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Abstract. We present a graphics hardware system to implement
supersampling cost-effectively. Supersampling is the well-known tech-
nique to produce high quality images. However, rendering the scene
at a higher resolution requires a large amount of memory size and
memory bandwidth. Such costs can be alleviated by grouping subpixels
into a fragment with a coverage mask which indicates which part of
the pixel is covered. However, this may cause color distortion when
several objects either overlap or intersect with each other within
a pixel. In order to minimize such errors, we introduce an extra
buffer, called the RuF(Recently used Fragment)-buffer, for storing the
footprint of a fragment most recently used in the color manipulation.
In our experiments, the proposed system can produce high quality
images as good as supersampling with a smaller amount of memory size
and memory bandwidth, compared with the conventional supersampling.

Keywords: Antialiasing, Supersampling, Graphics Hardware, Render-
ing Algorithm

1 Introduction

With growth of user demand for high quality images, the hardware-supported
full scene antialiasing (FSAA) has become commonplace in 3D graphics systems.
Artifacts due to aliasing are mostly caused by insufficient sampling. To attenuate
such aliasing problem, supersampling has been practiced in the high-end graphics
system [2] and begins to be adopted by most pc-level graphics accelerator.

In supersampling, 3D objects are rendered at a higher resolution and then are
averaged down to the screen resolution [§]. Hence it requires a large amount of
memory size and memory bandwidth. For example, n x n supersampling requires
n? times bigger both memory size and memory bandwidth than one-point sam-
pling. Some reduced versions of it have been practiced; sparse supersampling [2]
that populates sample points sparsely and adaptive supersampling [I] in which
the only discontinuity edges are supersampled. In multi-pass approach, the ac-
cumulation buffer [4] has been proposed in which one scene is rendered several
times and these images are then accumulated, one at a time, into the accumu-
lation buffer. When the accumulation is done, the result is copied back into the
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frame buffer for viewing. However, it is obvious that rendering the same scene n
times takes n times longer than rendering it just once. Both supersampling and
the accumulation buffer are well integrated into the Z-buffer (also called depth
buffer) algorithm that is adopted by most rendering systems for the hidden sur-
face removal. Moreover, Z-buffer algorithm handles correctly interpenetrating
objects.

Rather than rendering each subpixel individually, A-buffer approach [3]
groups subpixels into a fragment with a coverage mask that indicates which
part of the pixel is covered. Such a representation is efficient in reduction of the
memory and bandwidth requirements because it shares the common color value
instead of having its own color value per subpixel. To apply Carpenter’s blending
formulation [3] for antialiasing of opaque objects, fragments should be sorted in
the fragment list by their depth value. The fragment lists can be implemented
by a pointer-based linked list [6] or a pointer-less approach [9]. For reducing
noticeable artifacts, correct subpixel visibility calculations are more important
that correct antialiasing of subpixels. Therefore, the more concise depth value
representation has been practiced in [5].

This paper presents a cost-effective graphics hardware system that renders
the supersampled graphics primitives with full scene antialiasing. In our ap-
proach, an area-weighted representation of a fragment using a coverage mask
is adopted, as in A-buffer, to reduce the memory and bandwidth requirements.
This may cause color distortion when several objects either overlap or intersect
with each other within a pixel. In order to minimize such errors, we introduce
an extra buffer, called the RuF' (Recently used Fragment)-buffer, for storing the
footprint of a fragment most recently used in the color manipulation. In addition,
we introduce the new color blending formulation for minimizing color distortion
by referencing the footprint of the RuF-buffer. In our simulation, we compared
the amount of memory size and memory bandwidth of the proposed scheme
with those of supersampling and investigated the per-pixel color difference of
the images produced from both methods. For various 3D models with 8 sparse
sample points, the proposed algorithm reduces the amount of memory size and
memory bandwidth by 35.7% and 67.1%, respectively, with 1.3% per-pixel color
difference as compared with supersampling.

The rest of this paper is organized as follows. In Section 2, we describe
the proposed graphics architecture. Section 3 explains fragment processing al-
gorithm for antialiasing. Section 4 provides the experimental results of image
quality, memory and bandwidth requirement. Finally, the conclusions are given
in Section 5.

2 The Proposed Graphics Architecture

In this section, we present the data structure and memory organization for pro-
cessing a pixel with subpixels individually or a fragment. We also describe the
proposed graphics hardware with the newly developed RuF-buffer.
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2.1 Data Structure and Memory Organization for a Pixel

Figure [1 shows the data structure and memory organization for representing a
pixel with subpixels individually and a fragment. Here we assumed that each
pixel has 8 sparse sample points. In supersampling method, each subpixel is
processed individually; the pair of color and depth value per subpixel is stored
into color buffers and depth buffers in the frame buffer. Hence, the required
memory size per pixel is m X (C + Z) bits where C' and Z is color (32 bits) and
depth value (24 bits), respectively and m is the number of sample points. In this
example, 8 x (32 + 24) bits = 56 bytes per pixel is required.

depth buffers

F (21, )

L color buffers
subpixel, subpixel, ubpixgly (Ci,.Co)

C, G Cs

Supersampling

Z Z> Zs

J depth buffc
a fragment ‘ l " ?;l‘,---l,lz:;s

[ ‘ Zoo Zs ‘

\ ‘ @ ‘ M
Proposed color buffer
© sunpiopoms o [ C | M | 0 Jown © =

]
T

RuF-buffer mask-buffer
(C,M, 0) ™M)

Fig. 1. Data structure and memory organization for a pixel.

In the proposed scheme, the data structure for a fragment is basically orig-
inated from the one of the A-buffer. Subpixels within a pixel are grouped into
a fragment that shares the common color value (C) with a coverage mask (M).
Moreover, we can easily compute the color contribution of a fragment within
a pixel since a coverage mask represents an area-weighted value. For handling
subpixel visibility correctly, depth value per subpixel (Zy,---,Z,,) is kept in-
dividually. An object tag (O) is the unique identifier per object and can be
generated sequentially by the rendering hardware incorporated with modelling
software [6]. It is used for post-merging fragments; if two fragments in a pixel
have the same object tag value then the footprint of both fragments can be
merged into the RuF-buffer. The RuF-buffer holds the footprint of a fragment
that is recently used in the color manipulation phase. The footprint of a frag-
ment consists of color, coverage mask and object tag of a fragment and it will
be used for correct handling the hidden surface removal. The required memory
size per a pixel is (2 x (C' + M) +m x Z + O) bits where M is the coverage
mask (m bits) and O is the object tag (16 bits). Here, 21¢ objects are assumed
to be enough for representing 3D model in a scene. Therefore, the memory size
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Table 1. Memory requirement

m‘Supersampling‘Our approach‘Reduction ratio

4 28 bytes 24 bytes 14.3%
8 56 bytes 36 bytes 35.7%
16| 112 bytes 62 bytes 44.6%
64| 448 bytes 218 bytes 51.3%

of (2 x (32+8)+8 x 24+ 16) bits = 36 bytes per pixel is required when 8 sparse
sample points are used.

Table [I] shows the comparison of the memory requirement between super-
sampling and the proposed algorithm as the number of sample points increases.
As shown in the results, the reduction ratio of the memory requirement begins to
be larger as the number of sample points increases since our approach can save
the memory requirement for representing individual color value per subpixel by
sharing the common color value.

2.2 RuF-Buffer Graphics Architecture

Figure shows the proposed graphics architecture with the conventional
geometric-processing and rasterizer-processing. We add the mask-buffer and the
RuF-buffer into the conventional architecture. Generally, 3D data are geometric-
processed with rotating, scaling and translation. The processed results are fed
into the rasterizer-processing. In rasterizer-processing, the fragments of each
polygon are generated by scan-conversion and then passed through occlusion
test such as Z-buffer algorithm and various image mapping such as texture
mapping or bump mapping. Finally, the color value of each pixel is manipulated
and stored into the color buffer in the frame buffer. When all the fragments are
processed, the color values in the frame buffer are sent to a display device.
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Fig. 2. The proposed graphics architecture.
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3 Fragment Processing for Antialiasing

Figure Blshows three phases of the newly introduced functional unit of fragment
processing: the occlusion test, the color manipulation, and the RuF-buffer record-
ing. Roughly speaking, the newly fragment incoming into the graphics pipeline
is tested with Z-buffer algorithm per subpixel. If it is totally occluded by the one
previously stored in the frame buffer, called a prepizel, then it will be discarded
and the next fragment will be processing.

Mask buffer Z-buffers Color buffer Ruf-buffer
M) 2y Z) © C, M, 0)
T ES

l:H

i lor RuF-buffer
——  Occlusion test |—— Color . uF-buffe
fragments manipulation recording
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Fig. 3. Functional units for fragment processing.

Otherwise, we calculate the visible fraction of an incoming fragment, called
a survived surface, and the hidden surface of the prepixel occluded by it. For
calculating color value of a pixel, the survived surface will be added into and
the hidden surface will be subtracted from the color buffer. In this phase, we
look up the RuF-buffer for investigating the color value of the hidden surface.
Finally, the survived fragment is merged into the RuF-buffer to allow more
opportunity by covering the larger portion within a pixel. In describing each
stage, the subscripts, ‘i’, ‘p’, and ‘r’ are used for denoting the attribute of an
incoming fragment, the prepixel in the frame buffer, and the footprint in the
RuF buffer. For instance, M; is for the coverage mask of an incoming fragment.
For simplicity, we assume that a coverage mask used in formulation returns the
area-weighted value; for instance, if the number of sample points is eight and M;
covers three subpixels then M; in formulation denotes the value of 3/8.

Detail descriptions of each stage in the fragment processing are presented as
follows:

The occlusion test : The depth comparison per subpixel between an incoming
fragment and a prepixel are tested with the conventional Z-buffer algorithm.
Then the mask composite for the survived surface (M;) and the hidden surface
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(My,) are processed. Z-buffers are updated with new depth values of the survived
surface.

The color manipulation : The survived surface is visible fraction of an incom-
ing fragment. Hence, its area-weighted color value should be added into the color
buffer. In addition, the hidden surface of a prepixel occluded by the survived sur-
face should be subtracted from the color buffer. To look up the color value of
the hidden surface, we investigate the match between the hidden surface and the
footprint of the RuF-buffer through the mask comparison of (M, = M, N M,.).
If M, is a subset of M, then we can totally remove the color contribution of the
hidden surface from the frame buffer using the formulation of Eq. [dl

new C, = Cp, + C; x My — Cp x My, (1)

However, since the footprint of the RuF-buffer may not provide any informa-
tion about some parts of the hidden surface we expand the formulation of Eq. [
to compensate color value with a slight error. The fourth term of formation in
Eq. B2l compensates color value by subtracting the area-weighted color value for
the blind parts (M = My, — My,) of the hidden surface from the frame buffer.

neWCp:Cp—FCiXMS—CTXMk—CpXMb (2)

The RuF-buffer recording : Generally, the polygonal surfaces of an object
exist in a coplanar space. Therefore, each neighbored surface generates fragments
that share the same pixel on their boundary [3],[6]. So, they can be merged into
one in the post-processing. Fragments that come from the same object will be
merged into one since the same tagged object has same property. The merging
process can be computed as follows:

M, M,

S — >< S —
T
new M, new M,

new M, = M, UM new C = C, x (3)

However, if the survived fragment has the different object tag then the RuF-
buffer is reset with the survived surface. The new object now begins to be drawn.

Figure[d and Table Plshows an example of fragment processing for each event
and its associated color manipulation. In this example, subpixels are located on
3 x 3 grid sample points and three consecutive fragments (f1, f2, f3) are incoming
into the graphics pipeline. In Figure @] we assume that a fragment f; was already
processed in the previous phase; the frame buffer was initialized and then filled
with f1, where f of object one (O1) covers four subpixels with a color value C.
Hence, the color value of a prepixel in the frame buffer (C7) was computed as an
area-weighted value of f;, and then the footprint of f; was stored in the RuF-
buffer. Now two fragments, fo and fs3, are newly fed into the graphics pipeline
sequentially.

The left on the figure shows the processing of a fragment fy; which of object
2 (O3) has Cy as a color value and covers four subpixels. The occlusion test is
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Table 2. The color manipulation process
Events [ Color manipulation [Color buffer
Frame buffer initialize — []
f1 incoming Co % % C1
f2 incoming Ci1+Cy x % — Cp X % Cs
f3 incoming C3+ Cy % g —(C3 x %(instead of Cy x é) Cs

first processed, and then the survived and hidden masks are composited by Z-
buffer algorithm per subpixel. In this example, four subpixels of fo are survived
and three subpixels in a prepixel are occluded. Moreover, the information of the
hidden surface can be referenced through the RuF-buffer. Thus the new color
value (C3) can be computed by Eq. 0l without any color distortion. Finally, the
RuF-buffer is reset with the footprint of fs since the object tag of fs is different
to the one of the RuF buffer stored in the previous phase.

The right on the figure shows the processing of a fragment f3, which of object
2 (O3) has Cjy as a color value and covers five subpixels. Similarly as in fs pro-
cessing, the hidden and survived surfaces are computed in the occlusion test; in
this example, five subpixels are survived and one subpixel is occluded. However,
in the color manipulation, the footprint of the RuF-buffer cannot provide any
information of the hidden surface (Mp). So, the color value is compensated by
subtracting it from the prepixel; for instance, the color value of C3 x % are used
in formulation instead of Cy x £. This causes color distortion with the mere color
difference of (C5 x % — Cp x g). In RuF-buffer recording, the footprint of two
fragments fo and f3 are merged into one since they have the same object tag,
and then it covers the entire portion of a pixel.
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4 Empirical Results

In our experiments, the 3D models described with OpenGL functions are
geometric-processed and passed through scan-conversion in the Mesa library,
which is the OpenGL-clone implementation and can be accessed in public do-
main [[7]. We modified the Mesa library to output the tracefile of a fragment with
a coverage mask. The resulted tracefile is fed into the simulator that implements
the proposed architecture in C. Then the final image of 200 x 150 resolution is
produced as shown in Figure Bl

Table [ describes the characteristics of 3D models used in our experiments
where the number of vertices (V'), triangles (T'), fragments (F'), and objects (O)
are provided. In our experiment, we decided to use eight-sparse sample point (8 x
RuF) for the antialiasing architecture because it has been successfully practiced
in high-end graphics systems [2]. To provide an indication of the performance
in our approach, various supersampling methods are also simulated; one-point
sampling (1 x S, 1 subpixel per pixel), 8 sparse supersampling (8 x S, 8 subpixels
per pixel), 4 by 4 supersampling (4 x 45, 16 subpixels per pixel), and 8 by 8
supersampling (8 x 85, 64 subpixels per pixel).

Table 3. The characteristics of 3D models used in our experiments

Model Name[ V.| T [ F [O
Al 3618| 7124 |11975|35
Castle [6620|13114|17444|16
Dolphins | 885 | 1692 | 4570
Pig 3522| 7040 | 7499
Rose+vase |4028| 3360 | 5425
Teapot  |3644| 6320 | 6807
Venus 711 | 1418 | 5464

= = Ot W W

4.1 Image Quality

We present the image quality with respect to the number of sample points. To
observe the quality of final scenes, the error metric of per-pixel color difference
is used as shown in Eq.

Per-pixel color difference = Z Z (pijc - Qijc)27 (4)
Vi,j c=r,g,b

where p;; and ¢;; are the pixels from the same location of a reference image and
a test image, respectively.

In order to make a small number of pixels with large difference more notice-
able, the square of the difference is made [5]. We compute the per-pixel color
difference for each 3D model where the reference image is produced by 8 x 85,
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Fig. 6. Performance of color difference and memory size.

it is regarded as to be an ideal image, and each test image is produced by 1 x S,
8 x S, 8 x RuF and 4 x 45, respectively.

Figure [B(a) shows the results of the per-pixel color difference for each 3D
dataset with various sample points. As can be seen from the results, the per-
pixel color difference becomes to be smaller as the number of sampling points
increase. Moreover, the final images of 8 x RuF are almost as good quality as
8 x .S; both of them have the same number of sample points.

4.2 Trade-Off Between Image Quality and Memory Requirement

In order to show the cost efficiency of the proposed architecture, two graphs for
memory size per pixel and per-pixel color difference, respectively, are plotted
together in Figure [B(b). The per-pixel color difference between 8 x RuF and
8 x S is 1.3% but the memory size per pixel is 35.7%. That is, our approach
provides almost as good quality as supersampling with a less hardware cost.
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4.3 Memory Bandwidth Requirement

Figure [ shows the memory bandwidth requirements where two bar graphs for
supersampling (left) and the proposed scheme (right) are plotted as a pair for
each model. Arbitrary scenes for each 3D model are produced with both methods
where 8 sparse sample points are used. As shown in the results, the proposed ar-
chitecture can reduce the memory bandwidth requirement by 53.6% ~ 75.5% for
Castle and Rose+vase. The internal bandwidth is required for pixel processing
between the graphics pipeline and the frame buffer (includes the RuF-buffer and
mask-buffer). The external bandwidth is for swapping the front and back buffer
or for average-down filtering. In supersampling, the external bandwidth domi-
nates the memory bandwidth requirement. In other words, it implies that the
screen-size color buffer is very efficient in reducing the bandwidth requirement
since it does not require the overhead for average-down filtering process.
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Fig. 7. The memory bandwidth requirement

5 Conclusion

In this paper, we present a graphics hardware system to implement supersam-
pling in cost-effective manner. For hardware-implementation aspect, our graphics
architecture uses same programming model as in Z-buffer algorithm for the hid-
den surface removal and adds only small additions to the conventional rendering
process such as mask comparison and composite. In addition, mask comparison
and composite can be simply processed with bitwise operations. In the color
manipulation, computing the color contribution of a fragment can be processed
through look-up tables, each entry of which holds the predefined floating point
number divided by the number of sample points.

To provide an indication of the performance in terms of cost-effective full
scene antialiasing, the results of memory requirement, bandwidth requirement,
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Table 4. Summary of performance

‘Memory size‘Memory bandwidth‘per-pixel color diff.

8 xS 56 Bytes 1181030 Bytes 1338250
8 X RuF 35 Bytes 395890 Bytes 1336154
Reduction ratio|  35.7% 67.1% 1.3% (difference)

and per-pixel color difference are shown in Table ] when 8 sparse sample points
are used. It shows that the proposed architecture can reduce the memory size
and the memory bandwidth size by 35.7% and by 67.1% with a slight color
difference of 1.3%, compared with the conventional supersampling. As shown in
the results, the proposed architecture can efficiently render the high quality scene
with an economic hardware cost. Moreover, the simplicity of rendering process
for our scheme allows us to have fast rendering through well-defined pipeline
with a single pass.
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