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Abstract. We describe a modification of an interactive identification scheme of
Schnorr intended for use by smart cards. Schnorr’s original scheme had its secu-
rity based on the difficulty of computing discrete logarithms. The modification that
we present here will remain secure if either of two computational problems ts in-
feasible, namely factoring a large integer and computing a discrete logarithm. For
this enhanced security we require somewhat more communication and computational
power, but the requirements remain quite modest, so that the scheme is well suited
for use in smart cards.

1 Introduction

In this note we describe an interactive identification scheme that is a variation
of a scheme presented by Schnorr at Crypto ’89 [9]. Schnorr’s scheme has several
features that make it advantageous for use in smart cards or other environments
with limited computing power. Its security is based on the difficulty of the discrete
logarithm problem in a subgroup of E;. In this paper we shall describe a variation
with the property that a successful attack on the scheme requires the ability to solve
an instance of the discrete logarithm problem, and in addition to factor an integer
that is divisible by two large primes.

Due to the current state of complexity theory, cryptographic schemes whose
security is based on the difficulty of solving a specific computational problem are
exposed to the danger that a fast algorithm may be found for the underlying compu-
tational problem. It therefore seems desirable to design systems with the property

*This work was performed under U. S. Department of Energy contract number DE-AC04-
76DP00789 ,

Copyright (c) 1998, Springer-Verlag



il W8

64

that breaking them requires the ability to solve two apparently dissimilar compu-
tational problems, both of which appear to be hard. An example of such a scheme
was given in [7], where a key distribution scheme with this property was given. The
key distribution scheme of [7] uses arithmetic modulo a number n that is a product
of two primes. Breaking the system requires the factorization of n and the ability
to solve the Diffie-Hellman problem modulo the prime factors of n. In the present
paper we take a slightly different tack, by using arithmetic modulo a prime p. We
choose p with the property that p — 1 has at least two large prime factors, so that
the factorization of p — 1 is hard to recover. We then construct the system in such
a way that breaking it requires both computing a discrete logarithm in a subgroup
of Z;, and factoring p — 1.

The extra security gained in this scheme extracts a penalty both in the compu-
tation time and the communication time, but the scheme still carries the advantage
of allowing preprocessing of most of the computation, and should still be quite fea-
sible for use in smart cards. The relative merits of the schemes will be discussed
later, after we first present the schemes in detail.

2 Schnorr’s Identification Scheme

We begin by describing the original Schnorr authentication scheme in terms a
security parameter . In this scheme, each person who wishes to use the scheme to
prove his identity will visit a key authentication center (KAC) and register his or
her public key. When the KAC is originally set up, it chooses

— primes p and ¢ such that ¢ | p—1, ¢ > 2M° and p > 2512,
— a of order g in the group Z,,

— its own private and public keys.

The KAC publishes p, ¢, @, and its public key. When a user comes to the KAC
for registration, the user chooses a secret s € {1,..., ¢}, computes v = a~* (mod p),
and submits v to the KAC along with some form of identification. The KAC
verifies the user’s identity, generates an identification string I, and also generates a
signature § of the pair (I,v). The KAC can use any secure digital signature scheme
whatsoever for generating this signature.

We now describe the procedure by which party P (the prover) can prove its
identity to V(the verifier). In a preprocessing phase, P should first have chosen a
random number r € {1,...,q} and computed z = o" (mod p). In the identification
procedure, P first sends to V its identification string I, its public key v, the KAC’s
signature § of (I,v), and z. V then checks P’s identification by verifying the
signature §, chooses a random e € {0,...,2" — 1}, and transmits e to P. P sends
to V the value y := r + se (mod ¢). Finally, V checks that z = a¥v* (mod p) and
accepts P’s proof of identity if this holds.
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Schnorr suggests using ¢ = 72, although this can be reduced substantially for use
in the identification scheme (Schnorr also proposed a companion signature scheme
which requires the larger t). The parameter ¢ is used to control the probability that
an impostor will be able to guess a correct response to a challenge e. For use in
an identification scheme, we need only choose t so large that the probability 27¢ of
guessing the challenge ¢ is negligible.

This scheme has a number of novel features. First of all, much of the arithmetic
to be done by the prover can be done in a preprocessing phase, using idle time of
the processor. This is well suited to the case of a smart card, where the processing
power is relatively small. Second, the number of bits that must be communicated
is considerably reduced over other schemes such as RSA or Fiat-Shamir. There is
also a signature scheme based on the same choice of keys, but we shall not discuss
it here.

Schnorr’s scheme may be regarded as a practical refinement of the zero-knowledge
protocols of Chaum et.al. [3], [2] for demonstrating possession of a discrete loga-
rithm. In [3], the challenge e was either a zero or a one, and the basic protocol was
repeated several times (requiring the prover to perform multiple exponentiations).
Yet another interesting identification scheme based on discrete logarithms was pro-
posed by Beth [1]. The security of the latter scheme is however more closely related
to the ElGamal signature scheme.

3 The Modified Scheme

In this section we shall describe the modification of Schnorr’s scheme. In the
modified scheme, each user will have his own prime p and base element o, and
these will need to be transmitted along with v during each identification session.
Once again the KAC serves only to sign the public keys of each user, but now
these include p and «. Rather than the single security parameter t, we describe the
scheme in terms of the parameters k,t, and u.

When a user wishes to join the system, he chooses primes ¢ and w with ¢ < w,
2¢-1 < ¢ < 2%, and qw > 25'2. The user further chooses a prime p = 1 (mod quw),
an element @ € Z; of order ¢, and a random number s € {1,...,9}. The user
then computes v = a™* (mod p), and presents p, v, and « to the KAC along with
some form of identification, but keeps ¢, w, and s secret. The KAC verifies the
user’s identity, generates an identification string I, and produces a signature § of
the quadruple (I,v,p, a), which it provides to the user. Once again the KAC can
use any digital signature scheme whatsoever.

In the identification procedure, P once again has a preprocessing phase, where
P chooses a random number r € {1,..., ¢} and computes z = o (mod p). Then P
sends to V the identification string I, its public keys v, p, and a, the KAC’s signature
S, and z. V checks P’s identification by verifying the signature § of (I,v,p,a). If
the keys are authentic, then V chooses a random e € {0,...,2* =1} and a random
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f€{0,...,2%— 1}, and transmits the pair (e, f) to P. P then computes an integer
y such that y = r + se (mod ¢) and 2*f < y < 2¥(f +1), and sends y to V. V checks
that z = a¥v*® (mod p) and 2% f < y < 2*(f + 1), and accepts P’s proof of identity
if these conditions are satisfied.

The parameters u and ¢ can be adjusted to suit specific needs, but we suggest
using u = ¢t = 20. With this choice, there are 2*° possible challenges (e, f), and the
probability of guessing the challenge ahead of time is therefore 27%°. If an impostor
somehow discovers the secret prime ¢, then a precomputed pair y,z that satisfies
a'v® = z (mod p) can always have the y adjusted to fit any challenge f, but the
probability of guessing the e ahead of time is still only 272°. Similarly if an impostor
knows a discrete logarithm of v to the base ¢, then the probability of success in
guessing ahead of time is also 27%°. We regard this as being acceptably low for use
in an identification scheme.

Some care should be exercised in choosing the primes ¢ and w, and in particular
we should try to choose them in such a way as to thwart any known algorithms for
factoring qw. The choice of k > 140 is probably marginal in avoiding a determined
implementation of the elliptic curve method of H. W. Lenstra, Jr., but may suffice
for applications of a commercial nature. At present the record for the largest factor
found by the elliptic curve method has 38 decimal digits, or about 127 binary digits
(this factor was found by Robert Silverman). On the other hand, choosing k > 200
will probably be safe against any conceivable implementation. The construction
of p should be relatively easy, since heuristic evidence (see [10]) suggests that we
should expect a prime p = 1 (mod gw) can be found with p < qw log*(qw).

The recent results of Lenstra and Manasse [6] and Lenstra et. al. [5] have raised
a question about how long a 512 bit modulus will remain safe from attack by current
factorization methods. We suspect however that by the time anyone will have at
their disposal enough computational power to factor a 512 bit modulus, the smart
card technology will probably have advanced enough to allow easy use of a 1024
bit modulus. Moreover, the best known attack for breaking the scheme we present
here requires in addition the computation of a discrete logarithm modulo a 512 bit
prime, and current algorithms will probably have a much more difficult time with
this problem.

4 Performance Analysis of the Modified Scheme

It is evident that the modified scheme suffers from a disadvantage in the number
of bits that must be communicated. The following tables show the number of bits
to be communicated in the two schemes, using the security parameters mentioned
above. For the sake of comparison, we have assumed that 100 bits suffice for each
of I and §. We have used a value of £k = 140 in the original and k = 200 in the
modified scheme.
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Modified Scheme

I 100

Original Scheme v 512
I 100 p 512

v 512 a 512

S 100 ) 100

z 512 z 512

e 40 (e, f) 40

y 140 y 220
total 1404 total 2508

The modified scheme therefore pays a penalty of an extra 1104 bits in commu-
nication, and possibly more if error correction is included. On the other hand, this
is still well within the realm of possibility using present technology.

We now compare the computational requirements of the two schemes. In both
the original Schnorr scheme and the modified scheme, numerous refinements can be
devised to improve peformance. No matter what we do, however, the amount of
arithmetic required in the new scheme appears to impose a slight penalty on speed.
Part of the penalty comes from the fact that the prime ¢ is larger for the modified
scheme. Both schemes can use a 512 bit modular exponentiation with an exponent
r of at most 140 bits in the preprocessing stage.

In the original Schnorr scheme, the prover is required to compute y = r + se
(mod ¢), and the most obvious way to do this requires a multiplication, an addition,
and a division by ¢. In the modified scheme, we require in addition a multiplication
by ¢ and an extra addition.

This does not however take into account any optimization. We now discuss a
method for speeding the computations in both the original Schnorr scheme and the
modified scheme. The idea here is to replace the divisions by ¢ with multiplications
(using shorter integers). This can be done by precomputing (only once, when the
initial keys are selected) an approximation Q of s/g. If 0 < s/¢ — Q@ < 27*71, then

r—qg<r+se—q|[Qe]] <r+gq,

where [[z]| denotes the nearest integer to x. Hence after computing r + se — ¢{[Qe]],
at most one subtraction or addition of ¢ will be required to reduce r + se modulo
g. The overall improvement from performing the precomputation is to replace the
division by ¢ with a multiplication of @ and e (both of which are only ¢ bits) followed
by multiplication of ¢ and a ¢ bit integer, followed by at most two subtractions or
additions involving k bit integers. Depending on the implementation, this may
result in a significant speedup by eliminating the multiple precision division.

In the modified scheme, we can employ a similar approach. For the modified
scheme we need to compute y so that y = r + se {mod ¢) and 2*f < y < 2%(f + 1).
To do this, we precompute two sufficiently good approximations Q; and Q; of s/q
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and 2*/q respectively. We then compute r + se + ¢[[Q2f — Q1¢]], and if necessary
adjust the result with at most one addition or subtraction of q.

Using these division-free algorithms for the computations, the only extra work
required in the modified scheme is for an additional multiplication and subtraction,
on numbers of approximately ¢ bits. This should have a negligible effect on the
overall computation speed. As we shall see in the next section, this slight degra-
dation in performance brings in return the promise of an extra measure of security
that cannot be achieved by simply increasing the key size.

We close this section with a final comment on the original Schnorr scheme. In
that scheme, y is reduced modulo q before transmission. At first sight it may appear
advantageous to remove the reduction of y modulo ¢ in the original Schnorr scheme
and thus gain a significant computational advantage in the on-line portion of the
computation. In fact, this would be disastrous because if we know r+ se and e, then
we can construct an interval of length approximately g/e containing s. An algorithm

of Pollard [8] can then be used to compute s in only about /g/e operations. For
the parameters suggested by Schnorr, the expected value of this is only 2%.

5 Security of the Modified Scheme

Like all cryptographic schemes, identification schemes can be attacked in a va-
riety of ways. The purpose of introducing interaction to identification schemes is to
protect against passive eavesdroppers recovering secret information that they can
later use to impersonate the legitimate user. In this section, we will give evidence
which indicates that our scheme does provide such protection. However, there are
other kinds of attacks that might arise in applications that are not protected against
by using an interactive identification scheme by itself.

In particular, Desmedt et.al. [4] have pointed out that an interactive identifica-
tion scheme offers no protection against the situation in which the verifier cheats by
passing on information provided to him by the prover to another cheating prover
who (falsely) proves his identity at another location.

Furthermore, an interactive identification scheme does not offer any protection
against a prover who gives away his secret information to another so that they may
impersonate him, or against a prover who chooses weak secret keys that anyone can
guess. A variant of this point was discussed by Burmester in the rump session at
Eurocrypt ’90.

Both of these attacks can be protected against if the system uses physical char-
acteristic information to uniquely identify an individual. If the identification by
physical characteristics offers perfect security, then there is no security gained by
using an interactive identification scheme instead of simply using a digital signature
(issued by the KAC) of the physical characteristics. However, if the identification
by physical characteristics offers less that perfect security, then using an interac-
tive identification scheme can in some cases result in increased total security of the
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system. For example, if two people share the same physical characteristics, then
a digital signature of these characteristics could be transferred by a cheating veri-
fier between these two people. With the use of interaction this will be impossible
without the cooperation of the legitimate prover.

In the remainder of this section, we will consider only the security provided by
the system against a passive eavesdropper. There are several basic attacks that can
be mounted by a passive eavesdropper against identification schemes. For example,
in the original Schnorr scheme, one kind of attack would be to try to construct a
pair (I,«™*) and a legitimate signature $ of this pair for later use in identification.
This would however require a successful attack on the signature scheme of the
KAC. Another attack would involve observing a user identify himself several times,
collecting a set of the tuples (z,e, f,y). It can be shown that a reasonable number of
such tuples cannot provide any useful information, since the attacker could himself
construct such tuples from a distribution that is very close to the legitimate user’s
distribution by first choosing y, then f, then ¢, and then z.

A more serious attack would involve observing a user going through the identifi-
cation process, and for the pair (I,v) that is observed, try to later produce an z for
which there is a reasonable chance of being able to answer the challenge by finding a
suitable y. Schnorr proved that an attack of this kind for the original scheme would
require the ability to compute the discrete logarithm of v. In the same spirit, we
shall prove in Theorem 1 that an attack of this kind on the modified scheme would
require the ability to factor p — 1 and the ability to find the discrete logarithm of v.

We should be careful to observe that an attack on the system has not been
proved to be completely equivalent to the problem of simply factoring p — 1. While
a successful attack requires the ability to factor p — 1, a cryptanalyst will be in
possession of some side information. The most obvious information available is the
knowledge of an element o whose order is the unknown factor q of p — 1. Whether
this information can be used to discover the factor ¢ is unknown.

Theorem 1. Let p and « be as described in Section . Let A = Apayz be
an algorithm with running time bounded by T that receives an input (e, f), and
attempts to compute an integer y such that o¥v* = z (mod p). If A will pro-
duce a correct output for at least €2“** of the possible challenge pairs (e, f) (where
€ > max(2'7%,21"%) ), then there ezists a probabilistic algorithm that with at least a
constant probability, will compute the prime factor q of p—1 and a discrete logarithm
of v in O(log® p + %) bit operations.

Proof. We first describe an algorithm for computing a discrete logarithm of v.
The idea is to construct correct triples (e, f1,¥1) and (e3, f3,y2) with e; # e;. We
first choose random pairs (e;, fi) until one is found for which A gives a correct
output y;. We then choose random pairs (ez, f2) with e; # €, until we find one
for which A gives a correct output y;. We now have o¥'7¥2 = v*2~% (mod p). We
use the Euclidean algorithm to compute d = gcd(e; — €;,p — 1). Assume first that
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d = 1. Then the extended Euclidean algorithm gives an integer £ with (e —e;)¢ =1
(mod p — 1), so that al¥~¥2)¢ = y (mod p). Hence (y; — y2)¢ is a discrete logarithm
of v to the base a.

Suppose now that we found d > 1. In this case we let d; = d, m; = p— 1,
and for i = 2,..., we compute m; = m;_;/d;-; and d; = ged(e; — €;,m;). Since
lez — e1] < ¢ < w, we will eventually arrive at d; = 1 and ¢ | m;. Applying the
extended Euclidean algorithm, we then obtain an integer £ such that £(e; —e;) =1
(mod m;), and it follows that (y; — )¢ is a discrete logarithm of v.

Clearly, after examining O(1/¢) pairs (e1, f1) we have a probability of at least
1/2 of getting an output from A. Even if all pairs (e, f) for 1 < f < 2* are in the
set of pairs on which A produces a correct output, the probability is still at least
¢—27* that a pair (ez, f2) with e; # ez will yield a correct output from A, so we have
again a probability at least 1/2 of success after we examine O(1/(e~27*)) = O(1/¢)
pairs (ez, f2)-

We now describe the algorithm for recovering the factor ¢. From the previous
discussion, we may assume without loss of generality that we are already in pos-
session of an integer L such that of = v (mod p). We begin by choosing random
(e1, f1) until a pair is found for which A produces a correct output y;. After this
we search for a second pair (e, f2) for which A produces a correct output. Since
a’'7V? = v*27° (mod p), we have y; — y2 = (e2 — ;)L (mod ¢). If it happens that
y1—y2 # (e2—e1) L (mod w), then ged(y, —y2 —{e2—e1) L, p— 1) will give a splitting
of gw. On the other hand, for each e;, the congruence y; — y; = (e2 — e;) L (mod w)
has only one solution y; in the interval {1,w], so there is at most one f; for each
e; that can give such a solution y;. Hence the number of pairs (e;, f2) that do not
lead to a splitting of qw is at most 2¢, and therefore the probability of success in
finding a pair {ez, f2) that will split qw is at least ¢ — 27%. Hence we expect to split
¢ and w after examining O(1/(e —27*) = O(1/¢) pairs (es, f2), and this completes
the proof. 0
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