we can compute a spanning tree within
the bound of Theorem 6. Rooting the tree and computing the preorder and pos-
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torder numbers together with the number of descendants can be implemented
in O((n log n)/s) passes using list ranking, Euler tour and sorting. Concerning
the second step, we compute the low and high values by processing Θ(s/ log n)
vertices at each pass, according to the postorder numbers.

Theorem 8. BCC can be solved in W-Stream in O((n log n)/s) passes in the
worst case.

By the p = Ω(n/s) lower bound for CC in W-Stream [8], this upper bound
is optimal up to a polylog factor. To the best of our knowledge, no previous
algorithm was known for BCC in W-Stream.

4.4 Maximal Independent Set (MIS)

We give an efficient RPRAM algorithm for the maximal independent set prob-
lem (MIS), based on the PRAM algorithm proposed by Luby [17]. Using the
simulation in Theorem 2, this leads to an efficient W-Stream implementation.

PRAM Algorithm. A maximal independent set S of a graph G is incrementally
built through a series of iterations, where each iteration consists of a sequence
of three steps, as follows. In the first step, we compute a random subset I of the
vertices in G, by including each vertex v with probability 1/(2 · deg(v)). Then,
for each edge (u, v) in G, with u, v ∈ I, we remove from I the vertex with the
smallest degree. Finally, in the third step, we add to S the vertices in I, and then
we remove from G the vertices in I together with their neighbors. The above
steps are iterated until G gets empty. The algorithm uses O(m + n) processors
and O(log n) parallel rounds.

RPRAM Implementation. We implement the first step of each iteration in con-
stant time and O(n) processors in RPRAM, since it requires each vertex to
compute its own degree. The second step can also be implemented in constant
time, by having each vertex in I scan its neighborhood, and remove itself upon
encountering a neighbor also in I with a larger degree. Finally, we implement
the third step in constant time as well by scanning the neighborhood of each
vertex that is not in I, and removing it from G if at least one of its neighbors is
in I. Since the algorithm performs O(log n) iterations with high probability [17],
we obtain the bound in Theorem 9.

Theorem 9. MIS can be solved in RPRAM using O(n) processors in O(log n)
rounds with high probability.

By Theorem 2, this yields the following bound in W-Stream.

Corollary 5. MIS can be solved in W-Stream in O((n log2 n)/s) passes with
high probability.

We now show that the bound in Corollary 5 is optimal up to a polylog factor.

Theorem 10. MIS requires Ω(n/s) passes in W-Stream.

Proof (Sketch). The proof is based on a reduction from the bit vector disjointness
communication complexity problem. Alice has an n-bit vector A and Bob has an
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n-bit vector B; they wish to know whether A and B are disjoint, i.e., A · B = 0.
They build a graph on 4n vertices vj

i , where i = 1, · · · , n and j = 1, · · · , 4. If
Ai = 0, then Alice adds edges (v1

i , v2
i ) and (v3

i , v4
i ), whereas if Bi = 0, then Bob

adds edges (v1
i , v3

i ) and (v2
i , v4

i ). The size of any MIS is 2n if A · B = 0 and
strictly greater otherwise.

5 Limits of the RPRAM Approach

In this section we prove that the increased power that RPRAM provides does not
always help in reducing the number of processors to O(n) and thus in obtaining
W-Stream algorithms that run in O((n · polylog n)/s) passes. As an example,
in Theorem 11 we prove that detecting cycles of length two in a graph takes
Ω(m/s) passes.

Theorem 11. Testing whether a directed graph with m edges contains a cycle
of length two requires p = Ω(m/s) passes in W-Stream.

Proof (Sketch). We prove the lower bound by showing a reduction from the bit
vector disjointness two-party communication complexity problem. Alice has an
m-bit vector A and Bob has an m-bit vector B; they wish to know whether A
and B are disjoint, i.e., A · B = 0. Alice creates a stream containing an edge
e(i) = (xi, yi) for each i such that A[i] = 1 and Bob creates a stream containing
an edge er(i) = (yi, xi) for each i such that B[i] = 1, where xi = i div �

√
m 	

and yi = i mod �
√

m 	. Let G be the directed graph induced by the union of the
edges in the streams created by Alice and Bob. Clearly, there is a cycle of length
two in G if and only if A · B > 0. Since solving bit vector disjointness requires
transmitting Ω(m) bits [16], and the distributed execution of any streaming
algorithm requires the working memory image to be sent back and forth from
Alice to Bob at each pass, we obtain s = Ω(m), which leads to p = Ω(m/s).

Testing whether a digraph has a cycle of length two can be easily done in one
round in RPRAM using O(m) processors, by just checking in parallel whether
there is any edge (x, y) that also appears as (y, x) in the graph. This leads to an
algorithm in W-Stream that runs in O((m log n)/s) passes by Theorem 2.
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