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Abstract. We study new probabilistic models for signals in DNA. Our
models allow dependencies between multiple non-adjacent positions, in
a generative model we call a higher-order tree. Computing the model of
maximum likelihood is equivalent in our context to computing a mini-
mum directed spanning hypergraph, a problem we show is NP-complete.
We instead compute good models using simple greedy heuristics. In prac-
tice, the advantage of using our models over more standard models based
on adjacent positions is modest. However, there is a notable improvement
in the estimation of the probability that a given position is a signal, which
is useful in the context of probabilistic gene finding. We also show that
there is little improvement by incorporating multiple signals involved in
gene structure into a composite signal model in our framework, though
again this gives better estimation of the probability that a site is an
acceptor site signal.

1 Introduction

Accurate detection of DNA signals is essential for the proper identification of
important features found in DNA. Here, we study new probabilistic models for
detecting such signals based on optimizing directed spanning hypertrees in hy-
pergraphs that represent all possible dependencies of bounded cardinality among
positions of the signal. We evaluate performance of our new models on human
splice site recognition. Our new models offer modest improvement over existing
techniques, most notably in improving the accuracy of the probabilistic model,
rather than its usefulness as a classifier.

Our study is motivated by gene finding, where we desire signal detectors
based on generative probabilistic models that use only small window around the
functional site for their prediction. Altough it is often possible to increase signal
detector prediction accuracy by considering properties of the wider sequence
(such as the coding potential of the region upstream from donor splice site),
such information is already considered in other parts of a gene finder.

Generative probabilistic models commonly used for signal detection include
position weight matrices [20121], maximum decomposition trees [5], and Chow-
Liu trees [8]7]. Here, we extend these techniques to a wider class of models. Our
new models, described in Section 2, allow for more complicated dependencies
among the positions of a signal than were previously modeled. In particular, we
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Optimal DNA Signal Recognition Models 79

model dependencies within a signal as a directed hypertree whose nodes are the
positions of the signal. The root of the hypertree has no dependencies on other
positions, while all other positions are dependent on the positions represented by
the tail of the hyperedge that is incident on them. When the hyperedges are just
normal directed edges, this is equivalent to the Chow-Liu tree models studied in
this context by Cai et al. [7], but allowing multiple dependencies at a position
allows more richness in the set of possible signal models being considered.

Unfortunately, computing the optimal signal model for a training set from
the set of hypertrees we study is NP-hard, as we show in Section 3. However, one
can either use integer programming (which is practical as long as the number of
dependencies a position has is small) or simple greedy heuristics in practice. For
the problems we have considered, the difference between the optimal model and
the one found by greedy heuristics was small.

We have tested our models by using human chromosome 22, which is ex-
tremely well annotated. Our experimental results are found in Section 4. In prac-
tice, the improvement of our hypertree-based models over more standard signal
detection algorithms, such as second order position weight matrices (PWMs),
is modest. In this sense, our results are similar to the results of Cai et al. [7],
who show that tree dependency structures do not improve much over first order
PWNMs.

However, we are able to offer a notable improvement in the prediction of the
probability that a given position is a signal. This us useful for gene finding, given
that gene finders typically integrate this predicted probability into their other
inference engines. If one can improve reliability of the scores returned by signal
detectors, perhaps one can improve de novo gene finding as well.

In particular, when tested on a long testing sequence, if our model for donor
sites predicts that a possible sequence is a donor with probability 6%, then
with probability 6.7% it actually is such a signal. In contrast, when the more
standard second order PWM predicts a donor signal with the same probability,
it is actually a donor signal with probability 7.5%. This pattern consists across
several different families of signals, and at many probability values.

Our models are general enough to be adapted to other probabilistic inference
scenarios beyond gene finding. For example, they are appopriate for modeling
dependencies among positions in protein domains, for purpose of quickly screeing
a database of proteins for a match to a non-consecutively dependent motif. We
are currently investigating their integration into a gene finder.

2 DModels of Dependencies in Signals

A useful way to represent biological signals is by probabilistic generative models.
For our purposes, signals are short windows of fixed length in the sequence
located near the biologically significant boundary or functional site. For example,
donor and acceptor splice signals are located at exon-intron and intron-exon
boundaries respectively.
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The simplest generative model for signals is the position weight matriz
(PWM) [2021]. A PWM gives the probability that each position in the signal is
a particular character, and allows all positions to be independent. If (7, ) is the
probability that the ith position in the signal is the base b, then the probability
that the model generates a a given sequence S of length n is [[;_, r(i, S;).

The basic assumption of the PWM is that the probability of generating the
character depends only on its position in the signal. Many researchers (e.g.,
[622]) demonstrated that this assumption is false. In fact, there exist dependen-
cies in signals between positions which are several bases apart in the sequence.
Higher order PWMs [22] allow the incorporation of dependencies between adja-
cent positions in the sequence. For example, in a first order PWM, each position
is dependent on its immediate predecessor in the sequence; to generate the sig-
nal, one starts with the first position; then each subsequent character is picked
using a probability distribution based on its predecessor.

Here, we investigate an extension of the PWMs to allow for multiple depen-
dencies among positions in the signal which are not adjacent, and also to allow
for dependencies between pairs of related signals. Such signals, especially corre-
sponding donor and acceptor sites in introns, may be mutually dependent, and
we wish to capture this information.

In our model, each position in the signal is dependent on a fixed set of other
positions and there are no cyclic dependencies. We can view such a model as
a directed acyclic graph (DAG), where nodes represent positions in the signal,
and edges represent dependencies between the positions. Each node is assigned a
probability distribution of bases depending only on the bases on positions which
are its immediate ancestors in the DAG (see examples in Figure [I). We call
the underlying DAG the signal model topology, and the maximum in-degree of a
node in such a graph is the model’s order. Such models are also called Bayesian
networks and are extensively used in machine learning [13].

Models with order zero are exactly PWMs. If the order is 1, then the under-
lying topology is a directed tree. Such model was used for classification of splice
sites before by Cai et al. [7] and Agarwal and Bafna [I]. The special case where
the topology is restricted to paths was used for identifying transcription factor
binding sites by Ellrott et al. [I2]. PWMs of k-th order can be expressed as
k-th order signal models (see Figure [[] for an example of a second order PWM).
These network models are actually quite general: for example, the maximum de-
pendency decomposition (MDD) model used by Burge [6] to model donor splice
sites can be expressed as a fourth-order model. However, this is not very practi-
cal; such a model would contain many parameters not used by the MDD model.
In general, we call all order k& models the higher order trees of k-th order (or
HOT-k).

To generate a signal in one of these models, one iteratively finds positions
whose antecedents have been fixed, and then chooses the sequence value at that
position dependent on the predecessors. This can of course be done in O(kn)
time, if the signal is of length n and k is the order of the model.
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1st order PWM:
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Fig.1. Examples of different model topologies for donor signal positions
(—1,47).

Similarly, one can compute the probability that the model generates a
given sequence S by multiplying the dependent probabilities. If the ith po-
sition in the sequence is dependent on positions d; 1 ...d;,, and we denote
r(i,b,x1,...25,) = Pr[S; = bldi1 = x1,d;2 = x2,...,d; k; = T,], the probabil-
ity of generating the sequence S by the model is

n

PI‘(S|+) = H T(ia SisSdi 1y Sdiar -5 Sdik, )

i=1

When using such model as a classifier, one also wants to compute the prob-
ability that the seen sequence S constitutes the signal. This can be done using
Bayes rule:

Pr(S|+) - Pr(+)
(S]+) - Pr(+) + Pr(S|—) - (1 — Pr(+))"

Pr(+]S) = br

Here, Pr(+) is a frequency of the signal occuring in the sequence, and Pr(S|—)
is the probability of the sequence S occuring in a background model (in our
work, we use a fifth-order position-independent Markov chain as the background
model).

3 Choosing the Best Model

Here, we investigate methods for estimation of parameters of HOT models to
maximize likelihood of the training data set. Once the topology of the model
is fixed, we only need to count the frequencies from the training data. One
needs to pick a good choice for the model’s topology itself, before computing
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the parameters at each position. Here, we describe how to choose the optimal
topology, given a training data set, and prove that the problem is NP-hard.
Given its hardness, we considered integer programming techniques to find the
optimal hypertree topology. In fact, the improvement relative to simpler greedy
algorithms we will describe was minor. Therefore, in our experiments, we use
the greedy algorithm to determine the topology of the model.

Note on the number of model parameters. If the topology of the model is
fixed, the number of parameters that need to be trained depends on two variables:
it is linear in the length of the signal, and exponential in the order of the model.
However, the amount of data available for training the probability distribution
of any given position does not change with the order of other positions or length
of the signal. Therefore the model’s order is the most relevant parameter in the
training, and the number of data needed for training a k-th order HOT model
is comparable to the amount of data needed for training a PWM of the same
order. However, it is still possible for HOT to overfit during training because we
are searching for model over a wider family (namely, all possible topologies).
Connection to hypergraphs. To formalize the problem of finding the best
topology, we formulate the problem in terms of hypergraphs. A hypergraph is a
pair H = (V, &), where V is a set of vertices, and & = {E1, Ea, ..., E,,} is a set
of directed hyperedges. Each directed hyperedge E = (T, h) has a tail T, which is
a subset of V', and a head h, which is a single vertex[] Let the order of a directed
hyperedge be the cardinality of its tail.

A directed hypertree is a hypergraph H, where all nodes are the tail of at most
one hyperdge, and the directed graph which can be obtained by replacing every
hyperedge ({v1,...,v;},v) with k edges (v1,v), (v2,v), ..., (vk,v) is acyclic. A
spanning directed hypertree, for us, is a directed hypertree where each vertex is
a head of a hyperedge (note, that a hyperedge can have an empty tail). Span-
ning directed hypertrees are exactly equivalent to spanning outtrees in ordinary
directed graphs.

Let us define a directed hypergraph analogous to the complete graph. The
complete hypergraph is a hypergraph that contains all hyperedges (T, h) of order
at most k.

There is an easy correspondence between the spanning directed hypertrees
and HOT models: for a given vertex, all incoming edges in the HOT model can
be represented as a single hyperedge. Such hyperedges form a spanning directed
hypertree. Now we can make the following statement.

Theorem 1. Let H be a complete hypergraph of order k on a set of vertices
representing positions in the signal. Let weight of every hyperedge (T, h) € H be
H(T U{h})— H(T), where H(P) is the entropy of the signal positions from set
P in the training set of signals SM) ..., 8™

! Sometimes, directed hyperedges are defined as a pair (T, H), where both tail T and
head H are sets of vertices, rather than head being always a single vertex [14].
However, we will use the simpler definition here.
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Then the directed acyclic graph M* corresponding to the minimum spanning
hypertree M* of graph ‘H yields a topology of the HOT model of order k with the
mazimum likelihood of the training set S, ... ™).

Proof. For any set of positions P, let fp(xp) be the number of occurences of
string zp at positions in P in the training set S, ..., (™) In this notation,
the entropy H(P) can be expressed as

HP) ==Y fP;f:P) log fr(zp)

m

We have noted earlier that in the maximum likelihood model with fixed
topology M, the string S has probability

frugny (Stugny)
s = ] TS
(T,h)EE(M) T\oT

where E(M) is the set of hyperedges in the corresponding spanning directed
hypertree. To maximize the likelihood of generating S, ..., S(™) we have to
maximize over all possible model topologies M:

fTu{h} (S(Tizj{h})

i=1

(1) (m) _ (%) —
Pr(sW,... S0 M) = T[Pr(s? | M) =] 0
i=1(T,h)€E(M) fr(Sz7)

H fTU{h} (xTU{h})fTu{h} (zrugny)
¥

o H TTUu{h

(Th)eE(M) 1 fr(zr)t
xT
We want to maximize Pr(SM, ..., S0™) | M) which is equivalent to minimizing

—(1/m)logPr(SW, ..., S™) | M):

1
——logPr(s™,..., 8™ | M) =
m

f (v T
Y- L)y o ro) | + |30 g fr ()
(T,h)€E(M) TTu{n} zr
= > H(Tn-HT),
(T,h)€E(M)
which is exactly what we wanted to prove. ]

Solving the minimum spanning directed hypertree problem. Theorem [
shows, how to reformulate the problem of finding the graphical model maximiz-
ing the likelihood of our training data to the problem of finding the minimum
spanning directed hypertree problem.

To solve this problem, first consider its special case, where k£ = 1. In this
case, we are looking for the minimum spanning directed tree of a complete graph.
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Chow and Liu [8] showed, that the problem is equivalent to finding the minimum
spanning undirected tree, where weight of the edge (u,v) is H(u,v) — H(u) —
H (v). This can be easily done by Prim’s algorithm (see, e.g. [10]) in O(n? logn)
time.

Unfortunately, in the general case, this method cannot be extended. The
following theorem shows that the problem is hard, even for k = 2.

Theorem 2. Finding the minimum spanning directed hypertree in the hyper-
graph is NP-hard, even if all the edges are of degree at most 2.

Proof. We prove NP-hardness by reduction from a special case of the problem of
minimum feedback arc set restricted to directed graphs with indegree at most 2.
Minimum feedback arc set problem is to find a minimum edge set whose removal
makes the graph acyclic. It was proven NP-complete by a reduction from vertex
cover and this reduction can be easily modified to produce graphs with
indegree at most 2, thus proving the special case of minimum feedback arc is
also NP-hard.

To prove that the minimum spanning directed hypertree is NP-hard we take
a directed graph G with indegree at most 2 and create a hypergraph H on
the same set of vertices. For every vertex v we find the set X of tails of edges
incoming to v in G. By our assumption X has at most 2 elements. For each
subset A of X we create a hyperedge (A, v) with cost |X| — |A|. To complete
the graph, we add all other possible hyperedges with tails of size at most 2, but
with a large cost C, so that they will not be chose.

As established earlier, each spanning hypertree of H corresponds to a directed
acyclic graph M and clearly M is a subgraph of G, if it does not use one of the
very high-cost edges. Conversely, if we remove a feedback arc set from G we
get a directed acyclic graph that correspond to some spanning hypertree of H.
Moreover for every edge deleted from G the cost of the corresponding hypertree
increases by one. Therefore graph G has a feedback arc set of size at most k if
and only if H has a spanning hypertree of cost at most k. ad

As a result of Theorem [2 we must either consider slow solution algorithms,

or use heuristic methods to find the optimal hypertree topology. We present each
of these ideas in what follows.
Exact algorithms for finding the optimal hypertree. We first identified
optimal hypertrees by using an integer linear programming algorithm. Integer
linear programming is guaranteed to give us the optimal hypertree, yet it uses
potentially exponential runtime [19].

Our IP model of the problem includes two kinds of variables. One family of
variables models the acyclicity of the spanning hypergraph, by requiring that
we order the nodes in the hypergraph, and require the heads of hyperedges to
be later in the ordering than their tails. The second family of variables model
the hyperedges of the graph. We require that each chosen hyperedge be properly
ordered, and that each node have only one incoming hyperedge, to again ensure
the hypertree property.
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In particular, we assign a decision variable b; ; to each pair of distinct po-
sitions, 7 and j. This variable is set to 1 exactly when ¢ comes before j in the
ordering of nodes, and 0 otherwise. There is a variable ar j for each possible di-
rected hyperedge E = (T, h), where |T| < k, and where h ¢ T. When ar ) = 1,
the hyperedge E is in the chosen spanning hypertree, while when it is 0, the
hyperedge is not in the chosen hypertree.

We model the ordering constraint on the nodes by requiring that the order
relationship is antisymmetric and that there are no 3-cycles in it. In particular,
we require that b; ; +b;; = 1 for all pairs 4 and j and that b; j + b + bi; < 2
for all triplets 7, j and k of distinct nodes.

The requirement that chosen hyperedges are properly ordered is modeled by
the constraint az; < by ) for all nodes  in T'. This requires that all nodes in
the head of the hyperedge are before the tail node, for chosen hyperedges.

Finally, we require that every node has an incoming edge (in the case of the
tree’s root, this will have no tail nodes). This is the constraint ZE:E:(T,h) ar,, =
1 for all nodes h.

The cost of a chosen hypertree is > E=(T,h) OT,hWT,h; where wr ;, is the cost
of including the hyperedge E = (T, h) in the tree.

This gives the integer linear program:

min Z wr par,y,  subject to:
E=(T,h)
bij +b;; =1, for all pairs ¢ and j,
bij +bjr + b <2, for all triplets ¢, j and &,
ar.p < byp, for all hyper edges E = (T, h) and nodes = in T,

Z ar,, = 1, for all nodes h,
E:E=(T,h)
ar,, € {0,1}, for all hyperedges E = (T, h),

b; ; € {0,1}, for pairs of nodes ¢ and j.

We used the integer programming solver CPLEX [T5] to solve moderate-sized
instances of these problems, where k = 2 (so all hyperedges have at most two
head nodes). The runtime of the optimization procedure was only a few hours,
and we were able to compute optimal hypertrees for many of the signals we
discuss in Section 4. We note that computing these optimal signal models is
something one does not have to do often, so spending a reasonable amount of
computational effort on finding the right model is appropriate, assuming runtime
is at all reasonable.

However, the improvement over the simple greedy algorithm we discuss in
the next subsection was not large enough in our actual examples to justify its
much larger runtime. In some applications, however, the added quality given by
integer programming might be appropriate.
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Simple heuristic. In practice, we have used a simple greedy heuristic to com-
pute good HOT models. We start with a single node in the spanning hypertree
7. In each iteration, we add one more vertex v into the hypertree 7, where v
is the head of the shortest hyperedge (T, h) such that T € 7 and h ¢ 7. This
can be implemented in O(kn**1) time. Since the hypertrees generated in this
way can differ depending on the starting vertex, we run the algorithm for every
vertex as a starting point and choose the shortest resulting hypertree.

Note, that this is just a simple variation of Prim’s algorithm for maximum
spanning trees [10], however, unlike in the case of undirected spanning trees,
in the case of directed spanning hypertrees this process does not guarantee the
optimal result. This simple heuristic gave hypertrees with good performance
often enough that we did not use the integer programming model in practice. It
is certainly reasonable to consider more complicated heuristics for the problem.

Again, once we had the chosen spanning directed hypertree topology, we

then computed the positional probabilities by using the empirical values from
the training data set.
Note on undirected graphical models. Inference of the optimal topology of
fixed order has been studied for undirected graphical models in the context of
machine learning. Srebro and Karger showed that the problem is NP-hard and
presented approximation algorithms for it [16]. Independently, Bach and Jordan
[A] described the problem and used practical heuristic algorithms to solve it. They
also applied their solution to a simple biological signal data set. Finally, Andersen
and Fleischner stuied the problem of finding a minimum spanning undirected
hypertree [3], who showed that this problem is also NP-hard. However, the result
is not related, because of significant differences in properties of undirected and
directed hypertrees.

4 Experiments

We tested the usefulness of higher order models for identifying splicing signals in
human DNA. In general, our experiments show that there are some cases where
including multiple dependencies and not requiring them to be adjacent can help
with sensitivity of models, but in general, the improvement is quite slight; this
is similar to the results of Cai et al. [7], who found this with tree models.

However, one useful finding is that higher order tree models can be better
in predicting the probability that a given position actually is a signal. This
probability can be used in other programs, such as probabilistic gene finders.
Perhaps our most interesting result is that using a higher order tree model allows
substantially better prediction of the probability that a position is a donor site
than is available with other measures.

We also show that including branch site models does not aid much in de-
tecting acceptor sites, but that this inclusion, again, helps with estimating the
probability that sites are acceptor sites.

Data sets. We used two sets of annotated human sequences in our experiments.
The first is the Genscan data set of Burge and Karlin [5]. This data set is
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Donor sites | Acceptor sites

Length‘ True False

Name ‘ Abbreviation

True False
Genscan (training) B97TT 2.9 MB|1,237 146,204|1,236 212,144
Genscan (testing) B97 0.6 MB| 339 30,319| 339 45,512
Chromosome 22 (training)|C22T 19.0 MB|1,952 1,000,646(1,965 1,546,120
Chromosome 22 (testing) [C22 15.8 MB| 1348 814,665| 1366 1,229,695

Table 1. Characteristics of used data sets. Only canonical donor (GT) and
acceptor (AG) sites were considered as true sites. We list any two-base sequence
of GT or AG in the sequences as a false donor or false acceptor site, respectively.

divided into two parts: a training set (B97T) and a smaller testing set (B97).
Our second data set is the Sanger Centre annotation of Human chromosome
22, release 3.1b [11I]. We divided the chromosome, masked for repeats, into 73
pieces, each of roughly 500KB in length, and then randomly divided these into
training (C22T) and testing (C22) sets. We present basic characteristics of the
data sets in Table [l These characteristics were used to compute Pr(+) in our
experiments.

The C22/C22T data set contains significantly more false donor and acceptor
sites per true site than does the Genscan set. This is because the B97/B97T
set contains mostly genic sequence, with very short intergenic regions before
and after the genes. On the other hand, the C22/C22T data set is an entire
chromosome, where genes are a small fraction of all DNA. As we will see, this
significantly affects the specificity of our models and prevents us from directly
comparing the results from the two data sets.

To avoid overfitting, we only trained first-order models on the training set
B97T, while we used both first-order and second-order models with C22T. Note,
that the test set B97 is curated and contains only sequences with high-quality
annotation. On the other hand, the test data set C22 is an annotation of a whole
chromosome, and may contain several errors.

Accuracy measures. We used two measures of accuracy in our experiments.
The first is the sensitivity and specificity of classification. Our models can be
used as classifiers when we set a threshold on Pr(+|S). Sequences with score
below the threshold are classified as not being signals, while sequences with
score above the threshold are classified as signals.

Let us denote the number of true positives as TP, false positives FP, true
negatives TN, and false negatives FIN. We measure classification accuracy with
the sensitivity SN = TP/(TP + FN) and specificity SP = TP/(TP + FP). If we
lower the threshold, sensitivity increases and specificity decreases. Thus for a
given model, we can plot a curve depicting the tradeoff, and compare different
models.

Our interest in gene finding and generative probabilistic models has inspired
another measure of accuracy. In these applications, signal models are not only
used as classifiers, but the estimation of Pr(+]5), the probability that the eval-
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Sensitivity level
Model 20% 35% 50% T0% 90%
PWM-0 |50.0% 39.2% 31.7% 17.7% 7.9%
PWM-1 |52.1% 44.2% 33.3% 24.3% 13.0%
tree 54.1% 47.4% 33.6% 26.0% 12.9%
MDD (*)|54.3% - 36.0% - 13.4%

Table 2. Specificity of models for donor splice sites on data set B97. We include
the results for the maximum dependency decomposition model on the same set,
from [6], for comparison.

uated sequence is a signal, is also used. Therefore, this estimate should be as
close to the actual probability that the sequence is a signal as possible.

To evaluate accuracy of the predicted signal probability, we first divide the
range of scores into buckets (in logarithmic scale). In each bucket, we compute
the number of positive and negative examples among the sequences whose esti-
mated probability causes them to be placed in the bucket. Then we compare the
predicted signal probability corresponding to the bucket with the actual frac-
tion of positive examples belonging to the bucket (actual signal probability).
We quantify this measure using the standard Pearson correlation weighted by
number of samples in each bucket.

In what follows, we abbreviate the various chosen signal topology models as
follows: PWM-£ is the chosen position weight matrix of kth order, TREE is the
model obtained by optimizing the first order HOT model, and HOT-2 is the
second order HOT model selected by our heuristics.

4.1 Donor Site Experiments

For our experiments with donor sites, we represented donor sites by a window of
length 12, from the position —4 to the position 47 (consensus VMAG | GTRAGTRN).
We developed first-order models, using the smaller BO7T data set, and higher-
order models, using the larger C22T set.

First order models. We trained the PWM-0 and first-order models (PWM-1,
TREE) on the training set B97T and evaluated their performance on testing set
B97. We found two non-adjacent dependencies in the TREE model: positions
+3 and +5 both depend on the position —1, rather than on one of their direct
neighbors.

Figure 2l shows the classification power of these models. The tree model im-
proves on both models that do not consider non-adjacent dependencies (PWM-0,
PWM-1); the improvement is more apparent in the regions around 40% and 70%
sensitivity (see Table2). We note that the improvement obtained at the 35% level
of sensitivity by the TREE model is comparable to the improvement reported
for the maximum dependency decomposition model at 50% level by [6].
Higher order models. To evaluate second order models, we used the data set
C22T to train models of order at most 2 (PWM-0, PWM-1, TREE, PWM-2, and
HOT-2). We then evaluated their prediction accuracy on the testing set C22. We
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Fig. 2. Sensitivity vs. specificity for donor splice site on data set B97.

found several non-adjacent dependencies (i.e., dependencies at distance greater
than 2) in model HOT-2. Position —4 depended on +7, positions —3...— 1 on
+3, and positions +4...4+ 5 on —1.

Table Blshows the models’ classification performance. The performance of all
models except PWM-0 is roughly equivalent. This equivalence is caused mostly
by the much higher presence of false positives in this data set. HOT-2 has a
slightly higher specificity for low and high values of sensitivity, and a slightly
lower specificity in the middle range.

We notice real improvement in our second evaluation measure: the compar-
ison of the predicted signal probability with the real signal probability (Figure
B). The figure shows that in general, most models slightly underpredict the prob-
ability for low-scoring possible signals, while greatly overpredict the probability
for high-scoring possible signals. This is the case for all tested models except
the HOT-2 model, which consistently slightly underpredicts at all scores. The
advantage of the HOT-2 model can also be seen in the correlation coefficient
between the predicted and actual signal probability (see Figure [3): the HOT-2
model has a strongly higher correlation (0.955) in our measure than does the
second best model (PWM-2, with correlation coefficient 0.911).

The HOT-2 model has approximately the same classification power as other
models, while showing significant improvement in predicting accurately the sig-
nal probability. We thus suggest that it is a better model for incorporating into
gene finding programs and other probabilistic frameworks than the other models.

We also compared the HOT-2 model to other models on a data set that
had fewer false positives. We trained all models on the C22T data set (to avoid
overfitting) and then tested them on the B97 data set. We show the results
in Figure [ They show that HOT-2 has highest specificity at high sensitivity
settings (for sensitivities more than 50%), while at lower sensitivities (less than
50%), the TREE model has the best specificity. The advantage of the HOT-2
model at the high levels of sensitivity is small, however.
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Sensitivity level

Model | 5% 20% 35% 50% 70% 90%
PWM-0{12.8% 9.2% 7.4% 5.7% 3.2% 1.4%
PWM-1{16.0% 11.6% 9.5% 6.9% 4.2% 1.8%
TREE [14.0% 11.3% 9.0% 71% 4.4% 1.7%
PWM-2(16.0% 11.2% 9.4% 7.0% 4.2% 1.7%
HOT-2 |17.9% 11.0% 9.3% 6.6% 4.5% 1.9%

Table 3. Specificity for donor splice site models at given levels of sensitivity,
on data set C22.
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Fig. 3. Predicted signal probability versus actual signal probability for donor
splice site signal on data set C22. For example, the bucket with average score
0.066 in the HOT2 model contains 258 samples, out of which 20 are true donor
sites. This corresponds to the y-coordinate 0.078 = 20/258. The correlation
coefficients between the predicted probability and the actual probability are
0.955 for HOT2, 0.911 for PWM2, 0.890 for PWM1 and 0.827 for PWMO0.
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Fig. 4. Accuracy statistics for donor splice site, training on data set C22, testing
on data set B97.
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4.2 Acceptor Sites and Branch Sites

Next, we studied acceptor sites, using a window of size 13 from position —10
to position +2 (consensus YYYYYYVCAG|GNN). Burge [6] pointed out that the ac-
ceptor site does not exhibit strong non-adjacent dependencies in the signal. In
this case, our experiments confirmed that the possibility of non-adjacent depen-
dencies in the models TREE and HOT-2 does not gain any advantage, and the
performance of all models except PWM-0 is roughly equivalent on both data
sets.

We also tried to enhance prediction of acceptor sites by trying to locate
branch sites in the sequences, upstream of the acceptor site. Since branch sites
are not generally annotated, we used an iterative refining procedure described
by Zhang to train a model for recognizing branch sites. We started with a
simple model based on the consensus sequence NNNYTVAYYYYYYYYY (in
a window of size 16, from positions —6 to +9). In each iteration, we located
the best-scoring sequence in the sequence window from 50 positions before each
acceptor site to 10 positions before the acceptor site, and used this sequence to
train the new model. We performed three iterations to train branch site models.
Lastly, we paired the possible branch sites we found with their corresponding
acceptor sites and built new models for both signals together that allow inter-
signal dependencies.

To estimate the signal probability of each possible acceptor site A, we first
located the most likely branch site B in the window from 10 to 50 bases upstream
from the possible acceptor A and then estimated Pr(+|B, A) of both signals B
and A together.

Several interesting dependencies appeared in the optimal HOT-2 model.
There are dependencies of the acceptor positions —10, —6, —5, —3, and +2
on the branch site position —1, of the acceptor position —9 on the branch site
position +9, of the acceptor position —7 on the branch site positions +6 and
49, and of the branch site position —2 on the acceptor site position —1.

However, considering these dependencies do not improve classification power
significantly, according to our experiments. In general, using branch site models
improved specificity very slightly (usually less than 1%). Interestingly, however,
the correlation between predicted and actual probability of the signal is much
improved in all models by using the branch site; we show these data in Table

4.3 Dependencies among Three Signals

Previous studies have shown a relationship between the strengths of correspond-
ing donor and acceptor sites [22J6l0]. Inspired by this, we investigated whether
dependencies between positions of these signals can be found. We trained our
models on a composite signal of donor, branch, and acceptor sites extracted from
the same introns. The models were used to classify whether given pair of donor
and acceptor come from the same intron. However, the dependencies between
the signals were so weak that they do not facilitate such classification with any
reasonable degree of accuracy. Table Blshows that the dependencies between the
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Data set B97 | Data set C22
Model |without with |without with
branch branch|branch branch
PWMO| 0.825 0.930 | 0.760 0.920
PWM1| 0.882 0.906 | 0.920 0.961
TREE | 0.872 0.912 | 0.918 0.959
PWM2 - - 0.920 0.952
HOT-2 - — 0.925 0.955

Table 4. Correlation coefficient between predicted signal probability and actual
signal probability, for models of acceptor sites on the data sets B97 and C22 that
do and do not include branch site enhancement.

Intra-signal Intra-signal
Signal adjacent  adjacent Inter-signal
Donor 0.0597 0.0535 branch: 0.0066
acceptor: 0.0094
Branch 0.1044 0.0303  acceptor: 0.0136
Acceptor| 0.0835 0.0210

Table 5. The strongest dependencies found among signals. Shown are the
strongest dependencies between adjacent positions, non-adjacent intrasignal po-
sitions and intersignal positions. The values shown in the table are differential
entropy H (i) + H(j) — H (1, j); this is the value used in determining the best tree
structure. Higher table entries correspond to stronger dependencies.

signals are much weaker than the dependencies between both non-adjacent and
adjacent positions within the same signal.

5 Conclusions

We have presented a new model for biological signals found in DNA. Our new
approach allows for positions in signals to be dependent on a small number
of other positions, which need not be their direct predecessors. This model is
an extension of both higher order position weight matrices, which are typically
used for this problem, and of the Chow-Liu trees studied by Cai et al. [7] for
this purpose.

Our models are based on directed hypertrees of dependence structure. For a
given training data set, we have shown that it is NP-hard to compute the optimal
dependency model from the family we consider, as long as positions are allowed
to depend on multiple sites. However, in practice, we are able to compute good
models, either by using integer programming or much simpler greedy heuristics.

In practice, we find that the addition of flexibility in characterizing depen-
dencies in a model is modestly helpful, but not profoundly so. There is some
advantage over the simply ordered model of position weight matrices, especially



Optimal DNA Signal Recognition Models 93

in the case of donor site prediction. We were also able to demonstrate that the
signal probability estimates given by our new models are much more reliable
predictors of actual probability of the sequence being a signal than the scores
given by PWMs or tree models. This is useful in the context of probabilistic gene
finding, where this estimation is one of many that are integrated into the gene
finding process.

Future work. Several questions remain from our work. The first has to do with
overtraining. Is it possible to estimate the size of data set needed to avoid overfit-
ting these more complicated models? Clearly, they depend on more parameters
than the corresponding higher order PWMs, since one must also infer the hy-
pertree topology. On a related note, can overfitting be prevented by combining
parameters from several orders, as is done in interpolated Markov chains [18]?

Second, in this work we chose a model with maximum likelihood. This re-
sulted in models that were good predictors of a probability that a given site
is a signal, but their discriminative power was not improved compared to other
methods. Perhaps, the discriminative power could be improved by estimating pa-
rameters using different optimization criterion, as is suggested by Akutsu et al.
[2] for PWMs.

Third, inter-signal dependencies between donor, branch, and acceptor sites
do not help us to improve prediction. Another context in which intersignal de-
pendencies might be discovered is in the core promoter, which is a region in DNA
sequence, composed of several smaller signals located close to each other, that
work together in transcription initiation. Our methods may help with recognition
of core promoters.

Fourth, can we apply hypertree PWMs to other classification or prediction
problems? Chow-Liu trees have been used successfully in numerous applications,
which suggests that the more rich hypertree PWMs may, as well.

Lastly, we are currently investigating the effect of integrating these models
together with probabilistic gene finders.
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