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Abstract. Magnetic resonance diffusion imaging (dMRI) has become an
established research tool for the investigation of tissue structure and ori-
entation. In this paper, we present a method for real time processing of
diffusion tensor and Q-ball imaging. The basic idea is to use Kalman fil-
tering framework to fit either the linear tensor or Q-ballmodel. Because the
Kalman filter is designed to be an incremental algorithm, it naturally en-
ables updating themodel estimate after the acquisition of any newdiffusion-
weighted volume. Processing diffusion models and maps during ongoing
scans provides a new useful tool for clinicians, especially when it is not
possible to predict how long a subject may remain still in the magnet.

1 Introduction

Magnetic resonance (MR) diffusion imaging has become an established technique
for inferring structural anisotropy of tissues and mapping the white matter con-
nectivity of the human brain [1]. The term diffusion refers to the Brownian
motion of water molecules inside tissues that results from the thermal energy
carried by these molecules. MR images can be sensitized to that physiological
phenomenon from the application of a specific pair of well-known diffusion gra-
dients together with a spin echo pulse sequence.

Technically, diffusion imaging requires the acquisition of a set of diffusion sen-
sitized images from which molecules displacement probability is inferred. Several
mathematical models have been designed, becoming more and more complex
over the last decade while attempting to make less and less assumptions. In this
paper, we focus on both the diffusion tensor (DTI) model (historically the first)
introduced by Basser [2] and the Q-ball model (QBI) introduced by Tuch [3].
Despite the huge amount of assumptions (unrestricted environment, structural
homogeneity within voxels), the DTI model is still widely used because it can
be used in a clinically acceptable time (a few minutes for an entire brain cover-
age) and provides useful information to the clinicians about the average trans-
lational motion (apparent diffusion coefficient, ADC), the anisotropy of white
matter structure (fractional anisotropy index, FA), and the RGB orientation
map (RGB)). Today, clinical studies of brain pathologies (either neurodegener-
ative or psychiatric) involve statistical analysis of ADC and FA maps. Q-ball
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belongs to the class of high angular resolution diffusion imaging (HARDI) mod-
els that aim at solving the partial voluming problem due to the existence of
several putative populations of fibres within a voxel. Such models have been
developed to address the inference of white matter connectivity mapping from
the knowledge of local microstructural orientations of tissue.

Compared to DTI, QBI requires from five to ten times more diffusion gra-
dient orientations with a higher b-value and therefore cannot be considered as
reliable for clinical use for many reasons. First, clinical protocols generally in-
volve different MR acquisitions (T1, T2, BOLD) limitating the time alloted to
diffusion imaging. Second, the patient may move severely during the acquisition
(a frequent situation for patients impaired with Huntington disease, Parkinson
disease, schizophrenia), hence increasing the risk of aborting the scanning. The
same problem arises for studies involving newborns who cannot be sedated: gen-
erally, less than 75% of the subjects can be exploited because they often wake
up inside the magnet, due to the level of noise. The opposite situation is also
true: the patient can be more cooperative than hypothesized first and it’s worth
starting with a high b-value DTI scan and continuing with a QBI scan if the
patient is still.

This paper addresses the feasibility of real time DTI and QBI processing for
displaying reconstructed associated maps during an ongoing scan. This will make
it possible to start the scan estimating both models, to cancel the acquisition at
any time, or to sustain the scanning when the subject is still in the magnet. If
the scanning is stopped after too few diffusion gradient orientations, none of the
model is exploitable. Then, according to the acquired number of orientations,
either DTI model, QBI model or both can be obtained. To our knowledge, real
time processing was previously addressed for BOLD functional imaging [4], but
has never been proposed for diffusion imaging.

DTI and QBI models can be expressed in the light of the general linear model
framework (GLM) assuming a white noise model. Among available techniques for
solving least-squares linear regressionmodels, the Kalmanfilter provides an appro-
priate answer to the real time requirement, as it is an incremental solver. After the
acquisition of the entire volume for each diffusion gradient orientation, this filter
can update DTI and QBI maps, provide variance of the estimate and can deliver
an immediate feedback to the clinician or to the expert in cognitive neurosciences.

After introducing the linear models for DTI and QBI in section 2.1, we de-
scribe the Kalman filter-based algorithm implemented in section 2.2. Then we
focus on the optimization of the diffusion gradient orientation set in section 2.3.
In section 3, we give a setup of the realtime protocol used and we illustrate the
technique using DTI and QBI MR data, before concluding.

2 Methods

2.1 Model Fitting Formulation

Let us consider the vector m = [m1, ..., mN ], acquired during the acquisi-
tion corresponding to the diffusion-sensitized signal measured with the different
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diffusion gradient orientations at a given voxel in the scanned volume. The gra-
dient orientations oi are indexed by i corresponding to the time rank during the
acquisition and are numbered from 1 to N . The choice of the orientation set
will be discussed later in section 2.3. The magnitude of the sensitization is given
by the b-value in s/mm2. We also define m0 corresponding to the unweighted
signal measured with diffusion gradients off.

Tensor general linear model
The DT model states that the diffusion of water molecules can be considered
as free, yielding a Gaussian probability density function characterized by a sec-
ond order tensor D. The signal attenuation observed when applying a diffusion
gradient along the normalized direction o = [ox, oy, oz ]T of the space and with
sensitization b is exponential:

m = m0e
−boT Do + μ (1)

where μ represent the acquisition noise that usually follows a Rician distribution.
Taking the natural logarithm of this attenuation, we easily obtain the general
linear model:

y = Bd + ε (2)

where we define the measured vector of attenuations y = [y1, ..., yN ]T , with
yi = log (m0/mi) and d = [Dxx, Dxy, Dxz, Dyy, Dyz, Dzz]T being the vector of
the six unknown coefficients of the diffusion tensor. B is a N×6 matrix called the
diffusion sensitization matrix, built from N rows b1, ..., bN depending only on the
diffusion gradient settings bi = bi[ox,i

2, 2ox,ioy,i, 2ox,ioz,i, oy,i
2, 2oy,ioz,i, oz,i

2].
ε is the N×1 vector of errors εi = −ln(1+μebioi

T Doi/m0) ≈ −μebioi
T Doi/m0.

Theoretically, the noise model depends on the unknowns as well as on the Rician
noise μ, but we assume it is not far from a Gaussian distribution. Studying the
true distribution of the noise must be done, but it is not the purpose of this
paper that deals with the real-time aspect of the algorithm, even if the estimate
is not statistically optimum.

Q-ball general linear model
The Q-ball model states that the orientation distribution function (ODF) ψ(o) =∫ ∞
0 p(ro)dr that gives the likelihood of any orientation o can be obtained by

sampling a sphere in the Q-space [3] which radius is set up by a high b-value
(typically greater than 3000s/mm2) with a huge number of gradient orientations
(from 160 to 500 according to the litterature). A good approximation of the
ODF was proposed by Tuch using the Funk-Radon transform (FRT). In order
to obtain ψ(oi), the FRT integrates the MR signal along the equator of the given
orientation oi.

A first linear model of the FRT has been published in [5] corresponding to
the raw algorithm. More recently, Descoteaux et al [6] proposed an elegant refor-
mulation of the FRT using the Funk-Hecke theorem for decomposing the ODF
onto a symmetric, orthonormal and real spherical harmonics.
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Let c = [c1, ..., cK ]T be the K × 1 vector of coefficients cj of the spherical
harmonics decomposition of the ODF and is calculated from the reconstruction
equation:

c = P
(
BT B + λL

)−1
BT m (3)

where B is a N × K matrix built from the modified spherical harmonics basis
Bij = Yj (θ(oi), φ(oi)) (θ is the colatitude and φ is the azimuth of the diffusion
gradient orientation oi), L is the K × K matrix of Laplace-Beltrami regulariza-
tion operator, λ is the regularization factor, P is the K×K Funk-Hecke diagonal
matrix with elements Pii = 2πPl(j)(0)/Pl(j)(1) (Pl(j)(x) is the Legendre polyno-
mial of degree l(j), see also [6] for the definition of l(j))).

From the knowledge of the decomposition c, we can obtain the ODF value for
the orientation o calculating the composition (4):

ψ(o) =
N∑

j=1

cjYj (θ(o), φ(o)) (4)

The equation (3) can easily be reversed to get the general linear model:

m = B+c + ε with B+ =
(
P

(
BT B + λL

)−1
BT

)†
(5)

where ε is the vector of Rician acquisition noise that we assume to be Gaussian
in order to stay in the ordinary linear least square framework. The ()† stands for
the Moore-Penrose pseudo-inverse operator. Further investigation must be done
concerning this operator in order to prevent the apparition of negative items in
the vector c when the spherical harmonics order is increased.

2.2 Kalman Filtering

The Kalman filter is a recursive solver that optimally minimize the mean square
error of the estimation [7][8]. Because of its recursive nature, it is a suitable
method for updating the DTI or QBI model parameters after the acquisition of
each new diffusion-sensitized volume. Moreover, the Kalman filter provides, at
each time frame, an estimated covariance of the parameter estimate that can be
used to automatically stop the ongoing scan when the maximum variance falls
below a minimum threshold.

In section 2.1, we obtained two general linear models for DTI and QBI of the
form y = Ax + ε. The Kalman filter exploits any new measure y for updating
the unknown parameters x, usually called the state vector.

Assume that after the acquisition of rank i, a current estimate x̂(i−1) is avail-
able. Given the new MR measurement y(i) and the vector a(i) = [Ai1, ..., AiP ]T

corresponding to the ith row of the matrix A, the innovation ν(i) = y(i) −
a(i)T x̂(i − 1) is calculated. The Kalman filter then updates the parameters us-
ing the recursion:

⎧
⎪⎨

⎪⎩

k(i) =
(
1 + a(i)T P (i − 1)a(i)

)−1
P (i − 1)a(i)

x̂(i) = x̂(i − 1) + ν(i)k(i)
P (i) = P (i − 1) − k(i)a(i)T P (i − 1)

(6)
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where the vector k(i) is usually called the Kalman gain. P (i) represents an
estimate of the normalized covariance matrix of x given the information at time
i. The unnormalized covariance of x̂(i) is equal to σ̂(i)2P (i) using the recursion:

σ̂(i) =
i − 1

i

[
σ̂(i − 1) + ν(i)2

(
1 + a(i)T P (i − 1)a(i)

)−1
]

(7)

The initial guesses x̂(0), P (0) and σ̂(0) can be respectively set to the null
vector, the identity matrix and zero.

2.3 Optimum Diffusion Gradient Orientation Set

Contrary to functional scans where the time order of the stimuli cannot be mod-
ified, diffusion scans can play the diffusion gradient orientation set in random
order, provided it is a uniform distribution of the orientations in the tridimen-
sional space, for obtaining an accurate tensor or Q-ball estimation.

The optimum orientation count is still debated in the litterature [9]. Increasing
this number directly improves the SNR of the ADC, FA and ODF maps, at the
price of a longer scan time and knowing that it is not always possible to predict
how long a subject will remain still in the magnet. In order to reduce the risk
of failure, we implemented the sequence of orientations proposed in [10], which
yields the ”best” spatial distribution of the orientations, should the acquisition
be terminated before completion. This sequence consists in a series of small
meaningful subsets of 14 uniform orientations, while all clusters complement each
other with additional orientations. Figure 1 gives an example of 42 orientations
divided into 3 subsets of 14 orientations. The distribution obtained from the 14
or 28 orientation subsets are more uniform with the optimum distribution than
with the conventional distribution. This strategy has been applied only for DTI
scanning, but can be also used for QBI scanning.

42 orientations28 orientations14 orientations42 orientations

optimum orientation setconventional orientation set

14 orientations 28 orientations

Fig. 1. Comparison of conventional and optimum sets of 42 orientations; meshes of the
full distributions are represented as well as meshes corresponding to subsets restrained
to the 14 or 28 first orientations; conventional set is more uniform than the optimum
set when the full set is acquired, but less uniform when it is not complete; optimum
set is to be prefered for real time scan that can be interrupted at any time

2.4 DTI and QBI Acquisition Settings

The real time diffusion Kalman filter was evaluated on an adult, under a proto-
col approved by the Institutional Ethical Committee. Two different acquisitions
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were performed using a DW Dual Spin Echo EPI technique on a 1.5T MRI sys-
tem (ExciteII, GE Healthcare, USA) for validating both DTI and QBI solvers.
Pulse sequence settings were b = 700s/mm2, 42 optimum gradient orientation
set, matrix 128 × 128, 60 slices, FOV = 24cm, slice thickness TH = 2mm,
TE/TR = 66.2ms/12.5s for a DTI scan time of 9min48s, and b = 3000s/mm2,
200 conventional gradient orientation set, matrix 128 × 128, 60 slices, FOV =
24cm, slice thickness TH = 2mm, TE/TR = 93.2ms/19s for a QBI scan time
of 72min50s.

3 Results

3.1 Real Time Standard Diffusion Maps

At each iteration of the DTI scan, an approximation of the diffusion tensor
is available for each voxel of the brain. Therefore it is possible to process its
eigensystem online and then to estimate the ADC / FA / RGB maps. Columns
1-3 of figure 2 depict the evolution of these maps during the ongoing scan.
For comparison, the 4th column shows the result of a standard offline SVD
analysis. There is no qualitative difference with the 3rd column processed using
the Kalman filter.

A
D

C
F

A
R

G
B

online iteration 6 online iteration 14 online iteration 42 offline

Fig. 2. Real time processing of ADC / FA / RGB maps using the DTI Kalman filter
during an ongoing DTI scan at b = 700s/mm2 with 42 diffusion gradient orientations;
the columns 1/2/3 correspond to iteration 6, 14 and 42; the last column shows the
result of the standard offline processing
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RGB map Q−ball / online iteration 200 Q−ball / offline Q−ball ODF

Q−ball / online iteration 50 Q−ball / online iteration 100Q−ball / online iteration 1

Fig. 3. Real time processing of a Q-ball ODF map using the QBI Kalman filter during
an ongoing QBI scan at b = 3000s/mm2 with 200 diffusion gradient orientations; the
bottom row displays a RGB orientation map (left) on which is drawn a region of interest
inside the white matter, containing fibre crossings and homogeneous voxels, and the
corresponding map of Q-ball ODFs (right) processed with the offline routine; the top
row shows iterations 1, 50 and 200 of the same ODF map calculated with the online
Kalman filter

The use of an optimum orientation set speeds up the convergence of the esti-
mation that can be considered exploitable by clinicians from the 14th iteration.
The time required to perform one iteration of the DTI Kalman filter over the
full brain is less than 8 seconds on a 3.2GHz linux station, which is lower than
the repetition time TR = 12.5s of the scan. Consequently, there is no addtional
delay between two consecutive acquisitions, making this protocol truly real time.

3.2 Real Time Orientation Distribution Function Maps

The Q-ball online Kalman filter was used for processing ODFs during the ongoing
QBI scan. A symmetrical spherical harmonics basis of order 8 was chosen and
the Laplace-Beltrami regularization factor was set to 0.006 as proposed in [6].
The ODFs are reconstructed on 400 normalized uniform orientations. The QBI
dedicated Kalman filter (5) provides, at each step and for each voxel of the
brain, an estimate of the decomposition of the ODF on to a symmetric spherical
harmonics basis from which it is easy to obtain the values for any orientation o
of the space (equation (4)).

The top row on figure 3 shows the evolution of the ODF map during the
Kalman recursion on a region of interest contained in the subcortical white
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matter, and exhibiting some fibre crossings as well as voxels with homogeneous
fibre populations. As for DTI, there is no qualitive difference between the ODF
maps obtained from the online Kalman filter or from the offline Q-ball algorithm
given by equation (3). The choice for that order can be discussed, because there
are 45 spherical harmonic coefficients to estimate, which represents a lot of un-
known, and consequently requires a lot of iterations before to converge. A lower
order would give nice results after less iterations.

The time required for performing one iteration of the QBI Kalman filter on
a slice is almost 5 seconds, which is lower than the repetition time TR = 19s
of the scan. Obviously, it is more time consuming than DTI processing where
the entire brain can be processed within 8 seconds. In the case of QBI, only 4
slice locations can be performed in real time. However, the C++ code can still
be optimized and parallelized on a grid of processors, if the whole brain is to be
processed in real time.

4 Conclusion

We have developed an incremental Kalman-filter based framework dedicated to
real-time diffusion MR imaging. This framework address both diffusion tensor
and Qball models, and enables processing the standard DTI / QBI maps, in real
time during an ongoing scan. The methodology developed in this paper is very
suitable for clinical use when a quick feedback is required during the acquisi-
tion or when the cooperation of the subject is not certain. More quantitative
evaluations of the difference between online and offline reconstructions must be
performed for validating this approach, as well as studying more deeply the un-
derlying model of noise present in DTI and QBI data, which was not the main
purpose of this paper. There is also a clear need to study the best trade-off
between the iteration number, the wavevector number [11] , the regularization
factor, and estimation order. A future extension of this work entails online fibre
tracking. To that end, we plan to modify the diffusion Kalman filter in order to
process incremental connectivity maps during ongoing diffusion scans.
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